
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d. Future of JavaScript
in 2017 and Beyond
WHITEPAPER

2Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

JavaScript’s Journey Through 2016
Every year, there seems to be more and more ways to use JavaScript and 2016 turned out to be no different.
Depending on your level of optimism, this can be extremely exciting or extremely confusing. Last year, we
made some predictions about JavaScript in 2016. Now, we’ll look back to see if our predictions held true or
went the way of the political pundits. Then, we’ll use what we’ve learned this year to make an educated guess
on what we’ll get out of 2017.

This comic doesn’t do anything new.

https://www.progress.com/
https://www.progress.com/
https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f#.5nmcwy62d

3Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

ES2015 Browser Implementation

As of June 2016, the development community moved from the 6th edition of ECMAScript—ES2015 (once
referred to as ES6)—to the 7th edition—ES2016. The next edition developers will move to is ES2017 but
that may not arrive until June 2017 (if not later). Sometimes, like in the chart below, the upcoming features
of ES2016 and ES2017 are just lumped into the ES2016+ category. This whitepaper will refer back to this
chart, so for clarity sake ES2016+ will be used to describe future features as well. ES2015 contained a lot of
features that developers felt would make programming in JavaScript better, like arrow functions, promises,
destructuring and more. Here we’ll look into how the features of ES2015 were handled in 2016 and if they
held up to our expectations.

In order to use features from ES2015 that weren’t supported by browsers, servers or runtimes source-to-source
transpilers like Babel and Traceur are used so developers can write with the ES syntax and then have it compiled
into compatible JavaScript. Thanks to the ever-handy ECMAScript compatibility table from kangax, we can see a
lot of green, in the chart—this means that many of the features are supported in various browsers.

Currently, Firefox 50 is supporting 92% of the ES2015 features, Chrome 55+ and Node 6.5+ are at 97%, while
Safari 10 and iOS 10 are at 100%. The only feature holding back the 97%-ers is the optimization feature of
ES2015, proper tail calls. This is great news for developers who want to use these features without transpilers.

ES2015 Compatibility chart from kangax

https://www.progress.com/
https://www.progress.com/
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/7.0/
http://www.ecma-international.org/ecma-262/6.0/
https://babeljs.io/
https://github.com/google/traceur-compiler
http://kangax.github.io/compat-table/es6/
https://github.com/kangax
http://www.ecma-international.org/ecma-262/6.0/#sec-tail-position-calls
https://github.com/kangax

4Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Although there are some features of ES2016+ already being supported (Firefox 52+ is already at 91%) there is
still a lot of red.

So far though, this feature list is shorter than ES2015 and the only “large feature” is async functions (which
is already supported on Firefox 52+ and Chrome 55+). With the success of the browser support for ES2015,
it looks very likely developers will once again get close to 100% compatibility with the main browsers for the
ES2016+ features.

ES2016+ Compatibility chart from kangax

Modules, the Most Important Addition?

Last year, we asserted that ES6 modules would be the most important addition. As predicted, a lot of
developers have taken advantage of the ES6 module syntax in their code thanks to transpilers like Babel or
Traceur. It’s hard to gather numbers to back this up but if you read all the articles on the “top” or “favorite”
new features from ES2015, the modules feature is almost always listed.

We were hoping for a native module system in 2016 so that commonJS, AMD, UMD, and non-native loaders
like browserify, webpack and systemJS were no longer necessary. However, tackling the loading process
for modules seems to be quite a feat, so that feature may still be far off. That said, there does seem to be a
good measure of interest and work going into this feature. There is a great recap from James Snell about
a TC-39 meeting he attended to get info on the feature. “There is a proposal being put before TC-39 that

https://www.progress.com/
https://www.progress.com/
https://github.com/kangax
https://hackernoon.com/node-js-tc-39-and-modules-a1118aecf95e#.6ufrm94fb
https://github.com/tc39

5Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

would introduce a new import() function.” Snell wrote. The import() function...is processed at evaluation. It
also imports an ESM (or CommonJS module) but, like the require() method in Node.js currently, operates
completely during evaluation. Unlike require(), however, import() returns a Promise, allowing (but not
requiring) the loading of the underlying module to be performed fully asynchronously.”

This feature would also enable developers to make calls like await import(‘foo’). To be clear, this may still
be a long way off but it is currently in stage 3. Here’s a breakdown of their process to explain what ‘stage
3’ actually means: TC-39 Process. Based on the amount of interest in this feature, it’s likely that it will get
released in 2017.

Popular Features of 2016
Following ES6 modules, we predicted that the other stand-out feature of the year would be promises. No
one likes callback hell or the pyramid of doom, so the addition of native promises was a very welcomed move.
Promises have been covered in a lot in posts and tutorials across the web, likely because they seem complex

The brave ECMA TC-39 https://github.com/tc39

https://www.progress.com/
https://www.progress.com/
https://github.com/tc39/proposal-dynamic-import
https://tc39.github.io/process-document/
http://callbackhell.com/
http://photos3.meetupstatic.com/photos/event/4/b/c/2/600_436939394.jpeg

6Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

when developers first start using them.

A few other ES6 features that got a lot of attention
were spread parameters, destructuring and default
parameters. Many developers found these features
to be helpful for making their existing JavaScript
code more powerful, concise and/or readable.

A few of the new features are also touted to fix the
“bad parts” of JavaScript. To add block scope and
prevent variable hoisting outside of the scope, you
can now use let and const. With arrow functions, the
variable “this” always points to the object that it is
physically located within.

The rest parameters feature lets us treat the
parameters like an array so that we can use the array
functions like slice, sort, etc.

As developers get used to the new syntax changes
and the benefits they yield, they may become more
open to adding new features. Across the web, more
and more tutorials are popping up that incorporate
the ES2015 syntax without mention or explanation
of ES2015. This suggests that it is becoming the new
normal and that this trend will continue into 2017.

Classes: Objects and Prototypes

There were many discussions and strongly-held
views about the inclusion of ES2015 Classes.
Thankfully, people have made their points and the
debate has seemingly to dying down.

As predicted, people stay steadfast in their preference
to Object-Oriented Programming, Functional
Programming, etc. The biggest point made about
ES6 Classes was to specify that they were mostly
syntactical sugar for prototypes and not to be

confused with traditional classes like those from Java.

Next year will not be the year that all developers
decide they will all work together and only write
functional JavaScript. IAs many developers have
found first hand, simply getting five people to agree
on semicolon usage is difficult enough. React had
built a class system for its own framework but are
very open to the inclusion of ES2015 classes, as
is Angular 2. With frameworks making the use of
classes easily accessible, it will be up to teams and
developers to choose whether they want to be
classy or classless in their code.

Additional Features

Last year, we suggested the proposals likely to be
added to the language were Exponential Operator,
Array.protoype.inlcludes, SIMD.JS - SIMD APIs +
polyfill and Async Functions. Let’s see how far along
these additional features are.

Array.prototype.includes: This feature is still
considered an ES2016 feature and is actually
supported on Edge 14, Firefox 45+, Chrome 55+,
Safari 10, Node 6.5+ and iOS 10.

SIMD: This feature is listed as a “Candidate” at stage
3 but will be a large feature.

Async Functions: This feature is the only “large”
feature on the list for ES2017 features and are
already supported by Firefox 52+ and chrome 55+.

Package Managers

Going into 2016 we suggested using systemJS

https://www.progress.com/
https://www.progress.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://medium.freecodecamp.com/5-javascript-bad-parts-that-are-fixed-in-es6-c7c45d44fd81#.euen7vqo2
https://medium.freecodecamp.com/5-javascript-bad-parts-that-are-fixed-in-es6-c7c45d44fd81#.euen7vqo2
http://exploringjs.com/es6/ch_arrow-functions.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://scotch.io/tutorials/better-javascript-with-es6-pt-ii-a-deep-dive-into-classes
https://facebook.github.io/react/blog/2015/01/27/react-v0.13.0-beta-1.html
http://learnangular2.com/es6/classes/
https://github.com/tc39/Array.prototype.includes
https://github.com/tc39/Array.prototype.includes
https://tc39.github.io/ecmascript-asyncawait/
https://github.com/systemjs/systemjs

7Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

and jspm.io and it is still a solid option. In 2016 alone systemJS has been downloaded over 4.4 million times,
~520,000 times in the past month.

It seemed that people were leaning toward making npm the go-to package manager for the both front and
backend. This still seems to be the case, especially with npm being paired with webpack and browserify.

The npm registry is still at the top, after all it provides access to over 300,000 packages and there are more
than 4 million people using the registry. There is an advantage to using the same package manager if you are
using Node.js as your backend.

systemJS weekly npm downloads from January 2016 to December from https://npm-stat.com/
jspm is coming in at ~2.2 million for the year and ~200,000 for the month.

jspm’s weekly npm downloads from January 2016 to December from (courtesy https://npm-stat.com)

Looking back on last year’s predictions, we did not take into account the option of a new package manager
coming onto the scene. Yet, that’s exactly what happened when Facebook introduced Yarn in October.

https://www.progress.com/
https://www.progress.com/
http://jspm.io/
https://npm-stat.com/charts.html?package=systemjs&from=2016-01-01&to=2016-12-06
https://www.npmjs.com/package/systemjs
https://npm-stat.com/
https://npm-stat.com/charts.html?package=jspm&from=2016-01-01&to=2016-12-06
https://www.npmjs.com/package/jspm
https://www.npmjs.com/package/jspm
https://npm-stat.com/

8Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Facebook had been using npm but once their codebase and engineering team grew, the company started
running into problems and decided to create its own package manager. Yarn piqued the interest of
developers at launch thanks to the big names involved: Google and Facebook. Based on the npm download
stats, Yarn took a dip while the U.S. was on Thanksgiving break and hasn’t surpassed its ~160,000 weekly
download record from November.

We’ll have to keep an eye on Yarn but so far its November downloads (~538,000) aren’t even coming close to
npm’s (~3.6 million).

Yarn’s weekly npm downloads from October to December (courtesy https://npm-stat.com)

npm’s weekly npm downloads from October to December from (courtesy https://npm-stat.com)

https://www.progress.com/
https://www.progress.com/
https://npm-stat.com/
https://npm-stat.com/

9Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

To be clear, Yarn is not a replacement for npm. It is a CLI client that fetches the modules from the npm registry. It’s
unlikely that we would not see another package manager surfaces in 2017 but Facebook may have opened the

A snippet of the Slant survey results

field up to new contenders. Even with snafus like the left-pad situation, npm feels very reliable.

Slant.co created a survey for their users to be able to rate and explain the pros and cons of different front-end
package managers.

So far, the top three products are npm and Browserify with a total of 51 upvotes and 3 downvotes, Bower with
30 upvotes and 5 downvotes and JSPM with 15 upvotes and 2 downvotes. It’s important to note that there are
only 169 votes, so this is a small pool of developers. Still, it’s worth nothing the feedback and we should learn
more over time.

https://www.progress.com/
http://developer.telerik.com/featured/left-pad-indicative-fragile-javascript-ecosystem/
https://www.slant.co/topics/1488/~front-end-package-managers

10Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Issues Resolved in 2016
We touched on a few key issues that we believed needed to be resolved in 2016, here’s the update on each of
those.

 • “How native modules are loaded in a browser will need to be ironed out and an initial implementation will
need to commence.”

As we touched on a bit before, this is still a work in progress. The good news is that this is something the
technical committee is working on. The implementation has not happened but it seems to be on track for
2017.

 • “We haven’t fully scratched the async itch. While, await functions will help, the journey is far from
complete. Promises and eventually streams will need to be used throughout (e.g. HTTP promises). And
O’yeah, canceling a promise. That might be a good idea.”

Promises are supported on all major browsers and async functions are set to be a 2017 feature.

 • “Concurrency and parallelism (i.e. parallel processing) in JavaScript will need to be addressed and
webworkers will have to step up or step aside.”

The TC39 are considering multithreading but it is hard to say when that will start making its way through the
pipeline. There is a proposal for parallelism with web workers, running scripts in background threads. It is a
very complicated issue to work through but it would increase performance using multicore processors.

 • “The ‘should we or shouldn’t we’ debate about immutable native objects will hopefully conclude.”

The results for ES2015 compatibility on mobile.

https://www.progress.com/
https://www.progress.com/
http://www.infoworld.com/article/3138963/javascript/javascript-insiders-predict-its-future-features.html

11Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The conversation around this hasn’t been as active lately, presently but it seems to boil down to what
programming paradigm you subscribe to. If you are truly using functional programming, you never attempt
to mutate state. Therefore, it should not matter if the state is technically mutable. If you are using object-
oriented programming, immutability is an odd fit because immutability is technically about data-structures.
That being said, there are ways to make it work, if you’re up for it. Here is a thorough article discussing just
that.

 • “Lastly, payoff whomever it takes for all browser manufacturers to treat the JavaScript runtimes in a
mobile browser with the same status as a regular browser.”

Unfortunately, looking back at the ECMA Compatibility Table, it seems no one has been paid off. iOS has 100%
compatibility but Android seems to be falling behind at a mere 25% for Android 5.1. With Google’s recent push
for Progressive Web Apps and focus on cell phone and tablet usage, all mobile browsers will have to catch up
fast. Maybe then, the only ones getting a payoff will be us, the users!

https://www.progress.com/
https://www.progress.com/
https://sidburn.github.io/blog/2016/03/14/immutability-and-pure-functions
https://developers.google.com/web/progressive-web-apps/

12Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Options Overload

At the beginning of 2016, developers were already
aware that the many different styles for constructing
JavaScript applications were overwhelming. We
had hoped that the developer community would
be able to update the way we think about and
teach JavaScript development to accommodate the
variations. As the authors of this whitepaper, we do
believe that the focus on best practices is present.
Unfortunately, there are still so many ways to build
JavaScript applications that it is hard to find multiple
tutorials or examples that have the same application
setup.

Although many developers seem to be suffering
from JavaScript fatigue, the bigger issue may
actually be from the paradox of choice. In local
JavaScript communities across the web there are
always conversations about the pros and cons of
using different JavaScript technologies and the
best ways to implement new features. How do you
commit when things are changing so fast?

New tools are popping up just as fast as old ones
are dying. You can spend hours researching how to
create your new JavaScript application. Then, after
the onslaught of options, you end up paralyzed with
indecision and instead decide you would be happier
searching for Chevrotains in the rainforests of West
Africa—which feels much more stable because they
haven’t changed for over 5 million years.

The good news is that developers, as a community,
are becoming more aware of this problem. While we
may not all decide to use the same style for how

How could you not want to search for these amazing creatures?!

we build our JavaScript applications but, we may
hopefully slow the creation of new options. This is
a very optimistic prediction but in 2017 developers
may just begin to streamline approach to building
applications.

https://www.progress.com/
https://www.progress.com/
https://www.ted.com/talks/barry_schwartz_on_the_paradox_of_choice
http://www.toonts.com/chevrotain/

13Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Usage
Last year we mentioned WebAssembly stealing some of the spotlight from JavaScript once it hit all the
browsers. It hasn’t taken over the internet yet but the advancement of WebAssembly this year has been
significant. V8 has a WebAssembly Browser Preview and the WebAssembly Community Group has their MVP
and JavaScript API implemented on several browsers. They are planning for the Browser Preview to finish in
Q1 2017, so we’ll see what comes next very soon! If you want to get a taste, you can check out the demo using
Chrome Canary and Firefox Nightly (you will have to switch some flags).

It looks like a great year for WebAssembly

We did predict that JavaScript would become the language of native applications (NativeScript, Electron, React
Native) because developers would want to write in JavaScript alone. The State of JS survey results from Sacha
Greif confirm that developers may be easing their way into JavaScript mobile frameworks. As for desktop
applications, Electron has reached over 1.6 million downloads and React Native follows close behind with 1.5
million since their releases in 2014 (over 200,000 and 180,000 in the last month, respectively). With this increase
in downloads and the NativeScript plans to include desktop support, JavaScript is definitely infiltrating the native
application scene and will continue to do so into 2017.

Nothing seems to be hindering the continued growth of JavaScript usage and with it being a language
you can use for practically everything—(mobile, IoT (internet of things), native, back-end, front-end—more
developers may be switching over. The only perceivable downfall I see is that the onboarding process for
new users may be quite overwhelming. With new features coming out from ES2015 and ES2016+, just writing

https://www.progress.com/
https://www.progress.com/
http://v8project.blogspot.bg/2016/10/webassembly-browser-preview.html
https://www.w3.org/community/webassembly/
http://webassembly.org/demo/
http://stateofjs.com/2016/mobile/
https://twitter.com/SachaGreif
https://twitter.com/SachaGreif

14Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

JavaScript has many options. Once users decide on that, they then need to make a decision on frameworks,
transpilers, package managers, modules and more. Nonetheless, all the powerful ways you can use JavaScript
outweigh this issue.

JavaScript Wrap-Up
There are still a lot of exciting features that are going to be worked on and added in 2017. Our predictions
from last year turned out to be pretty close but the hopes for better mobile browser and native module
support will have to wait a little while longer. We’ll check back next year to see if there are new package
management tools, if we’re over JavaScript fatigue and if everyone is referring to ECMAScript editions
correctly. Until then, I think that we’ll all be able to make great projects with JavaScript and continue to learn a
lot while doing so.

2016 was a pivotal year for JavaScript developers. That seems rather ironic considering that every year is
somewhat of a pivotal year since JavaScript and the web platform seem to be in a state of constant evolution.
The best practices of yesterday are today’s anti-patterns; yesterday’s libraries, today’s technical debt.

This makes it all together frustrating to feel like one has ever really “mastered” JavaScript and has even
garnered a catch word of its own in the industry known as “JavaScript Fatigue”.

While change is inevitable and moving forward is always the best path, it is worth revisiting the past so that
we can learn from it. It’s in that spirit that we look back on how JavaScript evolved in 2016, and what it’s
trajectory is for 2017; so that we can ready ourselves for the next big changes for JavaScript.

Libraries And Frameworks

It’s no longer debatable that JavaScript has amassed a popularity that is unmatched in the software
development world. This manifests itself largely by the sheer number of open-source frameworks that are
released each year for JavaScript developers. The site javascripting.com attempts to catalog each of these
different frameworks and their popularity—there are 73 pages of libraries available in total.

While there are innumerable JavaScript libraries for various pieces of functionality (User Interface, Date
Parsing, Data Storage, etc.), developers will be primarily familiar with the so-called JavaScript Frameworks;
those libraries with the purpose of helping you compose the different pieces of your application.

In the State of JavaScript Survey from Sasha Greif, the libraries that made the cut for awareness were
React, Angular 2, Ember, Vue and Backbone. In addition, Aurelia gets a nod on the strength of its repeated

https://www.progress.com/
https://www.progress.com/
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.2u3sqc9er
https://www.javascripting.com/
http://stateofjs.com/2016/frontend/

15Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

occurrence as a write-in candidate. For those reasons, we’re going to look at each of these frameworks,
substituting Aurelia for Backbone given the age of Backbone and its likely appearance as a legacy. Looking
back can help us determine how each of these frameworks impacted web development in 2016, as well as
where they are likely headed.

First, it’s important to recognize the fundamental way in which the model of open-source has changed.

An Open-Source Shift

JavaScript has long enjoyed an almost entirely open-source pedigree. Up until now that was primarily
on the strength of some remarkable individuals, such as John Resig (jQuery), Jeremy Ashkenas
(Backbone,Underscore), Thomas Fuchs (Zepto, script.aculo.us), Mihai Baizon (Uglify), Eric Schoffstall (Gulp),
Ben Alman (Grunt), and a host of others. The community would rally around these projects and remarkable
things were accomplished. The entire web was run primarily on the work of hundreds of individuals who had
never even met.

Angular was the first open-source library to change this landscape. The Angular project is primarily built and
controlled by Google. There is a team of developers, marketers and the like that are paid by Google to work
on this project full time.

React became the second entry in this category of open-source. Initially created at Facebook, it is heavily
promoted and marketed by Facebook, which also pays a team of developers to work on React and React
based tools and frameworks, such as React Native.

Despite this, both frameworks are truly open-source in the classical sense that they have enormous
communities that surround and contribute to their success. The defining difference is that at the end of the
day, large corporations own and make the ultimate calls on these projects.

https://www.progress.com/
https://www.progress.com/
https://twitter.com/jeresig
https://jquery.com/
https://twitter.com/jashkenas
http://backbonejs.org/
http://underscorejs.org/
https://twitter.com/thomasfuchs
http://zeptojs.com/
http://script.aculo.us/
https://twitter.com/mcbazon
https://github.com/mishoo/UglifyJS
https://twitter.com/contrahacks
http://gulpjs.com/
https://twitter.com/cowboy
http://gruntjs.com/

16Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Open-Source Predictions for 2017

Given the now-large corporate involvement in open source, it’s likely this trend continue to grow more
prominent in 2017. Look for players such as Microsoft or even Apple to join the fray with their own large open-
source offerings for JavaScript developers.

Angular 2

We opened last year’s discussion of frameworks with React, but 2017 likely belongs to Angular 2, so we’ll start
there.

Last year, we predicted that Angular 2 would be released in the first quarter of 2016.

A release candidate was announced in May at ng-conf, but there ended up being five release candidates and
each was a large breaking change from the previous, which did continue the instability of Angular through to
the middle of September, when Angular 2 Final was released.

In addition to the core framework, the Angular team also released a command line interface tool to help
control the complexity of an Angular 2 applications and scaffolding out commonly used boilerplate.

Angular Predictions for 2017

Given the amount of interest in Angular—despite it’s rough road to final release and dozens of breaking
changes—it’s clear that Angular enjoys a level of trust and adoption that virtually guarantee that Angular 2 will
be the dominant framework of 2017.

https://www.progress.com/
https://www.progress.com/
https://cli.angular.io/

17Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Angular 2 has some concepts that make it remarkably unique, including module theory and it’s complete de-
coupling from the DOM. This makes frameworks such as NativeScript possible so that developers can build
native mobile apps with the same knowledge that they use to build web applications.

The end of 2017 will likely see the release of Angular 3.0. While the team describes this as simply semantic
versioning, version 3.0 will present an opportunity for the team to introduce necessary breaking changes.
That said, we will not see the API change drastically from what it is in 2.0.

“What does ‘final’ mean? Stability that’s been validated across a wide range of use cases, and a

framework that’s been optimized for developer productivity, small payload size, and performance. With

ahead-of-time compilation and built-in lazy-loading, we’ve made sure that you can deploy the fastest,

smallest applications across the browser, desktop, and mobile environments. This release also represents

huge improvements to developer productivity with the Angular CLI and styleguide.“

Jules Kremer – Angular Team

https://www.progress.com/
https://www.progress.com/
https://www.nativescript.org/

18Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

React

React was an anomaly in 2015, and that trend
continued with force in 2016. React is only a portion
of the full front-end framework solution that most
developers are looking for, which is the major
difference between it and the other frameworks
discussed here. That makes it very hard to draw a
direct comparison.

In 2016, we predicted that React’s popularity would
continue to grow, especially with consumer-facing
applications. This turned out to be extremely accurate.
While companies are slower to adopt React for
enterprise-facing applications, React is seeing a lot of
use for consumer applications, with big names such
as Airbnb, Dropbox, eBay, Expedia and even internet
behemoths such as Netflix using React.

We predicted that there would be continued
controversy around JSX, which is the way React
mixes HTML in JavaScript in an XML-like fashion.
However, this melted into a complete nonissue
in 2016, with nobody even batting an eye at this
concept anymore.

We predicted that 2016 would be the year of the
commercial React ecosystem. This turned out to
be incorrect. While the open-source community is
quite large, it is still very difficult to find complex,
commercial-grade React components from well-
known vendors.

We predicted that enterprises would continue to
watch React from a distance. This turned out to
be largely true with the RC and Final releases of
Angular 2 completely overshadowing React in the
enterprise. This list of companies that use React
confirms this assumption.

React Predictions for 2017

Considering that React does the few things that it
does so well, it’s not likely that we will see a new or
different version of React in 2017.

Given that Facebook weighed in on the React
Starter Kit landscape by releasing the “Create React
App” package, it’s likely that we may see the social
media giant release other official React components.
It’s easy to speculate that the React Router project
may be merged into the official React repo at some
point.

It’s also somewhat likely that React will release its own
UI component framework in 2017. This is because
Facebook itself has a lot of standard UI and CSS
components. Given the recent trend to package and
open-source virtually everything the company does,
we would not be at all surprised to see a Facebook
Bootstrap of sorts.

https://www.progress.com/
https://www.progress.com/
https://github.com/facebook/react/wiki/Sites-Using-React
https://code.facebook.com/projects/
https://code.facebook.com/projects/

19Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Vue

Vue didn’t even make our cut last year when we
made framework predictions, and that’s because it
simply wasn’t on the radar at that time. Since then,
Vue has garnered a decent amount of attention from
the JavaScript community.

As of the time of this writing, Vue is trending on
GitHub with 122 stars just today and over 35K all
time. Compare that with Ember which has 17K stars
and Angular with 53K. There is no denying that Vue
is a contender.

Vue is different from all the other players in this
whitepaper primarily due to its simplicity. Vue is likely
the easiest of the modern JavaScript frameworks to
work with. Its API is similar in some ways to Backbone
(such as specifying elements and data for chunks of
HTML) and there is also some influence from Angular
in terms of using special custom HTML attributes to
easily bind the DOM to Vue models. It also doesn’t
eschew classic web development the way React does
with JSX. Its single script include is a breath of fresh
air in an era of JavaScript build systems that tend to
cripple developers with their complexity.

Vue Predictions for 2017

Due to the intentional simplicity of Vue, its grass-
roots success and the constant draw of web
developers back to the core concepts of the browser,
we predict that Vue will unseat React in 2017 as
the light-weight front-end framework of choice for
consumer facing applications.

That may seem like quite the statement, and is
probably the wildest prediction of this whitepaper,
but Vue contains all the elements of projects past
that have taken the web by storm (see Bootstrap,
jQuery), and unlike React and Angular, it is not built
by a for-profit corporation, which is more true to the
basic tenants of the open web.

Enterprises will continue to favor Angular due to its
strong corporate backing element.

https://www.progress.com/
https://www.progress.com/
https://github.com/emberjs/ember.js
https://github.com/angular/angular.js

20Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Ember

In 2016, we didn’t say much about Ember, other than
that it was a “sleeper” framework and would continue
to be just that. This is largely the case. Ember has a
loyal cult following, but it tends to be like a musical
act that everyone has heard of, but few people listen
to. However, those that do will swear that it’s the
best show of all time.

We predicted that Ember would be the popular
alternative to React for those consumer-facing
applications, but it appears that honor has gone to Vue.

It should be noted that it is technically possible to
use React alongside something like Ember. This
is because React only solves part of the full stack
JavaScript problem—specifically the view part.
That means that it can also be used with Angular,
although we typically do not see developers mixing
React with another large-ish framework—Flux and
Redux notwithstanding.

Ember Predictions for 2017

We don’t have any predictions for Ember in
2017. Much like jQuery and Backbone, this is a
framework that is mature and unapologetic in its
implementation. The only prediction one could
safely make is that none of this will change.

Aurelia made our list last year and we had several
predictions for the somewhat niche front-end
framework. Aurelia frequently shows up in requests
from customers that we talk to, and it shows up
more often than any other framework in this
whitepaper besides Angular.

What is it about Aurelia that developers seem to love
so much? It could be the fact that it comes from the
creator of Caliburn.Micro, which enjoyed massive
success inside of the .NET community. It could also
be because it relies almost entirely on just plain
JavaScript constructs and doesn’t involve a lot of
boilerplate. Whatever the reason, Aurelia has won
the hearts and minds of some section of developers
and deserves a look from anyone looking for their
next JavaScript framework.

In 2016, we predicted that developers would adopt
Aurelia in droves over the course of the year. While
Aurelia seemed to hang on to its dedicated core, we
did not see strong increase in the interest of Aurelia
over 2015. The Google search trends show roughly
the same sentiment over 2016.

https://www.progress.com/
https://www.progress.com/
http://caliburnmicro.com/

21Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

We also predicted that Aurelia might see a native
counterpart, such as NativeScript or ReactNative.
This also did not turn out to be true, despite Aurelia’s
explicit goal to be more than just a web framework.

We predicted that large enterprises would begin to
adopt Aurelia since it was an officially supported
product. This also turned out to be largely incorrect
as Angular continues to dominate the enterprise
JavaScript spectrum.

Rob Eisenberg recently published an article on
the future of Aurelia which makes it much easier
for us to speculate on the future. Of note from his
article was the intention to create UI components
specifically for Aurelia.

“We’ve always seen Aurelia as a platform

and ecosystem for building rich interactive

applications on every device. In 2016, you’ll

see the next phase of that vision realized as

we move beyond Aurelia’s v1 release and on to

other things we’re planning,”

Rob Eisenberg, Creator of Aurelia

https://www.progress.com/
https://www.progress.com/
https://twitter.com/eisenbergeffect
https://www.sitepoint.com/future-of-aurelia-roadmap-features/
https://www.sitepoint.com/future-of-aurelia-roadmap-features/

22Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Aurelia Predictions for 2017

Aurelia is a fascinating alternative to Angular and React, and we’re continually inspired by the work that Rob
and his team do on the project. However, the sheer dominance of Angular 2 and React (or Vue) leave little
room for anyone else besides niche players. While not much of a prediction, our guess is that this will remain
the case for Aurelia in 2016. We also think that it will likely lose developers to Angular 2, which shares some
concepts with Aurelia, such as using plain JavaScript classes as the binding context.

While not a front-end framework like the rest of the items in this list, Progress® Kendo UI® is a bit of an
anomaly. It is first and foremost a UI library of widgets and components. However, the version of Kendo UI
based on jQuery does contain portions of full stack framework features, such as two-way binding, routing and
view management. This qualifies it for inclusion in the whitepaper. Aside from that, Progress makes it so we
know a little about its future.

In 2016, Progress launched Kendo UI for Angular 2 Beta, which was a complete rewrite of Kendo UI to use
Angular 2 as the underlying framework for DOM manipulation, binding, routing and the like. This enables
Kendo UI to leverage all the advantages of Angular 2, such as:

• Binding speed
• Ahead-of-time compilation
• Dependency management

https://www.progress.com/
https://www.progress.com/
http://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-js-2017-wp-jan17
http://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-js-2017-wp-jan17
http://www.telerik.com/kendo-angular-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-js-2017-wp-jan17

23Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Kendo UI Predictions for 2017

To be fair, Progress makes Kendo UI so we know a bit about where it’s going. To that end, expect a full release
of Kendo UI for Angular 2—which includes all the widgets in the Kendo UI portfolio—by May of 2017.

Progress will also continue to work on Kendo UI for jQuery in 2017, as the company doesn’t see jQuery going
anywhere and it’s still the most popular way for customers to build their applications.

In addition to the UI framework itself, Progress will release Kendo UI Builder, which is a visual tool for
designing user interfaces composed of Kendo UI components. While currently limited to OpenEdge data
sources, a mature Kendo UI Builder would connect to any data source to enable easy drag-and-drop
composition and configuration of user interfaces with real-time visual feedback.

Web Components / Polymer

We’d like to close out our section on frameworks by discussing what may be the most important technology
that the web community has yet to adopt: Web Components. We’ve lumped Polymer in here as well because
it is Google’s polyfill library for Web Components which are largely unusable cross-browser without it.

Web Components are a standard for the way that developers build and deploy components for web
applications. These are typically thought of as visual components, or rather custom HTML elements, but
they can also include processes that occur in the background, such as AJAX. Web Components are so critical
because they are the only thing that will be able to curtail the Cambrian explosion of JavaScript libraries, all
of which may implement components in a different way and are usually only usable with a specific JavaScript
framework.

https://www.progress.com/
https://www.progress.com/
http://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-js-2017-wp-jan17
https://www.progress.com/openedge

24Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Unfortunately, React inadvertently put the brakes on Web Components by creating a simple and elegant
component model that worked across all browsers without polyfills or hacks. The rapid adoption of React meant
that developers’ interest in Web Components was negated by their frenzy for React, which offered a similar
yet much slimmer solution. It also highlighted that web components in their current state are still not meeting
developers where their needs are.

In 2016, we predicted that all major web browsers would support Web Components by the year’s end. This is
simply not the case. The following chart shows the state of browser support for Web Components as of the time
of this writing.

Basically, Chrome is still the only browser that fully supports Web Components. Firefox has put HTML imports
on hold and Custom Elements and Shadow DOM are still behind flags. Safari has remained annoyingly silent
on HTML Imports, but in a surprising pivot decided to ship an implementation of Shadow DOM. While Edge
appears to be the holdout, they have announced intent to ship support for HTML Template elements. They
have not, however, fully committed to Web Components, citing that they will instead ship support for features
as they become stable pieces of the Web Components Standard.

https://www.progress.com/
https://www.progress.com/

25Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

We also predicted that JavaScript frameworks would begin to swap out their own component
implementations in favor of Web Components. Given that Web Components aren’t fully baked, this has not
happened.

However, Angular 2 was designed from the beginning to support Web Components. They even ship their
own Shadow DOM emulation. In other words, when Web Components are ready, only Angular 2 is specifically
designed to use them. This is another reason that we are building many of our own components on Angular
2s infrastructure, so that when Web Components are ready, our own leap won’t be nearly as far.

JavaScript in 2017—Beyond the Browser

As the technology world has evolved, JavaScript has evolved with it. In previous years, that meant JavaScript’s
inclusion in software worlds it was never originally intended for, like server-side apps, mobile apps and robots.
And today, JavaScript’s growth has brought the language to chatbots, virtual reality, IoT and a whole lot more.

In addition to reaching new frontiers, JavaScript’s role has become more established and stable in
ecosystems in which it has long been a part of, such as server-side Node.js apps, as well as mobile and
desktop application frameworks. In this whitepaper, we’ll look back at some predictions we made a year ago
for JavaScript in each of these software worlds, and then make some predictions about where JavaScript
is heading outside of a browser in 2017. Let’s start by looking how JavaScript is doing in server-side app
development.

“Following template support, and after completing the DOM rewrite, the next goal is to implement

Shadow DOM, the second-hardest feature to polyfill, followed by Custom Elements. We plan to evaluate

the rest of the first generation of Web Component specs after that. Naturally, as the specs continue to

evolve and additional web component-related technologies rise in importance we may shuffle priorities

along the way.”

Travis Leithead and Arron Eicholz – Microsoft Edge and Web Components

https://www.progress.com/
https://www.progress.com/
https://blogs.windows.com/msedgedev/2015/07/15/microsoft-edge-and-web-components/#UqBTEHOD0kLTCBt2.97

26Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Node.js

Node.js is an open-source runtime library for building both server-side apps, as well as small bits of JavaScript
code you need to run outside of a browser environment. In the past few, years Node went from a niche
technology popular in startups, to a mainstream development approach used by companies of all sizes.

Node’s package manager, npm, has transformed from hosting utility modules for server-side apps to the
canonical place to store distributable JavaScript code. Perhaps the best indication of Node’s rise is the sheer
number of packages stored on npm. In last year’s predictions, we included the following chart to show npm’s
dominance over package managers in alternative languages.

Module counts from modulecounts.com as of December 2015

Fast forward one year and npm’s growth shows no signs of slowing down. In fact, npm’s move from ~200,000
to ~350,000 packages has forced the Module Counts site to reconfigure its chart’s Y axis.

https://www.progress.com/
https://www.progress.com/
https://nodejs.org/en/
http://www.modulecounts.com/

27Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

There are a number of factors that have led to this increase, and one of them is a growing number of
enterprise companies using Node in their infrastructure. In last year’s discussion, we made the following
prediction.

Module counts from modulecounts.com as of December 2016

“In 2016 expect to see further adoption of Node and its package manager npm. The continued adoption
of Node from large companies—Microsoft, IBM, Intel, Progress, etc.—as well as enterprise-friendly features
such as long-term support plans, may signal a growth in Node adoption in the enterprise, replacing typical
enterprise solutions like .NET and Java.”

This wasn’t exactly a risky or unique prediction given Node’s growth, but it seems to have been accurate.
Node’s own case study page has a small list of not-very-small companies that have now adopted Node,
including the likes of Netflix, GoDaddy and Capital One.

But perhaps the most telling sign of Node’s use in critical infrastructure comes from the first company listed on
that page—NASA. You can read Node’s case study on NASA for yourself, but I’ll drop in an excerpt here just to
give you an idea.

“When you’ve got the safety of astronauts on the line, little hiccups and service interruptions turn into life-
and-death situations. From EVA [extra vehicular activity] data to astronauts up in space, Node.js helps ensure
there’s a safe home for everything and everyone.”

https://www.progress.com/
https://www.progress.com/
http://www.modulecounts.com/
https://nodejs.org/en/foundation/case-studies/
https://nodejs.org/static/documents/casestudies/Node_CaseStudy_Nasa_FNL.pdf

28Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

But it’s not just the NASAs of the world driving Node’s growth. Node’s package manager, npm, has become
the de facto choice to store JavaScript code across all environments—and that consolidation on a single
package manager helps drive adoption of Node itself.

Literally every framework and technology we discuss in this article use npm to store and distribute their
source code. A quick npm search for “jquery”, “polymer”,”react”, “cordova”, or “nativescript” can give you an idea
of the sheer scale that npm operates at now. As JavaScript grows in popularity, npm grows in popularity. And
as npm grows in popularity, so does Node.js. And there’s no reason to believe that this trend will end anytime
soon.

Searching for “angular” on npmjs.com returns nearly 10,000 results. Angular is one of many libraries that is
distributed via npm.

https://www.progress.com/
https://www.progress.com/
https://www.npmjs.com/search?q=jquery
https://www.npmjs.com/search?q=polymer
https://www.npmjs.com/search?q=react
https://www.npmjs.com/search?q=cordova
https://www.npmjs.com/search?q=nativescript
https://www.npmjs.com/search?q=angular

29Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

In 2017, we believe more companies will make the
switch to Node from more traditional development
approaches like Java and C#. We believe TypeScript,
a Microsoft-written superset of JavaScript will help
drive Node’s growth, as its features make JavaScript
a more approachable language for Java and C#
developers. Node’s commitment to long-term
support releases will also contribute to this growth,
as it gives these companies a guarantee that the
version they use will be supported in years to come.

Overall, large enterprises do not like maintaining
multiple development systems and language, and
Node enables these companies to consolidate on a
single language for all of their development. And that
consolidation applies to more than just server-side
code. Let’s take an updated look at how JavaScript is
affecting the mobile world as well.

PhoneGap and Cordova

PhoneGap and Cordova, the open-source framework
on which PhoneGap is built, were JavaScript’s first
foray into the world of native mobile development.
Cordova’s basic approach is to wrap web code in
a WebView, and then use that WebView to drive a
native mobile application. This approach enables web
developers to build mobile apps with skills that they
already have—namely JavaScript—and because of
that, Cordova has remained a compelling option for
building mobile apps for many years.

But that’s starting to change. Today, Cordova is being
challenged by alternative development approaches,
most of which leverage the same JavaScript-based
skill set that Cordova development is known for.

Google’s home page for Progressive Web Apps

https://www.progress.com/
https://www.progress.com/
https://www.typescriptlang.org/
https://github.com/nodejs/LTS
https://github.com/nodejs/LTS
http://phonegap.com/
https://cordova.apache.org/
http://developer.telerik.com/featured/what-is-a-webview/
https://developers.google.com/web/progressive-web-apps/

30Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Perhaps Cordova’s biggest challenger is the Google-led concept of Progressive Web Apps, or PWAs.

PWAs bring many native-like features to the web world, such as push notifications, offline access, and
home screen icons. Last year, we predicted that Google would start pushing the PWA approach a little.
That prediction has turned out to be, well, wrong—as Google has made it clear that the company is heavily
committed to the PWA approach through a number of events. The recent Chrome Developer Summit
featured a staggering number of talks on PWAs, as did this year’s Google I/O conference.

PWAs are relevant for our discussion because they eat into the primary use case of Cordova apps—web apps
that need a bit of native functionality. If you have a web app that needs offline access or push notifications,
building a PWA is a compelling alternative to building a Cordova-based native app. Although it’s hard to
gauge how many people are choosing PWAs over hybrid apps, most data shows that Cordova usage has
flatlined or is declining. For instance, here are Cordova’s weekly download numbers for the last two years. As
you can see, although Cordova’s numbers are still very healthy, the trend line is no longer heading upwards as
it was this time last year.

Weekly downloads of the “cordova” npm package from December 2014 until December 2016. Data from npm-stat.com

But there’s another factor playing into this decline. Although we believe PWA usage is eating into Cordova’s
usage, we also believe a relatively new entry in the mobile world is taking market share from Cordova as well.

https://www.progress.com/
https://www.progress.com/
http://Chrome Developer Summit
https://www.youtube.com/playlist?list=PLOU2XLYxmsILe6_eGvDN3GyiodoV3qNSC
https://npm-stat.com/charts.html?package=cordova&from=2014-11-27&to=2016-11-27
https://npm-stat.com/

31Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Native Mobile Apps

Pioneered by Appcelerator, the concept of a JavaScript-driven native app was popularized by a few new
entries in the space—namely, Facebook’s React Native and Progress’s NativeScript. JavaScript-driven native
apps do not use a WebView, therefore, they don’t suffer the same web-based performance problems that can
plague Cordova-based applications.

In last year’s discussion we predicted that 2016 would be a year where these frameworks matured and started
to see widespread usage, and that prediction appears to have been accurate. For example, you can see a
continuous increase in React Native’s weekly download numbers over the last two years.

Weekly downloads of the “react-native” npm package from December 2014 until December 2016. Data from npm-stat.com

Weekly downloads of the “nativescript” npm package from December 2014 until December 2016. Data from npm-stat.com

The same trend line is also present for NativeScript.

https://www.progress.com/
https://www.progress.com/
https://npm-stat.com/charts.html?package=react-native&from=2014-11-27&to=2016-11-27
https://npm-stat.com/
https://npm-stat.com/
https://npm-stat.com/charts.html?package=nativescript&from=2014-11-27&to=2016-11-27

32Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

And it’s not just download numbers that are up for these JavaScript-driven native frameworks. The recent
State of JavaScript 2016 survey shows that JavaScript developers have a lot of interest in React Native, as well
as burgeoning interest in NativeScript.

Survey results from the State of JavaScript 2016 survey on interest in mobile development approaches

The analysis of the State of JavaScript survey sums up these results quite well.

“Cordova and PhoneGap (which are basically the same thing) have much lower interest ratings, and it makes
you wonder if people are turned off by the performance issues you sometimes hear about. With Cordova and
PhoneGap, you rely on the underlying phone browser and its JavaScript engine to do the heavy lifting, which
is often slower than running native code like React Native.”

https://www.progress.com/
https://www.progress.com/
http://stateofjs.com/2016/mobile/

33Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

In 2017, we expect the growth of these JavaScript-
driven native frameworks to accelerate, as more and
more JavaScript developers look to build mobile
apps. React Native stands to gain from the continued
enormous usage of the React framework, and
NativeScript—which announced complete Angular
2 support in May—stands to gain from the growing
number of developers upgrading from Angular
1 to Angular 2. We also expect JavaScript-driven
native frameworks to attract native iOS and Android
developers, as JavaScript-driven native frameworks
allow you to build truly native apps from a single
codebase—not two.

On mobile JavaScript is increasingly encroaching on
territory that was once dominated by languages like
Objective-C and Java. But that’s not the only new
territory where JavaScript is gaining usage; let’s move
our discussion to the topic of desktop applications.

Desktop Apps

Traditionally, if you wanted to build a Windows or
Mac app, you’d use platform-specific tools (like WPF
and Windows Forms) or cross-platform interfaces
(like Java or Adobe Air). But, like every other
software ecosystem discussed in this whitepaper,
JavaScript-based solutions are slowly working their
way into this picture.

In last year’s discussion, we talked about NW.js and
GitHub’s Electron, the two most popular JavaScript
frameworks for building desktop apps, and theorized
that each of their usage would increase dramatically
in 2016. In reality, that growth has occurred—but
only for Electron, which has established itself as
the de facto choice for JavaScript-based desktop
application development.

For example, if you compare npm downloads for
the “electon” and “nw” JavaScript packages, you’ll
see that Electron (the red line) is now operating at
a scale that competes with the likes of React Native,
while NW.js downloads are relatively flat.

Weekly downloads of the “electron” and “nw” npm packages from September 2016 to November 2016. Data from npm-stat.com

https://www.progress.com/
https://npm-stat.com/charts.html?package=react
https://npm-stat.com/charts.html?package=react
https://www.youtube.com/watch?v=R3nyG2xtzeQ&feature=youtu.be
https://www.youtube.com/watch?v=R3nyG2xtzeQ&feature=youtu.be
https://nwjs.io/
http://electron.atom.io/
https://npm-stat.com/charts.html?package=electron&package=nw&from=2016-09-01&to=2016-11-27
https://npm-stat.com/charts.html?package=electron&package=nw&from=2016-09-01&to=2016-11-27
https://npm-stat.com/

34Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

In December of 2015, Electron had 20,000 GitHub
stars and NW.js had 25,000; today, Elecron has
nearly 40,000 stars while NW.js has just over 30,000.

Electron has also started to gain traction for
mainstream desktop apps. The framework now
powers the Visual Studio Code, the popular editor from
Microsoft that boasted over half a million users back in
April. Electron has also managed to perform the rare
act of gaining popularity in both the React and Angular
communities, and it’s easy to find tutorials for Electron
usage with both frameworks on the web.

In 2017 we expect Electron’s dominance to continue.
We expect to see further Electron tooling integration
with the web’s most popular frameworks—mostly
React and Angular—as well as increased attention
from software vendors. And as JavaScript continues
to break into worlds traditionally dominated by
Java- and Microsoft-based technologies, we expect
Electon to continue to be used as an alternative to
approaches such as WPF, Java, Adobe Air.

The appeal of using a single language for all your
development needs is strong, and it’s even taking
JavaScript to some of the hippest and newest
development approaches out there. Let’s end our
discussion with a look at JavaScript in a handful of
brave new software worlds.

JavaScript’s New Frontiers

If you ask analysts about what’s coming in the
development world, you’ll likely hear a lot buzzwords
like virtual reality, chatbots and IoT.

Of all of these new technologies JavaScript is
biggest in the chatbot ecosystem, where people are
using JavaScript to build everything from simple
Slack bots to far more complex bots used for tasks
like commerce transactions. Most frameworks in
the chatbot world include Node libraries in their
SDKs, such as Botkit, Microsoft’s Bot Framework,
and Facebook’s wit.ai. Microsoft’s Bot Framework’s
documentation includes the following quote on why
you should build bots with Node.

“Bot Builder for Node.js is a powerful framework for
constructing bots that can handle both freeform
interactions and more guided ones where the
possibilities are explicitly shown to the user. It is easy to
use and models frameworks like Express & Restify to
provide developers with a familiar way to write Bots.”

The same desire to reuse JavaScript skills has led many
popular IoT libraries such as Losant and zetta to offer
Node APIs, as well devices such as the Leap Motion.
There’s also nascent interest in using JavaScript in
virtual reality environments, led by the Google Chrome
team as well as the A-Frame framework.

https://www.progress.com/
https://www.progress.com/
https://github.com/electron/electron
https://github.com/electron/electron
https://github.com/nwjs/nw.js
https://code.visualstudio.com/
http://arstechnica.com/information-technology/2016/04/visual-studio-code-editor-hits-version-1-has-half-a-million-users/
http://arstechnica.com/information-technology/2016/04/visual-studio-code-editor-hits-version-1-has-half-a-million-users/
https://chatbotsmagazine.com/11-examples-of-conversational-commerce-57bb8783d332#.zg1yce6wu
https://chatbotsmagazine.com/11-examples-of-conversational-commerce-57bb8783d332#.zg1yce6wu
https://github.com/howdyai/botkit
https://dev.botframework.com/
https://wit.ai/
https://docs.botframework.com/en-us/node/builder/overview/
https://docs.botframework.com/en-us/node/builder/overview/
https://www.losant.com/iot-platform/sdks
http://www.zettajs.org/
https://developer.leapmotion.com/documentation/v2/javascript/index.html
https://aframe.io/

35Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The Google Chrome team maintains an impressive set of JavaScript-built
virtual reality experiments that you can try for yourself.

That being said, JavaScript is still a niche player in
many of these fields, with more performant players
such as C++, Python, and C# retaining a dominant
role. For example, the popular Oculus Rift device
largely uses C++, and Microsoft’s HoloLens requires
you to write in C#.

We expect this trend to begin to change in 2017. As
JavaScript gains in popularity, and as JavaScript’s
speed continues to increase, the language will
continue to find inroads into environments like VR
and the IoT. And as new software development
ecosystems pop up we expect JavaScript to
increasingly be included as a first-class citizen.

https://www.progress.com/
https://www.progress.com/
https://vr.chromeexperiments.com/

36Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

JavaScript For All The Things

“[A]ny application that can be written in

JavaScript, will eventually be written in

JavaScript.”

Jeff Atwood

Ten years ago, using JavaScript on the server was
unthinkable. Today Node has 3.5 million users and
an annual growth rate of 100%. Five years ago, using
JavaScript to drive a native iOS or Android app was
a niche; today NativeScript and React Native are
growing at staggering rates. Three years ago using
JavaScript to build desktop apps was rare; today
Electon is downloaded over 100,00 times each
month.

JavaScript will never be used for all programming,
as many other languages are better suited to solve
certain problems and use cases. However, JavaScript’s
widespread usage ensures that it will always be
a factor, regardless of the development platform.
Perhaps Jeff Atwood’s famous quote on the topic
is the best way to wrap up this discussion, as his
statement has never seemed more prophetic.

https://www.progress.com/
https://www.progress.com/
https://nodejs.org/static/documents/2016-survey-report.pdf
https://nodejs.org/static/documents/2016-survey-report.pdf
https://npm-stat.com/charts.html?package=electron
https://npm-stat.com/charts.html?package=electron
https://blog.codinghorror.com/the-principle-of-least-power/

37Progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Brought to You
by Progress® Kendo UI®

Try Kendo UI

Kendo UI delivers everything you need to build modern web applications under tight deadlines. Choose
from more than 70 UI components and easily combine them to create beautiful and responsive apps, while
speeding development time by up to 50 percent.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw

 twitter.com/progresssw
 youtube.com/progresssw

For regional international office locations and contact
information, please go to
www.progress.com/worldwide

Progress and Kendo UI are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other

countries. Any other trademarks contained herein are the property of their respective owners.

© 2017 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 01/2017 | 161214-0019

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for
developing and deploying mission-critical business applications.
Progress empowers enterprises and ISVs to build and deliver
cognitive-first applications, that harness big data to derive
business insights and competitive advantage. Progress offers
leading technologies for easily building powerful user interfaces
across any type of device, a reliable, scalable and secure backend
platform to deploy modern applications, leading data connectivity
to all sources, and award-winning predictive analytics that brings
the power of machine learning to any organization. Over 1700
independent software vendors, 80,000 enterprise customers, and
2 million developers rely on Progress to power their applications.
Learn about Progress at www.progress.com
+1-800-477-6473.

https://www.progress.com/
http://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-responsive-wp-sep15

