   








skip navigation 	Telerik UI for .NET MAUI Product Bundles

DevCraft
All Telerik .NET tools and Kendo UI JavaScript components in one package. Now enhanced with:
	NEW: Design Kits for Figma
	Online Training
	Document Processing Library
	Embedded Reporting for web and desktop



Web
Kendo UI UI for jQuery UI for Angular UI for React UI for Vue UI for Blazor UI for ASP.NET Core UI for ASP.NET MVC UI for ASP.NET AJAX
Mobile
UI for .NET MAUI UI for Xamarin
Document Management
Telerik Document Processing

Desktop
UI for .NET MAUI UI for WinUI UI for WinForms UI for WPF
Reporting & Mocking
Telerik Reporting Telerik Report Server Telerik JustMock
Automated Testing
Test Studio Test Studio Dev Edition
CMS
Sitefinity

UI/UX Tools
ThemeBuilder Design System Kit
Debugging
Fiddler Fiddler Everywhere Fiddler Classic Fiddler Jam FiddlerCap FiddlerCore
Extended Reality
UI for Unity XR
Free Tools
JustAssembly JustDecompile VB.NET to C# Converter Testing Framework


View all products







	Overview
	Demos
	Roadmap 	What's New
	Roadmap
	Release History


	Docs & Support Support and Learning
	Support and Learning Hub
	Resources Hub
	.NET MAUI Tutorials and Learning
	First Steps
	Submit a Ticket


Docs & Resources
	Docs
	Demos
	Migrate to .NET MAUI
	Forums
	Videos
	Blogs


Productivity and Design Tools
	Visual Studio Templates
	Embedded Reporting






	Pricing

	
	 Shopping cart
	 Login
	 Contact Us
	Try now



	
	



close mobile menu














  



  



  



  
      Telerik PDFViewer Now Available as Part of Telerik UI for .NET MAUI
  

  

           
            
                
              by Rossitza Fakalieva
            

           
    	
          August 31, 2023
        
            
                  Mobile,                   .NET MAUI,                   Productivity,                   Document Processing            
        

          


0 Comments
        
  




  





  
  




  	

  
      
          
          
        
  
          
        
  
      

    Open, view and navigate through PDF documents from any device—mobile or desktop—with Telerik PDFViewer for .NET MAUI. See how!
Working with PDF documents is a common request for every business application, no matter whether it is mobile, desktop or web. The Progress Telerik suite for .NET MAUI offers a PDF library to edit and create documents programmatically. And now with R2 2023, you can display any PDF document you need to no matter whether it includes Images, Shapes, Links, Lists or various other visual elements.
The PDF Viewer for .NET MAUI is supported in Windows, macOS, iOS and Android platforms and comes with:
	Support for various document sources – You can load a PDF document from a stream, from a file added as an embedded resource, a file located on the device and so on.
	Support for complex PDF structure – Link annotations, lists, visuals, different fonts and more.
	Zooming, continuous scrolling and navigation capabilities – You can choose between different layout modes and configure the level of zooming factor to magnify the documents.
	API for advanced scenarios – Tinker with the settings for more specialized situations such as opening password-protected documents, opening invalid documents and more.
	Load On Demand – The PDF Viewer control implements read-on-demand loading, and each page of the document loads dynamically only when it is shown in the PDF Viewer. When that page isn’t in the view area, it gets unloaded.
        The stream that holds the document stays open while the document is used in PDF Viewer.
	BusyIndicator, toolbar with predefined items and rich customization options – Take advantage of a pre-defined UI automatically wired with some of the commands provided by the control through built-in functionality.

Enough talking, let’s see it in action:
Set up the Component in the .NET MAUI App
As with any of the other UI components, setting up Telerik UI for .NET MAUI is simple and can be done in three steps:
	Download and install Telerik UI for .NET MAUI.
	Call the UseTelerik() method inside the Maui Program.cs file of your .NET MAUI project. This is needed for all Telerik UI for .NET MAUI components as UseTelerik() registers
        all built-in or additionally created handlers to the Telerik components.
	Define Telerik PDFViewer in XAML or C#.

XAML
xmlns:telerik="http://schemas.telerik.com/2022/xaml/maui"
<telerik:RadPdfViewer x:Name="pdfViewer" />

C#
using Telerik.Maui.Controls
RadPDfViewer pdfViewer = new RadPdfViewer();

Now, if you run the application, the control will be there. But a document still needs to be loaded, so let’s continue with this.
Display Documents from Various Sources
Documents can be loaded from various document sources like:
	FileDocument
	Uri
	ByteArray
	Stream
	FixedDocument

The magic happens with the Source property of the component type—DocumentSource accepts FileName, UriBytes, FixedDocument or direct stream.
Note: Detailed illustrations for all types of sources can be found in Telerik documentation.

For this post, we will open a document stored as part of the .NET MAUI application. The best way to do that is to use the Stream function to load the document as shown below:
Func<CancellationToken,  Task<Stream>> streamFunc = ct =>  Task.Run(()  =>  
{  
  Assembly assembly =  typeof(MinMaxZoomLevel).Assembly;  
  string fileName = assembly.GetManifestResourceNames().FirstOrDefault(n => n.Contains("pdfdoc.pdf"));// here we are searching for the resource document  
  Stream stream = assembly.GetManifestResourceStream(fileName);  
  return stream;  
});  
this.pdfViewer.Source  = streamFunc;

Another good option is to use the integration between the Telerik PDF Processing library and create a FixedDocument/RadFixedDocument and use it as a Source to the PDFViewer.
Telerik PDF Processing Library API is part of Telerik UI for .NET MAUI, and you already have a reference to it once you added Telerik PDFViewer to your
    app. Learn more about what other capabilities this gives you here: Telerik Document Processing.
By using this approach, you have more control over the loading process. For example, you can modify the document after importing it and before assigning it as a Source to the PDF Viewer control.
Then the code will look like this:
Telerik.Windows.Documents.Fixed.FormatProviders.Pdf.PdfFormatProvider provider =  new  Telerik.Windows.Documents.Fixed.FormatProviders.Pdf.PdfFormatProvider();  
  Assembly assembly =  typeof(MinMaxZoomLevel).Assembly;  
  string fileName = assembly.GetManifestResourceNames().FirstOrDefault(n => n.Contains("pdf-processing.pdf"));  
  using (Stream stream = assembly.GetManifestResourceStream(fileName))  
  {  
    RadFixedDocument document = provider.Import(stream);  
    this.pdfViewer.Source  = document;  
  }

No matter which approach you choose, the result will be a loaded document, a beautiful long PDF with a table of contents, different fonts, tables, shapes and images.
Let’s continue to work with this document to see what else we can do. The full document and demo can be found in Telerik GitHub repo – Getting Started.

Configure the Document
First, Let’s Configure the Fonts
When you load a PDF document in Telerik PDF Viewer it already comes embedded with 14 standard fonts:
	Helvetica
	Helvetica-Bold
	Helvetica-Oblique
	Helvetica-BoldOblique
	Courier
	Courier-Bold
	Courier-Oblique
	Courier-BoldOblique
	Times-Roman
	Times-Bold
	Times-Italic
	Times-BoldItalic
	Symbol (Symbol)
	ZapfDingbats

However, you can embed all other fonts that you want to be displayed using the RegisterFont method that is part of Telerik PdfProcessing Library API .
Telerik.Windows.Documents.Fixed.Model.Fonts.FontsRepository.RegisterFont(  
new  FontFamily("Verdana"),  FontStyles.Normal,  FontWeights.Normal, fontData);

Note: Make sure to update the build action of the .ttf file to embedded resource.


Choose a Layout: One Page at a Time or by Scrolling to the End
The Telerik UI for .NET MAUI PDF Viewer supports two layout modes that you can set through its LayoutMode property.
The available options are:
	ContinuousScroll (default) – Displays pages in a continuous vertical column.
	SinglePage – Displays one page at a time.

We will stay with ContinuousScroll, but you can switch to SinglePage like this: LayoutMode="SinglePage"
You can also give the same control to the end user by exposing a separate UI and bind the ToggleLayoutModeCommand to it or add a ToggleLayoutModeToolbarItem to the toolbar (wait a sec for that, when we will talk more about the ToolBar 😊).
Control the Space Between Pages
Once you choose the layout, you can continue with setting the space between pages using the PageSpacing property.
For example, if you want to have 50px between pages the code will look like this:
<telerik:RadPdfViewer x:Name="pdfViewer" PageSpacing="50" />

Zooming & Scrolling
RadPdfViewer offers a smooth end-user navigation experience with zooming and scrolling and a rich API to control it programmatically.
You can control the zoom level with two properties: MaxZoomLevel and MinZoomLevel. The default value of both is 0.3.
There are also commands that you can expose outside the component to build your own navigation:
	ZoomInCommand
	ZoomOutCommand
	NavigateToNextPageCommand
	NavigateToPreviousPageCommand
	NavigateToPageCommand

Link Annotations
The Telerik .NET MAUI PDF Viewer supports link annotations and allows the end user to tap any hyperlink that leads to an absolute URI, and the link will open in the browser.
In addition, if the PDF contains links that point to bookmarks in the same document, the viewport scrolls to the destination specified in the link so you can easily display scenarios as Table of Contents, Sections and others.
The behavior can also be customized by subscribing to the LinkAnnotationTapped event which fires when a link is tapped/clicked. For example:
private void LinkTapped(object sender,  Telerik.Maui.Controls.PdfViewer.Annotations.LinkAnnotationTappedEventArgs e)  
{  
  if  (e.LinkAnnotation.Action  is  UriAction uriAction)  
  {  
    e.Handled  =  true;  
    Application.Current.MainPage.DisplayAlert("Confirm",  "Are you sure you want to navigate",  "Yes",  "No").ContinueWith(t =>  
    {  
      bool shouldNavigateAway = t.Status  ==  TaskStatus.RanToCompletion  ? t.Result  :  false;  
      if  (shouldNavigateAway)  
      {  
        Dispatcher.Dispatch(()  =>  
        {  
          Launcher.OpenAsync(uriAction.Uri);  
        });  
      }  
    });  
  }  
}

Password Protection
Security and privacy is an important topic in the era of information that we are living in, so sometimes we need to work with password-protected documents and be cautious about the access we provide.
Telerik PDFViewer provides a SourcePasswordNeeded event to subscribe to validate the access to documents like this:
private  void pdfViewer_SourcePasswordNeeded(object sender,  Telerik.Windows.Documents.Fixed.FormatProviders.Pdf.Import.PasswordNeededEventArgs e)  
{  
e.Password  =  "my_user_password_here";  
}

Manipulate the Document OnLoad
Sometimes we need to control end-user behavior or change something in the document when a page is loaded. The OnPageElementsLoaded is here for that. When this event fires we can access the page content and modify it like
    this:

private  void  OnPageElementsLoaded(object sender,  PageElementsLoadedEventArgs e)  
{  
  foreach  (var item in e.Page.Content)  
  {  
    if  (item is  Telerik.Windows.Documents.Fixed.Model.Graphics.Path path)  
    {  
      if  (path.StrokeThickness  ==  0)  
      {  
        path.StrokeThickness  =  5;  
      }  
    }  
  }  
}

Handle Exception Scenarios with Style
In some cases, the PDFViewer will fail to load the desired PDF document. The reason can be an invalid stream/inaccessible URL or invalid data in the document itself.
To handle these cases, use the SourceException event of the PDF Viewer:
private  void  PdfViewerSourceException(object sender,  SourceExceptionEventArgs e)  
{  
  var error = e.Exception.Message;  
}

The PdfViewer will display the error like this:

This message will be automatically localized as Localization is part of the PDFViewer’s features. However, if you need to change the text you can do it using the key PdfViewer_SourceExceptionMessage and follow the
    steps here.
Or you can change the whole UI that appears by using the SourceExceptionTemplate like this:
<telerik:RadPdfViewer  x:Name="pdfViewer"  SourceException="PdfViewerSourceException">  
  <telerik:RadPdfViewer.SourceExceptionTemplate>  
    <DataTemplate>  
      <Label  Text="Oops, something went wrong 🙁 ! We miss you and will be back soon ..."  
TextColor="Purple"  
HorizontalTextAlignment="Center"  
VerticalTextAlignment="Center"  
LineBreakMode="WordWrap"  />  
    </DataTemplate>  
  </telerik:RadPdfViewer.SourceExceptionTemplate>  
</telerik:RadPdfViewer>


Configure the Component: Busy Indicator, ToolBar & More
As you see, there are a lot of features to customize the look and behavior of the displayed document. Now, let’s see what else is hidden in the developer toolbox that enables you to configure the UI of the PDFViewer:
Busy Indicator
Although the Telerik PDF Viewer is optimized for performance, sometimes it is possible to load a document that needs time to render. For such cases, a busy indicator visualizes to offer a smooth user experience.
By default, it is:

You can customize its appearance by the BusyIndicatorTemplate property:
<telerik:RadPdfViewer  x:Name="pdfViewer">  
  <telerik:RadPdfViewer.BusyIndicatorTemplate>  
    <DataTemplate>  
      <telerik:RadBusyIndicator  AnimationType="Animation10"  
AnimationContentHeightRequest="100"  
AnimationContentWidthRequest="100"  
IsBusy="True"  />  
    </DataTemplate>  
  </telerik:RadPdfViewer.BusyIndicatorTemplate>  
</telerik:RadPdfViewer>


Toolbar
Telerik PDFViewer comes with the option to be displayed with or without the Toolbar, where all configurable options for visualizing the document and controlling the navigation are exposed to the end user. Let’s see how to do that:
Add the Toolbar
The important part here is that you need to create an instance of RadPDfViewerToolbar component outside the pdfview but use the toolbar’s PdfViewer property to associate with the PDFViewer component.
<telerik:RadPdfViewerToolbar  PdfViewer="{Binding Source={x:Reference pdfViewer}}">  
…
</telerik:RadPdfViewerToolbar>
  
<telerik:RadPdfViewer  x:Name="pdfViewer"  Grid.Row="1"  
Document="{Binding Document, Mode=OneWayToSource}"  />

Add Toolbar Items
Then you can define which features are good for your users to display. There are two ways to do that:
Use the Predefined Toolbar Items
PDFViewer’s toolbar offers predefined toolbar items that have assigned any of the Commands it offers:
PDFViewer commands with PDFViewer toolbar items:
	FitToWidthCommand: <telerik:PdfViewerFitToWidthToolbarItem />
	ZoomInCommand: <telerik:PdfViewerZoomInToolbarItem />
	ZoomInCommand:<telerik:PdfViewerZoomOutToolbarItem />
	NavigateToPreviousPageCommand: <telerik:PdfViewerNavigateToPreviousPageToolbarItem />
	NavigateToNextPageCommand: <telerik:PdfViewerNavigateToNextPageToolbarItem />

<telerik:RadPdfViewerToolbar **PdfViewer**="{Binding Source={x:Reference pdfViewer}}">
  <telerik:PdfViewerFitToWidthToolbarItem  />  
  <telerik:PdfViewerZoomInToolbarItem  />  
  <telerik:PdfViewerZoomOutToolbarItem  />  
  <telerik:PdfViewerNavigateToPreviousPageToolbarItem  />  
  <telerik:PdfViewerNavigateToNextPageToolbarItem  />
</telerik:RadPdfViewerToolbar>

Use Regular Toolbar Items
RadPdfViewer Toolbar is inherited from RadToolbar with one additional PdfViewer property used to associate the PDFViewer component. That is
    why you can add regular toolbar items to its items collection and mix PDF Viewer toolbar items with regular ones.
Let’s add a regular toolbaritem and associate it with a custom command or one of PDF Viewer commands:
<telerik:ButtonToolbarItem  Command="{Binding DisplayFileSizeCommand}">
  <telerik:ButtonToolbarItem.ImageSource>  
    <FontImageSource  Glyph="{x:Static telerik:TelerikFont.IconFile}"  
      FontFamily="{x:Static telerik:TelerikFont.Name}"  
      Size="16"/>  
  </telerik:ButtonToolbarItem.ImageSource>  
</telerik:ButtonToolbarItem>

The result so far, where the last item is a regular ButtonToolbarItem:

Style the Toolbar Items
Now, let’s style them a little bit differently. As the PDFViewerToolbar is based on the RadToolbar control, all toolbar items in the PDFViewer inherit from ButtonToolbarItem. All styling properties available for the ButtonToolbarItem
    are also applicable to the PDF toolbar items.
For example, to change the background of the items defined above we can define the following style:
<Style  TargetType="telerik:ButtonToolbarItemView"  x:Key="commonStyle">  
  <Setter  Property="MinimumWidthRequest"  Value="40"/>  
  <Setter  Property="BackgroundColor"  Value="#608660C5"/>  
</Style>

And set it to them like this:
<telerik:PdfViewerZoomInToolbarItem  Style="{StaticResource commonStyle}"/>


To read more details about Telerik Toolbar for .NET MAUI and see what else it can offer, read the blog about the Toolbar.
Migrating from Xamarin
Telerik PDFViewer for .NET MAUI shares the same API as Telerik PDFViewer for Xamarin, so no big changes here. Still there two things to have in mind:
	ToolbarItems now receive the Pdf prefix so as not to conflict with the brand new RadToolBar for .NET MAUI component.
	Namespace of the control is changed from Telerik.XamarinForms.PdfViewer to Telerik.Maui.Controls.

For more details, you can refer to the Telerik Migration from Xamarin article.
Some of the features that the Xamarin version has are still in development in the .NET MAUI component, such as Text Selection and Text Search. They are scheduled for the next version of Telerik UI for .NET coming this autumn. 🍂 So stay tuned!
More to Explore
More examples illustrating the power of Telerik PDFViewer and the rest of the UI components for .NET MAUI can be found in Telerik SDK and Telerik Controls Samples.
More details about the API can be found in Telerik documentation.
Details about working with PDF documents programmatically are described in Document Processing Libraries - Telerik.
Тry It Now
Working with PDF documents is one of a thousand scenarios that Telerik UI for .NET MAUI can unlock for you. 🔑
Try it now and, if there is anything you need, do not hesitate to share your feedback or questions with the Telerik team.
Try Telerik UI for .NET MAUI


    

    
          
            
            	.NET MAUI,             	Telerik Document Processing Libraries,             	Telerik UI for .NET MAUI          
          
    

  

          
          
                  
                          
                  

                  
                          About the Author 
                          Rossitza Fakalieva
 
                          
Rossitza Fakalieva is a Technical Manager, Microsoft MVP in Developer Technologies and a Director of the Bulgarian chapter of the global Women Who Code organization. She previously worked on the Telerik engineering team and defines herself as .NET enthusiast. She loves to empower others to grow in their career and in the tech field—by teaching, by delivering courses and presentations, and as part of her daily job.

                  
 
          

      	
	
  		Related Posts

  		
                       
                          
	
		Mobile
		.NET MAUI
                             
                              
                                Telerik UI for .NET MAUI Chat: The Face 🤖 of Chatbot Service for Natural Human Conversation
                                
                              

                         

                       
 
                       
                          
	
		Mobile
		Desktop
		Blazor Desktop/.NET MAUI
		.NET MAUI
                             
                              
                                Build a Beautiful Configuration UI for Both Desktop and Mobile with Telerik UI for .NET MAUI Toolbar
                                
                              

                         

                       
 
                       
                          
	
		Mobile
		Desktop
		.NET MAUI
		Blazor Desktop/.NET MAUI
                             
                              
                                Telerik UI for .NET MAUI Calendar is Now Here: Easy to Use, Feature-Rich and Customizable
                                
                              

                         

                       
 
                       
                          
	
		Mobile
		.NET MAUI
                             
                              
                                Sands of MAUI: Issue #115
                                
                              

                         

                       
 
                  

              


  
  
  Comments

  

  
  
	
		Comments are disabled in preview mode.
	

	Please enable JavaScript to view the comments powered by Disqus.





  




  




  All articles



Topics
					
				
					Web
				
					
							Blazor
						
	
							ASP.NET Core
						
	
							ASP.NET MVC
						
	
							ASP.NET AJAX
						
	
							Angular
						
	
							React
						
	
							jQuery
						
	
							Vue
						


			
			
				
					Mobile
				
					
							.NET MAUI
						
	
							Xamarin
						


			
			
				
					Desktop
				
					
							Blazor Desktop/.NET MAUI
						
	
							WPF
						
	
							WinForms
						
	
							WinUI
						
	
							UWP
						


			
			
				
					Design
				
					
							UX
						
	
							Design Systems
						


			
			
				
					Productivity
				
					
							Reporting
						
	
							Testing
						
	
							Debugging
						
	
							Document Processing
						


			
			
				
					People
				
					
							Accessibility
						
	
							Humanity
						


			
			
				Release
			



  
  








   
        	
	    
 



 

 
Latest Stories 
in Your Inbox




Subscribe to be the first to get our expert-written articles and tutorials for developers!
All fields are required






	
	
	



			
				
			

			
				

				

			

				

					





    
    
            Email

    


    







    
        
        Country/Territory


        

        Select country/territory
United States
Afghanistan
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia and Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Terr.
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo (Brazzaville)
Congo, the democratic republic of the
Cook Islands
Costa Rica
Cote d'Ivoire
Croatia (Hrvatska)
Curacao
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Terr.
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Heard and McDonald Is.
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Lao People's Dem. Rep.
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Man, Isle of
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Macedonia
Northern Mariana Is.
Norway
Oman
Pakistan
Palau
Palestine, State Of
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Republic of Korea (South Korea)
Reunion
Romania
Rwanda
S.Georgia and S.Sandwich Is.
Saint Kitts and Nevis
Saint Lucia
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Spain
Sri Lanka
St. Helena
St. Pierre and Miquelon
St. Vincent and Grenadines
Sudan
Suriname
Svalbard and Jan Mayen Is.
Sweden
Switzerland
Taiwan
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo
Tokelau
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos Islands
Tuvalu
U.S. Minor Outlying Is.
Uganda
Ukraine
United Arab Emirates
United Kingdom
Uruguay
Uzbekistan
Vanuatu
Vatican (Holy See)
Venezuela
Viet Nam
Virgin Islands (British)
Virgin Islands (U.S.)
Wallis and Futuna Is.
Western Sahara
Yemen
Zambia
Zimbabwe


        

    


    
        
        

        
        State/Province


        Select


        

		
					 Progress collects the Personal Information set out in our Privacy Policy and the Supplemental Privacy notice for residents of California and other US States  and uses it for the purposes stated in that policy.
You can also ask us not to share your Personal Information to third parties here: Do Not Sell or Share My Info


		

    




    
    
    Blog
    


    







	
		
		
		
		



		
				
					By submitting this form, I understand and acknowledge my data will be processed in accordance with Progress' Privacy Policy.

				

			
				
				I agree to receive email communications from Progress Software or its Partners, containing information about Progress Software’s products. I understand I may opt out from marketing communication at any time here or through the opt out option placed in the e-mail communication received.

			
		

		
			By submitting this form, you understand and agree that your personal data will be processed by Progress Software or its Partners as described in our Privacy Policy. You may opt out from marketing communication at any time here or through the opt out option placed in the e-mail communication sent by us or our Partners.

		


		
				
      We see that you have already chosen to receive marketing materials from us. If you wish to change this at any time you may do so by clicking here.
    

		


		
				Thank you for your continued interest in Progress. Based on either your previous activity on our websites or our ongoing relationship, we will keep you updated on our products, solutions, services, company news and events. If you decide that you want to be removed from our mailing lists at any time, you can change your contact preferences by clicking here.

		


		
		
	




    Subscribe





				

			
			
			
				





























  






Complete .NET Toolbox
Telerik DevCraft
Complete JavaScript Toolbox
Kendo UI

Get Products
	Free Trials
	Pricing


Resources
	Demos
	Documentation
	Release History
	Forums
	Blogs
	Webinars
	Videos
	Professional Services
	Partners
	Virtual Classroom
	Events


Recognition
	Success Stories
	Testimonials


Get in touch
	Contact Us
		USA: +1 800 213 3407
	UK: +44 13 4483 8186
	India: +91 406 9019447
	Bulgaria: +359 2 8099850
	Australia: +61 3 7068 8610


		 165k+
	 50k+
	 17k+
	 4k+
	 14k+
	





	Contact Us
		 165k+
	 50k+
	 17k+
	 4k+
	 14k+
	









Telerik and Kendo UI are part of Progress product portfolio. Progress is the leading provider of application development and digital experience technologies.

	Company
	Technology
	Awards
	Press Releases
	Media Coverage
	Careers
	Offices




	Company
	Technology
	Awards
	Press Releases
	Media Coverage
	Careers
	Offices



Copyright © 2024 Progress Software Corporation and/or its subsidiaries or affiliates. All Rights Reserved.
Progress, Telerik, Ipswitch, Chef, Kemp, Flowmon, MarkLogic, Semaphore and certain product names used herein are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. See Trademarks for appropriate markings.

	Terms of Use
	Site Feedback
	Privacy Center
	Security Center

Do Not Sell or Share My Personal Information
Powered by Progress Sitefinity
















 
            
        
               
            

    
  
    