
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d. The Future of JavaScript
- 2016 And Beyond
Interviews with Developers Building the JavaScript of Tomorrow

WHITEPAPER

http://www.progress.com

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

ECMAScript 2016 (ES7) / 4

Which feature added in 2015 will be considered the most critical in 2016? / 5

What will be the most used feature in 2016, from ES 2015? /6

Will JS to JS transpilers thrive in 2016? / 7

Will run times fully support ES2015 by the end of 2016? / 8

In 2016, which feature from ES 2015 will developers wish hadn't been added? / 8

What will be the most important proposal finalized in 2016 and released in ES 2017? / 9

Will one JavaScript package manager rise, destroying all others? / 10

What issues will remain in 2016 that future updates to JavaScript will need to resolve? / 11

Will JavaScript continue to rise in use? / 13

Frameworks / 14

Libraries and Frameworks / 14

Critical Mass / 16

jQuery / 16

React / 18

AngularJS / 20

Aurelia / 21

Table of Contents

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Progress Kendo UI / 23

Ember / 24

Meteor / 25

Web Components / 26

Polymer / 28

Final developer predictions / 29

JavaScript’s New Frontiers / 30

Node.js / 32

PhoneGap and Cordova / 33

Native mobile apps / 35

Desktop apps / 37

JavaScript’s new frontiers in 2016 / 38

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 4

ECMAScript 2016 (ES7)
If you have had anything to do with software
development (even non-web dev) in recent years,
you are likely familiar with the evolution of JavaScript
and the fact that it is eating the world. I guess I'm
not saying anything surprising here. In fact, I assume
most readers have already heard, ad nauseam, the
historical JavaScript details about the creation, life
span and success of JavaScript.

In this article, I am not going talk about what has
already happened or how we got to where we are
today. Hooray, right! This is old news. Instead, I'm
going to talk about the future and make a few
predictions about what might happen with the
JavaScript language, and the community, as we look
forward into 2016.

In order to make a reasonable prediction about the
future, I polled the JavaScript community with a
couple of questions to springboard this article with
more than just my own personal thoughts. What
follows is a summary of the questions asked with a
mixture of answers, containing both my thoughts
and the thoughts of those who answered my
questions.

Many thanks to those who took the time to answer
my questionnaire about the future of JavaScript.
My thoughts were challenged and enlightened on
several topics.
You are: @aortiz, rodneyrehm, @softwarefloyd, @
sergiopereira, Kitson Kelly, Zackargyle, bahmutov,
runspired, Nicholas C. Zakas, getify, js_dev, hemanth,
Brendan, Alex, Chernov, @rlsix, @briankardell,
@codekult, @alexbrbr, @dfkaye, @christosmatskas,
@dfernandeza, github:spaced, @assaf, @BrianDukes

http://arc.applause.com/2015/11/06/javascript-is-eating-the-world/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 5

Which feature added in 2015 will
be considered
the most critical in 2016?

“Promises, because it is the base of the perfect

pairing for several other updates: generators,

async functions, observables, fetch, service

worker and so on.”

@codekult

A native module system may be new to JavaScript,
but it is neither flashy or new to programming
languages. Modules, dependency management and
loading are, in fact, what most developers would
consider a basic requirement. In 2016, I believe
modules will be deemed the most important feature
added to the language. Of course, due to its lack of
native support, it might take all of 2016 for developers
to actually realize it. Most of the participants in my
questionnaire agreed that modules were the most
critical addition, but a few did not. Promises right
behind modules were considered a vital addition as
well. According to @codekult, promises are the most
vital addition to the language.

Modules might not blow your hair back like a concise
usage of an arrow function or the simplicity of a
returned promise, but the addition of native modules
is like adding that fourth leg to a three-legged chair
that many non-Node developers have been sitting
on in a strained and unbalanced position.

Learning the new module syntax will be easy,
given that the concepts are similar to CommonJS.
However, making use of JavaScript modules in
production is a bit more complicated. To use ES
2015 module syntax, you'll have to use a transpiler
(e.g. babel) or a tool that uses a transpiler (e.g.
webpack or systemJS).

If you think about it, the addition of a native module
system brings the browser in line with Node and the
possibility of using a single, native, module syntax
on both the client and the server. I'm hoping to see
this materialize to some degree in 2016 so we can
stop pretending with things like CommonJS and
browserify. It would seem browser vendors are even
in a holding pattern with things like HTML imports
until ES 2015 modules are flushed through the
developer communities.

https://hacks.mozilla.org/2015/08/es6-in-depth-modules/
https://twitter.com/codekult
https://en.wikipedia.org/wiki/CommonJS
https://hacks.mozilla.org/2015/11/an-update-on-web-components-and-firefox/
https://hacks.mozilla.org/2015/11/an-update-on-web-components-and-firefox/
https://developer.mozilla.org/en-US/docs/Web/Web_Components/HTML_Imports

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 6

One day, in the future, the native JavaScript module
syntax will work everywhere and the non-native
module formats (e.g. commonJS, AMD, UMD) along
with the non-native loaders (browserify, webpack,
systemJS) will be an unnecessary complexity from
the past. In 2016, this will start to materialize, but
the ideal is still many years away from being fully
realized. Thus, in 2016, solutions like webpack and
systemJS will still be the stopgap used to deliver the
ideal of tomorrow.

If developers haven’t used the ES 2015 module
syntax yet, I believe they will most likely adopt it in
2016. This is mainly because the syntax is being
adopted by several popular front-end tools (e.g.
Angular 2 and Aurelia). I believe this reality will have
a massive trickle-down effect.

What will be the most used
feature in 2016, from ES 2015?

Of all the features added to the language in 2015,
which one will become the most used in 2016? I've
been asking developers this question for over a year
and there does not seem to be a mass consensus.
Some say promises. Others say generators. Many
assert a pet syntactical feature.

“Modules could have been left out for

something simpler like CommonJS.”

@assaf

I predict that the most used feature from the update
in 2015 used in 2016 will be the module syntax,
and close behind that will be promises. This would
make sense if, in fact, the module syntax is the most
important feature, as I just asserted, thus moving
forward making it the most used as well.

Of course, some people think modules could have
been left out entirely. In 2016, we'll see a lot of
developers holding on very tightly to the CommonJS
ways of doing things.

But, eventually, I believe most developers will accept
JavaScript modules and move past CommonJS.

https://twitter.com/assaf

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 7

Will JS to JS transpilers thrive in
2016?

“I like transpilers to a point. I think ES6 and

ES7 transpilers are great, but I get nervous

when the type system is significantly different

between the source language and the

transpiled target language. TypeScript, for

instance, really seems icky to me.”

@softwarefloyd

JS to JS transpilers are here to stay and it seems
that almost everyone from the questionnaire
unanimously agreed that Babel is the best
JavaScript-to-JavaScript transpiler. In fact, some, like
@softwarefloyd were even fearful of anything that
did more than Babel.

In 2016, I think you'll see more and more developers
turning to transpiler source code for the
following reasons:

1	 A build step is more than likely already
in place and adding in a transpilation
step is a trivial addition in return for
usage of newer ES 2015 features.

2	 New tools are making use of ES 2015
features (e.g. Angular 2, Aurelia, etc...)
and to use these tools you'll likely need
to accept a transpilation step.

3	 Web developers will want to make use
of the new features introduced in the
language for browser code. To do this
in 2016 they will have to transpiler ES
2015 source code to ES 5 production
code. (Keep in mind that Node
developers using 5.x+ get a lot of ES
2015 features without transpiling.)

There does seem to be a small faction of developers
who don't want to transpile code and would prefer to
wait for proper support, believing that ES5 is enough.
In 2016, the nudging from tools using ES 2015 and
the usage of ES 2015 features in npm modules
should negate some of this thinking.

https://twitter.com/softwarefloyd?lang=en
http://babeljs.io/
http://developer.telerik.com/featured/hail-babel-the-transpiling-overlord/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 8

Will run times fully support
ES2015 by the end of 2016?

Realistically complete ES 2015 support could take
between two and three years given the module
loading hurdle. However, modern browsers and
Node might just reach 90% to 95% support by the
end of 2016 given the rate of change in 2015. Most
of the people in the questionnaire had a similar
opinion. I believe this is due to the faster than normal
rate of change provided by modern browsers and
transpilers supporting proposed experimental
features before they land.

The thing to note here is that the most important
feature from ES 2015, module syntax, will likely
be the feature that takes years to become widely
supported due to the loader. Of course, this is the
exact reason that large numbers of developers will
be turning to a transpiler in 2016 using a loader
polyfill.

In 2016, which feature from ES
2015 will developers
wish hadn't been added?

Given the gap between ES5 and ES6, it would seem
the developer community generally believes that
the new additions to the language were mostly all
(badly) needed. The only exception here that seems
contentious and I believe will remain contentious into
2016, is the class syntax.

JavaScript does not have classes. And, it doesn’t
need classes. You knew that, right. However, class
syntax was added in 2015 and its just syntactical
sugar over the top of the prototype-based
inheritance that has always been there.

In other words, class syntax is mostly just short
cut code. Its inclusion and purpose is to provide a
simpler and clearer syntax for creating objects and
dealing with their inheritance for those who want
it. So, what's the big deal? Take it or leave it, right?
The benefits to those who come to JavaScript from
a traditional OOP language are obvious. So, why is
class contentious?

A kind of tug-of-war is at work here. On one side, you
have those who think classes are good and on the
other side, you have those who think classes are evil.
Will this tug-of-war be settled in 2016? Absolutely not.
Why? Because not everyone approaches the design
of a program with the same principles. In 2016, those
who don't think like an “OOP” developer will continue
to think this way. Those who do will continue to think
in terms of strict encapsulation and internal state. And,
well, everything will be ok. Good software will still result
from both camps.

In 2016, grumbles about the addition of class syntax
will continue and these anti-class developers will

https://github.com/tc39/tc39-notes/blob/master/es6/2014-09/sept-25.md#loader-pipeline
https://github.com/tc39/tc39-notes/blob/master/es6/2014-09/sept-25.md#loader-pipeline
http://kangax.github.io/compat-table/es6/
http://babeljs.io/docs/plugins/transform-async-to-generator/
http://babeljs.io/docs/plugins/transform-async-to-generator/
https://github.com/whatwg/loader/
https://github.com/ModuleLoader/es6-module-loader
https://github.com/ModuleLoader/es6-module-loader
http://raganwald.com/2014/01/19/prototypes-are-not-classes.html
http://www.2ality.com/2011/11/javascript-classes.html
https://www.nczonline.net/blog/2012/10/16/does-javascript-need-classes/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 9

continue to lobby that it shouldn't be used. But, if
this is the most contentious part of the massive
update in 2015, I think the outlook for 2016 is good.
Mostly because I think this points to the fact that
those developing the language crafted an almost
perfect update. The addition of the class syntax
is a principled disagreement that is larger than
JavaScript itself. If this is the only issue in 2016 with
the update from 2015, then we are in a really good
spot.

And consider that even if one can't stand its addition
to the language, I would hope the gateway drug
value of adding it is obvious. In other words, by
providing class syntax, the JS hook can be set so
those who abstain from classes will have a captive
audience (i.e. actual users) in order to mount a case
against them. But, again, the addition of it could
just lead to a mass migration to JavaScript in 2016.
In fact, I predict we'll see the usage of JavaScript
continue to rise in part to additions to the language
like class syntax. Once JavaScript is adopted, the
normal debates of course will continue.

What will be the most important
proposal finalized in 2016
and released in ES 2017?

Well, if you haven't heard, it won't be Observables.
Apparently, that proposal cooked too long and burnt
itself out of existence. To date the proposals likely to
be added to the language next are:

•	 Exponentiation Operator
•	 Array.prototype.includes
•	 SIMD.JS - SIMD APIs + polyfill
•	 Async Functions

The first thing you should notice is that ES 2016 will
not bring the same scale of changes that 2015 did.
In fact, from 2016 onward, TC39 is only planning on
evolving the language yearly with slight changes.

Before the news that the Object.observe
proposal would be withdrawn, many believed that
this addition would be the most important. In 2016, I
imagine this will continue to be debated to a degree.
With Object.observe out of the running, the next
critical proposal is the Async Functions.

Most of 2016 for many developers will be spent
learning the additions made in 2015 and how not
to get “ninja stupid” with so many changes to the
language. If any time is left in the coming year, I
predict that most people will be learning and using
async functions and promises.

http://www.2ality.com/2013/07/defending-constructors.html
https://medium.com/javascript-scene/how-to-fix-the-es6-class-keyword-2d42bb3f4caf
https://esdiscuss.org/topic/an-update-on-object-observe
https://esdiscuss.org/topic/an-update-on-object-observe
https://esdiscuss.org/topic/an-update-on-object-observe
http://www.2ality.com/2015/11/tc39-process.html
https://github.com/rwaldron/exponentiation-operator
https://github.com/tc39/Array.prototype.includes/
https://docs.google.com/presentation/d/1MY9NHrHmL7ma7C8dyNXvmYNNGgVmmxXk8ZIiQtPlfH4/edit#slide=id.g197bdc473_080
https://github.com/tc39/ecmascript-asyncawait
https://github.com/tc39/ecmascript-asyncawait
https://youtu.be/RO1Wnu-xKoY?t=23m1s

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 10

Will one JavaScript package
manager rise, destroying
all others?

A topic of discussion in 2015 that will bleed over
into 2016 (and likely into 2017) will be that of a
single package manager for JavaScript. In some
ways, this is a debate over the viability of a single
package manager that could service both Node
developers and front-end developers. Many believe
that everyone should just use npm and abandon
things like Bower. I find the perspective very narrow
and lacking concern for a large group of website
developers who don't build complex applications.

I think a single package manager servicing both
the Node developer and front-end developer, if
even possible, would first have to settle on a single
module format for JavaScript. I'm not convinced a
single package manager is ideal, but if it were there
would have to be an agreement on the syntax used
to construct the modules contained in the packages.
This is why many have jumped on the commonJS
and browserify bandwagon. Of course, the native
syntax is the only logical path forward. I believe the
quicker we can burn the commonJS wagon down,
the faster we can get on to the native solution.

Additionally, a single package manager would have
to treat both the front-end developer and the Node
developer as first class citizens. Is that even possible?
By combining the needs of both into a single tool, do
we not risk causing more confusion and problems
than fragmentation itself?

The questions I am raising will continue to be asked
and answered in different ways for much of 2016 and
likely remain unsolved until native module syntax
and loading is natively implemented.

So, the question that is left is this: what should one
do in 2016 while this is all in flux?

Personally, I think the path forward is to use
something like systemJS and jspm.io. Why? Because
systemJS is biased towards and tracking with the
native module syntax and loading progress. Layer on
jspm.io and you have a stopgap package manager
that will allow the loading of packages from npm,
GitHub and even bower (with plugin). I favor jspm.io
because I don't think we know what the future holds
for JavaScript package managers and jspm.io can
literally sit on top of this issue and be future friendly
to whatever is to come. So will npm win or will bower
win? I say, “Who cares?” - just use jspm.io and pull
from both if you need too. This alleviates some of
the duplication that developers have suggested
convinced them to only use npm.

https://www.npmjs.com/
http://bower.io/
https://github.com/systemjs/systemjs
http://jspm.io/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://github.com/whatwg/loader/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 11

However, from what I can determine, my opinion on
the matter is in the minority. A lot of people agree
with the sentiment from @runspired:

“Yes. Npm has won. It's not perfect, but there's

a path to get it there, and we should work on

improving npm instead of starting over.”

@runspired

A lot of developers are flocking to webpack and
militantly shaming developers into using npm alone.
Both webpack and systemJS solve the same core
problem. I'd suggest you stay clear of dogma and
simply pick whichever one makes the most sense to
you and then use it to write ES 2015 modules. As for
using npm alone, I say do what works best for you
but don't dogmatically push a subjective mantra of
npm alone onto others. Many developers don't even
need a package manager, they just need a simple
tool to install third party tools/code/plugins.

I've found that between systemJS & jsmp.io, there
is nothing lacking in terms (except it's a stopgap)
of module syntax, packaging and loading. However,
some will argue that webpack does more. And it
does, in fact, do more. And, if you want more, use it.
Personally, if I need another tool to do another job,
like serving and reloading my development code, I'll
go get a focused tool that is not tightly coupled to
my loader/dependency manager.

What issues will remain in 2016
that future updates to
JavaScript will need to resolve?

It's clear that even with the major update in 2015,
2016 will continue to be a year where we fill gaps in
the language. In non-critical order, the unresolved
topics below seem to be the pressing issues in 2016:

•	 How native modules are loaded in a browser
will need to be ironed out and an initial
implementation will need to commence.

•• We haven't fully scratched the async itch. While,
await functions will help, the journey is far from
complete. Promises and eventually streams
will need to be used throughout (e.g. HTTP
promises). And O'yeah, canceling a promise. That
might be a good idea.

•	 Concurrency and parallelism (i.e. parallel
processing) in JavaScript will need to be
addressed and webworkers will have to step up
or step aside.

https://twitter.com/Runspired?lang=en
https://webpack.github.io/
http://blog.getify.com/concurrently-javascript-1/
http://www.2ality.com/2013/12/paralleljs.html

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 12

•	 The should we or shouldn't we debate about
immutable native objects will hopefully conclude.

•	 Lastly, payoff whomever it takes for all browser
manufacturers to treat the JavaScript runtimes
in a mobile browser with the same status as a
regular browser.

As you can see, we have more work to get done in
2016.

The last thing I'd like to note is that in 2016 we might
also start to experience feature overload resulting
in significantly different styles used for constructing
JavaScript applications. Thus, in 2016 we'll need
to update our thinking and education on several
variations of styles that facilitate best practices.

I'm not alone in this observation, Brendan shares the
same concern:

“My concern is that there are now even more

ways of doing things, so it is not as easy to

squint at some code and know the layout and

style.”

Brendan

With more ways of doing things right, it won't be as
easy for JavaScript developers to jump from project
to project. In 2016, we'll have to address this potential
issue.

https://github.com/sebmarkbage/ecmascript-immutable-data-structures
https://github.com/sebmarkbage/ecmascript-immutable-data-structures

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 13

Most believe, as I do, that in 2016 JavaScript will
further its ubiquitous seeding by replacing more
and more languages that in the past have been
used to create native applications. My prediction is
developers will turn to solutions like NativeScript,
React Native and Electron to create native
applications precisely because they want to write
JavaScript alone.

JavaScript is the language of the web. What if in
2016 JavaScript became the language of native
applications? If you find that to be an impossibility,
I'd suggest you start wrapping your head around
things like NativeScript.

“I think WebAssembly, once available in all

browsers, will start freeing people up to think

about alternatives to JavaScript. The ability

to compile down to WebAssembly and deliver

that to the browser means we'll see people

experimenting with Python, Java, Ruby and

more, being written directly for the browser.

Once that happens, all bets are off on the

future of JavaScript.”

Nicholas C. Zakas

Will JavaScript continue to rise in
use?

I don't have and I can't find a persuasive reason
or opinion that would lead me to believe that
JavaScript's popularity and usage will dwindle in
2016. It would seem that in terms of the immediate
future, the consensus from the questionnaire
concludes that JavaScript will remain on center stage
in the spotlight in 2016. Beyond 2016, some, like
Nicholas C. Zakas, were willing to forecast a potential
decline.

The reality is most people believe JavaScript will
continue its dominating march in 2016 to becoming
the most used programming language in the world.
I should, however, mention that as Zakas mentions,
there are whispers that web assembly could
potentially cause a major disruption. Keep an eye on
this!

https://www.nativescript.org/
https://facebook.github.io/react-native/
http://electron.atom.io/
http://docs.nativescript.org/getting-started
https://www.udemy.com/nativescript-101-a-quickstart-to-building-mobile-apps/learn/
https://www.nczonline.net/
https://medium.com/javascript-scene/what-is-webassembly-the-dawn-of-a-new-era-61256ec5a8f6#.o62udfpj2
https://en.wikipedia.org/wiki/WebAssembly

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 14

Frameworks
JavaScript developers stand at the edge of a
great divide. On one side are legacy browsers,
differing standards, competing module systems
and ES5, a language woefully inadequate for
building modern applications. On the other side are
evergreen standards, compliant browsers and ES6,
a monumental leap forward that brings JavaScript
into the age of legitimate application development
languages.

Many developers are already beginning to cross
this chasm. The bridge on which they migrate is
composed of JavaScript libraries and frameworks.

Libraries and Frameworks

Web developers have long relied on libraries and
frameworks to supplement APIs and functionality
that browsers either don't provide, or don't
implement consistently. The recent rise in popularity
of the JavaScript language has resulted in what is
commonly referred to as a “Cambrian Explosion” of
JavaScript libraries, frameworks and miscellaneous
tools.

There has been some debate over the true
popularity of this Cambrian Explosion in JavaScript.
Is JavaScript really as popular as it appears to be? It
turns out this is rather difficult to measure.

IEEE Spectrum ranks Java as the most popular
language, with C as a close second. This measure is a
combination of GitHub stats, CareerBuilder postings
and their own IEEE Xplore library. This measurement
appears to be more of a “market value” of language
proficiency.

http://spectrum.ieee.org/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 15

Redmonk, which measures languages relative to
one another on GitHub and StackOverflow, ranks
JavaScript just under Java as of June 2015.

GitHut, a site that ranks over 2 million active
repositories on GitHub, ranks JavaScript as the
language with the most active repositories and total
pushes. Detection for languages in repos is done by
the GitHub Linquist library.

It's this last GitHub statistic that pulls the curtain on
the state of JavaScript frameworks and libraries. The
situation is critical mass.

http://redmonk.com/
http://githut.info/
https://github.com/github/linguist

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 16

Critical Mass

JavaScript developers are deluged with a simply
astonishing amount of third party software. Even
more interesting is the fact that almost the entirety
of these third party libraries is open source. The
net result is an environment in which it is extremely
difficult for companies to pick a set of JavaScript
tools on which to build the digital portion of their
business.

There is also very strong sentiment behind all of
the numerous frameworks. The rhetoric around
which framework or library is the “right way” to
build applications makes it even more difficult to
find the signal in the noise. Furthermore, creators of
frameworks and those that adopt those frameworks
are hesitant to honestly critique their choice.

For this article, we asked several key developers in
the community to help us gauge the future of some
of the most popular third party libraries available.
Some of these developers are the very authors of
these frameworks, and some are implementers with
a lot of experience on real world projects.

jQuery

I think there's a huge collective anxiety—a

sort of sunk-cost fallacy—at play with web

developers. We invest deeply in some tool,

and so we're eager to justify, to ourselves

and others, why the decision to use one tool

over another was rational. I think this makes

it hard to have a good dialog about how tools

compare.

Brian Ford—Angular Team

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 17

Whether or not you find yourself a fan of jQuery, it
cannot be denied that jQuery is still the most popular
and widely used JavaScript library in the world. At the
time these words are being typed, it is still the most
starred repository on GitHub.

jQuery is now a decade old. In the last year, it has
weathered some rather heavy criticism claiming that
it is no longer necessary.

In his recent article, “The Relevance of jQuery:
There And Back Again,” Cody Lindley, author of
“JavaScript Enlightenment, ” writes that, “jQuery is as
relevant today as it was when it was first written. ”
Lindley goes on to explain that this is not because
developers need jQuery to perform basic DOM
manipulation or XHR operations, but because jQuery
provides a much cleaner API than native DOM code.

jQuery predictions for 2016

The BuiltWith site shows a steadily growing usage of
jQuery. There is no inclination that the use of jQuery
is in decline. There is one jump in the top 1 million

“jQuery is simply a helpful library that you can

optionally use when scripting HTML elements.

And the fact is, most developers choose to

use it when scripting the DOM because the

API helps them get more things done with less

code.”

Cody Lindley: jQuery's Relevancy—There and Back Again

sites during the month of October, but the overall
indication is a steady rise. Over 70% of the top 10K
sites still use jQuery.

http://developer.telerik.com/featured/jquerys-relevancy-there-and-back-again/
http://developer.telerik.com/featured/jquerys-relevancy-there-and-back-again/
https://twitter.com/codylindley
http://builtwith.com/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 18

This is a clear indicator that jQuery usage will
continue to rise during 2016. Evidence to suggest
otherwise is anecdotal at best.

The level of hype around jQuery will continue to die,
but the actual utility of the library will remain intact.

Even newer frameworks and libraries offer some
level of DOM abstraction. For instance, Angular 1.x
uses jqLite, which is essentially the DOM selection
and manipulation subset of jQuery. The API is rather
identical to the actual jQuery library.

React

We would be remiss if we started our discussion of
popular JavaScript libraries and we didn't open with
ReactJS. The hype that React has garnered in just the
past 12 months is nothing short of astounding. Add to
this the list of big companies such as Netflix that are
using React, and it cannot be denied that React has
captured the hearts and minds of developers.

ReactJS is a far simpler library than its larger
brothers and sisters such as Angular or Ember.
However, it also does far less.

React is meant to the just the V in any MV*
implementation. That means that React is primarily
concerned with how visual components are built and
rendered, and doesn't deal with the flow of data or
the actual physical structure of the application. In
order to achieve that, a full framework such as Flux
or Redux must be added to the React equation.

The main features of React are the virtual DOM,
and the way that it handles data binding. However,
the appeal to developers is the large, high load
applications that are already running on React. These
would be applications like Facebook and Instagram.
The appeal then becomes, “If it's good enough for
Facebook, it should be good enough for my project
too.”

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 19

React predictions for 2016

Expect the adoption of React to remain strong
among large consumer applications. As developer
Elijah Manor pointed out, React was picked for the
Dave Ramsey Every Dollar project based on its
existing use in large, well-known applications.

“One compelling reason, and the reason

we started using [React], is that we were

launching a new product called EveryDollar.

We were expecting a lot of load initially [...].

We wanted something that would scale well.

React was really new, but it came out by

Facebook and Instagram, and obviously, those

are two applications that scale really well.”

Elijah Manor—Polymorphic Podcast

“I see a willingness of many frameworks or

libraries to assist developers in abandoning

the authoring of SOLID code. Decades of

learning should be taken seriously into account

when you create a framework. React is again

an example of this. We've learned hard lessons

about not mixing JavaScript into our HTML.

So, why now the eagerness to embrace mixing

HTML into our JavaScript?”

Rob Eisenberg—Creator of Aurelia

Developers can expect to see continued controversy
around React's model of mixing markup with
JavaScript, which will probably reach a peak point
during 2016. While some developers like that the
logic and markup for a component is contained
in the same place, many have pointed out that it
violates separation of concerns, which has long been
a fundamental tenant of programming in general.

2016 will also be the year of commercial React
components. While the React ecosystem is quite
large, it is fragmented and is quickly going the way

of jQuery plugins. Developers will begin to look for
comprehensive solutions backed by a partner.

Enterprises will continue to watch React from a
distance in 2016. The fact that React is such a
small part of the overall application solution leaves
developers to stitch together data access, routing
and all of the other components needed for a
full application stack. This will keep larger, more
conservative shops from adopting React, in light of
the lack of a complete story out of the box.

Developers should make it a point to learn
React in 2016. It's likely that the model React has
introduced will begin to bleed into other libraries and
frameworks.

The React team did not return a request for input on this article.

https://www.everydollar.com/
http://polymorphicpodcast.com/shows/react
http://react-components.com/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 20

AngularJS

“Our main motivation for Angular 2 is to do

the things in Angular 1 that were impossible

without significant breaking changes in Angular

1 apps. Mostly, we wanted to improve speed

and robustness. We spent most of 2015 getting

the core concepts in Angular 2 right. We took

everything we learned from Angular 1, and from

other open source projects in the same space

(React, Ember, etc.). We're using a benchmark-

driven approach. We're already as much as

10x faster than AngularJS 1, and we're only

improving.”

Brian Ford—Angular Team

The rapid rise of Angular during 2014 was
remarkable to watch. It was remarkable because it
was one of the rare times that the enterprise sector
has so completely adopted an open source library.
Angular seemed to answer so many outstanding
questions for developers coming from more
structured languages, such as Java or C#.

Angular has received some amount of criticism for
its documentation and performance. Some feel that
Angular is over-engineered and too complicated
when compared with other frameworks. However,
that has not stopped its adoption and legions of
adoring fans.

The Angular ecosystem also grew drastically.
Currently, there are 132,639 questions on
StackOverflow that are tagged with Angular.
Compare that with 6,969 for ReactJS and 19,031 for
Backbone. There are several commercial UI libraries
for Angular, including Progress Kendo UI.

Angular predictions for 2016

With the announcement of the impending Angular 2
release, developers can safely expect to see the full
release of Angular 2 in the first quarter of 2016. Brian
Ford from the Angular team explained the intentions
behind Angular 2, and what was accomplished in
2015.

http://eldar.djafarov.com/2014/04/angular-is-evil-overengineering/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 21

The Angular documentation and tooling will also
improve significantly in 2015. The Angular team
will spend a non-trivial amount of time helping
developers to migrate from Angular 1 to Angular
2. “If you try to get started with Angular 2, you'll
probably notice it has a lot of rough edges. We're
working hard to make the experience as productive
and enjoyable as possible,” says Ford. “A huge part
of that [improving tooling, documentation and
ecosystem] is going to be making migration a good
experience, which will involve writing guides, building

“Rather than invent non-standard tech, or

even buck against the web itself like some

libraries do, we've chosen to embrace the web

platform itself and to help developers use it to

build future-compatible apps.”

Rob Eisenberg—Creator of Aurelia

tools and making improvements to AngularJS 1.x to
support migration.”

It's unlikely that swaths of developers will abandon
Angular 1 for 2 in 2016, even if a smooth migration
path is forged. Angular 1 will have a long tail,
especially in the enterprise, where we will likely
continue to see Angular 1 thrive in 2016.

Special thanks to Brian Ford from the Angular team for his input on

this article.

Aurelia

Rob Eisenberg made Internet headlines in April
of 2014 when he announced plans to join the
Angular core team, with the intention of merging
Durandal into Angular 2. He made headlines again
in November when he announced that he would be
leaving the Angular team to work on a JavaScript
framework of his own, called Aurelia.

Aurelia tries to embrace existing/emerging standards
to provide a full application framework. It relies
heavily on ES6, a standards-based module loader
and a component model that is compatible with the
web components standard.

https://twitter.com/briantford

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 22

More large enterprises will adopt Aurelia based
on the fact that it is a supported product. So far,
larger entities whose core business proposition is
not technology have been slow to adopt JavaScript
frameworks since they are for the most part
supported by the community. Aurelia's model of
having a core team of developers and offering
support will cause many enterprises to choose it
in favor of alternatives, specifically for the business
partnership that Aurelia offers.

Special thanks to Rob Eisenberg from the Aurelia team for his input

on this article.

The most interesting thing about Aurelia is that
it's possible to build applications using mainly ES6
classes, and not referencing the Aurelia framework
at all. This goes a long way to make sure that
applications are “future proof.” When the next
emerging standard arrives, or a different framework
is used in the future, code written in Aurelia can be
directly ported since it is primarily just ES6 classes.

Aurelia predictions for 2016

Developers will begin to adopt ES6 in droves starting
in 2016. This will cause Aurelia to gain significant
momentum, specifically in the .NET community
and developers who are familiar with Eisenberg's
previous work, such as Caliburn.Micro.

Aurelia has aggressive plans to be far more than
a single-page app framework. “We've always seen
Aurelia as a platform and ecosystem for building
rich interactive applications on every device. In 2016,
you'll see the next phase of that vision realized as
we move beyond Aurelia's v1 release and on to
other things we're planning,” said Eisenberg. This
may mean that Aurelia has plans to provide a similar
JavaScript Native approach for mobile apps, similar
to NativeScript and React Native.

https://twitter.com/eisenbergeffect
http://www.nativescript.org/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 23

Progress Kendo UI

Kendo UI was launched in November of 2011, strictly
as a set of jQuery based user interface components.
At the time, developers were struggling with
drastically different browser versions and feature
support, as well as a wilderness of jQuery plugins
that made it hard to assemble a cohesive application.
Kendo UI was built on the premise that a developer
could leverage a single set of UI components that
would be guaranteed to work across all browsers, all
the way back to IE 7.

While Kendo UI started as a UI library, it grew
to include binding, routing, views, models and
everything else developers needed for a full
application solution. Despite offering those
capabilities, developers continued to gravitate
towards community standard frameworks, such as
Angular, Ember and Durandal. However, they still
wanted access to the robust widgets that Kendo UI
offered.

Today Kendo UI is the largest open source jQuery-
based UI library available. It is also a very successful
commercial	 library, specifically in the areas
of Data Grids, Schedulers, Data Visualization and
Document Processing.

Kendo UI predictions for 2016

Kendo UI will begin to decouple itself from its
own binding framework in 2016 to provide better
integration with Angular, React, Ember, Aurelia and
any other framework that developers prefer to use.
Kendo UI will focus on being a set of UI components,
and offer abstractions for the various larger
frameworks so that it can be plugged in anywhere.

“There are too many frameworks and not

enough libraries. We need reusable, functional

blocks that play well together.”

Tsvetomir Tsonev—Kendo UI Team Lead

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 24

Kendo UI will continue to invest heavily into
extremely complex UI widgets, such as the Grid,
PivotGrid and Spreadsheets widgets. This will
entail adding new features and continuing to refine
these components. Also, look for Kendo UI to ship
additional complex widgets, such as an Interactive
Timeline.

Kendo UI will also deliver more sample applications
for other notable frameworks, such as Angular,
Angular 2 and React.

Special thanks to Tsvetomir Tsonev from the Kendo UI team for his

input on this article.

Ember

Ember has long been a staple of the JavaScript
framework ecosystem. Grown from the remnants
of SproutCore, it is an industry standard framework
with many notable implementations. Although
popular sites such as Discourse, Groupon, Vine
and even the Apple Music desktop application use
Ember, it does not get the same amount of attention
as frameworks such as React. This may be due in
part to its sheer age.

Ember also places a premium on future web
standards. It has been an early adopter of many of
the standards in future versions of JavaScript, such
as promises. In addition, one of Ember's creators,
Yahuda Katz, is on the TC39 committee, which is
responsible for future versions of JavaScript.

Ember also tries to help developers write better
code. This is done via use of a rigid and opinionated
framework that seeks to guide developers into best
practices, so that they fall into the “pit of success.”

Ember predictions for 2016

Ember will continue to be a “sleeper” framework.
While it won't be getting nearly as much airtime as
its React and Angular peers, it will be the choice for
large applications that need to service users at a
massive scale. Look for other large sites to choose
Ember for their next releases.

https://twitter.com/t_tsonev?lang=en
http://sproutcore.com/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 25

Ember will serve as the diametric comparison for
React in terms of separating logic from markup.
More and more developers will begin to draw this
comparison in their own minds before deciding

if they want to blend all of their component logic
together as React prescribes, or separate it out as
much as possible the way Ember dictates.

The Ember team did not respond to a request for input on this article.

Meteor

Meteor is another library that can't really be
compared to your standard application frameworks
such as Angular, Ember or Aurelia. While the
aforementioned all do Universal or Portable
JavaScript (server-side rendering), Meteor take the
concept the rest of the way by providing both the
server tier and database. It is a true application
platform.

Meteor falls into the “Full Stack JavaScript” camp. It
uses Node on the server-side, along with MongoDB.
It uses an in-browser version of Mongo called
MiniMongo to allow client-side code direct access to
the data store. Developers are then free to choose if
they want their code evaluated on the server, or the
client.

The ecosystem around Meteor is currently centered
around a Meteor proprietary package management
system, Atmosphere. Developers can add the

necessary meta data to their libraries so that they
are compatible with the Atmosphere format. These
libraries can then be pulled into any project with a
simple command.

Meteor predictions for 2016

Meteor will begin to announce large-scale
applications that currently use the platform. This will
be the first time that many developers are aware of
Meteor as they learn of some very high profile sites
that are built on the technology.

Meteor will offer a free tier on its hosting platform,
Galaxy. Right now, the cheapest package for Galaxy
subscribers is a non-trivial $495 per month.

https://medium.com/@mjackson/universal-javascript-4761051b7ae9#.3trxseksf

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 26

Look for Meteor to make a big announcement in
2016 regarding the mobile web. Currently, mobile
support in JavaScript frameworks is not quite what
it is on the desktop. The mobile web is still a far cry
performance wise from native apps, and this is a gap
that Meteor would like to close.

Special thanks to Uri Goldshtein from the Meteor team for his input

on this article.

“I believe that the biggest [gaps in existing

frameworks] is true mobile support. We are

still not there. There are many paths for

[closing that gap] but it is still not a better

experience than native apps.”

Uri Goldshtein—Meteor Team

Web Components

This wouldn't be a proper article without considering
the implications on all of these frameworks when
it comes to Web Components. Web Components
are the technologies that are generally thought of
as the emerging standards for creating interface
components. However, Web Components can be
used to create any piece of functionality that is
possible with JavaScript, HTML and CSS.

In his article, “Why Web Components Aren't Ready
For Production...Yet,” TJ VanToll describes several of
the major drawbacks to Web Components that have
so far kept them from being adopted by developers.
The main hang-up so far has been browser support.

https://twitter.com/urigoldshtein
http://developer.telerik.com/featured/web-components-arent-ready-production-yet/
http://developer.telerik.com/featured/web-components-arent-ready-production-yet/
https://twitter.com/tjvantoll

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 27

At one point, despite agreement from both Microsoft
and Mozilla, Apple removed Shadow DOM from
Safari altogether. Unfortunately, since users have no
choice of browsers on iOS, Mobile Safari currently
holds the rest of the web hostage. If a technology is
not supported in Mobile Safari, it's likely that it will
not be used by developers, especially if it's as hard
to polyfill as Web Components are.

“The obvious reason to avoid Web Components

is browser support. Although Web Components

landed in Chrome 36, they only have partial

support in Firefox, and they are not present

in Safari or IE. Because cross-browser support

won’t be possible for a very long time, if

it happens at all, a polyfill is a long-term

necessity for developers that want to use Web

Components outside of Chrome.”

TJ VanToll—Why Web Components Aren't Ready For

Production...Yet

“Web Components” is an umbrella term for

a bunch of upcoming APIs, and there's more

than one way to break apart your app into

smaller parts. The general idea is for Angular

to pragmatically adopt new browser features as

they become more available.”

Brian Ford—Angular Team

Web Components predictions for
2016

All major browsers will support Web Components by
the second half of 2016. This prediction is based on
the recent addition of Shadow DOM to WebKit.

All JavaScript frameworks will begin to swap out their
own technology for Web Components standards as
those standards become widely supported.

https://www.webkit.org/blog/4096/introducing-shadow-dom-api/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 28

Polymer

The Polymer project from Google is often
mistaken for, and used interchangeably with Web
Components. Polymer is an application framework
that is built on the concept of Web Components, and
attempts to polyfill certain Web Components APIs
(such as Shadow DOM) for browsers where those
APIs don't exist.

Despite Google throwing what appears to be the
entirety of their influence into the Web Components
arena, Polymer has not yet garnered mainstream
support. This is most likely due to the same browser
compatibility issues that Web Components suffer
from.

Google has created an impressive list of components
for Polymer that encompasses UI, animation and
even seamless integration with Google's own APIs.
Developers looking to adopt Polymer will find
virtually everything they need for their applications,
especially if they are interested in doing Material
Design.

At the 2015 Chrome Dev Summit, Google announced
that there are now 1 million sites running on Polymer.
These include some big name companies, such as
GE. It also includes many of Google's own internal
properties, such as Google Play Music.

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 29

Final developer predictions

Lastly, here are some generic predictions for
developers that I gathered based on my own
research and conversations with those who provided
input for this article.

•	 Universal/Portable JavaScript will be big in 2016,
seeing as how React, Angular 2, Meteor, Ember
and Aurelia all support it.

•	 Developers will be expected to know ES6. Learn
it.

•	 Browser compatibility will largely be a non-issue,
based on the fact that fundamental polyfilling
has essentially been mastered.

•	 JavaScript frameworks will begin to target more
than the web. This is already happening with
React Native and NativeScript. Expect Ember
and Aurelia to get in this game as well.

Polymer predictions for 2016

Expect to see Google transition the majority of
its applications over to Polymer in 2016. Google
obviously sees Web Components as a strategic
advantage. Given that it has little developer
adoption, it is clear that Google will continue to
push Web Components and Polymer by adopting it
internally.

Google will release application framework, routing
and internationalization components for Polymer in
2016. These are already on the roadmap.

Web Components will begin to take hold in the
development community during the second half
of 2016. This will cause an identity crisis for web
developers who have been coding to frameworks for
so long.

Expect to see the first batch of commercial Web
Components by the later months in 2016.

The Polymer team did not respond to a request for input on this

article.

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 30

JavaScript’s New Frontiers
In the last several years JavaScript, a scripting
language designed for use in web browsers, has
been used in an increasingly diverse set of software
applications. With JavaScript now running as server-
side code, driving iOS and Android apps, and even
controlling robotics, it’s hard to find a software
ecosystem that JavaScript hasn’t influenced.

Part of what’s driving JavaScript’s expansion into
these “new frontiers” is performance. Whereas years
ago running JavaScript on a server was unthinkable,
Google’s entry into the browser and JavaScript
engine world in 2008 sparked a performance

competition that drastically improved the speed of
the language. More recent efforts such as asm.js
have only furthered this effort.

In this article, we’ll look at what’s next for the
JavaScript frameworks being used to run server-
side JavaScript, build mobile apps and desktop
applications. We’ll get the perspective from many
key developers involved in building these solutions
directly. Let’s start by looking at what is perhaps
JavaScript’s first new frontier: Node.js.

Node.js

Node.js is an open source runtime environment
based on Google’s V8 JavaScript engine. Although
plenty of companies and frameworks had tried to
run JavaScript on the server, Node.js was the first
runtime to succeed at doing so at scale.

Node.js was first written in 2009, and has since
skyrocketed in popularity. The list of companies

using Node.js is enormous, and the recently formed
Node.js Foundation includes the likes of IBM, Intel,
PayPal and Microsoft. The Node.js package manager,
npm, became the biggest package manager in the
software world in 2014, and now contains nearly
twice as many modules as similar package managers
from the Java and Ruby worlds.

http://johnny-five.io/
http://developer.telerik.com/featured/a-guide-to-javascript-engines-for-idiots/
http://developer.telerik.com/featured/a-guide-to-javascript-engines-for-idiots/
http://asmjs.org/
https://nodejs.org/en/
https://github.com/nodejs/node-v0.x-archive/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/nodejs/node-v0.x-archive/wiki/Projects,-Applications,-and-Companies-Using-Node
https://nodejs.org/en/foundation/members/
http://www.modulecounts.com/
http://www.modulecounts.com/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 31

However, the success of Node.js hasn’t come without
growing pains. In late 2014, a group of developers
forked the popular framework, citing the lack of
active and new contributors and the lack of releases.
The new framework, io.js, quickly gained followers
and community support, leaving many to fear a long-
term fragmentation in the Node.js world. Thankfully,
those fears were averted when Node.js and io.js
merged in June 2015.

Part of the merger involved the formation of an LTS,
or a Long-Term Support plan for Node.js releases.
Under the plan, Node.js will designate one release
per year an LTS release, and will actively support
that release for a full 18 months.

Growth of npm as a package manager. Image from modulecounts.com.

http://www.javaworld.com/article/2855639/open-source-tools/qanda-why-io-js-decided-to-fork-node-js.html
https://iojs.org/en/
http://www.linuxfoundation.org/news-media/announcements/2015/06/nodejs-foundation-advances-community-collaboration-announces-new
https://github.com/nodejs/LTS
http://www.modulecounts.com/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 32

The development cycle is aimed to appease both
developers that want to stay on the cutting edge,
as well as large companies that need a stable
release they can count on for years to come. And
the development cycle has major implications for
the future of Node.js. When I asked Mikeal Rogers
from the Node Foundation what the biggest change
coming for Node.js in 2016, he had this to say:

“The new development cycle is going to be

the biggest change. We’ll have two major

releases each year, with only one of those

releases receiving Long Term Support. That’s

significantly more than before and we’ve never

truly had LTS before so this is all a big change

for developers and a new opportunity for

enterprises to expand adoption as well.”

Mikeal Rogers, Node Foundation

“A few years back I quantified the growth rate

of npm and created a predictive graph. At the

time people thought it was insane, because it

said that in a little over a year we’d have over

100K modules and that the rate of growth

wouldn’t level out. We hit 100K modules

within a few days of what we predicted, which

even I was shocked by. If you dive deep into

npm’s growth, you’ll see that what is pushing

it forward is that npm is an ecosystem of

ecosystems. It’s the best place to build sub-

platforms for a variety of use cases. Parts of

that ecosystem are leveling off but they keep

getting replaced by new, rapidly growing

ecosystems.”

Mikeal Rogers, Node Foundation

Node.js in 2016

In 2016, expect to see further adoption of Node.js and
its package manager npm. The continued adoption
of Node from large companies—Microsoft, IBM, Intel,
Progress, etc.—as well as enterprise-friendly features
such as long-term support plans, may signal a growth
in Node.js adoption in the enterprise—replacing
typical enterprise solutions like .NET and Java.

Expect the exponential growth in modules on npm
to continue as well, as npm’s recent releases have
aimed at providing better support for client-side
JavaScript, thus replacing the need for client-side

JavaScript package managers such as Bower. As
developers start registering their client-side scripts
and jQuery plugins on npm, npm’s reach will only
grow. In fact, according to Mikeal Rogers, the major
reason for npm’s growth is that it is an ecosystem of
ecosystems.

http://mikealrogers.com/
http://blog.npmjs.org/post/122450408965/npm-weekly-20-npm-3-is-here-ish
http://blog.npmjs.org/post/122450408965/npm-weekly-20-npm-3-is-here-ish
http://blog.npmjs.org/post/112064849860/using-jquery-plugins-with-npm
http://blog.npmjs.org/post/112064849860/using-jquery-plugins-with-npm

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 33

As evidence of this claim, basically every other
JavaScript solution in this article—including
Cordova, React Native and NativeScript—all use
npm as a package manager. A quick npm search
for “jquery”, “polymer”, “meteor”, or “react” can give
you an idea of the sheer scale npm operates at now.
As JavaScript grows in popularity, npm grows in
popularity. And as npm grows in popularity, so does

Node.js. The future looks bright for the software
world’s first mainstream server-side JavaScript
framework.

Let’s shift our focus to some technologies that
don’t run JavaScript on the server, but rather, use
JavaScript to drive mobile apps.

PhoneGap and Cordova

Much like Node.js was the first mainstream solution
for running JavaScript on the server, PhoneGap was
the first mainstream solution for using JavaScript
to run native mobile apps. PhoneGap was originally
created by Nitobi in 2009, and was acquired by
Adobe in October 2011. As part of the acquisition, the
PhoneGap source code was donated to the Apache
Software Foundation and the project became known
as Cordova. Today, Cordova is a free and open
source framework that many companies contribute
to, and PhoneGap is an Adobe-owned distributor of
Cordova.

Over the years, Cordova has defended itself against
a perception of bad performance, with the most
notorious complaint coming from one of technology’s
most influential people in 2012.

“When I’m introspective about the last few

years, I think the biggest mistake that we

made as acompany is betting too much on

HTML5 as opposed to native… because it just

wasn’t there.”

Mark Zuckerberg, Facebook

https://www.npmjs.com/search?q=jquery
https://www.npmjs.com/search?q=polymer
https://www.npmjs.com/search?q=meteor
https://www.npmjs.com/search?q=react
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
https://wiki.apache.org/cordova/who
https://wiki.apache.org/cordova/who
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 34

In addition to company provided performance aids,
new features provided by mobile OS makers, such
as Android’s auto-updating web views and iOS’s
new WKWebView API, have greatly improved the
Cordova performance situation. With that in mind, I
asked Brian LeRoux of Adobe about what’s next for
Cordova.

Cordova in 2016

Much like Node.js, Cordova’s stability will appeal to
large companies, many of which are just dipping
their toes into the waters of mobile development.
The Cordova approach to building mobile apps with
HTML, CSS and JavaScript will continue to appeal to
web developers, especially when compared to native
development options involving Xcode and Android
Studio.

The Telerik Verified Plugins Marketplace

Since 2012, a number of companies have stepped in
to attack this performance problem. This includes
performance-minded UI frameworks like Ionic,
Onsen, and Kendo UI Mobile, tooling improvements

from Progress and the PhoneGap team, new web
views such as those provided by Crosswalk, and
high-quality plugins, such as those found in the
Telerik Verified Plugins Marketplace.

“Cordova has grown very deliberately stable.

We strive to keep things simple, push the

features out to the plugins interface, and stay

on top of platform upgrades like Android

M and iOS 9 as much as possible. It took a

few years of thrashing, but ‘small modules’

mindset is beginning to take hold which makes

me happy. The end dev audience won’t see

this unless they extend Cordova with their

own distribution.”

Brian LeRoux, Adobe

http://developer.telerik.com/featured/android-5-0s-auto-updating-webview-means-mobile-apps/
http://developer.telerik.com/featured/why-ios-8s-wkwebview-is-a-big-deal-for-hybrid-development/
http://developer.telerik.com/featured/why-ios-8s-wkwebview-is-a-big-deal-for-hybrid-development/
http://brian.io/
http://ionicframework.com/
https://en.wikipedia.org/wiki/Onsen
http://demos.telerik.com/kendo-ui/m/index
http://developer.telerik.com/featured/the-state-of-hybrid-mobile-development/
http://developer.telerik.com/featured/the-state-of-hybrid-mobile-development/
https://crosswalk-project.org/
http://plugins.telerik.com/cordova

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 35

Although Cordova continues to grow in popularity,
its development approach is being challenged from
two different angles. The first is from Google, who
is pushing the concept of progressive apps, or true
web apps with native-like features such as splash
screens, home screen placement and offline access.
Progressive apps are still in their early days, and their
features are still only offered on Chrome for Android,
however, expect Google to continue pushing the
concept of progressive apps in 2016.

The bigger immediate challenge to Cordova
development comes from a recent development in
the JavaScript world: using JavaScript to build truly
native mobile applications.

Native mobile apps

The year 2015 saw the emergence of a new category
of JavaScript-based mobile app development
known as “JavaScript Native.” Unlike Cordova- and
PhoneGap-based apps, JavaScript Native apps use
a platform’s native controls and paradigms to build
their user interfaces; there is no browser or web view
involved.

JavaScript Native frameworks attempt to offer a
best-of-both-worlds way to build iOS and Android
apps: use JavaScript to write your application logic
(rather than Java, Swift and so forth), and use a
platform’s native user interface APIs to build apps
that fit in on the native OS and offer the best
possible performance.

Example of mobile apps built with JavaScript. Check out the source

code.

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
http://developer.telerik.com/featured/defining-a-new-breed-of-cross-platform-mobile-apps/
https://github.com/NativeScript/nativescript-marketplace-demo
https://github.com/NativeScript/nativescript-marketplace-demo

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 36

React Native and NativeScript were the first
JavaScript Native frameworks to publicly release in
2015; followed by others, such as Fuse and tabris.
js. Different frameworks offer different features—
for instance React Native lets you reuse the React
JavaScript framework, NativeScript lets you access
iOS and Android APIs directly from JavaScript, and
so forth—but they share the high-level approach to
building truly native apps with JavaScript.

Although the idea of building native apps with
JavaScript can sound appealing to web developers,
JavaScript Native frameworks can have some
drawbacks when compared to frameworks like
Cordova. Here are a few:

•	 Because JavaScript Native frameworks don’t use
a browser, you have to learn framework-specific
APIs for building your interfaces, rather than
simply using HTML as you would in a Cordova
app.

•	 Because JavaScript Native apps are native apps,
memory management can be a concern in larger
apps, just like it is in native iOS and Android
apps.

•	 Finally, JavaScript Native frameworks are new,
and as such, there are fewer examples and
tutorials. The frameworks themselves are less
mature than frameworks that have been under
active development for many years.

I asked Christopher Chedeau (aka Vjeux) from the
React Native team, and Valio Stoychev, NativeScript’s
product manager, about what’s coming for their
frameworks in 2016, and both echoed this focus on
stability.

“For React Native, we exited the phasewhere

it was a crazy idea/prototype and now

enter the phase where we need to make it

solid. You should see a lot of work being

done on performance tooling/optimizations,

improvement of all the core APIs, better error

messages, fix edge cases… This way engineers

at Facebook and outside can build the high

quality mobile apps they want to.”

Christopher Chedeau (Vjeux), Facebook

“As our user base rapidly grows, we need to

make sure our users have a robust framework

they can count on for building real-world

applications. Therefore we intend to continue

working on things like performance and debug

tooling to improve the NativeScript developer

experience. Our other major focus is our work

with the Angular 2 team, which we anticipate

will continue throughout 2016.”

Valio Stoychev, Progress

https://github.com/facebook/react-native
https://www.nativescript.org/
https://www.fusetools.com/
https://tabrisjs.com/
https://tabrisjs.com/
http://developer.telerik.com/featured/nativescript-works/
http://developer.telerik.com/featured/nativescript-works/
http://blog.vjeux.com/
https://twitter.com/valiostoychev

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 37

NW.js was developed at Intel, and released back in 2011

JavaScript Native in 2016

Expect 2016 to be the year of stability and adoption
for JavaScript Native apps in 2016. As frameworks
like React Native and NativeScript solidify their
feature set, expect to see an increase in tooling
being created around those frameworks, such as
Progress Telerik Platform for building NativeScript
apps.

Time will tell whether the hype JavaScript Native
apps generated in 2015 will transfer to large-
scale usage in 2016, but the number of high-
quality applications already being built with
these frameworks (see React Native’s showcases
and NativeScript’s showcases) suggests that the
JavaScript native approach to building applications
will be around for some time to come. For companies
that need native apps with native UIs, JavaScript
Native frameworks offer a compelling option when
compared to building an iOS app with Xcode and
Objective-C/Swift, as well as Android Studio and
Java—especially considering many companies have
developers with existing JavaScript development
skills.

Overall, JavaScript Native apps represent an exciting
new frontier for JavaScript developers. No longer
do JavaScript developers have to learn native
programming languages to write a native mobile
app. And native mobile apps aren’t the only software
world JavaScript is creeping into—the same is true of
traditional desktop applications.

Desktop apps

Traditionally, if you wanted to build a Windows or
Mac app you’d use platform-specific tools like WPF
& Windows Forms, or cross-platform interfaces using
something like Java or Adobe Air. But, like every
other software ecosystem discussed in this article,
JavaScript-based solutions are slowly working their
way into this picture.

The first JavaScript-based solution in this space was
Node-WebKit, which was created by Intel and was
open sourced in late 2011. Node-WebKit, now called
NW.js because of its switch from WebKit to Chromium
internally, works somewhat similarly to Cordova, but for
desktop apps.

https://facebook.github.io/react-native/showcase.html
https://www.nativescript.org/showcases
http://nwjs.io/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 38

Electron was developed as the shell for Atom,
GitHub’s web-based text editor, and has since been
decoupled to use in any project. With GitHub’s
backing, Electron has surged in popularity, and now
has over 20,000 starts on GitHub (quickly catching
up with NW.js’s 25,000+ starts). Electron also made
headlines in 2015 as the engine behind Microsoft’s
new cross-platform Visual Studio Code IDE, and
a quick look through a list of community-created
Electron resources shows just how popular Electron
has become in the development community.

Desktop apps in 2016

Like many of the technologies discussed in this
article, the future seems bright for these cross-
platform JavaScript-based tools for building desktop
apps. With the likes of GitHub, Microsoft and even
Slack—which isn’t built on NW.js or Electron, but
also takes the approach of using web technologies

GitHub’s Electron was released in April 2015

NW.js packages up a web application in a native
shell, while providing access to native desktop APIs,
such as the file picker, window menus and so forth.
The combination lets you write Windows, OS X and
Linux desktop applications using standards-based
web technologies.

Fast forward a few years and NW.js is not the only
framework using such an architecture. In April 2015,
GitHub announced Electron, a similar framework for
building cross-platform desktop apps.

to build a native app—other companies can
feel confident building desktop apps with web
technologies. Expect projects like NW.js, Electron
and others to drive many of the new desktop
applications you’ll see launching in 2016.

JavaScript’s new frontiers in 2016

Although this article has discussed a seemingly
disparate set of topics—server-side code, mobile
apps and desktop apps—the narrative has been the
same: in the span of a few years, running JavaScript
in these contexts has gone from unthinkable to
mainstream. In less than a decade, JavaScript has
gone from a toy language for handling image
rollovers, to perhaps the world’s most popular
programming language—and there seems to be no
end to where JavaScript can go.

https://atom.io/
https://github.com/atom/electron
https://github.com/nwjs/nw.js
https://code.visualstudio.com/
https://github.com/sindresorhus/awesome-electron
https://github.com/sindresorhus/awesome-electron
http://blog.atom.io/2015/04/23/electron.html

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 Contents 39

In 2007, Jeff Atwood famously stated that, “any
application that can be written in JavaScript, will
eventually be written in JavaScript,” and that
statement has never seemed more prophetic.
JavaScript has reached places where there wasn’t
space enough to cover in this article, such as running
on hardware through projects like Johnny-Five, and
being offered as a first-class citizen for building
native apps on Apple’s recently announced tvOS for
Apple TV.

One of the reasons driving JavaScript’s growth
is the desire for a single development model to
build software for multiple paradigms. Companies,
especially small companies, cannot possibly hire
developers with the expertise to reach the crazy
number of operating systems and devices people
use today. This is even a problem at a company at
Facebook’s scale, as Christopher Chedeau shares:

“To me, the big tragedy of the developer

world today is that communities are divided

by language, we even call them ecosystems.

JavaScript, Java, Objective-C, Python, C++,

<name your favorite language>. What happens

is that there is a massive waste of effort as

each ecosystem has the same tools such

as package manager, IDE, core libraries,

knowledge base…”

“In order to solve that, my intuition is

that there needs to be a single language/

ecosystem. With React Native, we opted for

JavaScript, but in the grand scheme of things

it doesn’t matter which language it is. What’s

most important is that there is only one.”

Christopher Chedeau, Facebook

To give a concrete example, at Facebook, we need
to implement the exact same feature three times:
for Web, iOS and Android. Even worse, because
it’s so hard for one engineer to get ramped up in
those ecosystems, we usually have three people
implementing that feature. This is sad.

With JavaScript rapidly becoming a viable option
in all of these worlds—mobile, desktop, server,
hardware—it’s uniquely positioned to make this
desire to build once a reality. Time will tell whether
JavaScript’s meteoric growth continues in 2016 and
beyond, but the surge in popularity of JavaScript
tooling across software ecosystems seems to
indicate that there’s no end in sight.

With that in mind, I’ll let Brendan Eich’s famous
quote stand as the last word in this article: Always
bet on JS.

http://blog.codinghorror.com/the-principle-of-least-power/
http://johnny-five.io/
https://developer.apple.com/library/tvos/documentation/General/Conceptual/AppleTV_PG/YourFirstAppleTVApp.html
https://developer.apple.com/library/tvos/documentation/General/Conceptual/AppleTV_PG/YourFirstAppleTVApp.html
http://alwaysbetonjs.com/
http://alwaysbetonjs.com/

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

About the authors

Burke Holland

Burke Holland is a web developer living in
Nashville, TN and the Director of Developer
Relations at Progress. He enjoys working with
and meeting developers who are building mobile
apps with jQuery/HTML5 and loves to hack on
social API's. Burke works for Telerik as a Developer
Advocate focusing on Kendo UI. You can follow him
on Twitter at @burkeholland.

Cody Lindley

Cody Lindley is a front-end developer working as
a developer advocate for Progress focused on the
Kendo UI tools. He lives in Boise, ID with his wife and
three children. You can read more about Cody on his
site or follow him on Twitter at @codylindley.

TJ VanToll

TJ VanToll is a developer advocate for Progress
a jQuery team member, and the author of
jQuery UI in Action. TJ has over a decade of
web development experience—specializing in
performance and the mobile web—and speaks
about his research at conferences around the
world. TJ is @tjvantoll on Twitter and tjvantoll on
GitHub.

https://twitter.com/burkeholland
http://www.codylindley.com/
http://www.codylindley.com/
https://twitter.com/codylindley
https://twitter.com/tjvantoll
https://github.com/tjvantoll

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying mission-critical business applications. Progress
empowers enterprises and ISVs to build and deliver cognitive-first applications, that harness big data to derive business insights and
competitive advantage. Progress offers leading technologies for easily building powerful user interfaces across any type of device,
a reliable, scalable and secure backend platform to deploy modern applications, leading data connectivity to all sources, and award-
winning predictive analytics that brings the power of machine learning to any organization. Over 1700 independent software vendors,
80,000 enterprise customers, and 2 million developers rely on Progress to power their applications.
Learn about Progress at www.progress.com or +1-800-477-6473.

Progress ® Kendo UI ®

With over 70 HTML5 UI widgets and thousands of scenarios covered
out of the box, Angular integration and upcoming React support,
you can leave the complexities of UI to us and focus on the business
logic of your app.

Try Kendo UI

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://www.telerik.com/kendo-ui

	JavaScript’s New Frontiers
	Node.js
	PhoneGap and Cordova
	Native mobile apps
	Desktop apps
	JavaScript’s new frontiers in 2016

	ECMAScript 2016 (ES7)
	Which feature added in 2015 will be considered
the most critical in 2016?
	What will be the most used feature in 2016, from ES 2015?
	Will JS to JS transpilers thrive in 2016?
	Will run times fully support ES2015 by the end of 2016?
	In 2016, which feature from ES 2015 will developers
wish hadn't been added?
	What will be the most important proposal finalized in 2016
and released in ES 2017?
	Will one JavaScript package manager rise, destroying
all others?
	Will JavaScript continue to rise in use?

	Frameworks
	Libraries and Frameworks
	Critical Mass
	jQuery
	React
	AngularJS
	Aurelia
	Telerik Kendo UI
	Ember
	Meteor
	Web Components
	Polymer
	Final developer predictions

