
1 | P a g e

Visual Style Builder for WinForms

Documentation (Q1 2010)

Contents
Visual Style Builder Overview ... 3

Starting the Visual Style Builder .. 3

Getting Started with Visual Style Builder: Theming RadButton ... 3

Overview ... 3

Creating a new Theme .. 3

Creating a new Repository Item ... 4

Theme Repository ... 13

Overview ... 13

Repository Item Types and the LightVisualElement ... 13

Associating Repository Items with Elements and States .. 14

Removing Repository Item Association .. 16

Editing and Renaming Repository Items ... 16

Deleting Repository Items ... 18

Handling Theme Files .. 18

Overview ... 18

Loading Themes .. 19

Saving Themes .. 21

Merging Repositories .. 23

Applying Themes to RadControls .. 24

Property Precedence .. 24

Property Precedence Rules ... 24

Precedence Example: Visibility Property .. 27

2 | P a g e

3 | P a g e

Visual Style Builder Overview
The Telerik Visual Style Builder for WinForms is a desktop-based, fully functional UI customization tool

that enables easy, point-and-click customization of skins and themes for the RadControls for WinForms

suite. This tool eliminates the need to understand the element and control structure of the RadControls

to create custom skins. It gives you complete power over the UI elements of the control and allows you

to create your own custom skin in minutes.

Starting the Visual Style Builder
Log in your account and click on the Downloads link (or free trials). Locate the "Q1 2010 Beta Available"

link under the RadControls for WinForms section and download RadControls for WinForms Q1 2010

Beta. Install the beta on your machine.

The new Visual Style Builder can be started from:

 Start menu (Start Programs Telerik RadControls for WinForms Q1 2010 Tools)

 The installation folder (usually C:\Program Files\Telerik\RadControls for WinForms Q1 2010).

Note The Open Theme Builder option in the smart tags of the controls in Visual Studio will open
the old version of the tool, so please disregard it for the moment. This option will be
removed for the official release. The new VSB would be invoked from the new Telerik
menu Visual Studio.

Getting Started with Visual Style Builder: Theming RadButton

Overview
This section aims to practically introduce the new Telerik WinForms Visual Style Builder by describing

the process of creating a simple theme for the RadButton control. This article emphasizes on all tricky

moments that might occur while using the Visual Style Builder and explains them so that the user does

not experience further issues when theming controls. The tutorial begins with the creation of all needed

repository items for styling the RadButton control and after that shows how apply them to the control.

Creating a new Theme
In order to create a new theme for a control you need to simply start the Visual Style Builder. It is

initially loaded with no styles applied to the controls, i.e. you can start styling a component from scratch.

In order to begin styling the RadButton control you fill first need to select the corresponding node on the

Tree View on the left side of the application. The main form should look similar to the image below:

http://www.telerik.com/account/downloads.aspx
http://www.telerik.com/account/downloads.aspx
http://www.telerik.com/account/free-trials.aspx

4 | P a g e

Below the Preview part of the form you can see the Elements Grid which displays the currently available

elements for the current tree view selection that can be styled. In general, these are the elements

which, once styled, sum up to the final appearance of the corresponding control. On the image above

you can see the RootRadElement currently displayed. When selecting a control from the tree view on

the left, normally its root element is displayed in the elements grid. You can use this element to apply

common styles for the whole control that are inherited throughout the element hierarchy (the hierarchy

that begins from the RootRadElement) like Font, ForeColor etc.

To apply a style to the RootRadElement you can choose two approaches:

 Creating a new repository item and applying it

 Directly modifying the RootRadElement’s properties from the property grid

In this article we are going to demonstrate how to create and apply a repository item that defines the

ForeColor and the Font of the button.

Creating a new Repository Item
To create a new repository item, you should click on the ‘Create New

Repository Item’ button at the bottom part of the Repository Tool

Window. Since an element can support multiple types of repository

items (gradients, text, arrow, border, image), a dialog might be

shown which asks you to choose which type of item you would like to

create. In the case of the RootRadElement a text repository item will be created directly since it is the

only type supported. You should see the following dialog upon click on the ‘Create New Repository Item’

button:

For more information or

repository items, check the

Theme Repository topic.

5 | P a g e

This is the Text Repository Item editor dialog. As discussed in the Theme Repository article, each

repository item has a unique key and a display name. You can edit these properties by using the

corresponding text boxes at the upper part of the form. In this demonstration, the repository item is

called ‘WhiteSegoeUI12’. Its key is given the same value.

Important Give your repository items clear and straightforward names related either to their
appearance, or to the cases they are used in. Good repository item names might be:

 PressedButtonFill

 OrangeLinearFill

 TransparentFill
In this way you will be able to quickly associate the repository item with the appearance it
will give to the element or the case it is used in (pressed/hovered button etc.).

In our case, the name of the Repository Item is ‘WhiteSegoeUI12’ and it obviously describes the settings

contained in this item:

 Font is set to Segoe UI with size 12

 ForeColor is set to White

Note that the property grid on the right shows these properties in bold style which means that their

values are explicitly defined in the repository item. Only the explicitly defined values are applied to an

element when later associated with the corresponding repository item.

6 | P a g e

After finishing editing the repository item, you should click on the OK button. The dialog will be closed

and the new repository item will be visible in the repository tool window of the main form:

Now, we are going to create a few repository items that will define the styles for the button’s

background for its different states. To do this, expand the RadButton node in the tree view on the left

and select the RadButtonElement child node. By changing the selection in the tree view, the content of

the Elements grid will also be changed with the corresponding elements that can be styled. You will see

the most important elements that build the button as shown in the picture below:

7 | P a g e

Having selected the ButtonFill element in the Elements grid, click on the ‘Create New Repository Item’

button. You will see the Fill Repository Item Editor Dialog that allows you to create different styles of

fills. In this dialog, select the ‘Office Glass Rect’ tab and from the combo box with predefined styles,

choose ‘Orange’. The dialog should look the following way:

8 | P a g e

Give the repository item a key and a name as follows: ‘ButtonNormalFill’, ‘ButtonNormalFill‘, and check

the ‘Animated State Transition’checkbox to enable animated style transition for this repository item.

Save the repository item by clicking OK and click on the ‘Create New Repository Item’ button again. By

following the same steps described above, crate another two fill repository items with office glass rect

style and colors as follows: yellow and red. Name them ‘ButtonHoverFill’ and ‘ButtonPressedFill’. The

repository should look as follows after creating all items:

Now we are going to create a few border repository items which we are going to use later for styling the

button. To do this, select the ButtonBorder element in the Elements grid and click on the ‘Create New

Repository Item’ button to display the Border Repository Item Editor dialog. In the dialog, give a key and

a name for the repository item as follows: ‘ButtonNormalBorder’, ‘ButtonNormalBorder’. Set the

ForeColor property to Orange and also the Width property to 2. The dialog should look as follows:

9 | P a g e

Make sure the ‘Animated State Transition’ checkbox is checked and save the new repository item by

clicking on OK. The repository item will be created and added to the current repository. Now repeat the

same stapes to create two more repository items with the following colors: yellow, red. For the yellow

repository item define key and name as follows: ‘ButtonHoverBorder’, ‘ButtonHoverBorder’, and for the

red item define key and name as follows: ‘ButtonPressedBorder’, ‘ButtonPressedBorder’. The repository

tool window should look the following way after adding the new items:

10 | P a g e

Now that we have created all the repository items needed to style our button, we are going to associate

them with the corresponding elements for the correposnding states of the button (normal, mouseover,

pressed).

We will start with the RootRadElement and will associate the SegoeUI12White repository item with its

default. To do so, select the RadButton node in the tree view on the left, find the SegoeUI12White

repository item, drag it and drop it on the RootRadElement state shown in the Element States tool

window. The repository item style will be applied to the RootRadElement for its default state, and the

repository item will be highlighted in red to notify that the item is associated with the selected state as

shown on the picture below:

As you can see on the picture, the button has acquired the Segoe UI 12 font and a white forecolor. Now,

we are going to style the background of the button for its Normal, MouseOver and Pressed states. To do

so, select the RadButtonElement child node of the RadButton node in the tree view on the left. In the

Elements grid below the Preview pane make sure the ButtonFill element is selected. Find the

ButtonNormalFill repository item and by using drag-and-drop operation, associate it with the default -

RadButtonElement –state of the button. You will see how the button changes its appearance to reflect

the new styles applied from the associated repository item as shown on the picture below:

11 | P a g e

Repeat the steps above by associating the ButtonHoverFill item with the RadButtonElement.MouseOver

state, and the ButtonPressedFill with the RadButtonElement.Pressed state. At the end the Visual Style

Builder’s main form should look the following way:

If you hover/press the button in the Preview pane, you will see how the different styles are applied for

the corresponding states.

Now, we are going to associate the border repository items with the corresponding button states to

achieve more accomplished look of the button. To do this, select the ButtonBorder element from the

12 | P a g e

Elements grid: the border repository items will be displayed in the repository so that you can use them

to style the button:

Now, by using the same approach demonstrated above, you can associate the repository items with the

states of the button as follows:

 ButtonNormalBorder goes to the default RadButtonElement state

 ButtonHoverBorder goes to RadButtonElement.MouseOver state

 ButtonPressedBorder goes to RadButtonElement.Pressed state

At the end, the Visual Style Builder main form should look the following way (the arrows demonstrate

the repository item-state associations):

13 | P a g e

With this, you have finished styling the RadButton control. Now, you can save the theme and use it

throughout your application. For further information on how to handle loading/saving themes, read the

Handling Themes help article.

Gotcha It is important to know that styles applied for a given state are not reset when the item
goes to another state. This might confuse those who are not familiar with this behavior.

Scenario: We have a button with Normal, MouseOver and Pressed states. We also have a
couple of repository items which we use to style the button for the different states. Let’s
say that the first repository item we assign fill to the button for its Normal state, which sets
its BackColor, BackColor2, BackColor3, GradientStyle and NumberOfColors properties. The
NumberOfColors property is set to 3 and the GradientStyle property is set to Linear. After
associating the repository item to the Normal state of the button, the styles are applied
correctly. Now, let’s say that we associate another repository item with the MouseOver
state of the button that defines settings for the BackColor, BackColor2, BackColor3,
BackColor4 properties, also for the GradientStyle (=Linear), but does not define setting for
the NumberOfColors property. In this case, when we hover the button, the fill will not look
as expected since its BackColor4 property value will not be visible. The reason for this will
be that the NumberOfColors property will remain set to 3 as defined by the repository item
assigned to the Normal state of the item.

The main conclusion that we should make here is that each state must be assigned a
style that defines all properties needed for the expected appearance of the element. This
is the general approach when styling items in order to avoid confusion.

For more information see Precedence Example: Visibility Property at the end of this
tutorial.

Theme Repository

Overview
Repository and Repository Items are major concept in the new VSB. These items greatly reduce the
amount of time needed to apply property settings per element basis as well as the size of the generated
XML files and the time needed to de-serialize them. The Visual Style Builder allows for intuitive and
straightforward Repository management through series of editors and User Experience tools such as
drag-and-drop to an ItemState, on-the-fly drop-down of all available Repository Items, etc.

Repository Item Types and the LightVisualElement
Each repository contains items that can be reused throughout themes. The different repository item

types are mapped to different types of elements. The currently supported repository item types are as

listed below:

 Fill repository items can be only associated with instances of the FillPrimitive class

 Border repository items are only applicable to BorderPrimitive elements

 Arrow repository items to ArrowPrimitive instances

14 | P a g e

 Text repository items can applied both to TextPrimitive and VisualElement instances

 Image repository items can be applied both to ImagePrimitive instances and VisualElements that

support images.

In general, you should not have any concern when applying repository items since the Visual Style

Builder automatically filters the available repository items according to the currently styled elements.

You can also create new repository items for the currently loaded repository. There are separate editors

for each repository item type which are displayed accordingly. Before saving the newly created

repository item, the Visual Style Builder checks whether its key is unique and if not, prompts you to

change the key with a unique value.

The LightVisualElement is a special type of primitive class that supports the functionality of all other

primitives without building an element tree. In other words, the LightVisualElement paints its Fill,

Border, Text and Image on its own. Therefore, the LightVisualElement is a type of element that supports

all Repository Item Types and thus, when editing such elements in the Visual Style Builder, the repository

is filtered appropriately to display all repository items available. Currently, LightVisualElement instances

are used in the RadScheduler, RadGridView and RadCalendar controls.

Gotcha It is important to understand the difference between different primitives (Border, Fill,
Arrow etc.) and the LightVisualElement type. LightVisualElement supports multiple types of
repository items since it basically encapsulates the functionality of a border, fill, text and
image primitive. Therefore, when you select an element in the Elements list that is actually
an instance of the LightVisualElement class (used in RadGridView, RadScheduler and
RadCalendar), you simply need to assign to it the different types of repositories in order to
style it according to your requirements, i.e. you can associate a border repository item, fill
and image simultaneously and its appearance will be properly adjusted (the cells of a grid,
scheduler, or calendar).
This is not the case with elements made up of different primitives as border, fill and image.
You will need to separately select and style each primitive from the Elements grid for the
different states in this case (a good example is RadButtonElement and its children).

Associating Repository Items with Elements and States
You can easily associate a repository item with a given element for a specific state by dragging the

repository item from the repository and dropping it onto the state in question:

15 | P a g e

The picture above shows how a repository item with name Gradient1 is associated with the ButtonFill

element of the RadButton control for the default (RadButtonElement) state.

Another way to associate a repository item with an element for a given state is to use the state’s

Available Repository Items popup which is shown upon click on the drop-down button on the right side

of the state visual representation:

The Available Repository Items popup displays a list of repository items that can be associated with the

selected state of the current element. Already associated repository items are highlighted with red and

also initially checked.

16 | P a g e

Removing Repository Item Association
Depending on whether you want to remove all repository item associations or just a specific one, you

can take two directions:

 Press the ‘Remove All Repository Item Associations’ button which is displayed on each state next

to the drop-down button

 Open the ‘Available Repository Items’ popup and uncheck the repository items to remove the

association with them:

Editing and Renaming Repository Items
You can easily edit a repository item by opening its editor from the ‘Edit Repository Item’ button for

each repository item in the list as shown on the picture below:

17 | P a g e

The “Edit Repository Item” dialog is automatically adjusted to show specific controls for the specific

repository item types. In general, however, the dialog provides you with possibility to define a key and a

name for the repository item, as well as to define whether the repository item’s property settings are

animated. You can also choose to modify the settings of the item and save a new repository item

without overwriting the current one. On the right side of the dialog there is a property grid that displays

all properties that can be modified for the repository item:

Important The properties in bold have values defined in the repository item while the others have
their default values

Note When defining repository item key you should make sure that the key is unique in order to
create/save the item.

The Animate State Transition checkbox determines whether the repository item’s property values will

be animated when a state of the element, to which the item is associated, is activated. For instance, all

color properties of the repository item, displayed in the dialog above, will be animated from the values

present when the corresponding element state occurs, to the values defined in the property grid on the

right. After editing the repository item, you can either cancel the modifications by pressing the ‘Cancel’

button, save the modifications by pressing the ‘Ok’ button, or save a new repository item by pressing

18 | P a g e

the ‘Save As New’ button. The ‘Save As New’ button is only visible when an already existing repository

item is opened for edit.

Gotcha When changing a repository item’s key it is important to know that each property setting
group (a group of style settings within a StyleSheet) that uses this repository item should
be updated to reference the new key. The Visual Style Builder allows for renaming a
repository item’s key and updates the references of all property setting groups that are
currently loaded . However, imagine that you create a couple of themes that use the same
repository and save them. After that reopen them by selecting the repository and some of
the files saved (not all). If you now rename a repository item’s key, the Visual Style Builder
will update all references in the loaded StyleSheets but those left unloaded will still
continue using old keys which will break the stylesheet.

Deleting Repository Items
You can easily delete a repository item from the currently loaded repository by clicking on the red

‘Delete’ button which resides next to the ‘Edit’ button. You will be asked to confirm the operation and in

case you do so, the repository item will be removed from the repository. All references to this

repository item will also be removed.

Handling Theme Files

Overview
The new WinForms theming mechanism introduces some significant improvements both in memory

footprint and performance direction. The styles for each separate control are situated in a single XML

file, accompanied by the name of the theme to which these styles belong and some further information

needed by the mechanism to map the styles to the corresponding control. The following code snippet

briefly demonstrates the common structure of a XML theme file:

<?xml version="1.0" encoding="utf-8"?>

<XmlTheme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ThemeName="MyTheme">

 <BuilderRegistrations>

 <XmlStyleBuilderRegistration>

 <BuilderData xsi:type="XmlStyleSheet" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <PropertySettingGroups>

 …

 </PropertySettingGroups>

 </BuilderData>

 <StylesheetRelations>

 <RadStylesheetRelation ControlType="Telerik.WinControls.UI.RadForm"

ElementType="Telerik.WinControls.RootRadElement" />

 </StylesheetRelations>

 </XmlStyleBuilderRegistration>

 </BuilderRegistrations>

</XmlTheme>

In general, the XML theme file contains Property Setting Groups that represent the style settings,

StyleSheet Relations that map the styles to an element/control, and a Theme Name attribute.

19 | P a g e

One of the new concepts that are introduced is the Theme Repository. The idea behind it is to store

common style property settings that can be easily reused throughout the whole theme. Modifying a

single repository item will change the appearance of all elements/controls that use this repository item.

In this way a theme can be created and modified in minutes. The repository can be reused throughout

different themes. However, there can be only one repository associated with a specific theme. The

association of a repository with a theme is made by giving assigning the same name to the repository

and the theme.

Each theme can have a repository containing items that can be reused throughout the theme. A theme

and a repository are connected by using the same name both for the theme and for the repository. The

repository is situated in a separate XML file that generally has the following structure:

<?xml version="1.0" encoding="utf-8"?>
<XmlTheme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ThemeName="MyTheme">
 <StyleRepository>
 <RepositoryItems>
 <Telerik.WinControls.Styles.XmlRepositoryItem ItemType="Gradient"
DisplayName="ToolWindowCaptionActiveFill" Key="ToolWindowCaptionActiveFill" Capacity="14">
 <XmlPropertySetting Property="Telerik.WinControls.VisualElement.BackColor" Value="Transparent" />
 <XmlPropertySetting Property="Telerik.WinControls.Primitives.FillPrimitive.BackColor2"
Value="Transparent" />
 <XmlPropertySetting Property="Telerik.WinControls.Primitives.FillPrimitive.BackColor3"
Value="Transparent" />
 <XmlPropertySetting Property="Telerik.WinControls.Primitives.FillPrimitive.BackColor4"
Value="Transparent" />
 </Telerik.WinControls.Styles.XmlRepositoryItem>
 </RepositoryItems>
 <StyleRepository>
</XmlTheme>

As you can see, the repository contains a collection of Repository Items which contain property settings.

Each repository item is uniquely identified by a key and additionally described by a name which is

displayed to the user. The key is important when reusing the same repository item for different

elements/controls throughout the Visual Style Builder.

The Theme Name here is ‘MyTheme’ which means that this repository is associated with all XML theme

files that have the same ThemeName attribute value.

Loading Themes
In the new version of the WinForms Visual Style Builder you can create or modify one theme at a time,

but for all Rad Controls simultaneously. You can load a theme by choosing one of the two menu options

available:

20 | P a g e

The ‘Load’ option allows you to choose which theme files to load, whereas the ‘Load Directory’ option

allows you to select a directory and load all theme files that are situated in the chosen directory.

As already mentioned, the Visual Style Builder can load only one theme at a time. The difference

between themes is made by the Theme Name. For example, if you have the following files:

MyTheme_Telerik_WinControls_UI_RadButton.xml

MyTheme_Telerik_WinControls_UI_RadMenu.xml

AnotherTheme_Teleri_WinControls_UI_RadDropDownButton.xml

and assume that the MyTheme_Telerik_WinControls_UI_RadButton.xml and

MyTheme_Telerik_WinControls_UI_RadMenu.xml have their ThemeName attribute set to ‘MyTheme’, whereas

the AnotherTheme_Teleri_WinControls_UI_RadDropDownButton.xml file defines the ThemeName as

‘AnotherTheme’, upon loading of all three files, the Visual Style Builder will display a dialog informing

you that multiple themes are selected. In this dialog you can choose which of these themes should be

actually loaded in the application:

21 | P a g e

The upper part of the dialog displays a row for each unique theme found in the files loaded. The row

contains information about the number of files (Registered Stylesheets) for each theme, and the name

of the theme. The lower part of the dialog is populated with repositories found in the loaded files that

do not match a theme from list above, i.e. have different names. If you select a repository from this list,

it will be merged with the repository of the selected theme, whereby any key uniqueness conflicts

within the source and destination repositories must be resolved.

 If the theme being loaded has no repository, i.e. there is no XML file with the repository

structure described above, an empty repository will be created when modifying the theme. If no

repository items are added in this repository in the process of modifying the theme, no separate

repository file will be saved at the end.

 If the theme being loaded has no repository but there are other repositories (with different

names) found in the list of the loaded files, selecting this repositories by using the dialog above

will merge them into one repository upon saving the theme.

After selecting a theme and pressing the Ok button, the theme repositories found will be merged if

needed and if there is already a loaded theme in the Visual Style Builder, the user will be prompted to

safe their changes. After that, the old theme will be unloaded and the new theme will be loaded and

applied to the controls accordingly. If the user clicks ‘Cancel’ on the save prompt, no action will be

taken.

Gotcha If you open the Visual Style Builder and load a single repository file, this file will be
considered as a theme and the Visual Style Builder will display its name in the caption of
the main form. After that, each time you load a new file that has the same theme name, it
will be applied to the corresponding control. If you load another repository, it will be
merged with the existing one.

Gotcha If you open the Visual Style Builder and load a theme (with or without repository), and
after that try to load a file that has a different file name, the Visual Style Builder will
prompt you to save any changes made to the initially loaded theme if needed, close the
theme and load the new one.

Saving Themes
You can two options to choose from when saving:

 Save as and

 Save

When you choose the Save option, the Visual Style Builder automatically detects whether a theme has

been opened and edited. If yes, it simply overwrites the already loaded files with the new XML data.

However, if you created a new theme without loading files, the Visual Style Builder will display the Save

As dialog and will ask you to choose location and theme name for the newly created theme and its

repository:

22 | P a g e

The Save Theme dialog shows the current theme name, the destination folder where the theme will be

saved, a list containing all repository items in the repository of the theme, and a list of all files that will

be saved upon clicking the OK button. This list usually contains files that have been previously loaded

and files that will be newly created based on the current changes made for the controls in the Visual

Style Builder.

You can change the theme name by typing in the topmost text box. When you change the name of the

theme, all file names will be updated on the fly to reflect the new theme name. In general, the name of

a theme file is automatically generated by using the following pattern:

<ThemeName>_<ControlType>.xml

The repository items list shows all repository items found in the repository. The repository items that

are used somewhere in the currently files which are to be saved are additionally bolded. You can choose

to save all repository items, only the used ones or none of them. If you choose the last option, no

repository file will be saved. In this case, when you later load the same theme, you will not be able to

load the repository and thus lose any styles that come from repository items.

In the theme files list you can choose which files to save by checking/unchecking the corresponding row.

Each time you check/uncheck a file entry, the repository items list will be updated to reflect the

currently used repository items.

When you click on the OK button, all selected files will be saved. The repository will be saved in a

separate file that has the following name pattern:

23 | P a g e

<ThemeName>_Repository.xml

Note If you chose *not* to save certain files, you should keep in mind that the Visual Style
Builder does not currently keep track of changes in separate theme files and therefore if
you close the Visual Style Builder after saving, any unchecked files will not be saved.

Merging Repositories
When you load a theme with a repository in the Visual Style Builder, you are able to merge its repository

with another one by loading the XML file representing the new repository. The merging process is

performed in the following steps:

 Merge all repository items that do not have conflicting keys

 Identify the conflicting repository items

 Resolve the conflicts and commit the merge transaction

If repository item key conflicts are discovered, the following dialog is displayed to the user:

In the Grid View you can see the conflicting repository items both in the source and destination

repositories. The left side of the Grid View (highlighted in yellow) shows the already existing repository

items. The right side – highlighted with green – shows the repository items in the currently loaded

repository. The conflicting keys are presented in red. By modifying the value of a conflicting key in the

Grid View, you can resolve a conflict. The new key value will be assigned to the currently loaded item

and it will be successfully added in the existing repository.

There are also a few options how repositories are merged. These options are available to you as radio

buttons above the Grid View on the dialog. The options are as follows:

24 | P a g e

1. Do not add conflicting items in destination repository

2. Override destination repository items (conflicts in the source repository must be resolved)

3. Override source and destination repository items (items are overridden without conflict

resolving based on the ‘last-item-wins’ principle)

The first option instructs the Visual Style Builder to add the repository items from the source repository

that does not conflict with the already existing items.

The second option means that destination (existing) items that have the same keys as the currently

loaded items will be overridden. However, if there are items with the same key within the currently

loaded repository, these conflicts have to be resolved.

The third option entirely ignores repository item conflicts. Items are overridden based on their position

in the list as they are loaded from the XML file – the last item found with a conflicting key wins.

Important Generally, repository item conflicts within the same repository should not happen often.
Since the Visual Style Builder checks for key uniqueness each time you add/edit repository
items, it is not possible to save a repository that contains items with the same key.

After merging both repositories, you will be able to access the new repository items and used them

when designing your themes. When you save the theme, the new items will be saved in the already

existing repository.

Applying Themes to RadControls
Applying themes based on the new version of the WinForms’ Theming Mechanism is done in pretty

much the same manner as before. You should add a RadThemeManager component onto your form and

load the theme files by choosing the Load Theme from File action from the smart tag of the component.

It is important to know that besides the theme files for the separate controls you should also load the

Repository File so that all references to it are not broken. After doing this, you should be able to apply

your new theme to a control by setting the ThemeName property either programmatically, or from the

Property Grid of Visual Studio.

Property Precedence

Property Precedence Rules
Visual Style Builder introduces a flexible and easy to understand system of property precedence rules.

This allows you to fine tune the desired elements and eliminates the possibility of you asking yourself

“Why am I getting this color here or there?”

There are three levels at which properties can be applied:

25 | P a g e

1. Default properties level. The properties at this level are shown by default in the property grid

that you can see when you try to create a new repository item or in the property grid of the

element itself. These properties can be overridden by any of the property levels that are listed

below. Since these properties are default properties, they are not contained in the xml theme

file that you save.

2. Repository items level. When you start creating a new repository item, you will notice that the

properties that you tweak get a little square in the property grid. This square indicates that the

default property is overridden and you have a custom value for that property. All the repository

items are kept in a special repository xml file.

An element refers to a repository items using the following xml pattern (assuming that

Gradient1 is the key of the repository item):

<PropertySettingGroups>

 <XmlPropertySettingGroup BasedOn="Gradient1">

 <Selectors>

 <XmlVisualStateSelector VisualState="RadButtonElement.MouseOver" AutoUnapply="False">

 <ChildSelector xsi:type="XmlClassSelector" ElementClass="ButtonFill"

AutoUnapply="False" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

 </XmlVisualStateSelector>

 </Selectors>

 </XmlPropertySettingGroup>

</PropertySettingGroups>

3. Additional level allowing you to tweak an element overriding the default values and the values set

by a repository item. In some cases you may want to tweak an element that has an assigned

repository item without creating a new repository item. In such situations, you should click on the

element and directly tweak its properties. These settings will override the repository item’s

settings. The the xml code in this case looks like this (assuming that the Red color is set directly on

the element):
<PropertySettingGroups>

 <XmlPropertySettingGroup BasedOn="Gradient1">

 <PropertySettings>

 <XmlPropertySetting Property="Telerik.WinControls.VisualElement.BackColor" Value="Red" />

 </PropertySettings>

 <Selectors>

 <XmlVisualStateSelector VisualState="RadButtonElement.MouseOver" AutoUnapply="False">

 <ChildSelector xsi:type="XmlClassSelector" ElementClass="ButtonFill"

AutoUnapply="False" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

 </XmlVisualStateSelector>

 </Selectors>

 </XmlPropertySettingGroup>

</PropertySettingGroups>

Note The properties that are not set in the repository item property grid (i.e. they
do not have the square indicator) should not be considered as default
property values. Only the property grid of the element itself shows the
default values.

26 | P a g e

All the property levels can be considered as small particles in one bigger particle – VisualState. In other

words these rules are valid between the property levels in a VisualState.

However, since the properties of different VisualStates are set to one and the same element, there is

interaction between these properties as well. As it is stated at the beginning of this article, a default

property value can be overridden by a custom property value. This rule is valid between the visual states

in both directions – i.e. a default property value is overridden by a custom property value and a custom

property value is not overridden by a default property value.

Note The properties' values applied for a state are not reset when a control goes to another
state. There should be values in the new state which explicitly override the values from the
previous state.

For example, take the following case – we have a repository item applied to the IsMouseOver state and

then we mouse hover and mouse leave the button. However, the button is still blue, even when the

mouse pointer is not on the button. This is because the settings of the default visual state

(RadButtonElement state) are default and they can’t override the settings provided by the repository

item.

27 | P a g e

Precedence Example: Visibility Property
There are cases in which you apply a repository item to an element, but this element still does not show

any colors. As stated in previous topic, if not overridden, the default values of the element are used.

Such is the case with RadListBoxItem where you apply a fill repository item to it, but you get no colors

applied. The reason for this behavior is that the default value of the Visibility property is Hidden and

repository items do not set a value to this property by default, so the Hidden value is taken into

consideration:

28 | P a g e

Gradient1 repository item is applied to the default RadListBoxItem state, but the default Visibility value

is Hidden, and since it is not overridden, the fill is not visible.

In order to display the FillPrimitive of the RadListBoxItem, you should either adjust this setting in the

repository item that you apply, or you should alter this property directly in the property grid of the

FillPrimitive.

29 | P a g e

When we set the Visibility property to Visible, we override the default value and the repository item

colors become visible.

Note This example concerns the Visibility property, but the rules described here are general and
they are in force for all the properties that can be set by Visual Style Builder.

	Visual Style Builder Overview
	Starting the Visual Style Builder
	Getting Started with Visual Style Builder: Theming RadButton
	Overview
	Creating a new Theme

	Creating a new Repository Item
	Theme Repository
	Overview
	Repository Item Types and the LightVisualElement

	Associating Repository Items with Elements and States
	Removing Repository Item Association
	Editing and Renaming Repository Items
	Deleting Repository Items
	Handling Theme Files
	Overview

	Loading Themes
	Saving Themes
	Merging Repositories
	Applying Themes to RadControls
	Property Precedence
	Property Precedence Rules

	Precedence Example: Visibility Property

