INTEGRATED
TESTING
ENVIRONMENT

for Developers and Coding Testers

o

Telerik

TEST STUDIO

ww.telerik.com/test-studio € www.twitter.com/teleriktesting

Test Studio’s plugin for Visual Studio enables developers and testers comfortable
writing code to work in the environment where they're most productive.

Write Code Where Needed

Every test automation project will require some level of coding to be successful.
Test Studio’s record and playback creates powerful, maintainable tests, but you'll
still need to write code at some point to cover common, critical aspects such as
configuration, backing APIs, or test oracles.

Setup and Teardown/
Configuration

Complex tests require clear, flexible configuration actions
that keep the overall test suite maintainable over the

long run. Pushing setup, teardown, and configuration to
code versus the system’s interface dramatically speeds

up test execution by leveraging the system’s own internal
functionality through internal APIs, web service endpoints,
or database stored procedures.

Let’s have a look at some common scenarios where a team
might drop to code to handle specific situations.

Setup for CRUD Tests

It's critical to keep test cases, manual or automatic, focused
and granular. If we're working with tests focusing on Create,
Retrieve, Update, or Delete (CRUD) actions, then automation
at the Ul level should be focused on that specific scenario,
not getting the system ready to test.

Let's use a test which focuses on checking whether or not we
can successfully create a forum post as a new user. The test
is around creating the forum post, but we have prerequisites
for a new user and a forum to create the post in. We could
use Ul automation to log on as an administrator and create
both the new user and the forum, but that could easily

take 30-45 seconds to work through. Moreover, we have

to acknowledge that much of Ul automation is brittle by its
very nature.

Instead of using the Ul to create the user and forum for
the post, we should prefer to use existing API functionality
within the system to manage that effort for us. (We need

www.telerik.com/test-studio

to ensure those APIs are properly tested elsewhere in the
system, of course!) Using these APIs ensures our tests run
faster, and we're also keeping the overall test suite much more
maintainable.

Configuration Actions

Part of keeping your test suite lean and focused on high-value
tests is ensuring you're not testing components which don't
make sense to test. Using coded steps to disable and re-enable
these components during automated testing runs is a great
way to keep your tests smoother and targeted to functionality
your teams are writing.

A perfect example of this is the infamous CAPTCHA anti-
spambot guards. We at Telerik often get questions on how to
test CAPTCHA, and our constant response is “Don’t."” CAPTCHA
is a tool provided by a third party, and generally speaking you
shouldn’t spend your time testing someone else’s software.

Another example of a third party tool that doesn’t make sense
to automate is TinyMCE, a popular open source rich text editor.
TinyMCE has its own test suite validating its basic functionality.
Why would you want to write tests to check this within your
own system?

In both these cases it makes perfect sense to create
configuration switches in your system to turn off this
functionality and bypass it for your test automation. In
CAPCHA's case you would work with your system developers
to create configuration options to remove CAPTCHA from
workflows in your system. You can use coded steps to alter
these configuration options using your own methods, or
leveraging the various APIs under the System.Configuration.
ConfigurationManager class.

@ www.twitter.com/teleriktesting

Backing APIs

As powerful as Test Studio is, every project will end up needing some form of coded infrastructure at some point. Backing APIs
make it much easier to handle the setup and configuration tasks mentioned above. You could work with Test Studio Standalone
and use an empty coded step in an empty test as a holding place for custom utility classes and namespaces; however, that
approach is only suitable for prototypes and tiny projects.

Working with Test Studio inside Visual Studio makes it much easier to split out backing APIs/infrastructure to separate projects
where they're much more easily managed. This ensures teams are able to keep areas of responsibility properly separated out from
the tests themselves.

Extend tests

You'll also find yourself wanting to drop to code to extend your tests for various reasons. Testing particular conditions on controls
such as Trees or Grids is a fine example of this situation.

Let's use this grid as an example for two situations: verifying the count in the grid, and verifying the count of rows meeting specific
criteria.

Region Company Lastilame Firsthlame Id

. Europe lop Motch Music Academy Beethowven Ludwig 4 Edit
MNew Earth Blue Sun Cobb Jayne 12 Edit
Eastern Relativity Inc Einstcin Albert 2 Edit
Bidwest Telerik Holmes Jim 1 Edit
Scotland Bravely Bravely, LLC Knight Robin 4 Edit
Scotland Round Table Hotels Leodegrance Guinevere 5 Edit
Midwest Tip Top Software McGillicuddy Katy 3 Edit
Western Menwin Consulting Ltd Merwin Sarah 6 Ldit

[Mew Earth Serenity, Inc. Reynolds Malcom 7 Edit

First, we'll count up the total rows in the grid’'s body. There are several ways to do this; here’s one example.

IList<HtmlTableRow> rows = Find.AllByXPath<HtmlTableRow>("//tbody/tr");

Assert.AreEqual(9, rows.Count);
In this example we're using Xpath to grab all table row elements under the table body element. (*//tbody/tr”) That's stored in
the rows collection, and we then simply use the Assert class to validate we've got the correct count.

Another test might be to validate a table generated by a report or other query. Using the table above, we could say we're
validating two rows with users from the New Earth region will be displayed when we run the query against the baseline dataset.

The following example shows a different way of interacting with the Grid on the page. In this case, we've stored the grid in the
Element Repository and are able to extract it as a strongly
typed object. We're then looking for elements containing ‘
the text we're looking for. This will effectively pull us off two |
table cell elements — this entire test scenario is predicated l
on us making these decisions based on our knowledge of 1
I
|
|
|

IList<Element> newEarthContacts =

. id.Find.AllByContent ("N Earth");
the baseline dataset, and the absolute trust that we don't grt i yContent("New Ear)

have to worry about pulling off some other element(s) in
thetable. - .

Assert.AreEqual(2, newEarthContacts.Count);

www.telerik.com/test-studio € www.twitter.com/teleriktesting

Oracles

Test oracles are another critical area where you'll find yourself needing to write code. Oracles (sometimes also referred to as
“heuristics”) are the final check in your tests. These are the true validations of whether your system'’s actually functioning as you
expect it to—and it's generally not just a simple validation on the Ul

An oft-used example is that of creating a new item in your system'’s Ul. Your test may log you on, navigate through a few steps and
submit something, then finally give you a visual confirmation your item has been created. If your test finishes off with a validation
of the Ul, then the test is only partially complete because you can’t be sure the item was truly created in your database or
underlying persistence system. An oracle should be used to connect to that persistence layer and validate the data item to ensure
there’s not been some issue with unhandled exceptions, caching, or other problem which might have the Ul updating while not
saving things to the database.

Below is a practical example of this concept.

@ 5 W 7{ Enter text Jim' in "ContactFirstNameText'
[] = I 7‘;’ Enter text "Haswell' in 'ContactLastNameText’
[o 7 ¥ :;f Enter text 'jhi@foo.com’ in "ContactEmailEmail
] @ 8V ;‘f Enter text "hitp-/mypage’ in 'ContactLinkedinProfile Text'
] o 3 ¥ —,‘-’ Desktop command: Drag & Drop Neutrallconlmage to Contact Type Drop Target
[o 10 ;’f Click "CommitSubmit’
] @ 11 @ Verfy TextContent' 'Containe’ jhi@foo.com’ on 'JhFooComTableCell
[12 [¢ Venfy TextContent' 'Contains” ‘Jim' on "JimTableCell
r 13 W @ Venfy TextContent' 'Contains” ‘Haswell' on ‘HaswellTableCell
[14 @ ¢ Venfy TextContent' 'Contains” ‘http-imypage’ on "HitpMypageTableCell
] 15 @ ¢ Venfy atirbute "alt' has 'Same’ value of 'Neutral' on 'Neutrallmage'
[16 [« &7 Venfy atiribute 'src’ has 'Same' value of fassets/NEUTRAL png’ on ‘Neutralimage’
T o 17V 8 Oracle: Validate newly created user is in database

w Teststudio - Saving a New Contact with valid values shows user on grid.tstest.cs

Saving a Mew Contact..ser on grid.tstest.cs R X

#2 Telerik_Demo_App.Saving_a_New_Contact_with_valid_values_shows_user_on_grid ~ [Saving_a_MNew_Contact_with_valid_values_shows_

[CodedStep(@"New Coded Step™)]
= public void Saving_a_Mew Contact_with_valid_wvalues_shows_user_on_grid_CodedStep()

1
string userFromDB = ContactFactory.Get_user_by email address("jh@foo.com™};
Assert.IsTrue{userFromDB.ToString().Equals("Jim|Haswell | jh@ifoo.com|http://mypage |NEUTRAL"));

Here we're doing a two step validation: first in steps 11-16 we're confirming the Ul accurately reflects the edits we've made. In step
17 we have a coded step which confirms the user was created in the database—the code for that is shown in the window below
and also reflects our use of a backing API to handle easy communication to the database via the ContactFactory helper class.

www.telerik.com/test-studio € www.twitter.com/teleriktesting

Functional Testing Features

Developers working on functional testing don't have to be focused solely
on coding tasks. They should also able to work with any of the tasks around
creating, editing, and maintaining automated Ul testing. Test Studio’s plugin
gives developers (and coding testers!) the ability to work seamlessly with
functional tests directly within Visual Studio.

Working inside Visual Studio leaves team members with complete access to the
critical features that make Test Studio Standalone so useful:

Recorder

Record and update tests. Use the DOM explorer to craft custom find logic to ensure your tests make the best use of locators
specific to your particular application and UL

DY adtontrabtramples - Pt Vsl s S Al b i e HOm = - L=l Rl - D0H Explorer B =k |
FOE EOIT viIEw TRUEROK MRGECT unlﬁ_—\ﬁ = oo o S| PR 'n'-'d,.'“. o i Fi‘]l::—q-- Pagt{Hore P} = %
Page I =t B
G- G- L3 1 vargd type=tes javeerigt "
' Codecanples tstest cn CodedE vamples. b Wi L ¢ <sre ped it e Warking Wi Laca
% & Uene) | @Recwd - ORKING OCATORS I wurge typesbew premergt” wee Voo vishLoen
:.:: Segn | Sienpoand | Doew | § <scripn types"hext javescript” sice"WorkingWisLoc
2 x| 4T 90| sower mow = e " aphostrackion " >
i 4 £y ol page s
9 % Pasx -4 passed out of total 4 eeoted. i b e
i& 1R # Meageiein Fewon Lastiame FursiHam| = -
1 T 4 i class="main"»
@7 F F Weridy Tremr un: Tog2- Beethaven Luchwig
. i@ 1E # Cioksgme Hew Lanh e Cebb layre e cha
- F] T o i "t _MinCortend_ el clas
@ w @ Vet ent egon [N ERT e
| 0 e 20013000540 >
@5 F W Verty Tnenr | Company: [Blsb Sun
a0 wnable syles"vadthe T00%, table-lrncun:
|i B & Vel Teer | Lanzhlare: |[Cobb
| i crdgrmups
!nﬂ TR L T
{ Y, > o ctheads
CRN Maruat CH | [13
|] 4 Ar aipodys
@ = P Vel Torm | yosigne Cancsl
— - 1 o 2" amn_mantastent_Pacpl
Lasien Relaindy Inc Lrasein Alceri
I <t igd="c00_Mainantend Peotd
Michwess Telenk Heimes S "
PR
Sootland Bravely Bravely, LLC Knight Rakin i
a QI wn sty vermoalalhge: o]
Sootand Feinaned Tabibe: Hbels Lecdegrance Guingver =
4 < clase="rgEdiform";
Michwest Ti LGy Kty o 3
Westem Mie Tlervink a5 [wtabile mim"caio_mas
Bew Earth Sere qrich Makam 01 oty i9a"o0)_MainCentent_Pesel
I o el _papnContent_Seopl
BT ot om0 _ManContent_Feopl
I v "0 _Mandontant Pecol

www.telerik.com/test-studio € www.twitter.com/teleriktesting

http://www.telerik.com/automated-testing-tools/support/documentation/user-guide/elements-menu/dom-explorer.aspx

Debugger
Debug both code via Visual Studio and recorded steps via Test Studio’s Visual Debugger straight from within your Visual Studio
environment.

H Hnel ontrub xariphes « Microusft el Wode (Adminstratur) Caaick Lawarch (Tt) 2 = 0O x
FIE EOMT vIEW TEUERX MMOECT BUAD DERG TEAM S0L TOOUS TEST ARCWITECTLRE ANALYIE WINDOW HELR
[~ G- e P —

E S | snpored | nats |
Flxe|dt
LS e
[Ere
IE
> 'l: 1
|
ik Hrgen € eenpiery Lastharme Fuittarme i
|$ % o B Europe Top MHotch Music Acader, Beethoven i 8 Edit
|? B e Hew Earth B:Jl 5»:-'- — l !::DD‘. I-J..‘ne? 12
- Niprusl CHY
= ACI T regen: PwEsm [CHick[Tiamant: s [-cHi0_MainCaatant_PacpiaGrl_ctinn_ci6_Ldaautsn)]h]
Ougut Company W

Show ouips froms Dkl i

v [Cote Detug Opions
------ Build started: Praject: R = [
TesrStugioTests -» 0:\Teststud Frsttiame: l,:;.ﬂp :mn:'un:ll:a ' @ | B)

wasssssass Budlds 1 sucemeded,

I] |

. - - @900

Eastem Rrlstnty Inc :_‘::"\""-“‘m Lt] Eda
4 | Mdversi Telerii "FET T 1 Eda

Element repository
The element repository is one of the most powerful features of Test Studio. Within Visual Studio you've got full access to this

centralized storage for all your element find logic/locators. Elements are easily updated with the same Edit Find Logic dialogs you

get within the Standalone version.

n Hadlontrolsixamptes - Microseft Vasual Steda [Adminstrator) S N.E
FLL D VDA THUMRX PROMCT BUAD DOG TEAM SO0 TOONE TEST ARCMITECTURE . ANALYZL WINDORY
= " —— - N —— e
e §-0
g CoderExampies st o3
Fm sl T W Element Mame: I:W‘::thm Element Type: baml ORKING WITH LOCATORS
E ‘oo | Sontomn | Daa
f x®|&t|2 — = S fe
3 h Suggmetion: | BOM
| T T p—
|¢" = | - = P M Firsehi
| - b— e cHmipany Lasthiame irschim
|* ¥ €100_MainCon =+ Great! We were able o find your ebement us v
- id Tené_PoopieGr Fuicps i ach Myt Acadeiy
> |4 B o om0 1 reaveae
= = Hew Exth Blue Sur
[s & - - - -
.|i- = i FalRow Filiars for div Eavieen Falatzaty Ine Emnstein Albert
btichrorse Telerik Holmes Fm
= Heror Larthitios] v! b et o e} g
- incee et SunCabh ke Seatiand Bravely Bravely, LLE Enight Robin
{ i H { 12kdit ¥] Seentland Fenared Ttk Hatehs Lendegrance Guinew
|
| PP ® oL r Michersz Tip Top Software Koty
i | Inrsbriiariog [Earth H W J Merwrs © dbng Lid Mer Sarah
arfap uj:-cu]iam___ H riliers for thad nl-rn T .el'rJ.Iﬂ, rlm:'| rah
Iﬁ] I_ Hrw Earlh Seremty, Ine Hegnodkds Maicom
M o e =
{ CuterMariog d="ct00_Mal T
4 5 A Pages
| CEARER_Pe... Y
4 o] HemePags
Contert Grid | <tr
| SsartTagtontent kd="coi0_M e Filters for e
=y Gobi anConken...
« N Jeryree tagrame - ==
| . [{T122(3504
comptatiece Madelndeaat 70l -
| Jayne Cobb H Lt valelabod cn; AMOAEE 1705008 PM | Vel
] - - =l e
»%W4
“Janrie Dok B

Cross browser compatibility

As a developer or coding tester you're not limited to one browser. The Visual Studio plugin for Test Studio enables you to work
with all our supported browsers: Firefox, Safari, Chrome, and Internet Explorer.

www.telerik.com/test-studio € www.twitter.com/teleriktesting

http://www.telerik.com/automated-testing-tools/support/documentation/user-guide/troubleshooting_guide/troubleshooting_tools/using_the_visual_debugger.aspx
http://www.telerik.com/automated-testing-tools/support/documentation/user-guide/elements-pane-overview.aspx

Familiar Environment I vt et et s

Enf EOIT ymEw TRUERIK PROECT BMD DERUG TEAM 500 OGS TEET ARCMITECTUME ARALYTR
. . . o - O Piwt-Debng - M_ Wi Y N - M
Perhaps most important to developers is the ability to work e - el :
. . . , . .3 Exporing Grid o FOF e io Sesyyiem. inlesd® 4 X Uoioes. briesi.cs Uhibes txtest Serding & Mew Contact s user one
right in an environment you're familiar and comfortable F %% o -] o | @R -
with. You've undoubtedly customized Visual Studio to fit e
your particular needs: display settings, window behavior and HRa ’I_ T 28| vocer it | 8 S0 o) € -) | ithone ittt
. .. - T E B [ieverbze] . @ New Coded Sep
layout, and any number of other plugins and productivity s B L T ———
tools such as Telerik's JustCode. = F Ciok EpentTeBCeLaK
P-4 #F Hoedts Downlad dualeg - DateOren [SidseninssPath]| - Dutalrres: |3isosnioadPam]
Working with Test Studio inside of Visual Studio leaves you > |8 @ Yy [T Crata: Vet e on Wewysiom
the ability to pull in other tools easily through NuGet. Do DG Teststudin - Euporting Grid s FOF saves a fie to Mesystem tstest.cs
you prefer using NUnit or MbUnit for their powerful Assert RSB TN B AR N S
. B o Tk Dema Anp Evmertng Gnd o POF saves s Me b Sesystem -) Expornng
and fluent interfaces? Go right ahead! (Note that you can e e
. B CodedStep (i New Coded Step”™)
also use outside assemblies easily straight from within Test e A e Wi Tt
Studio Standalone, too. You won't be handicapping other U i o s
team membel’s USIng that Intel’facel)) n;\.:- [.'."":P!r‘:;:(;!('!:(ed‘-‘aluel":‘:\--'.'.‘a'!-"."."']-795l"1l'|gl]1I

Here's another example of using a test oracle for validation,
this time via NUnit. The example below shows evaluating

a downloaded file against a baseline or “truth” file. NUnit’s
“Within” clause from its fluent APl makes range Of HELEsLinel =" Test
comparisons simple. — it framework. issert , Thasd

sTrue(

tFile. Fulllase)) ;
the “truth® filefbaseline file is

= agantl;

dosmleaded Tile

thi

e size: = 4 size);

ithin an acceptable range

Source control integration for your test suites is a snap from within Visual Studio too. Use the exact
same approach you do with your current toolset. Test Studio, either the Standalone or Visual Studio
plugin versions, play nicely with all source control tooling, so you won't have to alter your habits,
teams’ workflows, or worse yet, change your source control system.

Read more about Test Studio’s plugin for Visual Studio

Download 30-day trial with priority support

Telerik

TEST STUDIO

www.telerik.com/test-studio O www.twitter.com/teleriktesting

http://www.telerik.com/products/justcode.aspx
http://www.telerik.com/automated-testing-tools/visual-studio-plug-in-benefits.aspx
http://www.telerik.com/automated-testing-tools/download.aspx

