

PREVIEW CONTENT

This excerpt provides early content from a book currently in

development, and is still in draft, unedited format. See additional notice

below.

This document supports a preliminary release of a software product that may be changed substantially prior to

final commercial release. This document is provided for informational purposes only and Microsoft makes no

warranties, either express or implied, in this document. Information in this document, including URL and other

Internet Web site references, is subject to change without notice. The entire risk of the use or the results from

the use of this document remains with the user. Unless otherwise noted, the companies, organizations,

products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are

fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,

person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the

responsibility of the user. Without limiting the rights under copyright, no part of this document may be

reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express

written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights

covering subject matter in this document. Except as expressly provided in any written license agreement from

Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,

copyrights, or other intellectual property.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, Azure, Expression, Expression Blend, Internet Explorer, MS, Silverlight, Visual C#,

Visual Studio, Webdings, Windows, Windows Azure, Windows Live, Windows Mobile, Xbox, Xbox 360, XNA,

and Zune are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Introduction
This is a short “draft preview” of a much longer ebook that will be completed and published

later this year. That later edition will be brilliantly conceived, exquisitely structured, elegantly

written, delightfully witty, and refreshingly free of bugs, but this draft preview is none of that.

It is very obviously a work-in-progress that was created under an impossible timeframe while

targeting quickly evolving software.

Even with this book’s defects and limited scope, I hope it helps get you started in writing

great programs for the Windows Phone 7 Series. Visit www.charlespetzold.com/phone for

information about this book and later editions.

My Assumptions About You

I assume that you know the basic principles of .NET programming and you have a working

familiarity with the C# programming language. If not, you might benefit from reading my free

online book .NET Book Zero: What the C or C++ Programmer Needs to Know about C# and

the .NET Framework, available from my Web site at www.charlespetzold.com/dotnet.

Using This Book

To use this book properly you’ll need to download and install the Windows Phone Developer

Tools, which includes Visual Studio 2010 Express for Windows Phone and an on-screen

Windows Phone Emulator to test your programs in the absence of an actual device.

You’ll want to check the release notes for the Windows Phone Developer Tools, but it is my

experience that Visual Studio 2010 Express for Windows Phone can be installed on top of an

existing installation of the Visual Studio 2010 Release Candidate.

When finalizing these six chapters, I’ve been working with a Windows Phone Developer Tools

package dating from March 5, 2010. Although I pleaded, threatened, whined, and even threw

a tantrum, I have not yet held an actual Windows Phone in my hands.

The Windows Phone 7 Series supports multitouch, and working with multitouch is an

important part of developing programs for the phone. When using the Windows Phone

Emulator, mouse clicks and mouse movement on the PC are used to mimic touch on the

emulator.

You can run the Windows Phone Emulator on a PC with a multitouch display under Windows

7, but in my experience, this configuration doesn’t offer any real benefits over the mouse.

http://www.charlespetzold.com/phone
http://www.charlespetzold.com/dotnet

Apparently touch events on the PC screen are translated to mouse events for the emulator,

which are then translated back to touch events for your phone program.

If you’re writing an XNA program for the phone, and getting multitouch working well is

critical, and you don’t have an actual phone quite yet, you might want to consider adapting

your program for the Zune HD and testing it there.

The Essential People

This book owes its existence to Dave Edson—an old friend from the early 1990s era of

Microsoft Systems Journal—who had the brilliant idea that I would be the perfect person to

write a tutorial on Windows Phone. Dave arranged for me to attend a technical deep dive on

the phone at Microsoft way back in December 2009, and I was hooked. Todd Brix gave the

thumbs up on the book, and Anand Iyer coordinated the project with Microsoft Press.

At Microsoft Press, Ben Ryan launched the book and Devon Musgrave had the unenviable job

of trying to make my hastily written code and prose resemble an actual book in virtually no

time at all. (We go way back: You’ll see Ben and Devon’s names on the bottom of the

copyright page of Programming Windows, fifth edition.)

Dave Edson also reviewed chapters and served as conduit to the Windows Phone team to

deal with my technical problems and questions. Aaron Stebner provided essential guidance;

Michael Klucher reviewed chapters, and Kirti Deshpande, Charlie Kindel, Casey McGee, and

Shawn Oster also had important things to tell me. Thanks also to Bonnie Lehenbauer for

reviewing one of the chapters at the last minute.

My wife Deirdre Sinnott was a marvel of patience and tolerance over the past two months as

she dealt with an author given to sudden mood swings, insane yelling at the computer screen,

and the conviction that the difficulty of writing a book relieves one of the responsibility of

performing basic household chores.

Alas, I can’t blame any of them for bugs or other problems with this book. Those are all mine.

Charles Petzold

New York City

March 10, 2010

Part I

Getting Started

Chapter 1

Phone Hardware + Your Software
Sometimes it becomes apparent that previous approaches to a problem haven’t quite worked

the way you anticipated. Perhaps you just need to clear away the smoky residue of the past,

take a deep breath, and try again with a new attitude and fresh ideas. In golf, it’s known as a

“mulligan”; in schoolyard sports, it’s called a “do-over”; and in the computer industry, we say

it’s a “reboot.”

A reboot is what Microsoft has initiated with its new approach to the mobile phone market. On

February 15, 2010, at the Mobile World Congress in Barcelona, Microsoft CEO Steve Ballmer

unveiled the Microsoft Windows Phone 7 Series and promised a product introduction in time

for year-end holiday shopping. With its clean look, striking fonts, and new organizational

paradigms, Windows Phone 7 Series not only represents a break with the Windows Mobile past

but also differentiates itself from other smartphones currently in the market.

For programmers, the news from Barcelona was certainly intriguing but hardly illuminating.

Exactly how do we write programs for this new Windows Phone 7 Series? Developers detected

a few hints but no real facts. The really important stuff wouldn’t be disclosed until mid-March

at MIX 2010 in Las Vegas.

Silverlight or XNA?

Intelligent speculation about the application platform for the Windows Phone 7 Series has

gravitated around two possibilities: Silverlight and XNA.

Since about 2008, programmers have been impatiently awaiting the arrival of a mobile version

of Silverlight. Silverlight, a spinoff of the client-based Windows Presentation Foundation (WPF),

has already given Web programmers unprecedented power to develop sophisticated user

interfaces with a mix of traditional controls, high-quality text, vector graphics, media,

animation, and data binding that run on multiple platforms and browsers. Many programmers

thought Silverlight would be an excellent platform for writing applications and utilities for

smartphones.

XNA—the three letters stand for something like “XNA is Not an Acronym”—is Microsoft’s game

platform supporting both 2D sprite-based and 3D graphics with a traditional game-loop

architecture. Although XNA is mostly associated with writing games for the Xbox 360 console,

developers can also target the PC itself, as well as Microsoft’s classy audio player, the Zune.

The 2009 release of the Zune HD particularly seemed to suggest a mobile future built around

the device’s revamped graphics and multitouch navigation. For many Zune HD users, the most

disappointing feature of the device was its inability to make phone calls!

Either Silverlight or XNA would make good sense as the application platform for the Windows

Phone 7 Series, but the decision from Microsoft is:

Both!

The Windows Phone 7 Series supports programs written for either Silverlight or XNA. And this

we call “an embarrassment of riches.”

Targeting Windows Phone 7 Series

The Windows Phone 7 Series operating system exposes classes defined by the .NET Compact

Framework. All programs for the phone are written in managed code. At the present time, C# is

the only supported programming language. Programs are developed in Microsoft Visual Studio

2010 Express for Windows Phone, which includes XNA Game Studio and access to an on-screen

phone emulator. You can develop visuals for Silverlight application using Microsoft Expression

Blend.

A program for Windows Phone 7 Series must target using either Silverlight or XNA. It would

surely be great to mix them up a bit and combine Silverlight and XNA visuals in the same

program. Maybe that will be possible in the future, but it’s not possible now except for some

cross-library use. Before you create a Visual Studio project, you must decide whether your

million-dollar idea is a Silverlight program or an XNA program.

Generally you’ll choose Silverlight for writing programs you might classify as applications or

utilities. These programs use the Extensible Application Markup Language (XAML) to define a

layout of user-interface controls and panels. Code-behind files can also perform some

initialization but are generally relegated to handling events from the controls. Silverlight is great

for bringing to the Windows Phone the style of Rich Internet Applications (RIA), including media

and the Web.

XNA is primarily for writing high-performance games. For 2D games, you define sprites and

backgrounds based around bitmaps; for 3D games you define models in 3D space. The action of

the game, which includes moving graphical objects around the screen and polling for user input,

is synchronized by the built-int XNA game loop.

The differentiation between Silverlight-based applications and XNA-based games is convenient

but not restrictive. You can certainly use Silverlight for writing games and you can even write

traditional applications using XNA, although doing so might sometimes be challenging. In this

book I’ll try to show you some examples—games in Silverlight and utilities in XNA—that push

the envelope.

In particular, Silverlight might be ideal for games that are less graphically oriented, or that use

vector graphics rather than bitmap graphics, or that are paced by user-time rather than clock-

time. A Tetris-type program might work quite well in Silverlight. You’ll probably find XNA to be a

bit harder to stretch into Silverlight territory, however. Implementing a list box in XNA might be

considered “fun” by some programmers but a torture by many others.

Microsoft has been positioning Silverlight as the front end or “face” of the cloud, so cloud

services and Windows Azure form an important part of Windows Phone 7 Series development.

The Windows Phone is “cloud-ready.” Programs are location-aware, have access to maps and

other data through Bing and Windows Live, and can interface with social networking sites.

Among the available cloud services is Xbox Live, which allows XNA-based programs to

participate in online multiplayer games, and can also be accessed by Silverlight applications.

Programs you write for the Windows Phone 7 Series will be sold and deployed through the

Windows Phone Marketplace, which provides registration services and certifies that programs

meet minimum standards of reliability, efficiency, and good behavior.

The Hardware Chassis

Developers with experience targeting Windows Mobile devices of the past will find significant

changes in Microsoft’s strategy for the Windows Phone 7 Series. Microsoft has been extremely

proactive in defining the hardware specification. There are only two possible screen sizes, and

many other hardware features are guaranteed to exist on each device.

For devices that become part of the Windows Phone 7 Series, Microsoft has established a

hardware specification often referred to as a “chassis.” The front of the phone consists of a

multitouch display and three hardware buttons generally positioned in a row below the display.

From left to right, these buttons are called Back, Start, and Search:

 Back Programs written for the phone are required to use the Back button to exit

themselves. In addition, programs can use this button in connection with their own

navigation needs, much like the Back button on a Web browser.

 Start This button powers up the phone itself, and when the phone is running,

takes the user to the start screen; this button is inaccessible to programs running

on the phone.

 Search Phone programs can ignore this button or use it for any program function

related to search.

 The screen can have one of two display sizes: 480 × 800 pixels or 320 × 480 pixels.

For the Windows Phone 7 Series, there are no other screen options, so obviously

these two screen sizes play a very important role in phone development.

In theory, it’s usually considered best to write programs that adapt themselves to any screen

size, but that’s not always possible, particularly with game development. You will probably find

yourself specifically targeting these two screen sizes, even to the extent of having if/else clauses

and different XAML files for layout that is size-dependent.

I will generally refer to these two sizes as the “large” screen and the “small“ screen. The

greatest common denominator of the horizontal and vertical dimensions of both screens is 160,

so you can visualize the two screens as multiples of 160-pixel squares:

I’m showing these screens in portrait mode because that’s usually the way smartphones are

designed. The screen of the original Zune is 240 × 320 pixels; the Zune HD is 272 × 480.

Of course, phones can be rotated to put the screen into landscape mode. This is particularly

useful for watching movies. Some programs might require the phone to be held in a certain

orientation; others might be more adaptable. Generally you’ll want to write your Silverlight

applications to adjust themselves to orientation; new events are available specifically for the

purpose of detecting orientation change, and some orientation shifts are handled

automatically. In contrast, game programmers can usually impose a particular orientation on

the user. A solitaire card game probably works much better in landscape mode than portrait

mode, for example.

In portrait mode, the small screen is half of an old VGA screen (that is, 640 × 480). In

landscape mode, the large screen has a dimension sometimes called WVGA (“wide VGA”). In

landscape mode, the small screen has an aspect ratio of 3:2 or 1.5; the large screen has an

aspect ratio of 5:3 or 1.66…. Neither of these matches the aspect ratio of television, which for

standard definition is 4:3 or 1.33… and for high-definition is 16:9 or 1.77…. The Zune HD screen

has an aspect ratio of 16:9.

Like many recent phones and the Zune HD, the Windows Phone 7 Series displays will likely use

OLED (“organic light emitting diode”) technology. OLEDs are different from flat displays of the

past in that power consumption is directly proportional to the light emitted from the display.

480

320

4
8

0

8
0

0

For example, an OLED display consumes less than half the power of an LCD display of the same

size, but only when the screen is mostly black. For an all-white screen, an OLED consumes more

than three times the power of an LCD.

Battery life is extremely important on mobile devices, so this characteristic of OLED displays has

some profound consequences. It means that we will be designing screens for our Windows

Phone programs that have mostly black backgrounds—if we care about issues like power

consumption, and we should. If the aesthetic of the Windows Phone 7 Series can be summed

up in a tiny true phrase, it is this: Black is Beautiful.

Most user input to a Windows Phone program will come through touching the screen with

fingers. The screens incorporate capacitance-touch technology, which means they respond to a

human fingertip but not to a stylus or other forms of pressure. Windows Phone screens are

required to respond to at least four simultaneous touch-points.

A hardware keyboard is optional. Keep in mind that phones can be designed in different ways,

so when the keyboard is in use, the screen might be in either portrait mode or landscape mode.

A Silverlight program that uses keyboard input must respond to orientation events so that the

user can both view the screen and use the keyboard without wondering what idiot designed the

program sideways. An on-screen keyboard is also provided, known in Windows circles as the

Soft Input Panel or SIP.

Neither the hardware keyboard nor the on-screen keyboard is available to XNA programs.

Sensors and Services

The Windows Phone 7 Series is required to contain several other hardware devices—sometimes

called sensors—and provide some software services, perhaps through the assistance of

hardware, as described here:

 Wi-Fi The phone has Wi-Fi for Internet access. Software on the phone includes a

version of Internet Explorer.

 Camera The phone must have at least a 5-megapixel camera with flash. Programs

can register themselves as a Photos Extra Application and appear on a menu to

obtain access to photographed images, perhaps for some image processing.

 Accelerometer An accelerometer detects acceleration, which in physics is a

change in velocity. When the camera is still, the accelerometer responds to

gravitation. Programs can obtain a three-dimensional vector that indicates how the

camera is oriented with respect to the earth. (This technique will not work if the

user is viewing the device while suspended upside-down or in a weightless

spacecraft.) An XNA program can use this information to select a suitable

orientation of the video display; a Silverlight program can handle explicit

orientation events instead. The accelerometer can also detect sharp movements of

the phone.

 Compass The compass detects orientation relative to magnetic north.

 Location If the user so desires, the phone can use multiple strategies for

determining where it is geographically located. The phone might incorporate a

hardware GPS device or it might use the Web for determining location. Programs

running on the phone can obtain geographic coordinates (longitude, latitude, and

altitude), civic addresses (including street address, city, state or province, country,

and even building and floor, if available). If the phone is moving, course and speed

might also be available.

 Speech The phone supports both speech synthesis and speech recognition

through classes that are also part of .NET 4.0.

 Vibration The phone can be vibrated through program control.

 Push Notifications Some Web services would normally require the phone to

frequently poll the service to obtain updated information. This can drain battery

life. To help out, a push notification service has been developed that will allow any

required polling to occur outside the phone and for the phone to receive

notifications only when data has been updated.

That’s quite a list, but although I haven’t been able to confirm this, a persistent rumor indicates

that a Windows Phone device can also be used to make and receive telephone calls.

Continuity and Innovation

I’m no market analyst. I’m just a programmer. Don’t ask me if I think the Windows Phone 7

Series will be a commercial success. Market forces are a complete mystery to me. I don’t know

form factors. I can’t judge if the phone is the right size, or well proportioned, or anything else.

The visuals look good to me, but I don’t trust my instincts about visual design. I don’t know if

the phone is slick enough for the cool kids and mainstream enough for everyone else.

But as a programmer I can tell you this: coding for Windows Phone 7 Series is a total blast!

The Windows Phone 7 Series has been characterized as representing a severe break with the

past. If you compare it with past versions of Windows Mobile, that is certainly true. But the

support of Silverlight, XNA, and C# are not breaks with the past, but a balance of continuity and

innovation. As young as they are, Silverlight and XNA have already proven themselves as

powerful and popular platforms. Many skilled programmers are already working with either

one framework or the other—probably not so many with both just yet—and they have

expressed their enthusiasm with a wealth of online information and communities. C# has

become the favorite language of many programmers (myself included), and developers can use

C# to share libraries between their Silverlight and XNA programs as well as those written for

other .NET environments.

Adapting one’s experience of these frameworks to the small, fixed-size screens of this

multitouch input phone is both challenging and fun. I’ve been coding for Microsoft-based

operating systems for over 25 years—and often writing about my experiences—and I’ve had a

great time coding for the phone even though I have not yet actually held one in my hands. I

have a strong sense that I won’t be alone and that Windows Phone 7 Series will be a break-out

product because we programmers will create an extensive array of applications and games that

will make it sing.

So enough of the preliminaries: let’s get coding.

Chapter 2

Hello, Windows Phone

A typical “hello, world” program that just displays a little bit of text might seem silly to

nonprogrammers, but programmers have discovered that such a program serves at least two

useful purposes. First, the program provides a way to examine how easy (or ridiculously

complex) it is to display a simple text string. Second, it gives the programmer an opportunity

to experience the process of creating, compiling, and running a program without a lot of

distractions. When developing programs that run on a mobile device, this process is little

more complex than customary because you’ll be creating and compiling programs on the PC

but you’ll be deploying and running them on an actual phone or at least an emulator.

This chapter presents programs for both Microsoft Silverlight and Microsoft XNA that display

the text “Hello, Windows Phone!” followed by slightly enhanced versions that respond to

touch in a very rudimentary manner.

In real-world programming, you’ll probably use XNA mostly for games, and Silverlight for

programs that you might classify as applications or utilities, although Silverlight is also a fine

game platform if you don’t need 3D. Following this chapter, the book splits into different

parts for Silverlight and XNA. I suspect that some developers will stick with either Silverlight or

XNA exclusively and won’t even bother learning the other environment. I hope that’s not a

common attitude. The good news is that Silverlight and XNA are so dissimilar that you can

probably bounce back and forth between them without confusion!

Just to make these programs a little more interesting, I want to establish two rules:

 The text will be displayed in the center of the display, or at least in the center of an area

of the display allocated for program output.

 The text will be white on a dark background.

As you’ll recall, the OLED screens likely to be used on Windows Phone 7 Series devices

consume much less power if pixels are mostly dark. The second rule ensures that our very first

programs for the phone won’t be power pigs!

If you want to play along, you should have the Windows Phone Developer Tools installed,

which includes Visual Studio 2010 Express for Windows Phone and the Windows Phone

Emulator.

A First Silverlight Phone Program

From the File menu of Visual Studio 2010 Express for Windows Phone, select New Project. In

the dialog box, on the left under Installed Templates, choose Visual C# and then Silverlight for

Windows Phone. In the middle area, choose Windows Phone Application. Select a location for

the project, and enter the project name: SilverlightHelloPhone. You probably don’t want to

create an unnecessary separate directory for the single-project solution, so uncheck the

“Create directory for solution” check box. Click OK.

As the project is created you’ll see an image of a large-screen phone in portrait mode: 480 ×

800 pixels in size. This is the design view. Although you can interactively pull controls from a

toolbox to design the application, I’m going to focus instead on showing you how to write

your own markup.

Several files have been created for this SilverlightHelloPhone project. They are listed under the

project name in the Solution Explorer over at the right. In the Properties folder are three files

that you can usually ignore when you’re just creating little sample Silverlight programs for the

phone. Only when you’re actually in the process of making a real application do these files

become important.

However, you might want to open the WMAppManifest.xml file. In the App tag near the top,

you’ll see the attribute:

Title="SilverlightHelloPhone"

That’s just the project name. Insert some spaces to make it a little friendlier:

Title="Silverlight Hello Phone"

This is the name used by the phone and the phone emulator to display the program. If you’re

really ambitious, you can also edit the ApplicationIcon.png file that the phone uses to visually

symbolize the program.

In the standard toolbar under the program’s menu, you’ll see a drop-down list probably

displaying “Windows Phone 7 Emulator.” The other choice is “Windows Phone 7 Device.” This

is how you deploy your program to either the emulator or an actual phone connected to your

computer via USB.

Just to see that everything’s working OK, press F5 (or select Start Debugging from the Debug

menu). Your program will quickly build and in the status bar you’ll see the text “Connecting to

Windows Phone 7 Emulator…” The first time you use the emulator during a session, this might

take a minute or so. If you leave the emulator running between edit/build/run cycles, Visual

Studio 2010 Express for Windows Phone doesn’t need to establish this connection again.

Soon the phone emulator will appear on the desktop and you’ll see the opening screen,

followed soon by this little do-nothing Silverlight program as it is deployed and run on the

emulator. On the phone you’ll see pretty much the same image you saw in the design view.

Here’s the emulator displayed at about half size on this page:

You can terminate execution of this program and return to to editting the program either

though Visual Studio 2010 for Windows Phone (using Shift-F5 or by selecting Stop

Debugging from the Debug menu) or by exiting the program by clicking the emulator Back

or Start button.

Don’t exit the emulator itself by clicking the X at the top of the emulator’s attached floating

menu (not shown in the screen shot)! Keeping the emulator running will make subsequent

deployments go much faster.

While the emulator is still running, it retains all programs deployed to it. If you click the arrow

at the upper-right of the Start screen, you’ll get a list that will include this program identified

by the text “Silverlight Hello Phone”. The program will disappear from this list when you exit

the emulator.

Back in Visual Studio 2010 Express for Windows Phone, you’ll see that the creation of the

SilverlightHelloPhone project also resulted in the creation of two pairs of skeleton files:

App.xaml and App.xaml.cs, and MainPage.xaml and MainPage.xaml.cs. The App.xaml and

MainPage.xaml files are Extensible Application Markup Language (XAML) files, while

App.xaml.cs and MainPage.xaml.cs are C# code files. This peculiar naming scheme is meant to

imply that the two C# code files are “code-behind” files associated with the two XAML files.

They provide code in support of the markup.

I want to give you a little tour of these four files. If you look at the App.xaml.cs file, you’ll see a

namespace definition that is the same as the project name and a class named App that derives

from the Silverlight class Application. Here’s an excerpt showing the general structure:

Silverlight Project: SilverlightHelloPhone File: App.xaml.cs (excerpt)

namespace SilverlightHelloPhone

{

 public partial class App : Application

 {

 public App()

 {

 … InitializeComponent();

 } }

}

All Silverlight programs contain an App class that derives from Application; this class performs

application-wide initialization, startup, and shutdown chores. You’ll notice this class is defined

as a partial class, meaning that there should be another file that contains additional members

of the App class.

The project also contains an App.xaml file, which has an overall structure like this:

Silverlight Project: SilverlightHelloPhone File: App.xaml (excerpt)

<Application x:Class="SilverlightHelloPhone.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" … >

…

</Application>

You’ll recognize this file as XML, but more precisely it is a XAML file, which is an important

part of Silverlight programming.

The App.xaml file is often used for storing resources that are used throughout the application.

These could include color schemes, gradient brushes, styles, and so forth, and a bunch of

these resources are already present in App.xamle. The syntax of these resources and how they

are used is not exactly an “advanced” feature but nevertheless shouldn’t be introduced in

Chapter 2. I’ll come back to this file in subsequent chapters.

The root element is Application, which is the Silverlight class that the App class derives from.

The first XML namespace declaration (“xmlns”) is the standard namespace for Silverlight, and

it helps the compiler locate and identify Silverlight classes such as Application. As with most

XML namespace declarations, this URI doesn’t actually point to anything; it’s just a URI that

Microsoft owns and which it has defined for this purpose.

The second XML namespace declaration is associated with XAML itself, and it allows the file to

reference some elements and attributes that are part of XAML itself rather than specifically

Silverlight. By convention, this namespace is associated with a prefix of “x” (meaning “XAML”).

Among the several attributes supported by XAML and referenced with this “x” prefix is Class,

which is often pronounced “x class.” In this file x:Class is assigned the name

SilverlightHelloPhone.App. This means that a class named App in the .NET

SilverlightHelloPhone namespace derives from the Silverlight Application class, the root

element. It’s the same class definition as in the App.xaml.cs file but just with different syntax.

The App.xaml.cs and App.xaml files really define two halves of the same App class. During

compilation, Visual Studio parses App.xaml and generates another code file named App.g.cs.

The “g” stands for “generated.” If you want to look at this file, you can find it in the

\obj\Debug subdirectory of the project. The App.g.cs file contains another partial definition of

the App class, and it contains a method named InitializeComponent that is called from the

constructor in the App.xaml.cs file.

Towards the top of the App.xaml file you’ll also see this markup:

<Application.RootVisual>

 <phoneNavigation:PhoneApplicationFrame x:Name="RootFrame" Source="/MainPage.xaml"/>

</Application.RootVisual>

The syntax might be a obscure at this point, but it will become clearer in Chapter 3, “Code

and XAML.” This markup essentially instantiates an object of type PhoneApplicationFrame and

assigns to its Source property a text string referencing MainPage.xaml. (Another XML

namespace declaration for “phoneNavigation” is required for PhoneApplicationFrame because

the class is not a part of standard Silverlight.) This PhoneApplicationFrame object is then set to

the RootVisual property of the App object.

This is how the MainPage class comes into being. MainPage is the second major class in the

program and is defined in the second pair of files, MainPage.xaml and MainPage.xaml.cs. In

smaller Silverlight programs, it is in these two files that you’ll be spending most of your time.

Aside from a long list of using directives, the MainPage.xaml.cs file is very simple:

Silverlight Project: SilverlightHelloPhone File: MainPage.xaml.cs (excerpt)

namespace SilverlightHelloPhone

{

 public partial class MainPage : PhoneApplicationPage

 {

 public MainPage()

 {

 InitializeComponent();

 SupportedOrientations = SupportedPageOrientation.Portrait |

 SupportedPageOrientation.Landscape;

 }

 }

}

Again, we see another partial class definition. This one defines a class named MainPage that

derives from the Silverlight class PhoneApplicationPage. This is the class that defines the

visuals you’ll actually see on the screen when you run the SilverlightHelloPhone program.

The other half of this MainPage class is defined in the MainPage.xaml file:

Silverlight Project: SilverlightHelloPhone File: MainPage.xaml (excerpt)

<phoneNavigation:PhoneApplicationPage

 x:Class="SilverlightHelloPhone.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phoneNavigation="clr-namespace:Microsoft.Phone.Controls;assembly= …

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d" d:DesignHeight="800" d:DesignWidth="480" …>

 <Grid … >

 …

 </Grid>

</phoneNavigation:PhoneApplicationPage>

These first three XML namespace declarations are the same as in App.xaml. As in the App.xaml

file, an x:Class attribute also appears in the root element. Here it indicates that the MainPage

class in the SilverlightHelloPhone namespace derives from the Silverlight

PhoneApplicationPage class. This PhoneApplicationPage class requires its own XML namespace

declaration because it is not a part of standard Silverlight.

Everything else in the root element is for the benefit of XAML design programs, such as

Expression Blend and the designer in Visual Studio 2010 Express for Windows Phone itself.

The XML namespace prefix “d” is associated with designer-related attributes such as

DesignHeight and DesignWidth. The namespace declaration “mc” (for “markup compatibility”)

and the Ignorable attribute indicate that these attributes should be ignored by other

programs, and during compilation, they are. You can delete these namespace declarations

and attributes with no effect on the program as it is compiled and run.

The compilation of the program generates a file name MainPage.g.cs that contains another

partial class definition for MainPage (you can look at it in the \obj\Debug subdirectory) and

the InitializeComponent method called from the constructor in MainPage.xaml.cs.

In theory, the App.g.cs and MainPage.g.cs files generated during the build process are solely

for internal use by the compiler and can be ignored by the programmer. However, sometimes

when a buggy program raises an exception, one of these files comes popping up in to view. It

might help your understanding of the problem to have seen these files before they

mysteriously appear in front of your face. However, don’t try to edit these files to fix the

problem! The real problem is probably somewhere in the corresponding XAML file.

The remainder of the MainPage.xaml file is occupied by a couple nested Grid elements with a

couple TextBlock elements. This nesting defines a visual tree of elements that is displayed by

the program, including the “MY APPLICATION” and “page title” headings you see in the

designer and the emulator.

The Grid class derives from Panel and is one of the primary layout elements of Silverlight.

Panels are usually containers that host multiple user-interface elements and visually organize

them on the screen; I’ll be discussing panels in more detail in Chapter 4, “Presentation and

Layout.”

The TextBlock class derives from FrameworkElement and (as the name implies) is used for

displaying blocks of text. Panel also derives from FrameworkElement, and for that reason,

these visuals are often referred to collectively as “elements.” This is the same word used to

describe XML components delimited by start and end tags, so it’s a very convenient word in

Silverlight programming. Another important class that derives from FrameworkElement is

Control, from which the familiar Button, Slider, ListBox, and others derive.

For now, simply observe that in XAML, Silverlight classes such as PhoneApplicationPage, Grid,

and TextBlock become XML elements. Properties of these classes (such as the Background

property of Grid and the Text property of TextBlock) become XML attributes.

It is the MainPage.xaml file that we need to edit to create a Silverlight application that

displays some text in the center of its display. Towards the bottom of the file—in the nested

Grid tags preceded by the comment “ContentGrid is empty. Place new content here”—insert a

TextBlock element so that the existing Grid tags and the new TextBlock look like this:

Silverlight Project: SilverlightHelloPhone File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

TextBlock is the Silverlight class you’ll use for displaying short blocks of text—up to a

paragraph or so. Text, HorizontalAlignment, and VerticalAlignment are all properties of

TextBlock that I’ll describe in more detail in the next chapter.

While you’re editing MainPage.xaml you might also want to fix the other TextBlock elements

so that they make some sense. Change

<TextBlock Text="MY APPLICATION" … />

to

<TextBlock Text="SILVERLIGHT HELLO PHONE" … />

and

<TextBlock Text="page title" … />

to:

<TextBlock Text="main page" … />

 It doesn’t make much sense to have a page title in a Silverlight application with only a single

page, and you can delete that second TextBlock if you’d like.

The changes you make to this XAML file will be reflected in the design view.

If you’d like the text to be displayed in a different color, you can try setting the Foreground

attribute in the TextBlock tag, for example:

Foreground="Red"

You can put it anywhere in the tag as long as you leave spaces on either side. As you type this

attribute, you’ll see a list of colors pop up. Silverlight supports the 140 color names supported

by many browsers, as well as a bonus 141st color, Transparent.

When Silverlight runs in a web browser, usually the background is white, so the default text

color is black. When programming for the Windows Phone 7 Series, it’s a good idea to keep

backgrounds dark, so black text would be problem. For that reason, you’ll notice a Foreground

setting on the root element in MainPage.xaml:

Foreground="{StaticResource PhoneForegroundBrush}"

This statement references an item in the App.xaml file, which is White. I’ll discuss the syntax

and mechanism of StaticResource in a later chapter, and how setting the color in the root

element affects the TextBlock at the bottom of the XAML file in the next chapter.

Another font-related attribute set on the root element is FontSize:

FontSize="{StaticResource PhoneFontSizeNormal}"

In App.xaml, this is defined as 20. All dimensions in Silverlight are in units of pixels, and the

default FontSize is 11 pixels. With this default setting, you get a font that from the top of its

ascenders to the bottom of its descenders, plus a little breathing room, measures

approximately 11 pixels. On a common video display with a resolution of about a hundred

pixels to the inch, this is a reasonable size for small but readable text. On modern hand-held

devices such as phones, the pixels are packed in much more tightly—closer to about 150 dots

per inch—and the 11-pixel text tends to be a little too small.

Traditionally, font sizes are expressed in units of points. In traditional typography, a point is

very close to 1/72nd inch and in digital typography is often assumed to be exactly 1/72nd inch.

A font with a size of 72 points measures approximately an inch from the top of its characters

to the bottom. (I say “approximately” because the 72 points indicate a typographic design

height, and it’s really the creator of the font who determines exactly how large the characters

of a 72-point font should be.)

Obviously, a 72-point font will have a pixel height dependent on the output device on which

the font is rendered. On a 600 DPI printer, for example, the 72-point font will be 600 pixels

tall. However, for many years Microsoft Windows has assumed that video displays have a

resolution of 96 DPI. Under that assumption, font sizes can be converted from pixels to points

by multiplying by ¾, and from points to pixels by multiplying by 4/3.

So, that 11-pixel default FontSize in Silverlight might be said to be equivalent to 8.25 points.

Obviously this conversion works only for devices that actually have 96 DPI displays and it

completely falls apart for higher resolution printers and phones, but that’s the conversion

that’s used in some definitions of font sizes you’ll see in the App.xaml file, which is why the

20-pixel font size is claimed to be 15 points.

If you’re comfortable thinking of fonts in terms of point sizes, you might want to use a simple

rule of thumb: Double the point size for the phone pixel size. For example, for reading text

comfortably on paper, you probably wouldn’t go below 8 points. On the phone, make that

font 16 pixels and you’ll be in good shape.

At any rate, you can now compile and run the program if you haven’t already done so.

Although it’s not quite obvious, the PhoneApplicationFrame in App.xaml occupies the entire

visual display; the MainPage (which derives from PhoneApplicationPage) occupies the entire

area of the frame. The outermost Grid in MainPage occupies the entire area of the page. This

is split into a title area on top and something we might call a “content” area under that. The

new TextBlock with is centered within that area:

As simple as it is, this program demonstrates some essential concepts of Silverlight

programming, including dynamic layout. The XAML file defines a layout of elements in what is

called a visual tree. These elements are capable of arranging themselves dynamically. By

assigning the HorizontalAlignment and VerticalAlignment properties we can put an element in

the center of another element, or in along one of the edges or in one of the corners.

TextBlock is one of a number of possible elements you can use in a Silverlight program; others

include bitmap images, movies, and familiar controls like buttons, sliders, and list boxes.

From the menu that hangs off the emulator, you can turn the “phone” sideways: You’ll see

that the content of the page shuffles itself around to the new orientation automatically.

Before the end of the chapter, you’ll see how the C# code-behind file gets involved in

providing event handling for elements in the XAML file and how the code file can then

interact with those elements.

An XNA Program for the Phone

While text is often prevalent in Silverlight applications, it usually doesn’t show up a whole lot

in graphical games. In games, text is usually relegated to describing how the game works or

displaying the score, so the very concept of a “hello, world” program doesn’t quite fit in with

the whole XNA programming paradigm.

In fact, XNA doesn’t even have any built-in fonts. You might think that an XNA program

running on the phone can make use of the same native fonts as Silverlight programs, but this

is not so. Silverlight uses vector-based TrueType fonts and XNA doesn’t know anything about

such exotic concepts. To XNA, everything is a bitmap, including fonts.

If you wish to use a particular font in your XNA program, that font must be embedded into

the executable as a collection of bitmaps for each character. XNA Game Studio makes the

actual process of font embedding very easy, but it raises some thorny legal issues. You can’t

legally distribute an XNA program unless you can also legally distribute the embedded font,

and with most of the fonts distributed with Windows itself or Windows applications, this is not

the case.

To help you out of this legal quandary, Microsoft licensed some fonts from Ascender

Corporation specifically for the purpose of allowing you to embed them in your XNA

programs. Here they are:

Kootenay Pericles

Lindsey Pericles Light

Miramonte Pescadero

Miramonte Bold Pescadero Bold

Notice that the Pericles font uses small capitals for lower-case letters, so it’s probably suitable

only for headings.

Let’s begin. Bring up Visual Studio 2010 Express for Windows Phone again.E. From the File

menu select New Project. On the left of the dialog box, select Visual C# and XNA Game

Studio 4.0. In the middle select Windows Phone Game (4.0). Select a location and enter a

project name of XnaHelloPhone. XNA projects contain at least two directories, so you’ll

probably want to make sure “Create directory for solution” has been clicked. Click OK.

As with the Silverlight project the Solution Explorer at the right displays a list of the files

created for this new project. Although it isn’t essential, you’ll probably want to open the

WindowsPhoneManifest.xml file in the Properties folder, and in the App element, change the

Title attribute to “XNA Hello Phone.” You can also open the GameThumbnail.png file and

create a less generic icon for the program.

This XNA program will require a font, which is considered part of the “content” of an XNA

program. XNA programs usually contain lots of content, mostly bitmaps and 3D models, but

fonts as well. To embed a font into this program, right-click the Content folder (labeled

“XnaHelloPhoneContent (Content)” and from the pop-up menu choose Add and New Item.

Choose Sprite Font, leave the filename as SpriteFont1.spritefont, and click Add.

The word “sprite” is common in game programming and usually refers to a small bitmap that

can be moved very quickly, much like the sprites you might encounter in an enchanted forest.

In XNA, even fonts are sprites.

You’ll see SpriteFont1.spritefont show up in the file list of the Content directory, and you’ll be

able to edit a extremely well commented XML file describing the font.

XNA Project: XnaHelloPhone File: SpriteFont1.spritefont (complete w/o comments)

<XnaContent xmlns:Graphics="Microsoft.Xna.Framework.Content.Pipeline.Graphics">

 <Asset Type="Graphics:FontDescription">

 <FontName>Kootenay</FontName>

 <Size>14</Size>

 <Spacing>0</Spacing>

 <UseKerning>true</UseKerning>

 <Style>Regular</Style>

 <CharacterRegions>

 <CharacterRegion>

 <Start> </Start>

 <End>~</End>

 </CharacterRegion>

 </CharacterRegions>

 </Asset>

</XnaContent>

Within the FontName tags you’ll see Kootenay, but you can change that to one of the other

fonts I listed earlier. If you want Pericles Light, put the whole name in there, but if you want

Miramonte Bold or Pescadero Bold, use just Miramonte or Pescadero, and enter the word

Bold between the Style tags. You can use Bold for the other fonts as well, but for the other

fonts, bold will be synthesized, while for these two fonts, you’ll get the font actually designed

for bold.

The Size tags indicate the point size of the font. In XNA you deal with pixel coordinates and

dimensions. Although you specify a point size here—remember that in digital typography a

point is 1/72nd inch—you’ll get a font with a pixel dimension based on a resolution of 96 DPI.

The point size of 14 becomes a pixel size of 18-2/3 within your XNA program. The

CharacterRegions section of the file indicates the ranges of hexadecimal Unicode character

encodings you need. The default setting from 0x32 through 0x126 includes all the noncontrol

characters of the ASCII character set.

The filename of SpriteFont1.spritefont is not very descriptive. I like to rename it to something

that describes the actual font; if you’re sticking with the default font settings, you can rename

it to Kootenay14.spritefont. If you look at the properties for this file—right-click the filename

and select Properties—you’ll see an Asset Name that is also the filename without the

extension: Kootenay14. This Asset Name is what you use to refer to the font in your program.

If you want to confuse yourself, you can change the Asset Name independently of the

filename.

In its initial state, the XNAHelloPhone project contains two C# code files: Program.cs and

Game1.cs. The first is very simple and, moreover, is actually irrelevant for Windows Phone 7

Series games! A preprocessor directive enables the Program class only if a symbol of

WINDOWS or XBOX is defined. When compiling Windows Phone programs, the symbol

WINDOWS_PHONE is defined instead.

For most small games, you’ll be spending all your time in the Game1.cs file. The Game1 class

derives from Game and in its pristine state it defines two fields: graphics and spriteBatch. To

those two fields I want to add three more:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt showing fields)

namespace XnaHelloPhone

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 string text = "Hello, Windows Phone!";

 SpriteFont kootenay14;

 Vector2 textPosition;

 …

 }

}

These three new fields simply indicate the text that the program will display, the font it will

use to display it, and the position of the text. In XNA everything is positioned using pixel

coordinates relative to the upper-left corner of the display. The Vector2 structure has two

fields named X and Y of type float. For performance purposes, all floating-point values in XNA

are single-precision. (Silverlight is all double-precision.) The Vector2 structure is often used for

two-dimensional points, sizes, and even vectors.

When the game is run on the phone, the Game1 class is instantiated and the Game1

constructor is executed. This standard code is provided for you:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

 TargetElapsedTime = TimeSpan.FromSeconds(1 / 30.0);

}

The first statement initializes the graphics field. In the second statement, Content is a property

of Game of type ContentManager, and RootDirectory is a property of that class. Setting this

property to “Content” is consistent with the Content directory that is currently storing the 14-

point Kootenay font. The third statement sets a time for the program’s game loop, which

governs the pace at which the program updates the video display.

After Game1 is instantiated, the phone calls a method called Run on the Game1 instance, and

the base Game class initiates the process of starting up the game. One of the first steps is a

call to the Initialize method, which a Game derivative can override. XNA Game Studio

generates a skeleton method to which I won’t add anything:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Initialize()

{

 base.Initialize();

}

The Initialize method is not the place to load the font or other content. That comes a little

later when the base class calls the LoadContent method.

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Rectangle clientBounds = this.Window.ClientBounds;

 Vector2 textSize = kootenay14.MeasureString(text);

 textPosition =

 new Vector2((int)(clientBounds.X + (clientBounds.Width - textSize.X) / 2),

 (int)(clientBounds.Y + (clientBounds.Height - textSize.Y) / 2));

}

The first statement in this method is provided for you. You’ll see shortly how this spriteBatch

object is used to shoot sprites out to the display.

The other statements are ones I’ve added, and you’ll notice I tend to preface property names

like Content and Window with the keyword this to remind myself that they’re properties and

not a static class. As I’ve already mentioned, the Content property is of type ContentManager.

The generic Load method allows loading content into the program, in this case of type

SpriteFont. The name in quotation marks is the Asset Name as indicated in the content’s

properties. This statement stores the result in the kootenay14 field of type SpriteFont.

The third statement requires a little bit of explanation: To center text on the screen, the

program needs to know the size of the screen. Commonly for this purpose, XNA programs use

the Viewport property of the GraphicsDevice class, which is accessible through the

GraphicsDevice property of Game. This Viewport object provides Width and Height properties

of the screen.

However, on the Windows Phone 7 Series, the top 32 pixels of the display are commonly

occupied by the System Tray, so a slightly different strategy is required. You have two choices:

If you really want to use the entire screen and make the System Tray invisible to the user, you

are allowed to do so. In the constructor of the Game1 class, insert the following statement

after the GraphicsDeviceManager has been instantiated:

graphics.IsFullScreen = true;

You can then use Viewport to obtain the width and height of the full screen.

The second option keeps the System Tray alive. Rather than getting the Viewport property of

the GraphicsDevice class, get the ClientBounds property of the GameWindow class, which is

accessible through the Window property of Game. This ClientBounds property is of type

Rectangle:

Rectangle clientBounds = this.Window.ClientBounds;

This Rectangle structure includes Width and Height properties but these indicate the area of

the screen occupied by the program. In addition, for full generality, the Left and X provide the

leftmost horizontal coordinate, and Top and Y provide the topmost. You can also make use of

the Right and Bottom properties. (This is the way it’s supposed to work, anyway. ClientBounds

does not seem to be working quite correctly in early versions of the Windows Phone 7 Series.)

You also need the size of the text you’re displaying. The SpriteFont class has a very handy

method named MeasureString that returns a Vector2 object with the size of the text in pixels.

It is then straightforward to calculate textPosition—the point relative to the upper-left corner

of the viewport where the upper-left corner of the text string is to be displayed—to enter the

text on the program’s area of the screen. Notice that I cast the result of the calculation to

integers. Because fonts are converted to bitmaps for use by the XNA program, it is best to

display them at integer boundaries.

The initialization phase of the program has now concluded, and the real action begins. The

program enters the game loop. In synchronization with the 30 Hz refresh rate of the video

display, two methods in your program are called: Update followed by Draw. Back and forth:

Update, Draw, Update, Draw, Update, Draw…. (It’s actually somewhat more complicated than

this if the Update method requires more than 1/30th of a second to complete, but I’ll discuss

these timing issues in more detail in a later chapter.)

In the Draw method you want to draw on the display. But that’s all you want to do. If you

need to perform some calculations in preparation for drawing, you should do those in the

Update method. The Update method prepares the program for the Draw method. Very often

an XNA program will be moving sprites around the display based on user input. For the

phone, this user input involves fingers touching the screen. All handling of user input should

also occur during the Update method. You’ll see an example later in this chapter.

You should write your Update and Draw methods so that they execute as quickly as possible.

That’s rather obvious, I guess, but here’s something very important that might not be so

obvious: You should avoid code in Update and Draw that routinely allocates memory from the

program’s local heap. Eventually the .NET garbage collector will want to reclaim some of this

memory and while the garbage collector is doing its job, your game might stutter a bit.

Throughout the chapters on XNA programming, you’ll see techniques to avoid allocating

memory from the heap.

Your Draw methods probably won’t contain any questionable code; it’s usually in the Update

method where trouble lurks. Avoid any new expressions involving classes. These always cause

memory allocation. Instantiating a structure is fine, however, because structure instances are

stored on the stack and not in the heap. (XNA uses structures rather than classes for many

types of objects you’ll often use in Update.) But heap allocations can also occur without

explicit new expressions. For example, concatenating two strings creates another string on the

heap. If you need to perform string manipulation in Update, you should use StringBuilder. In

fact, XNA provides methods for display text using StringBuilder objects.

In XnaHelloPhone, however, the Update method is trivial. The text displayed by the program is

anchored in one spot. All the necessary calculations have already been performed in the

LoadContent method. For that reason, the Update method will be left simply as it was

originally created:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 base.Update(gameTime);

}

The default code uses the static GamePad class to check if the Back button has been pressed

and uses that to exit the game.

Finally, there is the Draw method. The version created for you simply colors the background

with a light blue:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 base.Draw(gameTime);

}

When you’re developing an XNA program for the phone or the phone emulator, the

appearance of the light blue screen is very comforting because it means the program is

actually working. But it’s not good color for conserving power. In my revised version, I’ve

compromised by setting the background to a darker blue. As in Silverlight, XNA supports the

140 colors come to be regarded as standard. The text is colored white:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Sprites get out on the display by being bundled into a SpriteBatch object, which was created

during the call to LoadContent. Between calls to Begin and End there can be multiple calls to

DrawString to draw text and Draw to draw bitmaps. Those are the only options. This particular

DrawString call references the font, the text to display, the position of the upper-left corner of

the text relative to the upper-left corner of the screen, and it specifies the color. And here it is:

Modes of Drawing

You can convince yourself that Draw is actually being called 30 times per second with a little

additional code. Define a field like so:

bool drawTheScreen;

Change the Draw method to only draw on the screen when drawTheScreen is true, and then

toggle the value on each call:

if (drawTheScreen)

{

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

}

drawTheScreen ^= true;

You’ll see the text flicker as it’s drawn only during every other frame.

Reflect for a moment how different both Silverlight and XNA are from older Windows

programming environments. In Windows API programming, or MFC programming, or even

Windows Forms programming, your program draws “on demand,” that is, when an area of

your window is invalid and needs to be repainted or when your program deliberately

invalidates an area of your window to force painting. This may seem similar to the XNA Draw

method, but it’s really not. A conventional Windows program draws much less frequently, and

what it does draw goes straight out to the video display where it remains until overwritten.

A Silverlight program often doesn’t seem to draw at all! Deep inside of Silverlight is a visual

composition layer that operates in a retained graphics mode and organizes all the visual

elements into a composite whole. Elements such as TextBlock exist as actual entities inside this

composition layer. At some point, TextBlock is rendering itself, but what it renders is retained

along with the rendered output of all the other elements in the visual tree.

In contrast, an XNA program is actively drawing during every frame of the video display. This

is conceptually different from older Windows programming environments as well as

Silverlight. It is very powerful, but I’m sure you know well what must also come with great

power.

In a program such as XnaHelloPhone, the text stays firmly in place. The program really only

needs one call to Draw to render the display. To conserve power, it is possible for the Update

method to call the SuppressDraw method defined by the Game class to inhibit a

corresponding call to Draw. The Update method will still be called 30 times per second

because it needs to check for user input, but if the code in Update calls SuppressDraw, Draw

won’t be called during that cycle of the game loop. If the code in Update doesn’t call

SuppressDraw, Draw will be called.

I guess it’s probably obvious that you just can’t drop a naked SuppressDraw call into Update.

That will prevent Draw from ever being called, and you’ll get nothing on the screen. Instead,

you probably want to define a Boolean field:

bool requiresDraw = true;

In Update, call the following code:

if (!requiresDraw)

 SuppressDraw();

In Draw set the field to false:

requiresDraw = false;

I’ll be using this technique—or one similar to it—to suppress unnecessary calls to Draw in

programs where there might not be movement every frame. The Update method can then set

requiresDraw to true if anything changes that needs to be updated on the screen.

Using Touch in XNA

Let’s write a little variation of the first XNA program. This second project is called

XnaTapHello. It’s much like the first program except when you tap the text with your finger, it

changes to a random color, and when you tap the screen outside the text area, the color

changes back to white.

As you’ll see before the end of this chapter, in a Silverlight program, user input is reported

through events. In XNA, the program obtains the current state of user input through polling.

One of the purposes of the Update method is to check the state of user input and make

changes that affect what goes out to the screen during the Draw method.

The multitouch input device is referred to in XNA as a touch panel, and you use methods in

the static TouchPanel class to obtain this input. It is possible (although not necessary) to

obtain information about the multitouch device itself by calling the static

TouchPanel.GetCapabilities method. The TouchPanelCapabilities object returned from this

method has three properties:

 IsConnected is true if the touch panel is available. For the phone, this will always be true.

 MaximumTouchCount returns the number of touch points, at least 4 for the phone.

 HasPressure indicates if pressure information is available. For the phone, this will always

be true.

For most purposes, you just need to use the other static method in TouchPanel. This one’s

essential, and if your phone program uses touch input—which is highly likely unless you’re

writing a game that completely ignores the game player—you’ll be calling this method during

every call to Update after program initialization:

TouchCollection touchLocations = TouchPanel.GetState();

The TouchCollection is a collection of zero or more TouchLocation objects. TouchLocation has

four properties:

 State is a member of the TouchLocationState enumeration: Pressed, Moved, Released.

 Position is a Vector2 indicating the finger position relative to the upper-left corner of the

display.

 Pressure is a float between 0 and 1.

 Id is an integer identifying a particular finger from Pressed through Released.

If no fingers are touching the screen, the TouchCollection will be empty. When a finger first

touches the screen, TouchCollection contains a single TouchLocation object with State equal to

Pressed. On subsequent calls to TouchPanel.GetState, the TouchLocation object will have State

equal to Moved even if the finger has not physically moved. When the finger is lifted from the

screen, the State property of the TouchLocation object will equal Released. On subsequent

calls to TouchPanel.GetState, the TouchCollection will be empty.

One exception: If the finger is tapped and released on the screen very quickly—that is, within

a 1/30th of a second—it’s possible that the TouchLocation object with State equal to Pressed

will be followed with State equal to Released with no Moved states in between.

That’s just one finger touching the screen and lifting. In the general case, multiple fingers will

be touching, moving, and lifting from the screen independently of each other. You can track

particular fingers using the Id property. For any particular finger, that Id will be the same from

Pressed, through all the Move values, to Released.

TouchLocation also has a very handy method called TryGetPreviousLocation, which you call

like this:

TouchLocation previousTouchLocation;

bool success = touchLocation.TryGetPreviousLocation(out previousTouchLocation);

Almost always, you will call this method when touchLocation.State is Moved because you can

then obtain the previous location and calculate a difference in location. If touchLocation.State

equals Pressed, then TryGetPreviousLocation will return false and previousTouchLocation.State

will equal the enumeration member TouchLocationState.Invalid. You’ll also get these results if

you use the method on a TouchLocation, which itself was returned from

TryGetPreviousLocation.

The program I’ve proposed changes the text color when the user taps the text string, so the

processing of TouchPanel.GetStates will be relatively simple. The program will be looking only

at State values of Pressed.

This project is called XnaTapHello. Like the first project, it needs a font, which I’ll assume is the

same. A few more fields are required:

XNA Project: XnaTapHello File: Game1.cs (excerpt showing fields)

namespace XnaTapHello

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Random rand = new Random();

 string text = "Hello, Windows Phone!";

 SpriteFont kootenay14;

 Vector2 textSize;

 Vector2 textPosition;

 Color textColor = Color.White;

 bool requiresDraw = true;

 …

 }

}

The LoadContent method is similar to the version in the first program except that textSize is

saved as a field because it needs to be accessed in later calculations:

XNA Project: XnaTapHello File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Rectangle clientBounds = this.Window.ClientBounds;

 textSize = kootenay14.MeasureString(text);

 textPosition =

 new Vector2((int)(clientBounds.X + (clientBounds.Width - textSize.X) / 2),

 (int)(clientBounds.Y + (clientBounds.Height - textSize.Y) / 2));

}

As is typical with XNA programs, much of the “action” occurs in the Update method. The

method calls TouchPanel.GetStates and then loops through the collection of TouchLocation

objects to find only those with State equal to Pressed. If the Position is inside the rectangle

occupied by the text string, the textColor field is set to a random RGB color value using one of

the constructors of the Color structure. Otherwise, textColor is set to Color.White.

XNA Project: XnaTapHello File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 TouchCollection touchLocations = TouchPanel.GetState();

 foreach (TouchLocation touchLocation in touchLocations)

 {

 if (touchLocation.State == TouchLocationState.Pressed)

 {

 Vector2 touchPosition = touchLocation.Position;

 if (touchPosition.X >= textPosition.X &&

 touchPosition.X < textPosition.X + textSize.X &&

 touchPosition.Y >= textPosition.Y &&

 touchPosition.Y < textPosition.Y + textSize.Y)

 {

 textColor = new Color((byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 }

 else

 {

 textColor = Color.White;

 }

 requiresDraw = true;

 }

 }

 if (!requiresDraw)

 SuppressDraw();

 base.Update(gameTime);

}

Notice the use of the requiresDraw field. It’s set to true whenever the textColor changes, but if

it’s false, SuppressDraw is called. The field is set to true in the Draw method, which by this

point shouldn’t hold any surprises:

XNA Project: XnaTapHello File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 this.GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, textColor);

 spriteBatch.End();

 requiresDraw = false;

 base.Draw(gameTime);

}

As you play around with this program in the emulator, you’ll discover a latency problem. The

program takes about a second to respond to touch so be a little patient. If you experiment

with a real device, you’ll also discover that touch is not quite as deterministic as you might

like. The text string is a small target and often you’ll tap outside the string. Even when you tap

with a single finger, the finger might touch the screen in more than one place. In some cases,

the same foreach loop in Update might set textColor more than once!

Handling multitouch input is often challenging, and it’s one of the challenges this book will

courageously tackle.

Touch Events in Silverlight

If you’ve experimented with multitouch in the nonphone version of Silverlight 3, you know

about the Touch.FrameReported event. In Windows Phone 7 Series programming, that event

has become obsolete.

Instead, you’ll be using a much more sophisticated array of four events: ManipulationStarted,

ManipulationInertiaStarting, ManipulationDelta, and ManipulationCompleted. These events are

so sophisticated in incorporating concepts of velocity and inertia that they really acquire a

chapter of their own. In this chapter I’m going to stick with ManipulationStarted just to detect

contact of a finger on the screen, and I won’t bother with what the finger does after that.

The XnaTapHello program needed to arithmetically determine if the coordinates of the finger

touching the screen was within the rectangle occupied by the displayed text. In the Silverlight

program, that calculation won’t be necessary. Elements such as TextBlock are actual entities

with specific locations on the screen, and these can be automatically hit-tested—that is,

determined if they are underneath a particular user-input event such as a finger touch.

Let’s see how this works in a project called SilverlightTapHello1. In the definition of the

TextBlock in the XAML file, I’ve added a line that associates the ManipulationStarted event

with the OnTextBlockManipulationStarted event handler:

Silverlight Project: SilverlightTapHello1 File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

The MainPage.xaml.cs code-behind file creates an instance of the Random class as a field and

contains the event handler. This is the complete file except for the using directives:

Silverlight Project: SilverlightTapHello1 File: MainPage.xaml.cs (excerpt)

namespace SilverlightTapHello1

{

 public partial class MainPage : PhoneApplicationPage

 {

 Random rand = new Random();

 public MainPage()

 {

 InitializeComponent();

 SupportedOrientations = SupportedPageOrientation.Portrait |

 SupportedPageOrientation.Landscape;

 }

 void OnTextBlockManipulationStarted(object sender,

 ManipulationStartedEventArgs args)

 {

 TextBlock txtblk = sender as TextBlock;

 Color clr = Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 txtblk.Foreground = new SolidColorBrush(clr);

 }

 }

}

If you let Visual Studio 2010 Express for Windows Phone create the event handler for you

when you type in the name of the event in the XAML file, it will create a name like

TextBlock_ManipulationStarted. I don’t like underlines in identifiers, and I like event handlers

to begin with the word On, so I usually just rename the handler in the C# file, and Visual

Studio’s’s intelligent renaming will also rename it in the XAML file. The code that Visual

StudioE generates uses the name e for the event arguments; I usually change that to args.

Because this event was set on the TextBlock, the event handler is called only when the user

touches the TextBlock. Within the event handler, the sender argument is the TextBlock object

and it can be safely cast to a TextBlock for accessing the object. Unlike the Color structure in

XNA, the Silverlight Color structure doesn’t have a constructor to set a color from red, green,

and blue values, but it does have a static FromArgb method that creates a Color object based

on alpha, red, green, and blue values, where alpha is opacity. Set the alpha channel to 255 to

get an opaque color. Although it’s not obvious at all in the XAML files, the Foreground

property is actually of type Brush, an abstract class from which SolidColorBrush descends.

If you run this program, you’ll see that it works but only partially. If you touch the TextBlock,

you’ll indeed change the text to a random color. But if you touch outside the TextBlock, the

text does not go back to white. The problem is that we’re looking at ManipulationStarted

events only when the user touches the TextBlock!

A program that functions correctly according to my original specification needs to get touch

event occurring anywhere on the page. A handler for the ManipulationStarted event needs to

be installed on MainPage rather than just on the TextBlock.

Although that’s certainly possible, there’s actually an easier way. The UIElement class—from

which FrameworkElement, Control, UserControl, Page, PhoneApplicationPage, and MainPage

successively derive—not only defines all the Manipulation events but also exposes protected

virtual methods corresponding to those events. You don’t need to install a handler for the

ManipulationStarted event on MainPage; instead you can override the OnManipulationStarted

virtual method.

This approach is implemented in the SilverlightTapHello2 project. The XAML file doesn’t refer

to any events but gives the TextBlock a name so that it can be referred to in code:

Silverlight Project: SilverlightTapHello2 File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 Text="Hello, Windows Phone!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Although Name is a property of TextBlock, the property plays a very special role. If you

compile the program at this point and look at the MainPage.g.cs—the code file that the

compiler generates based on the MainPage.xaml file, you’ll see a bunch of fields in the

MainPage class:

internal System.Windows.Controls.Grid LayoutRoot;

internal System.Windows.Controls.Grid TitleGrid;

internal System.Windows.Controls.TextBlock textBlockPageTitle;

internal System.Windows.Controls.TextBlock textBlockListTitle;

internal System.Windows.Controls.Grid ContentGrid;

internal System.Windows.Controls.TextBlock txtblk;

These are all names assigned to elements in the XAML file. These names become fields in the

generated partial MainPage class. These fields are assigned from code in the

InitializeComponent method also in MainPage.g.cs:

this.LayoutRoot = ((System.Windows.Controls.Grid)(this.FindName("LayoutRoot")));

this.TitleGrid = ((System.Windows.Controls.Grid)(this.FindName("TitleGrid")));

this.textBlockPageTitle =

((System.Windows.Controls.TextBlock)(this.FindName("textBlockPageTitle")));

this.textBlockListTitle =

((System.Windows.Controls.TextBlock)(this.FindName("textBlockListTitle")));

this.ContentGrid = ((System.Windows.Controls.Grid)(this.FindName("ContentGrid")));

this.txtblk = ((System.Windows.Controls.TextBlock)(this.FindName("txtblk")));

This means that anytime after the constructor in MainPage.xaml.cs calls InitializeComponent,

any code in the class can reference those Grid and TextBlock elements in the XAML file. This is

one of the two primary ways in which code and XAML interact. You’ve already seen the other,

where an element in XAML fires an event handled in code.

You may be curious why Visual Studio 2010 Express for Windows Phone creates XAML files

where Grid and TextBlock are assigned names using the x:Name attribute and I gave the

TextBlock a name using Name. All classes that derive from FrameworkElement (which is the

sole class that inherits from UIElement) have a Name property. But if Name is not available,

XAML itself supports a Name property that you reference as x:Name. Some programmers

don’t like the idea of using Name for some objects in XAML but x:Name for others, so they

have chosen to use x:Name consistently. I use Name when it’s available. But they’re really

functionally identical.

In the MainPage.xaml.cs file, the MainPage class has the same single field as the previous

program but overrides the OnManipulationStarted method:

Silverlight Project: SilverlightTapHello1 File: MainPage.xaml.cs (excerpt)

namespace SilverlightTapHello2

{

 public partial class MainPage : PhoneApplicationPage

 {

 Random rand = new Random();

 public MainPage()

 {

 InitializeComponent();

 SupportedOrientations = SupportedPageOrientation.Portrait |

 SupportedPageOrientation.Landscape;

 }

 protected override void OnManipulationStarted(

 ManipulationStartedEventArgs args)

 {

 Color clr = Colors.White;

 if (args.OriginalSource == txtblk)

 {

 clr = Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 }

 txtblk.Foreground = new SolidColorBrush(clr);

 base.OnManipulationStarted(args);

 }

 }

}

In the ManipulationStartedEventArgs a property named OriginalSource indicates where this

event began—in other words, the topmost element that the user tapped. If this equals the

txtblk object, the method creates a random color to set to the Foreground property.

Although the XNA and Silverlight programs are structured quite differently and the Silverlight

program has some additional titles, you’ll find the programs to be just about indistinguishable

in actual use. And this is how it should be. Different frameworks are for the convenience of

the programmer and shouldn’t affect how the user experiences the program.

Some Odd Behavior?

In all the Silverlight programs in this chapter, I’ve centered the TextBlock within its container

(the Grid) using these attributes:

HorizontalAlignment="Center"

VerticalAlignment="Center"

These two properties are defined by FrameworkElement, and they are an important

component of dynamic layout in Silverlight. In the SilverlightTapHello2 program, try setting

these two properties to the following values:

HorizontalAlignment="Left"

VerticalAlignment="Top"

In the designer, the TextBlock moves to the upper-left corner of the Grid that occupies the

bulk of the screen. If you run the program, it still works the same: Touch the text and it

changes to a random color; touch somewhere outside the text and it changes back to white.

Now delete the HorizontalAlignment and VerticalAlignment attributes entirely. The text

remains positioned in the upper-left corner of the Grid. But now try running the program. If

you touch anywhere within the large area below the TextBlock, the text will change to a

random color, and only by touching the title area above the text can you change it back to

white. Apparently the program has stopped working correctly.

Why do you suppose that is?

Part II

Silverlight

Chapter 3

Code and XAML
As you’ve seen, a Silverlight program is generally a mix of code and XAML. In general, you’ll use

XAML for laying out the visuals of your application, and you’ll use code for event handling,

including all user-input events and all events generated by controls as a result of processing

user-input events.

Much of the object creation and initialization performed in XAML would traditionally be done in

the constructor of a page or window class. This might make XAML seem just a tiny part of the

application, but it turns out to be much more than that. As the name suggests, XAML is totally

compliant XML, so it’s instantly toolable—machine writable and machine readable as well as

human writable and human readable.

Although XAML is usually concerned with object creation and initialization, certain features of

Silverlight provide much more than object initialization would seem to imply. One of these

features is data binding, which involves connections between controls, or between controls and

underlying data, so that properties are automatically updated without the need for explicit

event handlers. Entire animations can also be defined in XAML file.

Although XAML is sometimes referred to as a “declarative language,” it is certainly not a

complete programming language. You can’t perform arithmetic in any generalized manner in

XAML, and you can’t dynamically create objects in XAML.

Experienced programmers encountering XAML for the first time are sometimes resistant to it. I

know I was. Everything that we value in a programming language such as C#—such as required

declarations, strong typing, array-bounds checking, tracing abilities for debugging—largely goes

away when everything is reduced to XML text strings. Over the years, however, I’ve gotten very

comfortable with XAML, and I find it very liberating in using XAML for the visuals of the

application. In particular I like how the parent-child relationship of controls on the surface of a

window is mimicked by the parent-child structure inherent in XML. I also like the ability to

experiment with XAML—even just in the Visual Studio designer.

Everything you need to do in Silverlight can be allocated among these three categories:

 Stuff you can do in either code or XAML

 Stuff you can do only in code (e.g., event handling and methods)

 Stuff you can do only in XAML (e.g., templates)

In both code and XAML you can instantiate classes and structures, and set the properties of

these objects. A class or structure instantiated in XAML must be defined as public (of course),

but it must also have a parameterless constructor. When XAML instantiates the class, it has no

way of passing anything to the constructor. In XAML you can associate a particular event with

an event handler, but the event handler itself must be implemented in code. You can’t make

method calls in XAML because, again, there’s no way to pass arguments to the method.

If you want, you can write pretty much your entire application in code, but there is a very

important type of job that must be done in XAML, and this is the construction of templates. You

use templates in two ways: First, to visually display data using a collection of elements and

controls, and secondly, to redefine the visual appearance of a control while maintaining its

functionality. You can write alternatives to templates in code, but you can’t write the templates

themselves.

After some experience with Silverlight programming, you might decide that you want to use a

design program such as Expression Blend to generate XAML for you. But I urge you—speaking

programmer to programmer—to learn how to write XAML by hand. At the very least you need

to know how to read the XAML that design programs will generate for you.

One of the very nice features of XAML is that you can experiment with it in a very interactive

manner, and by experimenting with XAML you can learn a lot about Silverlight. Programming

tools are designed specifically for experimenting with XAML. These programs take advantage of

a static method named XamlReader.Load that can convert XAML text into an object at runtime.

Later in this book I’ll show you how to use that method and you’ll see a phone application that

lets you experiment with XAML right on the phone!

Until then, however, you can experiment with XAML in the Visual Studio designer. Generally the

designer responds promptly and accurately to changes you make in the XAML. Only when

things get a bit complex will you actually need to build and deploy the application to see what

it’s doing.

A TextBlock in Code

Before we get immersed in experimenting with XAML, however, I must issue a warning: As you

get accustomed to using XAML exclusively for certain common chores, it’s important not to

forget how to write C#!

You’ll recall the XAML version of the TextBlock in the Grid from Chapter 2:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Elements in XAML such as TextBlock are actually classes. Attributes of these elements (such as

Text, HorizontalAlignment, and VerticalAlignment are properties of the class. Let’s see how easy

it is to write a TextBlock in code, and to also use code to insert the TextBlock into the XAML

Grid.

The new project is called TextBlockInCode. In the newly created MainPage.xaml file, the Grid

has been assigned the name “ContentGrid.” That name will be useful for referring to the Grid in

code. As you saw in Chapter 2, assigning Name or x:Name causes a field to be created in the

class, which you can then reference in code.

The code-behind file for MainPage creates a TextBlock in its constructor and adds that to the

Grid:

Silverlight Project: TextBlockInCode File: MainPage.xaml.cs (excerpt)

namespace TextBlockInCode

{

 public partial class MainPage : PhoneApplicationPage

 {

 public MainPage()

 {

 InitializeComponent();

 SupportedOrientations = SupportedPageOrientation.Portrait |

 SupportedPageOrientation.Landscape;

 TextBlock txtblk = new TextBlock();

 txtblk.Text = "Hello, Windows Phone!";

 txtblk.HorizontalAlignment = HorizontalAlignment.Center;

 txtblk.VerticalAlignment = VerticalAlignment.Center;

 ContentGrid.Children.Add(txtblk);

 }

 }

}

The constructor first creates the TextBlock, then sets its properties, and finally adds the

TextBlock to ContentGrid. You don’t need to perform the steps precisely in this order: You can

add the TextBlock to ContentGrid first and then set the TextBlock properties.

You can also take advantage of a feature introduced in C# 3.0 to instantiate a class and define

its properties in a block:

TextBlock txtblk = new TextBlock

{

 Text = "Hello, Windows Phone!",

 HorizontalAlignment = HorizontalAlignment.Center,

 VerticalAlignment = VerticalAlignment.Center

};

clientGrid.Children.Add(txtblk);

That makes the code look a little more like the XAML, but you can still see that XAML provides

several shortcuts. The HorizontalAlignment and VerticalAlignment properties must be set to

members of the HorizontalAlignment and VerticalAlignment enumerations, respectively. In

XAML, you need only specify the member name.

Just looking at the XAML, it is not so obvious that the Grid has a property named Children, and

that this property is a collection, and nesting the TextBlock inside the Grid effectively adds the

TextBlock to the Children collection. The process of adding the TextBlock to the Grid must be

more explicit in code.

A XAML-less Silverlight Program?

Sometimes it’s interesting to see how much you can actually delete from a program and still

persuade it to run. In the TextBlockInCode project, you can delete everything in MainPage.xaml

from the first Grid tag to the last Grid tag, leaving only the PhoneApplicationPage start and end

tags. In the MainPage.xaml.cs code file you can delete

ContentGrid.Children.Add(txtblk);

and replace it with:

this.Content = txtblk;

This code sets the Content property of PhoneApplicationPage to the txtblk. The program will

still compile and run except there will be no title information displayed on the page.

One difference between the Grid and the PhoneApplicationPage is that the Grid can have

multiple children in its Children collection while the PhoneApplicationPage can only support a

single child with its Content property, although that single child can contain nested children. In

the standard MainPage.xaml file created by Visual Studio, the Content property of

PhoneApplicationPage is set to the outermost Grid.

If you’re in the adventurous mode, you can continue deleting XAML in the program until you’re

down to no XAML at all. The AllCodeSilverlightApp project has no XAML files. The MainPage.cs

file defines a MainPage class that derives from PhoneApplicationPage. The constructor

instantiates the TextBlock and sets it to its Content property:

Silverlight Project: AllCodeSilverlightApp File: MainPage.cs (complete)

using System.Windows;

using System.Windows.Controls;

using System.Windows.Media;

using Microsoft.Phone.Controls;

namespace AllCodeSilverlightApp

{

 public class MainPage : PhoneApplicationPage

 {

 public MainPage()

 {

 TextBlock txtblk = new TextBlock

 {

 Text = "Hello, Windows Phone!",

 Foreground = new SolidColorBrush(Colors.White),

 FontSize = 24,

 HorizontalAlignment = HorizontalAlignment.Center,

 VerticalAlignment = VerticalAlignment.Center

 };

 this.Content = txtblk;

 }

 }

}

Normally the MainPage.xaml file provides appropriate values of a Foreground color and a

FontSize property; these now have to be provided explicitly. The Foreground property is of type

Brush and in code you need to explicitly create a SolidColorBrush object based on the static

Colors.White property. (The Colors class contains only 14 of the 141 possible colors your can

reference in XAML.)

The App class derives from Application, as usual. This constructor instantiates a

PhoneApplicationFrame and a MainPage. The frame is set to the RootVisual property of App,

and the page is set to the Content property of the frame:

Silverlight Project: AllCodeSilverlightApp File: MainPage.cs (complete)

using System.Windows;

using Microsoft.Phone.Controls;

namespace AllCodeSilverlightApp

{

 public class App : Application

 {

 public App()

 {

 PhoneApplicationFrame frame = new PhoneApplicationFrame();

 this.RootVisual = frame;

 MainPage page = new MainPage();

 frame.Content = page;

 }

 }

}

I wanted to implement this entire program in the constructor of the App class except that the

Content property of PhoneApplicationPage is protected. For that reason, PhoneApplicationPage

needs to be derived from instead of just instantiated.

Property Inheritance

To experiment with some XAML, it’s convenient to create a project specifically for that purpose.

Let’s call the project XamlExperiment, and put a TextBlock in the last Grid in MainPage.xaml:

Silverlight Project: XamlExperiment File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!" />

</Grid>

The text shows up in the upper-left corner of the page’s client area. Let’s make the text italic.

You can do that by setting the FontStyle property in the TextBlock:

<TextBlock Text="Hello, Windows Phone!"

 FontStyle="Italic" />

Alternatively, you can put that FontStyle attribute in the PhoneApplicationPage tag:

<phoneNavigation:PhoneApplicationPage FontStyle="Italic"

This FontStyle attribute can actually go anywhere in the PhoneApplicationPage tag. Notice that

setting it in this tag also affects the TextBlock down at the bottom of the page. This is a feature

known as property inheritance. Certain properties—not many more than Foreground and the

font-related properties FontFamily, FontSize, FontStyle, FontWeight, and FontStretch—

propagate through the visual tree. This is how the TextBlock gets the FontFamily, FontSize, and

Foreground properties set on the PhoneApplicationPage.

You can visualize property inheritance beginning at the PhoneApplicationPage object. The

FontStyle is set on that object and then it’s inherited by the outermost Grid, and then the inner

Grid objects, and finally by the TextBlock. This is a good theory. The problem with this theory is

that Grid doesn’t have a FontStyle property! If you try setting FontStyle in a Grid element, Visual

Studio will tell you what’s wrong with an error message. Property inheritance is somewhat

more sophisticated than a simple handing off from parent to child, and it is one of the features

of Silverlight that is intimately connected with the role of dependency properties, which you’ll

learn about in the Infrastructure chapter.

While keeping the FontStyle property setting to Italic in the PhoneApplicationPage tag, add a

FontStyle setting to the TextBlock:

<TextBlock Text="Hello, Windows Phone!"

 FontStyle="Normal" />

Now the text goes back to normal. Obviously the FontStyle setting on the TextBlock—which is

referred to as a local value or a local setting—has precedence over property inheritance. A little

reflection will convince you that this behavior is as it should be. Both property inheritance and

the local setting have precedence over the default value. We can express this relationship in a

simple chart:

 Local Settings have precedence over

 Property Inheritance, which has precedence over

 Default Values

This chart will grow in size as we examine all the ways in which properties can be set.

Alignment and Margins

I mentioned that you can put multiple children in a Grid. Generally you’ll put these children in

specific rows and columns of the Grid (as you’ll see in a later chapter), but you can also put

multiple children in the same Grid cell. In the standard MainPage.xaml file, the outermost Grid

has two rows, but both inner Grid elements only have one cell, and the first contains the two

TextBlock elements that display the titles.

The CornersAndEdges project fills up the client-area Grid with nine TextBlock elements to

demonstrate the use of HorizontalAlignment and VerticalAlignment. The Text properties

identify the alignment settings:

Silverlight Project: CornersAndEdges File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left" />

 <TextBlock Text="Top-Center"

 VerticalAlignment="Top"

 HorizontalAlignment="Center" />

 <TextBlock Text="Top-Right"

 VerticalAlignment="Top"

 HorizontalAlignment="Right" />

 <TextBlock Text="Center-Left"

 VerticalAlignment="Center"

 HorizontalAlignment="Left" />

 <TextBlock Text="Center"

 VerticalAlignment="Center"

 HorizontalAlignment="Center" />

 <TextBlock Text="Center-Right"

 VerticalAlignment="Center"

 HorizontalAlignment="Right" />

 <TextBlock Text="Bottom-Left"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Left" />

 <TextBlock Text="Bottom-Center"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Center" />

 <TextBlock Text="Bottom-Right"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Right" />

</Grid>

And here’s what it looks like:

At the very end of Chapter 2, I suggested removing HorizontalAlignment and VerticalAlignment

from the TextBlock to see what happened. The TextBlock was positioned in the upper-left

corner of the client area, but an experiment with touch seemed to suggest that the TextBlock

was actually occupying the entire area of that inner Grid.

And that’s precisely the case. The defaults for HorizontalAlignment and VerticalAlignment

aren’t Left and Top. The defaults are called Stretch. What this means is that by default the

TextBlock fills the interior of its container, although obviously the text itself doesn’t. If TextBlock

had a Background property, you could easily verify that it fills the Grid; without that Background

property a demonstration based on hit-testing was necessary.

The HorizontalAlignment and VerticalAlignment properties are very important in the layout

system in Silverlight. So is Margin. Back in XamlExperiment, you can try putting the TextBlock in

the upper-left corner but also assign the Margin property:

 <TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Margin="100" />

Now there’s a 100-pixel breathing room between the TextBlock and the left and top edges of

the client area. The Margin property is of type Thickness, a structure that has four properties

named Left, Top, Right, and Bottom. If you only specify one number in XAML, that’s used for all

four sides. You can also specify two numbers like this:

Margin="100 200"

The first applies to the left and right; the second to the top and bottom. With four numbers

Margin="100 200 50 300"

they're in the order left, top, right, and bottom. Watch out: If the margins are too large, the text

or parts of the text will disappear. Silverlight preserves those margins even at the expense of

truncating the element.

If you set both HorizontalAlignment and VerticalAlignment to Center, and set Margin to four

different numbers, you’ll notice that the text is no longer visually centered in the client area.

Silverlight bases the centering on the size of the element including the margins.

TextBlock also has a Padding property:

 <TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Padding="100 200" />

Padding is also of type Thickness, and when used with the TextBlock, Padding is visually

indistinguishable from Margin. But they are definitely different: Margin is space on the outside

of the TextBlock; Padding is space inside the TextBlock not occupied by the text itself. If you

were using TextBlock for touch events, it would respond to touch in the Padding area but not

the Margin area.

The Margin property is defined by FrameworkElement; in real-life Silverlight programming,

almost everything has a Margin property set to prevent the elements from being jammed up

against each other. The Padding property is more rare; it’s defined only by TextBlock, Border,

and Control.

You might try to use Margin to position multiple TextBlock elements within a single Grid. This is

how the two titles in the standard MainPage.xaml file are positioned. But it’s not a good idea. It

can be confusing, and there are better ways of accomplishing the job.

What’s crucial to realize is what we’re not doing. We’re not explicitly setting the Width and

Height of the TextBlock like in some antique programming environment:

<TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Width="100"

 Height="50" />

You’re second guessing the size of the TextBlock without knowing as much about the element

as the TextBlock itself. In some cases, setting Width and Height is appropriate, but not here.

The Width and Height properties are of type double, and the default values are those special

floating-point values called Not a Number or NaN. If you need to get the actual width and

height of an element as it’s rendered on the screen, you can access the properties named

ActualWidth and ActualHeight. These values are only available when the element has been

rendered. Some useful events are also available for obtaining information like this. The Loaded

event is fired when visuals are layed out on the screen; SizeChanged is supported by elements

to indicate when they’ve changed size; LayoutUpdated is useful when you want notification

that a layout cycle has occurred.

Property-Element Syntax

Back in XamlExperiment, let’s set the TextBlock attributes to these values:

<TextBlock Text="Hello, Windows Phone!"

 FontSize="36"

 Foreground="Red" />

Because this is XML, we can separate the TextBlock tag into a start tag and end tag with nothing

in between:

<TextBlock Text="Hello, Windows Phone!"

 FontSize="36"

 Foreground="Red">

</TextBlock>

But you can also do something that will appear quite strange initially. You can remove the

FontSize attribute from the start tag and set it like this:

<TextBlock Text="Hello, Windows Phone!"

 Foreground="Red">

 <TextBlock.FontSize>

 36

 </TextBlock.FontSize>

</TextBlock>

Now the TextBlock has a child element called TextBlock.FontSize, and within the

TextBlock.FontSize tags is the value.

This is called property-element syntax, and it’s an extremely important part of XAML. The

introduction of property-element syntax also allows nailing down some terminology that unites

.NET and XML. This single TextBlock element now contains three types of identifiers:

 TextBlock is an object element—a .NET object based on an XML element.

 Text and Foreground are property attributes—.NET properties set with XML

attributes.

 FontSize is now a property element—a .NET property expressed as an XML

element.

When I first saw the property-element syntax, I wondered if it was some kind of XML extension.

Of course it’s not. The period is a legal character for XML tags, so in terms of nested XML tags,

these are perfectly legitimate. That they happen to consist of a class name and a property name

is something known only to XAML parsers (machine and human alike).

One restriction, however: It is illegal for anything else to appear in a property element tag:

<TextBlock Text="Hello, Windows Phone!"

 Foreground="Red">

 <TextBlock.FontSize absolutely nothing else goes in here!>

 36

 </TextBlock.FontSize>

</TextBlock>

Also, you can’t have both a property attribute and a property element for the same property,

like this:

<TextBlock Text="Hello, Windows Phone!"

 FontSize="36"

 Foreground="Red">

 <TextBlock.FontSize>

 36

 </TextBlock.FontSize>

</TextBlock>

This is an error because the FontSize property is set twice.

If you look towards the top of MainPage.xaml, you’ll see another property element:

<Grid.RowDefinitions>

RowDefinitions is a property of Grid. In App.xaml, you’ll see a few more, including these:

<Application.RootVisual>

<Application.Resources>

Both RootVisual and Resources are properties of Application.

Colors and Brushes

Back in XamlExperiment, let’s return the TextBlock to its pristine condition:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!" />

</Grid>

The text shows up as white because the Foreground is effectively set to white on the root

element in MainPage.xaml. You can display traditional black on white (and in the process

consume more power on OLED screens) if you set the Background property of the Grid and the

Foreground property of the TextBlock:

<Grid x:Name="ContentGrid" Grid.Row="1" Background="White">

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Black" />

</Grid>

The Grid has a Background property but no Foreground property. The TextBlock has a

Foreground property but no Background property. The Foreground property is inheritable

through the visual tree, and it may sometimes seem that the Background property is as well,

but it is not. The default value of Background is null, which makes the background transparent.

When the background is transparent, the parent background shows through, and that makes it

seem as if the property is inherited.

A Background property set to null is visually the same as a Background property set to

Transparent, but the two settings affect hit-testing differently, which affects how the element

responds to touch. A Grid with its Background set to the default value of null cannot detect

touch input! If you want a Grid to have no background color on its own but still respond to

touch, set Background to Transparent. You can also do the reverse: You can make an element

with a non-null background unresponsive to touch by setting the IsHitTestVisible property to

false.

For the next few experiments, set the Background of the Grid to Blue and the Foreground of the

TextBlock to Red:

<Grid x:Name="ContentGrid" Background="Blue" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

Besides the standard colors, you can write the color as a string of red, green, and blue one-byte

hexadecimal values ranging from 00 to FF. For example:

Foreground="#FF0000

That’s also red. You can alternatively specify four two-digit hexadecimal numbers where the

first one is an alpha value indicating transparency: The value 00 is completely transparent, FF is

opaque, and values in between are partially transparent. Try this value:

Foreground="#80FF0000

The text will appear a somewhat faded magenta because the blue background shows through.

If you preface the pound sign with the letters sc you can use values between 0 and 1 for the

red, blue, and green components:

Foreground="sc# 1 0 0"

You can also precede the three numbers with an alpha value between 0 and 1.

These two methods of specifying color are not equivalent, as you can verify by putting these

two TextBlocks in the same Grid:

<Grid x:Name="ContentGrid" Background="Blue" Grid.Row="1">

 <TextBlock Text="RGB COLOR"

 HorizontalAlignment="Left"

 Foreground="#808080" />

 <TextBlock Text="scRGB COLOR"

 HorizontalAlignment="Right"

 Foreground="sc# 0.5 0.5 0.5" />

</Grid>

Both color specifications seem to suggest medium gray, except that the one on the right is

much lighter than the one on the left.

The colors you get with the hexadecimal specification are probably most familiar. The one-byte

values of red, green, and blue are directly proportional to the voltages sent to the pixels of the

video display. Although the light intensity of video displays is not linear with respect to voltage,

the human eye is not linear with respect to light intensity either. These two non-linearities

cancel each other out (approximately) so the text on the left appears somewhat medium.

With the scRGB color space, you specify values between 0 and 1 that are proportional to light

intensity, so the non-linearity of the human eye causes the color to seem to be off. If you really

want a medium gray in scRGB you need values much lower than 0.5, such as:

Foreground="sc# 0.2 0.2 0.2"

Let’s go back to one TextBlock in the Grid:

<Grid x:Name="ContentGrid" Background="Blue" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

Just as I did earlier with the FontSize property, you can break the Foreground property out as a

property element:

<TextBlock Text="Hello, Windows Phone!">

 <TextBlock.Foreground>

 Red

 </TextBlock.Foreground>

</TextBlock>

When I created a TextBlock in the all-code Silverlight program I had to set the Foreground

property to an object of type SolidColorBrush. When you specify a Foreground property in

XAML, that SolidColorBrush is actually being created for you behind the scenes. You can also

explicitly create the SolidColorBrush in XAML:

<TextBlock Text="Hello, Windows Phone!">

 <TextBlock.Foreground>

 <SolidColorBrush Color="Red" />

 </TextBlock.Foreground>

</TextBlock>

You can also break out the Color property as a property element:

<TextBlock Text="Hello, Windows Phone!">

 <TextBlock.Foreground>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 Red

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </TextBlock.Foreground>

</TextBlock>

And you can go even further:

<TextBlock Text="Hello, Windows Phone!">

 <TextBlock.Foreground>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 <Color>

 <Color.A>

 255

 </Color.A>

 <Color.R>

 #FF

 </Color.R>

 </Color>

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </TextBlock.Foreground>

</TextBlock>

Notice that the A property of the Color structure needs to be explicitly set because the default

value is 0, which means transparent.

The extensive use of property elements might not make much sense for simple colors and

SolidColorBrush, but the technique becomes essential when you need to use XAML to set a

property with a value that can’t be expressed as a simple text string—for example, when you

want to use a gradient brush rather than a SolidColorBrush.

Let’s begin with a simple solid TextBlock but with the Background property of the Grid broken

out as a property element:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <SolidColorBrush Color="Blue" />

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

Remove that SolidColorBrush and replace it with a LinearGradientBrush:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

The LinearGradientBrush has a property of type GradientStops, so let’s add property element

tags for the GradientStops property:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

The GradientStops property is of type GradientStopCollection, so let’s add tags for that:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

Now let’s put a couple GradientStop objects in there. The GradientStop has properties named

Offset and Color:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

And that is sufficient. This is how, with the help of property elements, you create a gradient

brush in markup. It looks like this:

The Offset values range from 0 to 1 and they are relative to the element being colored with the

brush. You can use more than two:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="0.5" Color="White" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

Conceptually the brush knows the size of the area that it’s coloring and adjusts itself

accordingly.

By default the gradient starts at the upper-left corner and goes to the lower-right corner, but

that’s only because of the default settings of the StartPoint and EndPoint properties of

LinearGradientBrush. As the names suggest, these are coordinate points relative to the upper-

left corner of the element being colored. For StartPoint the default value is the point (0, 0),

meaning the upper-left, and for EndPoint (1, 1), the lower-right. If you change them to (0, 0)

and (0, 1), for example, the gradient goes from top to bottom:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="0.5" Color="White" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone!"

 Foreground="Red" />

</Grid>

Each point is just two numbers separated by space or a comma. There are also properties that

determine what happens outside the range of the lowest and highest Offset values if they don’t

go from 0 to 1.

LinearGradientBrush derives from GradientBrush. Another class that derives from

GradientBrush is RadialGradientBrush. Here’s markup for a larger TextBlock with a

RadialGradientBrush set to its Foreground property:

<TextBlock Text="GRADIENT"

 FontFamily="Arial Black"

 FontSize="72"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.Foreground>

 <RadialGradientBrush>

 <RadialGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </GradientStopCollection>

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

And here’s what the combination looks like:

Content and Content Properties

Everyone knows that XML can be a little “wordy.” However, the markup I’ve shown you with

the gradient brushes is a little wordier than it needs to be. Let’s look at the RadialGradientBrush

I defined for the TextBlock:

<TextBlock.Foreground>

 <RadialGradientBrush>

 <RadialGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </GradientStopCollection>

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

</TextBlock.Foreground>

First, if you have at least one item in a collection, you can eliminate the tags for the collection

itself. This means that the tags for the GradientStopCollection can be removed:

<TextBlock.Foreground>

 <RadialGradientBrush>

 <RadialGradientBrush.GradientStops>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

</TextBlock.Foreground>

Moreover, many classes that you use in XAML have something called a ContentProperty

attribute. This word “attribute” has different meanings in .NET and XML; here I’m talking about

the .NET attribute, which refers some additional information that is associated with a class or a

member of that class. If you look at the documentation for the GradientBrush class—the class

from which both LinearGradientBrush and RadialGradientBrush derive—you’ll see that the class

was defined with an attribute of type ContentPropertyAttribute:

[ContentPropertyAttribute("GradientStops", true)]

public abstract class GradientBrush : Brush

This attribute indicates one property of the class that is assumed to be the content of that class,

and for which the property-element tags are not required. For GradientBrush (and its

descendents) that one property is GradientStops. This means that the

RadialGradientBrush.GradientStops tags can be removed from the markup:

<TextBlock.Foreground>

 <RadialGradientBrush>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </RadialGradientBrush>

</TextBlock.Foreground>

Now it’s not quite as wordy but it’s still comprehensible. The two GradientStop objects are the

content of the RadialGradientBrush class.

Earlier in this chapter I created a TextBlock in code and added it to the Children collection of the

Grid. In XAML, we see no reference to this Children collection. That’s because the

ContentProperty attribute of Panel—the class from which Grid derives—defines the Children

property as the content of the Panel:

[ContentPropertyAttribute("Children", true)]

public abstract class Panel : FrameworkElement

If you want to get more explicit in your markup, you can include a property element for the

Children property:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Children>

 <TextBlock Text="Hello, Windows Phone!" />

 </Grid.Children>

</Grid>

Similarly, PhoneApplicationPage derives from UserControl, which also has a ContentProperty

attribute:

[ContentPropertyAttribute("Content", true)]

public class UserControl : Control

The ContentProperty attribute of UserControl is the Content property. (That sentence makes

more sense when you see it on the page rather than when you read it out load!)

Suppose you want to put two TextBlock elements in a Grid, and you want the Grid to have a

LinearGradientBrush for its Background. It’s legal to put the Background property element first

within the Grid tags followed by the two TextBlock elements:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

</Grid>

It’s also legal to put the two TextBlock elements first and the Background property element last:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

</Grid>

But putting the Background property element between the two TextBlock elements simply

won’t work:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

</Grid>

The precise problem with this syntax is revealed when you put in the missing property elements

for the Children property of the Grid:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Children>

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 </Grid.Children>

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

 <Grid.Children>

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

 </Grid.Children>

</Grid>

Now it’s obvious that the Children property is being set twice—and that’s clearly illegal.

TextBlock Properties and Inlines

The TextBlock element has five font-related properties: FontFamily, FontSize, FontStretch,

FontStyle, FontWeight.

In XAML you can set FontFamily to a string. (In code you need to create an instance of the

FontFamily class.) The default is called “Portable User Interface”. On the phone emulator, this

default font seems to map to Segoe UI, a font that Microsoft uses extensively. In addition, you

can set FontFamily to one of the following:

Arial Tahoma

Arial Black Times New Roman

Comic Sans MS Trebuchet MS

Courier New Verdana

Georgia (Webdings)

Lucida Sans Unicode

These are the only FontFamily names that I’ve discovered to be implemented on the phone. If

you misspell a name that you assign to FontFamily, nothing bad will happen; you’ll just get the

default.

Judging from the App.xaml file that Visual Studio generates, there should be a whole bunch of

different fonts beginning with the name Segoe WP, the WP standing for Windows Phone.

Although these fonts obviously seem to be tailored to the phone, I have not been able to verify

that they are actually on the phone emulator that I used to write this chapter. When the Segoe

WP fonts become accessible to the phone, you can choose from a nice progression of stroke

weight:

 Segoe WP Black

 Segoe WP Bold

 Segoe WP Semibold

 Segoe WP

 Segoe WP SemiLight

 Segoe WP Light

Until that time, I also remain curious how the FontWeight property will interact with FontFamily

selection. You can set FontWeight to one of the static members of the FontWeights (notice the

plural) class. These members return instance of the FontWeight (singular) structure. Commonly

you set FontWeight to either Normal or Bold, and boldface is synthesized if there’s not a

specific boldface font of that family available. But FontWeights also includes members named

Black, SemiBold, and Light (but not SemiLight).

As you saw earlier, you can set FontType to either Normal or Italic. In theory, you can set

FontStretch to values such as Condensed and Expanded but I’ve never seen it work in Silverlight.

TextBlock also has a TextDecorations property. Although this property seems to be very

generalized, in Silverlight there is only one option:

TextDecorations="Underline"

The TextBlock property I’ve used most, of course, is Text itself. The string you set to the Text

property can include embedded Unicode characters in the standard XML format, for example:

Text="π is approximately 3.14159"

If the Text property is set to a very long string, you might not be able to see all of it. You can

insert the codes for carriage return or line feed characters ( or
) or you can

set

TextWrapping="Wrap"

and TextAlignment to Left, Right, or Center (but not Justify). You can also set the text as a

content of the TextBlock element:

<TextBlock>

 This is some text.

</TextBlock>

However, you might be surprised to learn that the ContentProperty attribute of TextBlock is not

the Text property but another property named Inlines. This property is of type InlineCollection—

a collection of objects of type Inline, namely LineBreak and Run. These make TextBlock much

more versatile. The use of LineBreak is simple:

<TextBlock>

 This is some text<LineBreak />This is some more text.

</TextBlock>

Run is interesting because it too has FontFamily, FontSize, FontStretch, FontStyle, FontWeight,

Foreground and TextDecorations properties, so you can make your text very fancy:

<TextBlock FontSize="36"

 TextWrapping="Wrap">

 This is

 some <Run FontWeight="Bold">bold</Run> text and

 some <Run FontStyle="Italic">italic</Run> text and

 some <Run Foreground="Red">red</Run> text and

 some <Run TextDecorations="Underline">underlined</Run> text

 and some <Run FontWeight="Bold"

 FontStyle="Italic"

 Foreground="Cyan"

 FontSize="72"

 TextDecorations="Underline">big</Run> text.

</TextBlock>

In the Visual Studio design view, you might see the text within the Run tags not properly

separated from the text outside the Run tags. This is an error. When you actually run the

program in the emulator, it looks fine:

These are vector-based TrueType fonts, and the actual vectors are scaled to the desired font

size before the font characters are rasterized, so regardless how big the characters get, they still

seem smooth.

Although you might think of a TextBlock as sufficient for a paragraph of text, it doesn’t provide

all the features that a proper Paragraph class provides, such as first-line text indenting or a

hanging first line where the rest of the paragraph is indented. I don’t know of a way to

accomplish the second feat, but the first one is actually fairly easy, as I’ll demonstrate in the

next chapter.

Chapter 4

Presentation and Layout
Although TextBlock is surely one of the most important elements supported by Silverlight, the

previous chapters haven’t even shown a good generalized way to display multiple TextBlock

elements in your application! This chapter will stick its toes into the crucial field of Panel

elements that provide the basis of Silverlight’s dynamic layout system. Along the way, I’ll show

how to supplement text with images and simple graphical shapes, and I’ll describe some

additional properties you can apply to all these elements.

Transforms

Until the advent of the Windows Presentation Foundation and Silverlight, transforms were

mostly the tools of the graphics mavens. Mathematically speaking, transforms apply a simple

formula to all the coordinates of a visual object and cause that object to be shifted to a

different location, or change size, or be rotated.

In Silverlight, you can apply transforms to any object that descends from UIElement, and that

includes text, bitmap images, movies, and all controls. The property defined by UIElement that

makes transforms possible is RenderTransform, which you set to an object of type Transform.

Transform is an abstract class, but it is the parent class to seven non-abstract classes:

 TranslateTransform to shift location

 ScaleTransform to increase or decrease size

 RotateTransform to rotate around a point

 SkewTransform to shift in one dimension based on another dimension

 MatrixTransform to express transforms with a standard matrix

 TransformGroup to combine multiple transforms

 CompositeTransform to specify a series of transforms in a fixed order

The whole subject of transforms can be quite complex, particularly when transforms are

combined, so I’m really only going to show the basics here. Very often, transforms are used in

combination with animations. Animating a transform is the most efficient way an animation can

be applied to a visual object.

Suppose you have a TextBlock and you want to make it twice as big. That’s easy: Just double the

FontSize. Now suppose you want to make the text twice as wide but three times taller. The

FontSize won’t help you there. You need to break out the RenderTransform property as a

property element and set a ScaleTransform to it:

<TextBlock … >

 <TextBlock.RenderTransform>

 <ScaleTransform ScaleX="2" ScaleY="3" />

 </TextBlock.RenderTransform>

</TextBlock>

Most commonly, you’ll set the RenderTransform property of an object of type

TranslateTransform, ScaleTransform, or RotateTransform. If you know what you’re doing, you

can combine multiple transforms in a TransformGroup. In two dimensions, transforms are

expressed as 3×3 matrices, and combining transforms is equivalent to matrix multiplication. It is

well known that matrix multiplication is not commutative, so the order that transforms are

applied makes a difference in the overall effect.

Although TransformGroup is normally an advanced option, I have nevertheless used

TransformGroup in a little project named TransformExperiment that allows you to play with

several kinds of transforms. It begins with all the properties set to their default values;

Silverlight Project: TransformExperiment File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Transform Experiment"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.RenderTransform>

 <TransformGroup>

 <ScaleTransform ScaleX="1" ScaleY="1"

 CenterX="0" CenterY="0" />

 <SkewTransform AngleX="0" AngleY="0"

 CenterX="0" CenterY="0" />

 <RotateTransform Angle="0"

 CenterX="0" CenterY="0" />

 <TranslateTransform X="0" Y="0" />

 </TransformGroup>

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

You can experiment with this program right in Visual Studio. At first you’ll want to try out each

type of transform independently of the others. Although it’s at the bottom of the group, try

TranslateTransform first. By setting the X property you can shift the text right or (with negative

values) to the left. The Y property makes the text go down or up. Set Y equal to –400 or so and

the text goes up into the title area!

TranslateTransform is useful for making drop shadows. and effects where the text seems

embossed or engraved. Simply put two TextBlock elements in the same location with the same

text, and all the same text properties, but different Foreground properties. Without any

transforms, the second TextBlock sits on top of the first TextBlock. On one or the other, apply a

small ScaleTransform and magic results. The EmbossedText project demonstrates this

technique. Here are two TextBlock elements in the same Grid:

Silverlight Project: EmbossedText File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="EMBOSS"

 Foreground="White"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Text="EMBOSS"

 Foreground="Black"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.RenderTransform>

 <TranslateTransform X="2" Y="2" />

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

The TextBlock underneath is white, and the one on top is black like the background but shifted

a bit to let the white one show through a bit:

Generally this technique is applied to black text on a white background, but it looks pretty good

with this color scheme as well.

Back in the TransformExperiment project, set the TranslateTransform back to the default values

of 0, and experiment a bit with the ScaleX and ScaleY properties of the ScaleTransform. The

default values are both 1. Larger values make the text larger in the horizontal and vertical

directions; values smaller than 1 shrink the text. You can even use negative values to flip the

text around its horizontal or vertical axes.

All scaling is relative to the upper-left corner of the text. In other words, as the text gets larger

or smaller, the upper-left corner of the text remains in place. This might be a little hard to see

because the upper-left corner that remains in place is actually a little above the horizontal

stroke of the first ‘T’ in the text string, in the area reserved for diacritics such as accent marks

and heavy-metal umlauts.

Suppose you want to scale the text relative to its center. That’s the purpose of the CenterX and

CenterY properties of the ScaleTransform. You can estimate the size of the text (or obtain it in

code using the ActualWidth and ActualHeight properties of the TextBlock), divide the values by

2 and set CenterX and CenterY to the results. For the text string in TransformExperiment, try 96

and 13, respectively. Now the scaling is relative to the center.

But there’s a much easier way: TextBlock itself has a RenderTansformOrigin property that it

inherits from UIElement. This property is a point in relative coordinates where (0, 0) is the

upper-left corner, (1, 1) is the lower-right corner, and (0.5, 0.5) is the center. Set CenterX and

CenterY back to 0, and set RenderTransformOrigin in the TextBlock like so:

RenderTransformOrigin="0.5 0.5"

Leave RenderTransformOrigin at this value when you set the ScaleX and ScaleY properties of

ScaleTransform back to the default values of 1, and play around with RotateTransform. As with

scaling, rotation is always relative to a point. You can use CenterX and CenterY to set that point

in absolute coordinates relative to the object being rotated, or you can use

RenderTransformOrigin to use relative coordinates. The Angle property is in degrees, and

positive angles rotate clockwise. Here’s rotation of 45 degrees around the center.

The SkewTransform is hard to describe but easy to demonstrate. Here’s the result when AngleX

is set to 30 degrees:

For increasing Y coordinates, X coordinates are shifted to the right. Use a negative angle to

simulate oblique (italic-like) text. Setting AngleY causes vertical shifting based on increasing X

coordinates. Here’s AngleY set to 30 degrees:

All the transforms that derive from Transform are categorized as affine (“non infinity”)

transforms. A rectangle will never be transformed into anything other than a parallelogram.

It’s easy to convince yourself that the order of the transforms makes a difference. For example,

in TransformExperiment on the ScaleTransform set ScaleX and ScaleY to 4, and on the

TranslateTransform set X and Y to 100. The text is being scaled by a factor of 4 and then

translated 100 pixels. Now cut and paste the markup to move the TranslateTransform above

the ScaleTransform. Now the text is first translated by 100 pixels and scaled, but the scaling

applies to the original translation factors as well, so the text is effectively translated by 400

pixels.

If you have a need to combine transforms in the original order that I had them in

TransformExperiment—the order scale, skew, rotate, translate—you can use

CompositeTransform to set them all.

Let’s make a clock. It won’t be a digital clock, but it won’t be entirely an analog clock either.

That’s why I call it HybridClock. The hour, minute, and second hands are actually TextBlock

objects that are rotated around the center. Here’s the XAML:

Silverlight Project: HybridClock File: MainPage.xaml (excerpt)

<Grid Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="referenceText"

 Text="THE SECONDS ARE 99"

 Foreground="Transparent" />

 <TextBlock Name="hourHand">

 <TextBlock.RenderTransform>

 <CompositeTransform />

 </TextBlock.RenderTransform>

 </TextBlock>

 <TextBlock Name="minuteHand">

 <TextBlock.RenderTransform>

 <CompositeTransform />

 </TextBlock.RenderTransform>

 </TextBlock>

 <TextBlock Name="secondHand">

 <TextBlock.RenderTransform>

 <CompositeTransform />

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

Of the four TextBlock elements in the same Grid, the first is transparent and used solely for

measuring by the code part of the program for measurement. The other three TextBlock

elements are colored white through property inheritance, and have default

CompositeTransform objects attached to their RenderTransform properties. The code-behind

file defines a few fields that will be used throughout the program. The constructor sets a

handler for the Loaded event:

Silverlight Project: HybridClock File: MainPage.xaml.cs (excerpt)

namespace HybridClock

{

 public partial class MainPage : PhoneApplicationPage

 {

 Point gridCenter;

 Size textSize;

 double scale;

 public MainPage()

 {

 InitializeComponent();

 Loaded += OnMainPageLoaded;

 }

 void OnMainPageLoaded(object sender, RoutedEventArgs args)

 {

 gridCenter = new Point(ContentGrid.ActualWidth / 2,

 ContentGrid.ActualHeight / 2);

 textSize = new Size(referenceText.ActualWidth,

 referenceText.ActualHeight);

 scale = gridCenter.X / textSize.Width;

 DispatcherTimer tmr = new DispatcherTimer();

 tmr.Interval = TimeSpan.FromSeconds(1);

 tmr.Tick += OnTimerTick;

 tmr.Start();

 }

 …

 }

}

The Loaded event occurs just once after the visual tree has been constructed. HybridClock takes

this opportunity to determine the center of the ContentGrid, and the size of the TextBlock

named referenceText. From these two items the program can calculate a scaling factor that will

expand the referenceText so it is exactly as wide as half the smallest dimension of the Grid, and

the other TextBlock elements proportionally.

The Loaded handler then creates a DispatcherTimer and sets it for a one-second tick. Although

the DispatcherTimer is in the System.Windows.Threading namespace, the callback occurs in the

same thread that created the timer. This is useful for referencing user-interface objects.

The timer callback obtains the current time and calculates the angles for the second, minute,

and hour hands relative to their high-noon positions. Each hand gets a call to SetupHand to do

all the remaining work.

Silverlight Project: HybridClock File: MainPage.xaml.cs (excerpt)

void OnTimerTick(object sender, EventArgs e)

{

 DateTime dt = DateTime.Now;

 double angle = 6 * dt.Second;

 SetupHand(secondHand, "THE SECONDS ARE " + dt.Second, angle);

 angle = 6 * dt.Minute + angle / 60;

 SetupHand(minuteHand, "THE MINUTE IS " + dt.Minute, angle);

 angle = 30 * (dt.Hour % 12) + angle / 12;

 SetupHand(hourHand, "THE HOUR IS " + (((dt.Hour + 11) % 12) + 1), angle);

}

void SetupHand(TextBlock txtblk, string text, double angle)

{

 txtblk.Text = text;

 CompositeTransform xform = txtblk.RenderTransform as CompositeTransform;

 xform.CenterX = textSize.Height / 2;

 xform.CenterY = textSize.Height / 2;

 xform.ScaleX = scale;

 xform.ScaleY = scale;

 xform.Rotation = angle - 90;

 xform.TranslateX = gridCenter.X - textSize.Height / 2;

 xform.TranslateY = gridCenter.Y - textSize.Height / 2;

}

The CompositeTransform must perform several chores. The translation part must move the

TextBlock elements so the beginning of the text is positioned in the center of the Grid. But I

don’t want the upper-left corner of the text to be positioned in the center. I want a point that is

offset by that corner by half the textSize.Height. That explains the TranslateX and TranslateY

properties. Recall that in the CompositeTransform the translation is applied last; that’s why I

put these properties at the bottom of the method, even though the order that these properties

are set is irrelevant.

Both ScaleX and ScaleY are set to the scaling factor calculated earlier. The angle parameter

passed to the method is relative to the high-noon position, but the TextBlock elements are

positioned at 3:00. That why the Rotation angle offsets the angle parameter by –90 degrees.

Both scaling and rotation are relative to CenterX and CenterY, which is a point at the left end of

the text, but offset from the upper-left corner by half the text height. Here’s the clock in action:

Windows Phone also supports the Projection transform introduced in Silverlight 3, but it’s

almost entirely used in connection with animations, so I’ll hold off on Projection until then.

The Border Element

The TextBlock doesn’t include any kind of border that you can draw around the text.

Fortunately Silverlight has a Border element that you can use to enclose a TextBlock or any

other type of element. The Border has a property named Child of type UIElement, which means

you can only put one element in a Border; however, the element you put in the Border can be a

panel, and you can then add multiple elements to that panel.

If you run the XamlExperiment program from the last chapter, you can put a TextBlock in a

Border like so:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25">

 <Border.Child>

 <TextBlock Text="Hello, Windows Phone!" />

 </Border.Child>

 </Border>

</Grid>

The Child property is the ContentProperty attribute of Border so the Border.Child tags are not

required. Without setting any HorizontalAlignment and VerticalAlignment properties, the

Border element occupies the entire area of the Grid, and the TextBlock occupies the entire area

of the Border, even through the text itself sits at the upper-left corner. You can center the

TextBlock within the Border:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25">

 <TextBlock Text="Hello, Windows Phone!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 </Border>

</Grid>

Or, you can center the Border within the Grid:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock Text="Hello, Windows Phone!" />

 </Border>

</Grid>

At this point, the Border contracts in size to become only large enough to fit the TextBlock. You

can also set the HorizontalAlignment and VerticalAlignment properties of the TextBlock but

they would now have no effect. You can give the TextBlock a little breathing room inside the

border by either setting the Margin property of the TextBlock, or the Padding property of the

Border:

And now we have an attractive Border surrounding the TextBlock. The BorderThickness

property is of type Thickness, the same structure used for Margin or Padding, so you can

potentially have four different thicknesses for the four sides. The CornerRadius property is of

type CornerRadius, a structure that also lets you specify four different values for the four

corners. The Background and BorderBrush properties are of type Brush, so you can use gradient

brushes.

What happens if you set a RenderTransform on the TextBlock? Try this:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="20">

 <TextBlock Text="Hello, Windows Phone!"

 RenderTransformOrigin="0.5 0.5">

 <TextBlock.RenderTransform>

 <RotateTransform Angle="45" />

 </TextBlock.RenderTransform>

 </TextBlock>

 </Border>

</Grid>

Here’s what you get:

The RenderTransform property is called a render transform for a reason: It only affects

rendering. It does affect how the element is perceived in the layout system. The Windows

Presentation Foundation has a second property named LayoutTransform that does affect

layout. If you were coding in WPF and set the LayoutTransform in this case, the Border would

expand to fit the rotated text. But Silverlight does not yet have a LayoutTransform and, yes, it is

sometimes sorely missed.

Your spirits might perk up, however, when you try moving the RenderTransform (and

RenderTransformOrigin) from the TextBlock to the Border, like this:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="20"

 RenderTransformOrigin="0.5 0.5">

 <Border.RenderTransform>

 <RotateTransform Angle="45" />

 </Border.RenderTransform>

 <TextBlock Text="Hello, Windows Phone!" />

 </Border>

</Grid>

Transforms affect not only the element to which they are applied, but all child elements as this

screen shot makes clear:

This means that you can apply transforms to whole sections of the visual tree, and within that

transformed visual tree you can have additional compounding transforms.

StackPanel and ScrollViewer

The Border class defines a property named Child of type UIElement. The Panel class defines a

property named Children of type UIElementCollection. Big difference!

The Border doesn’t have a whole lot of decision making to perform concerning that child. The

child element is inside the Border, and that’s about it. But a panel can host multiple children in

a variety of ways. Perhaps it arranges the children in a stack, or a grid, or perhaps it docks the

children on its edges, or arranges them in a circle.

For this reason, the Panel class itself is abstract. Silverlight provides three panels you can use on

the phone; later in this book I’ll show you how to write your own. The three basic panels are

StackPanel, which is probably the simplest kind of panel, Grid, which is the most sophisticated

and powerful, and Canvas, which should mostly be ignored except for some special purposes.

StackPanel arranges its children in a stack, either horizontally or vertically. Try this in

XamlExperiment:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Background="Red">

 <TextBlock FontSize="24" Text="Two " />

 <TextBlock FontSize="24" Text="plus " />

 <TextBlock FontSize="24" Text="two " />

 <TextBlock FontSize="24" Text="equals " />

 <TextBlock FontSize="24" Text="four!" />

 </StackPanel>

</Grid>

The only property StackPanel defines on its own is Orientation, which you set to a member of

the Orientation enumeration, either Horizontal or Vertical. The default is Vertical. Here the

StackPanel is aligned in the center of the Grid and has five children, which it arranges in a nice

little row:

As you can see by its red background, this StackPanel is only as large as it needs to be to fit its

children. It might seem rather silly to concatenate text in this way, but it’s actually a very useful

technique. Sometimes a program has some fixed text defined in XAML, mixed with some

variable text from code or a data binding. The StackPanel does a nice job of piecing it together

without any extraneous spacing.

The StackPanel is used most often in a vertical orientation. Each element gets only as much

vertical space as it needs. Still, however, it could be that the screen is not large enough to fit all

the elements. In that case, you can put the StackPanel in a ScrollViewer, a control that

determines how large its content needs to be, and provides a scrollbar or two if there’s

insufficient space. By default, the vertical scrollbar is visible and the horizontal scrollbar is

hidden, but you can change that with the VerticalScrollBarVisibility and

HorizontalScrollBarVisibility properties.

The next program is an ebook reader. Well, not exactly an ebook reader. It’s more like an eshort

reader, and I guess it’s not very versatile: It displays a little humor piece written by Mark Twain

in 1880 and believed to be the first description of the experience of listening to a person talk on

the telephone without hearing the other side of the conversation. The woman talking on the

telephone is Mark Twain’s wife, Olivia.

Silverlight Project: TelephonicConversation File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <ScrollViewer FontSize="18"

 Padding="5">

 <StackPanel>

 <TextBlock TextWrapping="Wrap" Margin="5">

  I consider that a conversation by telephone — when you are

 simply sitting by and not taking any part in that conversation —

 is one of the solemnest curiosities of this modern life.

 Yesterday I was writing a deep article on a sublime philosophical

 subject while such a conversation was going on in the

 room. I notice that one can always write best when somebody

 is talking through a telephone close by. Well, the thing began

 in this way. A member of our household came in and asked

 me to have our house put into communication with Mr. Bagley’s,

 down town. I have observed, in many cities, that the sex

 always shrink from calling up the central office themselves. I

 don’t know why, but they do. So I touched the bell, and this

 talk ensued: —

 </TextBlock>

 <TextBlock TextWrapping="Wrap" Margin="5">

  <Run FontStyle="Italic">Central Office.</Run>

 [Gruffly.] Hello!

 </TextBlock>

 …

 <TextBlock TextWrapping="Wrap" Margin="5">

  A… man delivers a single brutal “Good-by,” and that is the

 end of it. Not so with the gentle sex, — I say it in their praise;

 they cannot abide abruptness.

 </TextBlock>

 <TextBlock Margin="5" TextAlignment="Right">

 — <Run FontStyle="Italic">Atlantic Monthly</Run>, June 1880

 </TextBlock>

 </StackPanel>

 </ScrollViewer>

</Grid>

I defined the FontSize property I wanted for the text right in the ScrollViewer. (Although Panel

and its derivatives don’t have font-related properties, Control and its derivatives, including

ScrollViewer, do.) The FontSize property is inherited through the visual tree so it applies to each

of the TextBlock elements. ScrollViewer is also given a little Padding value so the StackPanel

doesn’t go quite to the edges; in addition, each TextBlock gets a Margin property. Each

paragraph has a composite margin on both the left and right sides of 10 pixels, and 10 pixels

separate each TextBlock.

I also put a Unicode character   at the beginning of each paragraph. This is the Unicode

em-space and effectively indents the first line. ScrollViewer responds to touch, so you can easily

scroll through and read the whole story.

The Mechanism of Layout

I want you to perform a little experiment. Go into the XAML file of the TelephonicConversation

project and insert the following setting into the ScrollViewer tag:

HorizontalScrollBarVisibility="Visible"

Almost immediately you’ll see a startling change: All the TextBlock elements become long single

lines of text with no wrapping. What happened? How does setting a property on the

ScrollViewer have an effect like that on the various TextBlock elements?

Getting a good feel for the layout system is one of the most important Silverlight programming

skills you can acquire. The layout system is very powerful, but for the uninitiated, it can also

seem quite strange.

Layout in Silverlight is a two-pass process starting at the top of the visual tree and working

down. In a Silverlight phone application, it begins with the PhoneApplicationFrame, then the

PhoneApplicationPage, then most likely a Grid. In Telephonic Conversation, the process

continues into the ScrollViewer, which probably contains its own Border, and then eventually

the StackPanel, and finally the TextBlock elements. These TextBlock elements have no children

so that’s the end of the line.

During the first pass, every element in the tree is responsible for querying its children to obtain

their desired size. In the second pass, elements are responsible for arranging their children

relative to their surface. The arrangement can be trivial or complex. For example, a Border has

only one child and need only take account of its own BorderThickness to determine where to

position that child. But Panel derivatives must arrange their children in unique ways.

When a parent queries the size of its children, it effectively says “Here’s an available size for

you. How big do you want to be?” and each child calculates its desired size. If that child itself

has children, then it must determine its own size by querying its children’s sizes, until the

process gets down to elements like TextBlock that have no children. A TextBlock, for example,

might be displaying a long piece of text and might have its TextWrapping property set to Wrap.

In that case, the TextBlock looks at the Width property of that available size and determines

where lines should break. It then knows how much vertical space it needs to display all the text.

The TextBlock then calculates the size it wants to be.

Here’s the catch: Sometimes when a parent presents its children with an available size, either

the Width or Height or both could be set to the special floating-point value

Double.PositiveInfinity. However, the child cannot respond by claiming an infinite desired size.

The desired size of a child must be finite.

As you’ve seen, elements such as the Border and TextBlock have default HorizontalAlignment

and VerticalAlignment properties that cause them to fill the interior of their parents. But this

only happens when these elements are given a finite available size. If the elements are given an

infinite available size, they must report a desired size that is only sufficient for themselves (and

their children) and no more. For this reason, it often happens than an element offered a finite

available size will be larger than an element offered an infinite available size!

The overall available size on the phone is the finite size of the display, and

PhoneApplicationFrame and PhoneApplicationPage will use that size. The standard Grid in the

MainPage.xaml created by Visual Studio divvies that size up among its children. But consider

the first StackPanel I showed you with an Orientation of Horizontal. That StackPanel makes a

size available to its children with a Height equal to its own height but a Width of infinity. Each

TextBlock in that StackPanel calculates a desired size based on the width of its own text string.

A StackPanel with an Orientation of Vertical offers an available size to each of its children with a

Width based on its own size and a Height of infinity. A TextBlock with TextWrapping set to Wrap

can use that finite width to calculate a desired height. But the StackPanel could end up with an

accumulated height of its children greater than its own available height.

That’s where the ScrollViewer comes into play. The ScrollViewer has a default

VerticalScrollBarVisibility setting of Visible. Regardless of the finite size of the ScrollViewer, to its

child (in this example, a vertical StackPanel) it offers an available size with Width equal to its

own width but a Height of infinity. The StackPanel also offers to its children a width equal to its

own width (which equals the width of the ScrollViewer) and a Height of infinity. Each TextBlock

determines how large it needs to be. The StackPanel accumulates those heights and sets its

own desired height. The ScrollViewer than uses that desired height and its own actual height for

the scroll logic.

When you set the HorizontalScrollBarVisibility property of ScrollViewer to Visible, then the

ScrollViewer gives its child (the vertical StackPanel) an available Width of infinity. The vertical

StackPanel passes that on to its own children, and that’s why the TextBlock elements no longer

wrap text.

You can put a vertical StackPanel in a vertical ScrollViewer (that is, a ScrollViewer with

VerticalScrollBarVisibility set to Visible but a HorizontalScrollBarVisibility set to Hidden) and it

will work fine. But you can’t put a vertical ScrollViewer in a vertical StackPanel and expect it to

work right. The vertical ScrollViewer will be given an available height of infinity by the parent

StackPanel and then report a desired size based on the size of its child. The StackPanel will give

the ScrollViewer that desired size and the ScrollViewer will have nothing to do.

Obviously you’ll get accustomed to this layout system over time; the real conceptual

breakthroughs come when you derive a class from Panel and see how it works from the inside.

Simple Shapes

The elements you’ll use to display vector graphics are part of the System.Windows.Shapes

namespace, and I’ll discuss those classes in a later chapter. However, two of the classes—Ellipse

and Rectangle—are a little different from the others in that you can use them without

specifying any coordinate points.

Go back to XamlExperiment again and insert this Ellipse element into ContentGrid:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Ellipse Fill="Blue"

 Stroke="Red"

 StrokeThickness="50" />

</Grid>

You’ll see a blue ellipse with a red outline fill the Grid:

Now try setting HorizontalAlignment and VerticalAlignment to Center. The Ellipse disappears.

What happened?

The Ellipse has no intrinsic minimum size. When allowed to, it will assume the size of its

container, but if it’s forced to become small, it will become as small as possible, which is

nothing at all. If you put an Ellipse or Rectangle in a StackPanel, it will also shrink into

nothingness. This is one case where explicitly setting Width and Height properties is

appropriate.

Images and Media

A Silverlight program can also display bitmap images and play movies. In conventional

Silverlight programs that run on the Web, these images can be stored on the Web

somewhere—either on the same site as the Silverlight application itself or on some other site—

and referenced with URLs. You can do that in a Silverlight phone application as well, but your

application is not always guaranteed to have Web access. For this reason, any image that your

program requires should be part of the executable itself. Here’s how to do it.

In a Visual Studio project, right-click the project name and choose Add and then New Folder.

Name the folder Media or Assets or Images or whatever you want. (This step is not strictly

necessary but it makes for a tidier project.) Then, right-click the folder name and choose Add

and Existing Item. Select an image file. Only JPEG and PNG files are supported by Silverlight!

From the Add button choose either Add or Add as Link. If you choose Add, a copy will be made

and the file will be physically copied into a subdirectory of the project. If you choose Add as

Link, only a file reference will be retained with the project but the file will still be copied into

the executable.

The final step: Right-click the image filename and display Properties. For Build Action select

Resource.

That’s what I did in the ImageExperiment program. I created a directory named Media and

added a file named BuzzAldrinOnTheMoon.png, which is the famous photograph taken with a

Hasselblad camera by Neil Armstrong on July 21st, 1969. The photo is 288 pixels square.

The file is referenced in the MainPage.xaml file like this:

Silverlight Project: ImageExperiment File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Image Source="Media/BuzzAldrinOnTheMoon.png" />

</Grid>

Here’s how it appears:

By default, the bitmap expands to the size of its container while maintaining the correct aspect

ratio. Depending on the dimensions and aspect ratio of the container, the image is centered

either horizontally or vertically. Of course you can change that behavior with the

HorizontalAlignment and VerticalAlignment properties.

The stretching behavior is governed by a property defined by the Image element named

Stretch, which is set to a member of the Stretch enumeration. The default value is Uniform,

which you can set explicitly like this:

<Image Source="Media/BuzzAldrinOnTheMoon.png"

 Stretch="Uniform" />

The term “uniform” here means equally in both directions so the image is not distorted. You

can also set Stretch to Fill to make the image fill its container by stretching unequally.

A compromise is UniformToFill:

Now the Image both fills the container and stretches uniformly to preserve the aspect ratio.

How can both goals be accomplished? Well, in general the only way that can happen is by

cropping the image. You can govern which edge gets cropped with the HorizontalAlignment and

VerticalAlignment properties. What setting you use really depends on the particular image. For

this one, I’d set HorizontalAlignment set to Center and VerticalAlignment set to Top.

The fourth option is None for no stretching. Now the image is displayed in its native size of 288

pixels square:

If you want to display the image in a particular size at the correct aspect ratio, you can set

either an explicit Width or Height property. If you want to stretch non-uniformly to a particular

dimension, specify both Width and Height and set Stretch to Fill.

You can set transforms on the Image element with the same ease that you set them on

TextBlock elements:

<Image Source="Media/BuzzAldrinOnTheMoon.png"

 RenderTransformOrigin="0.5 0.5">

 <Image.RenderTransform>

 <RotateTransform Angle="30" />

 </Image.RenderTransform>

</Image>

Here it is:

Modes of Opacity

UIElement defines an Opacity property that you can set to a value between 0 and 1 to make an

element (and its children) more or less transparent. But a somewhat more interesting property

is OpacityMask, which can “fade out” part of an element. You set the OpacityMask to an object

of type Brush; most often you’ll use one of the two GradientBrush derivatives. The actual color

of the brush is ignored. Only the alpha channel is used to govern the opacity of the element.

For example, you can apply a RadialGradientBrush to the OpacityMask property of an Image

element:

<Image Source="Media/BuzzAldrinOnTheMoon.png">

 <Image.OpacityMask>

 <RadialGradientBrush>

 <GradientStop Offset="0" Color="White" />

 <GradientStop Offset="0.8" Color="White" />

 <GradientStop Offset="1" Color="Transparent" />

 </RadialGradientBrush>

 </Image.OpacityMask>

</Image>

Notice that the RadialGradientBrush is opaque in the center, and continues to be opaque until a

radius of 0.8, at which point the gradient goes to fully transparent at the edge of the circle.

Here’s the result, a very nice effect that looks much fancier than the few lines of XAML would

seem to imply:

Here’s a popular technique that uses two identical elements but one of them gets both a

ScaleTransform to flip it upside down, and an OpacityMask to make it fade out:

<Image Source="Media/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 VerticalAlignment="Top" />

<Image Source="Media/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 VerticalAlignment="Top"

 RenderTransformOrigin="0.5 1">

 <Image.RenderTransform>

 <ScaleTransform ScaleY="-1" />

 </Image.RenderTransform>

 <Image.OpacityMask>

 <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <GradientStop Offset="0" Color="#00000000" />

 <GradientStop Offset="1" Color="#40000000" />

 </LinearGradientBrush>

 </Image.OpacityMask>

</Image>

There are two Image elements here, both the same size and aligned at the top and center.

Normally the second one would be positioned on top of the other. But the second one has a

RenderTransform set to a ScaleTransform that flips the image around the horizontal axis. The

RenderTransformOrigin is set at the bottom of the element, which means the image flips

around its bottom edge. Then a LinearGradientBrush is applied to the OpacityMask property to

make the reflected image fade out:

Notice that the GradientStop values apply to the unreflected image, so that full transparency

(the #00000000 value) seems to be at the top of the picture and then is reflected to the bottom

of the composite display. It is often little touches like these that make a program’s visuals pop

out just a little more and endear themselves to the user.

Part III

XNA

Chapter 5

Principles of Movement
Much of the core of an XNA program is dedicated to moving sprites around the screen.

Sometimes these sprites move under user control; at other times they move on their own

volition as if animated by some internal vital force. Instead of moving real sprites, you can use

instead move some text, and text is what I’ll be sticking with for this entire chapter. The

concepts and strategies involved in moving text around the screen are the same as those in

moving sprites.

A particular text string seems to move around the screen when it’s given a different position

in the DrawString method during subsequent calls of the Draw method in Game. In Chapter

2, you’ll recall, the textPosition variable was simply assigned a static value during the

LoadContent method. This code puts the text in the center of the screen:

Rectangle clientBounds = this.Window.ClientBounds;

Vector2 textSize = kootenay14.MeasureString(text);

textPosition = new Vector2((int)(clientBounds.X + (clientBounds.Width - textSize.X) / 2),

 (int)(clientBounds.Y + (clientBounds.Height - textSize.Y) / 2));

Most of the programs in this chapter recalculate textPosition during every call to Update so

the text is drawn in a different location during the Draw method. Usually nothing fancy will be

happening; the text will simply be moved from the top of the screen down to the bottom, and

then back up to the top, and down again. Lather, rinse, repeat.

I’m going to begin with a rather ―naïve‖ approach to moving text, and then refine it. If you’re

not accustomed to thinking in terms of vectors or parametric equations, my refinements will

seem to make the program more complex, but you’ll see that the program actually becomes

simpler and more flexible.

The Naïve Approach

For this first attempt at text movement, I want to try something simple. I’m just going to

move the text up and down vertically so the movement is entirely in one dimension. All we

have to worry about is increasing and decreasing the Y coordinate of textPosition.

If you want to play along, you can create a Visual Studio project named NaiveTextMovement

and add the 14-point Kootenay font to the Content directory. The fields in the Game1 class

are defined like so:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt showing fields)

namespace NaiveTextMovement

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 240f / 1000; // pixels per millisecond

 const string TEXT = "Hello, Windows Phone!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Rectangle clientBounds;

 Vector2 textSize;

 Vector2 textPosition;

 bool isGoingUp = false;

 …

 }

}

Nothing should be too startling here. I’ve defined both the SPEED and TEXT as constants. I

like to write the speed as a ratio with 1000 in the denominator so I can easily convert it in my

head to 240 pixels per second. The Boolean isGoingUp indicates whether the text is currently

moving down the screen or up the screen.

The LoadContent method is very familiar from the program in Chapter 2 except that the

viewport is saved as a field:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 clientBounds = this.Window.ClientBounds;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 textSize = kootenay14.MeasureString(TEXT);

textPosition =

 new Vector2((int)(clientBounds.X + (clientBounds.Width - textSize.X) / 2), 0);

}

Notice that this textPosition centers the text horizontally but positions it on the top of the

screen. As is usual with most XNA programs, all the real calculational work occurs during the

Update method:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 if (!isGoingUp)

 {

 textPosition.Y += SPEED * (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 if (textPosition.Y + textSize.Y > clientBounds.Bottom)

 {

 float excess = textPosition.Y + textSize.Y - clientBounds.Bottom;

 textPosition.Y -= 2 * excess;

 isGoingUp = true;

 }

 }

 else

 {

 textPosition.Y -= SPEED * (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 if (textPosition.Y < clientBounds.Top)

 {

 float excess = clientBounds.Top - textPosition.Y;

 textPosition.Y += 2 * excess;

 isGoingUp = false;

 }

 }

 base.Update(gameTime);

}

The GameTime argument to Update has two crucial properties of type TimeSpan:

TotalGameTime and ElapsedGameTime. This ―game time‖ might not exactly keep pace with

real time. There are some approximations involved so that animations are smoothly paced.

But it’s close. TotalGameTime reflects the length of time since the game was started;

ElapsedGameTime is the time since the previous Update call. In general, ElapsedGameTime will

always equal the same value—33-1/3 milliseconds reflecting the 30 Hz refresh rate of the

phone’s video display. I’ll discuss exceptions to this rule in a later chapter.

You can use either TotalGameTime or ElapsedGameTime to pace movement. In this example,

on the first call to Update, the textPosition has been calculated so the text is positioned on the

upper edge of the screen and isGoingUp is false. The code increments textPosition.Y based on

the product of SPEED (which is in units of pixels per millisecond) and the total milliseconds

that have elapsed since the last Update call.

It could be that performing this calculation moves the text too far—for example, partially off

the bottom of the screen. This can be detected if the vertical text position plus the height of

the text is greater than the Bottom property of the client rectangle. In that case I calculate

something I call excess. This is the distance that the vertical text position has exceeded the

boundary of the display. I compensate with two times that—as if the text has bounced off the

bottom and is now excess pixels above the bottom of the screen. At that point, isGoingUp is

set to true.

The logic for moving up is (as I like to say) the same but completely opposite. The actual Draw

override is simple:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt)

 protected override void Draw(GameTime gameTime)

 {

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

 }

The big problem with this naïve approach is that it doesn’t incorporate any mathematical

tools that would allow us to do something a little more complex—for example, move the text

diagonally rather than just in one dimension.

What’s missing from the NaiveTextMovement program is any concept of direction that would

allow escaping from horizontal or vertical movement. What we need are vectors.

A Brief Review of Vectors

A vector is a mathematical entity that encapsulates both a direction and a magnitude. Very

often a vector is symbolized by a line with an arrow. These three vectors have the same

direction but different magnitudes:

These three vectors have the same magnitude but different directions:

These three vectors have the same magnitude and the same direction, and hence are

considered to be identical:

A vector has no location, so even if these three vectors seem to be in different locations and,

perhaps for that reason, somewhat distinct, they really aren’t in any location at all.

A point has no magnitude and no dimension. A point is just location. In two-dimensional

space, a point is represented by a number pair (x, y) to represent a horizontal distance and a

vertical distance from an origin (0, 0):

The figure shows increasing values of Y going down for consistency with the coordinate

system in XNA.

A vector has magnitude and dimension but no location., but like the point a vector is

represented by the number pair (x, y) except that it’s usually written in boldface like (x, y) to

indicate a vector rather than a point.

How can it be that two-dimensional points and two-dimensional vectors are both represented

in the same way? Consider two points (x1, y1) and (x2, y2), and a line from the first point to

the second:

That line has the same length and is in the same direction as a line from the origin to (x2 – x1,

y2 – y1):

That magnitude and direction define the vector (x2 – x1, y2 – y1).

For that reason, XNA uses the same Vector2 structure to store two-dimensional coordinate

points and two-dimensional vectors.

For the vector (x, y), the magnitude is the length of the line from the point (0, 0) to the point

(x, y). You can determine the length of the line and the vector using the Pythagorean

Theorem, which has the honor of being the most useful tool in computer graphics

programming:

 √

The Vector2 structure defines a Distance method that will perform this calculation for you.

Vector2 also includes a DistanceSquared method, which despite the longer name, is actually a

simpler calculation. It is very likely that the Vector2 structure implements DistanceSquared like

this:

public float DistanceSquare()

{

 return x * x + y * y;

}

The Distance method is then based on DistanceSquared:

public float Distance()

{

 return (float)Math.Sqrt(DistanceSquare());

}

If you only need to compare magnitudes between two vectors, use DistanceSquared because

it’s faster. In the context of working with Vector2 objects, the terms ―length‖ and ―distance‖

and ―magnitude‖ can be used interchangeably.

Because you can represent points, vectors, and sizes with the same Vector2 structure, the

structure provides plenty of flexibility for performing arithmetic calculations. It’s up to you to

perform these calculations with some degree of intelligence. For example, suppose point1 and

point2 are both objects of type Vector2 but you’re using them to represent points. It makes no

sense to add those two points together, although Vector2 will allow you to do so. But it makes

lot of sense to subtract one point from another to obtain a vector:

Vector2 vector = point2 – point1;

The operation just subtracts the X values and the Y values; the vector is in the direction from

point1 to point2 and its magnitude is the distance between those points. It is also common to

add a vector to a point:

Vector2 point = point1 + vector;

This operation obtains a point that is a certain distance and in a certain direction from

another point. You can multiply a vector by a single number. If vector is an object of type

Vector2, then

vector *= 5;

is equivalent to:

vector.X *= 5;

vector.Y *= 5;

The operation effectively increases the magnitude of the vector by a factor of 5. Similarly you

can divide a vector by a number. If you divide a vector by its length, then the resultant length

becomes 1. This is known as a normalized vector, and Vector2 has a Normalize method

specifically for that purpose. The statement:

vector.Normalize();

is equivalent to

vector /= vector.Distance();

A normalized vector represents just a direction without magnitude, but it can be multiplied by

a number to give it that length.

If vector has a certain length and direction, then –vector has the same length but the opposite

direction. I’ll make use of this in the next program coming up.

The direction of a vector (x, y) is the direction from the point (0, 0) to the point (x, y). You can

convert that direction to an angle with the second most useful tool in computer graphics

programming, the Math.Atan2 method:

double angle = Math.Atan2(vector.Y, vector.X);

Notice that the Y component is specified first. The angle is in radians—remember that there

are 2π radians to 360 degrees—measured clockwise from the positive X axis.

If you have an angle in radians, you can obtain a normalized vector from it like so:

Vector2 vector = new Vector2((float)Math.Cos(angle), (float)Math.Sin(angle));

The Vector2 structure has four static properties. Vector2.Zero returns a Vector2 object with

both X and Y set to zero. That’s actually an invalid vector because it has no direction, but it’s

useful for representing a point at the origin. Vector2.UnitX is the vector (1, 0) and

Vector2.UnitY is the vector (0, 1). Vector2.One is the point (1, 1) or the vector (1, 1), which is

useful if you’re using the Vector2 for horizontal and vertical scaling factors (as I do later in this

chapter.)

Moving Sprites with Vectors

That little refresher course should provide enough knowledge to revamp the text-moving

program to use vectors. The Visual Studio project is called VectorTextMovement. Here are the

new fields:

XNA Project: VectorTextMovement File: Game1.cs (excerpt showing fields)

namespace VectorTextMovement

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 240f / 1000; // pixels per millisecond

 const string TEXT = "Hello, Windows Phone!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 midPoint;

 Vector2 pathVector;

 Vector2 pathDirection;

 Vector2 textPosition;

 …

 }

}

The text will be moved between two points (called position1 and position2 in the LoadContent

method), and the midPoint field will store the point midway between those two points. The

pathVector field is the vector from position1 to position2, and pathDirection is pathVector

normalized.

The LoadContent method calculates and initializes all these fields:

XNA Project: VectorTextMovement File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Rectangle clientBounds = this.Window.ClientBounds;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 Vector2 position1 = new Vector2(clientBounds.Right - textSize.X, clientBounds.Top);

 Vector2 position2 = new Vector2(clientBounds.Left, clientBounds.Bottom - textSize.Y);

 midPoint = Vector2.Lerp(position1, position2, 0.5f);

 pathVector = position2 - position1;

 pathDirection = pathVector;

 pathDirection.Normalize();

 textPosition = position1;

}

The starting point is position1, which puts the text in the upper-right corner. The position2

point is the lower-left corner. The calculation of midPoint makes use of the static Vector2.Lerp

method, which stands for Linear intERPolation. If the third argument is 0, Vector2.Lerp returns

its first argument; if the third argument is 1, Vector2.Lerp returns its second argument, and for

values in between, the method performs a linear interpolation. Lerp is probably overkill for

calculating a midpoint: All that’s really necessary is to average the two X values and the two Y

values.

Note that pathVector is the entire vector from position1 to position2 while pathDirection is the

same vector normalized. The method concludes by initializing textPosition to position1. The

use of these fields should become apparent in the Update method:

XNA Project: VectorTextMovement File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float pixelChange = SPEED * (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 textPosition += pixelChange * pathDirection;

 if ((textPosition - midPoint).LengthSquared() >

 (0.5f * pathVector).LengthSquared())

 {

 float excess = (textPosition - midPoint).Length() –

 (0.5f * pathVector).Length();

 pathDirection = -pathDirection;

 textPosition += 2 * excess * pathDirection;

 }

 base.Update(gameTime);

}

The first time Update is called, textPosition equals position1 and pathDirection is a normalized

vector from position1 to position2. This is the crucial calculation:

textPosition += pixelChange * pathDirection;

Multiplying the normalized pathDirection by pixelChange results in a vector that is in the same

direction as pathDirection but with a length of pixelChange. The textPosition point is increased

by this amount.

After a few seconds of textPosition increases, textPosition will go beyond position2. That can

be detected when the length of the vector from midPoint to textPosition is greater than the

length of half the pathVector. The direction must be reversed: pathDirection is set to the

negative of itself, and textPosition is adjusted for the bounce.

Notice there’s no longer a need to determine if the text is moving up or down. The

calculation involving textPosition and midPoint works for both cases. Also notice that the if

statement performs a comparison based on LengthSquared but the calculation of excess

requires the actual Length method. Because the if clause is calculated for every Update call, it’s

good to try to keep the code efficient. The length of half the pathVector never changes, so I

could have been even more efficient by storing Length or LengthSquared (or both) as fields.

The Draw method is the same as before:

XNA Project: VectorTextMovement File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Working with Parametric Equations

It is well known that when the math or physics professor says ―Now let’s introduce a new

variable to simplify this mess,‖ no one really believes that the discussion is heading towards a

simpler place. But it’s very often true, and it’s the whole rationale behind parametric

equations. Into a seemingly difficult system of formulas a new variable is introduced that is

often simply called t, as if to suggest time. The value of t usually ranges from 0 to 1 (although

that’s just a convention) and other variables are calculated based on t. Amazingly enough,

simplicity often results.

Let’s think about the problem of moving text around the screen in terms of a ―lap.‖ One lap

consists of the text moving from the upper-right corner (position1) to the lower-left corner

(position2) and back up to position1.

How long does that lap take? We can easily calculate the lap time based on the regular speed

in pixels-per-second and the length of the lap, which is twice the magnitude of the vector

called pathVector in the previous program, and which was calculated as position2 – position1.

Once we know the speed in laps per millisecond, it should be easy to calculate a tLap variable

ranging from 0 to 1, where 0 is the beginning of the lap and 1 is the end, at which point tLap

starts over again at 0. From tLap we can get pLap, which is a relative position on the lap

ranging from 0 (the top or position1) to 1 (the bottom or position2). From pLap, calculating

textPosition should also be easy. The following table shows the relationship between these

three variables:

tLap: 0 0.5 1

pLap: 0 1 0

textPosition: position1 position2 position1

Probably right away we can see that

textPosition = position1 + pLap * pathVector;

The only really tricky part is the calculation of pLap based on tLap.

The ParametricTextMovement project contains the following fields:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt showing fields)

namespace ParametricTextMovement

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 240f / 1000; // pixels per millisecond

 const string TEXT = "Hello, Windows Phone!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 position1;

 Vector2 pathVector;

 Vector2 textPosition;

 float lapSpeed; // laps per millisecond

 float tLap;

 …

 }

}

The only new variables here are lapSpeed and tLap. As is now customary, most of the variables

are set during the LoadContent method:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Rectangle clientBounds = this.Window.ClientBounds;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 position1 = new Vector2(clientBounds.Right - textSize.X, clientBounds.Top);

 Vector2 position2 = new Vector2(clientBounds.Left, clientBounds.Bottom - textSize.Y);

 pathVector = position2 - position1;

 lapSpeed = SPEED / (2 * pathVector.Length());

}

In the calculation of lapSpeed, the numerator is in units of pixels-per-millisecond. The

denominator is the length of the entire lap, which is two times the length of pathVector;

therefore the denominator is in units of pixels per lap. Dividing pixels-per-millisecond by

pixels-per-lap give you a speed in units of laps-per-millisecond.

One of the big advantages of this parametric technique is the sheer elegance of the Update

method:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 tLap += lapSpeed * (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 tLap %= 1;

 float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;

 textPosition = position1 + pLap * pathVector;

 base.Update(gameTime);

}

The tLap field is incremented by the lapSpeed times the elapsed time in milliseconds. The

second calculation removes any integer part, so if tLap is incremented to 1.1 (for example), it

gets bumped back down to 0.1.

I will agree the calculation of pLap from tLap—which is a transfer function of sorts—looks like

an indecipherable mess at first. But if you break it down, it’s not too bad: If tLap is less than

0.5, then pLap is twice tLap, so for tLap from 0 to 0.5, pLap goes from 0 to 1. If tLap is greater

than or equal to 0.5, tLap is doubled and subtracted from 2, so for tLap from 0.5 to 1, pLap

goes from 1 back down to 0.

The Draw method remains the same:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

There are some equivalent ways of performing these calculations. Instead of saving

pathVector as a field you could save position2. Then during the Update method you would

calculate textPosition using the Vector2.Lerp method:

textPosition = Vector2.Lerp(position1, position2, pLap);

In Update, instead of calculating an increment to tLap, you can calculate tLap directly from the

TotalGameState of the GameTime argument and keep the variable local:

Float tLap = (lapSpeed * (float)gameTime.TotalGameTime.TotalMilliseconds) % 1;

Fiddling with the Transfer Function

I want to change one statement in the ParametricTextMovement program and improve the

program enormously by making the movement of the text more natural and fluid. Can it be

done? Of course!

Earlier I showed you the following table:

tLap: 0 0.5 1

pLap: 0 1 0

textPosition: position1 position2 position1

In the ParametricTextMovement project I assumed that the transfer function from tLap to

pLap would be linear, like so:

float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;

But it doesn’t have to be linear. The VariableTextMovement project is the same as

ParametricTextMovent except for the calculation of pLap, which is now:

float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;

When tLap is 0, the cosine is 1 and pLap is 0. When tLap is 0.5, the argument to the cosine

function is π radians (180 degrees). The cosine is -1, it’s subtracted from 1 and the result is

divided by 2, so the result is 1. And so forth. But the difference is dramatic: The text now slows

down as it approaches the corners and then speeds up as it moves away.

You can also try a couple others. This one slows down only when it reaches the bottom:

float pLap = (float)Math.Sin(tLap * Math.PI);

At the top of the screen it’s at full velocity and seems to ricochet off the edge of the screen.

This one’s just the opposite and seems more like a bouncing ball slowed down by gravity at

the top:

float pLap = 1 - Math.Abs((float)Math.Cos(tLap * Math.PI));

So you see that it’s true: Using parametric equations not only simplified the code but made it

much more amenable to enhancements.

Scaling the Text

If you’ve glanced at the documentation of the SpriteBatch class, you’ve seen five other

versions of the DrawString method. Until now I’ve been using this one:

DrawString(spriteFont, text, position, color);

There are also these two:

DrawString(spriteFont, text, position, color,

 rotation, origin, uniformScale, effects, layerDepth);

DrawString(spriteFont, text, position, color,

 rotation, origin, vectorScale, effects, layerDepth);

The other three versions of DrawString are the same except the second argument is a

StringBuilder rather than a string. If you’re displaying text that frequently changes, you might

want to switch to StringBuilder to avoid lots of memory allocations from the local heap.

The additional arguments to these longer versions of DrawString are primarily for rotating,

scaling, and flipping the text. The exception is the last argument, which is a float value that

indicates how multiple sprites should be arranged from front (0) to back (1). I won’t be using

that argument in connection with DrawString.

The penultimate argument is a member of the SpriteEffects enumeration: The default is None.

The FlipHorizontally and FlipVertically members both create mirror images but don’t change

the location of the text:

The argument labeled origin is a point with a default value of (0, 0). This argument is used for

three related purposes:

 It is the point relative to the text string that is aligned with the position argument relative

to the screen.

 It is the center of rotation. The rotation argument is a clockwise angle in radians.

 It is the center of scaling. Scaling can be specified with either a single number, which

scales equally in the horizontal and vertical directions to maintain the correct aspect ratio,

or a Vector2, which allows unequal horizontal and vertical scaling. (Sometimes these two

modes of scaling are called isotropic—equal in all directions—and anisotropic.)

If you use one of the longer versions of DrawString and aren’t interested in scaling, do not set

that argument to zero! A sprite scaled to a zero dimension will not show up on the screen and

you’ll spend many hours trying to figure out what went wrong. (I speak from experience.) If

you don’t want any scaling, set the argument to 1 or the static property Vector2.One.

The very first XNA program in this book calculated textPosition based on the dimensions of

the screen and the dimensions of the text:

textPosition = new Vector2((int)(clientBounds.X + (clientBounds.Width - textSize.X) / 2),

 (int)(clientBounds.Y + (clientBounds.Height - textSize.Y) / 2));

The textPosition is the point on the screen where the upper-left corner of the text is to be

aligned. With the longer versions of DrawString, some alternatives become possible. For

example:

textPosition = new Vector2(clientBounds.Left + clientBounds.Width / 2,

 clientBounds.Top + clientBounds.Height / 2);

origin = new Vector2(textSize.X / 2, textSize.Y / 2);

(I’ve eliminated the casting for purposes of clarity.) Now the textPosition is set to the center of

the screen and the origin is set to the center of the text. This DrawString call uses those two

variables to put the text in the center of the screen:

spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 0, origin, 1, SpriteEffects.None, 0);

The textPosition could be set to the lower-right corner of the screen, and origin could be set

to the lower-right corner of the text:

textPosition = new Vector2(clientBounds.Right, clientBounds.Bottom);

origin = new Vector2(textSize.X, textSize.Y);

Now the text will be positioned in the lower-right corner of the screen.

Rotation and scaling are always relative to a point. This is most obvious with rotation, as

anyone who’s ever explored the technology of propeller beanies will attest. But scaling is also

relative to a point. As an object grows or shrinks in size, one point remains anchored; that’s

the point indicated by the origin argument to DrawString. (The point could actually be

outside the area of the text string.)

The ScaleTextToViewport project displays a text string in its center and expands it out to fill

the viewport. To keep the scaling at least close to isotropic, the program aligns the text with

the longest dimension of the screen. As with the other programs, it includes a font. Here are

the fields:

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt showing fields)

namespace ScaleTextToViewport

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 0.5f / 1000; // laps per millisecond

 const string TEXT = "Hello, Windows Phone!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 textPosition;

 Vector2 origin;

 Vector2 maxScale;

 Vector2 scale;

 float angle;

 float tLap;

 …

 }

}

The ―lap‖ in this program is a complete cycle of scaling the text up and then back down to

normal. During this lap, the scale field will vary between Vector2.One and maxScale.

The LoadContent method sets the textPosition field to the center of the screen, and the origin

field to the center of the text. If the screen has a portrait orientation, the text is rotated using

the angle field, and maxScale is calculated based on the swapped dimensions. All alignment,

rotation, and scaling are based on both the center of the text and the center of the screen.

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Rectangle clientBounds = this.Window.ClientBounds;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 textPosition = new Vector2(clientBounds.Left + clientBounds.Width / 2,

 clientBounds.Top + clientBounds.Height / 2);

 origin = new Vector2(textSize.X / 2, textSize.Y / 2);

 // flip 90 degrees if portrait mode

 if (clientBounds.Width < clientBounds.Height)

 {

 angle = MathHelper.PiOver2;

 maxScale = new Vector2(clientBounds.Height / textSize.X,

 clientBounds.Width / textSize.Y);

 }

 else

 {

 maxScale = new Vector2(clientBounds.Width / textSize.X,

 clientBounds.Height / textSize.Y);

 }

}

As in the previous couple programs, tLap repetitively cycles from 0 through 1. During this

single lap, the pLap variable goes from 0 to 1 and back to 0, where 0 means unscaled and 1

means maximally scaled. The Vector2.Lerp method calculates scale based on pLap.

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 tLap = (SPEED * (float)gameTime.TotalGameTime.TotalMilliseconds) % 1;

 float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;

 scale = Vector2.Lerp(Vector2.One, maxScale, pLap);

 base.Update(gameTime);

}

The Draw method uses one of the long versions of DrawString with the textPosition, angle,

and origin calculated during LoadContent, and the scale calculated during Update:

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 angle, origin, scale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

As you run this program, you’ll notice that the vertical scaling doesn’t make the top and

bottom of the text come anywhere close to the edges of the screen. The reason is that

MeasureString returns a vertical dimension based on the maximum text height for the font,

which includes space for descenders, possible diacritical marks, and a little breathing room as

well.

It should also be obvious that you’re dealing with a bitmap font here:

The display engine tries to smooth out the jaggies but it’s debatable whether the fuzziness is

an improvement. If you need to scale text and maintain smooth vector outlines, that’s a job

for Silverlight.

Two Text Rotation Programs

The ScaleTextToViewport project rotates the text 90 degrees for portrait displays, but it

doesn’t change the rotation during the Update method. Let’s conclude this chapter with two

programs that do.

It would be fairly simple to write a program that just rotates text around its center, but let’s try

something just a little more challenging. Let’s gradually speed up the rotation and then stop it

when a finger touches the screen. After the finger is released, the rotation should start up

slowly again and then get faster. As the speed in revolutions-per-millisecond approaches the

refresh rate of the video display (or some integral fraction thereof), the rotating text should

seem to slow down, stop, and reverse. That will be fun to see as well.

A little background about working with acceleration: One of the most common forms of

acceleration we experience in day-to-day life involves objects in free-fall. In a vacuum on the

surface of the Earth, the effect of gravity produces an acceleration of a constant 32 feet per

second per second, or, as it’s often called, 32 feet per second squared:

The seemingly odd units of ―feet per second per second‖ really means that every second, the

velocity increases by 32 feet per second. At any time t in seconds, the velocity is given by the

simple formula:

 ()

where a is 32 feet per second squared. When the acceleration units of feet per second

squared is multiplied by a time, the result has units of feet per second, which is a velocity. At 0

seconds, the velocity is 0. At 1 second the velocity is 32 feet per second. At 2 seconds the

velocity is 64 feet per second, and so forth.

The distance an object in free fall travels is given by the formula:

 ()

Rudimentary calculus makes this family of formulas comprehensible: The velocity is the

derivative of the distance, and the acceleration is the derivative of the velocity. In this formula,

the acceleration is multiplied by a time squared, so the units reduce to feet. At the end of one

second the velocity of an object in free fall is up to 32 feet per second but because the free-

fall started at a zero velocity, the object has only traveled a distance of 16 feet. By the end of

two seconds, it’s gone 64 feet.

In the TouchToStopRotation project, velocity is in units of revolutions per millisecond, so you

shouldn’t be surprised to see acceleration in units of revolutions per millisecond squared, a

seemingly very tiny number:

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt showing fields)

namespace TouchToStopRevolution

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float ACCELERATION = 1f / 1000000; // revs per msec squared

 const float MAXSPEED = 30f / 1000; // revs per millisecond

 const string TEXT = "Hello, Windows Phone!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 textPosition;

 Vector2 origin;

 Vector2 statusPosition;

 float speed;

 float angle;

 StringBuilder strBuilder = new StringBuilder();

 …

 }

}

The MAXSPEED constant is set at 30 revolutions per second, which is the same as the frame

rate. Theoretically, as the spinning text reaches that speed, it should appear to stop. In reality,

it doesn’t quite stop but it gets very slow. The ACCELERATION is 1 revolution per second

squared, which means that the every second, the velocity increases by 1 revolution per

second. At the end of the first second, the speed is 1 revolution per second. At the end of the

second second, the speed is 2 revolutions per second. Velocity gets to MAXSPEED at the end

of 30 seconds.

The fields include a speed variable and a StringBuilder, which I’ll use for displaying the current

velocity on the screen at statusPosition. The LoadContent method prepares most of these

fields:

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Rectangle clientBounds = this.Window.ClientBounds;

 textPosition = new Vector2(clientBounds.Left + clientBounds.Width / 2,

 clientBounds.Top + clientBounds.Height / 2);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 origin = new Vector2(textSize.X / 2, textSize.Y / 2);

 statusPosition = new Vector2((int)(clientBounds.Right - textSize.X),

 (int)(clientBounds.Bottom - textSize.Y));

}

The Update method increases speed based on the acceleration, and then increases angle

based on speed.

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 if (TouchPanel.GetState().Count == 0)

 {

 speed += ACCELERATION * (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 speed = Math.Min(MAXSPEED, speed);

 angle += MathHelper.TwoPi * speed * gameTime.ElapsedGameTime.Milliseconds;

 angle %= MathHelper.TwoPi;

 }

 else

 {

 if (speed == 0)

 SuppressDraw();

 speed = 0;

 }

 strBuilder.Remove(0, strBuilder.Length);

 strBuilder.AppendFormat(" {0:F1} revolutions/second", 1000 * speed);

 base.Update(gameTime);

}

If TouchPanel.GetState() returns a collection containing anything—that is, if anything is

touching the screen—then speed is set back to zero. Moreover, the next time Update is called

and something is still touching the screen, then SuppressDraw is called. So by touching the

screen you’re not only inhibiting the rotation of the text, but you’re saving power as well.

Also notice the use of StringBuilder to update the status field. The Draw method is similar to

those in previous programs but with two calls to DrawString:

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, strBuilder, statusPosition, Color.White);

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 angle, origin, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

For the final program in this chapter, I went back to a default origin of the upper-left corner

of the text. But I wanted that upper-left corner of the text string to crawl around the inside

perimeter of the display, and I also wanted the text to be fully visible at all times. The result is

that the text rotates 90 degrees as it makes it way past each corner. Here’s the text

maneuvering around the lower-right corner of the display:

The program is called TextCrawl, and I’m afraid I found it necessary to resort to code that

handles each of the four sides separately. I also decided to go full screen and use the Viewport

rather than the ClientBounds just to simplify the code a bit. The fields should look mostly

familiar at this point:

XNA Project: TextCrawl File: Game1.cs (excerpt showing fields)

namespace TextCrawl

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 0.1f / 1000; // laps per millisecond

 const string TEXT = "Hello, Windows Phone!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Viewport viewport;

 Vector2 textSize;

 Vector2 textPosition;

 float tCorner; // height / perimeter

 float tLap;

 float angle;

 …

 }

}

The tLap variable goes from 0 to 1 as the text makes its way counter-clockwise around the

perimeter. To help figure out what side it’s currently on, I also define tCorner. If tLap is less

than tCorner, the text is on the left edge of the display; if tLap is greater than tCorner but less

than 0.5, it’s on the bottom of the display, and so forth. The LoadContent method is nothing

special:

XNA Project: TextCrawl File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 tCorner = 0.5f * viewport.Height / (viewport.Width + viewport.Height);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 textSize = kootenay14.MeasureString(TEXT);

}

The Update method is the real monster, I’m afraid. The objective here is to calculate a

textPosition and angle for the eventual call to DrawString.

XNA Project: TextCrawl File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 tLap = (tLap + SPEED * (float)gameTime.ElapsedGameTime.TotalMilliseconds) % 1;

 if (tLap < tCorner) // down left side of screen

 {

 textPosition.X = 0;

 textPosition.Y = (tLap / tCorner) * viewport.Height;

 angle = -MathHelper.PiOver2;

 if (textPosition.Y < textSize.X)

 angle += (float)Math.Acos(textPosition.Y / textSize.X);

 }

 else if (tLap < 0.5f) // across bottom of screen

 {

 textPosition.X = ((tLap - tCorner) / (0.5f - tCorner)) * viewport.Width;

 textPosition.Y = viewport.Height;

 angle = MathHelper.Pi;

 if (textPosition.X < textSize.X)

 angle += (float)Math.Acos(textPosition.X / textSize.X);

 }

 else if (tLap < 0.5f + tCorner) // up right side of screen

 {

 textPosition.X = viewport.Width;

 textPosition.Y = (1 - (tLap - 0.5f) / tCorner) * viewport.Height;

 angle = MathHelper.PiOver2;

 if (textPosition.Y + textSize.X > viewport.Height)

 angle += (float)Math.Acos((viewport.Height - textPosition.Y) /

 textSize.X);

 }

 else // across top of screen

 {

 textPosition.X = (1 - (tLap - 0.5f - tCorner) /

 (0.5f - tCorner)) * viewport.Width;

 textPosition.Y = 0;

 angle = 0;

 if (textPosition.X + textSize.X > viewport.Width)

 angle += (float)Math.Acos((viewport.Width - textPosition.X) /

 textSize.X);

 }

 base.Update(gameTime);

}

As I was developing this code, I found it convenient to concentrate on getting the first three

statements in each if and else block working correctly. These statements simply move the

upper-left corner of the text string counter-clockwise around the inside perimeter of the

display. The initial calculation of angle ensures that the top of the text is flush against the

edge. Only when I got all that working was I ready to attack the code that alters angle for the

movement around the corners. A couple simple drawings convinced me that the inverse

cosine was the right tool for the job. After all that work in Update, the Draw method is trivial:

XNA Project: TextCrawl File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 angle, Vector2.Zero, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

In the next chapter you’ll see how to make sprites travel along curves.

Chapter 6

Textures and Sprites
I promised that learning how to use XNA to move text around the screen would provide a leg

up in the art of moving regular bitmap sprites. This relationship becomes very obvious when

you begin examining the Draw methods supported by the SpriteBatch. The Draw methods

have almost the same arguments as DrawString but work with bitmaps rather than text. In this

chapter I’ll examine techniques in moving sprites, particularly along curves.

The Draw Variants

Both the Game class and the SpriteBatch class have methods named Draw. Despite the

identical names, the two methods are not genealogically related through a class hierarchy. In

your class derived from Game you override the Draw method so that you can call the Draw

method of SpriteBatch. This latter Draw method comes in seven different versions. The

simplest one is:

Draw(Texture2D texture, Vector2 position, Color color)

The first argument is a Texture2D, which is basically a bitmap. A Texture2D is potentially a

little more complex than an ordinary bitmap because it could have multiple ―mipmap‖ levels

that allow the image to be displayed at a variety of sizes, but for the most part, the Texture2D

objects that I’ll be discussing there are plain old bitmaps. Professional game developers often

use specialized tools to create these bitmaps, but I’m going to use Paint because it’s readily

available. After you create these bitmaps, you add them to the content of the XNA project,

and then load them into your program the same way you load a font.

The second argument to Draw indicates where the bitmap is to appear on the display. By

default, the position argument indicates the point on the display where the upper-left corner

of the texture is to appear.

The Color argument is used a little differently than with DrawString because the texture itself

can contain color information. The argument is referred to in the documentation as a ―color

channel modulation,‖ and it serves as a filter through which to view the bitmap.

Conceptually, every pixel in the bitmap has a one-byte red value, a one-byte green value, and

a one-byte blue value. When the bitmap is displayed by Draw, these red, green, and blue

colors values are effectively multiplied by the one-byte red, green, and blue values of the

Color argument to Draw, and the results are divided by 255 to bring them back in the range

of 0 to 255. That’s what’s used to color that pixel.

For example, suppose your texture has lots of color information and you wish all those colors

to be preserved on the display. Use a value of Color.White in the Draw method.

Now suppose you want to draw that same texture but darker. Perhaps the sun is setting in

your game world. Use some gray color value in the Draw method. The darker the gray, the

darker the texture will appear. If you use Color.Black, the texture will appear as a silhouette

with no color.

Suppose your texture is all white and you wish to display it as blue. Use Color.Blue in the Draw

method. You can display the same all-white texture in a variety of colors. (I’ll do precisely that

in the first sample program in this chapter.)

If your texture is yellow (a combination of red and green) and you use Color.Green in the

Draw method, it will be displayed as green. If you use Color.Red in the Draw method it will be

displayed as red. If you use Color.Blue in the Draw method, it will turn black. The argument to

Draw you can only attenuate or suppress color. You cannot get colors that aren’t in the

texture to begin with.

The second version of the Draw method is:

Draw(Texture2D texture, Rectangle destination, Color color)

Instead of a Vector2 to indicate the position of the texture, you use a Rectangle, which is the

combination of a point (the upper-left corner), a width, and a height. If the width and height

of the Rectangle don’t match the width and height of the texture, the texture will be scaled to

the size of the Rectangle.

If you only want to display a rectangular subset of the texture, you can use one of the two

slightly expanded versions of the Draw method:

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color)

Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color)

The third arguments are nullable Rectangle objects. If you set this argument to null, the result

is the same as using one of the first two versions of Draw.

The next two versions of Draw have five additional arguments that you’ll recognize from the

DrawString methods:

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color,

 float rotation, Vector2 origin, float scale, SpriteEffects effects, float depth)

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color,

 float rotation, Vector2 origin, Vector2 scale, SpriteEffects effects, float depth)

As with DrawString, the rotation angle is in radians, measured clockwise. The origin is a point

in the texture that is to be aligned with the position argument. You can scale uniformly with a

single float or differently in the horizontal and vertical directions with a Vector2. The

SpriteEffects enumeration lets you flip an image horizontally or vertically to get its mirror

image. The last argument allows overriding the defaults for layering multiple textures on the

screen.

Finally, there’s also a slightly shorter longer version where the second argument is a

destination rectangle:

spriteBatch.Draw (Texture2D texture, Rectangle destination, Rectangle? source, Color color,

 float rotation, Vector2 origin, SpriteEffects effects, float depth)

Notice there’s no separate scaling argument because scaling in this one is handled through

the destination argument.

Within the Draw method of your Game class, you use the SpriteBatch object like so:

spriteBatch.Begin();

spriteBatch.Draw …

spriteBatch.End();

Within the Begin and End calls, you can have any number of calls to Draw and DrawString.

The Draw calls can reference the same texture. You can also have multiple calls to Begin

followed by End with Draw and DrawString in between.

Another Hello Program?

If you’re tired of ―hello, world‖ programs by now, I’ve got some bad news. But this time I’ll

compose a very blocky rendition of the word ―HELLO‖ using two different bitmaps—a vertical

bar and a horizontal bar. The letter ―H‖ will be two vertical bars and one horizontal bar. The

―O‖ at the end will look like a rectangle.

And then, when you tap the screen, all 15 bars will fly apart in random directions and then

come back together. Sound like fun?

The first step in the FlyAwayHello project is to add content to the Content directory—not a

font this time but two bitmaps called HorzBar.png and VertBar.png. You can create these in

Paint. By default, Paint creates an all-white bitmap for you. That’s ideal! All I want you to do is

change the size. Click the Paint Button menu (upper-left below the title bar) and select

Properties. Change the size to 45 pixels wide and 5 pixels high. (The exact dimensions really

don’t matter; the program is coded to be a little flexible.) It’s most convenient to save the file

right in the Content directory of the project under the name HorzBar.png. Now change the

size to 5 pixels wide and 75 pixels high. Save under the name VertBar.png.

Although the bitmaps are now in the proper directory, the XNA project doesn’t know of their

existence. In Visual Studio, right click the Content directory and choose Add Existing Item. You

can select both PNG files and add them to the project.

I’m going to use a little class called SpriteInfo to keep track of the 15 textures required for

forming the text. If you’re creating the project from scratch, right-click the project name, and

select Add and then New Item (or select Add New Item from the main Project menu). From

the dialog box select Class and give it the name SpriteInfo.cs.

XNA Project: FlyAwayHello File: SpriteInfo.cs (complete)

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace FlyAwayHello

{

 public class SpriteInfo

 {

 public static float InterpolationFactor { set; get; }

 public Texture2D Texture2D { protected set; get; }

 public Vector2 BasePosition { protected set; get; }

 public Vector2 PositionOffset { set; get; }

 public float MaximumRotation { set; get; }

 public SpriteInfo(Texture2D texture2D, int x, int y)

 {

 Texture2D = texture2D;

 BasePosition = new Vector2(x, y);

 }

 public Vector2 Position

 {

 get

 {

 return BasePosition + InterpolationFactor * PositionOffset;

 }

 }

 public float Rotation

 {

 get

 {

 return InterpolationFactor * MaximumRotation;

 }

 }

 }

}

The required constructor stores a Texture2D along with positioning information. This is how

each sprite is initially positioned to spell out the word ―HELLO.‖ Later in the ―fly away‖

animation, the program sets the PositionOffset and MaximumRotation properties. The Position

and Rotation properties perform calculations based on the static InterpolationFactor, which

can range from 0 to 1.

Here are the fields of the Game1 class:

XNA Project: FlyAwayHello File: Game1.cs (excerpt showing fields)

namespace FlyAwayHello

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 static readonly TimeSpan ANIMATION_DURATION = TimeSpan.FromSeconds(5);

 const int CHAR_SPACING = 5;

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Rectangle clientBounds;

 List<SpriteInfo> spriteInfos = new List<SpriteInfo>();

 Random rand = new Random();

 bool isAnimationGoing;

 TimeSpan animationStartTime;

 …

 }

}

This program initiates an animation only when the user taps the screen, so I’m handling the

timing just a little differently than in earlier programs, as I’ll demonstrate in the Update

method.

The LoadComponent method loads the two Texture2D objects using the same generic Load

method that previous programs used to load a SpriteFont. Enough information is now

available to create and initialize all SpriteInfo objects:

XNA Project: FlyAwayHello File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 clientBounds = this.Window.ClientBounds;

 Texture2D horzBar = Content.Load<Texture2D>("HorzBar");

 Texture2D vertBar = Content.Load<Texture2D>("VertBar");

 int x = (viewport.Width - 5 * horzBar.Width - 4 * CHAR_SPACING) / 2;

 int y = (viewport.Height - vertBar.Height) / 2;

 int xRight = horzBar.Width - vertBar.Width;

 int yMiddle = (vertBar.Height - horzBar.Height) / 2;

 int yBottom = vertBar.Height - horzBar.Height;

 // H

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(vertBar, x + xRight, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yMiddle));

 // E

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yMiddle));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 // LL

 for (int i = 0; i < 2; i++)

 {

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 }

 // O

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 spriteInfos.Add(new SpriteInfo(vertBar, x + xRight, y));

}

The Update method is responsible for keeping the animation going. If the isAnimationGoing

field is false, it checks for a new finger pressed on the screen.

XNA Project: FlyAwayHello File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 if (isAnimationGoing)

 {

 TimeSpan animationTime = gameTime.TotalGameTime - animationStartTime;

 double fractionTime = (double)animationTime.Ticks /

ANIMATION_DURATION.Ticks;

 if (fractionTime >= 1)

 {

 isAnimationGoing = false;

 fractionTime = 1;

 }

 SpriteInfo.InterpolationFactor =

 (float)Math.Sin(Math.PI * fractionTime);

 }

 else

 {

 TouchCollection touchCollection = TouchPanel.GetState();

 bool atLeastOneTouchPointPressed = false;

 foreach (TouchLocation touchLocation in touchCollection)

 atLeastOneTouchPointPressed |=

 touchLocation.State == TouchLocationState.Pressed;

 if (atLeastOneTouchPointPressed)

 {

 foreach (SpriteInfo spriteInfo in spriteInfos)

 {

 float r1 = (float)rand.NextDouble() - 0.5f;

 float r2 = (float)rand.NextDouble() - 0.5f;

 float r3 = (float)rand.NextDouble();

 spriteInfo.PositionOffset = new Vector2(r1 * clientBounds.Width,

 r2 * clientBounds.Height);

 spriteInfo.MaximumRotation = 2 * (float)Math.PI * r3;

 }

 animationStartTime = gameTime.TotalGameTime;

 isAnimationGoing = true;

 }

 else if (gameTime.TotalGameTime != TimeSpan.Zero)

 {

 SuppressDraw();

 }

 }

 base.Update(gameTime);

}

When the animation begins, the animationStartTime is set from the TotalGameTime property

of GameTime. During subsequent calls, Update compares that value with the new

TotalGameTime and calculates an interpolation factor. The InterpolationFactor property of

SpriteInfo is static so it need be set only once to affect all the SpriteInfo instances. The Draw

method loops through the SpriteInfo objects to access the Position and Rotation properties:

XNA Project: FlyAwayHello File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 foreach (SpriteInfo spriteInfo in spriteInfos)

 {

 spriteBatch.Draw(spriteInfo.Texture2D, spriteInfo.Position, null,

 Color.Lerp(Color.Blue, Color.Red, SpriteInfo.InterpolationFactor),

 spriteInfo.Rotation, Vector2.Zero, 1, SpriteEffects.None, 0);

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

The Draw call also uses SpriteInfo.InterpolationFactor to interpolate between blue and red for

coloring the bars. Notice that the Color structure also has a Lerp method. The text is normally

blue but changes to red as the pieces fly apart.

That call to Draw could actually be part of SpriteInfo. SpriteInfo could define its own Draw

method with an argument of type SpriteBatch, and then pass its own Texture2D, Position, and

Rotation properties to the Draw method of the SpriteBatch.

Driving Around the Block

For the remainder of this chapter I want to focus on techniques to maneuver a sprite around

some kind of path. To make it more ―realistic,‖ I commissioned my wife Deirdre to make a

little racecar in Paint:

The car is 48 pixels tall and 29 pixels in width. Notice the magenta background: If you want

part of an image to be transparent in an XNA scene, you can use a bitmap format that

supports transparency, such as the 32-bit Windows BMP format. Each pixel in this format has

8-bit red, green, and blue components but also an 8-bit alpha channel for transparency. (I’ll

use this format in the next chapter.) The Paint program in Windows, does not support bitmap

transparency, alas, so you can use magenta instead. In Paint, create magenta by setting the

red and blue values to 255 and green to 0.

In each of the projects in this chapter, this image is stored as the file car.png as part of the

project’s content. The first project is called CarOnRectangularCourse and demonstrates a

rather clunky approach to driving a car around the perimeter of the screen. Here are the

fields:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt showing fields)

namespace CarOnRectangularCourse

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 100f / 1000; // pixels per millisecond

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D car;

 Vector2 carCenter;

 Vector2[] turnPoints = new Vector2[4];

 int sideIndex = 0;

 Vector2 position;

 float rotation;

 …

 }

}

The turnPoints array stores the four points near the corners of the display where the car

makes a sharp turn. Calculating these points is one of the primary activities of the

LoadContent method, which also loads the Texture2D and initializes other fields:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

 float margin = car.Width;

 Rectangle clientBounds = this.Window.ClientBounds;

 turnPoints[0] = new Vector2(clientBounds.Left + margin, clientBounds.Top +

margin);

 turnPoints[1] = new Vector2(clientBounds.Right - margin, clientBounds.Top +

margin);

 turnPoints[2] = new Vector2(clientBounds.Right - margin, clientBounds.Bottom -

margin);

 turnPoints[3] = new Vector2(clientBounds.Left + margin, clientBounds.Bottom -

margin);

 position = turnPoints[0];

 rotation = MathHelper.PiOver2;

}

I use the carCenter field as the origin argument to the Draw method, so that it is the point on

the car that aligns with a point on the course defined by the four members of the turnPoints

array. The margin value makes this course one car width from the edge of the display; hence

the car is really separated from the edge of the display by half its width.

I described this program as ―clunky‖ and the Update method proves it:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float pixels = SPEED * (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 switch (sideIndex)

 {

 case 0: // top

 position.X += pixels;

 if (position.X > turnPoints[1].X)

 {

 position.X = turnPoints[1].X;

 position.Y = turnPoints[1].Y + (position.X - turnPoints[1].X);

 rotation = MathHelper.Pi;

 sideIndex = 1;

 }

 break;

 case 1: // right

 position.Y += pixels;

 if (position.Y > turnPoints[2].Y)

 {

 position.Y = turnPoints[2].Y;

 position.X = turnPoints[2].X - (position.Y - turnPoints[2].Y);

 rotation = -MathHelper.PiOver2;

 sideIndex = 2;

 }

 break;

 case 2: // bottom

 position.X -= pixels;

 if (position.X < turnPoints[3].X)

 {

 position.X = turnPoints[3].X;

 position.Y = turnPoints[3].Y + (position.X - turnPoints[3].X);

 rotation = 0;

 sideIndex = 3;

 }

 break;

 case 3: // left

 position.Y -= pixels;

 if (position.Y < turnPoints[0].Y)

 {

 position.Y = turnPoints[0].Y;

 position.X = turnPoints[0].X - (position.Y - turnPoints[0].Y);

 rotation = MathHelper.PiOver2;

 sideIndex = 0;

 }

 break;

 }

 base.Update(gameTime);

}

This is the type of code that screams out ―There’s got to be a better way!‖ Elegant it is not,

and not very versatile either. But before I take a stab at a more flexible approach, here’s the

entirely predictable Draw method that incorporates the updated position and rotation values

calculated during Update:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)

 protected override void Draw(GameTime gameTime)

 {

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

 }

Movement Along a Polyline

The code in the previous program will work for any rectangle whose corners are stored in the

turnPoints array, but it won’t work for any arbitrary collection of four points, or more than

four points. In computer graphics, a collection of points that describe a series of straight lines

is often called a polyline, and it would be nice to write some code that makes the car travel

around any arbitrary polyline.

The next project, called CarOnPolylineCourse, includes a class named PolylineInterpolator that

does precisely that. Let me show you the Game1 class first, and then I’ll describe the

PolylineInterpolator class that makes this possible. Here are the fields:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt showing fields)

namespace CarOnPolylineCourse

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 0.25f / 1000; // laps per millisecond

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D car;

 Vector2 carCenter;

 PolylineInterpolator polylineInterpolator = new PolylineInterpolator();

 Vector2 position;

 float rotation;

 …

 }

}

You’ll notice a speed in terms of laps, and the instantiation of the mysterious

PolylineInterpolator class. The LoadContent method is very much like that in the previous

project except instead of adding points to an array called turnPoints, it adds them to a

Vertices property of the PolylineInterpolator class:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("Car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

 float margin = car.Width;

 Rectangle clientBounds = this.Window.ClientBounds;

 polylineInterpolator.Vertices.Add(

 new Vector2(clientBounds.Left + car.Width, clientBounds.Top + car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(clientBounds.Right - car.Width, clientBounds.Top + car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(clientBounds.Left + car.Width, clientBounds.Bottom -

car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(clientBounds.Right - car.Width, clientBounds.Bottom -

car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(clientBounds.Left + car.Width, clientBounds.Top + car.Width));

}

Also notice that the method adds the beginning point in again at the end, and that these

points don’t exactly describe the same course as the previous project. The previous project

caused the car to travel from the upper-left to the upper-right down to lower-right and

across to the lower-left and back up to upper-left. The order here goes from upper-left to

upper-right but then diagonally down to lower-left and across to lower-right before another

diagonal trip up to the beginning. This is precisely the kind of versatility the previous program

lacked.

As with the programs in the last chapter that used a parametric-equation approach, the

Update method is now so simple it makes you want to weep:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float t = (SPEED * (float)gameTime.TotalGameTime.TotalMilliseconds) % 1;

 float angle;

 position = polylineInterpolator.GetValue(t, false, out angle);

 rotation = angle + MathHelper.PiOver2;

 base.Update(gameTime);

}

As usual, t is calculated to range from 0 to 1, where 0 indicates the beginning of the course in

the upper-left corner of the screen, and t approaches 1 as it’s heading towards that initial

position again. This t is passed directly to GetValue method of PolylineInterpolator, which

returns a Vector2 value somewhere along the polyline.

As an extra bonus, the last argument of GetValue allows obtaining an angle value that is the

tangent of the polyline at that point. This angle is measured clockwise relative to the positive

X axis. For example, when the car is travelling from the upper-left corner to the upper-right,

angle is 0. When the car is travelling from the upper-right corner to the lower-left, the angle is

somewhere between π/2 and π, depending on the aspect ratio of the screen. The car in the

bitmap is facing up so it needs to be rotated an additional π/2 radians.

The Draw method is the same as before:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Here’s the car heading towards the lower-left corner:

For demonstration purposes, the PolylineInterpolator class sacrifices efficiency for simplicity.

Here’s the entire class:

XNA Project: CarOnPolylineCourse File: PolylineInterpolator.cs (complete)

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace CarOnPolylineCourse

{

 public class PolylineInterpolator

 {

 public PolylineInterpolator()

 {

 Vertices = new List<Vector2>();

 }

 public List<Vector2> Vertices { protected set; get; }

 public float TotalLength()

 {

 float totalLength = 0;

 // Notice looping begins at index 1

 for (int i = 1; i < Vertices.Count; i++)

 {

 totalLength += (Vertices[i] - Vertices[i - 1]).Length();

 }

 return totalLength;

 }

 public Vector2 GetValue(float t, bool smooth, out float angle)

 {

 if (Vertices.Count == 0)

 {

 return GetValue(Vector2.Zero, Vector2.Zero, t, smooth, out angle);

 }

 else if (Vertices.Count == 1)

 {

 return GetValue(Vertices[0], Vertices[0], t, smooth, out angle);

 }

 if (Vertices.Count == 2)

 {

 return GetValue(Vertices[0], Vertices[1], t, smooth, out angle);

 }

 // Calculate total length

 float totalLength = TotalLength();

 float accumLength = 0;

 // Notice looping begins at index 1

 for (int i = 1; i < Vertices.Count; i++)

 {

 float prevLength = accumLength;

 accumLength += (Vertices[i] - Vertices[i - 1]).Length();

 if (t >= prevLength / totalLength && t <= accumLength / totalLength)

 {

 float tPrev = prevLength / totalLength;

 float tThis = accumLength / totalLength;

 float tNew = (t - tPrev) / (tThis - tPrev);

 return GetValue(Vertices[i - 1], Vertices[i], tNew, smooth, out

angle);

 }

 }

 return GetValue(Vector2.Zero, Vector2.Zero, t, smooth, out angle);

 }

 Vector2 GetValue(Vector2 vertex1, Vector2 vertex2, float t,

 bool smooth, out float angle)

 {

 angle = (float)Math.Atan2(vertex2.Y - vertex1.Y, vertex2.X - vertex1.X);

 return smooth ? Vector2.SmoothStep(vertex1, vertex2, t) :

 Vector2.Lerp(vertex1, vertex2, t);

 }

 }

}

The single Vertices property allows you to define a collection of Vector2 objects that define

the polyline. If you want the polyline to end up where it started, you need to explicitly

duplicate that point. All the work occurs during the GetValue method. At that time, the

method determines the total length of the polyline. It then loops through the vertices and

accumulates their lengths, finding the pair of vertices whose accumulated length straddles the

t value. These are passed to the private GetValue method to perform the linear interpolation

using Vector2.Lerp, and to calculate the tangent angle with the graphics programmer’s second

BFF, Math.Atan2.

But wait: There’s also a Boolean argument to GetValue that causes the method to use

Vector2.SmoothStep rather than Vector2.Lerp. You can try out this alternative by replacing this

call in the Update method of Game1:

position = polylineInterpolator.GetValue(t, false, out angle);

with this one:

position = polylineInterpolator.GetValue(t, true, out angle);

The ―smooth step‖ interpolation is based on a cubic, and causes the car to slow down as it

approaches one of the vertices, and speed up afterwards. It still makes an abrupt and

unrealistic turn but the speed change is quite nice.

What I don’t like about the PolylineInterpolator class is its inefficiency. GetValue needs to

make several calls to the Length method of Vector2, which of course involves a square-root

calculation. It would be nice for the class to retain the total length and the accumulated

length at each vertex so it could simply re-use that information on successive GetValue calls.

As written, the class can’t do that because it has no knowledge when Vector2 values are

added to or removed from the Vertices collection. One possibility is to make that collection

private, and to only allow a collection of points to be submitted in the class’s constructor.

Another approach is to replace the List with an ObservableCollection, which provides an event

notification when objects are added and removed.

The Elliptical Course

The most unrealistic behavior of the previous program involves the turns. Cars slow down to

turn around corners, but they actually travel along a curved path to change direction. To

really make the previous program realistic, the corners would have to be replaced by curves.

These curves could be approximated with polylines, but the increasing number of polylines

would then require PolylineInterpolator to be restructured for better performance.

Instead, I’m going to go off on a somewhat different tangent and drive the car around a

traditional oval course, or to express it more mathematically, an elliptical course.

Let’s look at some math. A circle centered on the point (0, 0) with a radius of R consists of all

points (x, y) where

An ellipse has two radii. If these are parallel to the horizontal and vertical axes, they are

sometimes called Rx and Ry, and the ellipse formula is:

(

)

 (

)

For our purposes, it is more convenient to represent the ellipse in the parametric form. In

these two equations, x and y are functions of the angle α, which ranges from 0 to 2π:

When the ellipse is centered around the point (Cx, Cy), the formulas become:

If we also want to introduce a variable t, where t goes from 0 to 1, the formulas are:

And these will be ideal for our purpose. As t goes from 0 to 1, the car goes around the lap

once. But how do we rotate the car so it appears to be travelling in a tangent to this ellipse?

For that job, the differential calculus comes to the rescue. First, take the derivatives of the

parametric equations:

In physical terms, these equations represent the instantaneous change in direction in the X

direction and Y direction, respectively. To turn that into a tangent angle, simply apply

Math.Atan2.

And now we’re ready to code. Here are the fields:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt showing fields)

namespace CarOnOvalCourse

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 0.25f / 1000; // laps per millisecond

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D car;

 Vector2 carCenter;

 Point ellipseCenter;

 float ellipseRadiusX, ellipseRadiusY;

 Vector2 position;

 float rotation;

 …

 }

}

The fields include the three items required for the parametric equations for the ellipse: the

center and the two radii. These are determined during the LoadContent method based on the

dimensions of the available area of the screen:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

 Rectangle clientBounds = this.Window.ClientBounds;

 ellipseCenter = clientBounds.Center;

 ellipseRadiusX = clientBounds.Width / 2 - car.Width;

 ellipseRadiusY = clientBounds.Height / 2 - car.Width;

}

Notice that the Update method below calculates two angles. The first, called ellipseAngle, is

based on t and determines where on the ellipse the car is located. This is the angle passed to

the parametric equations for the ellipse, to obtain the position as a combination of x and y:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float t = (SPEED * (float)gameTime.TotalGameTime.TotalMilliseconds) % 1;

 float ellipseAngle = MathHelper.TwoPi * t;

 float x = ellipseCenter.X + ellipseRadiusX * (float)Math.Cos(ellipseAngle);

 float y = ellipseCenter.Y + ellipseRadiusY * (float)Math.Sin(ellipseAngle);

 position = new Vector2(x, y);

 float dxdt = -ellipseRadiusX * (float)Math.Sin(ellipseAngle);

 float dydt = ellipseRadiusY * (float)Math.Cos(ellipseAngle);

 rotation = MathHelper.PiOver2 + (float)Math.Atan2(dydt, dxdt);

 base.Update(gameTime);

}

The second angle that Update calculates is called rotation. This is the angle that determines

the orientation of the car. The dxdt and dydt variables are the derivatives of the parametric

equations that I showed earlier. The Math.Atan2 method provides the rotation angle relative

to the positive X axis, and this must be rotated another 90 degrees for the original orientation

of the bitmap.

By this time, you can probably recite Draw by heart:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

A Generalized Curve Solution

For movement along curves that are not quite convenient to express in parametric equations,

XNA itself provides a generalized solution that involves the Curve and CurveKey classes

defined in the Microsoft.Xna.Framework namespace.

The Curve class contains a property named Keys of type CurveKeyCollection, a collection of

CurveKey objects. Each CurveKey object allows you to specify a number pair of the form

(Position, Value). Both the Position and Value properties are of type float. Then you pass a

position to the Curve method Evaluate, and it returns an interpolated value.

But it’s all rather confusing because—as the documentation indicates—the Position property

of CurveKey is almost always a time, and the Value property is very often a position, or more

accurately, one coordinate of a position. If you want to use Curve to interpolate between

points in two-dimensional space, you need two instances of Curve—one for the X coordinate

and the other for Y. These Curve instances are treated very much like parametric equations.

Suppose you want the car to go around a path that looks like an infinity sign, and let’s assume

that we’re going to approximate the infinity sign with two adjacent circles. (The technique I’m

going to show you will allow you to move those two circles apart at a later time if you’d like.)

Draw dots every 45 degrees on these two circles:

If the radius of each circle is 1 unit, the entire figure is 4 units wide and 2 units tall. The X

coordinates of these dots (going from left to right) are the values 0, 0..293, 1, 0.707, 2, 2.293,

3, 3.707, and 4, and the Y coordinates (going from top to bottom) are the values 0, 0.293, 1,

1.707, and 2. The value 0.707 is simply the sine and cosine of 45 degrees, and 0.293 is one

minus that value.

Let’s begin at the point on the far left, and let’s travel clockwise around the first circle. At the

center of the figure, let’s switch to going counter-clockwise around the second circle (because

we really want an infinity sign) and finish with the same dot we started with. The X values are:

0, 0.293, 1, 1.707, 2, 2.293, 3, 3.707, 4, 3.707, 3, 2.293, 2, 1.707, 1, 0.293, 0

If we’re using values of t ranging from 0 to 1 to drive around the infinity sign, then the first

value corresponds to a t of 0, and the last (which is the same) to a t of 1. For each value, t is

incremented by 1/16 or 0.0625. The Y values are:

1, 0.293, 0, 0.293, 1, 1.707, 2, 1.707, 1, 0.293, 0, 0.293, 1, 1.707, 2, 1.707, 1

We are now ready for some coding. Here are the fields for the CarOnInfinityCourse project:

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt showing fields)

namespace CarOnInfinityCourse

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 const float SPEED = 0.1f / 1000; // laps per millisecond

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Rectangle clientBounds;

 Texture2D car;

 Vector2 carCenter;

 Curve xCurve = new Curve();

 Curve yCurve = new Curve();

 Vector2 position;

 float rotation;

 …

 }

}

Notice the two Curve objects, one for X coordinates and the other for Y. Because the

initialization of these objects use precisely the coordinates I described above and don’t

require accessing any resources or program content, I decided to use the Initialize override for

this work.

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void Initialize()

{

 float[] xValues = { 0, 0.293f, 1, 1.707f, 2, 2.293f, 3, 3.707f,

 4, 3.707f, 3, 2.293f, 2, 1.707f, 1, 0.293f };

 float[] yValues = { 1, 0.293f, 0, 0.293f, 1, 1.707f, 2, 1.707f,

 1, 0.293f, 0, 0.293f, 1, 1.707f, 2, 1.707f };

 for (int i = -1; i < 18; i++)

 {

 int index = (i + 16) % 16;

 float t = 0.0625f * i;

 xCurve.Keys.Add(new CurveKey(t, xValues[index]));

 yCurve.Keys.Add(new CurveKey(t, yValues[index]));

 }

 xCurve.ComputeTangents(CurveTangent.Smooth);

 yCurve.ComputeTangents(CurveTangent.Smooth);

 clientBounds = this.Window.ClientBounds;

 base.Initialize();

}

The xValues and yValues arrays only have 16 values; they don’t include the last point that

duplicates the first. Very oddly, the for loop goes from –1 through 17 but the modulo 16

operation ensures that the arrays are indexed from 0 through 15. The end result is that the

Keys collections of xCurve and yCurve get coordinates associated with t values of –0.0625, 0,

0.0625, 0.0125, …, 0.875, 0.9375, 1, and 1.0625, which are apparently two more points than is

necessary to make this thing work right.

These extra points are necessary for the ComputeTangents calls following the for loop. The

Curve class performs a type of interpolation called a cubic Hermite spline, also called a cspline.

Consider two points pt1 and pt2. The cspline interpolates between these two points based not

only on pt1 and pt2 but also on assumed tangents of the curve at pt1 and pt2. You can specify

these tangents to the Curve object yourself as part of the CurveKeys objects, or you can have

the Curve object calculate tangents for you based on adjoining points. That is the approach

I’ve taken by the two calls to ComputeTangents. With an argument of CurveTangent.Smooth,

the ComputeTangents method uses not only the two adjacent points, but the points on either

side. It’s really just a simple weighted average but it’s better than the alternatives.

The Curve and CurveKey classes have several other options, but the approach I’ve taken

seemed to offer the best results with the least amount of work.

The Initialize method ends by obtaining the ClientBounds property, leaving the LoadContent

method with very little to do:

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("Car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

}

Now it’s time for Update. The method calculates t based on TotalGameTime. The Curve class

defines a method named Evaluate that can accept this t value directly; this is how the

program obtains interpolated X and Y coordinates. However, all the data in the two Curve

objects are based on a maximum X coordinate of 4 and a Y coordinate of 2. For this reason,

Update calls a little method I’ve supplied named GetValue that scales the values based on the

size of the display and whether the display is in portrait or landscape mode.

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float t = (SPEED * (float)gameTime.TotalGameTime.TotalMilliseconds) % 1;

 float x = GetValue(t, true);

 float y = GetValue(t, false);

 position = new Vector2(x, y);

 rotation = MathHelper.PiOver2 + (float)

 Math.Atan2(GetValue(t + 0.001f, false) - GetValue(t - 0.001f, false),

 GetValue(t + 0.001f, true) - GetValue(t - 0.001f, true));

 base.Update(gameTime);

}

float GetValue(float t, bool isX)

{

 bool isLandscape = clientBounds.Width > clientBounds.Height;

 if (isX == isLandscape)

 return xCurve.Evaluate(t) * (clientBounds.Height - 2 * car.Width) / 4 +

 clientBounds.X + car.Width;

 return yCurve.Evaluate(t) * (clientBounds.Width - 2 * car.Width) / 2 +

 clientBounds.Y + car.Width;

}

After calculating the position field, we have a little bit of a problem because the Curve class is

missing an essential method: the method that provides the tangent of the spline. Tangents

are required by the Curve class to calculate the spline, but after the spline is calculated, the

class doesn’t provide access to the tangents of the spline itself!

That’s the purpose of the other four calls to GetValue. Small values are added to and

subtracted from t to approximate the derivative and allow Math.Atan2 to calculate the

rotation angle.

Once again, Draw is trivial:

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

If you want the Curve class to calculate the tangents used for calculating the spline (as I did in

this program) it is essential to give the class sufficient points, not only beyond the range of

points you wish to interpolate between, but enough so that these calculated tangents are

more or less accurate. I originally tried defining the infinity course with points on the two

circles every 90 degrees, and it didn’t well work at all.

	Cover
	Copyright Page

	Introduction
	Part I: Getting Started
	Chapter 1: Phone Hardware + Your Software
	Chapter 2: Hello, Windows Phone

	Part II: Silverlight
	Chapter 3: Code and XAML
	Chapter 4: Presentation and Layout

	Part III: XNA
	Chapter 5: Principles of Movement
	Chapter 6: Textures and Sprites

