

1 | P a g e

The Ajax Papers
Part I: The Intro and the Basics

Ajax. We’ve all heard of it and most of us have already started to use it. Many of us (“us” being ASP.NET

developers) probably decided to use Ajax because Telerik’s radAjax component made it very easy to add

Ajax to our existing projects. We figured what the heck? Telerik makes it easy to add Ajax to my site and

the boss will love to see the Ajax buzz word in my list of accomplishments.

As radAjax developers, though, we often take for granted what’s actually happening under the

proverbial Ajax hood. How does radAjax “auto-magically” make our pages do this Ajax thing? In fact,

what really makes this Ajax thing work?

These are questions that we’ll answer in my multipart series on Ajax. We’ll first establish firmly what

Ajax is and how it manages to update a page without a refresh. Once we understand Ajax, we’ll look at

radAjax and ASP.NET AJAX and discuss how they automatically ajaxify ASP.NET pages. With a solid

foundation of Ajax and radAjax knowledge, we’ll move on to radAjax tips, tricks, and optimization

techniques. Finally, we’ll wrap the series by looking ways to measure your Ajax page performance and

compare radAjax enabled pages with pages ajaxified by the ASP.NET AJAX framework (including a

preview of the new Manager for ASP.NET AJAX). When we’re done, you’ll be Ajax (and radAjax) experts

capable of maximizing the benefits Ajax can provide in your application.

What is Ajax?

There are many books and articles out there explaining the 5Ws (Who, What, Where, When, Why) of

Ajax, so I won’t spend much time on the history of Ajax in this series. I encourage you to read the

Wikipedia article on Ajax or pick-up any book on Ajax from your local Barnes & Noble to get the full

story. AJAX (Asynchronous JavaScript and XML) the term has been around for just two years (can you

believe it?!), created by Jesse James Garrett in 2005. The technologies that make Ajax work, however,

have been around for almost a decade.

Trivia: So is it AJAX or Ajax?

In Jesse Garrett’s original article that coined the term, it was AJAX. The “X” in AJAX really stands for
XMLHttpRequest, though, and not XML. Jesse later conceded that Ajax should be a word and not an
acronym and updated his article to reflect his change in heart. So “Ajax” is the correct casing.

As its name implies, Ajax relies primarily on two technologies to work: JavaScript and the

XMLHttpRequest. Standardization of the browser DOM (Document Object Model) and DHTML also play

an important part in Ajax’s success, but for the purposes of our discussion we won’t examine these

technologies in depth.

2 | P a g e

At the heart of Ajax is the ability to communicate with a web server asynchronously without taking away

the user’s ability to interact with the page. The XMLHttpRequest is what makes this possible. This

technology was created by Microsoft as an IE ActiveX control to support their (then) groundbreaking

Outlook Web Access, but it has since been built-in natively to all modern web browsers (including IE7).

In fact, if Mozilla had not had a rare “Microsoft moment” and decided not to add support for the non-

standard XMLHttpRequest to their Firefox browser, it is doubtful that Ajax would be nearly as popular as

it is today.

How does Ajax work?

So now you know that the XMLHttpRequest built-in to the browser makes Ajax possible, but how do

web pages use this object and what does it really do? Glad you asked. This is where we first see

JavaScript added to the Ajax equation, because to use the XMLHttpRequest on a web page we must

write some JavaScript. The XMLHttpRequest, like any other JavaScript object, works because the

browser’s JavaScript parser (or engine) recognizes the object in the code and knows how to process it.

Trivia: Why is JavaScript (and in turn, Ajax) hard to write?

In part, it is because every browser handles JavaScript just a little differently. Any web browser that
wants to support JavaScript must provide its own engine to parse JavaScript commands and perform
the correct browser actions. Firefox uses the open source JavaScript engine called SpiderMonkey,
Safari uses an engine called JavaScriptCore, and Opera uses its own proprietary engine. IE’s engine
actually processes “JScript", Microsoft’s own brand (Iiteraly) of JavaScript created (in part) to avoid
copyright issues with JavaScript trademark holder Sun. Even though “JavaScript” is standardized by
Ecma, each engine does things a little differently. That means solid JavaScript or Ajax programming
must be done in a way that accounts for these differences. Aren’t you glad you use the Telerik magic
now?

Let’s start to put these ideas together in some code examples. The basic implementation of the

XMLHttpRequest in JavaScript looks like this:

//Get a reference to the XMLHttpRequest object

var xmlRequest = (window.XMLHttpRequest) ? new XMLHttpRequest() : new

ActiveXObject("Msxml2.XMLHTTP");

 //If the browser doesn’t support Ajax, exit now

 if (xmlRequest == null)

 return;

 //Initiate the XMLHttpRequest object

 xmlRequest.open("POST", url, true);

 //Since this is a POST, set the request Content-Type header

 xmlRequest.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded");

 //Setup the callback function

3 | P a g e

 xmlRequest.onreadystatechange =

function(){HandleAjaxResponse(xmlRequest);};

 //Send the Ajax request to the server with the POST data

 xmlRequest.send(args);

That’s it. That’s Ajax. Really. Any additional code you see is written to handle the response that the Ajax

request returns (no small feat as we’ll see later).

Trivia: How does ASP.NET AJAX do it?

To examine the ASP.NET AJAX JavaScript in a readable format, simply open the
MicrosoftAjax.debug.js file located in in your ASP.NET AJAX installation directory. Since Microsoft
built a complete client-side programming model with the ASP.NET AJAX Extensions, the “Ajax” code
in MicrosoftAjax.js is actually a small portion of its overal functionality. Nonetheless, we can find the
Ajax code in the Sys.Net.XMLHttpExecutor client-side class (lines 3989 – 4267). The XMLHttpExecutor
is actually executed by another ASP.NET AJAX class, Sys.Net.WebRequestManager. The
XMLHttpExecutor is just one “Executor” that the WebRequestManager can handle. We’ll examine
the ASP.NET AJAX code in more detail later in this series.

In this example, we begin by creating a new instance of the XMLHttpRequest object:

var xmlRequest = (window.XMLHttpRequest) ? new XMLHttpRequest() : new

ActiveXObject("Msxml2.XMLHTTP");

We do this by first checking to see if the XMLHttpRequest object is natively built-in to the browser; if it’s

not we assume we’re in IE and we create our XMLHttpRequest object using IE’s ActiveX component. If a

browser does not support Ajax, the “xmlRequest” object will be null and our Ajax function will exit on

the following line.

Trivia: Msxml2.XMLHTTP vs. Microsoft.XMLHTTP

If you look at different implementations of Ajax, you’ll notice that some use “Microsoft.XMLHTTP”
and some use “Msxml2.XMLHTTP” when targeting IE’s ActiveX control. So what’s the difference? As
it turns out, very little when written like that. While the “Microsoft” namespace is older than the
“Msxml2” namespace, written like this both statements will target MSXML 3.0 (the most widely
distributed version of MSXML). The latest version of MSXML, though, is version 6.0 (released July
2006). Vista ships with version 6.0 installed and it is available for download for XP, Win2k, and
Win2k3. To target the latest and most secure version of MSXML, you must use
“Msxml2.XMLHTTP.6.0” to create your XMLHttpRequest. Leaving the version number off on a system
with 3.0 installed will always target MSXML 3.0 (even if 6.0 is installed). Go figure.

Next we open our connection to the server with our newly created XMLHttpRequest object:

xmlRequest.open("POST", url, true);

4 | P a g e

You must supply three parameters to the “open” method:

1. Request Method: either “POST” or “GET” (case sensitive). The “POST” and “GET” values should

be familiar as they are normal Http concepts. Like normal Http requests, GETs are processed

slightly faster by the server than POSTs, but they do not allow any data to be sent to the server

(other than what you can fit into the URL’s querystring)

2. URL: the request URL (must be in your domain)

3. Async Flag: a Boolean value indicating if the request should asynchronous. That’s right. You can

actually use the XMLHttpRequest to do SJAX (Synchronous JavaScript blah blah). This is rarely

done for obvious reasons, so the third parameter in the “open” method will almost always be

true.

Important note: even though we’ve opened our connection at this point we have not yet sent our

request to the server.

Trivia: radAjax OnRequestStart and OnRequestSent

The XMLHttpRequest’s “open” method fires just after the radAjax OnRequestStart client event. The
OnRequestSent client event fires right after the XMLHttpRequest’s “send” method fires. Measuring
the time between OnRequestSent and OnResponseReceived tells you exactly how long it took for
your server to process and send your Ajax response.

Since this is a POST, we then set the Content-Type header for the request:

xmlRequest.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded");

If this were a GET request, we would not need to set the Content-Type here.

You often hear the term “callback” replace the term “postback” when you work with Ajax. That’s

because Ajax uses a “callback” function to catch the server’s response when it is done processing your

Ajax request. We establish a reference to that callback function like this:

xmlRequest.onreadystatechange = function(){HandleAjaxResponse(xmlRequest);};

The HandleAjaxReponse receieves a reference to our XMLHttpRequest object so that it can process the

server’s response. OnReadyStateChange will fire multiple times during an Ajax request, so we must

evaluate the XMLHttpRequest’s “readyState” property to determine when the server response is

complete. A simple callback function may look something like this:

function HandleAjaxResponse(xmlhttp){

 //If readyState = 4, the server response is complete

if (xmlhttp.readyState === 4) {

//We can evaluate the status property to see what HTTP response

code was returned

//Status’ in the 200’s are okay; “200” is the best

 var statusCode = xmlhttp.status;

 if (statusCode < 200) || (statusCode >= 300){

5 | P a g e

 //Process the server response

 processResponse(xmlhttp.responseXML);

 }else{

 //Some error handling

processError(xmlhttp)

 }

 }

}

Trivia: HTTP Status Code 304

Http Status code 304 is technically a valid response code that could be returned from the server
when performing a GET. It indicates that the page has not been changed and the page in the
browser’s cache should be used. In Firefox, the XMLHttpRequest status property will return “200” if
the server responds with “200” or “304”. IE will also return status code 200 in the XMLHttpRequest
GET response, so a solid implementation of your callback function does not need to check for both
codes. radAjax currently throws an error for any response that does not return code 200.

The XMLHttpRequest has several properties that we’re interested in during our response callback

function:

 readyState: indicates if the server is done processing our Ajax request. A value of “4” indicates

the request is complete (true for all browsers). The number and values of the codes returned

before “4” vary by browser, but the possible values are:

o 0: uninitialized

o 1: loading

o 2: loaded

o 3: interactive

o 4: complete

 status: returns the HTTP response code sent by server for our Ajax request. A value of “200”

means “OK” and that no errors occurred. Any other value indicates a situation that should be

handled by our JavaScript Ajax error handler.

 responseXML: contains the XML formatted response from the server. This is actually an XML

Document Object that can be parsed using XPath or regular DOM node tree methods (like

getElementByTag, etc.). RadAjax primarily uses responseXML to process Ajax responses.

 responseText: contains the raw text response from the server

If there is an error, we are also interested in this property:

 statusText: contains the text describing our response status code. If we receive a HTTP response

code of “404”, for instance, the statusText would contain “Not Found”.

6 | P a g e

Trivia: JavaScript’s little know ‘===’ operator

If you examine the ASP.NET AJAX JavaScript source code, you’ll see lots of “===” compare operators
where you’d expect to find the normal “==” operator. Both will evaluate if an object is equal, but the
“===” takes it another step further and validates that the objects being compared share the same
identity. That means, in order for “===” to return true, the objects must be equal without JavaScript
performing any data type conversions. This provides strict equality tests in JavaScript where loosely
typed objects can often cause problems. And yes, “!==” exists, too.

At this point we’ve sent our request to the server, received a response, and now we have an XML

document object sitting in JavaScript memory. We’ve completed our asynchronous communication with

the server, but now we need to update the page’s DOM. After all, the point of Ajax is to update the page

without doing a full PostBack (and thus a full refresh) of the page. What should now be obvious is that

the harder part of creating an Ajax application is implementing the code that parses the server response

and updates the page; the communication is actually fairly straight forward and easy.

What’s next?

In the next part of our multi-part Ajax series, we’ll look at how JavaScript is used to parse our Ajax server

response and update our page. We’ll see how DOM node tree methods and JavaScript are used to

determine which parts of the page need updating and we’ll learn why it’s important to optimize our

updated controls to get the most out of Ajax. So stick around, the best is yet to come.

Todd Anglin, Technical Evangelist

Telerik

www.telerik.com

References

1. Wikipedia, multiple articles, www.wikipedia.com
2. w3schools, The XMLHttpRequest Object, http://www.w3schools.com/xml/xml_http.asp
3. Sitepoint, Build Your Own AJAX Web Applications, http://www.sitepoint.com/article/build-your-

own-ajax-web-apps/
4. Adaptive Path, Ajax: A New Approach to Web Applications,

http://www.adaptivepath.com/publications/essays/archives/000385.php
5. Web Master World, JavaScript Jumpstart – Operator Basics,

http://www.webmasterworld.com/forum91/513.htm
6. Microsoft XML Team Weblog, Using the right version of MSXML in Internet Explorer,

http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-
internet-explorer.aspx

http://www.wikipedia.com/
http://www.w3schools.com/xml/xml_http.asp
http://www.sitepoint.com/article/build-your-own-ajax-web-apps/
http://www.sitepoint.com/article/build-your-own-ajax-web-apps/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.webmasterworld.com/forum91/513.htm
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx
http://blogs.msdn.com/xmlteam/archive/2006/10/23/using-the-right-version-of-msxml-in-internet-explorer.aspx

