
The Future of JavaScript:
2018 and Beyond
WHITEPAPER

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Authors

Editor

Tara Z. Manicsic

Tara Z. Manicsic is a lifelong student, teacher, maker and, recently,
a Google Developer Expert. She has spent her career using
JavaScript on both back-end and front-end to create applications.
In her free time she works in her community to educate and learn
from other developers. Tara launched & directs the Cincinnati
Chapter of Women Who Code and the Cincinnati branch of
NodeSchool. Beyond code, she likes to make things with other
materials (wool, solder, clay, etc.) and hikes any mountain she can
get to with her trusty sidekick, #toshmagosh.

TJ VanToll

TJ VanToll is a front-end developer, author, and a Principal
Developer Advocate for Progress. TJ has over a decade of web
development experience, including a few years working on
the jQuery team. Nowadays, he spends his time helping web
developers build mobile apps through projects like NativeScript.

Alyssa Nicoll

Alyssa Nicoll is an Angular Developer Advocate & GDE. Her
two degrees (Web Design & Development and Psychology)
feed her speaking career: she’s spoken at over 20 conferences
internationally, specialising in motivational soft talks. She’s a weekly
panelist on Adventures in Angular and Angular Air, which have a
combined following of over 16,000 listeners. She enjoys gaming,
scuba diving, and has a toothless dog named Gummy. Her DM is
always open.

Progress / Kendo UI

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/Tzmanics
https://twitter.com/Tzmanics
https://twitter.com/tjvantoll
https://twitter.com/tjvantoll
https://twitter.com/AlyssaNicoll
https:/twitter.com/alyssanicoll
https://www.progress.com/
https://www.progress.com/openedge

As JavaScript’s role in the software world grows, so does the importance of knowing where the language is
going. Every year we at Progress take a look at the state of the JavaScript ecosystem, including the language
itself, as well its usage in libraries, frameworks, mobile applications and more.

This year is no different. The following guide is a comprehensive look at what JavaScript has done in 2017, and
where we see the JavaScript ecosystem going in 2018.

We’ll start by taking a look at the JavaScript language itself, in JavaScript’s Journey Through 2017 and Into
2018. You’ll learn what features JavaScript enabled in the last year, what features are up and coming, and what
features we see playing a critical role in your applications in the next few years.

Next, we’ll return to JavaScript in the browser to discuss the rise and fall of popular JavaScript frameworks in
Libraries and Frameworks and Futures, Oh Yes! We’ll look at how these frameworks have done in 2017, and
make some predictions about the JavaScript framework world for 2018.

Progress / Kendo UI 3

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Table of Contents
JavaScript’s Journey Through 2017 and Into 2018 - Tara Manicsic / 4

ECMAScript Goodies / 4
How to JavaScript in 2018 / 15
Package Manager Rumble / 22
Conclusion / 28

Libraries and Frameworks and Futures, Oh Yes! - Alyssa Nicoll / 29

Angular / 31
AngularJS / 33
Vue.js / 35
React / 36	
Ember / 40
Much of the Web Still Runs on jQuery / 42
Kendo UI / 45
Prediction Time / 47
AR/VR / 47
PWA / 49

Here’s to 2017 / 50

https://www.progress.com/
https://www.progress.com/openedge

JavaScript’s Journey Through
2017 and Into 2018
by @tzmanics

Another year has gone by and JavaScript is still going strong. This is probably not a surprise to any
of us. Hopefully, option overload and the complexity of coding in JavaScript has not made anyone
throw their computer out the window. In reviewing JavaScript in the past year, there are a few
topics that stand out that I’ll be covering:

•	 ECMAScript Goodies
•	 How to JavaScript in 2018
•	 Package Manager Rumble

There are other things I could cover, if you think of any, add a comment, let’s discuss! Okay, here we
go (deep breath).

ECMAScript Goodies

Let’s check in with ECMA International, Technical Committee 39! It turns out the 6 in ES6 does not
stand for the number of years it takes for a release. I kid! Since ES6/ES2015 took so long to release
(6 years, hence my jab) the committee decided to move to a yearly small-batch release instead. I’m
a big fan of this and I think the momentum keeps things moving and JavaScript improving. What
presents did we get for ES2017 and what’s on our list for ES2018?

*You can learn more about the TC39 process of proposals here

Progress / Kendo UI 4

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/tzmanics
https://github.com/tc39
http://2ality.com/2015/11/tc39-process.html
https://www.progress.com/
https://www.progress.com/openedge

ES2017

In January, at the TC39 meeting, the group settles on the ECMAScript proposals that would be
slated as the features of ES2017 (also referred to ES8, which probably should be nixed to avoid
confusion). This list included:

Major features
•	 Async Functions
•	 Shared Memory and Atomics

Minor features
•	 Object.values/Object.entries
•	 String padding
•	 Object.getOwnPropertyDescriptors()
•	 Trailing commas in function parameter lists and calls

Async/Await

Proposed by: Brian Terlson

I’m starting here because it was first on the list and my level of excitement is pretty high for this
nifty addition. In ES2015 we got promises to help us with the all too familiar condition commonly
known as…(are you really going to make me say it?) CALLBACK HELL.

The async/await syntax reads entirely synchronously and was inspired by TJ Holowaychuk’s Co
package. As a quick overview, async and await keywords allow you to use them and try/catch
blocks to make functions behave asynchronously. They work like generators but are not translated
to Generator Functions. This is what that looks like:

Progress / Kendo UI 5

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/tc39/ecmascript-asyncawait
https://github.com/tc39/ecmascript_sharedmem
https://github.com/tc39/proposal-object-values-entries
https://github.com/tc39/proposal-string-pad-start-end
https://github.com/tc39/proposal-object-getownpropertydescriptors
https://github.com/tc39/proposal-trailing-function-commas
https://github.com/tc39/ecmascript-asyncawait
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://github.com/tj/co
https://www.progress.com/
https://www.progress.com/openedge

// Old Promise Town
function fetchThePuppies(puppy)
 return fetch(puppy)
 .then(puppyInfo => puppyInfo.text())
 .then(text => {
 return JSON.parse(text)
 })
 .catch(err => {{
 console.log(`Error: ${err.message}`)
 })
}

// New Async/Await City
async function fetchThePuppies(puppy)
 try {
 let puppyInfo = await fetch(puppy)
 let text = await puppyInfo.text()
 return JSON.parse(text)
 }
 catch (err) {
 console.log(`Error: ${err.message}`)
 }
}

This doesn’t mean you should go in and replace all promises in your code with
async/await. Just like you didn’t go in and replace every function in your code with
arrow functions (one hopes), only use this syntax where it works best. I won’t go too
into detail here because there are tons of articles covering async/await. Check them
out (yes, I did add a link of a async/await blog post for each of those last words in the
previous sentence, you’re welcome). In the upcoming year we will see how people are
able to make their code more, readable and efficient using async/await.

Shared Memory and Atomics

Proposed by: Lars T. Hansen

Wait, did we enter a theoretical physics class? Sounds fun, but no. This ECMAScript
proposal joined the ES2017 line up and introduces SharedArrayBuffer and a
namespace object Atomics with helper functions. Super high-level (pun intended),
this proposal is our next step towards high-level parallelism in JavaScript.

Progress / Kendo UI 6

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://hackernoon.com/6-reasons-why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9
https://ponyfoo.com/articles/understanding-javascript-async-await
https://javascript.info/async-await
https://developers.google.com/web/fundamentals/primers/async-functions
https://blog.risingstack.com/mastering-async-await-in-nodejs/
https://codeburst.io/javascript-es-2017-learn-async-await-by-example-48acc58bad65?gi=f3917c756df6
https://github.com/tc39/ecmascript_sharedmem
http://2ality.com/2017/01/shared-array-buffer.html
https://www.progress.com/
https://www.progress.com/openedge

We’re using JavaScript for more and more operations in the browser relying on
Just-in-Time compilers and fast CPUs. Unfortunately, as Lars T. Hansen says in his
awesome post, A Taste of JavaScript’s New Parallel Primitives from May 2016:

But JS JITs are now improving more slowly, and CPU performance improvement has
mostly stalled. Instead of faster CPUs, all consumer devices — from desktop systems
to smartphones — now have multiple CPUs (really CPU cores), and except at the low
end they usually have more than two. A programmer who wants better performance
for her program has to start using multiple cores in parallel. That is not a problem for
“native” applications, which are all written in multi-threaded programming languages
(Java, Swift, C#, and C++), but it is a problem for JS, which has very limited facilities
for running on multiple CPUs (web workers, slow message passing, and few ways to
avoid data copying).

SharedArrayBuffer

This proposal provides us with the building blocks for multi-core computation
to research different approaches to implement higher-level parallel constructs
in JavaScript. What might those building blocks be? May I introduce you to
SharedArrayBuffer. MDN has a great succinct definition so I’ll just plop that in right
here:

The SharedArrayBuffer object is used to represent a generic, fixed-length raw binary
data buffer, similar to the ArrayBuffer object, but in a way that they can be used to
create views on shared memory. Unlike an ArrayBuffer, a SharedArrayBuffer cannot
become detached.

Basically, one of the first ways we were able to run tasks in parallel was with web
workers. Since the workers ran in their own global environments they were unable to
share, by default, until communication between the workers, or between workers and
the main thread, evolved. The SharedArrayBuffer object allows you to share bytes
of data between multiple workers and the main thread. Plus, unlike its predecessor
ArrayBuffer, the memory represented by SharedArrayBuffer can be referenced from
multiple agents (i.e. web workers or the web page’s main program) simultaneously.
You can do this using postMessage to transfer the SharedArrayBuffer from one of
these agents to the another. Put it all together, and what do you got? Transferring
data between multiple workers and the main thread using SharedArrayBuffer so that
you can execute multiple tasks at once which == parallelism in JavaScript. But wait,
there’s more!

Progress / Kendo UI 7

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://hacks.mozilla.org/2016/05/a-taste-of-javascripts-new-parallel-primitives/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://www.progress.com/
https://www.progress.com/openedge

SharedArrayBuffer Update

Before we move on it’s important to note some current hold-ups for
SharedArrayBuffer. If you’ve been paying attention to the news lately you may
be aware of the processor chip security design flaw causing two vulnerabilities:
Meltdown and Spectre. Feel free to read up on it but just know that browsers are
disabling SharedArrayBuffer until this issue is resolved.

Atomics

Okay, the next stop on this parallel train: Atomics, which is a global variable that
has two methods. First, let me present you with the problem the Atomics methods
solve. When sharing a SharedArrayBuffer betwixt agents (as a reminder agents are
the web workers or the web page’s main program) each of those agents can read
and write to its memory at any time. So, how do you keep this sane and organized,
making sure each agent knows to wait for another agent to finish writing their data?

Atomics methods wake and load! Agents will “sleep” in the wait queue while waiting
for another agent to finish writing their data, so Atomics.wait is a method that
lets them know to wake up. When you need to read the data you use Atomics.
load to load data from a certain location. The location is based on the methods
two parameters a TypedArray, an array-like mechanism for accessing raw binary
data (what SharedArrayBuffer is using), and an index to find the position in that
TypedArray. There is more to it than what we’ve just covered but that’s the gist of it.

Progress / Kendo UI 8

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://www.pcmag.com/news/358249/intel-chips-have-a-major-design-flaw-and-the-fix-means-slowe
https://twitter.com/jaffathecake/status/948879579397214208
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/wake
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/load
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://www.progress.com/
https://www.progress.com/openedge

For now, Atomics has only these two methods. Eventually, Hansen (our lovely author
of this proposal and explainer of parallel things) says, there should be more methods,
like store and compareExchange, to truly implement synchronization. Again, we are
at the beginning stages of parallelism in JavaScript and this proposal is providing us
with the building blocks to get there.

Phew! Although that was quite a lot to think about, that was still a high level
overview. This update may not be used by most developers in the next year but will
help advance JavaScript to benefit everyone. So, thank your brain for getting you
this deep and check out these fantastic resources to dive in more!

•	 Dr.Axel to the rescue!
•	 A Taste of JavaScript’s New Parallel Primitives from Lars T. Hansen

Object.values/Object.entries

Proposed by: Jordan Harband

Object.values()

I have actually benefited from the useful addition of Object.values recently when
pulling Philips Hue light information from an observable. It allowed me to iterate
through my data’s values because it returns an array of the object’s properties.

// land before `Object.values()`
const lights = {{ id: 1, on: true, color: ‘blue’}, { id: 2, on:
false, color: ‘red’ }}
this.lights = Object.keys(data).map(key => data[key])

// the time is now aka WITH `Object.values()`
this.lights = Object.values(data)

// both return
// [{ id: 1, on: true, color: ‘blue’}, { id: 2, on: false, color:
‘red’ }]

Fancy, right?

Progress / Kendo UI 9

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://2ality.com/2017/01/shared-array-buffer.html
https://hacks.mozilla.org/2016/05/a-taste-of-javascripts-new-parallel-primitives/
https://github.com/tc39/proposal-object-values-entries
https://github.com/tzmanics/U-Go-Hue-Go-Tutorial/tree/5ff8cd88c38f3ad42f40f43aefbda1007b3e391d#get-the-lights
https://www.progress.com/
https://www.progress.com/openedge

Object.entries{}

This method takes what Object.values() does one step further. Looking at an object,
a data structure of key-value pairs, each of those pairs is an entry. When you call
Object.entries() it is returning an array containing an array for each of those entries.

Object.entries({ name: ‘Toshmagosh’, age: 12 })
// [[“name”, “Toshmagosh”], [“age”, 12]]

It’s really quite straight forward, but if you ever want to dive in more, JavaScript.info
has a good rundown.

String Padding

Proposed by : Jordan Harband, Rick Waldron

I didn’t think I was going to have to say this again but, left pad. Yes, the left pad
debacle of 2016 raised the attention of the JavaScript community enough for TC39
to add string padding. To be fair though, it was about time for JavaScript to have
some native methods to handle Strings. Welcome padStart/padEnd to the family,
which currently was just a lonely String.prototype.trim (est. ES5)!

You are all smart people so you probably can surmise what each of these methods
do. So, I’ll just show you some examples instead of using my words.

// padStart adds padding until string reaches provided length
‘puppies’.padStart(22)
// “ puppies”

// or provide a filler instead of blank spaces
‘nachos’.padStart(11, ‘yum’)
// “yumyunachos”

// padEnd works the same but adds to the end of the string
‘Carlos Santana’.padEnd(30, ‘*-^’)
// “Carlos Santana*-^*-^*-^*-^*-^*”

// Emoji trickiness
‘ ’.padEnd(8)
// “ ” // no pad? yup, because the length === 8, emoji you so
funny

Progress / Kendo UI 10

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://javascript.info/keys-values-entries
https://github.com/tc39/proposal-string-pad-start-end
https://developer.telerik.com/featured/left-pad-indicative-fragile-javascript-ecosystem/
https://codeburst.io/learn-javascript-es-2017-string-padding-padstart-padend-88e90783e7de
https://www.progress.com/
https://www.progress.com/openedge

To review this, both methods take an integer parameter that is telling them how long
the final length of the string, including the padding, should be. If you pass a number
shorter or equal to the original length of the string, nothing will change. Bravo, on
wasting your time (just kidding). You can also pass a string and padStart/padEnd will
repeatedly add each item of that string to the start or end of the original string until
the length matches the passed length parameter. As you can see in my example
above, since I wanted a length of 11, padStart added ` ‘yum’ then the ‘yu’ and
stopped. Emoji are very important so I wanted to remind you of their tricky string
lengths, more information in this handy blog post.

Developers will, more than likely, take advantage of these methods which will also let
them remove libraries they were using to accomplish string manipulation. There are
more methods in the pipeline: trimStart/trimEnd is currently at stage 2 (out of the 4
stages, here’s the process break down again). This will let us trim or remove starts
and ends of strings. Fun fact: this proposal started out with trimLeft and trimRight
but has been updated to trimStart and trimEnd to stay consistent with padStart and
padEnd. Yay, consistency! It also helps with any confusion whether a language is
read right-to-left or left-to-right.

Object.getOwnPropertyDescriptors()

Proposed by: Jordan Harband & Andrea Giammarchi

This is the plural version of Object.getOwnPropertyDescriptor which returns a
descriptor of the property that’s directly on an object, i.e. not on its prototype chain.

let popcorn = { action: ‘pop’, butter: true }
let popcornAction = Object.getOwnPropertyDescriptor(popcorn,
‘action’)

// popcornAction is {
// value: “pop”,
// writable: true,
// enumerable: true,
// writable: true
// }

Progress / Kendo UI 11

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://emojipedia.org/faq/
http://blog.jonnew.com/posts/poo-dot-length-equals-two
https://github.com/tc39/proposal-string-left-right-trim
http://2ality.com/2015/11/tc39-process.html
https://github.com/tc39/proposal-object-getownpropertydescriptors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor
https://www.progress.com/
https://www.progress.com/openedge

So, using the plural version you are able to capture all of an object’s non-inherited (or
own) property descriptors. Using the delicious example above:

let popcorn = { action: ‘pop’, butter: true }
let popcornProperties = Object.getOwnPropertyDescriptors(popcorn)

// popcornProperties is {
// action: {
// value: “pop”,
// writable: true,
// enumerable: true,
// writable: true
// },
// butter: {
// value: true,
// writable: true,
// enumerable: true,
// writable: true
// }
// }

Why do we need these methods? Well the proposer, Jordan Harband, puts it well
here:

There is not a single method in ECMAScript capable of simplifying a proper copy
between two objects. In these days more than ever, where functional programming
and immutable objects are essential parts of complex applications, every framework
or library is implementing its own boilerplate in order to properly copy properties
between composed objects or prototypes. — Jordan Harband

With this addition you can now use getPrototypeOf and getOwnPropertyDescriptors
with objectCreate to copy object and easily give it the same prototype and property
descriptors. Before, this was most often done using Object.assign, which would grab
an object’s properties and symbols instead of descriptors. That approach left the risk
of discarding possible accessors.

Progress / Kendo UI 12

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/
https://www.progress.com/openedge

// just to give you a bit of an idea
const toshmagosh = {
 cuteLevel: 11,
 breed: ‘Blue Pomeranian’,
 treatTime: treat => {
 console.log(`Do you want a ${treat}?`)
 }
}

const newPuppy = Object.create(
 Object.getPrototypeOf(toshmagosh),
 Object.getOwnPropertyDescriptors(toshmagosh)
);

// newPuppy
// {cuteLevel: 11, breed: “Blue Pomeranian”, treatTime: ƒ}

Appreciation Pause

Now, there are a lot of great people that are and have been on TC39, I would like to
thank them all for their work. Doing this list has also put someone’s name in writing
multiple times: Jordan Harband. So, I just wanted to take a quick pause to 👏👏👏👏
Jordan, who is currently on a solid 1,325 day GitHub contributions streak as of
December 1, 2017. Thanks for all you do for JavaScript, Jordan!!

Trailing Commas

Proposed by: Jeff Morrison

I must admit, I think trailing commas looks super sloppy and I have never been a big
fan.

let why = [
 ‘really?’,
 ‘must you?’,
 ‘yuck ’,
]

Progress / Kendo UI 13

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/ljharb
https://github.com/ljharb
https://www.progress.com/
https://www.progress.com/openedge

That being said, I get it. I have had many occasions where I add an item to an array,
a key value pair to an object, or delete an item and have had to remove or add a
comma. I am one with the concept of minimizing how many keystrokes you must use.
keysleft.com says I only have 213,407,968 and I just blew through 117 in this sentence
alone! I’ve also heard the argument for the benefits this will add to checking your git
diffs since you would only need to edit one line when adding function parameters,
array items, etc. TBTH I’ll probably take on this convention from now on. Okay, TC39?
You win!

What’s to Come in 2018

There is an awesome, emoji-laden table of proposals and what stages they are in
located here. You can also see the finished proposals including one that is already
ready for 2018 publication!

Dr. Axel is here to keep you up-to-date with the happenings of ES2018: http://2ality.
com/2017/02/ecmascript-2018.html.

Usually, at this point we’re looking at Stage 4 proposals, which are proposals that will
definitely be added in the next release, and Stage 3 proposals, which are proposals
that have a good chance of being included in the next release.

So far, the stage 4-ers are:

•	 Template Literal Revision proposed by Tim Disney. Currently, the escape
sequence in template literals is problematic for embedding languages like
domain-specific languages. This proposal will remove the restriction on escape
sequences, to understand more click here 👆

•	 s (dotAll) flag for regular expressions by Mathias Bynens. This proposal is
all about emoji! Okay, not entirely, but it introduces the /s flag into regular
expressions to make up for the dot’s (.) shortcomings (like not matching with
non-BMP character such as emoji). There is more to it though, so check out
Mathias’s proposal.

Progress / Kendo UI 14

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://keysleft.com/
https://github.com/tc39/proposals
https://github.com/tc39/proposals/blob/master/finished-proposals.md
https://github.com/tc39/proposal-template-literal-revision
http://2ality.com/2017/02/ecmascript-2018.html
http://2ality.com/2017/02/ecmascript-2018.html
https://github.com/tc39/proposal-template-literal-revision
https://tc39.github.io/proposal-template-literal-revision/
https://github.com/tc39/proposal-regexp-dotall-flag
https://github.com/tc39/proposal-regexp-dotall-flag
https://www.progress.com/
https://www.progress.com/openedge

The list of stage 3-ers is a bit longer so I will give you this helpful link to see the table
and an image of it down below. How nice is that.

How to JavaScript in 2018

After discussing what changed in the standard used to create JavaScript, let’s talk
about how we USE JavaScript. Last year many people, including myself, were talking
about JavaScript fatigue. Yes, the ways to write a JavaScript application have not
really slimmed down, BUT with a lot of command-line tools doing much of the heavy
lifting, transpiling becoming less crucial and TypeScript trying to minimize type
errors, we can relax a little.

Progress / Kendo UI 15

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/tc39/proposals#stage-3
https://www.progress.com/
https://www.progress.com/openedge

Command-line Tools

Most libraries and frameworks have a command-line
tool that, with one command, will spin up skeleton
projects for us to quickly create whatever our little
hearts desire. This will often include a start script
(sometimes with an auto re-loader), build scripts,
testing structures and more. These tools are
relieving us of a lot of redundant file making when
we create new projects. Let’s look at few more things
some command line tools are taking off our plates.

Webpack configurations

Configuring your webpack build process and really
understanding what you were doing, was probably
one of the more daunting learning curves of 2017.
Thankfully, they had one of their core contributors,
Sean Larkin, running around the world supplying us
with great talks.

Many frameworks nowadays not only create the
webpack config files for you, but even populate them
to the point that you may not even have to LOOK
at it Vue’s CLI tool even has a webpack-specific
template giving you a full-featured Webpack setup.
Just to give you the full idea of what command line
tools are providing, here’s what this vue cli template
include, straight from the repo:

•	 npm run dev: first-in-class development
experience.
•	 Webpack + vue-loader for single file Vue

components.
•	 State preserving hot-reload
•	 State preserving compilation error overlay
•	 Lint-on-save with ESLint
•	 Source maps

•	 npm run build: Production ready build.
•	 JavaScript minified with UglifyJS v3.
•	 HTML minified with html-minifier.
•	 CSS across all components extracted into a

single file and minified with cssnano.

•	 Static assets compiled with version hashes
for efficient long-term caching, and an auto-
generated production index.html with proper
URLs to these generated assets.

•	 Use npm run build --reportto build with
bundle size analytics.

•	 npm run unit: Unit tests run in JSDOM with Jest,
or in PhantomJS with Karma + Mocha + karma-
webpack.
•	 Supports ES2015+ in test files.
•	 Easy mocking.

•	 npm run e2e: End-to-end tests with Nightwatch.
•	 Run tests in multiple browsers in parallel.
•	 Works with one command out of the box:

•	 Selenium and chromedriver dependencies
automatically handled.

•	 Automatically spawns the Selenium server.

The preact-cli, on the other hand, takes care of the
standard webpack functionality. Then if you need
to customize your webpack configurations you just
create a preact.config.js file which exports a function
that makes your webpack changes. So many tools,
so much help; developers helping developers.

Progress / Kendo UI 16

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.telerik.com/campaigns/aspnet-mvc/net-cli-reinvented
https://www.telerik.com/campaigns/aspnet-mvc/net-cli-reinvented
https://www.youtube.com/watch?v=4tQiJaFzuJ8&t=3526s
https://github.com/mishoo/UglifyJS2/tree/harmony
https://github.com/kangax/html-minifier
https://github.com/ben-eb/cssnano
https://github.com/jsdom/jsdom
https://facebook.github.io/jest/
http://nightwatchjs.org/
https://github.com/developit/preact-cli#webpack
https://www.progress.com/
https://www.progress.com/openedge

Babel On or Off
Get it? Sounds like Babylon. I crack myself up. I’m not exactly tying Babel to the
ancient city of Babylon, but there has been talk of possibly removing our reliance on
transpiling. Babel has been a big deal for the past few years because we wanted all
the shiny that ECMAScript was proposing but didn’t want to wait for the browsers
to catch up. With ECMAScript moving to yearly small releases browsers may be
able to keep up. What is a JavaScript post without some of the awesome kangax
compatibility charts.

These images of these charts aren’t legible because I wanted to showcase just how
green they are! For full detail click the links below the images to inspect the charts
further.

Image source: http://kangax.github.io

Progress / Kendo UI 17

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://medium.freecodecamp.org/you-might-not-need-to-transpile-your-javascript-4d5e0a438ca
https://twitter.com/kangax?lang=en
https://twitter.com/kangax?lang=en
http://kangax.github.io/
https://www.progress.com/
https://www.progress.com/openedge

Compatibility for es6

Image source: http://kangax.github.io

Compatibility for 2016+

In the first graph those red chunks on the left are compilers (e.g. es-6 shim, Closure, etc.) and older browsers
(i.e. Kong 4.14 and IE 11). Then the five mostly red columns on the right are the server/compilers PJS, JXA,
Node 4, DUK 1.8 and DUK 2.2. On the lower graph that red section that kind of looks like a bad drawing of
a dog looking at a messed up exclamation point are servers/runtimes with only Node 6.5+ having green
streaks. The makeup of the left red square are the compilers/polyfils and IE 11. More importantly, LOOK AT
ALL THAT GREEN! In the most popular browsers, we have practically all green. The only red mark for 2017
features is on Firefox 52 ESR for Shared Memory and Atomics.

To put some of this into perspective here are some browser usage percentages from Wikipedia.

Progress / Kendo UI 18

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://kangax.github.io/compat-table/es6/
http://kangax.github.io/
http://kangax.github.io/compat-table/es2016plus/
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.progress.com/
https://www.progress.com/openedge

Okay, turning off Babel may be a long ways aways because when it comes down to it we want to make a
concerted effort to be accessible to as many users as we can. It is interesting to consider that we may be able
to get rid of that extra step. You know, like before, when we didn’t use transpilers.

TypeScript Talk
If we’re talking about how to JavaScript we must talk about TypeScript. TypeScript came out of the Microsoft
office five years ago but has been the cool kid in town in 2017. There was rarely a conference that didn’t have
a “Why We Love TypeScript” talk; it’s like the new dev heartthrob. Without writing a sonnet to TypeScript let’s
talk a bit about why developers are crushing hard.

For everyone who wanted types in JavaScript, TypeScript is here to offer a strict syntactical superset of
JavaScript which gives optional static typing. Pretty cool, if you’re into that kind of thing. Of course, if you take
a look at the newest results from the State of JavaScript survey, it seems that a lot of people ARE, in fact, into
that kind of thing.

From State of JavaScript

Progress / Kendo UI 19

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.typescriptlang.org/
https://stateofjs.com/2017/introduction/
https://stateofjs.com/2017/introduction/
https://www.progress.com/
https://www.progress.com/openedge

To hear it straight from the source, check out this quote from Brian Terlson:

Speaking as someone who proposed types for JavaScript in 2014: I do not believe
types are in the cards for the near future. This is an extremely complex problem to
get right from a standards perspective. Just adopting TypeScript as the standard
would of course be great for TypeScript users, but there are other typed JS
supersets with pretty significant usage including closure compiler and flow. These
tools all behave differently and it’s not even clear that there’s a common subset to
work from (I don’t think there is in any appreciable sense). I’m not entirely sure what
a standard for types looks like, and I and others will continue to investigate this as it
could be very beneficial, but don’t expect anything near term - HashNode AMA with
Brian Terlson

TypeScript s Flow

In 2017, you have probably seen many blog posts discussing the TypeScript + Flow
combo. Flow is a static type checker for JavaScript. Flow, as you can see in the State
of JavaScript survey chart list above, has about as many people interested as they
do uninterested. More interesting is the stats showing how many of the people
surveyed haven’t heard of Flow, yet. As people learn more about Flow in 2018 maybe
they will find it as beneficial as Minko Gechev does:

Progress / Kendo UI 20

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://hashnode.com/ama/with-brian-terlson-cj6vu9vjv01nmo1wu8vmtt1x9#cj6vuspfq01oso1wuhjo5zvd6
https://hashnode.com/ama/with-brian-terlson-cj6vu9vjv01nmo1wu8vmtt1x9#cj6vuspfq01oso1wuhjo5zvd6
https://jamie.build/adopting-flow-and-typescript.html
https://flow.org/
https://twitter.com/mgechev/status/940131449025347589
https://www.progress.com/
https://www.progress.com/openedge

From State of JavaScript

Undoubtedly, the way we JavaScript (used as a verb here) will evolve in 2018. As
programmers we like to make and use tools that make our lives easier. Unfortunately,
that can sometimes lead to more chaos and too many choices. Thankfully, command
line tools are relieving us of some grunt work and TypeScript has satiated the type-
hungry who were sick of type errors.

Angular s TypeScript

One may notice that all the code samples in Angular documentation are written in
TypeScript. At one point, there was an option that you could choose to walk through
the tutorial in JavaScript or TypeScript but it seems Angular’s heart has been
swayed. Looking at the chart below connecting Angular to JS flavors we can see that
there is actually a tiny bit more users connecting Angular to ES6 (TypeScript: 3777,
ES6: 3997). We’ll see if all of this affects Angular in 2018.

Progress / Kendo UI 21

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://stateofjs.com/2017/introduction/
https://www.progress.com/
https://www.progress.com/openedge

Package Manager Rumble

Along the same lines of how to use JavaScript is the discussion of package
managers. Modules help us utilize tooling we and other developers make because
WHY would you spend time re-writing something that already exists and works
well?? If that question has not popped into your head or been repeated in a team
meeting at least once in 2017...you might be doing it wrong. Just sayin’.

Thankfully, we have teams creating better and better experiences for us to install and
organize these modules. Npm, Yarn and Bower are still the leaders of the pack...age
management tools but I also wanted to throw in jspm. With close to two million installs
this year, jspm is still going strong. Now this isn’t going to be a package manager brawl,
despite the heading of this section, I’ll give you the info and you can decide what it
means to you I’m not going to lie though, I use npm and like their team and what they
do a ton. So, if I come across as biased, it’s probably because I am.

The Digits

Let’s first take a look at the comparative installs for the year. There seems to be an
almost even exponential growth between each of these package managers. npm
still has a large lead over yarn but is less than double the installs of Bower. One of
the first things that caught my eye is the obvious pattern of hill-like install stats.
Although, jspm looks to be skimming that bottom like, it reached nearly two million
installs this year.

https://npm-stat.com/

Progress / Kendo UI 22

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/npm/npm
https://github.com/yarnpkg/yarn
https://github.com/bower/bower
https://github.com/jspm
https://npm-stat.com/charts.html?package=npm&from=2017-01-01&to=2017-12-31
https://npm-stat.com/charts.html?package=npm&from=2017-01-01&to=2017-12-31
https://www.progress.com/
https://www.progress.com/openedge

It’s pretty clear to see that there were many aspects of Yarn that users liked: the
speed, the lockfile...

TODO: what other aspects?

Just kidding! Although that really was my note, thank TJ VanToll for recognizing
the comedic spin. Jokes aside, Yarn got a ton of attention last year because of its
Facebook backing and solutions to npm users sore spots like slow installs and errors
caused by package version inconsistencies.

In response, npm released version 5, which was packed with fun things. One of the
main focuses of this release was increasing their speed, which, of course, prompted
amazing blog post titles like, “npm@5 — Yarn killer?” by Nikhil John. With this update
npm is noticeably faster.

45,073,457 installs

Npm

Progress / Kendo UI 23

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/tjvantoll
https://medium.com/netscape/npm-5-yarn-killer-ba69737b24d0
https://npm-stat.com/charts.html?package=npm&from=2017-01-01&to=2017-12-31
https://www.progress.com/
https://www.progress.com/openedge

Look at that speed!

This update also included a Package.lock file which has the same benefits of
the yarn.lock file, keeping your package versions consistent, and removed npm-
shrinkwrap. They brought on a --save default to any package you install, which saves
you those, oh-so-important keystrokes. One of my favorite additions is npm’s npx
package runner. One nifty thing that npx allows you to do is use packages on a per-
project basis instead of having to save packages to your machine globally. There is
much more to it though, check out the awesome Kat Marchán’s post to learn more.
There are also more features im general on version 5, you can check out their blog
for more information.

11,851,948 installs

Even with the updates in npm 5, Yarn is still faster. Oh, you want to see the speed
comparison updated on the daily? Well, Thomas Schaaf has just the thing. That’s
right, here he has a Google doc with daily speed comparison updates.

https://github.com/thomaschaaf/npm-vs-yarn

Yarn

Progress / Kendo UI 24

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/maybekatz/status/855362606713851904
http://blog.npmjs.org/post/162869356040/introducing-npx-an-npm-package-runner
http://blog.npmjs.org/post/162869356040/introducing-npx-an-npm-package-runner
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
http://blog.npmjs.org/post/161081169345/v500
https://docs.google.com/spreadsheets/d/1ZE5B4qJw1kNGMzjgslcWTuPYrpatzQJXSYMGNOhZ2ys/edit#gid=263077280
https://github.com/thomaschaaf/npm-vs-yarn
https://www.progress.com/
https://www.progress.com/openedge

Yarn is on version 1 and stays fast by caching packages and using parallel operations.
Caching downloaded packages also means that you have them available whether or
not you have a network connection. Yarn also focused on security using checksums
(basically, the outcome of an algorithm comparing information you generate and
information provided by the package to make sure they match) to verify packages
before you execute its code.

There has been some hesitance to adopt Yarn because it is a newer technology but
since it’s created and backed by Facebook, it makes the choice less risky than most
young technologies. Although npm seems to have nearly four times as many installs
as yarn, it is important to note that yarn does not recommend installation via npm.

Note: Installation of Yarn via npm is generally not recommended. When installing
Yarn with Node-based package managers, the package is not signed, and the
only integrity check performed is a basic SHA1 hash, which is a security risk when
installing system-wide apps.

For these reasons, it is highly recommended that you install Yarn through the
installation method best suited to your operating system.

From the yarn installation guides.

Tune in next year to see what happens for yarn in the year 2018, dun dun duuuuun.

28,133,666 installs

Bower

This was a much larger number of installs than I would have ever guessed, coming in
second overall and doubling yarn’s numbers. Bower is still the most popular front-
end specific package manager BUT, while it is still being maintained, the Bower team
is recommending users switch to using Yarn and Webpack. In October of this year,
Adam Stankiewicz made a post on the Bower blog on how to migrate off of Bower
pointing to his repo, bower-away, that he had created in July. Yet, this year’s install
numbers show Bower with over double the amount of installs of Yarn, so we’ll see
how that goes. If you feel like cozying up for a long read, check out this closed issue
discussing whether or not to deprecate Bower.

Progress / Kendo UI 25

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.lifewire.com/what-does-checksum-mean-2625825
https://yarnpkg.com/en/docs/install#alternatives-tab
https://npm-stat.com/charts.html?package=bower&from=2017-01-01&to=2017-12-31
https://bower.io/blog/2017/how-to-migrate-away-from-bower/
https://github.com/sheerun/bower-away
https://github.com/bower/bower/issues/2298
https://www.progress.com/
https://www.progress.com/openedge

One thing they may not be considering is how many users are installing Bower
based on a tutorial they’re following and are never actually visiting their page. Since,
this message to the public is pretty recent we can take look at the numbers next
year to see the impact it had.

1,941,913 installs

jspm.io

In their words “jspm is a package manager for the SystemJS universal module loader,
built on top of the dynamic ES6 module loader.” It can load any module format (ES6,
AMD, CommonJS and globals) straight from any registry, like npm and GitHub. jspm
does not seem to have much GitHub love in the form of forks and stars but there is
consistent activity throughout this year. With nearly two million downloads this year
and consistently staying between ~150k and 200k monthly downloads throughout
the year, it seems like jspm has staying power.

provided by npm stats

Progress / Kendo UI 26

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://npm-stat.com/charts.html?package=jspm&from=2017-01-01&to=2017-12-31
https://npm-stat.com/
https://www.progress.com/
https://www.progress.com/openedge

The Other Ones
Okay, chunking these all together may seem harsh but, let’s be honest, people aren’t
using them as much as npm, Bower, yarn or jspm.

Which other ones you may ask? Today we’re going to look at three that are currently
doing the best in installs this year: component, pnpm and ied. If we take a look at
the charts, provided by npm stats (yes, just like yarn, these can all be installed using
npm), pnpm is towering over the other two. I also wanted to show a chart looking at
monthly downloads starting at February 2015. In this chart it looks as if component
and ied have hit their peak and are slowly dying down whereas pnpm is on an
upward trajectory. Let’s briefly dig into each project.

provided by npm stats

provided by npm stats

Progress / Kendo UI 27

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/componentjs/component
https://github.com/pnpm/pnpm
https://github.com/alexanderGugel/ied
https://npm-stat.com/
https://npm-stat.com/
https://npm-stat.com/
https://www.progress.com/
https://www.progress.com/openedge

pnpm - 334,497 installs: By far the most installs of these “others” package
management libraries and is the youngest of the bunch having its first commit in
January of 2016. It focuses on speed leveraging disk space efficiency and is actively
being worked on. It currently seems to be worked on actively, having a commit every
few days or so.

component - 35,340 installs: This project is deprecated and hasn’t had a commit in 2
years, yet still has over 35,000 installs this year.

ied - 22,522 installs: Touts being “like npm, but faster” and had its first commit back
in August of 2015. It is specifically for Node, has some killer ASCII art but hasn’t had a
commit in over a year.

Only the future can really say what will happen to these brave “other” libraries.
Although, it’s probably safe to say that component and ied may eventually fade away
never to make it into the top package manager section. It is the open-source world
though, so never say never.

So the package manager battle wages on but when it comes down to it, we have
options for really great package management tools. Isn’t that the way it should be?
You tell me. I’m just happy to have a great way to install all the the things I need to
build all the weird app ideas I have in my head!

Related: Look at this great list of package managers.

Conclusion
In 2017, ECMAScript continued its small but impactful deliveries, the package
manager race continues to make our experiences better, we have some great
tools to make JavaScripting a tidbit easier and we have more ways to utilize the
advancements of the modern web. 2017 was pretty crazy but look at all these bright
spots we have in our JavaScript world. That’s right, I’m an optimist! There are bound
to be many more things to talk about in a year’s time but, for now, let’s be thankful
JavaScript has survived another year without burning everything to the ground.

Progress / Kendo UI 28

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/pnpm/pnpm
https://github.com/componentjs/component
https://github.com/alexanderGugel/ied
https://github.com/topics/package-manager
https://www.progress.com/
https://www.progress.com/openedge

Libraries and Frameworks
and Futures, Oh Yes!
by @AlyssaNicoll

Here at Progress we take a yearly look at the JavaScript framework landscape and
try to guess where things are going. Last year, we focused on frameworks such as
React, Angular, Ember, Vue and Backbone. This year, we are going to take at look at
all the same frameworks, save Backbone. If there is anyone less hot than Ember, that
would be backbone. Here are the frameworks and libraries we’ll be taking a look at.

We’ll also look at Kendo UI. We certainly aren’t biased because we make it and hope
it does well, certainly not. Looking back can help us determine how each of these
frameworks impacted web development in 2017, as well as where they are likely
headed.

Progress / Kendo UI 29

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/AlyssaNicoll
https://developer.telerik.com/topics/web-development/javascript-2017-libraries-frameworks/
https://trends.google.com/trends/explore?cat=422&date=2017-01-01%202017-12-31&geo=US&q=angular,react,backbone,ember
https://www.progress.com/
https://www.progress.com/openedge

Open Source Predictions For 2018

We all know that Google is the driving source behind Angular and Facebook is the
creator and maintainer of React. In 2017 we predicted that open source software,
controlled by large corporations, aka “Corporate Open Source”, would become more
prevalent. While no new huge contenders have entered the ring in 2017, OS projects
that started in 2016 or earlier remain strong (like .NET and UNIX). Whereas others
have really taken root and spread, like VS Code, TypeScript, and Swift.

source: https://trends.google.com/trends/explore?date=today%205-y&q=%2Fm%2F010sd4y3,%2Fm%2F0n50hxv,visual%20studio%20code

As you can see in this Google Trends chart over the past 5 years, all three of those
OS projects are on the incline in 2017.

I made a nifty list of OS goodies and the earliest dates I could find on their Github
repos:

Microsoft
•	 vscode - OS in July 2016
•	 dotnet - OS in Sep 2016
•	 TypeScript - OS in March 2015
•	 azure-sdk-for-node - July 2015

Apple
•	 Swift - Dec 2015
•	 UNIX

Progress / Kendo UI 30

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://trends.google.com/trends/explore?date=today%205-y&q=%2Fm%2F010sd4y3,%2Fm%2F0n50hxv,visual%20studio%20code
https://github.com/microsoft
https://github.com/apple
https://www.progress.com/
https://www.progress.com/openedge

We had hoped that there would be more open-source offerings for JavaScript
developers from Microsoft and Apple. However, in October of 2017, Apple did open
source the kernel that drives iOS and macOS.

“[Apple’s iOS and macOS kernels] are now available on GitHub, representing the first
time that Apple has released such integral code into the public domain.”
— The Inquirer

Angular

For this girl’s opinion, Angular is still pretty hot *cough cough* *points to Tesla’s
hiring page*. Many large companies made the switch from AngularJS to Angular. It
would take something just shy of a miracle to switch them off this robust framework.

In November, the latest version, Angular 5.1, was released. Stephen Fluin Angular’s
Developer Advocate, wrote about all the juicy deets in this blog post.

I pinged Stephen on slack and asked what he thought Angular’s biggest feat was in
2017. Here is what he had to say:

“In 2017 we’ve successfully balanced stability and innovation. making your
applications smaller and faster without making you rewrite your code.

It can go much further, like imagine in 3 years Web Assembly is good enough that
we want to use it. Because we are a full platform, we could start shipping part of
your apps as Web Assembly for you, without you having to do anything. Or ES2015
modules, or web components, or any of the ‘modern web’.”

Progress / Kendo UI 31

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.theinquirer.net/inquirer/news/3018430/apple-releases-ios-and-mac-os-source-code-to-github-ahead-of-iphone-x-launch
https://blog.angular.io/version-5-0-0-of-angular-now-available-37e414935ced
https://blog.angular.io/angular-5-1-more-now-available-27d372f5eb4e
https://www.progress.com/
https://www.progress.com/openedge

I’m extremely pumped to see what Angular has in store for 2018, 19, and beyond. It
feels like we are finally getting past those awkward teenage years, where we are still
figuring out who we are and how we fit into the world. Now we know what kind of
framework Angular is and needs to be and we are well on our way.

As Rob Wormald put it:

“Angular is ideal for building complete applications and our tooling, documentation
and infrastructure have been primarily aimed at this use case…”

For one thing, I think Angular elements are going to be HUGE. Rob gave a talk on
them in November at Angular Connect and Pascal Precht just gave a keynote on
them @ngbeconf.

Source: https://twitter.com/PascalPrecht/status/939102123102474240

Progress / Kendo UI 32

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/robwormald
https://www.youtube.com/watch?v=vHI5C-9vH-E
https://twitter.com/PascalPrecht
https://twitter.com/ngbeconf
https://twitter.com/PascalPrecht/status/939102123102474240
https://www.progress.com/
https://www.progress.com/openedge

Angular elements are simply Angular Components wrapped in Custom Elements. These will bridge the
gap and allow you to use Angular Components anywhere, without the full Angular environment. Need an
Angular Component included in your React project? No problem, Angular Elements have you covered!

Not only is the Angular team looking to solve these issues in 2018, but we also have so much to look
forward to in the coming years. They hope to have a solution for everything you could possibly need in a
typical Angular development environment. The end of 2018 should not look too strange from it’s beginning
for Angular. Since Sep. 2016 they have started a release cycle that allows time for breaking changes to be
deprecated, before they are officially changed. This friendlier system means developers have time now to
work on updating (approximately 6 months, sometimes longer) before breaking changes become official. We
foresee some cool things from Angular Elements (expect more on that at this years ng-conf), as well as some
updates to the CLI and Angular Material. The Angular team is also in cahoots with the new in-browser editor
team ‘StackBlitz’. We predict that all of the Angular Material and Angular doc examples will be switched from
Plunkr to StackBlitz in 2017.

AngularJS

Stack Overflow Dev Survey 2017

Progress / Kendo UI 33

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/angular/angular/blob/master/docs/RELEASE_SCHEDULE.md#more-info--resources
https://www.ng-conf.org/
https://stackblitz.com/
https://www.progress.com/
https://www.progress.com/openedge

“Node.js and AngularJS continue to be the most commonly used technologies in this
category.”

Source: https://insights.stackoverflow.com/survey/2017#technology-frameworks-libraries-and-other-technologies

Looking at Stack Overflow’s 2017 survey would also make you think AngularJS is still
crushing react. However, in the survey results from “The state of JS in 2017”, we see a
different story. In this chart, React is clearing conquering all in the Ì’ve used it before
and would use it agaiǹ category.

The current state of AngularJS

At the last Google Developer Expert Summit that I attended, they again expressed
their plans to continue updating AngularJS, only so long as the traffic to its docs
outnumbered the traffic to the Angular.io docs. AngularJS’s days are numbered.

That being said, there are still so many companies using AngularJS, without any
plans of upgrading. Why, you might ask? Some just do not have the resources
needed to dedicate dev hours towards upgrading all the directives to components
and then make the massive swap over to Angular. Let’s be real peeps, this is no
simple upgrade. For others, they are hesitant (still) to adopt TypeScript.

Progress / Kendo UI 34

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://insights.stackoverflow.com/survey/2017#technology-frameworks-libraries-and-other-technologies
https://insights.stackoverflow.com/survey/2017
https://angular.io/
https://www.progress.com/
https://www.progress.com/openedge

At first, the Angular team said they would support
multiple languages, not just Typescript. However, a
few months into Angular being released, they swiftly
back tracked and removed any references to other
languages in their docs. So for some companies,
believe it or not, they won’t upgrade because they
cannot give up their beloved CoffeeScript. ;)

So where does that leave you? If Angular is too
large of a change for your company to swallow, and
AngularJS is bound to be deprecated one of these
days, where does that leave your company, clients
and code? Some companies are still biding their time,
while they don’t have to make a decision just yet,
while others are choosing the jump to VueJS.

Vue.js

VueJS has been on the rise and mentioned as the
next hot new thing, even Nasa is hiring VueJS devs!
It is VERY similar to AngularJS, and does not require
a compiled language change like TypeScript. (Yay,
the people can still have their CoffeeScript and the
dev world shudders).

What is Vue?

You guessed it! Vue is yet another WONDERFUL
JavaScript framework. Vue is simple to get started,
scales to large cases easily, has everything you
need end to end to build small to large scale apps. It
boasts these fun features, which after reading, you
should think to yourself… AngularJS?

AngularJS •cough• I mean, Vue.js Features

•	 Reactive Interfaces
•	 Declarative Rendering
•	 Data Binding
•	 Directives
•	 Template Logic
•	 Components
•	 Event Handling
•	 Computed Properties
•	 CSS Transitions and Animations
•	 Filters

No surprise there though, Vue was created by an ex-
Googler, Evan You, who after using AngularJS on a
number of projects, was just playing around, seeing
if he could strip down AngularJS to the core parts he
liked. Thus, in 2013, VueJS was born.

Progress / Kendo UI 35

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://twitter.com/CollinEstes/status/949382099722752000
https://www.progress.com/
https://www.progress.com/openedge

“For me, Angular offered something cool which is data binding and a data driven
way of dealing with a DOM, so you don’t have to touch the DOM yourself. It also
brought in all these extra concepts that forced you to structure the code the way it
wanted you to. It just felt too heavy for the use case that I had at that time.

I figured, what if I could just extract the part that I really liked about Angular and
build something really lightweight without all the extra concepts involved? I was also
curious as to how its internal implementation worked. I started this experiment just
trying to replicate this minimal feature set, like declarative data binding. That was
basically how Vue started.”

Evan You for “Between the Wires”

You can read more about Vue’s origin story here. The Vue.js 2 core library is very
small (17 kB). This means that using Vue in your site should be pretty fast and load
in browser quickly. This ALSO means, that learning Vue should be relatively easy and
it shouldn’t take you long to get started with the framework.

“I read thru it’s docs and knew everything i needed to know in less than 30 min. I
couldn’t finish the first page of Angular in 30min.” — Anonymous Dev

React

I’m still surprised by all the apps I continually run into and after inspecting under the
hood, I realise they are created with React. React, while not being the newest of “hot-
nesses”, is still very prevalent and often brought up as a web dev go-to framework.
Don’t believe me? Check out these killer circle charts from “The State of JS 2017
survey” results. React’s big.

Progress / Kendo UI 36

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://betweenthewires.org/2016/11/03/evan-you/
https://betweenthewires.org/2016/11/03/evan-you/
https://www.progress.com/
https://www.progress.com/openedge

source: https://stateofjs.com/2017/front-end/worldwide/

What is React? Should I use it?

“React is very popular and will likely continue to be now that Facebook has resolved the licensing controversy.
It has become the first choice alternative to Angular and only continues to gain traction.” –Joe Eames,
JavaScript and Angular expert source

React, unlike Angular, is not a framework, but rather a library. React is a JS library for building UI on web apps.
It provides a declarative method of defining UI components, which as they claim:

“Declarative views make your code more predictable and easier to debug.” — React site

They also enforce component based architecture. An encapsulated component in react should manage its
own state and multiple components can be combined in your quest to build your apps UI. Below is a handy
chart that compares some features of React vs. Angular.

Progress / Kendo UI 37

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://stateofjs.com/2017/front-end/worldwide/
https://medium.com/pluralsight/tech-trends-2018-7c443b6cff7f
https://reactjs.org/
https://www.progress.com/
https://www.progress.com/openedge

source: https://blog.techmagic.co/angular-2-vs-react-what-to-chose-
in-2017/

React updates in 2017

In September the React team announced the release
of React v16.0! Some long requested features/changes
made it into this release, including improved server-side
rendering, error boundaries, support for custom DOM
attributes and fragments.

With the new return types (fragments and strings) you
can now return an array of elements from a component’s
render method. Like with other arrays, you’ll need to add
a key to each element to avoid the key warning.

React did really well on not only the stackoverflow
dev survey for 2017 but also The State of JS survey
and npm trends for the past year. These aren’t fully
comprehensive representations of the web dev world as
a whole, but they are an interesting window into it. We
predict React continue to grow in popularity in 2018.

Stack Overflow’s Dev Survey 2017

On the Stack Overflow survey, React scored highest for
`Most Loved` among developers.

Progress / Kendo UI 38

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://blog.techmagic.co/angular-2-vs-react-what-to-chose-in-2017/
https://blog.techmagic.co/angular-2-vs-react-what-to-chose-in-2017/
https://www.progress.com/
https://www.progress.com/openedge

“React is the most loved among developers, whereas Cordova is the most dreaded. However, Node.js is the
most wanted.”

The State of JS 2017 Survey

React did the best out of ALL the frameworks on `The State of JS 2017̀ survey by Sacha Greif. 14k people
said they have used React before and would use it again. The next leading framework in that category was
Vue.JS, which only got a measly 4.6k votes.

Source: https://stateofjs.com/2017/front-end/results

On npm trends, React is the most downloaded module, when compared Ember, Angular, React, and Vue, and
Backbone.

Progress / Kendo UI 39

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://stateofjs.com/2017/front-end/results
https://www.progress.com/
https://www.progress.com/openedge

Ember

Ember. What to say about Ember? I used Google Trends to generate some data on
the four top runner Frameworks and got this glorious chart below. Ember is that little
green line that seems to be flatlining there at the bottom.

source

Now that chart doesn’t do a whole lot for me, other than showing Ember as a dead
thing, which we all knew. Jk, please don’t send Tomster after me. So I decided to turn
it into a nifty pie chart (exported said data into excel), that might help shed more
light on the situation:

Progress / Kendo UI 40

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://trends.google.com/trends/explore?cat=422&q=React,Angular,Vue,Ember,AngularJS
https://emberjs.com/mascots/
https://www.progress.com/
https://www.progress.com/openedge

Progress / Kendo UI 41

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/
https://www.progress.com/openedge

There really is no one way to know which frameworks are doing the best. This is
just one peek into the enigma that is the web dev world. However, just going off of
this pie chart, it still looks like Angular is on top, followed by React. Whereas Ember
doesn’t even get a piece, its dataset is THAT small. Other surveys (see earlier) don’t
show Ember doing too well either. This does not mean that developers are done
using Ember, it just means that the survey-taking-type devs are not in love with
Ember right now. That’s the beauty of surveys, they only shed light on the part of
the demographic willing to take them.

For example, the site builtwith.com measures how many sites across the web are
built with specific technologies such as JavaScript frameworks. And for Ember
specifically you can

Get a list of 31,099 websites using Ember which includes location information,
hosting data, contact details, 15,116 currently live websites and 15,983 sites that used
this technology previously.

31k sites, not too shabby, even if the framework is trending downward. ￼

“One of the problems with Ember is that it targets a different type of developer,
different from any other target demographic. It targets people who like Python, Rails
or CoffeeScript. Ember is a different way of writing code. It’s very structured, there’s
a way to do everything, everything is standardized — all things that are abnormal to
JS devs. People like the freedom of JS, with Ember, you cannot break the rules.” —
Zach Nicoll, Front End Web Dev

So after interviewing him on his love of Ember, I understand a little more why it
might be trending downward (at least on the scales we have to measure it today). I
predict that Ember, like Angular, isn’t going anywhere. Whether or not it’s popular in
2018, I can’t say, but it will still be one of the forerunner frameworks.

Much of the Web Still Runs on jQuery

In March this year, 3.2.1 was released with bug fixes like this fella:

Ensure we get proper values for width and height on elements with display “inline”.

Progress / Kendo UI 42

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://builtwith.com/
https://blog.jquery.com/
https://www.progress.com/
https://www.progress.com/openedge

The Internet keeps chugging along and so does jQuery. Like 90% of the Internet
runs on jQuery. We all know this, so the chart below shouldn’t shock you.

Source

This CSS Tricks article goes over new vanilla alternatives to jQuery methods. As
JavaScript gets better and advances, jQuery should inevitably become deprecated.

However, as a friend of mine likes to say “you might wanna take that with a bucket
of salt”, especially since jQuery has been around since the dawn of time. It would be
very hard to imagine anything over throwing that dynasty, anytime soon.

Progress / Kendo UI 43

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://discuss.httparchive.org/t/javascript-library-detection/955/2
https://css-tricks.com/now-ever-might-not-need-jquery/
https://www.progress.com/
https://www.progress.com/openedge

The State of JS in 2017 Survey Results

Now that we have taken a look at the big JS frameworks out there, let’s shift our
attention to some recent survey data so we can pontificate our futures and the
meaning of all this. Earlier this month, Sacha Greif released his survey results, in
which he surveyed thousands of developers about their framework preference,
salary, and more. I think I’ve found an interesting correlation on the recent survey
results released.

In the above chart, backbone and Ember are pretty much on the dead side, whereas
React is RIDICULOUSLY popular. Now take a look at this chart, telling about salary
breakdowns according to framework.

Progress / Kendo UI 44

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/
https://www.progress.com/openedge

I find it really interesting that Ember and backbone, two on the lowest on the
popular chart, are two of the higher paying salaries. Whereas the more popular
languages (Vue, Angular, React) are on the lower end. It seems to me that the old
“supply and demand” theory is at it again!

Kendo UI
2017 was huge for Kendo UI. Looking ahead, 2018 is shaping up to be even bigger.
Here’s a quick look into the crystal ball!

Wrappers for React and Vue were introduced in September of 2017. These wrappers
give React and VueJS devs access to the majority of our components. In 2018, ALL
jQuery-based components in Kendo UI will have wrappers for React and VueJS.
We’re SUPA pumped!! This means that Kendo UI will fully support the big four
(jQuery, Angular, React, and Vue).

Progress / Kendo UI 45

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=whitepaper&utm_campaign=kendo-ui-jquery-whitepaper-futurejs18
https://www.progress.com/
https://www.progress.com/openedge

React’s continuing popularity bodes well for Kendo UI in 2018. We just released, this
January, a set of native components for React. In Kendo UI, you have one of two
options. Wrappers, that provide our components or truly native components that are
written in the framework you are using. (As mentioned above, we currently support
jQuery, Angular, React, and Vue.) These React native components will make use of
features such as the virtual DOM, useful for complex components like the Grid. They
include form component suites, with such goodies as DropDowns and powerful (and
did we mention sexy?) input elements. They will also support themes for Material
Design and Bootstrap v4.

Checkout Kendo UI’s dashboard component for React!

We’re also upping the Angular support in Kendo UI to include popular components
such as the TreeView, Window, Splitter, and Gauges. Many features for our very
popular Grid component will also be added.

Progress / Kendo UI 46

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.telerik.com/kendo-react-ui/components/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=kendo-ui-jquery-whitepaper-futurejs18
https://github.com/telerik/react-dashboard
https://www.progress.com/
https://www.progress.com/openedge

Check Out The Angular Components
Kendo UI Already Offers!

Prediction Time

On the safer side, we predict that the weak JavaScript frameworks will get weaker, and the strong will get
stronger. People (and companies) will continue to use frameworks they know and love. Angular, React, Ember,
and Vue will all still be in the game come 2019. I predict that Vue will continue to light up and be used, but at
an individual scale, rather than a large company scale.

AR/VR

This month Mozilla announced the WebXR Viewer app was released for download on the iTunes store. This
app is an augmented reality viewer that lets you make and view AR experiences created with webxr-polyfill
Javascript library and ARKit.

This app is not intended to be a full-fledged web browser, but rather a way to test, demonstrate and share AR
experiments created with web technology.

Progress / Kendo UI 47

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.telerik.com/kendo-angular-ui/components/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=kendo-ui-jquery-whitepaper-futurejs18
https://itunes.apple.com/us/app/webxr-viewer/id1295998056?ls=1&mt=8
https://github.com/mozilla/webxr-polyfill
https://www.progress.com/
https://www.progress.com/openedge

Mozilla isn’t the only company in the AR/VR pie, however. Google also released their
own AR app called WebARonARCore APK on Android. Mozilla has also been working
on integrating into three.js graphics library and A-Frame framework. These are both
really popular libraries/frameworks on the AR scene and it will only make it easier
and easier to use AR/VR if big companies like Mozilla and Google support it.

On our more ballsy-prediction-scale, we predict that libraries and frameworks will
start diving into the AR/VR scene more thoroughly and that new AR/VR libraries
and integrations with existing libraries will start to pop up. We hope that 2018 will
have some fun and interesting reveals.

Progress / Kendo UI 48

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://github.com/google-ar/WebARonARCore
https://www.progress.com/
https://www.progress.com/openedge

PWA

Progressive web apps are where it’s at right now. Building your app, no matter the
frameworks or libraries used, so that it can work offline is super in right now. But
there are more to progressive web apps than just “working offline”. Here is the
Google standard for what it takes to be a PWA.

Check out Google’s PWA checklist today!

Gartner predicts that “by 2020, progressive web apps will have replaced 50% of
general-purpose, consumer-facing mobile apps”. I don’t know about 50%, but I do
predict more and more big name companies implementing progressive web app
features on their sites in 2018 and beyond.

TJ, our friend from the NativeScript team, actually just wrote a blog post about them.
[insert link] In his post, TJ outlines the benefits to switching your app to a PWA, why
PWAs have been so successful, and compares PWAs versus JavaScript-driven native
approaches. Check it out for more nitty gritty on PWAs.

Progress / Kendo UI 49

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://www.progress.com/
https://www.progress.com/openedge

Here’s to 2017
We here on the Kendo UI team understand that all of these surveys and tracking
trends are not the full picture. If we have misrepresented or even forgotten your
favorite framework ping me or my colleagues on the twitters! We’d love to hear your
thoughts and promise to keep an open mind, now, in 2018, and forever more! We
hope you’ve enjoyed our summary of 2017 and wish you all the best of luck in your
coding endeavours in 2018!

Happy Coding <3 from the Kendo UI team authors

Progress / Kendo UI 50

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/
https://www.progress.com/openedge
https://twitter.com/Tzmanics
https://twitter.com/AlyssaNicoll
https://twitter.com/tjvantoll

Get started with a free trial

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/
progresssw youtube.com/progresssw
For regional international office locations and contact
information,
please go to www.progress.com/worldwide	

Progress and Kendo UI are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other

countries. Any other trademarks contained herein are the property of their respective owners.

© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2018/02 | RITM0010943

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for
developing and deploying mission-critical business applications.
Progress empowers enterprises and ISVs to build and deliver
cognitive-first applications that harness big data to derive
business insights and competitive advantage. Progress offers
leading technologies for easily building powerful user interfaces
across any type of device, a reliable, scalable and secure backend
platform to deploy modern applications, leading data connectivity
to all sources, and award-winning predictive analytics that brings
the power of machine learning to any organization. Over 1,700
independent software vendors, 80,000 enterprise customers, and
2 million developers rely on Progress to power their applications.
Learn about Progress at www.progress.com or +1-800-477-6473.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

About Kendo UI – Our Complete
JavaScript UI Component Library
Kendo UI allows you to quickly build eye-catching, high-quality, high-performance responsive web-based
apps integrated into your technology of choice (jQuery, Angular, React, or Vue). Kendo UI offers a large library
of popular components from sophisticated grids, charts and scheduler to buttons and menus. Access the
library’s 70+ customizable UI components to speed up your development time by up to 50%.

https://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=whitepaper&utm_campaign=kendo-ui-jquery-whitepaper-futurejs18
http://www.progress.com

