
Unit Testing:
The Complete
Guide
Everything you need to know when starting a Blazor,
ASP.NET Core, .NET 5, Xamarin or desktop project

EBOOK

© 2020 Progress. All Rights Reserved. 2

Table of Contents
Introduction / 3

Fundamentals of Unit Tests / 3

Advantages of Unit Testing / 4

Disadvantages and Limitations of Unit Testing / 7

Best Practices / 9

What is Mocking? / 15

Mocking Frameworks Explained / 17

Executing the Tests / 19

Introduction to Code Coverage / 19

When to Choose Your Tooling / 22

Conclusion / 23

© 2020 Progress. All Rights Reserved. 3

Introduction
We all know how quickly we can give up on an application if we often encounter bugs

in it as one of the most important criteria for choosing an application is quality. One of

the essential methods for improving application quality is writing a full set of unit tests.

Comprehensive testing is even more crucial if you are starting a new project on one of the

latest technologies, such as Blazor, ASP.NET Core, or are looking into .NET 5. In this eBook,

I’ve tried to cover everything you need to know about writing unit tests.

This eBook should be helpful to you whether you’re exploring the fundamentals for

the first time, refreshing your knowledge, or are in a role where you’re guiding other

developers or managing projects.

Let’s dive right in.

Fundamentals of Unit Tests
What Is a Unit of Code?
A unit of code is the smallest piece of code that can be tested. In .NET languages, a unit

typically represents a method. In C# 7.0, the smallest piece of code, strictly speaking, could

be the local function. You could compare a unit to a single piece of a large jigsaw puzzle—

you need to logically stack them all together to build a functional application.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/local-functions

© 2020 Progress. All Rights Reserved. 4

What Is Unit Testing?
Unit Testing is a practice in software development for validating that a unit of code will

behave as intended and the tested code will produce the same result every time the test is

executed.

A unit test should only test the functionality of a single method, also called method

under test or system under test (SUT). This is easier said than done due to different

dependencies in the method and how they are controlled. Such dependencies include

arguments, using the results of calling other methods, creation of new class instances and

working with them, etc. The behavior of these dependencies should be controlled and

they should produce control data.

I would say that anything that is not the actual logic of the method under test should be

strictly controlled. This allows the method under test to be tested in complete isolation

from its dependencies.

Unit testing provides numerous benefits, including finding bugs early, speeding up

development, preventing regression bugs, understanding usage of code and more. Below, I

will provide a detailed explanation of each advantage and disadvantage of unit testing.

Advantages of Unit Testing
Unit testing is essential to fast and agile development. It can help teams experience

multiple short and long-term gains, the biggest ones being improved overall software

quality and customer satisfaction. Here is a list of key advantages of unit testing.

Speed Up Development
The process of writing a complete set of unit tests makes you carefully consider the input,

output, error conditions and overall architecture of the code. As a result, we developers can

catch bugs and flaws in the code very early in the development process.

Imagine for a moment the unit tests were not comprehensive or, even worse, they weren’t

created in the first place. In such scenarios, you would make an implementation, use your

manual testing abilities to find problems, fix them and iterate. In the process, you are likely

to introduce an old problem with a slightly different execution path.

© 2020 Progress. All Rights Reserved. 5

It’s easy to get stuck in an endless and unproductive cycle. Unit tests can save you a lot of

time and effort as they do a remarkable job of catching regressions.

Prevent Regressions
Regression bugs are bugs that are introduced after a change is made to the software and

did not exist prior to that change. Bug fixes and new features often cause regression bugs

to break existing functionalities. A well-designed and comprehensive unit test suite will

prevent you or anyone on your team from breaking functionality that previously worked.

Test in Isolation
One of the biggest advantages of unit testing is that it allows you to test the method logic

in isolation from its dependencies. In this way, when a bug is introduced, only a specific

unit test will fail and indicate that there is an issue and where that issue is located. You will

be able to immediately understand what the underlying problem is and fix it.

Isolation also allows all unit tests to be executed in random order. This is important

because tests are a dynamic system—you add new tests, change or delete existing ones

and keeping test cases independent will eliminate dependencies between tests. If done

incorrectly, some of the tests may fail during some runs and pass in others. Debugging

these types of failures is very hard and time consuming.

The main takeaway here is that the order in which the unit tests are executed should not

affect the outcome of the unit test.

Code Modification, Refactoring
and Maintenance
Once you have covered the bulk of your software by unit tests, you can rest assured you

have covered all the bases for delivering quality applications on time. This will allow you to

confidently make any changes to the software, knowing it will still work as expected, and

keep bugs and regressions out of releases.

Reduce the Cost of Fixing Bugs
The cost of finding and fixing a bug during the initial stages of software development is far

lower than doing it once the software is in production.

© 2020 Progress. All Rights Reserved. 6

This is because testing is context dependent. When you are engaged in the process

of implementing new functionality, your mind is quicker and better at catching and

debugging a problem than doing it days or weeks later when it needs to rebuild the

context from scratch. You can save yourself days of work and frustration fixing a piece of

code you’ve grown unfamiliar with by fixing bugs as soon as you find them, which could

take just a few hours.

Bugs that go unresolved late in the process can have significantly negative implications

for your business, such as customer dissatisfaction, damaged reputation, payment of

contractual penalties or even a lawsuit.

Safely Upgrade Third-Party Libraries
Quite often, software depends on third-party libraries. We know all too well they come

with their own set of advantages and vulnerabilities. Having a complete set of unit tests

allows you to upgrade any third-party library without worrying that they will break due to

a defect outside of your control.

Updating third-party technology is particularly important when new features, significant

improvements and bug fixes are released that will benefit your project. The more often

you do it, the easier it will be to manage the updates.

© 2020 Progress. All Rights Reserved. 7

Resolve Customer Complaints
It’s never pleasing when a customer discovers a bug in your software. Nevertheless, it

happens. What we as software developers can do is to identify the part of the code which

is causing the issue and write unit tests in accordance with the customer scenario. This will

allow you to weed out the bug and make sure that it doesn’t bother your customers again.

Understand Usage of Code
As a developer, I often explore code that I see for the first time. It can be challenging to

read and tackle code you didn’t write—I am not sure what is the most convenient way to

call a method or if I should use already existing helpers to construct the proper arguments

for a given class constructor. In those cases, I check how the unit tests are written—they

always give me valuable information.

Execute Tests Faster
Unit tests are lightweight and faster to execute compared to other types of tests like

integration tests or UI test.

Automate Your Unit Tests
Today, unit testing is a key component of the automated continuous integration process.

Continuous integration provides a consistent approach towards quality software and

ensures any adjustments to the code are tested, no matter what. As a result, the software

is more reliable and easier to maintain, and customers are satisfied.

Disadvantages and
Limitations of Unit Testing
While the advantages of unit testing are manifold, there are some drawbacks. I will explore

a few notable disadvantages and limitations of unit testing related to both its nature and

implementation.

© 2020 Progress. All Rights Reserved. 8

Skipping Execution
You may have the greatest set of unit test in the world, but they will be useless if not

executed regularly throughout the development process.

It’s Time-Consuming
Writing a thorough set of unit test requires a lot of time. Take for example a simple if-

statement with one line of code that contains a Boolean condition. You must write at least

two tests to cover the possible outcomes—one for true and one for false. What about

three lines of code containing three different Boolean conditions? Then the number of

required unit tests grows rapidly to meet the different combinations and scenarios.

Integration Errors
Unit tests are great when it comes to testing small chunks of software. However, since they

do not interact with any peripheral units, they are not able to catch integration errors.

Hard to Isolate
Not every method can be easily isolated from its dependencies. Hard-to-isolate

dependencies include external resources such as .NET Framework, .NET Core, third-party

libraries, databases, services and more.

Other dependencies that are problematic involve the creation of new instances, access of

internal or private APIs, access to static APIs, usage of events, delegates, etc. The good

news is that dependencies can be solved by using a mocking framework, which I will

explain later.

Software Changes May Require Unit
Test Changes
When a significant refactoring is made, changes to the unit tests could be expected as the

tested API is changed.

There are some well-known best practices I follow, which could help you reduce the effect

of those disadvantages. Let’s look at them.

© 2020 Progress. All Rights Reserved. 9

Best Practices
Best practices are a set of guidelines that represent the most efficient or prudent course of

action for a given topic.

Test Naming Convention
Why naming conventions matter? Following a naming convention provides consistency,

structure and guidance that will make your and your team’s work so much easier. For

example, it is far easier to understand what you have broken by just looking at the name of

the failed unit test instead of debugging it.

Pick a naming conversion for your tests that is easy to understand, easy to read and stick

with it. One of the popular conventions to name your unit tests is to map the method

under test, the state under test and the expected behavior. Like this:

MethodName_StateUnderTest_ExpectedBehavior

Sometimes the name can become too long and incomprehensible. In such cases, it is

useful to write self-explanatory tests.

Test Naming

The test names should be descriptive and explicit

Test names should express a specific requirement

I like to use:

Method_Scenario_Expected

a.k.a

UnitOfWork_StateUnderTest_ExpectedBehavior

public void Sum_NegativeNumberAsFirstParam_ExceptionThrown()

public void Sum_SimpleValues_Calculated()

public void Parse_SingleToken_ReturnsEqualTokenValue()

© 2020 Progress. All Rights Reserved. 10

Self-Explanatory Tests
Writing short, self-explanatory tests is a very important practice. It is as important as

writing self-documented code. If you look at a test and you can’t understand what it is

designed to do and why it has been created, then this test has little value. No developer

should be forced to debug a unit test in order to understand what the test is testing.

Self-Documenting Code Examples

A good practice to write self-explanatory test is to use the Arrange-Act-Asser (AAA)

pattern.

Arrange-Act-Assert Pattern
The AAA pattern makes your test look simpler and more structured by dividing it in three

subsections, as explained below:

•	 Arrange: This is the section of the test where you will setup all the required test

objects and prepare the prerequisites for your test.

•	 Act: This is the section where the actual work will be performed.

•	 Assert: This is the section where all verifications of expectations and results will be

performed.

The division into subsections is done by adding a comment line containing the name of

the subsection.

 public static List<int> FindPrimes(int start, int end)
 {
 List<int> primesList = new List<int>();
 for (int num = start; num <= end; num++)
 {
 bool isPrime = IsPrime(num);
 if (isPrime)
 {
 primesList.Add(num);
 }
 }

 return primesList;
 }

© 2020 Progress. All Rights Reserved. 11

When you see such a test, you immediately understand what the purpose of each part

of the test is. Still, the different parts could contain code that is difficult to understand,

especially the Arrange section.

Easy to Setup Test Objects
Sometimes, preparing the dependencies required for the test could become cluttered and

hard to understand. Try to limit the cluttering of test objects in the Arrange section. This

will improve the readability of the test and help you understand faster what the test is

doing. As a result, you will be able to resolve broken tests faster.

Following the above practices will improve the readability of your tests but will not prevent

them from failing if they interfere with each other.

Avoid Test Interdependence
Unit tests should not interfere with each other in any way. Every test should be responsible

for the setup and cleanup of its test objects.

A commonly suggested practice for avoiding test interdependencies is to write unit tests

only for the public API.

Write Unit Tests Only for the
Public API
Writing unit tests only for the public API is a popular recommendation I do not completely

agree with. Let me explain why.

© 2020 Progress. All Rights Reserved. 12

Imagine the following scenario: You work for a company that develops a document

processor, like MS Word. The product can be delivered to the client as a library as well as a

web and desktop application.

Your team is responsible only for the development of the style system. The style system

decides if a specific letter should be rendered bold or italic, what font and font size to

apply, etc.

You want all your APIs to be internal and not directly accessible by the end user. The end

user will be granted access through a set of commands provided by another team.

This begs the question: “Should you write unit tests for the style system?” To me, the

answer is straightforward—yes, you should write those unit tests.

And this is just one example. Oftentimes, exposing the entire API is just not feasible due to

the nature and complexity of the project.

Test Driven Development (TDD)
Another beneficial practice I like is test-driven development.

Here is the Wikipedia definition of TDD:

This process consists of five different phases:

First, Write the Tests

Write the tests from the perspective of a client who will work with the API. Add a few

empty interfaces and classes and don’t overthink the feature implementation. Focus on

how to make the API easier to use.

“Test-driven development (TDD) is a software development process that relies on the
repetition of a very short development cycle: requirements are turned into very specific
test cases, then the code is improved so that the tests pass. This is opposed to software
development that allows code to be added that is not proven to meet requirements.”

Wikipedia

© 2020 Progress. All Rights Reserved. 13

This will force you to think about the feature details, what cases should be covered and

how the dependencies would be organized.

Run All Tests and Verify They Fail

Execute the tests and verify that all tests are failing. Why is this important? Because in this

way you will verify that the required behavior is not implemented and there are no flawed

tests that will always pass no matter the code.

Write the New Code

Now the implementation can begin. Add the new code so that only a specific unit test

is satisfied. Don’t dive into full implementation. Just write the minimum amount of code

required for the test to pass.

Run the Tests

After your chosen test passes, run all the tests. This will ensure that the new code meets

the test requirements and does not break any other functionality.

If this is not the case, fix the problems until all tests start passing.

Refactor the Code

In this phase, you can make significant or minor refactoring to meet code quality or

architecture standards. The goal is to improve the code and fix all the shortcuts you have

made.

Remember, the tests that passed should continue to do so after the refactoring. Look for

strange patterns such as tests that previously failed and now start passing for no obvious

reason. Investigate such cases.

A side effect of the refactoring can be a change in the way certain methods are used,

which require you to rewrite some of the unit tests to reflect the changes made in the

software.

© 2020 Progress. All Rights Reserved. 14

Repeat the process until each test has passed and the quality of the code is acceptable.

Here are the main benefits of using TDD:

#1 Useful Public API

When you write your test, focus first on consuming that portion of the code which

improves the quality of the public API.

#2 Easy to Read Code

Because refactoring is an essential step of TDD, your code will be much cleaner and easier

to understand.

#3 Smoother Code Design

Another benefit of refactoring is the smoother code design.

#4 Easy to Understand and Maintain

When a code is easy to read and with good design, it is usually easier to maintain it too.

#5 Better Organized Dependencies

The dependencies of your classes and methods will contain only what is necessary. This

typically leads to better naming, structure and organization.

Quite frequently, you will write a fake implementation of an interface dependency to isolate

the tested method from that dependency. This is called mocking.

In the following chapter, I explain what mocking is and why it constitutes a best practice.

© 2020 Progress. All Rights Reserved. 15

What is Mocking?
Mocking is a process employed in unit testing to simulate external dependencies. The

purpose of mocking is to isolate and focus on the code being tested and not on the

behavior or state of external dependencies. In mocking, dependencies are replaced by

closely controlled replacement objects that mimic the behavior of the real ones.

To further explain this, I will give an example of how a car crash test is made. Instead of a

real human, a dummy doll is used to test how the car crash will impact the human body.

You will set expectations about how the car crash will impact the dummy doll and, after

the crash, you will compare the data from the sensors inside the dummy doll to your

expectations.

The dummy doll represents a mock of a human.

In unit testing, there are different types of mock objects:

Fake Objects

A Fake is an object that will replace the actual code by implementing the same interface

but without interacting with other objects. Usually, the Fake is hard coded to return fixed

results. To test for different use cases, a lot of Fakes must be introduced. The problem with

Fakes is that when an interface has been modified, all Fakes implementing this interface

should be modified as well.

© 2020 Progress. All Rights Reserved. 16

Stub Objects

A Stub is an object that will return a specific result based on a specific set of inputs and

typically will not respond to anything outside of what is programed for the test.

Mock Objects

A Mock is a much more sophisticated version of a Stub. It will still return values like a Stub

does, but it can also be programmed with expectations in terms of how many times each

method should be called, in which order and with what data.

© 2020 Progress. All Rights Reserved. 17

In the beginning, it can be hard to grasp the differences between the various types of

mock objects. The good news is—you don’t have to. A mocking framework will automate

even the most complex implementation for creating a mock for you.

Mocking Frameworks
Explained
Creating mock objects and managing them manually is time-consuming and frankly

boring.

To boost your productivity and focus on the important things, I suggest you use a

mocking framework.

A mocking framework like Progress® Telerik® JustMock will generate and manage the

expectations of a replacement mock object for you. This allows you to write faster, concise,

isolated tests. By isolated I mean your tests will be isolated from other tests and from the

dependencies of the method under test.

I can hear you ask, “But how does a mocking framework make unit tests more concise?”

Well, because you will need less lines of code for writing the mock objects yourself. There

won’t be any “physical” mock objects. Frequently, only few lines of code per dependency

will be required. This is the real benefit of using a mocking framework. You simply write

less code and achieve better isolation.

More importantly, the mocking framework will create the correct type of mock object for

you, so you don’t have to worry about it.

Using a mocking tool will boost your productivity and let you focus on what is truly

important like the overall architecture and usability, managing a comprehensive set of unit

tests, etc.

In my opinion, a mocking framework is a must-have tool for writing unit tests.

https://www.telerik.com/products/mocking.aspx

© 2020 Progress. All Rights Reserved. 18

Not All Mocking Frameworks
Are Equal

Most mocking frameworks have limitations as to what they can mock. The limitation

comes from the way the mock object is created, which is through inheritance. The mock

object can inherit only public APIs like virtual methods, abstract classes and interfaces. In

addition, the APIs could provide all kinds of different expectations for the mock along with

the validations to those expectations.

This functionality may be enough for your project as many companies have internal

projects where all APIs can be public as they won’t be consumed by a third party. However,

if your development team is dealing with internal, private logic, static calls or a dependency

on a third-party library, then Telerik JustMock is a better suited solution.

JustMock helps you advance the unit testing of C# devs. Here, the mocking is done

through a CLR profiler and some technical wizardry. In essence, when the CLR tries to

execute a method, the profiler will check if you have set a different behavior for that

method and if so, your behavior will be executed.

This approach powers the rich capability of JustMock to mock just about anything—

sealed classes, internal, private and static methods, LINQ queries, extension methods, third

party libraries and the .NET itself.

 Now that you have written your unit tests and used a mocking framework to isolate them,

let’s look at how to perform them.

https://www.telerik.com/products/mocking.aspx

© 2020 Progress. All Rights Reserved. 19

Executing the Tests
The execution of tests is done by a Test Runner. The Test Runner communicates with the

unit test framework to understand which classes contain unit tests in order to execute

them. Most of the unit testing frameworks include test runners and they vary from simple

command line runners to graphical interfaces.

What Is a Unit Testing Framework?
Unit testing frameworks are developed for the purpose of simplifying the process of unit

testing. Those frameworks enable the creation of Test Fixtures, which are .NET classes

that have specific attributes enabling them to be picked up by a Test Runner.

Although it is possible to perform unit tests without such a framework, the process can be

complicated and very laborious. I hope nobody does it manually these days.

There are a lot of unit testing frameworks available. Each of the frameworks has its own

merits and selecting one depends on what features are needed and the development

team’s level of expertise. Here are some of the most popular unit testing frameworks:

NUnit
xUnit
MS Test V2

Okay, so you have your unit tests and you execute them, but do you know if they are

enough to ensure that the code quality is acceptable for you? You will probably need some

measurement to understand this. This measurement is code coverage.

Introduction to Code
Coverage
Code coverage is a metric that can help you understand what percentage of the source code is

executed during a test run. Higher code coverage value means that more of your code is covered by

unit tests and suggests that the defects would be less than a counterpart with lower code coverage.

It’s a very useful metric that can help you assess the quality of your unit tests suite.

https://github.com/nunit/nunit
https://github.com/xunit/xunit
https://github.com/microsoft/testfx

© 2020 Progress. All Rights Reserved. 20

How is code coverage calculated?
Code coverage tools will use one or more coverage criteria to measure what percentage of

your code is executed during a test run. Here are some of the most common criteria:

Function or method coverage: Measures how many of the methods have been called.

Statement coverage: Measures how many of the statements in the program have been

executed.

Branch coverage: Measures how many of the branches have been executed. Branch is a

decision-making code like if/or case statement.

To better explain it, consider a given if statement. Have both the true and the false

branches been executed?

Condition coverage: Measures how many of the Boolean subexpressions have been

tested for both true and false values.

Multi-condition coverage: Measures how many of the combinations in a conditional

decision are tested. To illustrate this, consider the following if statement:

For this example, the possible values are the following:

100% multi-condition coverage for this if statement means that all possible combinations

are included in your unit tests.

X=true, Y=true

X=false, Y=true

X=true, Y=false

X=false, Y=false

If(x||y)

© 2020 Progress. All Rights Reserved. 21

Data coverage: This type of coverage is also known as parameter value coverage and

measures how many of the common values of a parameter are used for testing a method

with parameters.

Consider a method with a single string parameter. The common values for that string

parameter would be null, empty string, whitespace, tab, newline, single-byte-string,

double-byte-string.

Does 100% code coverage equal
no bugs at all?

Sadly, no.

Most of the available code coverage tools do not provide the full set of coverage criteria.

Especially the multi-condition and data coverage.

Another issue is that the code coverage does not provide information if all possible

combinations of routes have been executed. This means that, if a unit test executes a

method coming from one route, it will pass successfully. However, if it comes from another

route it could potentially fail.

Does 100% code coverage provide
real business value to clients?

My opinion is that it doesn’t. Why?

Well, if you consider you have 95% code coverage, will the remaining 5% prevent major

problems? If so, why?

Typically, when writing unit tests, you should strive to first cover the most common

customer scenarios and then proceed with the rest.

Covering your code with 95% code coverage implies that all major and even side scenarios

are covered. The other 5% are often scenarios so far away from the day-to-day use of the

software that a small fraction of the customers may encounter them. And even if they run

into those scenarios, the chance of their having a critical problem is relatively small. Not

impossible, but small.

© 2020 Progress. All Rights Reserved. 22

Bear in mind that in most cases 100% code coverage does not include multicondition and

data coverage. The pursuit of that 100% could be considered overreaching.

Let me be clear—that doesn’t mean that you shouldn’t use code coverage. But when you

do use it, both the pros and cons need to be considered.

When to Choose Your
Tooling
In my opinion, it is a good practice to evaluate and choose your tooling at the initial phase

of your new project. This is the time when you will have more freedom and you will have

more freedom and an easier time getting senior management’s approval to change your

tooling. However, this simple rule should not stop you from migrating to another tool if you

are not satisfied with what you have, or if another more advanced tool emerges in a later

phase of the project.

© 2020 Progress. All Rights Reserved. 23

Conclusion
Here are the key insights I’d like to leave you with:

•	 Unit tests are a great practice for ensuring the quality of your code. Write more of

them and deliver high quality software.

•	 A mocking framework is a must-have tool for isolating the code under test from any

dependencies. So please stop wasting your time writing inefficient tests and find the

mocking framework that will make your life easier.

•	 Code coverage is a useful metric for assessing the quality of your unit test suite. Use it

wisely.

Happy testing!

Get Started Today

Take our mocking library for a spin – try out the latest version today with a FREE trial.

Telerik JustMock is the fastest, most flexible and complete mocking solution for crafting

unit tests. With JustMock you can easily isolate your testing scenario and focus on the

logic you want to verify. It comes with an intuitive API with better discoverability that is

easy to learn, use and allows for natural expression of mocking isolation concepts. The

JustMock fluent interface facilitates fast feature discovery and provides options only valid

to the current context resulting in higher productivity, better code, increased product

quality and faster delivery.

Try Telerik JustMock

https://www.telerik.com/products/mocking.aspx
https://www.telerik.com/products/mocking.aspx

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying strategic business
applications. We enable customers and partners to deliver modern, high-impact digital experiences with
a fraction of the effort, time and cost.Progress offers powerful tools for easily building adaptive user
experiences across any type of device or touchpoint, leading data connectivity technology, web content
management, business rules, secure file transfer and network monitoring. Over 1,700 independent
software vendors, 100,000 enterprise customers, and two million developers rely o nProgress to
power their applications. Learn about Progress at www.progress.com or +1-800-477-6473.

© 2020 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
Rev 2020/10 RITM0088515

Worldwide Headquarters

Progress, 14 Oak Park,
Bedford, MA 01730 USA
Tel: +1-800-477-6473

www.progress.com

facebook.com/progresssw

twitter.com/progresssw

youtube.com/progresssw

linkedin.com/company/progress-software

To learn more visit:
www.telerik.com/products/mocking.aspx

About the author

Mihail Vladov is a Software Engineering Manager at Progress. He has more

than a decade of experience with software and product development and is

passionate about good software design and quality code. Mihail helped develop

the WPF controls suite and Document Processing libraries, which are used by

thousands of developers. Currently, he is leading the JustMock team. In his free

time, he loves to travel and taste different foods. You can find Mihail on LinkedIn

or Twitter.

http://www.progress.com
http://www.progress.com
https://www.facebook.com/progresssw
https://twitter.com/progresssw
http://youtube.com/progresssw

http://linkedin.com/company/progress-software

https://www.telerik.com/products/mocking.aspx
https://www.linkedin.com/in/mihail-vladov/
https://twitter.com/MihailVladov

