
1

public class Rectangle
{
 public int Length {get;set;}
 public int Height {get;set;}

 public void Grow(int length, int height)
 {
 Length += length;
 Height += height;
 }
}
Rectangle r = new Rectangle();
r.Length = 5;
r.Height = 10;
r.Grow(10, 10);
// r.Length is 15, r.Height is 20, same

instance of r

Functional Programming
With C# 7.1
CHEAT SHEET

Functional programming is a style that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable data.

Immutable Types

An object whose state cannot be modified after it is created, lowering the risk of side-effects.
https://dotnetfiddle.net/K928pP

public class ImmutableRectangle
{
 int Length { get; }
 int Height { get; }

 public ImmutableRectangle(int length,
int height)
 {
 Length = length;
 Height = height;
 }

 public ImmutableRectangle Grow(int length,
int height) =>
 new ImmutableRectangle(Length +
length, Height + height);
}

ImmutableRectangle r = new
ImmutableRectangle(5, 10);

r = r.Grow(10, 10);
// r.Length is 15, r.Height is 20, is a new

instance of r

Mutable Immutable

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://dotnetfiddle.net/K928pP

2

Expressions Instead of
Statements

Statements define an action and are executed for
their side-effect.
Expressions produce a result without mutating state.

https://dotnetfiddle.net/ozZIL3

Example

ExampleBoth of the following code examples produce the
same results. The expression produces a result
without mutations.

Statement

public static string GetSalutation(int hour) {
 string salutation; // placeholder value
 if (hour < 12)
 salutation = "Good Morning";
 else
 salutation = "Good Afternoon";
 return salutation; // return mutated
variable
}
Expression

public static string GetSalutation(int hour) =>
 hour < 12 ? "Good Morning" : "Good
Afternoon";

ValueTuples

Tuple is a more efficient and more productive
lightweight syntax to define a data structure that
carries more than one value. Requires NuGet
Package System.ValueTuple

• Represent data without DTO classes
• Lower memory footprint than a class
• Return multiple values from methods without

the need for out variables

(double lat, double lng) GetCoordinates(string
query)
{
 //DO search query ...
 return (lat: 47.6450905056185,
lng: 122.130835641356);
}

var pos = GetCoordinates("15700 NE 39th St,
Redmond, WA");

pos.lat; //47.6450905056185
pos.lng; //122.130835641356

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://dotnetfiddle.net/ozZIL3

3

Func Delegates

Func Delegates encapsulate a method. When
declaring a Func, input and output parameters are
specified as T1-T16, and TResult.

https://dotnetfiddle.net/EyGLvp

• Func<TResult> – matches a method that
takes no arguments, and returns value of
type TResult.

• Func<T, TResult> – matches a method that
takes an argument of type T, and returns value
of type TResult.

• Func<T1, T2, TResult> – matches a method
that takes arguments of type T1 and T2, and
returns value of type TResult.

• Func<T1, T2, …, TResult> – and so on
up to 16 arguments, and returns value of
type TResult.

Example

Example

Both of the following code examples produce the
same results. The expression produces a result
without mutations.

Func<int, int> addOne = n => n +1;
Func<int, int, int> addNums = (x,y) => x + y;
Func<int, bool> isZero = n => n == 0;

Console.WriteLine(addOne(5)); // 6
Console.WriteLine(isZero(addNums(-5,5))); //
True

int[] a = {0,1,0,3,4,0};
Console.WriteLine(a.Count(isZero)); // 3

Higher Order Functions /
Functions as Data

A function that accepts another function as a
parameter, or returns another function.

https://dotnetfiddle.net/jhn5BZ

method signature

int IEnumerable.Count<T>(Func<T, Bool>
predicate)

Source code for Count()

int count = 0;
 foreach (TSource element in source)
 {
 checked // overflow exception check
 {
 if (predicate(element)) //
func<T,Bool> invoked
 {
 count++;
 }
 }
 }
return count;
usage

bool[] bools = { false, true, false, false };

int f = bools.Count(bln => bln == false); //
out = 3
int t = bools.Count(bln => bln == true); // out
= 1

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://dotnetfiddle.net/EyGLvp
https://dotnetfiddle.net/jhn5BZ

4

Method Chaining (~Pipelines)

Since C# lacks a Pipeline syntax, pipelines in C# are
created with design patterns that allow for methods
to chain. The result of the method chain should
produce the desired value and type.

http://demos.telerik.com/aspnet-mvc/grid

Example

Example, Telerik Grid HTML Helper

Example

Tip

Both of the following code examples produce the
same results. The expression produces a result
without mutations.

string str = new StringBuilder()
 .Append("Hello ")
 .Append("World ")
 .ToString()
 .TrimEnd()
 .ToUpper();
// HELLO WORLD

Html.Kendo()
.Grid(Model)
.Name("grid")
.Columns(columns =>
{
columns.Bound(product => product.ProductID);
columns.Bound(product => product.ProductName);
columns.Bound(product => product.UnitsInStock);
}) // Render HTML Data Grid

Extension Methods

Extension methods are a great way to extend
method chains and add functionality to a class.

Note: Telerik UI for ASP.NET MVC’s HTML Helpers
are built using extension methods.

Add the [DebuggerNonUserCodeAttribute] attribute
to utility extension methods for easier debugging.

You can read more about this attribute at
davefancher.com:

https://davefancher.com/2016/01/28/functional-c-
debugging-method-chains/

// Extends the StringBuilder class to accept a
predicate

public static StringBuilder AppendWhen(
 this StringBuilder sb, string value,
bool predicate) =>
 predicate ? sb.Append(value) : sb;

Usage

string htmlButton = new StringBuilder()
 .Append("<button")
 .AppendWhen(" disabled", isDisabled)
 .Append(">Click me</button>")
 .ToString();

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://demos.telerik.com/aspnet-mvc/grid
http://www.telerik.com/campaigns/aspnet-mvc/free-trial-1?utm_medium=pdf&utm_source=whitepaper&utm_campaign=devcraft-whitepaper-fncheatsheet
https://davefancher.com/2016/01/28/functional-c-debugging-method-chains/
https://davefancher.com/2016/01/28/functional-c-debugging-method-chains/

5

Example

Yield

Using yield to define an iterator removes the need
for an explicit extra class (the class that holds the
state for an enumeration.

You consume an iterator method by using
a foreach statement or LINQ query.

Yield is the basis for many LINQ methods.

https://dotnetfiddle.net/D4tgdG

Without Yield
public static IEnumerable<int>
GreaterThan(int[] arr, int gt) {
 List<int> temp = new List<int>();
 foreach (int n in arr) {
 if (n > gt) temp.Add(n);
 }
 return temp;
}

With Yield
public static IEnumerable<int>
GreaterThan(int[] arr, int gt) {
 foreach (int n in arr) {
 if (n > gt) yield return n;
 }
}

LINQ

The gateway to functional programming in C#. LINQ
makes short work of most imperative programming
routines that work on arrays and collections.

Methods by Category

Quantify
All, Any, Contains

Filter
Where, OfType

Project/Transform
Select, SelectMany, Zip

Criteria/Set
Distinct, Except, Intersect, Union

Sorting
OrderBy, OrderByDecending, ThenBy,
ThenByDecending, Reverse

Aggregation
Aggregate, Average, Count, LonCount, Max, Min,
Sum

Partition/Join
Skip, SkipWhile, Take, TakeWhile, Join, GroupJoin

Grouping
GroupBy, ToLookup

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://dotnetfiddle.net/D4tgdG

6

Thread-Safe Collections

Thread-Safe Collections

Since Functional programming promotes thread
safety via immutability, these Thread-Safe
Collections important to know.

The .NET Framework 4 introduces the System.
Collections.Concurrent namespace, which
includes several collection classes that are both
thread-safe and scalable. Multiple threads can
safely and efficiently add or remove items from
these collections, without requiring additional
synchronization in user code.

Blocking Collection<T>
Provides bounding and blocking
functionality for any type that implements
IProducerConsumerCollection<T>.

IProducerConsumerCollection<T>
The interface that a type must implement to be
used in a BlockingCollection.

Concurrent Queue<T>
Thread-safe implementation of a FIFO (first-in, first-
out) queue.

Concurrent Dictionary<TKey, TValue>
Thread-safe implementation of a dictionary of key-
value pairs.

Concurrent Stack<T>
Thread-safe implementation of a LIFO (last-in, first-
out) stack.

Concurrent Bag<T>
Thread-safe implementation of an unordered
collection of elements.

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

7

Resources

Functional Programming Self Guided Workshop
Functional Programming vs. Imperative Programming (C#)
Refactoring Data Grids with C# Extension Methods
Better Code with Functional Programming
Functionally Similar – Comparing Underscore.js to LINQ
Giving Clarity to LINQ Queries by Extending Expressions
Channel 9's Visual Studio Toolbox: Functional Programming in C#

This resource is brought to you by Telerik and Kendo UI.

These convenient bundles include a wide-range of UI, reporting and productivity tools for
both .NET and JavaScript technologies and support that’s got your back in every step of
your project.

Thanks to our intuitive APIs, alongside thousands of demos with source code availability,
comprehensive documentation and a full assortment of VS templates, you will get up and
running with our tools in no time and fully embrace your inner warrior (kendoka/ninja).

By leveraging the broad array of themes, skins, styling and customization options, your
application will awe even the best front end designers.

Learn more

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://edcharbeneau.com/csharp-functional-workshop-instructions/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/functional-programming-vs-imperative-programming
https://developer.telerik.com/topics/net/refactoring-data-grids-c-extension-methods/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=devcraft-whitepaper-fncheatsheet
https://developer.telerik.com/content-types/podcast/better-code-with-functional-programming/
https://www.red-gate.com/simple-talk/dotnet/asp-net/functionally-similar-comparing-underscore-js-to-linq/
https://www.red-gate.com/simple-talk/dotnet/.net-framework/giving-clarity-to-linq-queries-by-extending-expressions/
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Functional-Programming-in-CSharp
http://www.telerik.com/devcraft?utm_medium=pdf&utm_source=whitepaper&utm_campaign=devcraft-whitepaper-fncheatsheet

About Progress
Progress (NASDAQ: PRGS) offers the leading platform for
developing and deploying mission-critical business applications.
Progress empowers enterprises and ISVs to build and deliver
cognitive-first applications that harness big data to derive
business insights and competitive advantage. Progress offers
leading technologies for easily building powerful user interfaces
across any type of device, a reliable, scalable and secure backend
platform to deploy modern applications, leading data connectivity
to all sources, and award-winning predictive analytics that brings
the power of machine learning to any organization. Over 1,700
independent software vendors, 80,000 enterprise customers, and
2 million developers rely on Progress to power their applications.
Learn about Progress at www.progress.com or +1-800-477-6473.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw
For regional international office locations and contact information,
please go to www.progress.com/worldwide

Progress and Telerik by Progress are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S.

and/or other countries. Any other trademarks contained herein are the property of their respective owners.

© 2017 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2017/09 | 170914-0021©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

http://www.progress.com

