
www.telerik.com

Telerik Sales Dashboard:
an Extensible Cross-Platform Application

Contents

Introduction

The Sales Dashboard Requirements

Choice of Technologies

The Implementation

Implementing the Modules

Module Implementation Details

Building the WPF UI

Shell Project Changes Required for WPF

Additional Minor Changes Required for WPF

Conclusion

http://www.telerik.com

www.telerik.com

Introduction

Architecting an enterprise-quality application is not a trivial task. The development lifecycle of such an undertaking in-
volves leveraging a set of well-defined and time-tested practices if code quality, maintainability and extensibility are of any
importance. Over time, a great variety of design patterns and best practices have emerged to efficiently guide software
developers through common application scenarios, making it more possible than ever to predictably deliver powerful
solutions.

Of course, there is no such thing as “the universal pattern” that is the Holy Grail of software development. Each design
pattern, practice or guidance is best suited to a specific set of scenarios, and no design pattern should be blindly followed
by forcing an application to fit to that pattern just for the sake of it. If your project requirements do not perfectly fit a pat-
tern, be brave and experiment – it is the purpose of a pattern to make your application work and not to prevent you from
meeting your requirements.

The first time you decide to actually build an application using a best practices approach, though, you will probably find
either obscure high-level architectural descriptions of patterns or incredibly complex reference implementations, which
due to their complexity are practically useless as learning tools.

To address this difficulty and make it easier for everyone to learn enterprise-grade best practices, we developed the Teler-
ik Sales Dashboard application which is freely available with full source code on our website. The purpose of this paper is to
provide a clear overview and walkthrough of the way the Telerik Sales Dashboard application was built, the technologies
that were used, as well as offering some insight on why important design decisions were made.

The Sales Dashboard Requirements

Telerik Sales Dashboard is an application for monitoring the performance of sales representatives within a company.
Managers are able to carefully monitor and evaluate the sales operations of their company in real time using statistics
calculated on the fly, detailed information about individual sales, as well as tools for filtering data by various parameters.
The application can be accessed via both a web browser, using Silverlight, and on the desktop, using WPF. Multiple paths
to the application maximize the potential usage scenarios and support in-house as well as field workers who are outside
the corporate intranet. The web and desktop user interfaces are also identical so that users have a consistent experience
across different platforms, eliminating any need to re-learn the application when transitioning between environments.
Finally, the application is easily extensible and new functionality can be plugged-in to the already functioning product
with minimal overhead, making the application more testable and in turn more stable.

Choice of Technologies

The Sales Dashboard is implemented entirely on the Microsoft stack of technologies. The RadControls for Silverlight and
RadControls for WPF UI component suites are used to implement the user interface because they provide all the required
controls, have excellent performance and usability, and practically cut in half the development time dedicated to the
presentation layer.

On the back-end, Telerik OpenAccess ORM is used to provide data persistence and to ensure data is properly moved
between the application and the database. In addition, OpenAccess saves critical development time by generating most
of the data access code and greatly simplifying the process of querying data in the database with robust LINQ support.

To compose the application, we used the second iteration of Prism - Microsoft’s Composite Application Guidance for
WPF and Silverlight, which provides guidelines based on industry best practices for building extensible and modular ap-
plications. As part of the Prism guidance, the Telerik Sales Dashboard application is built using the Model-View-ViewModel
(MVVM), Dependency Injection, and Inversion of Control (IoC) patterns.

The Implementation

Since Silverlight provides a subset of the functionality found in WPF, we start by implementing the core functionality of
the application with a Silverlight user interface. This makes it much easier and quicker to later develop a WPF version of the
presentation layer than it would be if we start with WPF.

http://www.telerik.com

www.telerik.com

First, we create the web project (Telerik.SalesDashboard.Web) that contains a WCF web service (SalesDashboardService)
that serves data processed by our business rules to the presentation layer. Additionally, the web project hosts the Silver-
light version of the user interface.

Then we add the Northwind database to the web project and create a project that will hold our data persistent classes
(Telerik.SalesDashboard.Data). We enable OpenAccess ORM for both projects and specify that the Telerik.SalesDashboard.
Data project will hold persistent classes, while the web project will contain data access code (Fig 1).

Fig. 1: Telerik OpenAccess ORM Enable Project Wizard in Visual Studio

Using OpenAccess’s wizards we reverse-map the schema in our Northwind database to create the persistent classes that
will be later consumed in the application. The ORM is capable of figuring out how to map the schema to classes, but it also
allows you to very precisely fine-tune the mapping as needed.

Next, we implement the business logic in the WCF service layer. There are a total of 12 methods that the service offers
publicly and 3 additional internal methods (Fig 2).

http://www.telerik.com

www.telerik.com

Fig. 2: Methods defined in Sales Dashboard WCF service

Now that the web project is ready, we start implementing the Silverlight part of the application. First we create the
“shell” project (Telerik.SalesDashboard.Shell) that serves as the main application project in which individual modules” will
be plugged. It contains a helper class called “Bootstrapper” that registers the modules that will be available in the applica-
tion, and a user control defining the main user interface (Shell.xaml). The Shell.xaml file defines special placeholders, called
regions in Prism, which determine where modules registered for a particular region will be rendered. Our design requires
each module to be displayed in a visual container common for all modules, so we create a special user control called Dash-
boardControl to handle this task. Here is what a region definition in Shell.xaml looks like:

<common:DashboardControl Regions:RegionManager.RegionName=”RepresentativesRegion”

 Title=”Sales Representatives”

 Grid.Row=”1”

 Grid.RowSpan=”2”/>

In parallel to the “shell” project, we also create the Telerik.SalesDashboard.Common project that holds all resources com-
mon to the application modules. It includes custom UI controls, value converters used in XAML, images, interfaces, and
custom events used for communication between modules.

We must make a number of important architectural decisions in this project to maximize code maintainability. First, in
order to keep our projects and modules loosely coupled, we will use interfaces for the persistent data classes and the web
service providing data to the application. This frees our application from being dependent on the implementation of the
persistent classes and web service, making it very easy to swap their implementations. Note that the shell project does
not have a direct reference to the classes in the Telerik.SalesDashboard.Data project. So, to make the persistent classes
implement our interfaces, we tweak the automatically generated partial classes (created when the service reference to
the SalesDashboardService was added) to implement our interfaces (see the ModelWrappers.cs file). Another decision worth
highlighting, again with the purpose of keeping the modules unaware of specific implementations, is a manual proxy that
we create to the automatically generated service client. This helps the application preserve its loosely coupled architecture
since our custom proxy implements an interface known to the modules.

Implementing the Modules

After the Shell and Common projects are ready, we start implementing the eight modules required for the application
(Fig 3). Each module has the following:

http://www.telerik.com

www.telerik.com

1.	 A “viewmodel” file, such as RepresentativesViewModel.cs, that contains the module logic

2.	 A module definition file, such as RepresentativesModule.cs, that defines a module and registers it
with a particular region in the main application container

3.	 One or more module views, such as RepresentativesView.xaml, that contain any required visual
elements.

Additionally, a module may contain classes needed for converting data coming from the model to a format more suitable
for use in the UI. As dictated by the Prism guidance, in the Sales Dashboard we strive to keep the code-behind files of the
module views void of any application logic. Instead, we use data binding and commands extensively throughout the ap-
plication, with only a few exceptions that are noted below in the module implementation details. For communication, the
modules use Prism events to which they subscribe or publish data and thus each module is unaware of the rest.

Fig. 3: Projects in Visual Studio for each of the Sales Dashboard’s 8 modules

Module Implementation Details

Some modules in the Sales Dashboard require additional code to meet the application requirements. In this section, we
will briefly highlight some of the more important decisions we must make during the development of the modules.

PeriodSelector Module

This module handles the task of displaying a RadCalendar in a popup that can be used to select a range of dates for
filtering data displayed in other modules. To close the popup containing the RadCalendar control when the user clicks
outside of it, we subscribe to the MouseLeftButtonUp event of the RootVisual element of the application. We do not use the
MouseLeftButtonDown event because it is used and handled internally by most controls and thus it is inappropriate for our
purpose.

Also, we need to bind several properties of UI elements in this module to properties defined in the code-behind of the
view, which are then in turn bound to properties in the viewmodel. This code-behind binding is necessary because the
project requirements are not achievable with the XAML bindings available in Silverlight. This is a deviation from the Prism
guidance, but, as already established, patterns should not be followed blindly if they block application requirements.

Representatives Module

This module displays a list of sales representatives along with a checkbox filtering UI for filtering the list of reps to specific
sales regions. To enable the filtering, we create a helper class RegionViewModel that is used for displaying the checkboxes
with the region names. It has an IsSelected property and IsSelectedChanged event that allow us to know when a region is
selected or deselected. When the module gets the region names from the Sales Dashboard service layer, it constructs
RegionViewModel objects that hold the region names. Finally, the module listens for the IsSelectedChanged event of the
RegionViewModels, and when the event occurs, the list of representatives is updated accordingly.

SalesDetails Module

In this module, the Sale and GridDataSource classes are created to make raw data more suitable for displaying in the UI.

http://www.telerik.com

www.telerik.com

The data displayed in the module is updated by four different events, fired by the Representatives, PeriodSelector, and Sol-
dProducts modules.

SalesStats Module

The SalesStats module acts primarily as a logical container that wraps the modules responsible for displaying sales statis-
tics. It contains the Prism regions in which the QuarterToDate, RepSales, and TotalRepSales modules are rendered.

RepSales Module

This module uses a RadChart to display a sales rep’s sales compared against total company sales for a given period. To
display the comparison, we create the ChartDataPoint class to “flatten” the two series (Rep Sales and Company Sales) to a
single data source for display in the RadChart. We also use a trick in our XAML binding to display extra values in the Rad-
Chart data point tooltips:

<chart:SeriesMapping Label=”Rep Sales”>

	 <chart:SeriesMapping.SeriesDefinition>

		 <chart:SplineAreaSeriesDefinition ShowItemToolTips=”True”

 ToolTipFormat=”Date: #LEGENDLABEL{0}
Rep
Sales: #Y{C0}
Percent of total sales: #BUBBLESIZE{G2}%”

 DefaultFormat=”C0” />

		 </chart:SeriesMapping.SeriesDefinition>

		 <chart:SeriesMapping.ItemMappings>

			 <chart:ItemMapping FieldName=”Date” DataPointMember=”XValue” />

		 <chart:ItemMapping FieldName=”RepValue” DataPointMember=”YValue” />

 <chart:ItemMapping FieldName=”DateString” DataPointMember=”LegendLabel” />

 <chart:ItemMapping FieldName=”Percentage” DataPointMember=”BubbleSize” />

		 </chart:SeriesMapping.ItemMappings>

</chart:SeriesMapping>

Because we want to display the date, rep sales, and percentage of total sales in each data point’s tooltip (three unique val-
ues), we map the BubbleSize property of RadChart to the “Percentage” value in our source object. We can do this because
the BubbleSize property is not used by RadChart when rendering a SplineArea chart. And by mapping this “extra” value to
an unused property, we can declaratively bind our value to RadChart for use in the tooltip.

Finally, we also use the special formatting options provided by RadChart to display useful information in the tooltips that
appears when users move the mouse pointer over a data point in the chart (see the ToolTipFormat property).

TotalRepSales Module

This module uses a RadChart to display total sales for a selected Sales Rep compared to other company sales represen-
tatives. In this module, we need to create the ChartDataItem class in order to transform our source data to a form more
convenient for binding to our RadChart UI.

SoldProducts Module

In this module, as well as in the PeriodSelector module, we need to deviate a bit from the Prism guidance in order to ac-
commodate our project requirements. The module displays a list of all products sold by the company with a textbox that
can be used to filter the list. To support this scenario, we need to create two properties in the code-behind of the module
view that act as a proxy between the UI elements and properties in the module viewmodel. This is needed because the
binding mechanism available in Silverlight will not work in the module’s scenario.

Binding b = new Binding();

b.Mode = BindingMode.TwoWay;

b.Path = new PropertyPath(“FilterText”);

this.SetBinding(SoldProductsView.FilterTextProperty, b);

http://www.telerik.com

www.telerik.com

searchTextBox.TextChanged += (s, e) =>

{

 if (searchTextBox.Text != searchTextBox.DefaultText)

 {

 this.FilterText = searchTextBox.Text;

 }

};

Building the WPF UI
After all modules are built targeting Silverlight, it is time to build the WPF version of the presentation layer. And thanks

to our use of the RadControls, this process requires surprisingly little work. The process primarily involves configuration
changes and almost no work on the application logic and UI, except for handling a few minor “discrepancies” that exist
between Microsoft’s various XAML platforms.

First we create a project structure mirroring the Silverlight projects, naming each project by appending “.Desktop” to the
project name from the Silverlight implementation. Then, one by one, we must go through every project and “add as links”
all corresponding files from the original Silverlight projects to the new WPF projects (Fig 4). This process creates references
to the files in our Silverlight projects for use in our WPF projects, and it means any changes made to the original file are
automatically applied to both WPF and Silverlight versions of the Sales Dashboard.

Fig. 4: Add As Link option in the Add Existing Item dialog in Visual Studio

Shell Project Changes Required for WPF

Microsoft technically ships three different XAML platforms: WPF, XBAP, and Silverlight. Each largely overlaps, but there
are “discrepancies” that must be handled to enable an application to target the unique environments. For the Telerik Sales
Dashboard, only the documented changes below are required to enable the application to run in all three environments.

The primary modifications that are needed are in the Shell project. The XAML code can be practically 100% reused, with
the exception of changing the root element in the Shell.xaml file from UserControl to Window. This is because the default
root visual element in Silverlight is different from WPF, so we must handle this Microsoft discrepancy for our application

http://www.telerik.com

www.telerik.com

support both environments.

To support XAML Browser Application (XBAP) deployments, we also create a dedicated Shell_XBAP.xaml file. This enables
the WPF version of Sales Dashboard to be run from the browser. The only change in the XBAP shell file is, again, to change
the root element to Page. In the constructor of the XBAP shell we do the following:

Bootstrapper bootStrapper = new Bootstrapper();

bootStrapper.ShellPage = this;

bootStrapper.Run();

This code is making use of a special property we add to the “bootstrapper” that enables the application to run as an
XBAP. Here are the modifications that we make to the Bootstrapper.cs file to enable the Telerik Sales Dashboard to run as a
Silverlight, regular WPF, and XBAP application:

protected override DependencyObject CreateShell()

{

 this.Container.RegisterType<ISalesDashboardServiceProxy, SalesDashboardServiceProxy>(new
ContainerControlledLifetimeManager());

#if XBAP

 return ShellPage;

#else

 Shell shell = Container.Resolve<Shell>();

#if SILVERLIGHT

 Application.Current.RootVisual = shell;

#else

 shell.Show();

#endif

 return shell;

#endif

 }

#if XBAP

 private DependencyObject shellPage;

 public DependencyObject ShellPage

 {

 get

 {

 return shellPage;

 }

 set

 {

 shellPage = value;

 }

 }

http://www.telerik.com

www.telerik.com

#endif

The modifications take care of properly initializing the application depending on whether we want to run it as a desktop
application or in a browser. The code makes use of conditional preprocessor directives to determine if specific code blocks
should be included in the build. This is a common technique for reusing code to target multiple environments and a lan-
guage feature in both C# and VB.

In addition, we do the following in the App.xaml.cs file of the Telerik.SalesDashboard.Shell.Desktop project to completely
support XBAP deployments:

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

#if !XBAP

 new Bootstrapper().Run();

 this.ShutdownMode = ShutdownMode.OnMainWindowClose;

#else

 this.StartupUri = new Uri(“Shell_XBAP.xaml”, UriKind.Relative);

#endif

}

The last change required to support the XBAP scenario is to add the following compilation symbol in the project proper-
ties when the “Debug XBAP” build configuration is selected (Fig 5):

Fig. 5: Add the XBAP conditional compilation symbol to the Telerik.SalesDashboard.Shell.Desktop project build settings.

Additional Minor Changes Required for WPF

Now that the Shell project is prepared to support multiple environments, we turn our attention to the rest of the projects
in our Sales Dashboard solution. Fortunately, to fully support our cross-platform environment, only a few more minor
changes are required to 5 of the projects.

Telerik.SalesDashboard.Web.Desktop

To fully support WPF, we only need to duplicate the web project (creating one additional project), call it Telerik.SalesDash-
board.Web.Desktop, and remove the reference to the Silverlight project. The only difference between the new copy and the
original is that the new one will not have a reference to the Silverlight application. This reference causes problems when
the WPF project is built.

Telerik.SalesDashboard.Common.Desktop

http://www.telerik.com

www.telerik.com

Unlike most linked project files, you must copy locally to the WPF project all of the images because linked files will not
work. Also, the ImagePathConverter needs the following little tweak to ensure image paths are defined correctly in Silver-
light and WPF:

#if !SILVERLIGHT

wpfPathPrefix = “pack://application:,,,/”;

#endif

return String.Format(“{0}Telerik.SalesDashboard.Common;component/Images/{1}.png”, wpfPathPrefix,
temp);

Telerik.SalesDashboard.PeriodSelector.Desktop

Due to the different behavior of the Popup control in WPF and Silverlight, we need to manually position it in the WPF
project:

#if !SILVERLIGHT

 this.calendarPopup.PlacementTarget = this.btn;

 this.calendarPopup.VerticalOffset = 0;

 this.calendarPopup.HorizontalOffset = -695;

#endif

Also, we need to exclude from the WPF version of the Sales Dashboard the code that closes the popup when the user
clicks outside of it:

#if SILVERLIGHT

 Application.Current.RootVisual.MouseLeftButtonUp += new MouseButtonEventHandler(R
ootVisual_MouseLeftButtonUp);

#endif

Telerik.SalesDashboard.SalesStats.RepSales.Dekstop and .TotalRepSales.Desktop

In Silverlight there is no default WrapPanel, so we use our own RadWrapPanel in the Silverlight project. The WrapPanel
control exists in WPF, though, so we use it and do not link the Silverlight project file, instead copying it and just changing
RadWrapPanel to WrapPanel.

And with those small changes, our application is ready to fully support Silverlight, WPF, and XBAP deployments.

Conclusion
Building an enterprise-quality application with Silverlight and WPF does not have to be hard. The Telerik Sales Dashboard

demonstrates that the main development efforts are primarily concentrated on the application logic and to a lesser extent
on the user interface. With Telerik OpenAccess ORM taking care of the typically error-prone process of moving data around
and Prism providing a framework for composing our application with modules, we are able to focus on the business logic
and build a robust, loosely-coupled, and maintainable application.

By using RadControls for WPF and Silverlight we are able to maximize our return on experience by building an applica-
tion once and easily reuse nearly all of the code to target multiple XAML environments. With the exception of a few minor
discrepancies in Microsoft’s XAML platforms, we are able to reuse all of our UI code and succeed in porting the application
from the browser to the desktop with minimum effort. Thanks to following the Prism guidance, the application’s modular
architecture is easily extensible and testable which greatly reduces future maintenance and development work.

Download the Telerik Sales Dashboard application by visiting http://www.telerik.com/salesdahboard and see for yourself
how the RadControls’ unique common code base makes it possible to easily build applications for Silverlight and WPF.

Download your free trial of the RadControls for WPF and Silverlight by visiting http://www.telerik.com/wpf and http://
www.telerik.com/silverlight.

http://www.telerik.com
http://www.telerik.com/salesdahboard
http://www.telerik.com/wpf
http://www.telerik.com/silverlight
http://www.telerik.com/silverlight

