Currently Silverlight does not support PDF. The only way to display a PDF document in a Silverlight application is to convert the PDF document to format understandable by Silverlight. In this blog post I will explain how to that by performing the steps bellow:
1. Send a PDF document to the server using RadUpload.
2. Convert the PDF document to a set of image files using Ghostscript.
3. Display the images on the client using RadBook.
First, begin by creating a new Silverlight project and host it in a Web project.
[image: C:\Users\stanoev\Desktop\New folder\images\img01.png]
[image: C:\Users\stanoev\Desktop\New folder\images\img02.png]
Add references to Telerik.Windows.Controls.dll, Telerik.Windows.Controls.Input.dll and Telerik.Windows.Controls.Navigation.dll to the SilverlightPDF project.
[image: C:\Users\stanoev\Desktop\New folder\images\img03.png]
To send the PDF document to the server, we will use a RadUpload control.
<telerikInput:RadUpload IsAppendFilesEnabled="False"
	UploadServiceUrl="~/RadUploadHandler.ashx" 
TargetFolder="ClientBin/pdf"
	Filter="PDF Files (*.pdf)|*.pdf" 
OverwriteExistingFiles="True"
	FileUploaded="RadUpload_FileUploaded" BufferSize="300000" />
RadUpload’s definition is pretty self explanatory. IsAppendFilesEnabled forbids the user to upload more than one PDF document at a time, UploadServiceUrl points the location where the handler is, TargetFolder tells the upload control where to upload the PDF document, Filter allows us to browse only for PDF types of files etc. For more information on how to use RadUpload, please refer to the online documentation as well as the available KB articles.
As you can see, besides the properties, the upload control handles the FileUploaded event. The FileUploaded event handler is the place where the book control will be told where to look for the pages of the converted PDF document.
private void RadUpload_FileUploaded(object sender, Telerik.Windows.Controls.FileUploadedEventArgs e)
{
	// Feed the book control with links to the images on the server.
}
Once we are done with RadUpload’s definition, it is time to introduce RadBook to the scene.
<telerikNavigation:RadBook x:Name="book1" FirstPagePosition="Right" RightPageIndex="0" />
Simple enough! The FirstPagePosition tells the book control that the first page will be placed on the right. Additionally we need to set RightPageIndex to 0, since its default is 1 and an unnecessary page flip will occur if we do not set it to 0.
For the moment, let’s leave the Silverlight project and turn the attention to the SilverlightPDF.Web project. Add a reference to the Telerik.Windows.RadUploadHandler.dll.
[image: C:\Users\stanoev\Desktop\New folder\images\img06.png]
Next, add 3 folders to the ClientBin folder of SilverlightPDF.Web.
1. gs		- this folder will contain the gswin32c.exe and the necessary gsdll32.dll.
2. images	- this folder will contain the images being output by the PDF document conversion.
3. pdf		- this folder is where the PDF document will be uploaded to.
Download gswin32c.exe and gsdll32.dll from here and add them to the gs folder.
[image: C:\Users\stanoev\Desktop\New folder\images\img04.png]
Then, add a generic handler to the SilverlightPDF.Web project.
[image: C:\Users\stanoev\Desktop\New folder\images\img05.png]
[image: C:\Users\stanoev\Desktop\New folder\images\img07.png]
RadUploadHandler.ashx.cs is the place where processing the uploaded file will take place. This is the skeleton structure of the handler.
namespace SilverlightPDF.Web
{
	public class RadUploadHandler : Telerik.Windows.RadUploadHandler
	{
		public override bool SaveChunkData(string filePath, long position, byte[] buffer, out long savedBytes)
		{
			bool baseCall = base.SaveChunkData(filePath, position, buffer, out savedBytes);

			if (this.IsFinalFileRequest())
			{
				// Kill the gswin32c process if it is running already.
				
				// Delete previous image files from the ClientBin/images folder.
				
				// Open the uploaded PDF document using PDFSharp(http://sourceforge.net/projects/pdfsharp/files/) 
				// in order to determine the total number of pages. This is essential when feeding the book with items.	
				
				// Process the uploaded file.
			}

			return baseCall;
		}
	}
}
The most interesting part in the above snippet is the when the uploaded file gets processed.
private void ProcessUploadedFile(string fileName)
{
	// Full explanation of each ghostscript command can be found at http://pages.cs.wisc.edu/~ghost/doc/cvs/Use.htm
	string arguments = string.Format("-dSAFER -dBATCH -dNOPAUSE -sDEVICE=png16m -r300 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sOutputFile=images/image_%d.png pdf/{0}", fileName);
	// Create a new process.
	Process process1 = new Process();
	// Tell the process which file to start.
	process1.StartInfo.FileName = Request.MapPath("ClientBin/gs/gswin32c.exe");
	// Pass necessary arguments to the ghostscript process.
	process1.StartInfo.Arguments = arguments;
	// Do not use the operating system shell to start the process.
	process1.StartInfo.UseShellExecute = false;
	// Do not start the process in a new window.
	process1.StartInfo.CreateNoWindow = true;
	// Start the process.
	process1.Start();
} 
After the PDF document gets processed, 2 things happen:
1. RadUploadHandler’s GetAssociatedData() override gets called on the server.
2. The FileUploaded event get’s fired on the client.
 In general, the GetAssociatedData() override is used to transfer any necessary data from the server to the client. In this case, we will send to the client the total number of pages the uploaded PDF document has.
// This override helps to send to the client the total number of pages in the PDF document.
// The GetAssociatedData() gets called when the final chunk has been uploaded.
public override Dictionary<string, object> GetAssociatedData()
{
	Dictionary<string, object> dict = new Dictionary<string, object>();
	dict.Add("numberOfPages", this.numberOfPages);
	return dict;
}
Once GetAssociatedData() is called, the FileUploaded event is fired on the client. In the event handler of the FileUploaded event we will construct the book items.
private void RadUpload_FileUploaded(object sender, FileUploadedEventArgs e)
{
	// Get the uploaded file.
	RadUploadSelectedFile uploadedFile = e.SelectedFile;
	// Retrieve the number of pages, transfered through GetAssociatedData().
	int numberOfPages = Convert.ToInt32(e.HandlerData.CustomData["numberOfPages"]);
	// Remove any existing items in the book.
	this.book1.Items.Clear();
	// Construct as many items as there are number of pages and give the items to the book for display.
	for (int i = 1; i <= numberOfPages; i++)
	{
		Image img = new Image();
		string path = string.Format("images/image_{0}.png", i);
		img.Source = new BitmapImage(new Uri(path, UriKind.RelativeOrAbsolute));
		this.book1.Items.Add(img);
	}
}
image3.png

image4.png

image5.png

image6.png

image7.png

image1.png

image2.png

