

skip navigation 	All Products Product Bundles

DevCraft
All Telerik .NET tools and Kendo UI JavaScript components in one package. Now enhanced with:
	NEW: Design Kits for Figma
	Online Training
	Document Processing Library
	Embedded Reporting for web and desktop

Web
Kendo UI UI for jQuery UI for Angular UI for React UI for Vue UI for Blazor UI for ASP.NET Core UI for ASP.NET MVC UI for ASP.NET AJAX
Mobile
UI for .NET MAUI UI for Xamarin
Document Management
Telerik Document Processing

Desktop
UI for .NET MAUI UI for WinUI UI for WinForms UI for WPF
Reporting & Mocking
Telerik Reporting Telerik Report Server Telerik JustMock
Automated Testing
Test Studio Test Studio Dev Edition
CMS
Sitefinity

UI/UX Tools
ThemeBuilder Design System Kit
Debugging
Fiddler Fiddler Everywhere Fiddler Classic Fiddler Jam FiddlerCap FiddlerCore
Extended Reality
UI for Unity XR
Free Tools
JustAssembly JustDecompile VB.NET to C# Converter Testing Framework

View all products

	Demos
	Services
	Blogs
	Docs & Support
	Pricing

	
	 Shopping cart
	 Login
	 Contact Us
	Get A Free Trial

	
	

close mobile menu

 Generating PDF in React: As Easy As 1-2-3

 by Carl Bergenhem

 	
 April 08, 2021

 Web, React

0 Comments

 	

 Can generating a PDF file in a React app actually be simple? With KendoReact, YES!
A popular question that I see pop up in React communities is how to export HTML, or parts of your React application, to PDF. Normally this can be a bit cumbersome, but I’m here to tell you that, thanks to KendoReact, we can now export any and all content in our React apps as easy as 1-2-3!
Today’s blog post is the first of a three-part series that covers how you can generate PDF from HTML in React. As this is Part 1, today we will first create a quick app to be exported, add our React PDF Generator library and see how to generate a PDF file from HTML in React.
In Part 2, we’ll build a sample invoice in our React app using HTML and CSS, then generate a PDF file based on this content.
In Part 3, we'll learn how to export to PDF advanced React UI components such as the KendoReact Data Grid and React TreeList.
0. Prefer Video? I Got You Covered
In case you prefer to learn through videos rather than reading blog posts, I recorded a video series on how to generate PDF in React apps. Check out Part 1 of the PDF export video series right here.
1. Create Your React App
This may be obvious, but to export something to PDF you first have to have that something! As you have stumbled upon this article, I think you have a set of requirements already but for those of you curious here are some common scenarios I’ve seen that folks need to export React apps to PDF:
	Export Dashboards or collections of KPIs to PDF
	Export Invoices created in HTML to PDF
	Export some or all data of Data Grids
	Advanced: Export contracts that have been electronically signed to PDF

There are, of course, tons more scenarios, but these are just some that I’ve discussed with React developers over the years.
For this blog post, I’m going to keep things simple. Before we get started, I’m going to toss out a link to the following GitHub repo. For this blog post, we will be looking at the ExportExample component in the GitHub project. This will contain everything I’m talking about today, and then some (keep an eye out for more content around this project!). For those of you following along with this source code, we’ll be looking at the ExportExample component.
Before jumping into the HTML and CSS that makes up my component, I just want to note that this example showcases the following types of HTML and exports it to PDF:
	Standard HTML elements like <h1/>, , , etc.
	Components that have custom CSS style separate from other content
	Advanced React UI components like the KendoReact components

To kick things off, I’ve just set up a fresh project using create-react-app.
All you need to follow along is the following HTML:
<div className="app-content">
 <div>
 <h1>KendoReact PDF Processing</h1>

 <p>This is an example of text that may be styled
 </p>
 </div>
</div>

For the image, I’ve added the following image and defined it as the kendoka variable above.

And here is our CSS that we can toss in to our existing App.css:
.app-content {
 text-align: center;
 background-color: #282c34;
 min-height: 100vh;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 color: white;
}

.page-container {
 margin: 1em;
}

.neat-style {
 color: rgb(255, 142, 166);
 font-weight: bold;
 text-decoration: underline;
}

.button-area button {
 margin-right: 10px;
}

.k-pdf-export {
 background-color: #282c34;
}

Now that we have our HTML and CSS, let’s get to the next step and add in KendoReact PDF Processing!
2. Add KendoReact PDF Processing
To get started with generating a PDF in React apps, all we need to do is head over to the KendoReact PDF Generator documentation section. This gives you the instructions for how to install the KendoReact PDF Generator, and it also contains all the documentation articles you need to get started and dive deeper in to the world of React PDF generation on the client side—I highly recommended you bookmark this!
That being said, the main bit of information we’re interested in is the following npm command:
npm install --save @progress/kendo-react-pdf @progress/kendo-drawing @progress/kendo-licensing

A quick note: You may have noticed the @progress/kendo-licensing package included here. KendoReact is a commercial UI component library and as a part of this you will need to provide a license key when you use the components in your React projects. You can snag a license key through a free trial or by owning a commercial license. For more information, you can head over to the KendoReact Licensing page.
With that out of the way, we are ready to move on to the exporting. That’s right—we’re technically ready to rock and roll. As a bare minimum, all we need is to is add this one single package and one single import statement in our app and we can move on to the next step. Really, that’s all we need! One single package and you can skip straight to Step 3.
However, I do also want to take this time to import one extra component, namely the KendoReact Button component. This is purely because I like the look and feel of the KendoReact button. As a part of this, I also installed one of the KendoReact themes to help with the overall look and feel of said buttons and any future KendoReact components. In this case, I added the KendoReact Material theme. If you’re interested in this partial step, or want to include this yourself, you can follow the installation instructions in the linked documentation article.
Before I show you how you can export your React app to PDF (Step #3), I’m going to toss some new HTML markup at you. This includes some new KendoReact Buttons and just an extra <div> element, so nothing too crazy.
<div className="app-content">
 <div>
 <h1>KendoReact PDF Processing</h1>

 <p>This is an example of text that may be styled
 </p>
 <div className="button-area">
 <Button primary={true}>Export with Component</Button>
 <Button>Export with Method</Button>
 </div>
 </div>
</div>

If you’ve followed along so far, all you would need to do is copy and paste everything above in to your own project and you’ll be good to go!
3. Export to PDF
Now that we have everything installed let’s actually get to a point where we can export content! First off, let’s make sure that we import the KendoReact PDF Generator library in our appropriate React component:
import { PDFExport, savePDF } from '@progress/kendo-react-pdf';
The two items we have imported here represent two methods of exporting: PDFExport exports content as a component, and savePDF is used when we want to export things via a method. Let’s dive into each approach!
3a. Generate PDF via Component
All we need to do to export content via the component route is to find the content that we want to export and wrap around the HTML with <PDFExport></PDFExport> tags. You don’t need to wrap around your entire React app—just the content that needs to be exported.
To give you an idea of what this looks like, here is our previous HTML wrapped appropriately:
<div className="app-content">
 <PDFExport ref={pdfExportComponent} paperSize="A4">
 <div>
 <h1>KendoReact PDF Processing</h1>

 <p>This is an example of text that may be styled
 </p>
 <div className="button-area">
 <Button primary={true}>Export with Component</Button>
 <Button>Export with Method</Button>
 </div>
 </div>
 </PDFExport>
</div>

You may have noticed two things above: one is that we define a reference to this component via React’s ref prop, so we have ref={pdfExportComponent}, and we also define the paperSize to A4. Paper size can be set both via the same prop as I show here, or even through CSS (more on this in a future blog post), but since A4 is the most basic paper size, I just went ahead and added it here.
Now that we’ve defined the area that we want to export, let’s go ahead and actually export content on a button click! First, we’ll define our onClick event handler:
<Button primary={true} onClick={handleExportWithComponent}>Export with Component</Button>
Next, here’s our actual handler:
const handleExportWithComponent = (event) => {
 pdfExportComponent.current.save();
}

What we are doing here is grabbing the ref variable we defined as a reference to our <PDFExport></PDFExport> tags. From there we use the available API to call .save() and our content will be exported!
3b. Generate PDF via Method
Similar to the component approach above, exporting via a method needs to define a parent HTML element that should contain all the content which is set to be exported. The quickest way to do this is to define a <div> element with a ref prop. Of course, we also need a button responsible for exporting on click, so we’ll add that in here as well.
Expanding upon the HTML we have so far, we have:
<div className="app-content">
 <div ref={contentArea}>
 <h1>KendoReact PDF Processing</h1>

 <p>This is an example of text that may be styled</span
 </p>
 <div className="button-area">
 <Button primary={true}>Export with Component</Button>
 <Button onClick={handleExportWithFunction}>Export with Method</Button>
 </div>
 </div>
</div>

Then, in our event handler we have the following code:
const handleExportWithFunction = (event) => {
 savePDF(contentArea.current, { paperSize: "A4" });
}

What this bit of code is doing is calling the React PDF Generator savePDF method and passing in the HTML through contentArea.current along with an object reflecting the options we want to set for the file we are exporting. In this case, I’m only setting the paperSize option to show you how this all looks in comparison to the declarative and component approach, but you have a huge list of options available to you that you can customize!
Step 4. ??? & Step 5. Profit
That’s all there is to it! Through either approach, you now know how to generate a PDF file from HTML in React. Whether you prefer the declarative approach of wrapping around your content, or if you want to just pass in a block of HTML as content in to a method, the power of React PDF Generator is that any and all content can be exported using these two simple approaches.
In Part 2 of this series, Generating PDF from HTML in React Demo: Exporting Invoices, we create a more advanced HTML and CSS layout and see how we can customize the size of the layout of the generated PDF file via CSS and even do so dynamically!

 	Export, 	KendoReact, 	PDF, 	React

 About the Author
 Carl Bergenhem

Carl Bergenhem was the Product Manager for Kendo UI.

 	
	
 		Related Posts

 		

	
		Web
		React

 How to Add and Customize Card Elements in KendoReact

	
		Web
		React

 Getting Started with the KendoReact PivotGrid

	
		Release
		Web
		Vue
		Angular
		jQuery
		React

 What’s New in Kendo UI R2 2023

 Comments

	
		Comments are disabled in preview mode.
	

	Please enable JavaScript to view the comments powered by Disqus.

 All articles

Topics
					
				
					Web
				
					
							Blazor
						
	
							ASP.NET Core
						
	
							ASP.NET MVC
						
	
							ASP.NET AJAX
						
	
							Angular
						
	
							React
						
	
							jQuery
						
	
							Vue
						

			
			
				
					Mobile
				
					
							.NET MAUI
						
	
							Xamarin
						

			
			
				
					Desktop
				
					
							Blazor Desktop/.NET MAUI
						
	
							WPF
						
	
							WinForms
						
	
							WinUI
						
	
							UWP
						

			
			
				
					Design
				
					
							UX
						
	
							Design Systems
						

			
			
				
					Productivity
				
					
							Reporting
						
	
							Testing
						
	
							Debugging
						
	
							Document Processing
						

			
			
				
					People
				
					
							Accessibility
						
	
							Humanity
						

			
			
				Release
			

Latest Stories
in Your Inbox

Subscribe to be the first to get our expert-written articles and tutorials for developers!
All fields are required

	
	
	

			
				
			

			
				

				

			

				

					

 Email

 Country/Territory

 Select country/territory
United States
Afghanistan
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia and Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Terr.
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo (Brazzaville)
Congo, the democratic republic of the
Cook Islands
Costa Rica
Cote d'Ivoire
Croatia (Hrvatska)
Curacao
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Terr.
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Heard and McDonald Is.
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Lao People's Dem. Rep.
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Man, Isle of
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Macedonia
Northern Mariana Is.
Norway
Oman
Pakistan
Palau
Palestine, State Of
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Republic of Korea (South Korea)
Reunion
Romania
Rwanda
S.Georgia and S.Sandwich Is.
Saint Kitts and Nevis
Saint Lucia
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Spain
Sri Lanka
St. Helena
St. Pierre and Miquelon
St. Vincent and Grenadines
Sudan
Suriname
Svalbard and Jan Mayen Is.
Sweden
Switzerland
Taiwan
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo
Tokelau
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos Islands
Tuvalu
U.S. Minor Outlying Is.
Uganda
Ukraine
United Arab Emirates
United Kingdom
Uruguay
Uzbekistan
Vanuatu
Vatican (Holy See)
Venezuela
Viet Nam
Virgin Islands (British)
Virgin Islands (U.S.)
Wallis and Futuna Is.
Western Sahara
Yemen
Zambia
Zimbabwe

 State/Province

 Select

		
					 Progress collects the Personal Information set out in our Privacy Policy and the Supplemental Privacy notice for residents of California and other US States and uses it for the purposes stated in that policy.
You can also ask us not to share your Personal Information to third parties here: Do Not Sell or Share My Info

		

 Blog

	
		
		
		
		

		
				
					By submitting this form, I understand and acknowledge my data will be processed in accordance with Progress' Privacy Policy.

				

			
				
				I agree to receive email communications from Progress Software or its Partners, containing information about Progress Software’s products. I understand I may opt out from marketing communication at any time here or through the opt out option placed in the e-mail communication received.

			
		

		
			By submitting this form, you understand and agree that your personal data will be processed by Progress Software or its Partners as described in our Privacy Policy. You may opt out from marketing communication at any time here or through the opt out option placed in the e-mail communication sent by us or our Partners.

		

		
				
 We see that you have already chosen to receive marketing materials from us. If you wish to change this at any time you may do so by clicking here.

		

		
				Thank you for your continued interest in Progress. Based on either your previous activity on our websites or our ongoing relationship, we will keep you updated on our products, solutions, services, company news and events. If you decide that you want to be removed from our mailing lists at any time, you can change your contact preferences by clicking here.

		

		
		
	

 Subscribe

				

			
			
			
				

Complete .NET Toolbox
Telerik DevCraft
Complete JavaScript Toolbox
Kendo UI

Get Products
	Free Trials
	Pricing

Resources
	Demos
	Documentation
	Release History
	Forums
	Blogs
	Webinars
	Videos
	Professional Services
	Partners
	Virtual Classroom
	Events

Recognition
	Success Stories
	Testimonials

Get in touch
	Contact Us
		USA: +1 800 213 3407
	UK: +44 13 4483 8186
	India: +91 406 9019447
	Bulgaria: +359 2 8099850
	Australia: +61 3 7068 8610

		 165k+
	 50k+
	 17k+
	 4k+
	 14k+
	

	Contact Us
		 165k+
	 50k+
	 17k+
	 4k+
	 14k+
	

Telerik and Kendo UI are part of Progress product portfolio. Progress is the leading provider of application development and digital experience technologies.

	Company
	Technology
	Awards
	Press Releases
	Media Coverage
	Careers
	Offices

	Company
	Technology
	Awards
	Press Releases
	Media Coverage
	Careers
	Offices

Copyright © 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All Rights Reserved.
Progress, Telerik, Ipswitch, Chef, Kemp, Flowmon, MarkLogic, Semaphore and certain product names used herein are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. See Trademarks for appropriate markings.

	Terms of Use
	Site Feedback
	Privacy Center
	Security Center

Do Not Sell or Share My Personal Information
Powered by Progress Sitefinity

