
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d. Planning an Angular
Application
By Todd Motto

WHITEPAPER

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Project Management / 3

Accessibility, i18n and Environments / 5

Development Process Methodology / 6

Tooling and Development / 6

Testing Methodologies / 11

Codebase Distribution Strategies. / 12

Mobile and Desktop / 13

Style Guide, Architecture and State Management / 16

Backend API / 18

Performance Strategies / 19

Table of Contents

Progress / KendoUI 2

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

Planning an Angular (version 2 and above)
application is something you may have already
done, or will be soon attempting. This whitepaper
documents a high-level outline of things to
consider when planning an Angular application,
from tooling choices during development all the
way through to deployment and performance
strategies. There’s certainly a lot more to it than
meets the initial eye.

Project Management
Before you get started, you need to consider
how you’re going to get the ball rolling - and
keep it rolling. This usually starts with project
management and discussing and agreeing upon
particular toolchains to accomplish your next
application.

Progress / KendoUI 3

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

Software management tools Examples

Issues and feature tracker GitHub, BitBucket, JIRA

Version control system GitHub, BitBucket

Document/asset storage Slack, internal network storage, cloud

Team communication Slack, HipChat, IRC, Google Hangouts

Task manager GitHub Org Tasks, Trello, JIRA

Software Management Tools

To manage the development of the front-end
application, you’ll minimally need to select the
following software management tools to manage
code, assets, and team members’ tasks:

Ensure that you and your team adopt the tools
you choose, and frequently assess and improve
your workflow. New applications and tools are
released to the public all the time and you
may wish to address new tools that coincide
with features or things you feel are missing -
and you’ll naturally adopt new tools as time
progresses.

Progress / KendoUI 4

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

Accessibility, i18n and Environments
Accessibility, i18n (internationalisation) and building for the correct environments are an essential part of any application. It’s not just deciding what to build, but
how you’re going to build and support it. Addressing these considerations at the beginning of a project will enable you to clearly vision how you’ll implement
the said features, such as accessibility concerns and i18n for example.

Software management tools Examples Links

Internationalisation / Globalisation
Translations for different languages

Culture differences
https://angular.io/docs/ts/latest/cookbook/i18n.html

SEO Yes, server-side render https://universal.angular.io/

Browser support IE10+

Accessibility WAI-ARIA https://www.w3.org/WAI/intro/aria

Offline-first
https://developers.google.com/web/fundamentals/getting-started/primers/

service-workers

Progressive Web App https://developers.google.com/web/progressive-web-apps/

Native Mobile App https://docs.nativescript.org/angular/start/introduction

Above are some examples for consideration when deciding baseline standards and types of support your application can offer. These details may
differ per project, for things such as i18n and offline strategies, it comes down to the goals of your project.

Progress / KendoUI 5

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://angular.io/docs/ts/latest/cookbook/i18n.html
https://universal.angular.io/
https://www.w3.org/WAI/intro/aria
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/progressive-web-apps/
https://www.progress.com/kendo-ui

Tooling has been increasingly important when
developing any kind of application for the web
or other platforms. With Angular, there are a
vast amount of tooling options available. System.
js was introduced first, however WebPack has
seemingly become the de facto standard across
the JavaScript ecosystem. Let’s dive into some
tooling a little further.

Development Process
Methodology
Typically there are a few different approaches
to development, such as Agile, Waterfall, Scrum,
Kanban and likely many more adaptations.

Whichever approach you take, it’s important to
remain consistent. The processes I’ve found to
be ideal are the custom, loosely enforced, agile-
like processes that can be wrapped around the
uniqueness of the project and team members.

Tooling and
Development

Progress / KendoUI 6

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

Package Managers

Package managers allow you to grab
dependencies from an external host, for example
using npm to fetch your dependencies for
development and also any dependencies that
will make it into production.

An example of this would be using a
development dependency such as TypeScript,
which will never make its way into the browser
as it’s pre-compiled locally during development
and for project builds before deployment. An
example of a dependency that needs to make its
way into production would be parts of Angular
itself, such as Http, core and other modules.

Here are a few examples when considering a
package manager.

Progress / KendoUI 7

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://npmjs.com
https://yarnpkg.com
https://bower.io
http://jspm.io
https://jspm.io/
https://www.progress.com/kendo-ui

Task Runners

Task runners will allow you to configure
particular tasks depending on what you’re
aiming to achieve. Managing third party code
and their dependencies should not be a manual
task performed by a human, it’s not productive.

For example, you can use a particular command
from a task runner to start a local server, compile
all assets and then serve those assets in your
browser with ease. WebPack has become the
default standard with Angular as it can run your
tasks, tests, compile your code and serve locally
- as well as much more.

Progress / KendoUI 8

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://cli.angular.io
https://webpack.js.org
https://gulpjs.com
http://gruntjs.com
https://gruntjs.com/
https://github.com/broccolijs/broccoli
https://www.progress.com/kendo-ui

Linters and Enforcement

When working on a team, the goal should be
that each file is written as if it were coded from
a single developer’s mind in regards to error
prevention, formatting, and style. Three main
types of tools (i.e. code linters/hinters, code style
checker, and a code editor config file) aid this
process and should be properly implemented
and configured before coding begins.

Tools Examples

Linters / Hinters Codelyzer, CSSLint, ESLint

Code style checker ESLint

Code editor formatting/style .editorconfig

Angular CLI

The Angular CLI will allow you to do most of
the above, all in a single environment. Using the
CLI will allow you to create new components,
directives, services and more via commands in
your terminal. You can also serve the app, run
local servers, build and compress styles (Sass)
and compile the application for best possible
performance. I’d highly recommend checking it
out and building applications with it.

Progress / KendoUI 9

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

UI Components

Building web applications means that you
are likely going to require some additional UI
components beyond what the browser itself has
to offer. Textboxes, labels and dropdown lists will
only get you so far.

When it comes to UI components, there are
a lot of great options. You can choose either
commercial or open-source components. The
important thing is to pick a component library

Tools Examples

Kendo UI
Popular commercial components built specifically for
Angular. Fully supported.

Angular Material
An open-source library containing many of the components
needed to create applications which adhere to the Material
Design specification.

Bootstrap
A baseline CSS framework that is often used for application
layout and it’s popular grid system.

which is built on Angular, not wrapped with
it. If the underlying components are not built
specifically for Angular, you will lose much of the
advantages that Angular offers, such as Ahead
of Time Compilation, tree shaking, server-side
rendering and more.

Progress / KendoUI 10

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.telerik.com/kendo-angular-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=kendo-ui-angular-whitepaper-PrepNgApp
https://material.io/design/
https://material.io/guidelines/
https://material.io/guidelines/
https://getbootstrap.com/
https://www.progress.com/kendo-ui

Testing Methodologies
How you test and what you test is less important than the fact that you test something. It’s likely the case that you’ll want to test each module or unit of
code by writing unit tests. When all of the units of code unite to form a running application, you’ll want to do functional end-to-end testing. Below I detail
the tools required (tasking tool facilitate all this) to do cross-browser unit and functional testing.

Tools Purpose

Jasmine
The Jasmine test framework. provides everything needed to write basic tests. It ships with an HTML test
runner that executes tests in the browser.

Angular Testing Utilities
The Angular testing utilities create a test environment for the Angular application code under test. Use them to
condition and control parts of the application as they interact within the Angular environment.

Karma
The karma test runner is ideal for writing and running unit tests while developing the application. It can be an
integral part of the project’s development and continuous integration processes. This chapter describes how
to setup and run tests with karma.

Protractor
Use protractor to write and run end-to-end (e2e) tests. End-to-end tests explore the application as users
experience it. In e2e testing, one process runs the real application and a second process runs protractor tests
that simulate user behavior and assert that the application responds in the browser as expected.

You can read more about Angular via the documentation.

Progress / KendoUI 11

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://angular.io/guide/testing
https://www.progress.com/kendo-ui

Gone are the days where we can just build an
application purely for the browser environment.
We’re at the stage where, without necessarily
knowing it, we’re writing code in a format that
can run pretty much nearly anywhere. Under
the hood, language parsers such as Babel
or TypeScript convert our code into an AST
(Abstract Syntax Tree). An AST is a chain of
commands that describe our code, at a higher
level. This means that we’re not limited to the
original language it was written in. People can
then (and already have for most cases) write
programs that interpret these ASTs and spit
them out in whatever language is needed.

Via an AST, things like NativeScript exist
to transform that AST into native code on
mobile for impeccable performance and native
experience.

For your application, you need to consider
the initial environments you’ll be deploying to,
as well as any future considerations - such as
NativeScript for native mobile applications (it’ll
compile your Angular code for you, reusing
90%+ on average of your existing codebase).

Browser only

If your application will only run in a browser, then
your strategy will be fairly simple. You’ll be able
to deploy to a single environment and the code
will run in the browser like any other web app
that’s “browser only”.

Codebase Distribution
Strategies

Server-side rendering

Server-side rendering has a huge performance
and SEO benefit to loading an Angular application
directly in the browser. Because the Angular
rendering core is split from the framework itself, we
can essentially render a view on the server. Once
the server has rendered the initial payloads, the
client-side part of Angular can pick up where the
server left off, hydrating it with JavaScript once
Angular is ready. For this, you’ll need
Angular Universal.

Progress / KendoUI 12

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.nativescript.org/
https://angular.io/guide/universal
https://angular.io/guide/universal
https://www.progress.com/kendo-ui

Tools Purpose

NativeScript
Open source framework for building truly native mobile apps with
Angular, TypeScript or JavaScript.

Ionic Open source framework for hybrid apps, Angular + TypeScript.

Electron
Build cross platform desktop apps
with JavaScript, HTML, and CSS.

Mobile and Desktop
Let’s talk about mobile and desktop. Here are some considerations when
thinking about using your Angular codebase on non-browser platforms.

Progress / KendoUI 13

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.nativescript.org/
https://beta.ionicframework.com/docs/
https://electronjs.org/
https://www.progress.com/kendo-ui

1

Progressive Web Apps (PWA)

Progressive Web Apps use modern web
capabilities to deliver an app-like user
experience. They evolve from pages in browser
tabs to immersive, top-level apps, maintaining
the web’s low friction at every moment. Here’s
some further information as to characteristics of
PWAs:

• Progressive - Work for every user, regardless
of browser choice because they’re built with
progressive enhancement as a core tenant .

• Responsive - Fit any form factor, desktop,
mobile, tablet, or whatever is next.

• Connectivity independent - Enhanced with
service workers to work offline or on low
quality networks.

• App-like - Use the app shell model
to provide app-style navigation and
interactions.

• Fresh - Always up-to-date thanks to the
service worker update process.

• Safe - Served via Transport Level Security to
prevent snooping and ensure content hasn’t
been tampered with.

• Discoverable - Are identifiable as
“applications” thanks to W3C manifests and
service worker registration scope allowing
search engines to find them.

• Re-engageable - Make re-engagement easy
through features like push notifications.

• Installable - Allow users to “keep” apps
they find most useful on their home screen
without the hassle of an app store.

• Linkable - Easily share via URL and not
require complex installation.

Angular makes these much more easy to
integrate, and I’d encourage you to check out
Angular Mobile Toolkit.

Or check out this four-part blog series explaining
the basics, intricacies and importance of PWAs.

Progress / KendoUI 14

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/angular/mobile-toolkit
https://www.telerik.com/blogs/a-gentle-and-practical-introduction-to-progressive-web-apps?utm_medium=pdf&utm_source=telerik&utm_campaign=kendo-ui-angular-whitepaper-PrepNgApp
https://www.progress.com/kendo-ui

Define deployment strategy

You need a plan to get your local code to staging
and production (i.e. deploy local code to public
servers). After all, not everyone can always see
your locally running application, even if you use
some magic to make it happen. A continuous
integration server is an ideal solution for crafting
deployments regardless of whether you intend
to deploy to production on every code push.

Let me step back for a moment from CI concepts
and talk about local development. Ideally,
anything you do during CI, you should be able to
do locally. That means, building and testing your
application should be crafted first to run locally.
In fact, I will often run a second server locally
that serves staging code on my local machine
(i.e. what gets outputted during CI process). It’s
this local testing and build process that becomes
automated once you set up your CI integration.
I’ve loosely mapped out below what this might
look like.

JavaScript error monitoring

A JavaScript error monitoring tool needs to be
selected to capture run-time errors occurring
in staging and production code. Typically, this
monitoring tool is not used on development
code. Pick one, use it.

This step is probably the most commonly
skipped step in building JavaScript applications.
Don’t overlook capturing runtime errors.

Progress / KendoUI 15

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

Defining a style for your team and project
is essential, as is deciding what architectural
practices you’ll be using.

Angular style guide

The Angular style guide should be a go-to
consideration to get familiar with architectural
and style best practices before diving into any
Angular project. It offers a lot of help towards
sensible app structure, offers common “gotchas”
and recommendations for you.

Style Guide, Architecture and
State Management

Progress / KendoUI 16

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://angular.io/guide/styleguide
https://www.progress.com/kendo-ui

State management

State management comes easy to Angular with
uni-directional dataflow, however using a Redux
approach to Angular development is something
to highly consider.

Tools Purpose

ngrx/store
RxJS powered state management for Angular applications, inspired
by Redux

ngrx/effects Side effect model for @ngrx/store.

ng2-redux
Ng2Redux lets you easily connect your Angular components with
Redux, while still respecting the Angular idiom.

Progress / KendoUI 17

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

Backend API
The first step assumes API-first development,
which is an excellent method that I highly
recommended.

In a nutshell, API-first development means that
you document, build, and test your API first.
This means you have a relatively stable API
before you write any application code. Note that
during API construction, front-end developers
should be prototyping minimal viable features
using the API and providing feedback to the API
engineers.

The main reason to follow API-first development
is to reduce the possible deficiencies in the API
from being amplified in the data layer. You want
to do everything in your power up front to avoid
having to make up for your API’s deficiencies
in your application logic. Having a documented
and mostly solidified data API before a line of
application code is written can go a long way
towards reducing pain and misery in the future.
Build your API first. Document it, test it, and

then be ready to evolve it as you build out the
applications that use it.

It’s worth noting that it may be assumed that
security and authentication details will accompany
the API. It is also assumed that the API developers
will provide a development API to be used for
development. Using the same data API for both
development and production should never be an
option.

Progress / KendoUI 18

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/kendo-ui

It’s worth investigating how to get the most out
of your Angular application before you’ve even
set foot in the codebase. Let’s investigate some
approaches.

Ahead-of-Time compiling

Around half of Angular’s codebase makes up the
internal compiler, which you can absolutely strip
out with offline compilation called Ahead-of-
Time compiling. This can help you achieve very

small payloads that, combined with module lazy-
loading, can significantly improve performance.

If you don’t AoT compile, you’ll ship the compiler
to the browser, which means the codebase is
heavier, thus by default you adopt a “Just-in-
Time” compilation strategy. The AoT approach
is also similar to React’s story with JSX - it’s all
preprocessing.

Read more about AoT.

Performance Strategies

</>

</>

Progress / KendoUI 19

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://angular.io/guide/aot-compiler
https://www.progress.com/kendo-ui

Bundling

Bundling code allows us to eliminate dead code
and minify our build before we deploy, as well
as minimising payload overheads when the
browser requests the initial JavaScript file. This
also includes code mangling to rename variables,
functions and properties to get the minimum
payload size possible.

Tree-shaking

Tree-shaking allows us to remove unused imports
from our codebase, thus (potentially) reducing the
bundle drastically in size. The Angular team have
put together a guide on tree-shaking that walks
you through itusing Rollup.js. Webpack supports
tree-shaking for ES2015 modules as well.

Lazy-loading

The Angular router allows lazy-loading of
feature modules, which essentially will allow you
to request large module chunks on-demand
rather than include it any initial payloads. It can
be removed before deployment and requested
before accessing a particular route that a user
may not have visited yet.

Progress / KendoUI 20

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://rollupjs.org/guide/en
https://webpack.js.org
https://www.progress.com/kendo-ui

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

About the Author
Todd is a front end engineer from
England, UK. Runs Ultimate Angular, Founder of
Voux, Developer Expert at Google, conference
speaker and open source evangelist.

Brought to You by Progress Kendo UI

Try Kendo UI for Angular

Progress and Kendo UI are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the
U.S. and/or other countries. Any other trademarks contained herein are the property of their respective owners.

© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
Rev 18/10 | 171002-0040 / RITM0029821

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying mission-
critical business applications. Progress empowers enterprises and ISVs to build and deliver
cognitive-first applications, that harness big data to derive business insights and competitive
advantage. Progress offers leading technologies for easily building powerful user interfaces
across any type of device, a reliable, scalable and secure backend platform to deploy modern
applications, leading data connectivity to all sources, and award-winning predictive analytics
that brings the power of machine learning to any organization. Over 1700 independent
software vendors, 80,000 enterprise customers, and 2 million developers rely on Progress to
power their applications. Learn about Progress at www.progress.com or +1-800-477-6473.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/progresssw

 youtube.com/progresssw
For regional international office locations and contact information,
please go to www.progress.com/worldwide

We’re engineering true Angular UI components, not just wrapping
existing components like other vendors. We’re dedicated to delivering
pure, high-performance Angular UI components without any jQuery
dependencies because we won’t settle for anything less and we don’t
think you should either. The Components page contains the most up-to-
date list of included UI components.

https://www.telerik.com/campaigns/kendo-ui/free-trial-angular-1?utm_medium=pdf&utm_source=telerik&utm_campaign=kendo-ui-angular-whitepaper-PrepNgApp
https://www.progress.com/
https://www.progress.com/
https://www.facebook.com/progresssw
https://twitter.com/progresssw
https://www.youtube.com/user/ProgressSW
https://www.progress.com/company/offices
https://www.telerik.com/kendo-angular-ui/components/?utm_medium=pdf&utm_source=telerik&utm_campaign=kendo-ui-angular-whitepaper-PrepNgApp

	Project Management
	Accessibility, i18n and Environments
	Development Process
	Methodology
	Tooling and
	Development
	Testing Methodologies
	Codebase Distribution Strategies
	Mobile and Desktop
	Style Guide, Architecture and State Management
	Backend API
	Performance Strategies

