
Dino Esposito

ASP.NET 3.5
Microsoft®

Programming

 89

Chapter 3

Anatomy of an ASP.NET Page

In this chapter:

Invoking a Page . 89

The Page Class . 112

The Page Life Cycle . 132

Conclusion . 138

ASP.NET pages are dynamically compiled on demand when first required in the context of
a Web application. Dynamic compilation is not specific to ASP.NET pages (.aspx files); it also
occurs with .NET Web Services (.asmx files), Web user controls (.ascx files), HTTP handlers
(.ashx files), and a few more ASP.NET application files such as the global.asax file. A pipeline
of run-time modules takes care of the incoming HTTP packet and makes it evolve from a
simple protocol-specific payload up to the rank of a server-side ASP.NET object—precisely,
an instance of a class derived from the system’s Page class. The ASP.NET HTTP runtime pro-
cesses the page object and causes it to generate the markup to insert in the response. The
generation of the response is marked by several events handled by user code and collectively
known as the page life cycle.

In this chapter, we’ll review how an HTTP request for an .aspx resource is mapped to a page
object, the programming interface of the Page class, and how to control the generation of
the markup by handling events of the page life cycle.

Invoking a Page

Let’s start by examining in detail how the .aspx page is converted into a class and then
 compiled into an assembly. Generating an assembly for a particular .aspx resource is a two-
step process. First, the source code of the resource file is parsed and a corresponding class
is created that inherits either from Page or another class that, in turn, inherits from Page.
Second, the dynamically generated class is compiled into an assembly and cached in an
ASP.NET-specific temporary directory.

The compiled page remains in use as long as no changes occur to the linked .aspx source file
or the whole application is restarted. Any changes to the linked .aspx file invalidates the cur-
rent page-specific assembly and forces the HTTP runtime to create a new assembly on the
next request for page.

90 Part I Building an ASP.NET Page

Note Editing files such as web.config and global.asax causes the whole application to restart. In
this case, all the pages will be recompiled as soon as each page is requested. The same happens
if a new assembly is copied or replaced in the application’s Bin folder.

The Runtime Machinery

All resources that you can access on an Internet Information Services (IIS)–based Web server
are grouped by file extension. Any incoming request is then assigned to a particular run-time
module for actual processing. Modules that can handle Web resources within the context of
IIS are Internet Server Application Programming Interface (ISAPI) extensions—that is, plain
old Win32 dynamic-link libraries (DLLs) that expose, much like an interface, a bunch of API
functions with predefined names and prototypes. IIS and ISAPI extensions use these DLL
 entries as a sort of private communication protocol. When IIS needs an ISAPI extension to
 accomplish a certain task, it simply loads the DLL and calls the appropriate function with
valid arguments. Although the ISAPI documentation doesn’t mention an ISAPI extension as
an interface, it is just that—a module that implements a well-known programming interface.

When the request for a resource arrives, IIS first verifies the type of the resource. Static
 resources such as images, text files, HTML pages, and scriptless ASP pages are resolved
 directly by IIS without the involvement of any external modules. IIS accesses the file on
the local Web server and flushes its contents to the output console so that the requesting
browser can get it. Resources that require server-side elaboration are passed on to the reg-
istered module. For example, ASP pages are processed by an ISAPI extension named asp.dll.
In general, when the resource is associated with executable code, IIS hands the request to
that executable for further processing. Files with an .aspx extension are assigned to an ISAPI
e xtension named aspnet_isapi.dll, as shown in Figure 3-1.

FIGURE 3-1 The IIS application mappings for resources with an .aspx extension.

 Chapter 3 Anatomy of an ASP.NET Page 91

Resource mappings are stored in the IIS metabase, which is an IIS-specific configuration data-
base. Upon installation, ASP.NET modifies the IIS metabase to make sure that aspnet_isapi.dll
can handle some typical ASP.NET resources. Table 3-1 lists some of these resources.

TABLE 3-1 IIS Application Mappings for aspnet_isapi.dll

Extension Resource Type

.asax ASP.NET application files such as global.asax.. The mapping is there to
 ensure that global.asax can’t be requested directly.

.ascx ASP.NET user control files.

.ashx HTTP handlers, namely managed modules that interact with the low-level
 request and response services of IIS.

.asmx Files that implement .NET Web services.

.aspx Files that represent ASP.NET pages.

.axd Extension that identifies internal HTTP handlers used to implement system
features such as application-level tracing (trace.axd) or script injection
 (webresource.axd).

In addition, the aspnet_isapi.dll extension handles other typical Microsoft Visual Studio
 extensions, such as .cs, .csproj, .vb, .vbproj, .config, and .resx.

As mentioned in Chapter 1, the exact behavior of the ASP.NET ISAPI extension depends on
the process model selected for the application. There are two options, as described in the
following sections.

IIS 5.0 Process Model

The IIS 5.0 process model is the only option you have if you host your ASP.NET application
on any version of Microsoft Windows prior to Windows 2003 Server. According to this pro-
cessing model, aspnet_isapi.dll doesn’t process the .aspx file, but instead acts as a dispatcher.
It collects all the information available about the invoked URL and the underlying resource,
and then it routes the request toward another distinct process—the ASP.NET worker process
named aspnet_wp.exe. The communication between the ISAPI extension and worker pro-
cess takes place through named pipes.

The whole model is illustrated in Figure 3-2.

92 Part I Building an ASP.NET Page

Browser

HTTP

named pipe

HTML HTML

IIS

inetinfo.exe

aspnet_isapi.dll

HttpRuntime

Application

Page Object

AppDomain

vdir1

HttpRuntime

Application

Page Object

AppDomain

vdirN

aspnet_wp.exe

. . .

ASP.NET worker process

CPU

CPU

CPU
. .

 .

FIGURE 3-2 The ASP.NET runtime environment according to the IIS 5.0 process model.

A single copy of the worker process runs all the time and hosts all the active Web applica-
tions. The only exception to this situation is when you have a Web server with multiple CPUs.
In this case, you can configure the ASP.NET runtime so that multiple worker processes run,
one per each available CPU. A model in which multiple processes run on multiple CPUs in a
single-server machine is known as a Web garden and is controlled by attributes on the <pro-
cessModel> section in the machine.config file.

When a single worker process is used by all CPUs and controls all Web applications, it doesn’t
necessarily mean that no process isolation is achieved. Each Web application is, in fact,
identified with its virtual directory and belongs to a distinct application domain, commonly
referred to as an AppDomain. A new AppDomain is created within the ASP.NET worker pro-
cess whenever a client addresses a virtual directory for the first time. After creating the new
AppDomain, the ASP.NET runtime loads all the needed assemblies and passes control to the
hosted HTTP pipeline to actually service the request.

 Chapter 3 Anatomy of an ASP.NET Page 93

If a client requests a page from an already running Web application, the ASP.NET runtime
simply forwards the request to the existing AppDomain associated with that virtual directory.
If the assembly needed to process the page is not loaded in the AppDomain, it will be cre-
ated on the fly; otherwise, if it was already created upon the first call, it will be simply used.

IIS 6.0 Process Model

The IIS 6.0 process model is the default option for ASP.NET when the Web server operating
system is Windows 2003 Server or newer. As the name of the process model clearly sug-
gests, this model requires IIS 6.0. However, on a Windows 2003 Server machine you can still
have ASP.NET play by the rules of the IIS 5.0 process model. If this is what you want, explic-
itly enable the model by tweaking the <processModel> section of the machine.config file, as
shown here:

<processModel enable=”true”>

Be aware that switching back to the old IIS 5.0 process model is not a recommended practice,
although it is perfectly legal. The main reason lies in the fact that IIS 6.0 employs a different
pipeline of internal modules to process an inbound request and can mimic the behavior of
IIS 5.0 only if running in emulation mode. The IIS 6.0 pipeline is centered around a generic
worker process named w3wp.exe. A copy of this executable is shared by all Web applications
assigned to the same application pool. In the IIS 6.0 jargon, an application pool is a group of
Web applications that share the same copy of the worker process. IIS 6.0 lets you customize
the application pools to achieve the degree of isolation that you need for the various appli-
cations hosted on a Web server.

The w3wp.exe worker process loads aspnet_isapi.dll; the ISAPI extension, in turn, loads the
common language runtime (CLR) and starts the ASP.NET runtime pipeline to process the
request. When the IIS 6.0 process model is in use, the built-in ASP.NET worker process is
disabled.

Note Only ASP.NET version 1.1 and later takes full advantage of the IIS 6.0 process model. If
you install ASP.NET 1.0 on a Windows 2003 Server machine, the process model will default to the
IIS 5.0 process model. This happens because only the version of aspnet_isapi.dll that ships with
ASP.NET 1.1 is smart enough to recognize its host and load the CLR if needed. The aspnet_isapi.
dll included in ASP.NET 1.0 is limited to forwarding requests to the ASP.NET worker process and
never loads the CLR.

Figure 3-3 shows how ASP.NET applications and other Web applications are processed in IIS 6.0.

94 Part I Building an ASP.NET Page

Browser

HTTP

Manages the
lifetime and the

recycling of
worker processes

IIS 6.0 metabase

Listen and route

Application pool
request queue

Application pool
request queue

http.sys

Kernel-mode

User-mode

IIS worker process
(w3wp.exe)

This process loads
aspnet_isapi.dll to

process .aspx. In turn,
aspnet_isapi.dll
loads the CLR

IIS worker process
(w3wp.exe)

The process loads
asp.dll

to process .asp pages.

Web Administration Service (WAS)

WAS initializes
http.sys

WAS reads
metabase

Workers
get requests

from the
applications

queue

. . .

FIGURE 3-3 How ASP.NET and Web applications are processed in IIS 6.0.

IIS 6.0 implements its HTTP listener as a kernel-level module. As a result, all incoming re-
quests are first managed by a driver—http.sys. No third-party code ever interacts with the
listener, and no user-mode crashes will ever affect the stability of IIS. The http.sys driver lis-
tens for requests and posts them to the request queue of the appropriate application pool.
A module called the Web Administration Service (WAS) reads from the IIS metabase and
instructs the http.sys driver to create as many request queues as there are application pools
registered in the metabase.

 Chapter 3 Anatomy of an ASP.NET Page 95

In summary, in the IIS 6.0 process model, ASP.NET runs even faster because no interprocess
communication between inetinfo.exe (the IIS executable) and the worker process is required.
The HTTP request is delivered directly at the worker process that hosts the CLR. Furthermore,
the ASP.NET worker process is not a special process but simply a copy of the IIS worker pro-
cess. This fact shifts to IIS the burden of process recycling, page output caching, and health
checks.

In the IIS 6.0 process model, ASP.NET ignores most of the contents of the <processModel>
section from the machine.config file. Only thread and deadlock settings are read from that
section of machine.config. Everything else goes through the metabase and can be configured
only by using the IIS Manager. (Other configuration information continues to be read from
.config files.)

Representing the Requested Page

Each incoming request that refers to an .aspx resource is mapped to, and served through,
a Page-derived class. The ASP.NET HTTP runtime environment first determines the name
of the class that will be used to serve the request. A particular naming convention links the
URL of the page to the name of the class. If the requested page is, say, default.aspx, the as-
sociated class turns out to be ASP.default_aspx. If no class exists with that name in any of the
assemblies currently loaded in the AppDomain, the HTTP runtime orders that the class be
created and compiled. The source code for the class is created by parsing the source code of
the .aspx resource, and it’s temporarily saved in the ASP.NET temporary folder. Next, the class
is compiled and loaded in memory to serve the request. When a new request for the same
page arrives, the class is ready and no compile step will ever take place. (The class will be re-
created and recompiled only if the source code of the .aspx source changes.)

The ASP.default_aspx class inherits from Page or, more likely, from a class that in turn inherits
from Page. More precisely, the base class for ASP.default_aspx will be a combination of the
code-behind, partial class created through Visual Studio and a second partial class dynami-
cally arranged by the ASP.NET HTTP runtime. Figure 3-4 provides a graphical demonstration
of how the source code of the dynamic page class is built.

96 Part I Building an ASP.NET Page

public partial class HelloWorld : Page
{
 // Any event handlers you need

 // NB: no protected members for
 // server controls in the page
}

Written by you in default.aspx Generated by ASP.NET while compiling

public partial class HelloWorld : Page
{
 // Any needed protected members
 // for server controls in the page

 // This code was in VS auto-generated
 // regions in VS 2003 and ASP.NET 1.x
}

Compiler merges partial class definitions

public class default.aspx : HelloWorld
{
 // Build the control tree
 // parsing the ASPX file in much
 // the same way as in ASP.NET 1.x
}

public class HelloWorld : Page
{
 // Any event handlers you need

 // Any needed protected members
 // for server controls in the page
}

ASP.NET runtime parses ASPX source and dynamically
generates the page to serve the request for default.aspx

FIGURE 3-4 ASP.NET generates the source code for the dynamic class that will serve a request.

Partial classes are a hot feature of the latest .NET compilers (version 2.0 and later). When
 partially declared, a class has its source code split over multiple source files, each of which
appears to contain an ordinary class definition from beginning to end. The new keyword
 partial, though, informs the compiler that the class declaration being processed is incom-
plete. To get full and complete source code, the compiler must look into other files specified
on the command line.

Partial Classes in ASP.NET Projects

Ideal for team development, partial classes simplify coding and avoid manual file synchroni-
zation in all situations in which a mix of user-defined and tool-generated code is used. Want
an illustrious example? ASP.NET projects developed with Visual Studio 2003.

Partial classes are a compiler feature specifically designed to overcome the brittleness of
tool-generated code in many Visual Studio 2003 projects, including ASP.NET projects. A
 savvy use of partial classes allows you to eliminate all those weird, auto-generated, semi-
hidden regions of code that Visual Studio 2003 inserts to support page designers.

Generally, partial classes are a source-level, assembly-limited, non-object-oriented way to
extend the behavior of a class. A number of advantages are derived from intensive use of

 Chapter 3 Anatomy of an ASP.NET Page 97

partial classes. For example, you can have multiple teams at work on the same component at
the same time. In addition, you have a neat and elegant way to add functionality to a class
incrementally. In the end, this is just what the ASP.NET runtime does.

The ASPX markup defines server controls that will be handled by the code in the code-
behind class. For this model to work, the code-behind class needs to incorporate references
to these server controls as internal members—typically, protected members. In Visual Studio
2003, these declarations are added by the integrated development environment (IDE) as you
save your markup and stored in semi-hidden regions. In Visual Studio 2005, the code-behind
class is a partial class that just lacks member declaration. Missing declarations are incremen-
tally added at run time via a second partial class created by the ASP.NET HTTP runtime. The
compiler of choice (C#, Microsoft Visual Basic .NET, or whatever) will then merge the two
 partial classes to create the real parent of the dynamically created page class.

Note In Visual Studio 2008 and the .NET Framework 3.5 partial classes are partnered with
extension methods as a way to add new capabilities to existing .NET classes. By creating a class
with extension methods you can extend, say, the System.String class with a ToInt32 method that
returns an integer if the content of the string can be converted to an integer. Once you added to
the project the class with extension methods, any string in the project features the new methods.
IntelliSense fully supports this feature.

Processing the Request

To serve a request for a page named default.aspx, the ASP.NET runtime needs to get a
 reference to a class ASP.default_aspx. As you recall, if this class doesn’t exist in any of the
 assemblies currently loaded in the AppDomain, it will be created. Next, the HTTP run-
time environment invokes the class through the methods of a well-known interface—
IHttpHandler. The root Page class implements this interface, which includes a couple of
members—the ProcessRequest method and the Boolean IsReusable property. Once the HTTP
runtime has obtained an instance of the class that represents the requested resource, invok-
ing the ProcessRequest method—a public method—gives birth to the process that culmi-
nates in the generation of the final response for the browser. As mentioned, the steps and
events that execute and trigger out of the call to ProcessRequest are collectively known as the
page life cycle.

Although serving pages is the ultimate goal of the ASP.NET runtime, the way in which the
 resultant markup code is generated is much more sophisticated than in other platforms and
involves many objects. The ASP.NET worker process—be it w3wp.exe or aspnet_wp.exe—
passes any incoming HTTP requests to the so-called HTTP pipeline. The HTTP pipeline is
a fully extensible chain of managed objects that works according to the classic concept of
a pipeline. All these objects form what is often referred to as the ASP.NET HTTP runtime
environment.

98 Part I Building an ASP.NET Page

The HttpRuntime Object

A page request passes through a pipeline of objects that process the original HTTP payload
and, at the end of the chain, produce some markup code for the browser. The entry point in
this pipeline is the HttpRuntime class. The ASP.NET worker process activates the HTTP pipe-
line in the beginning by creating a new instance of the HttpRuntime class and then calling its
ProcessRequest method for each incoming request. For the sake of clarity, note that despite
the name, HttpRuntime.ProcessRequest has nothing to do with the IHttpHandler interface.

The HttpRuntime class contains a lot of private and internal methods and only three public
static methods: Close, ProcessRequest, and UnloadAppDomain, as detailed in Table 3-2.

TABLE 3-2 Public Methods in the HttpRuntime Class

Method Description

Close Removes all items from the ASP.NET cache, and terminates the
Web application. This method should be used only when your
code implements its own hosting environment. There is no need
to call this method in the course of normal ASP.NET request
 processing.

ProcessRequest Drives all ASP.NET Web processing execution.

UnloadAppDomain Terminates the current ASP.NET application. The application
 restarts the next time a request is received for it.

It is important to note that all the methods shown in Table 3-2 have limited applicability in
user applications. In particular, you’re not supposed to use ProcessRequest in your own code,
whereas Close is useful only if you’re hosting ASP.NET in a custom application. Of the three
methods in Table 3-2, only UnloadAppDomain can be considered for use if, under certain
run-time conditions, you realize you need to restart the application. (See the sidebar “What
Causes Application Restarts?” later in this chapter.)

Upon creation, the HttpRuntime object initializes a number of internal objects that will
help carry out the page request. Helper objects include the cache manager and the file
system monitor used to detect changes in the files that form the application. When the
ProcessRequest method is called, the HttpRuntime object starts working to serve a page to
the browser. It creates a new empty context for the request and initializes a specialized text
writer object in which the markup code will be accumulated. A context is given by an in-
stance of the HttpContext class, which encapsulates all HTTP-specific information about the
request.

After that, the HttpRuntime object uses the context information to either locate or create a
Web application object capable of handling the request. A Web application is searched us-
ing the virtual directory information contained in the URL. The object used to find or create

 Chapter 3 Anatomy of an ASP.NET Page 99

a new Web application is HttpApplicationFactory—an internal-use object responsible for
 returning a valid object capable of handling the request.

Before we get to discover more about the various components of the HTTP pipeline, a look
at Figure 3-5 is in order.

Based on the URL, creates/selects
the application object to serve
the request

HttpApplicationFactory

Determines the type of the
request and invokes the proper
handler factory

HttpApplication

Determines the page class required
to serve the request and creates
it if not existing

PageHandlerFactory

ASP.default.aspx

HttpRuntime

Initializes the ASP.NET cache and HTTP context

Cache HTTP
Context

ASP.NET Worker Process - AppDomain

IHttpHandler

HttpRuntime invokes ProcessRequest

on ASP .default_aspx

default.aspx

FIGURE 3-5 The HTTP pipeline processing for a page.

The Application Factory

During the lifetime of the application, the HttpApplicationFactory object maintains a pool of
HttpApplication objects to serve incoming HTTP requests. When invoked, the application fac-
tory object verifies that an AppDomain exists for the virtual folder the request targets. If the
application is already running, the factory picks an HttpApplication out of the pool of avail-
able objects and passes it the request. A new HttpApplication object is created if an existing
object is not available.

100 Part I Building an ASP.NET Page

If the virtual folder has not yet been called for the first time, a new HttpApplication object
for the virtual folder is created in a new AppDomain. In this case, the creation of an
HttpApplication object entails the compilation of the global.asax application file, if one is
present, and the creation of the assembly that represents the actual page requested. This
event is actually equivalent to the start of the application. An HttpApplication object is used
to process a single page request at a time; multiple objects are used to serve simultaneous
requests.

The HttpApplication Object

HttpApplication is the base class that represents a running ASP.NET application. A run-
ning ASP.NET application is represented by a dynamically created class that inherits from
HttpApplication. The source code of the dynamically generated application class is cre-
ated by parsing the contents of the global.asax file, if any is present. If global.asax is avail-
able, the application class is built and named after it: ASP.global_asax. Otherwise, the base
HttpApplication class is used.

An instance of an HttpApplication-derived class is responsible for managing the entire life-
time of the request it is assigned to. The same instance can be reused only after the request
has been completed. The HttpApplication maintains a list of HTTP module objects that can
filter and even modify the content of the request. Registered modules are called during
 various moments of the elaboration as the request passes through the pipeline.

The HttpApplication object determines the type of object that represents the resource
being requested—typically, an ASP.NET page, a Web service, or perhaps a user control.
HttpApplication then uses the proper handler factory to get an object that represents the
requested resource. The factory either instantiates the class for the requested resource from
an existing assembly or dynamically creates the assembly and then an instance of the class. A
handler factory object is a class that implements the IHttpHandlerFactory interface and is re-
sponsible for returning an instance of a managed class that can handle the HTTP request—an
HTTP handler. An ASP.NET page is simply a handler object—that is, an instance of a class that
implements the IHttpHandler interface.

The Page Factory

The HttpApplication class determines the type of object that must handle the request and
delegates the type-specific handler factory to create an instance of that type. Let’s see what
happens when the resource requested is a page.

Once the HttpApplication object in charge of the request has figured out the proper handler,
it creates an instance of the handler factory object. For a request that targets a page, the

 Chapter 3 Anatomy of an ASP.NET Page 101

 factory is a class named PageHandlerFactory. To find the appropriate handler, HttpApplication
uses the information in the <httpHandlers> section of the configuration file. Table 3-3
 contains a brief list of the main handlers registered.

TABLE 3-3 Handler Factory Classes in the .NET Framework

Handler Factory Type Description

HttpRemotingHandlerFactory *.rem;
*.soap

Instantiates the object that will take care of a .NET
Remoting request routed through IIS. Instantiates
an object of type HttpRemotingHandler.

PageHandlerFactory *.aspx Compiles and instantiates the type that represents
the page. The source code for the class is built
while parsing the source code of the .aspx file.
Instantiates an object of a type that derives from
Page.

SimpleHandlerFactory *.ashx Compiles and instantiates the specified HTTP
handler from the source code of the .ashx file.
Instantiates an object that implements the
IHttpHandler interface.

WebServiceHandlerFactory *.asmx Compiles the source code of a Web service, and
translates the SOAP payload into a method invoca-
tion. Instantiates an object of the type specified in
the Web service file.

Bear in mind that handler factory objects do not compile the requested resource each time
it is invoked. The compiled code is stored in an ASP.NET temporary directory on the Web
server and used until the corresponding resource file is modified. (This bit of efficiency is the
primary reason the factory pattern is followed in this case.)

So when the request is received, the page handler factory creates an instance of an object
that represents the particular requested page. As mentioned, this object inherits from the
System.Web.UI.Page class, which in turn implements the IHttpHandler interface. The page
object is returned to the application factory, which passes that back to the HttpRuntime
object. The final step accomplished by the ASP.NET runtime is calling the IHttpHandler’s
ProcessRequest method on the page object. This call causes the page to execute the user-
defined code and generate the markup for the browser.

In Chapter 14, we’ll return to the initialization of an ASP.NET application, the contents of
global.asax, and the information stuffed into the HTTP context—a container object that, cre-
ated by the HttpRuntime class, is populated and passed along the pipeline and finally bound
to the page handler.

102 Part I Building an ASP.NET Page

What Causes Application Restarts?

There are a few reasons why an ASP.NET application can be restarted. For the most
part, an application is restarted to ensure that latent bugs or memory leaks don’t affect
in the long run the overall behavior of the application. Another reason is that too many
dynamic changes to ASPX pages may have caused too large a number of assemblies
(typically, one per page) to be loaded in memory. Any application that consumes more
than a certain share of virtual memory is killed and restarted. The ASP.NET runtime en-
vironment implements a good deal of checks and automatically restarts an application
if any the following scenarios occur:

 The maximum limit of dynamic page compilations is reached. This limit is
 configurable through the web.config file.

 The physical path of the Web application has changed, or any directory under
the Web application folder is renamed.

 Changes occurred in global.asax, machine.config, or web.config in the
 application root, or in the Bin directory or any of its subdirectories.

 Changes occurred in the code-access security policy file, if one exists.

 Too many files are changed in one of the content directories. (Typically, this
happens if files are generated on the fly when requested.)

 Changes occurred to settings that control the restart/shutdown of the ASP.
NET worker process. These settings are read from machine.config if you don’t
use Windows 2003 Server with the IIS 6.0 process model. If you’re taking full
advantage of IIS 6.0, an application is restarted if you modify properties in the
Application Pools node of the IIS manager.

In addition to all this, in ASP.NET an application can be restarted programmatically by
calling HttpRuntime.UnloadAppDomain.

The Processing Directives of a Page

Processing directives configure the runtime environment that will execute the page. In ASP.
NET, directives can be located anywhere in the page, although it’s a good and common
practice to place them at the beginning of the file. In addition, the name of a directive is
case-insensitive and the values of directive attributes don’t need to be quoted. The most

 Chapter 3 Anatomy of an ASP.NET Page 103

important and most frequently used directive in ASP.NET is @Page. The complete list of ASP.
NET directives is shown in Table 3-4.

TABLE 3-4 Directives Supported by ASP.NET Pages

Directive Description

@ Assembly Links an assembly to the current page or user control.

@ Control Defines control-specific attributes that guide the behavior of the
control compiler.

@ Implements Indicates that the page, or the user control, implements a specified
.NET Framework interface.

@ Import Indicates a namespace to import into a page or user control.

@ Master Identifies an ASP.NET master page. (See Chapter 6.) This directive is
not available with ASP.NET 1.x.

@ MasterType Provides a way to create a strongly typed reference to the ASP.NET
master page when the master page is accessed from the Master
property. (See Chapter 6.) This directive is not available with ASP.NET
1.x.

@ OutputCache Controls the output caching policies of a page or user control.
(See Chapter 16.)

@ Page Defines page-specific attributes that guide the behavior of the page
compiler and the language parser that will preprocess the page.

@ PreviousPageType Provides a way to get strong typing against the previous page, as
accessed through the PreviousPage property.

@ Reference Links a page or user control to the current page or user control.

@ Register Creates a custom tag in the page or the control. The new tag (prefix
and name) is associated with the namespace and the code of a user-
defined control.

With the exception of @Page, @PreviousPageType, @Master, @MasterType, and @Control, all
directives can be used both within a page and a control declaration. @Page and @Control
are mutually exclusive. @Page can be used only in .aspx files, while the @Control directive
can be used only in user control .ascx files. @Master, in turn, is used to define a very special
type of page—the master page.

The syntax of a processing directive is unique and common to all supported types of
 directives. Multiple attributes must be separated with blanks, and no blank can be placed
around the equal sign (=) that assigns a value to an attribute, as the following line of code
demonstrates:

<%@ Directive_Name attribute=”value” [attribute=”value”...] %>

104 Part I Building an ASP.NET Page

Each directive has its own closed set of typed attributes. Assigning a value of the wrong type
to an attribute, or using a wrong attribute with a directive, results in a compilation error.

Important The content of directive attributes is always rendered as plain text. However,
attributes are expected to contain values that can be rendered to a particular .NET Framework
type, specific to the attribute. When the ASP.NET page is parsed, all the directive attributes
are extracted and stored in a dictionary. The names and number of attributes must match the
expected schema for the directive. The string that expresses the value of an attribute is valid as
long as it can be converted into the expected type. For example, if the attribute is designed to
take a Boolean value, true and false are its only feasible values.

The @Page Directive

The @Page directive can be used only in .aspx pages, and it generates a compile error if
used with other types of ASP.NET pages, such as controls and Web services. Each .aspx file
is allowed to include at most one @Page directive. Although not strictly necessary from the
syntax point of view, the directive is realistically required by all pages of some complexity.

@Page features about 30 attributes that can be logically grouped in three categories:
 compilation (defined in Table 3-5), overall page behavior (defined in Table 3-6), and page
output (defined in Table 3-7). Each ASP.NET page is compiled upon first request, and the
HTML actually served to the browser is generated by the methods of the dynamically gener-
ated class. Attributes listed in Table 3-5 let you fine-tune parameters for the compiler and
choose the language to use.

TABLE 3-5 @Page Attributes for Page Compilation

Attribute Description

ClassName Specifies the name of the class name that will be dynamically com-
piled when the page is requested. Must be a class name without
namespace information.

CodeFile Indicates the path to the code-behind class for the current page. The
source class file must be deployed to the Web server. Not available
with ASP.NET 1.x.

CodeBehind Attribute consumed by Visual Studio .NET 2003, indicates the path to
the code-behind class for the current page. The source class file will
be compiled to a deployable assembly. (Note that for ASP.NET ver-
sion 2.0 and later, the CodeFile attribute should be used.)

CodeFileBaseClass Specifies the type name of a base class for a page and its associ-
ated code-behind class. The attribute is optional, but when it is
used the CodeFile attribute must also be present. Not available with
ASP.NET 1.x.

 Chapter 3 Anatomy of an ASP.NET Page 105

Attribute Description

CompilationMode Indicates whether the page should be compiled at run time. Not
available with ASP.NET 1.x.

CompilerOptions A sequence of compiler command-line switches used to compile the
page.

Debug A Boolean value that indicates whether the page should be compiled
with debug symbols.

Explicit A Boolean value that determines whether the page is compiled with
the Visual Basic Option Explicit mode set to On. Option Explicit forces
the programmer to explicitly declare all variables. The attribute is
ignored if the page language is not Visual Basic .NET.

Inherits Defines the base class for the page to inherit. It can be any class
 derived from the Page class.

Language Indicates the language to use when compiling inline code blocks (<%
… %>) and all the code that appears in the page <script> section.
Supported languages include Visual Basic .NET, C#, JScript .NET, and
J#. If not otherwise specified, the language defaults to Visual Basic
.NET.

LinePragmas Indicates whether the runtime should generate line pragmas in the
source code

MasterPageFile Indicates the master page for the current page. Not available with
ASP.NET 1.x.

Src Indicates the source file that contains the implementation of the base
class specified with Inherits. The attribute is not used by Visual Studio
and other rapid application development (RAD) designers.

Strict A Boolean value that determines whether the page is compiled with
the Visual Basic Option Strict mode set to On. When enabled, Option
Strict permits only type-safe conversions and prohibits implicit con-
versions in which loss of data is possible. (In this case, the behavior is
identical to that of C#.) The attribute is ignored if the page language
is not Visual Basic .NET.

Trace A Boolean value that indicates whether tracing is enabled. If tracing
is enabled, extra information is appended to the page’s output. The
default is false.

TraceMode Indicates how trace messages are to be displayed for the page
when tracing is enabled. Feasible values are SortByTime and
SortByCategory. The default, when tracing is enabled, is SortByTime.

WarningLevel Indicates the compiler warning level at which you want the compiler
to abort compilation for the page. Possible values are 0 through 4.

106 Part I Building an ASP.NET Page

Notice that the default values of the Explicit and Strict attributes are read from the
 application’s configuration settings. The configuration settings of an ASP.NET application are
obtained by merging all machine-wide settings with application-wide and even folder-wide
settings. This means you can also control what the default values for the Explicit and Strict at-
tributes are. Unless you change the default configuration settings—the configuration files are
created when the .NET Framework is installed—both Explicit and Strict default to true. Should
the related settings be removed from the configuration files, both attributes would default to
false instead.

Attributes listed in Table 3-6 allow you to control to some extent the overall behavior of the
page and the supported range of features. For example, you can set a custom error page,
disable session state, and control the transactional behavior of the page.

Note The schema of attributes supported by the @Page is not as strict as for other directives. In
particular, you can list as a @Page attribute, and initialize, any public properties defined on the
page class.

TABLE 3-6 @Page Attributes for Page Behavior

Attribute Description

AspCompat A Boolean attribute that, when set to true, allows the page to be executed
on a single-threaded apartment (STA) thread. The setting allows the page
to call COM+ 1.0 components and components developed with Microsoft
Visual Basic 6.0 that require access to the unmanaged ASP built-in
 objects. (I’ll cover this topic in Chapter 14.)

Async If set to true, the generated page class derives from IHttpAsyncHandler
rather than having IHttpHandler add some built-in asynchronous capabili-
ties to the page. Not available with ASP.NET 1.x.

AsyncTimeOut Defines the timeout in seconds used when processing asynchronous
tasks. The default is 45 seconds. Not available with ASP.NET 1.x.

AutoEventWireup A Boolean attribute that indicates whether page events are automatically
enabled. Set to true by default. Pages developed with Visual Studio .NET
have this attribute set to false, and page events are individually tied to
handlers.

Buffer A Boolean attribute that determines whether HTTP response buffering is
enabled. Set to true by default.

Description Provides a text description of the page. The ASP.NET page parser ignores
the attribute, which subsequently has only a documentation purpose.

EnableEventValidation A Boolean value that indicates whether the page will emit a hidden field
to cache available values for input fields that support event data valida-
tion. Set to true by default. Not available with ASP.NET 1.x.

 Chapter 3 Anatomy of an ASP.NET Page 107

Attribute Description

EnableSessionState Defines how the page should treat session data. If set to true, the session
state can be read and written. If set to false, session data is not available
to the application. Finally, if set to ReadOnly, the session state can be read
but not changed.

EnableViewState A Boolean value that indicates whether the page view state is maintained
across page requests. The view state is the page call context—a collection
of values that retain the state of the page and are carried back and forth.
View state is enabled by default. (I’ll cover this topic in Chapter 15.)

EnableTheming A Boolean value that indicates whether the page will support themes for
embedded controls. Set to true by default. Not available in ASP.NET 1.x.

EnableViewStateMac A Boolean value that indicates ASP.NET should calculate a machine-spe-
cific authentication code and append it to the view state of the page (in
addition to Base64 encoding). The Mac in the attribute name stands for
machine authentication check. When the attribute is true, upon postbacks
ASP.NET will check the authentication code of the view state to make sure
that it hasn’t been tampered with on the client.

ErrorPage Defines the target URL to which users will be automatically redirected in
case of unhandled page exceptions.

MaintainScrollPosition-
OnPostback

Indicates whether to return the user to the same scrollbar position in the
client browser after postback. The default is false.

SmartNavigation A Boolean value that indicates whether the page supports the Microsoft
Internet Explorer 5 or later smart navigation feature. Smart navigation
allows a page to be refreshed without losing scroll position and element
focus.

Theme,
StyleSheetTheme

Indicates the name of the theme (or style-sheet theme) selected for the
page. Not available with ASP.NET 1.x.

Transaction Indicates whether the page supports or requires transactions. Feasible
values are: Disabled, NotSupported, Supported, Required, and RequiresNew.
Transaction support is disabled by default.

ValidateRequest A Boolean value that indicates whether request validation should occur. If
this value is set to true, ASP.NET checks all input data against a hard-cod-
ed list of potentially dangerous values. This functionality helps reduce the
risk of cross-site scripting attacks for pages. The value is true by default.
This feature is not supported in ASP.NET 1.0.

ViewStateEncryption-
Mode

Indicates how view state is encrypted, with three possible enumerated
values: Auto, Always, or Never. The default is Auto meaning that the
viewstate is encrypted only if a control requests that. Note that using en-
cryption over the viewstate adds some overhead to the processing of the
page on the server for each request.

108 Part I Building an ASP.NET Page

Attributes listed in Table 3-7 allow you to control the format of the output being generated
for the page. For example, you can set the content type of the page or localize the output to
the extent possible.

TABLE 3-7 @Page Directives for Page Output

Attribute Description

ClientTarget Indicates the target browser for which ASP.NET server controls should
 render content.

CodePage Indicates the code page value for the response. Set this attribute only if
you created the page using a code page other than the default code page
of the Web server on which the page will run. In this case, set the attribute
to the code page of your development machine. A code page is a charac-
ter set that includes numbers, punctuation marks, and other glyphs. Code
pages differ on a per-language basis.

ContentType Defines the content type of the response as a standard MIME type.
Supports any valid HTTP content type string.

Culture Indicates the culture setting for the page. Culture information includes the
writing and sorting system, calendar, and date and currency formats. The
attribute must be set to a non-neutral culture name, which means it must
contain both language and country information. For example, en-US is a
valid value, unlike en alone, which is considered country-neutral.

LCID A 32-bit value that defines the locale identifier for the page. By default,
ASP.NET uses the locale of the Web server.

ResponseEncoding Indicates the character encoding of the page. The value is used to set the
CharSet attribute on the content type HTTP header. Internally, ASP.NET
handles all strings as Unicode.

Title Indicates the title of the page. Not really useful for regular pages which
would likely use the <title> HTML tag, the attribute has been defined to
help developers add a title to content pages where access to the <title>
attribute may not be possible. (This actually depends on how the master
page is structured.)

UICulture Specifies the default culture name used by the Resource Manager to look
up culture-specific resources at run time.

As you can see, many attributes discussed in Table 3-7 are related to page localization.
Building multilanguage and international applications is a task that ASP.NET, and the .NET
Framework in general, greatly simplify. In Chapter 5, we’ll delve into the topic.

The @Assembly Directive

The @Assembly directive links an assembly to the current page so that its classes and inter-
faces are available for use on the page. When ASP.NET compiles the page, a few assemblies
are linked by default. So you should resort to the directive only if you need linkage to a non-
default assembly. Table 3-8 lists the .NET assemblies that are automatically provided to the
compiler.

 Chapter 3 Anatomy of an ASP.NET Page 109

TABLE 3-8 Assemblies Linked by Default

Assembly File Name Description

Mscorlib.dll Provides the core functionality of the .NET Framework,
 including types, AppDomains, and run-time services.

System.dll Provides another bunch of system services, including regular
expressions, compilation, native methods, file I/O, and net-
working.

System.Configuration.dll Defines classes to read and write configuration data. Not
 included in ASP.NET 1.x.

System.Data.dll Defines data container and data access classes, including the
whole ADO.NET framework.

System.Drawing.dll Implements the GDI+ features.

System.EnterpriseServices.dll Provides the classes that allow for serviced components and
COM+ interaction.

System.Web.dll The assembly implements the core ASP.NET services, controls,
and classes.

System.Web.Mobile.dll The assembly implements the core ASP.NET mobile services,
controls, and classes. Not included if version 1.0 of the .NET
Framework is installed.

System.Web.Services.dll Contains the core code that makes Web services run.

System.Xml.dll Implements the .NET Framework XML features.

System.Runtime.Serialization Defines the API for .NET serialization. This was one of the addi-
tional assemblies that was most frequently added by develop-
ers in ASP.NET 2.0 applications. Only included in ASP.NET 3.5.

System.ServiceModel Defines classes and structure for Windows Communication
Foundation (WCF) services. Only included in ASP.NET 3.5.

System.ServiceModel.Web Defines the additional classes required by ASP.NET and AJAX to
support WCF services. Only included in ASP.NET 3.5.

System.WorkflowServices Defines classes for making workflows and WCF services
 interact. Only included in ASP.NET 3.5.

In addition to these assemblies, the ASP.NET runtime automatically links to the page all the
assemblies that reside in the Web application Bin subdirectory. Note that you can modify,
extend, or restrict the list of default assemblies by editing the global settings set in the global
machine-level web.config file. In this case, changes apply to all ASP.NET applications run on
that Web server. Alternately, you can modify the assembly list on a per-application basis by
editing the application’s specific web.config file. To prevent all assemblies found in the Bin
directory from being linked to the page, remove the following line from the root configura-
tion file:

<add assembly=”*” />

110 Part I Building an ASP.NET Page

Warning For an ASP.NET application, the whole set of configuration attributes is set at the
machine level. Initially, all applications hosted on a given server machine share the same set-
tings. Then individual applications can override some of those settings in their own web.config
files. Each application can have a web.config file in the root virtual folder and other copies of
specialized web.config files in application-specific subdirectories. Each page is subject to settings
as determined by the configuration files found in the path from the machine to the containing
folder. In ASP.NET 1.x, the machine.config file contains the complete tree of default settings. In
ASP.NET 2.0, the configuration data that specifically refers to Web applications has been moved
to a web.config file installed in the same system folder as machine.config. The folder is named
CONFIG and located below the installation path of ASP.NET—that is, %WINDOWS%\Microsoft.
Net\Framework\[version].

To link a needed assembly to the page, use the following syntax:

<%@ Assembly Name=”AssemblyName” %>

<%@ Assembly Src=”assembly_code.cs” %>

The @Assembly directive supports two mutually exclusive attributes: Name and Src. Name
indicates the name of the assembly to link to the page. The name cannot include the path or
the extension. Src indicates the path to a source file to dynamically compile and link against
the page. The @Assembly directive can appear multiple times in the body of the page. In
fact, you need a new directive for each assembly to link. Name and Src cannot be used in the
same @Assembly directive, but multiple directives defined in the same page can use either.

Note In terms of performance, the difference between Name and Src is minimal, although
Name points to an existing and ready-to-load assembly. The source file referenced by Src
is compiled only the first time it is requested. The ASP.NET runtime maps a source file with
a dynamically compiled assembly and keeps using the compiled code until the original file
undergoes changes. This means that after the first application-level call the impact on the page
performance is identical whether you use Name or Src.

The @Import Directive

The @Import directive links the specified namespace to the page so that all the types defined
can be accessed from the page without specifying the fully qualified name. For example,
to create a new instance of the ADO.NET DataSet class, you either import the System.Data
namespace or specify the fully qualified class name whenever you need it, as in the following
code:

System.Data.DataSet ds = new System.Data.DataSet();

 Chapter 3 Anatomy of an ASP.NET Page 111

Once you’ve imported the System.Data namespace into the page, you can use more natural
coding, as shown here:

DataSet ds = new DataSet();

The syntax of the @Import directive is rather self-explanatory:

<%@ Import namespace=”value” %>

@Import can be used as many times as needed in the body of the page. The @Import
 directive is the ASP.NET counterpart of the C# using statement and the Visual Basic .NET
Imports statement. Looking back at unmanaged C/C++, we could say the directive plays a
role nearly identical to the #include directive.

Caution Notice that @Import helps the compiler only to resolve class names; it doesn’t
automatically link required assemblies. Using the @Import directive allows you to use shorter
class names, but as long as the assembly that contains the class code is not properly linked,
the compiler will generate a type error. When an assembly has not been linked, using the fully
qualified class name is of no help because the compiler lacks the type definition.

You might have noticed that, more often than not, assembly and namespace names coincide.
Bear in mind it only happens by chance and that assemblies and namespaces are radically
different entities, each requiring the proper directive.

For example, to be able to connect to a SQL Server database and grab some disconnected
data, you need to import the following two namespaces:

<%@ Import namespace=”System.Data” %>

<%@ Import namespace=” System.Data.SqlClient” %>

You need the System.Data namespace to work with the DataSet and DataTable classes, and
you need the System.Data.SqlClient namespace to prepare and issue the command. In this
case, you don’t need to link against additional assemblies because the System.Data.dll as-
sembly is linked by default.

The @Implements Directive

The @Implements directive indicates that the current page implements the specified .NET
Framework interface. An interface is a set of signatures for a logically related group of func-
tions and is a sort of contract that shows the component’s commitment to expose that group
of functions. Unlike abstract classes, an interface doesn’t provide code or executable func-
tionality. When you implement an interface in an ASP.NET page, you declare any required
methods and properties within the <script> section. The syntax of the @Implements directive
is as follows:

<%@ Implements interface=”InterfaceName” %>

112 Part I Building an ASP.NET Page

The @Implements directive can appear multiple times in the page if the page has to imple-
ment multiple interfaces. Note that if you decide to put all the page logic in a separate class
file, you can’t use the directive to implement interfaces. Instead, you implement the interface
in the code-behind class.

The @Reference Directive

The @Reference directive is used to establish a dynamic link between the current page and
the specified page or user control. This feature has significant consequences regarding the
way in which you set up cross-page communication. It also lets you create strongly typed
 instances of user controls. Let’s review the syntax.

The directive can appear multiple times in the page and features two mutually exclusive
 attributes—Page and Control. Both attributes are expected to contain a path to a source file:

<%@ Reference page=”source_page” %>

<%@ Reference control=”source_user_control” %>

The Page attribute points to an .aspx source file, whereas the Control attribute contains the
path of an .ascx user control. In both cases, the referenced source file will be dynamically
compiled into an assembly, thus making the classes defined in the source programmatically
available to the referencing page. When running, an ASP.NET page is an instance of a .NET
Framework class with a specific interface made of methods and properties. When the refer-
encing page executes, a referenced page becomes a class that represents the .aspx source
file and can be instantiated and programmed at will. Notice that for the directive to work the
referenced page must belong to the same domain as the calling page. Cross-site calls are not
allowed, and both the Page and Control attributes expect to receive a relative virtual path.

Note Starting with ASP.NET 2.0, you are better off using cross-page posting to enable
 communication between pages.

The Page Class

In the .NET Framework, the Page class provides the basic behavior for all objects that an ASP.
NET application builds by starting from .aspx files. Defined in the System.Web.UI namespace,
the class derives from TemplateControl and implements the IHttpHandler interface:

public class Page : TemplateControl, IHttpHandler

 Chapter 3 Anatomy of an ASP.NET Page 113

In particular, TemplateControl is the abstract class that provides both ASP.NET pages and
user controls with a base set of functionality. At the upper level of the hierarchy, we find the
Control class. It defines the properties, methods, and events shared by all ASP.NET server-side
elements—pages, controls, and user controls.

Derived from a class—TemplateControl—that implements INamingContainer, Page also
serves as the naming container for all its constituent controls. In the .NET Framework,
the naming container for a control is the first parent control that implements the
INamingContainer interface. For any class that implements the naming container interface,
ASP.NET creates a new virtual namespace in which all child controls are guaranteed to have
unique names in the overall tree of controls. (This is also a very important feature for iterative
data-bound controls, such as DataGrid, for user controls, and controls that fire server-side
events.)

The Page class also implements the methods of the IHttpHandler interface, thus qualifying as
the handler of a particular type of HTTP requests—those for .aspx files. The key element of
the IHttpHandler interface is the ProcessRequest method, which is the method the ASP.NET
runtime calls to start the page processing that will actually serve the request.

Note INamingContainer is a marker interface that has no methods. Its presence alone, though,
forces the ASP.NET runtime to create an additional namespace for naming the child controls of
the page (or the control) that implements it. The Page class is the naming container of all the
page’s controls, with the clear exception of those controls that implement the INamingContainer
interface themselves or are children of controls that implement the interface.

Properties of the Page Class

The properties of the Page object can be classified in three distinct groups: intrinsic objects,
worker properties, and page-specific properties. The tables in the following sections
 enumerate and describe them.

Intrinsic Objects

Table 3-9 lists all properties that return a helper object that is intrinsic to the page. In other
words, objects listed here are all essential parts of the infrastructure that allows for the page
execution.

114 Part I Building an ASP.NET Page

TABLE 3-9 ASP.NET Intrinsic Objects in the Page Class

Property Description

Application Instance of the HttpApplicationState class; represents the state of the applica-
tion. It is functionally equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for an ASP.NET application.
More efficient and powerful than Application, it supports item priority and
expiration.

Profile Instance of the ProfileCommon class; represents the user-specific set of data
associated with the request.

Request Instance of the HttpRequest class; represents the current HTTP request. It is
functionally equivalent to the ASP intrinsic Request object.

Response Instance of the HttpResponse class; sends HTTP response data to the client. It
is functionally equivalent to the ASP intrinsic Response object.

Server Instance of the HttpServerUtility class; provides helper methods for processing
Web requests. It is functionally equivalent to the ASP intrinsic Server object.

Session Instance of the HttpSessionState class; manages user-specific data. It is
 functionally equivalent to the ASP intrinsic Session object.

Trace Instance of the TraceContext class; performs tracing on the page.
User An IPrincipal object that represents the user making the request.

We’ll cover Request, Response, and Server in Chapter 14; Application and Session in Chapter
15; Cache will be the subject of Chapter 16. Finally, User and security will be the subject of
Chapter 17.

Worker Properties

Table 3-10 details page properties that are both informative and provide the grounds
for functional capabilities. You can hardly write code in the page without most of these
properties.

TABLE 3-10 Worker Properties of the Page Class

Property Description

ClientScript Gets a ClientScriptManager object that contains the client script used
on the page. Not available with ASP.NET 1.x.

Controls Returns the collection of all the child controls contained in the current
page.

ErrorPage Gets or sets the error page to which the requesting browser is redirect-
ed in case of an unhandled page exception.

Form Returns the current HtmlForm object for the page. Not available with
ASP.NET 1.x.

 Chapter 3 Anatomy of an ASP.NET Page 115

Property Description

Header Returns a reference to the object that represents the page’s header. The
object implements IPageHeader. Not available with ASP.NET 1.x.

IsAsync Indicates whether the page is being invoked through an asynchronous
handler. Not available with ASP.NET 1.x.

IsCallback Indicates whether the page is being loaded in response to a client script
callback. Not available with ASP.NET 1.x.

IsCrossPagePostBack Indicates whether the page is being loaded in response to a postback
made from within another page. Not available with ASP.NET 1.x.

IsPostBack Indicates whether the page is being loaded in response to a client
 postback or whether it is being loaded for the first time.

IsValid Indicates whether page validation succeeded.

Master Instance of the MasterPage class; represents the master page that
 determines the appearance of the current page. Not available with ASP.
NET 1.x.

MasterPageFile Gets and sets the master file for the current page. Not available with
ASP.NET 1.x.

NamingContainer Returns null.

Page Returns the current Page object.

PageAdapter Returns the adapter object for the current Page object.

Parent Returns null.

PreviousPage Returns the reference to the caller page in case of a cross-page
 postback. Not available with ASP.NET 1.x.

TemplateSourceDirectory Gets the virtual directory of the page.

Validators Returns the collection of all validation controls contained in the page.

ViewStateUserKey String property that represents a user-specific identifier used to hash
the view-state contents. This trick is a line of defense against one-click
attacks. Not available with ASP.NET 1.0.

In the context of an ASP.NET application, the Page object is the root of the hierarchy. For
this reason, inherited properties such as NamingContainer and Parent always return null. The
Page property, on the other hand, returns an instance of the same object (this in C# and Me
in Visual Basic .NET).

The ViewStateUserKey property that has been added with version 1.1 of the .NET Framework
deserves a special mention. A common use for the user key is to stuff user-specific informa-
tion that would then be used to hash the contents of the view state along with other infor-
mation. (See Chapter 15.) A typical value for the ViewStateUserKey property is the name of

116 Part I Building an ASP.NET Page

the authenticated user or the user’s session ID. This contrivance reinforces the security level
for the view state information and further lowers the likelihood of attacks. If you employ a
user-specific key, an attacker can’t construct a valid view state for your user account unless
the attacker can also authenticate as you. With this configuration, you have another barrier
against one-click attacks. This technique, though, might not be effective for Web sites that
allow anonymous access, unless you have some other unique tracking device running.

Note that if you plan to set the ViewStateUserKey property, you must do that during the
Page_Init event. If you attempt to do it later (for example, when Page_Load fires), an excep-
tion will be thrown.

Context Properties

Table 3-11 lists properties that represent visual and nonvisual attributes of the page, such as
the URL’s query string, the client target, the title, and the applied style sheet.

TABLE 3-11 Page-Specific Properties of the Page Class

Property Description

ClientID Always returns the empty string.

ClientQueryString Gets the query string portion of the requested URL. Not
available with ASP.NET 1.x.

ClientTarget Set to the empty string by default; allows you to specify
the type of the browser the HTML should comply with.
Setting this property disables automatic detection of
browser capabilities.

EnableViewState Indicates whether the page has to manage view-state
data. You can also enable or disable the view-state fea-
ture through the EnableViewState attribute of the @Page
 directive.

EnableViewStateMac Indicates whether ASP.NET should calculate a machine-
specific authentication code and append it to the page
view state.

EnableTheming Indicates whether the page supports themes. Not
 available with ASP.NET 1.x.

ID Always returns the empty string.

MaintainScrollPositionOnPostback Indicates whether to return the user to the same position
in the client browser after postback. Not available with
ASP.NET 1.x.

SmartNavigation Indicates whether smart navigation is enabled. Smart
 navigation exploits a bunch of browser-specific capabili-
ties to enhance the user’s experience with the page.

StyleSheetTheme Gets or sets the name of the style sheet applied to this
page. Not available with ASP.NET 1.x.

 Chapter 3 Anatomy of an ASP.NET Page 117

Property Description

Theme Gets and sets the theme for the page. Note that themes
can be programmatically set only in the PreInit event. Not
available with ASP.NET 1.x.

Title Gets or sets the title for the page. Not available with
ASP.NET 1.x.

TraceEnabled Toggles page tracing on and off. Not available with
ASP.NET 1.x.

TraceModeValue Gets or sets the trace mode. Not available with
ASP.NET 1.x.

UniqueID Always returns the empty string.

ViewStateEncryptionMode Indicates if and how the view state should be encrypted.

Visible Indicates whether ASP.NET has to render the page. If you
set Visible to false, ASP.NET doesn’t generate any HTML
code for the page. When Visible is false, only the text
 explicitly written using Response.Write hits the client.

The three ID properties (ID, ClientID, and UniqueID) always return the empty string from a
Page object. They make sense only for server controls.

Methods of the Page Class

The whole range of Page methods can be classified in a few categories based on the tasks
each method accomplishes. A few methods are involved with the generation of the markup
for the page; others are helper methods to build the page and manage the constituent con-
trols. Finally, a third group collects all the methods that have to do with client-side scripting.

Rendering Methods

Table 3-12 details the methods that are directly or indirectly involved with the generation of
the markup code.

TABLE 3-12 Methods for Markup Generation

Method Description

DataBind Binds all the data-bound controls contained in the page to their
data sources. The DataBind method doesn’t generate code itself
but prepares the ground for the forthcoming rendering.

RenderControl Outputs the HTML text for the page, including tracing informa-
tion if tracing is enabled.

VerifyRenderingInServerForm Controls call this method when they render to ensure that they
are included in the body of a server form. The method does not
return a value, but it throws an exception in case of error.

118 Part I Building an ASP.NET Page

In an ASP.NET page, no control can be placed outside a <form> tag with the runat attribute
set to server. The VerifyRenderingInServerForm method is used by Web and HTML controls to
ensure that they are rendered correctly. In theory, custom controls should call this method
during the rendering phase. In many situations, the custom control embeds or derives an ex-
isting Web or HTML control that will make the check itself.

Not directly exposed by the Page class, but strictly related to it, is the GetWebResourceUrl
method on the ClientScriptManager class in ASP.NET 2.0 and higher. The method provides a
long-awaited feature to control developers. When you develop a control, you often need to
embed static resources such as images or client script files. You can make these files be sepa-
rate downloads but, even though it’s effective, the solution looks poor and inelegant. Visual
Studio .NET 2003 and newer versions allow you to embed resources in the control assembly,
but how would you retrieve these resources programmatically and bind them to the control?
For example, to bind an assembly-stored image to an tag, you need a URL for the im-
age. The GetWebResourceUrl method returns a URL for the specified resource. The URL refers
to a new Web Resource service (webresource.axd) that retrieves and returns the requested
resource from an assembly.

// Bind the tag to the given GIF image in the control’s assembly

img.ImageUrl = Page.GetWebResourceUrl(typeof(TheControl), GifName));

GetWebResourceUrl requires a Type object, which will be used to locate the assembly that
contains the resource. The assembly is identified with the assembly that contains the defini-
tion of the specified type in the current AppDomain. If you’re writing a custom control, the
type will likely be the control’s type. As its second argument, the GetWebResourceUrl method
requires the name of the embedded resource. The returned URL takes the following form:

WebResource.axd?a=assembly&r=resourceName&t=timestamp

The timestamp value is the current timestamp of the assembly, and it is added to make the
browser download resources again should the assembly be modified.

Controls-Related Methods

Table 3-13 details a bunch of helper methods on the Page class that are architected to let you
manage and validate child controls and resolve URLs.

TABLE 3-13 Helper Methods of the Page Object

Method Description

DesignerInitialize Initializes the instance of the Page class at design time, when
the page is being hosted by RAD designers such as Visual
Studio.

FindControl Takes a control’s ID and searches for it in the page’s naming
container. The search doesn’t dig out child controls that are
naming containers themselves.

 Chapter 3 Anatomy of an ASP.NET Page 119

Method Description

GetTypeHashCode Retrieves the hash code generated by ASP.xxx_aspx page
objects at run time. In the base Page class, the method imple-
mentation simply returns 0; significant numbers are returned
by classes used for actual pages.

GetValidators Returns a collection of control validators for a specified valida-
tion group. Not available with ASP.NET 1.x.

HasControls Determines whether the page contains any child controls.

LoadControl Compiles and loads a user control from an .ascx file, and re-
turns a Control object. If the user control supports caching, the
object returned is PartialCachingControl.

LoadTemplate Compiles and loads a user control from an .ascx file, and re-
turns it wrapped in an instance of an internal class that imple-
ments the ITemplate interface. The internal class is named
SimpleTemplate.

MapPath Retrieves the physical, fully qualified path that an absolute or
relative virtual path maps to.

ParseControl Parses a well-formed input string, and returns an instance of
the control that corresponds to the specified markup text. If
the string contains more controls, only the first is taken into
account. The runat attribute can be omitted. The method
returns an object of type Control and must be cast to a more
specific type.

RegisterRequiresControlState Registers a control as one that requires control state. Not avail-
able with ASP.NET 1.x.

RegisterRequiresPostBack Registers the specified control to receive a postback han-
dling notice, even if its ID doesn’t match any ID in the col-
lection of posted data. The control must implement the
IPostBackDataHandler interface.

RegisterRequiresRaiseEvent Registers the specified control to handle an incoming postback
event. The control must implement the IPostBackEventHandler
interface.

RegisterViewStateHandler Mostly for internal use, the method sets an internal flag caus-
ing the page view state to be persisted. If this method is not
called in the prerendering phase, no view state will ever be
written. Typically, only the HtmlForm server control for the
page calls this method. There’s no need to call it from within
user applications.

ResolveUrl Resolves a relative URL into an absolute URL based on the
value of the TemplateSourceDirectory property.

Validate Instructs any validation controls included on the page to vali-
date their assigned information. ASP.NET 2.0 supports valida-
tion groups.

120 Part I Building an ASP.NET Page

The methods LoadControl and LoadTemplate share a common code infrastructure but return
different objects, as the following pseudocode shows:

public Control LoadControl(string virtualPath) {

 Control ascx = GetCompiledUserControlType(virtualPath);

 ascx.InitializeAsUserControl();

 return ascx;

}

public ITemplate LoadTemplate(string virtualPath) {

 Control ascx = GetCompiledUserControlType(virtualPath);

 return new SimpleTemplate(ascx);

}

Both methods differ from ParseControl in that the latter never causes compilation but simply
parses the string and infers control information. The information is then used to create and
initialize a new instance of the control class. As mentioned, the runat attribute is unnecessary
in this context. In ASP.NET, the runat attribute is key, but in practice, it has no other role than
marking the surrounding markup text for parsing and instantiation. It does not contain infor-
mation useful to instantiate a control, and for this reason it can be omitted from the strings
you pass directly to ParseControl.

Script-Related Methods

Table 3-14 enumerates all the methods in the Page class that have to do with HTML and
script code to be inserted in the client page.

TABLE 3-14 Script-Related Methods

Method Description

GetCallbackEventReference Obtains a reference to a client-side function that, when in-
voked, initiates a client call back to server-side events. Not
available with ASP.NET 1.x.

GetPostBackClientEvent Calls into GetCallbackEventReference.

GetPostBackClientHyperlink Appends javascript: to the beginning of the return string re-
ceived from GetPostBackEventReference.

javascript:__doPostBack(‘CtlID’,’’)

GetPostBackEventReference Returns the prototype of the client-side script function that
causes, when invoked, a postback. It takes a Control and an ar-
gument, and it returns a string like this:

__doPostBack(‘CtlID’,’’)

IsClientScriptBlockRegistered Determines whether the specified client script is registered with
the page. Marked as obsolete.

IsStartupScriptRegistered Determines whether the specified client startup script is regis-
tered with the page. Marked as obsolete.

 Chapter 3 Anatomy of an ASP.NET Page 121

Method Description

RegisterArrayDeclaration Use this method to add an ECMAScript array to the client page.
This method accepts the name of the array and a string that will
be used verbatim as the body of the array. For example, if you
call the method with arguments such as theArray and “’a’, ‘b’”,
you get the following JavaScript code:

var theArray = new Array(‘a’, ‘b’);

Marked as obsolete.

RegisterClientScriptBlock An ASP.NET page uses this method to emit client-side script
blocks in the client page just after the opening tag of the HTML
<form> element. Marked as obsolete.

RegisterHiddenField Use this method to automatically register a hidden field on the
page. Marked as obsolete.

RegisterOnSubmitStatement Use this method to emit client script code that handles the cli-
ent OnSubmit event. The script should be a JavaScript function
call to client code registered elsewhere. Marked as obsolete.

RegisterStartupScript An ASP.NET page uses this method to emit client-side script
blocks in the client page just before closing the HTML <form>
element. Marked as obsolete.

SetFocus Sets the browser focus to the specified control. Not available
with ASP.NET 1.x.

As you can see, some methods in Table 3-14, which are defined and usable in ASP.NET 1.x,
are marked obsolete. In ASP.NET 3.5 applications, you should avoid calling them and resort
to methods with the same name exposed out of the ClientScript property. (See Table 3-10.)

// Avoid this in ASP.NET 3.5

Page.RegisterArrayDeclaration(…);

// Use this in ASP.NET 3.5

Page.ClientScript.RegisterArrayDeclaration(…);

We’ll return to ClientScript in Chapter 5.

Methods listed in Table 3-14 let you emit JavaScript code in the client page. When you use
any of these methods, you actually tell the page to insert that script code when the page is
rendered. So when any of these methods execute, the script-related information is simply
cached in internal structures and used later when the page object generates its HTML text.

Events of the Page Class

The Page class fires a few events that are notified during the page life cycle. As Table 3-15
shows, some events are orthogonal to the typical life cycle of a page (initialization, postback,
rendering phases) and are fired as extra-page situations evolve. Let’s briefly review the events
and then attack the topic with an in-depth discussion on the page life cycle.

122 Part I Building an ASP.NET Page

TABLE 3-15 Events That a Page Can Fire

Event Description

AbortTransaction Occurs for ASP.NET pages marked to participate in an automatic trans-
action when a transaction aborts.

CommitTransaction Occurs for ASP.NET pages marked to participate in an automatic trans-
action when a transaction commits.

DataBinding Occurs when the DataBind method is called on the page to bind all the
child controls to their respective data sources.

Disposed Occurs when the page is released from memory, which is the last stage
of the page life cycle.

Error Occurs when an unhandled exception is thrown.

Init Occurs when the page is initialized, which is the first step in the page
life cycle.

InitComplete Occurs when all child controls and the page have been initialized. Not
available in ASP.NET 1.x.

Load Occurs when the page loads up, after being initialized.

LoadComplete Occurs when the loading of the page is completed and server events
have been raised. Not available in ASP.NET 1.x.

PreInit Occurs just before the initialization phase of the page begins. Not
available in ASP.NET 1.x.

PreLoad Occurs just before the loading phase of the page begins. Not available
in ASP.NET 1.x.

PreRender Occurs when the page is about to render.

PreRenderComplete Occurs just before the pre-rendering phase begins. Not available in
ASP.NET 1.x.

SaveStateComplete Occurs when the view state of the page has been saved to the persis-
tence medium. Not available in ASP.NET 1.x.

Unload Occurs when the page is unloaded from memory but not yet disposed.

The Eventing Model

When a page is requested, its class and the server controls it contains are responsible for
executing the request and rendering HTML back to the client. The communication between
the client and the server is stateless and disconnected because of the HTTP protocol. Real-
world applications, though, need some state to be maintained between successive calls made
to the same page. With ASP, and with other server-side development platforms such as Java
Server Pages and Linux-based systems (for example, LAMP), the programmer is entirely re-
sponsible for persisting the state. In contrast, ASP.NET provides a built-in infrastructure that
saves and restores the state of a page in a transparent manner. In this way, and in spite of

 Chapter 3 Anatomy of an ASP.NET Page 123

the underlying stateless protocol, the client experience appears to be that of a continuously
 executing process. It’s just an illusion, though.

Introducing the View State

The illusion of continuity is created by the view state feature of ASP.NET pages and is based
on some assumptions about how the page is designed and works. Also, server-side Web con-
trols play a remarkable role. Briefly, before rendering its contents to HTML, the page encodes
and stuffs into a persistence medium (typically, a hidden field) all the state information that
the page itself and its constituent controls want to save. When the page posts back, the state
information is deserialized from the hidden field and used to initialize instances of the server
controls declared in the page layout.

The view state is specific to each instance of the page because it is embedded in the HTML.
The net effect of this is that controls are initialized with the same values they had the last
time the view state was created—that is, the last time the page was rendered to the cli-
ent. Furthermore, an additional step in the page life cycle merges the persisted state with
any updates introduced by client-side actions. When the page executes after a postback, it
finds a stateful and up-to-date context just as it is working over a continuous point-to-point
connection.

Two basic assumptions are made. The first assumption is that the page always posts to itself
and carries its state back and forth. The second assumption is that the server-side controls
have to be declared with the runat=server attribute to spring to life once the page posts
back.

The Single Form Model

Admittedly, for programmers whose experience is with ASP or JSP, the single form model of
ASP.NET can be difficult to make sense of at first. These programmers frequently ask ques-
tions on forums and newsgroups such as, “Where’s the Action property of the form?” and
“Why can’t I redirect to a particular page when a form is submitted?”

ASP.NET pages are built to support exactly one server-side <form> tag. The form must in-
clude all the controls you want to interact with on the server. Both the form and the controls
must be marked with the runat attribute; otherwise, they will be considered as plain text to
be output verbatim. A server-side form is an instance of the HtmlForm class. The HtmlForm
class does not expose any property equivalent to the Action property of the HTML <form>
tag. The reason is that an ASP.NET page always posts to itself. Unlike the Action property,
other common form properties such as Method and Target are fully supported.

Valid ASP.NET pages are also those that have no server-side forms and those that run HTML
forms—a <form> tag without the runat attribute. In an ASP.NET page, you can also have
both HTML and server forms. In no case, though, can you have more than one <form> tag

124 Part I Building an ASP.NET Page

with the runat attribute set to server. HTML forms work as usual and let you post to any page
in the application. The drawback is that in this case no state will be automatically restored. In
other words, the ASP.NET Web Forms model works only if you use exactly one server <form>
element. We’ll return to this topic in Chapter 5.

Asynchronous Pages

ASP.NET pages are served by an HTTP handler like an instance of the Page class. Each re-
quest takes up a thread in the ASP.NET thread pool and releases it only when the request
completes. What if a frequently requested page starts an external and particularly lengthy
task? The risk is that the ASP.NET process is idle but has no free threads in the pool to serve
incoming requests for other pages. This is mostly due to the fact that HTTP handlers, includ-
ing page classes, work synchronously. To alleviate this issue, ASP.NET supports asynchronous
handlers since version 1.0 through the IHTTPAsyncHandler interface. Starting with ASP.
NET 2.0, creating asynchronous pages is even easier thanks to specific support from the
framework.

Two aspects characterize an asynchronous ASP.NET page: a new attribute on the @Page
directive, and one or more tasks registered for asynchronous execution. The asynchronous
task can be registered in either of two ways. You can define a Begin/End pair of asynchronous
handlers for the PreRenderComplete event or create a PageAsyncTask object to represent an
asynchronous task. This is generally done in the Page_Load event, but any time is fine pro-
vided that it happens before the PreRender event fires.

In both cases, the asynchronous task is started automatically when the page has progressed
to a well-known point. Let’s dig out more details.

Note An ASP.NET asynchronous page is still a class that derives from Page. There are no special
base classes to inherit for building asynchronous pages.

The Async Attribute

The new Async attribute on the @Page directive accepts a Boolean value to enable or disable
asynchronous processing. The default value is false.

<%@ Page Async=”true” ... %>

The Async attribute is merely a message for the page parser. When used, the page parser
implements the IHttpAsyncHandler interface in the dynamically generated class for the
.aspx resource. The Async attribute enables the page to register asynchronous handlers for
the PreRenderComplete event. No additional code is executed at run time as a result of the
attribute.

 Chapter 3 Anatomy of an ASP.NET Page 125

Let’s consider a request for a TestAsync.aspx page marked with the Async directive attribute.
The dynamically created class, named ASP.TestAsync_aspx, is declared as follows:

public class TestAsync_aspx : TestAsync, IHttpHandler, IHttpAsyncHandler

{

 ...

}

TestAsync is the code file class and inherits from Page, or a class that in turn inherits from
Page. IHttpAsyncHandler is the canonical interface used for serving resources asynchronously
since ASP.NET 1.0.

The AddOnPreRenderCompleteAsync Method

The AddOnPreRenderCompleteAsync method adds an asynchronous event handler for the
page’s PreRenderComplete event. An asynchronous event handler consists of a Begin/End pair
of event handler methods, as shown here:

AddOnPreRenderCompleteAsync (

 new BeginEventHandler(BeginTask),

 new EndEventHandler(EndTask)

);

The BeginEventHandler and EndEventHandler are delegates defined as follows:

IAsyncResult BeginEventHandler(

 object sender,

 EventArgs e,

 AsyncCallback cb,

 object state)

void EndEventHandler(

 IAsyncResult ar)

In the code file, you place a call to AddOnPreRenderCompleteAsync as soon as you can, and
always earlier than the PreRender event can occur. A good place is usually the Page_Load
event. Next, you define the two asynchronous event handlers.

The Begin handler is responsible for starting any operation you fear can block the underly-
ing thread for too long. The handler is expected to return an IAsyncResult object to describe
the state of the asynchronous task. The End handler completes the operation and updates
the page’s user interface and controls. Note that you don’t necessarily have to create your
own object that implements the IAsyncResult interface. In most cases, in fact, to start lengthy
operations you just use built-in classes that already implement the asynchronous pattern and
provide IAsyncResult ready-made objects.

126 Part I Building an ASP.NET Page

Important The Begin and End event handlers are called at different times and generally on
different pooled threads. In between the two methods calls, the lengthy operation takes place.
From the ASP.NET runtime perspective, the Begin and End events are similar to serving distinct
requests for the same page. It’s as if an asynchronous request is split in two distinct steps—a
Begin and End step. Each request is always served by a pooled thread. Typically, the Begin step is
served by a thread picked up from the ASP.NET worker thread pool. The End step is served by a
thread selected from the completion thread pool.

The page progresses up to entering the PreRenderComplete stage. You have a pair of asyn-
chronous event handlers defined here. The page executes the Begin event, starts the lengthy
operation, and is then suspended until the operation terminates. When the work has been
completed, the HTTP runtime processes the request again. This time, though, the request
processing begins at a later stage than usual. In particular, it begins exactly where it left
off—that is, from the PreRenderComplete stage. The End event executes, and the page finally
completes the rest of its life cycle, including view-state storage, markup generation, and
unloading.

The Significance of PreRenderComplete

So an asynchronous page executes up until the PreRenderComplete stage is reached and
then blocks while waiting for the asynchronous operation to complete. When the opera-
tion is finally accomplished, the page execution resumes from the PreRenderComplete stage.
A good question to ask would be the following: “Why PreRenderComplete?” What makes
PreRenderComplete such a special event?

By design, in ASP.NET there’s a single unwind point for asynchronous operations (also
familiarly known as the async point). This point is located between the PreRender and
PreRenderComplete events. When the page receives the PreRender event, the async point
hasn’t been reached yet. When the page receives PreRenderComplete, the async point has
passed.

Building a Sample Asynchronous Page

Let’s roll a first asynchronous test page to download and process some RSS feeds. The page
markup is quite simple indeed:

<%@ Page Async=”true” Language=”C#” AutoEventWireup=”true”

 CodeFile=”TestAsync.aspx.cs” Inherits=”TestAsync” %>

<html>

<body>

 <form id=”form1” runat=”server”>

 <% = rssData %>

 </form>

</body>

</html>

 Chapter 3 Anatomy of an ASP.NET Page 127

The code file is shown next, and it attempts to download the RSS feed from my personal
blog:

public partial class TestAsync : System.Web.UI.Page

{

 const string RSSFEED = “http://weblogs.asp.net/despos/rss.aspx”;

 private WebRequest req;

 public string rssData;

 void Page_Load (object sender, EventArgs e)

 {

 AddOnPreRenderCompleteAsync (

 new BeginEventHandler(BeginTask),

 new EndEventHandler(EndTask));

 }

 IAsyncResult BeginTask(object sender,

 EventArgs e, AsyncCallback cb, object state)

 {

 // Trace

 Trace.Warn(“Begin async: Thread=” +

 Thread.CurrentThread.ManagedThreadId.ToString());

 // Prepare to make a Web request for the RSS feed

 req = WebRequest.Create(RSSFEED);

 // Begin the operation and return an IAsyncResult object

 return req.BeginGetResponse(cb, state);

 }

 void EndTask(IAsyncResult ar)

 {

 // This code will be called on a pooled thread

 string text;

 using (WebResponse response = req.EndGetResponse(ar))

 {

 StreamReader reader;

 using (reader = new StreamReader(response.GetResponseStream()))

 {

 text = reader.ReadToEnd();

 }

 // Process the RSS data

 rssData = ProcessFeed(text);

 }

 // Trace

 Trace.Warn(“End async: Thread=” +

 Thread.CurrentThread.ManagedThreadId.ToString());

128 Part I Building an ASP.NET Page

 // The page is updated using an ASP-style code block in the ASPX

 // source that displays the contents of the rssData variable

 }

 string ProcessFeed(string feed)

 {

 // Build the page output from the XML input

 ...

 }

}

As you can see, such an asynchronous page differs from a standard one only for the
 aforementioned elements—the Async directive attribute and the pair of asynchronous event
handlers. Figure 3-6 shows the sample page in action.

FIGURE 3-6 A sample asynchronous page downloading links from an RSS feed.

It would also be interesting to take a look at the messages traced by the page. Figure 3-7
provides visual clues of it. The Begin and End stages are served by different threads and take
place at different times.

 Chapter 3 Anatomy of an ASP.NET Page 129

FIGURE 3-7 The traced request details clearly show the two steps needed to process a request
asynchronously.

Note the time elapsed between the time we enter BeginTask and exit EndTask stages
 (indicated by the elapsed time between the “Begin async” and “End async” entries shown in
Figure 3-7). It is much longer than intervals between any other two consecutive operations.
It’s in that interval that the lengthy operation—in this case, downloading and processing the
RSS feed—took place. The interval also includes the time spent to pick up another thread
from the pool to serve the second part of the original request.

The RegisterAsyncTask Method

The AddOnPreRenderCompleteAsync method is not the only tool you have to register an
asynchronous task. The RegisterAsyncTask method is, in most cases, an even better solution.
RegisterAsyncTask is a void method and accepts a PageAsyncTask object. As the name sug-
gests, the PageAsyncTask class represents a task to execute asynchronously.

The following code shows how to rework the sample page that reads some RSS feed and
make it use the RegisterAsyncTask method:

void Page_Load (object sender, EventArgs e)

{

 PageAsyncTask task = new PageAsyncTask(

 new BeginEventHandler(BeginTask),

 new EndEventHandler(EndTask),

 null,

 null);

 RegisterAsyncTask(task);

}

130 Part I Building an ASP.NET Page

The constructor accepts up to five parameters, as shown in the following code:

public PageAsyncTask(

 BeginEventHandler beginHandler,

 EndEventHandler endHandler,

 EndEventHandler timeoutHandler,

 object state,

 bool executeInParallel)

The beginHandler and endHandler parameters have the same prototype as the correspond-
ing handlers we use for the AddOnPreRenderCompleteAsync method. Compared to the
AddOnPreRenderCompleteAsync method, PageAsyncTask lets you specify a timeout function
and an optional flag to enable multiple registered tasks to execute in parallel.

The timeout delegate indicates the method that will get called if the task is not completed
within the asynchronous timeout interval. By default, an asynchronous task times out if not
completed within 45 seconds. You can indicate a different timeout in either the configuration
file or the @Page directive. Here’s what you need if you opt for the web.config file:

<system.web>

 <pages asyncTimeout=”30” />

</system.web>

The @Page directive contains an integer AsyncTimeout attribute that you set to the desired
number of seconds. Note that configuring the asynchronous timeout in web.config causes all
asynchronous pages to use the same timeout value. Individual pages are still free to set their
own timeout value in their @Page directive.

Just as with the AddOnPreRenderCompleteAsync method, you can pass some state to the
 delegates performing the task. The state parameter can be any object.

The execution of all tasks registered is automatically started by the Page class code just be-
fore the async point is reached. However, by placing a call to the ExecuteRegisteredAsyncTasks
method on the Page class, you can take control of this aspect.

Choosing the Right Approach

When should you use AddOnPreRenderCompleteAsync, and when is RegisterAsyncTask a
 better option? Functionally speaking, the two approaches are nearly identical. In both cases,
the execution of the request is split in two parts—before and after the async point. So
where’s the difference?

The first difference is logical. RegisterAsyncTask is an API designed to run tasks asyn-
chronously from within a page—and not just asynchronous pages with Async=true.
AddOnPreRenderCompleteAsync is an API specifically designed for asynchronous pages.
This said, a couple of further differences exist.

 Chapter 3 Anatomy of an ASP.NET Page 131

One is that RegisterAsyncTask executes the End handler on a thread with a richer context than
AddOnPreRenderCompleteAsync. The thread context includes impersonation and HTTP con-
text information that is missing in the thread serving the End handler of a classic asynchro-
nous page. In addition, RegisterAsyncTask allows you to set a timeout to ensure that any task
doesn’t run for more than a given number of seconds.

The other difference is that RegisterAsyncTask makes significantly easier the implementa-
tion of multiple calls to remote sources. You can have parallel execution by simply setting a
Boolean flag, and you don’t need to create and manage your own IAsyncResult object.

The bottom line is that you can use either approach for a single task, but you should opt for
RegisterAsyncTask when you have multiple tasks to execute simultaneously.

Note For more information on asynchronous pages, check out Chapter 5 of my book
Programming Microsoft ASP.NET 2.0 Applications: Advanced Topics (Microsoft Press 2006).

Async-Compliant Operations

Which required operations force, or at least strongly suggest, the adoption of an
asynchronous page? Any operation can be roughly labeled in either of two ways: CPU
bound or I/O bound. CPU bound indicates an operation whose completion time is
mostly determined by the speed of the processor and amount of available memory. I/O
bound indicates the opposite situation, where the CPU mostly waits for other devices to
terminate.

The need for asynchronous processing arises when an excessive amount of time is
spent getting data in to and out of the computer in relation to the time spent process-
ing it. In such situations, the CPU is idle or underused and spends most of its time wait-
ing for something to happen. In particular, I/O-bound operations in the context of ASP.
NET applications are even more harmful because serving threads are blocked too, and
the pool of serving threads is a finite and critical resource. You get real performance
advantages if you use the asynchronous model on I/O-bound operations.

Typical examples of I/O-bound operations are all operations that require access to
some sort of remote resource or interaction with external hardware devices. Operations
on non-local databases and non-local Web service calls are the most common I/O-
bound operations for which you should seriously consider building asynchronous
pages.

132 Part I Building an ASP.NET Page

The Page Life Cycle

A page instance is created on every request from the client, and its execution causes itself
and its contained controls to iterate through their life-cycle stages. Page execution begins
when the HTTP runtime invokes ProcessRequest, which kicks off the page and control life
cycles. The life cycle consists of a sequence of stages and steps. Some of these stages can be
controlled through user-code events; some require a method override. Some other stages, or
more exactly sub-stages, are simply not marked as public and are out of the developer’s con-
trol. They are mentioned here mostly for completeness.

The page life cycle is articulated in three main stages: setup, postback, and finalization. Each
stage might have one or more substages and is composed of one or more steps and points
where events are raised. The life cycle as described here includes all possible paths. Note that
there are modifications to the process depending upon cross-page posts, script callbacks,
and postbacks.

Page Setup

When the HTTP runtime instantiates the page class to serve the current request, the page
constructor builds a tree of controls. The tree of controls ties into the actual class that the
page parser created after looking at the ASPX source. It is important to note that when the
request processing begins, all child controls and page intrinsic objects such as HTTP context,
request objects, and response objects are set.

The very first step in the page lifetime is determining why the runtime is processing the page
request. There are various possible reasons: a normal request, postback, cross-page postback,
or callback. The page object configures its internal state based on the actual reason, and it
prepares the collection of posted values (if any) based on the method of the request—either
GET or POST. After this first step, the page is ready to fire events to the user code.

The PreInit Event

Introduced with ASP.NET 2.0, this event is the entry point in the page life cycle. When the
event fires, no master page and no theme have been associated with the page as yet.
Furthermore, the page scroll position has been restored, posted data is available, and all
page controls have been instantiated and default to the property values defined in the
ASPX source. (Note that at this time controls have no ID, unless it is explicitly set in the .aspx
source.) Changing the master page or the theme programmatically is possible only at this
time. This event is available only on the page. IsCallback, IsCrossPagePostback, and IsPostBack
are set at this time.

 Chapter 3 Anatomy of an ASP.NET Page 133

The Init Event

The master page and theme, if each exists, have been set and can’t be changed anymore.
The page processor—that is, the ProcessRequest method on the Page class—proceeds and
iterates over all child controls to give them a chance to initialize their state in a context-sen-
sitive way. All child controls have their OnInit method invoked recursively. For each control in
the control collection, the naming container and a specific ID are set, if not assigned in the
source.

The Init event reaches child controls first and the page later. At this stage, the page and
controls typically begin loading some parts of their state. At this time, the view state is not
restored yet.

The InitComplete Event

Introduced with ASP.NET 2.0, this page-only event signals the end of the initialization sub-
stage. For a page, only one operation takes place in between the Init and InitComplete
events: tracking of view-state changes is turned on. Tracking view state is the operation that
ultimately enables controls to really persist in the storage medium any values that are pro-
grammatically added to the ViewState collection. Simply put, for controls not tracking their
view state, any values added to their ViewState are lost across postbacks.

All controls turn on view-state tracking immediately after raising their Init event, and the
page is no exception. (After all, isn’t the page just a control?)

Important In light of the previous statement, note that any value written to the ViewState
collection before InitComplete won’t be available on the next postback. In ASP.NET 1.x, you must
wait for the Load event to start writing safely to the page or any control view state.

View-State Restoration

If the page is being processed because of a postback—that is, if the IsPostBack property is
true—the contents of the __VIEWSTATE hidden field are restored. The __VIEWSTATE hidden
field is where the view state of all controls is persisted at the end of a request. The overall
view state of the page is a sort of call context and contains the state of each constituent
 control the last time the page was served to the browser.

At this stage, each control is given a chance to update its current state to make it identical to
what it was on last request. There’s no event to wire up to handle the view-state restoration.
If something needs be customized here, you have to resort to overriding the LoadViewState
method, defined as protected and virtual on the Control class.

134 Part I Building an ASP.NET Page

Processing Posted Data

All the client data packed in the HTTP request—that is, the contents of all input fields defined
with the <form> tag—are processed at this time. Posted data usually takes the following
form:

TextBox1=text&DropDownList1=selectedItem&Button1=Submit

It’s an &-separated string of name/value pairs. These values are loaded into an internal-use
collection. The page processor attempts to find a match between names in the posted col-
lection and ID of controls in the page. Whenever a match is found, the processor checks
whether the server control implements the IPostBackDataHandler interface. If it does, the
methods of the interface are invoked to give the control a chance to refresh its state in light
of the posted data. In particular, the page processor invokes the LoadPostData method on
the interface. If the method returns true—that is, the state has been updated—the control is
added to a separate collection to receive further attention later.

If a posted name doesn’t match any server controls, it is left over and temporarily parked in a
separate collection, ready for a second try later.

The PreLoad Event

Introduced with ASP.NET 2.0, the PreLoad event merely indicates that the page has terminat-
ed the system-level initialization phase and is going to enter the phase that gives user code
in the page a chance to further configure the page for execution and rendering. This event is
raised only for pages.

The Load Event

The Load event is raised for the page first and then recursively for all child controls. At this
time, controls in the page tree are created and their state fully reflects both the previous
state and any data posted from the client. The page is ready to execute any initialization
code that has to do with the logic and behavior of the page. At this time, access to control
properties and view state is absolutely safe.

Handling Dynamically Created Controls

When all controls in the page have been given a chance to complete their initialization
before display, the page processor makes a second try on posted values that haven’t been
matched to existing controls. The behavior described earlier in the “Processing Posted Data”
section is repeated on the name/value pairs that were left over previously. This apparently
weird approach addresses a specific scenario—the use of dynamically created controls.

Imagine adding a control to the page tree dynamically—for example, in response to a cer-
tain user action. As mentioned, the page is rebuilt from scratch after each postback, so any
 information about the dynamically created control is lost. On the other hand, when the

 Chapter 3 Anatomy of an ASP.NET Page 135

page’s form is submitted, the dynamic control there is filled with legal and valid information
that is regularly posted. By design, there can’t be any server control to match the ID of the
dynamic control the first time posted data is processed. However, the ASP.NET framework
recognizes that some controls could be created in the Load event. For this reason, it makes
sense to give it a second try to see whether a match is possible after the user code has run
for a while.

If the dynamic control has been re-created in the Load event, a match is now possible and
the control can refresh its state with posted data.

Handling the Postback

The postback mechanism is the heart of ASP.NET programming. It consists of posting form
data to the same page using the view state to restore the call context—that is, the same state
of controls existing when the posting page was last generated on the server.

After the page has been initialized and posted values have been taken into account, it’s
about time that some server-side events occur. There are two main types of events. The first
type of event signals that certain controls had the state changed over the postback. The sec-
ond type of event executes server code in response to the client action that caused the post.

Detecting Control State Changes

The ASP.NET machinery works around an implicit assumption: there must be a one-to-one
correspondence between some HTML input tags that operate in the browser and some other
ASP.NET controls that live and thrive in the Web server. The canonical example of this cor-
respondence is between <input type=”text”> and TextBox controls. To be more technically
precise, the link is given by a common ID name. When the user types some new text into an
input element and then posts it, the corresponding TextBox control—that is, a server control
with the same ID as the input tag—is called to handle the posted value. I described this step
in the “Processing Posted Data” section earlier in the chapter.

For all controls that had the LoadPostData method return true, it’s now time to execute the
second method of the IPostBackDataHandler interface: the RaisePostDataChangedEvent
method. The method signals the control to notify the ASP.NET application that the state of
the control has changed. The implementation of the method is up to each control. However,
most controls do the same thing: raise a server event and give page authors a way to kick
in and execute code to handle the situation. For example, if the Text property of a TextBox
changes over a postback, the TextBox raises the TextChanged event to the host page.

Executing the Server-Side Postback Event

Any page postback starts with some client action that intends to trigger a server-side action.
For example, clicking a client button posts the current contents of the displayed form to the

136 Part I Building an ASP.NET Page

server, thus requiring some action and new, refreshed page output. The client button con-
trol—typically, a hyperlink or a submit button—is associated with a server control that imple-
ments the IPostBackEventHandler interface.

The page processor looks at the posted data and determines the control that caused the
postback. If this control implements the IPostBackEventHandler interface, the processor
invokes the RaisePostBackEvent method. The implementation of this method is left to the
control and can vary quite a bit, at least in theory. In practice, though, any posting control
raises a server event that allows page authors to write code in response to the postback. For
example, the Button control raises the onclick event.

There are two ways a page can post back to the server—by using a submit button (that is,
<input type=”submit”>) or through script. A submit HTML button is generated through the
Button server control. The LinkButton control, along with a few other postback controls, in-
serts some script code in the client page to bind an HTML event (for example, onclick) to the
form’s submit method in the browser’s HTML object model. We’ll return to this topic in the
next chapter.

Note Starting with ASP.NET 2.0, a new property, UseSubmitBehavior, exists on the Button class
to let page developers control the client behavior of the corresponding HTML element as far
as form submission is concerned. In ASP.NET 1.x, the Button control always outputs an <input
type=”submit”> element. In ASP.NET 2.0 and beyond, by setting UseSubmitBehavior to false, you
can change the output to <input type=”button”> but at the same time the onclick property of the
client element is bound to predefined script code that just posts back.

The LoadComplete Event

Introduced in ASP.NET 2.0, the page-only LoadComplete event signals the end of the page-
preparation phase. It is important to note that no child controls will ever receive this event.
After firing LoadComplete, the page enters its rendering stage.

Page Finalization

After handling the postback event, the page is ready for generating the output for the
browser. The rendering stage is divided in two parts—pre-rendering and markup generation.
The pre-rendering sub-stage is in turn characterized by two events for pre-processing and
post-processing.

The PreRender Event

By handling this event, pages and controls can perform any updates before the output is ren-
dered. The PreRender event fires for the page first and then recursively for all controls. Note

 Chapter 3 Anatomy of an ASP.NET Page 137

that at this time the page ensures that all child controls are created. This step is important
especially for composite controls.

The PreRenderComplete Event

Because the PreRender event is recursively fired for all child controls, there’s no way for
the page author to know when the pre-rendering phase has been completed. For this rea-
son, in ASP.NET 2.0 a new event has been added and raised only for the page. This event is
PreRenderComplete.

The SaveStateComplete Event

The next step before each control is rendered out to generate the markup for the page is
saving the current state of the page to the view-state storage medium. It is important to note
that every action taken after this point that modifies the state could affect the rendering,
but it is not persisted and won’t be retrieved on the next postback. Saving the page state is
a recursive process in which the page processor walks its way through the whole page tree
calling the SaveViewState method on constituent controls and the page itself. SaveViewState
is a protected and virtual (that is, overridable) method that is responsible for persisting the
content of the ViewState dictionary for the current control. (We’ll come back to the ViewState
dictionary in Chapter 14.)

Starting with ASP.NET 2.0, controls provide a second type of state, known as a “control state.”
A control state is a sort of private view state that is not subject to the application’s control. In
other words, the control state of a control can’t be programmatically disabled as is the case
with the view state. The control state is persisted at this time, too. Control state is another
state storage mechanism whose contents are maintained across page postbacks much like
view state, but the purpose of control state is to maintain necessary information for a con-
trol to function properly. That is, state behavior property data for a control should be kept
in control state, while user interface property data (such as the control’s contents) should be
kept in view state.

Introduced with ASP.NET 2.0, the SaveStateComplete event occurs when the state of controls
on the page have been completely saved to the persistence medium.

Note The view state of the page and all individual controls is accumulated in a unique
memory structure and then persisted to storage medium. By default, the persistence me-
dium is a hidden field named __VIEWSTATE. Serialization to, and deserialization from, the
persistence medium is handled through a couple of overridable methods on the Page class:
SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium. For example, by
overriding these two methods you can persist the page state in a server-side database or in the
session state, dramatically reducing the size of the page served to the user. Hold on, though. This
option is not free of issues, and we’ll talk more about it in Chapter 15.

138 Part I Building an ASP.NET Page

Generating the Markup

The generation of the markup for the browser is obtained by calling each constituent control
to render its own markup, which will be accumulated into a buffer. Several overridable meth-
ods allow control developers to intervene in various steps during the markup generation—
begin tag, body, and end tag. No user event is associated with the rendering phase.

The Unload Event

The rendering phase is followed by a recursive call that raises the Unload event for each
control, and finally for the page itself. The Unload event exists to perform any final clean-
up before the page object is released. Typical operations are closing files and database
connections.

Note that the unload notification arrives when the page or the control is being unloaded
but has not been disposed of yet. Overriding the Dispose method of the Page class, or more
simply handling the page’s Disposed event, provides the last possibility for the actual page to
perform final clean up before it is released from memory. The page processor frees the page
object by calling the method Dispose. This occurs immediately after the recursive call to the
handlers of the Unload event has completed.

Conclusion

ASP.NET is a complex technology built on top of a substantially simple—and, fortunately,
solid and stable—Web infrastructure. To provide highly improved performance and a richer
programming toolset, ASP.NET builds a desktop-like abstraction model, but it still has to rely
on HTTP and HTML to hit the target and meet end-user expectations.

There are two relevant aspects in the ASP.NET Web Forms model: the process model, includ-
ing the Web server process model, and the page object model. Each request of a URL that
ends with .aspx is assigned to an application object working within the CLR hosted by the
worker process. The request results in a dynamically compiled class that is then instantiated
and put to work. The Page class is the base class for all ASP.NET pages. An instance of this
class runs behind any URL that ends with .aspx. In most cases, you won’t just build your ASP.
NET pages from the Page class directly, but you’ll rely on derived classes that contain event
handlers and helper methods, at the very minimum. These classes are known as code-behind
classes.

 Chapter 3 Anatomy of an ASP.NET Page 139

The class that represents the page in action implements the ASP.NET eventing model
based on two pillars, the single form model (page reentrancy) and server controls. The
page life cycle, fully described in this chapter, details the various stages (and related sub-
stages) a page passes through on the way to generate the markup for the browser. A deep
 understanding of the page life cycle and eventing model is key to diagnosing possible
 problems and implementing advanced features quickly and efficiently.

In this chapter, we mentioned controls several times. Server controls are components that get
input from the user, process the input, and output a response as HTML. In the next chapter,
we’ll explore various server controls, which include Web controls, HTML controls, and valida-
tion controls.

Just the Facts

 A pipeline of run-time modules receive from IIS an incoming HTTP packet and make it
evolve from a protocol-specific payload up to an instance of a class derived from Page.

 The page class required to serve a given request is dynamically compiled on demand
when first required in the context of a Web application.

 The page class compiled to an assembly remains in use as long as no changes occur to
the linked .aspx source file or the whole application is restarted.

 Each page class is an HTTP handler—that is, a component that the run time uses to
 service requests of a certain type.

 The ASP.NET code-behind model employs partial classes to generate missing declara-
tions for protected members that represent server controls. This code was auto-gener-
ated by old versions of Visual Studio and placed in hidden regions.

 ASP.NET pages always post to themselves and use the view state to restore the state of
controls existing when the page was last generated on the server.

 The view state creates the illusion of a stateful programming model in a stateless
environment.

 Processing the page on the server entails handling a bunch of events that collectively
form the page life cycle. A deep understanding of the page life cycle is key to diagnos-
ing possible problems and implementing advanced features quickly and efficiently.

 867

Chapter 18

HTTP Handlers and Modules

In this chapter:

Quick Overview of the IIS Extensability API . 868

Writing HTTP Handlers . 873

Writing HTTP Modules. 901

Conclusion . 913

HTTP modules and HTTP handlers are fundamental pieces of the ASP.NET architecture. HTTP
handlers and modules are truly the building blocks of the .NET Web platform. Any requests
for an ASP.NET managed resource is always resolved by an HTTP handler and passes through
a pipeline of HTTP modules. After the handler has processed the request, the request flows
back through the pipeline of HTTP modules and is finally transformed into markup for the
caller.

An HTTP handler is the component that actually takes care of serving the request. It is an
instance of a class that implements the IHttpHandler interface. The ProcessRequest method of
the interface is the central console that governs the processing of the request. For example,
the Page class—the base class for all ASP.NET run-time pages—implements the IHttpHandler
interface, and its ProcessRequest method is responsible for loading and saving the view state
and for firing the well-known set of page events, including Init, Load, PreRender, and the like.

ASP.NET maps each incoming HTTP request to a particular HTTP handler. A special breed of
component—named the HTTP handler factory—provides the infrastructure for creating the
physical instance of the handler to service the request. For example, the PageHandlerFactory
class parses the source code of the requested .aspx resource and returns a compiled instance
of the class that represents the page. An HTTP handler is designed to process one or more
URL extensions. Handlers can be given an application or machine scope, which means they
can process the assigned extensions within the context of the current application or all ap-
plications installed on the machine. Of course, this is accomplished by making changes to
either the machine-wide web.config file or a local web.config file, depending on the scope
you desire.

HTTP modules are classes that implement the IHttpModule interface and handle runtime
events. There are two types of public events that a module can deal with. They are the events
raised by HttpApplication (including asynchronous events) and events raised by other HTTP
modules. For example, SessionStateModule is one of the built-in modules provided by

868 Part III ASP.NET Infrastructure

ASP.NET to supply session-state services to an application. It fires the End and Start events
that other modules can handle through the familiar Session_End and Session_Start signatures.

HTTP handlers and HTTP modules have the same functionality as ISAPI extensions and ISAPI
filters, respectively, but with a much simpler programming model. ASP.NET allows you to cre-
ate custom handlers and custom modules. Before we get into this rather advanced aspect of
Web programming, a review of the Internet Information Services (IIS) extensibility model is
in order because this model determines what modules and handlers can do and what they
 cannot do.

Note ISAPI stands for Internet Server Application Programming Interface and represents the
protocol by means of which IIS talks to external components. The ISAPI model is based on a
Microsoft Win32 unmanaged dynamic-link library (DLL) that exports a couple of functions. This
model is significantly expanded in IIS 7.0 and largely matches the ASP.NET extensibility model,
which is based on HTTP handlers and modules. I’ll return to this topic shortly.

Quick Overview of the IIS Extensibility API

A Web server is primarily a server application that can be contacted using a bunch of
Internet protocols, such as HTTP, File Transfer Protocol (FTP), Network News Transfer Protocol
(NNTP), and the Simple Mail Transfer Protocol (SMTP). IIS—the Web server included with the
Microsoft Windows operating system—is no exception.

A Web server generally also provides a documented application programming interface (API)
for enhancing and customizing the server’s capabilities. Historically speaking, the first of
these extension APIs was the Common Gateway Interface (CGI). A CGI module is a new ap-
plication that is spawned from the Web server to service a request. Nowadays, CGI applica-
tions are almost never used in modern Web applications because they require a new process
for each HTTP request. As you can easily understand, this approach is rather inadequate for
high-volume Web sites and poses severe scalability issues. IIS supports CGI applications, but
you will seldom use this feature unless you have serious backward-compatibility issues. More
recent versions of Web servers supply an alternate and more efficient model to extend the
capabilities of the module. In IIS, this alternative model takes the form of the ISAPI interface.

The ISAPI Model

When the ISAPI model is used, instead of starting a new process for each request, IIS loads
an ISAPI component—namely, a Win32 DLL—into its own process. Next, it calls a well-known
entry point on the DLL to serve the request. The ISAPI component stays loaded until IIS is
shut down and can service requests without any further impact on Web server activity. The

 Chapter 18 HTTP Handlers and Modules 869

downside to such a model is that because components are loaded within the Web server
process, a single faulty component can tear down the whole server and all installed applica-
tions. Starting with IIS 4.0, though, some countermeasures have been taken to address this
problem. Before the advent of IIS 6.0, you were allowed to set the protection level of a newly
installed application choosing from three options: low, medium, and high.

If you choose a low protection, the application (and its extensions) will be run within the Web
server process (inetinfo.exe). If you choose medium protection, applications will be pooled
together and hosted by an instance of a different worker process (dllhost.exe). If you choose
high protection, each application set to High will be hosted in its own individual worker pro-
cess (dllhost.exe).

Web applications running under IIS 6.0 are grouped in pools, and the choice you can make is
whether you want to join an existing pool or create a new one. Figure 18-1 shows the dialog
box picking the application pool of choice in IIS 6.0 and Microsoft Windows Server 2003.

FIGURE 18-1 Configuring the protection level of Web applications in IIS 6.0 under Windows Server 2003.

All applications in a pool share the same run-time settings and the same worker process—
w3wp.exe.

Illustrious Children of the ISAPI Model

The ISAPI model has another key drawback—the programming model. An ISAPI component
represents a compiled piece of code—a Win32 DLL—that retrieves data and writes HTML
code to an output console. It has to be developed using C or C++, it should generate multi-
threaded code, and it must be written with extreme care because of the impact that bugs or
runtime failures can have on the application.

870 Part III ASP.NET Infrastructure

A while back, Microsoft attempted to encapsulate the ISAPI logic in the Microsoft Foundation
Classes (MFC), but even though the effort was creditable, it didn’t pay off very well. MFC
tended to bring more code to the table than high-performance Web sites would perhaps
like, and worse, the resulting ISAPI extension DLL suffered from a well-documented memory
leak.

Active Server Pages (ASP), the predecessor of ASP.NET, is, on the other hand, an example of
a well-done ISAPI application. ASP is implemented as an ISAPI DLL (named asp.dll) registered
to handle HTTP requests with an .asp extension. The internal code of the ASP ISAPI exten-
sion DLL parses the code of the requested resource, executes any embedded script code, and
builds the page for the browser.

As of IIS 6.0, any functionality built on top of IIS must be coded according to the guidelines
set by the ISAPI model. ASP and ASP.NET are no exceptions. Today, the whole ASP.NET plat-
form works closely with IIS, but it is not part of it. The aspnet_isapi.dll core component is the
link between IIS and the ASP.NET runtime environment. When a request for .aspx resources
comes in, IIS passes the control to aspnet_isapi.dll, which in turn hands the request to the ASP.
NET pipeline inside an instance of the common language runtime (CLR).

As of this writing, to extend IIS you can write a Win32 DLL only with a well-known set of
entry points. This requirement ceases to exist with IIS 7.0, which is scheduled to ship with
Windows 2008 Server.

Note A good place to learn about IIS 7.0 and find good scripts and code snippets is
http://www.iis.net. IIS 7.0 is also part of Windows Vista, but that is not particularly relevant here in
the context of an ASP.NET book. Although you can certainly develop part of your Web site on a
Windows Vista machine, it is simply out of question that you use Windows Vista as a Web server
to host a site. Although fully functional, the IIS 7.0 that has shipped with Windows Vista can be
seen as a live tool to experiment and test. The “real” IIS 7.0 for Web developers and administra-
tors will ship in 2008 with Windows 2008 Server.

Structure of ISAPI Components

An ISAPI extension is invoked through a URL that ends with the name of the DLL that
 implements the function, as shown in the following URL:

http://www.contoso.com/apps/hello.dll

The DLL must export a couple of functions—GetExtensionVersion and HttpExtensionProc.
The GetExtensionVersion function sets the version and the name of the ISAPI server exten-
sion. When the extension is loaded, the GetExtensionVersion function is the first function to
be called. GetExtensionVersion is invoked only once and can be used to initialize any needed
variables. The function is expected to return true if everything goes fine. In the case of errors,
the function should return false and the Web server will abort loading the DLL and put a
message in the system log.

 Chapter 18 HTTP Handlers and Modules 871

The core of the ISAPI component is represented by the HttpExtensionProc function. The func-
tion receives basic HTTP information regarding the request (for example, the query string
and the headers), performs the expected action, and prepares the response to send back to
the browser.

Note Certain handy programming facilities, such as the session state, are abstractions the ISAPI
programming model lacks entirely. The ISAPI model is a lower level programming model than,
say, ASP or ASP.NET.

The ISAPI programming model is made of two types of components—ISAPI extensions and
ISAPI filters.

ISAPI Extensions

ISAPI extensions are the IIS in-process counterpart of CGI applications. As mentioned,
an ISAPI extension is a DLL that is loaded in the memory space occupied by IIS or another
host application. Because it is a DLL, only one instance of the ISAPI extension needs to be
loaded at a time. On the downside, the ISAPI extension must be thread-safe so that multiple
client requests can be served simultaneously. ISAPI extensions work in much the same way
as an ASP or ASP.NET page. It takes any information about the HTTP request and prepares a
valid HTTP response.

Because the ISAPI extension is made of compiled code, it must be recompiled and reloaded
at any change. If the DLL is loaded in the Web server’s memory, the Web server must be
stopped. If the DLL is loaded in the context of a separate process, only that process must be
stopped. Of course, when an external process is used, the extension doesn’t work as fast as it
could when hosted in-process, but at least it doesn’t jeopardize the stability of IIS.

ISAPI Filters

ISAPI filters are components that intercept specific server events before the server itself
 handles them. Upon loading, the filter indicates what event notifications it will handle. If any
of these events occur, the filter can process them or pass them on to other filters.

You can use ISAPI filters to provide custom authentication techniques or to automatically
 redirect requests based on HTTP headers sent by the client. Filters are a delicate gear in the
IIS machinery. They can facilitate applications and let them take control of customizable as-
pects of the engine. For this same reason, though, ISAPI filters can also degrade performance
if not written carefully. Filters, in fact, can run only in-process. Filters can be loaded for the
Web server as a whole or for specific Web sites.

ISAPI filters can accomplish tasks such as implementing custom authentication schemes,
compression, encryption, logging, and request analysis. The ability to examine, and if
 necessary modify, both incoming and outgoing streams of data makes ISAPI filters very

872 Part III ASP.NET Infrastructure

 powerful and flexible. This last sentence shows the strength of ISAPI filters but also indicates
their potential weakness, which is that they will hinder performance if not written well.

Changes in IIS 7.0

ASP.NET 1.0 was originally a self-contained, brand new runtime environment bolted onto
IIS 5.0. With the simultaneous release of ASP.NET 1.1 and IIS 6.0, the Web development and
server platforms have gotten closer and started sharing some services, such as process re-
cycling and output caching. The advent of ASP.NET 2.0 and newer versions hasn’t changed
anything, but the release of IIS 7.0 will.

A Unified Runtime Environment

In a certain way, IIS 7.0 represents the unification of the ASP.NET and IIS platforms. HTTP
 handlers and modules, the runtime pipeline, and configuration files will become constituent
elements of a common environment. The whole IIS internal pipeline has been componen-
tized to originate a distinct and individually configurable component. A new section will be
added to the web.config schema of ASP.NET applications to configure the IIS environment.

Put another way, it will be as if the ASP.NET runtime expanded to incorporate and replace the
surrounding Web server environment. It’s hard to say whether things really went this way or
whether it was the other way around. As a matter of fact, the same concepts and instruments
you know from ASP.NET are available in IIS 7.0 at the Web server level.

To illustrate, on Windows 2008 Server (and for testing purposes, also on a Windows Vista
 machine) you can use Forms authentication to protect access to any resources available on
the server and not just ASP.NET-specific resources. You might already know that static re-
sources such as HTML pages and JPG images are not served by ASP.NET by default; as such,
they’re not subject to the authentication rules you set for the application. Where IIS 7.0 is
supported, you can now define a handler for some specific and static resources and be sure
that IIS will use your code to serve those resources.

Managed ISAPI Extensions and Filters

Today if you want to take control of an incoming request in any version of IIS older than
 version 7.0, you have no choice other than writing a C or C++ DLL, using either MFC or per-
haps the ActiveX Template Library (ATL). More comfortable HTTP handlers and modules are
an ASP.NET-only feature, and they can be applied only to ASP.NET-specific resources and
only after the request has been authenticated by IIS and handed over to ASP.NET.

In IIS 7.0, you can write HTTP handlers and modules to filter any requests and implement any
additional features using .NET code for whatever resources the Web server can serve. More
precisely, you’ll continue writing HTTP handlers and modules as you do today for ASP.NET,

 Chapter 18 HTTP Handlers and Modules 873

except that you will be given the opportunity to register them for any file type. Needless to
say, old-style ISAPI extensions will still be supported, but unmanaged extensions and filters
will likely become a thing of the past. I’ll demonstrate IIS 7.0 handlers later in the chapter.

Writing HTTP Handlers

ASP.NET comes with a small set of built-in HTTP handlers. There is a handler to serve ASP.NET
pages, one for Web services, and yet another to accommodate .NET Remoting requests for
remote objects hosted by IIS. Other helper handlers are defined to view the tracing of indi-
vidual pages in a Web application (trace.axd) and to block requests for prohibited resources
such as .config or .asax files. Starting with ASP.NET 2.0, you also find a handler (webresource.
axd) to inject assembly resources and script code into pages. In ASP.NET 3.5, the scrip-
tresource.axd handler has been added as a more refined tool to inject script code and AJAX
capabilities into Web pages.

You can write custom HTTP handlers whenever you need ASP.NET to process certain requests
in a nonstandard way. The list of useful things you can do with HTTP handlers is limited only
by your imagination. Through a well-written handler, you can have your users invoke any
sort of functionality via the Web. For example, you could implement click counters and any
sort of image manipulation, including dynamic generation of images, server-side caching, or
 obstructing undesired linking to your images.

Note An HTTP handler can either work synchronously or operate in an asynchronous way.
When working synchronously, a handler doesn’t return until it’s done with the HTTP request. An
asynchronous handler, on the other hand, launches a potentially lengthy process and returns
immediately after. A typical implementation of asynchronous handlers are asynchronous pages.
Later in this chapter, though, we’ll take a look at the mechanics of asynchronous handlers, of
which asynchronous pages are a special case.

Conventional ISAPI extensions and filters should be registered within the IIS metabase.
In contrast, HTTP handlers are registered in the web.config file if you want the handler to
 participate in the HTTP pipeline processing of the Web request. In a manner similar to ISAPI
extensions, you can also invoke the handler directly via the URL.

The IHttpHandler Interface

Want to take the splash and dive into HTTP handler programming? Well, your first step is
getting the hang of the IHttpHandler interface. An HTTP handler is just a managed class that
implements that interface. More specifically, a synchronous HTTP handler implements the
IHttpHandler interface; an asynchronous HTTP handler, on the other hand, implements the
IHttpAsyncHandler interface. Let’s tackle synchronous handlers first.

874 Part III ASP.NET Infrastructure

The contract of the IHttpHandler interface defines the actions that a handler needs to take to
process an HTTP request synchronously.

Members of the IHttpHandler Interface

The IHttpHandler interface defines only two members—ProcessRequest and IsReusable, as
shown in Table 18-1. ProcessRequest is a method, whereas IsReusable is a Boolean property.

TABLE 18-1 Members of the IHttpHandler Interface

Member Description

IsReusable This property gets a Boolean value indicating whether the HTTP runtime can
reuse the current instance of the HTTP handler while serving another request.

ProcessRequest This method processes the HTTP request.

The IsReusable property on the System.Web.UI.Page class—the most common HTTP han-
dler in ASP.NET—returns false, meaning that a new instance of the HTTP request is needed
to serve each new page request. You typically make IsReusable return false in all situations
where some significant processing is required that depends on the request payload. Handlers
used as simple barriers to filter special requests can set IsReusable to true to save some CPU
cycles. I’ll return to this subject with a concrete example in a moment.

The ProcessRequest method has the following signature:

void ProcessRequest(HttpContext context);

It takes the context of the request as the input and ensures that the request is serviced.
In the case of synchronous handlers, when ProcessRequest returns, the output is ready for
 forwarding to the client.

A Very Simple HTTP Handler

Again, an HTTP handler is simply a class that implements the IHttpHandler interface. The out-
put for the request is built within the ProcessRequest method, as shown in the following code:

using System.Web;

namespace Core35.Components

{

 public class SimpleHandler : IHttpHandler

 {

 // Override the ProcessRequest method

 public void ProcessRequest(HttpContext context)

 {

 context.Response.Write(“<H1>Hello, I’m an HTTP handler</H1>”);

 }

 Chapter 18 HTTP Handlers and Modules 875

 // Override the IsReusable property

 public bool IsReusable

 {

 get { return true; }

 }

 }

}

You need an entry point to be able to call the handler. In this context, an entry point into the
handler’s code is nothing more than an HTTP endpoint—that is, a public URL. The URL must
be a unique name that IIS and the ASP.NET runtime can map to this code. When registered,
the mapping between an HTTP handler and a Web server resource is established through the
web.config file:

<configuration>

 <system.web>

 <httpHandlers>

 <add verb=”*” path=”hello.aspx”

 type=”Core35.Components.SimpleHandler” />

 </httpHandlers>

 </system.web>

</configuration>

The <httpHandlers> section lists the handlers available for the current application. These
 settings indicate that SimpleHandler is in charge of handling any incoming requests for an
endpoint named hello.aspx. Note that the URL hello.aspx doesn’t have to be a physical re-
source on the server; it’s simply a public resource identifier. The type attribute references
the class and assembly that contains the handler. It’s canonical format is type[,assembly].
You omit the assembly information if the component is defined in the App_Code or other
 reserved folders.

Note If you enter the settings shown earlier in the global web.config file, you will register the
SimpleHandler component as callable from within all Web applications hosted by the server machine.

If you invoke the hello.aspx URL, you obtain the results shown in Figure 18-2.

FIGURE 18-2 A sample HTTP handler that answers requests for hello.aspx.

876 Part III ASP.NET Infrastructure

The technique discussed here is the quickest and simplest way of putting an HTTP handler
to work, but there is more to know about registration of HTTP handlers and there are many
more options to take advantage of. Now let’s consider a more complex example of an HTTP
handler.

An HTTP Handler for Quick Data Reports

With their relatively simple programming model, HTTP handlers give you a means of inter-
acting with the low-level request and response services of IIS. In the previous example, we
 returned only constant text and made no use of the request information. In the next ex-
ample, we’ll configure the handler to intercept and process only requests of a particular type
and generate the output based on the contents of the requested resource.

The idea is to build an HTTP handler for custom .sqlx resources. A SQLX file is an XML
 document that expresses the statements for one or more SQL queries. The handler grabs the
information about the query, executes it, and finally returns the result set formatted as a grid.
Figure 18-3 shows the expected outcome.

FIGURE 18-3 A custom HTTP handler in action.

To start, let’s examine the source code for the IHttpHandler class.

Warning Take this example for what it really is—merely a way to process a custom XML file
with a custom extension doing something more significant than outputting a “hello world”
 message. Do not take this handler as a realistic prototype for exposing your Microsoft SQL Server
databases over the Web.

 Chapter 18 HTTP Handlers and Modules 877

Building a Query Manager Tool

The HTTP handler should get into the game whenever the user requests an .sqlx resource.
Assume for now that the system knows how to deal with such a weird extension, and focus
on what’s needed to execute the query and pack the results into a grid. To execute the query,
at a minimum, we need the connection string and the command text. The following text il-
lustrates the typical contents of an .sqlx file:

<queries>

 <query connString=”DATABASE=northwind;SERVER=localhost;UID...;”>

 SELECT firstname, lastname, country FROM employees

 </query>

 <query connString=”DATABASE=northwind;SERVER=localhost;UID=...;”>

 SELECT companyname FROM customers WHERE country=’Italy’

 </query>

</queries>

The XML document is formed by a collection of <query> nodes, each containing an attribute
for the connection string and the text of the query.

The ProcessRequest method extracts this information before it can proceed with executing
the query and generating the output:

class SqlxData

{

 public string ConnectionString;

 public string QueryText;

}

public class QueryHandler : IHttpHandler

{

 public void ProcessRequest(HttpContext context)

 {

 // Parses the SQLX file

 SqlxData[] data = ParseFile(context);

 // Create the output as HTML

 StringCollection htmlColl = CreateOutput(data);

 // Output the data

 context.Response.Write(“<html><head><title>”);

 context.Response.Write(“QueryHandler Output”);

 context.Response.Write(“</title></head><body>”);

 foreach (string html in htmlColl)

 {

 context.Response.Write(html);

 context.Response.Write(“<hr />”);

 }

 context.Response.Write(“</body></html>”);

 }

878 Part III ASP.NET Infrastructure

 // Override the IsReusable property

 public bool IsReusable

 {

 get { return true; }

 }

 ...

}

The ParseFile helper function parses the source code of the .sqlx file and creates an instance
of the SqlxData class for each query found:

private SqlxData[] ParseFile(HttpContext context)

{

 XmlDocument doc = new XmlDocument();

 string filePath = context.Request.Path;

 using (Stream fileStream = VirtualPathProvider.OpenFile(filePath)) {

 doc.Load(fileStream);

 }

 // Visit the <mapping> nodes

 XmlNodeList mappings = doc.SelectNodes(“queries/query”);

 SqlxData[] descriptors = new SqlxData[mappings.Count];

 for (int i=0; i < descriptors.Length; i++)

 {

 XmlNode mapping = mappings[i];

 SqlxData query = new SqlxData();

 descriptors[i] = query;

 try {

 query.ConnectionString =

 mapping.Attributes[“connString”].Value;

 query.QueryText = mapping.InnerText;

 }

 catch {

 context.Response.Write(“Error parsing the input file.”);

 descriptors = new SqlxData[0];

 break;

 }

 }

 return descriptors;

}

The SqlxData internal class groups the connection string and the command text. The infor-
mation is passed to the CreateOutput function, which will actually execute the query and
generate the grid:

private StringCollection CreateOutput(SqlxData[] descriptors)

{

 StringCollection coll = new StringCollection();

 foreach (SqlxData data in descriptors)

 {

 Chapter 18 HTTP Handlers and Modules 879

 // Run the query

 DataTable dt = new DataTable();

 SqlDataAdapter adapter = new SqlDataAdapter(data.QueryText,

 data.ConnectionString);

 adapter.Fill(dt);

 // Error handling

 ...

 // Prepare the grid

 DataGrid grid = new DataGrid();

 grid.DataSource = dt;

 grid.DataBind();

 // Get the HTML

 string html = Utils.RenderControlAsString(grid);

 coll.Add(html);

 }

 return coll;

}

After executing the query, the method populates a dynamically created DataGrid control. In
ASP.NET pages, the DataGrid control, like any other control, is rendered to HTML. However,
this happens through the care of the special HTTP handler that manages .aspx resources. For
.sqlx resources, we need to provide that functionality ourselves. Obtaining the HTML for a
Web control is as easy as calling the RenderControl method on an HTML text writer object.
This is just what the helper method RenderControlAsString does:

static class Utils

{

 public static string RenderControlAsString(Control ctl)

 {

 StringWriter sw = new StringWriter();

 HtmlTextWriter writer = new HtmlTextWriter(sw);

 ctl.RenderControl(writer);

 return sw.ToString();

 }

}

Note An HTTP handler that needs to access session-state values must implement the
IRequiresSessionState interface. Like INamingContainer, it’s a marker interface and requires no
method implementation. Note that the IRequiresSessionState interface indicates that the HTTP
handler requires read and write access to the session state. If read-only access is needed, use the
IReadOnlySessionState interface instead.

880 Part III ASP.NET Infrastructure

Registering the Handler

An HTTP handler is a class and must be compiled to an assembly before you can use it. The
assembly must be deployed to the Bin directory of the application. If you plan to make this
handler available to all applications, you can copy it to the global assembly cache (GAC). The
next step is registering the handler with an individual application or with all the applications
running on the Web server. You register the handler in the configuration file:

<system.web>

 <httpHandlers>

 <add verb=”*”

 path=”*.sqlx”

 type= “Core35.Components.QueryHandler,Core35Lib” />

 </httpHandlers>

</system.web>

You add the new handler to the <httpHandlers> section of the local or global web.config file.
The section supports three actions: <add>, <remove>, and <clear>. You use <add> to add a
new HTTP handler to the scope of the .config file. You use <remove> to remove a particular
handler. Finally, you use <clear> to get rid of all the registered handlers. To add a new han-
dler, you need to set three attributes—verb, path, and type—as shown in Table 18-2.

TABLE 18-2 Attributes Needed to Register an HTTP Handler

Attribute Description

Verb Indicates the list of the supported HTTP verbs—for example, GET, PUT, and POST.
The wildcard character (*) is an acceptable value and denotes all verbs.

Path A wildcard string, or a single URL, that indicates the resources the handler will work
on—for example, *.aspx.

Type Specifies a comma-separated class/assembly combination. ASP.NET searches for the
assembly DLL first in the application’s private Bin directory and then in the system
global assembly cache.

These attributes are mandatory. An optional attribute is also supported—validate. When
 validate is set to false, ASP.NET delays as much as possible loading the assembly with the
HTTP handler. In other words, the assembly will be loaded only when a request for it arrives.
ASP.NET will not try to preload the assembly, thus catching any error or problem with it.

So far, you have correctly deployed and registered the HTTP handler, but if you try invoking
an .sqlx resource, the results you produce are not what you’d expect. The problem lies in the
fact that so far you configured ASP.NET to handle only .sqlx resources, but IIS still doesn’t
know anything about them!

A request for an .sqlx resource is handled by IIS before it is handed to the ASP.NET ISAPI
 extension. If you don’t register some ISAPI extension to handle ..sqlx resource requests, IIS
will treat each request as a request for a static resource and serve the request by sending

 Chapter 18 HTTP Handlers and Modules 881

back the source code of the .sqlx file. The extra step required is registering the .sqlx extension
with the IIS 6.0 metabase such that requests for .sqlx resources are handed off to ASP.NET, as
shown in Figure 18-4.

FIGURE 18-4 Registering the .sqlx extension with the IIS 6.0 metabase.

The dialog box in the figure is obtained by clicking on the properties of the application in the
IIS 6.0 manager and then the configuration of the site. To involve the HTTP handler, you must
choose aspnet_isapi.dll as the ISAPI extension. In this way, all .sqlx requests are handed out to
ASP.NET and processed through the specified handler. Make sure you select aspnet_isapi.dll
from the folder of the ASP.NET version you plan to use.

Caution In Microsoft Visual Studio, if you test a sample .sqlx resource using the local embedded
Web server, nothing happens that forces you to register the .sqlx resource with IIS. This is just the
point, though. You’re not using IIS! In other words, if you use the local Web server, you have no
need to touch IIS; you do need to register any custom resource you plan to use with IIS before
you get to production.

Registering the Handler with IIS 7.0

If you run IIS 7.0, you don’t strictly need to change anything through the IIS Manager. You
can add a new section to the web.config file and specify the HTTP handler also for static
 resources that would otherwise be served directly by IIS. Here’s what you need to enter:

<system.webServer>

 <add verb=”*”

 path=”*.sqlx”

 type=”Core35.Components.QueryHandler, Core35Lib” />

</system.webServer>

882 Part III ASP.NET Infrastructure

The new section is a direct child of the root tag <configuration>. Without this setting, IIS can’t
recognize the page and won’t serve it up. The configuration script instructs IIS 7.0 to forward
any *.sqlx requests to your application, which knows how to deal with it.

The Picture Viewer Handler

Let’s examine another scenario that involves custom HTTP handlers. Thus far, we have
 explored custom resources and realized how important it is to register any custom extensions
with IIS.

To speed up processing, IIS claims the right of personally serving some resources that typi-
cally form a Web application without going down to a particular ISAPI extension. The list
includes static files such as images and HTML files. What if you request a GIF or a JPG file
directly from the address bar of the browser? IIS retrieves the specified resource, sets the
proper content type on the response buffer, and writes out the bytes of the file. As a result,
you’ll see the image in the browser’s page. So far so good.

What if you point your browser to a virtual folder that contains images? In this case,
IIS doesn’t distinguish the contents of the folder and returns a list of files, as shown in
Figure 18-5.

FIGURE 18-5 The standard IIS-provided view of a folder.

Wouldn’t it be nice if you could get a preview of the contained pictures, instead?

Designing the HTTP Handler

To start out, you need to decide how you would let IIS know about your wishes. You can use
a particular endpoint that, appended to a folder’s name, convinces IIS to yield to ASP.NET
and provide a preview of contained images. Put another way, the idea is binding our picture

 Chapter 18 HTTP Handlers and Modules 883

viewer handler to a particular endpoint—say, folder.axd. As mentioned earlier in the chapter,
a fixed endpoint for handlers doesn’t have to be an existing, deployed resource. You make
the folder.axd endpoint follow the folder name, as shown here:

http://www.contoso.com/images/folder.axd

The handler will process the URL, extract the folder name, and select all the contained
pictures.

Note In ASP.NET, the .axd extension is commonly used for endpoints referencing a special
 service. Trace.axd for tracing and WebResource.axd for script and resources injection are
 examples of two popular uses of the extension. In particular, the Trace.axd handler implements
the same logic described here. If you append its name to the URL, it will trace all requests for
pages in that application.

Implementing the HTTP Handler

The picture viewer handler returns a page composed of a multirow table showing as many
images as there are in the folder. Here’s the skeleton of the class:

class PictureViewerInfo

{

 public PictureViewerInfo() {

 DisplayWidth = 200;

 ColumnCount = 3;

 }

 public int DisplayWidth;

 public int ColumnCount;

 public string FolderName;

}

public class PictureViewerHandler : IHttpHandler

{

 // Override the ProcessRequest method

 public void ProcessRequest(HttpContext context)

 {

 PictureViewerInfo info = GetFolderInfo(context);

 string html = CreateOutput(info);

 // Output the data

 context.Response.Write(“<html><head><title>”);

 context.Response.Write(“Picture Web Viewer”);

 context.Response.Write(“</title></head><body>”);

 context.Response.Write(html);

 context.Response.Write(“</body></html>”);

 }

884 Part III ASP.NET Infrastructure

 // Override the IsReusable property

 public bool IsReusable

 {

 get { return true; }

 }

 ...

}

Retrieving the actual path of the folder is as easy as stripping off the folder.axd string from
the URL and trimming any trailing slashes or backslashes. Next, the URL of the folder is
mapped to a server path and processed using the .NET Framework API for files and folders:

private ArrayList GetAllImages(string path)

{

 string[] fileTypes = { “*.bmp”, “*.gif”, “*.jpg”, “*.png” };

 ArrayList images = new ArrayList();

 DirectoryInfo di = new DirectoryInfo(path);

 foreach (string ext in fileTypes)

 {

 FileInfo[] files = di.GetFiles(ext);

 if (files.Length > 0)

 images.AddRange(files);

 }

 return images;

 }

The DirectoryInfo class provides some helper functions on the specified directory; for exam-
ple, the GetFiles method selects all the files that match the given pattern. Each file is wrapped
by a FileInfo object. The method GetFiles doesn’t support multiple search patterns; to search
for various file types, you need to iterate for each type and accumulate results in an array list
or equivalent data structure.

After you get all the images in the folder, you move on to building the output for the
 request. The output is a table with a fixed number of cells and a variable number of rows
to accommodate all selected images. The image is not downloaded as a thumbnail, but it
is more simply rendered in a smaller area. For each image file, a new tag is created
through the Image control. The width attribute of this file is set to a fixed value (say, 200
pixels), causing most modern browsers to automatically resize the image. Furthermore, the
image is wrapped by an anchor that links to the same image URL. As a result, when the user
clicks on an image, the page refreshes and shows the same image at its natural size.

string CreateOutputForFolder(PictureViewerInfo info)

{

 ArrayList images = GetAllImages(info.FolderName);

 Table t = new Table();

 int index = 0;

 bool moreImages = true;

 Chapter 18 HTTP Handlers and Modules 885

 while (moreImages)

 {

 TableRow row = new TableRow();

 t.Rows.Add(row);

 for (int i = 0; i < info.ColumnCount; i++)

 {

 TableCell cell = new TableCell();

 row.Cells.Add(cell);

 // Create the image

 Image img = new Image();

 FileInfo fi = (FileInfo)images[index];

 img.ImageUrl = fi.Name;

 img.Width = Unit.Pixel(info.DisplayWidth);

 // Wrap the image in an anchor so that a larger image

 // is shown when the user clicks

 HtmlAnchor a = new HtmlAnchor();

 a.HRef = fi.Name;

 a.Controls.Add(img);

 cell.Controls.Add(a);

 // Check whether there are more images to show

 index++;

 moreImages = (index < images.Count);

 if (!moreImages)

 break;

 }

 }

}

You might want to make the handler accept some optional query string parameters, such
as width and column count. These values are packed in an instance of the helper class
PictureViewerInfo along with the name of the folder to view. Here’s the code to process the
query string of the URL to extract parameters if any are present:

PictureViewerInfo info = new PictureViewerInfo();

object p1 = context.Request.Params[“Width”];

object p2 = context.Request.Params[“Cols”];

if (p1 != null)

 Int32.TryParse((string)p1, out info.DisplayWidth);

if (p2 != null)

 Int32.TryParse((string)p2, out info.ColumnCount);

Figure 18-6 shows the handler in action.

886 Part III ASP.NET Infrastructure

FIGURE 18-6 The picture viewer handler in action with a given number of columns and width.

Registering the handler is easy too. You just add the following script to the web.config file:

<add verb=”*” path=”folder.axd”

 type=”Core35.Components.PictureViewerHandler,Core35Lib” />

You place the assembly in the GAC and move the configuration script to the global
web.config to extend the settings to all applications on the machine.

Serving Images More Effectively

Any page we get from the Web today is topped with so many images and is so well con-
ceived and designed that often the overall page looks more like a magazine advertisement
than an HTML page. Looking at the current pages displayed by portals, it’s rather hard to
imagine there ever was a time—and it was only seven or eight years ago—when one could
create a Web site by using only a text editor and some assistance from a friend who had a bit
of familiarity with Adobe PhotoShop.

In spite of the wide use of images on the Web, there is just one way in which a Web page can
reference an image—by using the HTML tag. By design, this tag points to a URL. As
a result, to be displayable within a Web page, an image must be identifiable through a URL
and its bits should be contained in the output stream returned by the Web server for that
URL.

In many cases, the URL points to a static resource such as a GIF or JPEG file. In this case, the
Web server takes the request upon itself and serves it without invoking external components.
However, the fact that many tags on the Web are bound to a static file does not mean
there’s no other way to include images in Web pages.

 Chapter 18 HTTP Handlers and Modules 887

Where else can you turn to get images aside from picking them up from the server file
 system? For example, you can load images from a database or you can generate or modify
them on the fly just before serving the bits to the browser.

Loading Images from Databases

The use of a database as the storage medium for images is controversial. Some people have
good reasons to push it as a solution; others tell you bluntly they would never do it and that
you shouldn’t either. Some people can tell you wonderful stories of how storing images in a
properly equipped database was the best experience of their professional life. With no fear
that facts could perhaps prove them wrong, other people will confess that they would never
use a database again for such a task.

The facts say that all database management systems (DBMS) of a certain reputation and
volume have supported binary large objects (BLOB) for quite some time. Sure, a BLOB field
doesn’t necessarily contain an image—it can contain a multimedia file or a long text file—
but overall there must be a good reason for having this BLOB support in SQL Server, Oracle,
and similar popular DBMS systems!

To read an image from a BLOB field with ADO.NET, you execute a SELECT statement on the
column and use the ExecuteScalar method to catch the result and save it in an array of bytes.
Next, you send this array down to the client through a binary write to the response stream.
Let’s write an HTTP handler to serve a database-stored image:

public class DbImageHandler : IHttpHandler

{

 public void ProcessRequest(HttpContext ctx)

 {

 // Ensure the URL contains an ID argument that is a number

 int id = -1;

 bool result = Int32.TryParse(ctx.Request.QueryString[“id”], out id);

 if (!result)

 ctx.Response.End();

 string connString = “...”;

 string cmdText = “SELECT photo FROM employees WHERE employeeid=@id”;

 // Get an array of bytes from the BLOB field

 byte[] img = null;

 SqlConnection conn = new SqlConnection(connString);

 using (conn)

 {

 SqlCommand cmd = new SqlCommand(cmdText, conn);

 cmd.Parameters.AddWithValue(“@id”, id);

 conn.Open();

 img = (byte[])cmd.ExecuteScalar();

 conn.Close();

 }

888 Part III ASP.NET Infrastructure

 // Prepare the response for the browser

 if (img != null)

 {

 ctx.Response.ContentType = “image/jpeg”;

 ctx.Response.BinaryWrite(img);

 }

 }

 public bool IsReusable

 {

 get { return true; }

 }

}

There are quite a few assumptions made in this code. First, we assume that the field named
photo contains image bits and that the format of the image is JPEG. Second, we assume that
images are to be retrieved from a fixed table of a given database through a predefined con-
nection string. Finally, we’re assuming that the URL to invoke this handler includes a query
string parameter named id.

Notice the attempt to convert the value of the id query parameter to an integer before
proceeding. This simple check significantly reduces the surface attack for malicious users by
verifying that what is going to be used as a numeric ID is really a numeric ID. Especially when
you’re inoculating user input into SQL query commands, filtering out extra characters and
wrong data types is a fundamental measure for preventing attacks.

The BinaryWrite method of the HttpResponse object writes an array of bytes to the output
stream.

Warning If the database you’re using is Northwind (as in the preceding example), an extra
step might be required to ensure that the images are correctly managed. For some reason, the
SQL Server version of the Northwind database stores the images in the photo column of the
Employees table as OLE objects. This is probably because of the conversion that occurred when
the database was upgraded from the Microsoft Access version. As a matter fact, the array of
bytes you receive contains a 78-byte prefix that has nothing to do with the image. Those bytes
are just the header created when the image was added as an OLE object to the first version
of Access. Although the preceding code works like a champ with regular BLOB fields, it must
undergo the following modification to work with the photo field of the Northwind.Employees
 database:

Response.OutputStream.Write(img, 78, img.Length);

Instead of using the BinaryWrite call, which doesn’t let you specify the starting position, use the
code shown here.

A sample page to test BLOB field access is shown in Figure 18-7. The page lets users select an
employee ID and post back. When the page renders, the ID is used to complete the URL for
the ASP.NET Image control.

 Chapter 18 HTTP Handlers and Modules 889

string url = String.Format(“dbimage.axd?id={0}”,

 DropDownList1.SelectedValue);

Image1.ImageUrl = url;

FIGURE 18-7 Downloading images stored within the BLOB field of a database.

An HTTP handler must be registered in the web.config file and bound to a public endpoint.
In this case, the endpoint is dbimage.axd and the script to enter in the configuration file is
shown next:

<httpHandlers>

 <add verb=”*” path=”dbimage.axd”

 type=”Core35.Components.DbImageHandler,Core35Lib”/>

</httpHandlers>

Note The preceding handler clearly has a weak point: it hard-codes a SQL command and the
related connection string. This means that you might need a different handler for each different
command or database to access. A more realistic handler would probably use an external and
configurable database-specific provider. Such a provider can be as simple as a class that imple-
ments an agreed interface. At a minimum, the interface will supply a method to retrieve and
return an array of bytes. Alternatively, if you want to keep the ADO.NET code in the handler itself,
the interface will just supply members that specify the command text and connection string. The
handler will figure out its default provider from a given entry in the web.config file.

Serving Dynamically Generated Images

Isn’t it true that an image is worth thousands of words? Many financial Web sites offer charts
and, more often than not, these charts are dynamically generated on the server. Next, they
are served to the browser as a stream of bytes and travel over the classic response out-

890 Part III ASP.NET Infrastructure

put stream. But can you create and manipulate server-side images? For these tasks, Web
 applications normally rely on ad hoc libraries or the graphic engine of other applications (for
example, Microsoft Office applications).

ASP.NET applications are different and, to some extent, luckier. ASP.NET applications, in fact,
can rely on a powerful and integrated graphic engine capable of providing an object model
for image generation. This server-side system is GDI+, and contrary to what some people
might have you believe, GDI+ is fair game for generating images on the fly for ASP.NET
applications.

As its name suggests, GDI+ is the successor of GDI, the Graphics Device Interface included
with versions of the Windows operating system that shipped before Windows XP. The .NET
Framework encapsulates the key GDI+ functionalities in a handful of managed classes and
makes those functions available to Web, Windows Forms, and Web service applications.

Most of the GDI+ services belong to the following categories: 2D vector graphics and imag-
ing. 2D vector graphics involve drawing simple figures such as lines, curves, and polygons.
Under the umbrella of imaging are functions to display, manipulate, save, and convert bit-
map and vector images. Finally, a third category of functions can be identified—typography,
which includes the display of text in a variety of fonts, sizes, and styles. Having the goal
of creating images dynamically, we are most interested in drawing figures and text and in
 saving the work as JPEGs or GIFs.

In ASP.NET, writing images to disk might require some security adjustments. Normally, the
ASP.NET runtime runs under the aegis of the NETWORK SERVICE user account. In the case of
anonymous access with impersonation disabled—which are the default settings in ASP.NET—
the worker process lends its own identity and security token to the thread that executes the
user request of creating the file. With regard to the default scenario, an access denied excep-
tion might be thrown if NETWORK SERVICE lacks writing permissions on virtual directories—
a pretty common situation.

ASP.NET and GDI+ provide an interesting alternative to writing files on disk without changing
security settings: in-memory generation of images. In other words, the dynamically generat-
ed image is saved directly to the output stream in the needed image format or in a memory
stream.

Writing Copyright Notes on Images

GDI+ supports quite a few image formats, including JPEG, GIF, BMP, and PNG. The whole
collection of image formats is in the ImageFormat structure from the System.Drawing
namespace. You can save a memory-resident Bitmap object to any of the supported formats
by using one of the overloads of the Save method:

Bitmap bmp = new Bitmap(file);

...

bmp.Save(outputStream, ImageFormat.Gif);

 Chapter 18 HTTP Handlers and Modules 891

When you attempt to save an image to a stream or disk file, the system attempts to locate an
encoder for the requested format. The encoder is a GDI+ module that converts from the na-
tive format to the specified format. Note that the encoder is a piece of unmanaged code that
lives in the underlying Win32 platform. For each save format, the Save method looks up the
right encoder and proceeds.

The next example wraps up all the points we touched on. This example shows how to load
an existing image, add some copyright notes, and serve the modified version to the user. In
doing so, we’ll load an image into a Bitmap object, obtain a Graphics for that bitmap, and use
graphics primitives to write. When finished, we’ll save the result to the page’s output stream
and indicate a particular MIME type.

The sample page that triggers the example is easily created, as shown in the following listing:

<html>

<body>

</body>

</html>

The page contains no ASP.NET code and displays an image through a static HTML tag.
The source of the image, though, is an HTTP handler that loads the image passed through
the query string, and then manipulates and displays it. Here’s the source code for the
ProcessRequest method of the HTTP handler:

public void ProcessRequest (HttpContext context)

{

 object o = context.Request[“url”];

 if (o == null)

 {

 context.Response.Write(“No image found.”);

 context.Response.End();

 return;

 }

 string file = context.Server.MapPath((string)o);

 string msg = ConfigurationManager.AppSettings[“CopyrightNote”];

 if (File.Exists(file))

 {

 Bitmap bmp = AddCopyright(file, msg);

 context.Response.ContentType = “image/jpeg”;

 bmp.Save(context.Response.OutputStream, ImageFormat.Jpeg);

 bmp.Dispose();

 }

 else

 {

 context.Response.Write(“No image found.”);

 context.Response.End();

 }

}

892 Part III ASP.NET Infrastructure

Note that the server-side page performs two different tasks indeed. First, it writes copyright
text on the image canvas; next, it converts whatever the original format was to JPEG:

Bitmap AddCopyright(string file, string msg)

{

 // Load the file and create the graphics

 Bitmap bmp = new Bitmap(file);

 Graphics g = Graphics.FromImage(bmp);

 // Define text alignment

 StringFormat strFmt = new StringFormat();

 strFmt.Alignment = StringAlignment.Center;

 // Create brushes for the bottom writing

 // (green text on black background)

 SolidBrush btmForeColor = new SolidBrush(Color.PaleGreen);

 SolidBrush btmBackColor = new SolidBrush(Color.Black);

 // To calculate writing coordinates, obtain the size of the

 // text given the font typeface and size

 Font btmFont = new Font(“Verdana”, 7);

 SizeF textSize = new SizeF();

 textSize = g.MeasureString(msg, btmFont);

 // Calculate the output rectangle and fill

 float x = ((float) bmp.Width-textSize.Width-3);

 float y = ((float) bmp.Height-textSize.Height-3);

 float w = ((float) x + textSize.Width);

 float h = ((float) y + textSize.Height);

 RectangleF textArea = new RectangleF(x, y, w, h);

 g.FillRectangle(btmBackColor, textArea);

 // Draw the text and free resources

 g.DrawString(msg, btmFont, btmForeColor, textArea);

 btmForeColor.Dispose();

 btmBackColor.Dispose();

 btmFont.Dispose();

 g.Dispose();

 return bmp;

}

Figure 18-8 shows the results.

Note that the additional text is part of the image the user downloads on her client browser.
If the user saves the picture by using the Save Picture As menu from the browser, the text (in
this case, the copyright note) is saved along with the image.

 Chapter 18 HTTP Handlers and Modules 893

FIGURE 18-8 A server-resident image has been modified before being displayed.

Note What if the user requests the JPG file directly from the address bar? And what if the image
is linked by another Web site or referenced in a blog post? In these cases, the original image is
served without any further modification. Why is it so? As mentioned, for performance reasons IIS
serves static files, such as JPG images, directly without involving any external module, including
the ASP.NET runtime. The HTTP handler that does the trick of adding a copyright note is there-
fore blissfully ignored when the request is made via the address bar or a hyperlink. What can you
do about it?

In IIS 6.0, you must register the JPG extension as an ASP.NET extension for a particular applica-
tion using the IIS Manager as shown in Figure 18-4. In this case, each request for JPG resources is
forwarded to your application and resolved through the HTTP handler.

In IIS 7.0, things are even simpler for developers. All that you have to do is add the following lines
to the application’s web.config file:

<system.webServer>

 <handlers>

 <add verb=”*”

 path=”*.jpg”

 type=”Core35.Components.DynImageHandler,Core35Lib” />

 </handlers>

</system.webServer>

The system.webServer section is a direct child of the root configuration node.

894 Part III ASP.NET Infrastructure

Advanced HTTP Handler Programming

HTTP handlers are not a tool for everybody. They serve a very neat purpose: changing the
way a particular resource, or set of resources, is served to the user. You can use handlers to
filter out resources based on runtime conditions or to apply any form of additional logic to
the retrieval of traditional resources such as pages and images. Finally, you can use HTTP
handlers to serve certain pages or resources in an asynchronous manner.

For HTTP handlers, the registration step is key. Registration enables ASP.NET to know about
your handler and its purpose. Registration is required for two practical reasons. First, it serves
to ensure that IIS forwards the call to the correct ASP.NET application. Second, it serves to
instruct your ASP.NET application on the class to load to “handle” the request. As mentioned,
you can use handlers to override the processing of existing resources (for example, hello.
aspx) or to introduce new functionalities (for example, folder.axd). In both cases, you’re invok-
ing a resource whose extension is already known to IIS—the .axd extension is registered in
the IIS metabase when you install ASP.NET. In both cases, though, you need to modify the
web.config file of the application to let the application know about the handler.

By using the ASHX extension and programming model for handlers, you can also save
 yourself the web.config update and deploy a new HTTP handler by simply copying a new file
in a new or existing application’s folder.

Deploying Handlers as ASHX Resources

An alternative way to define an HTTP handler is through an .ashx file. The file contains a
special directive, named @WebHandler, that expresses the association between the HTTP
handler endpoint and the class used to implement the functionality. All .ashx files must begin
with a directive like the following one:

<%@ WebHandler Language=”C#” Class=”Core35.Components.YourHandler” %>

When an .ashx endpoint is invoked, ASP.NET parses the source code of the file and figures
out the HTTP handler class to use from the @WebHandler directive. This automation removes
the need of updating the web.config file. Here’s a sample .ashx file. As you can see, it is the
plain class file plus the special @WebHandler directive:

<%@ WebHandler Language=”C#” Class=”MyHandler” %>

using System.Web;

public class MyHandler : IHttpHandler {

 public void ProcessRequest (HttpContext context) {

 context.Response.ContentType = “text/plain”;

 context.Response.Write(“Hello World”);

 }

 Chapter 18 HTTP Handlers and Modules 895

 public bool IsReusable {

 get {

 return false;

 }

 }

}

Note that the source code of the class can either be specified inline or loaded from any of the
assemblies referenced by the application. When .ashx resources are used to implement an
HTTP handler, you just deploy the source file, and you’re done. Just as for XML Web services,
the source file is loaded and compiled only on demand. Because ASP.NET adds a special en-
try to the IIS metabase for .ashx resources, you don’t even need to enter changes to the Web
server configuration.

Resources with an .ashx extension are handled by an HTTP handler class named
SimpleHandleFactory. Note that SimpleHandleFactory is actually an HTTP handler factory
class, not a simple HTTP handler class. We’ll discuss handler factories in a moment.

The SimpleHandleFactory class looks for the @WebHandler directive at the beginning of the
file. The @WebHandler directive tells the handler factory the name of the HTTP handler class
to instantiate once the source code has been compiled.

Important You can build HTTP handlers both as regular class files compiled to an assembly and
via .ashx resources. There’s no significant difference between the two approaches except that
.ashx resources, like ordinary ASP.NET pages, will be compiled on the fly upon the first request.

Prevent Access to Forbidden Resources

If your Web application manages resources of a type that you don’t want to make publicly
available over the Web, you must instruct IIS not to display those files. A possible way to
 accomplish this consists of forwarding the request to aspnet_isapi and then binding the
 extension to one of the built-in handlers—the HttpForbiddenHandler class:

<add verb=”*” path=”*.xyz” type=”System.Web.HttpForbiddenHandler” />

Any attempt to access an .xyz resource results in an error message being displayed. The same
trick can also be applied for individual resources served by your application. If you need to
deploy, say, a text file but do not want to take the risk that somebody can get to them, add
the following:

<add verb=”*” path=”yourFile.txt” type=”System.Web.HttpForbiddenHandler” />

896 Part III ASP.NET Infrastructure

Should It Be Reusable or Not?

In a conventional HTTP handler, the ProcessRequest method takes the lion’s share of the over-
all set of functionality. The second member of the IHttpHandler interface—the IsReusable
property—is used only in particular circumstances. If you set the IsReusable property to
return true, the handler is not unloaded from memory after use and is repeatedly used. Put
another way, the Boolean value returned by IsReusable indicates whether the handler object
can be pooled.

Frankly, most of the time it doesn’t really matter what you return—be it true or false. If you
set the property to return false, you require that a new object be allocated for each request.
The simple allocation of an object is not a particularly expensive operation. However, the
initialization of the handler might be costly. In this case, by making the handler reusable, you
save much of the overhead. If the handler doesn’t hold any state, there’s no reason for not
making it reusable.

In summary, I’d say that IsReusable should be always set to true, except when you have
 instance properties to deal with or properties that might cause trouble if used in a concur-
rent environment. If you have no initialization tasks, it doesn’t really matter whether it re-
turns true or false. As a margin note, the System.Web.UI.Page class—the most popular HTTP
 handler ever—sets its IsReusable property to false.

The key point to make is the following. Who’s really using IsReusable and, subsequently, who
really cares about its value?

Once the HTTP runtime knows the HTTP handler class to serve a given request, it simply
 instantiates it—no matter what. So when is the IsReusable property of a given handler taken
into account? Only if you use an HTTP handler factory—that is, a piece of code that dynami-
cally decides which handler should be used for a given request. An HTTP handler factory can
query a handler to determine whether the same instance can be used to service multiple
 requests and thus optionally create and maintain a pool of handlers.

ASP.NET pages and ASHX resources are served through factories. However, none of these
factories ever checks IsReusable. Of all the built-in handler factories in the whole ASP.NET
platform, very few check the IsReusable property of related handlers. So what’s the bottom
line?

As long as you’re creating HTTP handlers for AXD, ASHX, or perhaps ASPX resources, be
aware that the IsReusable property is blissfully ignored. Do not waste your time trying to
figure out the optimal configuration. Instead, if you’re creating an HTTP handler factory to
serve a set of resources, whether or not to implement a pool of handlers is up to you and
IsReusable is the perfect tool for the job.

 Chapter 18 HTTP Handlers and Modules 897

But when should you employ an HTTP handler factory? In all situations in which the HTTP
handler class for a request is not uniquely identified. For example, for ASPX pages, you don’t
know in advance which HTTP handler type you have to use. The type might not even exist
(in which case, you compile it on the fly). The HTTP handler factory is used whenever you
need to apply some logic to decide which is the right handler to use. In other words, you
need an HTTP handler factory when declarative binding between endpoints and classes is
not enough.

HTTP Handler Factories

An HTTP request can be directly associated with an HTTP handler or with an HTTP handler
factory object. An HTTP handler factory is a class that implements the IHttpHandlerFactory
interface and is in charge of returning the actual HTTP handler to use to serve the request.
The SimpleHandlerFactory class provides a good example of how a factory works. The fac-
tory is mapped to requests directed at .ashx resources. When such a request comes in, the
factory determines the actual handler to use by looking at the @WebHandler directive in the
source file.

In the .NET Framework, HTTP handler factories are used to perform some preliminary tasks
on the requested resource prior to passing it on to the handler. Another good example of a
handler factory object is represented by an internal class named PageHandlerFactory, which
is in charge of serving .aspx pages. In this case, the factory handler figures out the name of
the handler to use and, if possible, loads it up from an existing assembly.

HTTP handler factories are classes that implement a couple of methods on the
IHttpHandlerFactory interface—GetHandler and ReleaseHandler, as shown in Table 18-3.

TABLE 18-3 Members of the IHttpHandlerFactory Interface

Method Description

GetHandler Returns an instance of an HTTP handler to serve the request

ReleaseHandler Takes an existing HTTP handler instance and frees it up or pools it

The GetHandler method has the following signature:

public virtual IHttpHandler GetHandler(HttpContext context,

 string requestType, string url, string pathTranslated);

The requestType argument is a string that evaluates to GET or POST—the HTTP verb of the
request. The last two arguments represent the raw URL of the request and the physical path
behind it. The ReleaseHandler method is a mandatory override for any class that implements
IHttpHandlerFactory; in most cases, it will just have an empty body.

898 Part III ASP.NET Infrastructure

The following listing shows a sample HTTP handler factory that returns different handlers
based on the HTTP verb (GET or POST) used for the request:

class MyHandlerFactory : IHttpHandlerFactory

{

 public IHttpHandler GetHandler(HttpContext context,

 string requestType, String url, String pathTranslated)

 {

 // Feel free to create a pool of HTTP handlers here

 if(context.Request.RequestType.ToLower() == “get”)

 return (IHttpHandler) new MyGetHandler();

 else if(context.Request.RequestType.ToLower() == “post”)

 return (IHttpHandler) new MyPostHandler();

 return null;

 }

 public void ReleaseHandler(IHttpHandler handler)

 {

 // Nothing to do

 }

}

When you use an HTTP handler factory, it’s the factory, not the handler, that needs to be
registered with the ASP.NET configuration file. If you register the handler, it will always be
used to serve requests. If you opt for a factory, you have a chance to decide dynamically
and based on runtime conditions which handler is more appropriate for a certain request. In
 doing so, you can use the IsReusable property of handlers to implement a pool.

Asynchronous Handlers

An asynchronous HTTP handler is a class that implements the IHttpAsyncHandler interface.
The system initiates the call by invoking the BeginProcessRequest method. Next, when the
method ends, a callback function is automatically invoked to terminate the call. In the .NET
Framework, the sole HttpApplication class implements the asynchronous interface. The
 members of IHttpAsyncHandler interface are shown in Table 18-4.

TABLE 18-4 Members of the IHttpAsyncHandler Interface

Method Description

BeginProcessRequest Initiates an asynchronous call to the specified HTTP handler

EndProcessRequest Terminates the asynchronous call

The signature of the BeginProcessRequest method is as follows:

IAsyncResult BeginProcessRequest(HttpContext context,

 AsyncCallback cb, object extraData);

The context argument provides references to intrinsic server objects used to service HTTP
r equests. The second parameter is the AsyncCallback object to invoke when the asynchro-
nous method call is complete. The third parameter is a generic cargo variable that contains
any data you might want to pass to the handler.

 Chapter 18 HTTP Handlers and Modules 899

Note An AsyncCallback object is a delegate that defines the logic needed to finish process-
ing the asynchronous operation. A delegate is a class that holds a reference to a method. A
delegate class has a fixed signature, and it can hold references only to methods that match that
signature. A delegate is equivalent to a type-safe function pointer or a callback. As a result, an
AsyncCallback object is just the code that executes when the asynchronous handler has com-
pleted its job.

The AsyncCallback delegate has the following signature:

public delegate void AsyncCallback(IAsyncResult ar);

It uses the IAsyncResult interface to obtain the status of the asynchronous operation. To il-
lustrate the plumbing of asynchronous handlers, I’ll show you the pseudocode that the HTTP
runtime employs when it deals with asynchronous handlers. The HTTP runtime invokes the
BeginProcessRequest method as illustrated by the following pseudocode:

// Sets an internal member of the HttpContext class with

// the current instance of the asynchronous handler

context.AsyncAppHandler = asyncHandler;

// Invokes the BeginProcessRequest method on the asynchronous HTTP handler

asyncHandler.BeginProcessRequest(context, OnCompletionCallback, context);

The context argument is the current instance of the HttpContext class and represents
the context of the request. A reference to the HTTP context is also passed as the cus-
tom data sent to the handler to process the request. The extraData parameter in the
BeginProcessRequest signature is used to represent the status of the asynchronous operation.
The BeginProcessRequest method returns an object of type HttpAsyncResult—a class that
implements the IAsyncResult interface. The IAsyncResult interface contains a property named
AsyncState that is set with the extraData value—in this case, the HTTP context.

The OnCompletionCallback method is an internal method. It gets automatically triggered
when the asynchronous processing of the request terminates. The following listing illustrates
the pseudocode of the HttpRuntime private method:

// The method must have the signature of an AsyncCallback delegate

private void OnHandlerCompletion(IAsyncResult ar)

{

 // The ar parameter is an instance of HttpAsyncResult

 HttpContext context = (HttpContext) ar.AsyncState;

 // Retrieves the instance of the asynchronous HTTP handler

 // and completes the request

 IHttpAsyncHandler asyncHandler = context.AsyncAppHandler;

 asyncHandler.EndProcessRequest(ar);

 // Finalizes the request as usual

 ...

}

900 Part III ASP.NET Infrastructure

The completion handler retrieves the HTTP context of the request through the AsyncState
property of the IAsyncResult object it gets from the system. As mentioned, the actual object
passed is an instance of the HttpAsyncResult class—in any case, it is the return value of the
BeginProcessRequest method. The completion routine extracts the reference to the asynchro-
nous handler from the context and issues a call to the EndProcessRequest method:

void EndProcessRequest(IAsyncResult result);

The EndProcessRequest method takes the IAsyncResult object returned by the call to
BeginProcessRequest. As implemented in the HttpApplication class, the EndProcessRequest
method does nothing special and is limited to throwing an exception if an error occurred.

Implementing Asynchronous Handlers

Asynchronous handlers essentially serve one particular scenario—when the generation
of the markup is subject to lengthy operations, such as time-consuming database stored
procedures or calls to Web services. In these situations, the ASP.NET thread in charge of
the request is stuck waiting for the operation to complete. Because the thread is a valuable
member of the ASP.NET thread pool, lengthy tasks are potentially the perfect scalability killer.
However, asynchronous handlers are here to help.

The idea is that the request begins on a thread-pool thread, but that thread is released as
soon as the operation begins. In BeginProcessRequest, you typically create your own thread
and start the lengthy operation. BeginProcessRequest doesn’t wait for the operation to com-
plete; therefore, the thread is returned to the pool immediately.

There are a lot of tricky details that this bird’s-eye description just omitted. In the first place,
you should strive to avoid a proliferation of threads. Ideally, you should use a custom thread
pool. Furthermore, you must figure out a way to signal when the lengthy operation has
terminated. This typically entails creating a custom class that implements IAsyncResult and
returning it from BeginProcessRequest. This class embeds a synchronization object—typically
a ManualResetEvent object—that the custom thread carrying the work will signal upon
completion.

In the end, building asynchronous handlers is definitely tricky and not for novice developers.
Very likely, you are more interested in asynchronous pages than in asynchronous HTTP han-
dlers—that is, the same mechanism but applied to .aspx resources. In this case, the “lengthy
task” is merely the ProcessRequest method of the Page class. (Obviously, you configure the
page to execute asynchronously only if the page contains code that might start I/O-bound
and potentially lengthy operations.)

Starting with ASP.NET 2.0, you find ad hoc support for building asynchronous pages more
easily and comfortably. An introductory but still practical chapter on asynchronous pages
can be found in my book Programming ASP.NET Applications—Advanced Topics (Microsoft
Press, 2006).

 Chapter 18 HTTP Handlers and Modules 901

Warning I’ve seen several ASP.NET developers using an .aspx page to serve markup other than
HTML markup. This is not a good idea. An .aspx resource is served by quite a rich and sophis-
ticated HTTP handler—the System.Web.UI.Page class. The ProcessRequest method of this class
entirely provides for the page life cycle as we know it—Init, Load, and PreRender events, as well
as rendering stage, view state, and postback management. Nothing of the kind is really required
if you only need to retrieve and return, say, the bytes of an image.

Writing HTTP Modules

So we’ve learned that any incoming requests for ASP.NET resources are handed over to the
worker process for the actual processing within the context of the CLR. In IIS 6.0, the worker
process is a distinct process from IIS, so if one ASP.NET application crashes, it doesn’t bring
down the whole server.

ASP.NET manages a pool of HttpApplication objects for each running application and picks
up one of the pooled instances to serve a particular request. These objects are based on
the class defined in your global.asax file, or on the base HttpApplication class if global.asax is
missing. The ultimate goal of the HttpApplication object in charge of the request is getting an
HTTP handler.

On the way to the final HTTP handler, the HttpApplication object makes the request pass
through a pipeline of HTTP modules. An HTTP module is a .NET Framework class that imple-
ments the IHttpModule interface. The HTTP modules that filter the raw data within the
request are configured on a per-application basis within the web.config file. All ASP.NET
 applications, though, inherit a bunch of system HTTP modules configured in the global
web.config file.

Generally speaking, an HTTP module can pre-process and post-process a request, and it
intercepts and handles system events as well as events raised by other modules. The highly-
configurable nature of ASP.NET makes it possible for you to also write and register your
own HTTP modules and make them plug into the ASP.NET runtime pipeline, handle system
events, and fire their own events.

The IHttpModule Interface

The IHttpModule interface defines only two methods—Init and Dispose. The Init method
initializes a module and prepares it to handle requests. At this time, you subscribe to receive
notifications for the events of interest. The Dispose method disposes of the resources (all but
memory!) used by the module. Typical tasks you perform within the Dispose method are
closing database connections or file handles.

902 Part III ASP.NET Infrastructure

The IHttpModule methods have the following signatures:

void Init(HttpApplication app);

void Dispose();

The Init method receives a reference to the HttpApplication object that is serving the request.
You can use this reference to wire up to system events. The HttpApplication object also
 features a property named Context that provides access to the intrinsic properties of the
ASP.NET application. In this way, you gain access to Response, Request, Session, and the like.

Table 18-5 lists the events that HTTP modules can listen to and handle.

TABLE 18-5 HttpApplication Events

Event Description

AcquireRequestState,
PostAcquireRequestState

Occurs when the handler that will actually serve the request
acquires the state information associated with the request. The
post event is not available in ASP.NET 1.x.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of
the user. The post event is not available in ASP.NET 1.x.

AuthorizeRequest,
PostAuthorizeRequest

Occurs when a security module has verified user authorization.
The post event is not available in ASP.NET 1.x.

BeginRequest Occurs as soon as the HTTP pipeline begins to process the
request.

Disposed Occurs when the HttpApplication object is disposed of as a
result of a call to Dispose.

EndRequest Occurs as the last event in the HTTP pipeline chain of
 execution.

Error Occurs when an unhandled exception is thrown.

PostMapRequestHandler Occurs when the HTTP handler to serve the request has been
found. The event is not available in ASP.NET 1.x.

PostRequestHandlerExecute Occurs when the HTTP handler of choice finishes execution.
The response text has been generated at this point.

PreRequestHandlerExecute Occurs just before the HTTP handler of choice begins to work.

PreSendRequestContent Occurs just before the ASP.NET runtime sends the response
text to the client.

PreSendRequestHeaders Occurs just before the ASP.NET runtime sends HTTP headers
to the client.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information
a ssociated with the current request. The post event is not
 available in ASP.NET 1.x.

 Chapter 18 HTTP Handlers and Modules 903

Event Description

ResolveRequestCache,
PostResolveRequestCache

Occurs when the ASP.NET runtime resolves the request
through the output cache. The post event is not available in
ASP.NET 1.x.

UpdateRequestCache,
PostUpdateRequestCache

Occurs when the ASP.NET runtime stores the response of the
current request in the output cache to be used to serve subse-
quent requests. The post event is not available in ASP.NET 1.x.

All these events are exposed by the HttpApplication object that an HTTP module receives as
an argument to the Init method.

A Custom HTTP Module

Let’s begin coming to grips with HTTP modules by writing a relatively simple custom module
named Marker that adds a signature at the beginning and end of each page served by the
application. The following code outlines the class we need to write:

using System;

using System.Web;

namespace Core35.Components

{

 public class MarkerModule : IHttpModule

 {

 public void Init(HttpApplication app)

 {

 // Register for pipeline events

 }

 public void Dispose()

 {

 // Nothing to do here

 }

 }

}

The Init method is invoked by the HttpApplication class to load the module. In the Init meth-
od, you normally don’t need to do more than simply register your own event handlers. The
Dispose method is, more often than not, empty. The heart of the HTTP module is really in the
event handlers you define.

Wiring Up Events

The sample Marker module registers a couple of pipeline events. They are BeginRequest
and EndRequest. BeginRequest is the first event that hits the HTTP application object when
the request begins processing. EndRequest is the event that signals the request is going to
be terminated, and it’s your last chance to intervene. By handling these two events, you

904 Part III ASP.NET Infrastructure

can write custom text to the output stream before and after the regular HTTP handler—the
Page-derived class.

The following listing shows the implementation of the Init and Dispose methods for the
sample module:

public void Init(HttpApplication app)

{

 // Register for pipeline events

 app.BeginRequest += new EventHandler(OnBeginRequest);

 app.EndRequest += new EventHandler(OnEndRequest);

}

public void Dispose()

{

}

The BeginRequest and EndRequest event handlers have a similar structure. They obtain a
 reference to the current HttpApplication object from the sender and get the HTTP context
from there. Next, they work with the Response object to append text or a custom header:

public void OnBeginRequest(object sender, EventArgs e)

{

 HttpApplication app = (HttpApplication) sender;

 HttpContext ctx = app.Context;

 // More code here

 ...

 // Add custom header to the HTTP response

 ctx.Response.AppendHeader(“Author”, “DinoE”);

 // PageHeaderText is a constant string defined elsewhere

 ctx.Response.Write(PageHeaderText);

}

public void OnEndRequest(object sender, EventArgs e)

{

 // Get access to the HTTP context

 HttpApplication app = (HttpApplication) sender;

 HttpContext ctx = app.Context;

 // More code here

 ...

 // Append some custom text

 // PageFooterText is a constant string defined elsewhere

 ctx.Response.Write(PageFooterText);

}

OnBeginRequest writes standard page header text and also adds a custom HTTP header.
OnEndRequest simply appends the page footer. The effect of this HTTP module is visible in
Figure 18-9.

 Chapter 18 HTTP Handlers and Modules 905

FIGURE 18-9 The Marker HTTP module adds a header and footer to each page within the application

Registering with the Configuration File

You register a new HTTP module by adding an entry to the <httpModules> section of the
configuration file. The overall syntax of the <httpModules> section closely resembles that of
HTTP handlers. To add a new module, you use the <add> node and specify the name and
type attributes. The name attribute contains the public name of the module. This name is
used to select the module within the HttpApplication’s Modules collection. If the module fires
custom events, this name is also used as the prefix for building automatic event handlers in
the global.asax file:

<system.web>

 <httpModules>

 <add name=”Marker”

 type=”Core35.Components.MarkerModule,Core35Lib” />

 </httpModules>

</system.web>

The type attribute is the usual comma-separated string that contains the name of the class
and the related assembly. The configuration settings can be entered into the application’s
configuration file as well as into the global web.config file. In the former case, only pages
within the application are affected; in the latter case, all pages within all applications are
 processed by the specified module.

The order in which modules are applied depends on the physical order of the modules in
the configuration list. You can remove a system module and replace it with your own that
provides a similar functionality. In this case, in the application’s web.config file you use the
<remove> node to drop the default module and then use <add> to insert your own. If you
want to completely redefine the order of HTTP modules for your application, you can clear
all the default modules by using the <clear> node and then re-register them all in the order
you prefer.

906 Part III ASP.NET Infrastructure

Note HTTP modules are loaded and initialized only once, at the startup of the application.
Unlike HTTP handlers, they apply to just any requests. So when you plan to create a new HTTP
module, you should first wonder whether its functionality should span all possible requests in
the application. Is it possible to choose which requests an HTTP module should process? The Init
method is called only once in the application’s lifetime; but the handlers you register are called
once for each request. So to operate only on certain pages, you can do as follows:

public void OnBeginRequest(object sender, EventArgs e)

{

 HttpApplication app = (HttpApplication) sender;

 HttpContext ctx = app.Context;

 if (!ShouldHook(ctx))

 return;

 ...

}

OnBeginRequest is your handler for the BeginRequest event. The ShouldHook helper function
returns a Boolean value. It is passed the context of the request—that is, any information that is
available on the request. You can code it to check the URL as well as any HTTP content type and
headers.

Accessing Other HTTP Modules

The sample just discussed demonstrates how to wire up pipeline events—that is, events
fired by the HttpApplication object. But what about events fired by other modules? The
HttpApplication object provides a property named Modules that gets the collection of mod-
ules for the current application.

The Modules property is of type HttpModuleCollection and contains the names of
the modules for the application. The collection class inherits from the abstract class
NameObjectCollectionBase, which is a collection of pairs made of a string and an object. The
string indicates the public name of the module; the object is the actual instance of the mod-
ule. To access the module that handles the session state, you need code like this:

SessionStateModule sess = app.Modules[“Session”];

sess.Start += new EventHandler(OnSessionStart);

As mentioned, you can also handle events raised by HTTP modules within the global.asax file
and use the ModuleName_EventName convention to name the event handlers. The name of
the module is just one of the settings you need to define when registering an HTTP module.

The Page Refresh Feature

Let’s examine a practical situation in which the ability to filter the request before it gets pro-
cessed by an HTTP handler helps to implement a feature that would otherwise be impossible.
The postback mechanism has a nasty drawback—if the user refreshes the currently displayed

 Chapter 18 HTTP Handlers and Modules 907

page, the last action taken on the server is blindly repeated. If a new record was added as a
result of a previous posting, for example, the application would attempt to insert an identi-
cal record upon another postback. Of course, this results in the insertion of identical records
and should result in an exception. This snag has existed since the dawn of Web programming
and was certainly not introduced by ASP.NET. To implement nonrepeatable actions, some
countermeasures are required to essentially transform any critical server-side operation into
an idempotency. In algebra, an operation is said to be idempotent if the result doesn’t change
regardless of how many times you execute it. For example, take a look at the following SQL
command:

DELETE FROM employees WHERE employeeid=9

You can execute the command 1000 consecutive times, but only one record at most will ever
be deleted—the one that satisfies the criteria set in the WHERE clause. Consider this com-
mand, instead:

INSERT INTO employees VALUES (...)

Each time you execute the command, a new record might be added to the table. This is
 especially true if you have auto-number key columns or nonunique columns. If the table
design requires that the key be unique and specified explicitly, the second time you run the
command a SQL exception would be thrown.

Although the particular scenario we considered is typically resolved in the data access layer
(DAL), the underlying pattern represents a common issue for most Web applications. So the
open question is, how can we detect whether the page is being posted as the result of an
explicit user action or because the user simply hit F5 or the page refresh () toolbar button?

The Rationale Behind Page Refresh Operations

The page refresh action is a sort of internal browser operation for which the browser doesn’t
provide any external notification in terms of events or callbacks. Technically speaking, the
page refresh consists of the “simple” reiteration of the latest request. The browser caches the
latest request it served and reissues it when the user hits the page refresh key or button. No
browsers that I’m aware of provide any kind of notification for the page refresh event—and if
there are any that do, it’s certainly not a recognized standard.

In light of this, there’s no way the server-side code (for example, ASP.NET, classic ASP, or ISAPI
DLLs) can distinguish a refresh request from an ordinary submit or postback request. To help
ASP.NET detect and handle page refreshes, you need to build surrounding machinery that
makes two otherwise identical requests look different. All known browsers implement the
refresh by resending the last HTTP payload sent; to make the copy look different from the
original, any extra service we write must add more parameters and the ASP.NET page must
be capable of catching them.

908 Part III ASP.NET Infrastructure

I considered some additional requirements. The solution should not rely on session state and
should not tax the server memory too much. It should be relatively easy to deploy and as
unobtrusive as possible.

Outline of the Solution

The solution is based on the idea that each request will be assigned a ticket number and the
HTTP module will track the last-served ticket for each distinct page it processes. If the num-
ber carried by the page is lower than the last-served ticket for the page, it can only mean
that the same request has been served already—namely, a page refresh. The solution con-
sists of a couple of building blocks: an HTTP module to make preliminary checks on the ticket
numbers, and a custom page class that automatically adds a progressive ticket number to
each served page. Making the feature work is a two-step procedure: first, register the HTTP
module; second, change the base code-behind class of each page in the relevant application
to detect browser refreshes.

The HTTP module sits in the middle of the HTTP runtime environment and checks in every
request for a resource in the application. The first time the page is requested (when not
posting back), there will be no ticket assigned. The HTTP module will generate a new ticket
number and store it in the Items collection of the HttpContext object. In addition, the module
initializes the internal counter of the last-served ticket to 0. Each successive time the page is
requested, the module compares the last-served ticket with the page ticket. If the page ticket
is newer, the request is considered a regular postback; otherwise, it will be flagged as a page
refresh. Table 18-6 summarizes the scenarios and related actions.

TABLE 18-6 Scenarios and Actions

Scenario Action

Page has no ticket associated:
No refresh

Counter of the last ticket served is set to 0.

The ticket to use for the next request of the
 current page is generated and stored in Items.

Page has a ticket associated:
Page refresh occurs if the ticket
 associated with the page is lower
than the last served ticket

Counter of the last ticket served is set with the
ticket associated with the page.

The ticket to use for the next request of the
 current page is generated and stored in Items.

Some help from the page class is required to ensure that each request—except the first—
comes with a proper ticket number. That’s why you need to set the code-behind class of each
page that intends to support this feature to a particular class—a process that we’ll discuss
in a moment. The page class will receive two distinct pieces of information from the HTTP
module—the next ticket to store in a hidden field that travels with the page, and whether or
not the request is a page refresh. As an added service to developers, the code-behind class

 Chapter 18 HTTP Handlers and Modules 909

will expose an extra Boolean property—IsRefreshed—to let developers know whether or not
the request is a page refresh or a regular postback.

Important The Items collection on the HttpContext class is a cargo collection purposely created
to let HTTP modules pass information down to pages and HTTP handlers in charge of physically
serving the request. The HTTP module we employ here sets two entries in the Items collection.
One is to let the page know whether the request is a page refresh; another is to let the page
know what the next ticket number is. Having the module pass the page the next ticket number
serves the purpose of keeping the page class behavior as simple and linear as possible, moving
most of the implementation and execution burden on to the HTTP module.

Implementation of the Solution

There are a few open points with the solution I just outlined. First, some state is required.
Where do you keep it? Second, an HTTP module will be called for each incoming request.
How do you distinguish requests for the same page? How do you pass information to the
page? How intelligent do you expect the page to be?

It’s clear that each of these points might be designed and implemented in a different way
than shown here. All design choices made to reach a working solution here should be con-
sidered arbitrary, and they can possibly be replaced with equivalent strategies if you want to
rework the code to better suit your own purposes. Let me also add this disclaimer: I’m not
aware of commercial products and libraries that fix this reposting problem. In the past couple
of years, I’ve been writing articles on the subject of reposting and speaking at various user
groups. The version of the code presented in this next example incorporates the most valu-
able suggestions I’ve collected along the way. One of these suggestions is to move as much
code as possible into the HTTP module, as mentioned in the previous note.

The following code shows the implementation of the HTTP module:

public class RefreshModule : IHttpModule

{

 public void Init(HttpApplication app) {

 app.BeginRequest += new EventHandler(OnAcquireRequestState);

 }

 public void Dispose() {

 }

 void OnAcquireRequestState(object sender, EventArgs e) {

 HttpApplication app = (HttpApplication) sender;

 HttpContext ctx = app.Context;

 RefreshAction.Check(ctx);

 return;

 }

}

910 Part III ASP.NET Infrastructure

The module listens to the BeginRequest event and ends up calling the Check method on the
helper RefreshAction class:

public class RefreshAction

{

 static Hashtable requestHistory = null;

 // Other string constants defined here

 ...

 public static void Check(HttpContext ctx) {

 // Initialize the ticket slot

 EnsureRefreshTicket(ctx);

 // Read the last ticket served in the session (from Session)

 int lastTicket = GetLastRefreshTicket(ctx);

 // Read the ticket of the current request (from a hidden field)

 int thisTicket = GetCurrentRefreshTicket(ctx, lastTicket);

 // Compare tickets

 if (thisTicket > lastTicket ||

 (thisTicket==lastTicket && thisTicket==0)) {

 UpdateLastRefreshTicket(ctx, thisTicket);

 ctx.Items[PageRefreshEntry] = false;

 }

 else

 ctx.Items[PageRefreshEntry] = true;

 }

 // Initialize the internal data store

 static void EnsureRefreshTicket(HttpContext ctx)

 {

 if (requestHistory == null)

 requestHistory = new Hashtable();

 }

 // Return the last-served ticket for the URL

 static int GetLastRefreshTicket(HttpContext ctx)

 {

 // Extract and return the last ticket

 if (!requestHistory.ContainsKey(ctx.Request.Path))

 return 0;

 else

 return (int) requestHistory[ctx.Request.Path];

 }

 // Return the ticket associated with the page

 static int GetCurrentRefreshTicket(HttpContext ctx, int lastTicket)

 {

 int ticket;

 object o = ctx.Request[CurrentRefreshTicketEntry];

 if (o == null)

 ticket = lastTicket;

 else

 ticket = Convert.ToInt32(o);

 Chapter 18 HTTP Handlers and Modules 911

 ctx.Items[RefreshAction.NextPageTicketEntry] = ticket + 1;

 return ticket;

 }

 // Store the last-served ticket for the URL

 static void UpdateLastRefreshTicket(HttpContext ctx, int ticket)

 {

 requestHistory[ctx.Request.Path] = ticket;

 }

}

The Check method performs the following actions. It compares the last-served ticket with the
ticket (if any) provided by the page. The page stores the ticket number in a hidden field that
is read through the Request object interface. The HTTP module maintains a hashtable with an
entry for each distinct URL served. The value in the hashtable stores the last-served ticket for
that URL.

Note The Item indexer property is used to set the last-served ticket instead of the Add method
because Item overwrites existing items. The Add method just returns if the item already exists.

In addition to creating the HTTP module, you also need to arrange a page class to use as the
base for pages wanting to detect browser refreshes. Here’s the code:

// Assume to be in a custom namespace

public class Page : System.Web.UI.Page

{

 public bool IsRefreshed {

 get {

 HttpContext ctx = HttpContext.Current;

 object o = ctx.Items[RefreshAction.PageRefreshEntry];

 if (o == null)

 return false;

 return (bool) o;

 }

 }

 // Handle the PreRenderComplete event

 protected override void OnPreRenderComplete(EventArgs e) {

 base.OnPreRenderComplete(e);

 SaveRefreshState();

 }

 // Create the hidden field to store the current request ticket

 private void SaveRefreshState() {

 HttpContext ctx = HttpContext.Current;

 int ticket = (int) ctx.Items[RefreshAction.NextPageTicketEntry];

 ClientScript.RegisterHiddenField(

 RefreshAction.CurrentRefreshTicketEntry,

 ticket.ToString());

 }

}

912 Part III ASP.NET Infrastructure

The sample page defines a new public Boolean property IsRefreshed that you can use in code
in the same way you would use IsPostBack or IsCallback. It overrides OnPreRenderComplete
to add the hidden field with the page ticket. As mentioned, the page ticket is received from
the HTTP module through an ad hoc (and arbitrarily named) entry in the Items collection.

Figure 18-10 shows a sample page in action. Let’s take a look at the source code of the page.

FIGURE 18-10 The page doesn’t repeat a sensitive action if the user refreshes the browser’s view.

public partial class TestRefresh : Core35.Components.Page

{

 protected void AddContactButton_Click(object sender, EventArgs e)

 {

 Msg.InnerText = “Added”;

 if (!this.IsRefreshed)

 AddRecord(FName.Text, LName.Text);

 else

 Msg.InnerText = “Page refreshed”;

 BindData();

 }

 ...

}

The IsRefreshed property lets you decide what to do when a postback action is requested. In
the preceding code, the AddRecord method is not invoked if the page is refreshing. Needless
to say, IsRefreshed is available only with the custom page class presented here. The custom
page class doesn’t just add the property, it also adds the hidden field, which is essential for
the machinery to work.

 Chapter 18 HTTP Handlers and Modules 913

Conclusion

HTTP handlers and HTTP modules are the building blocks of the ASP.NET platform. ASP.NET
includes several predefined handlers and HTTP modules, but developers can write handlers
and modules of their own to perform a variety of tasks. HTTP handlers, in particular, are
faster than ordinary Web pages and can be used in all circumstances in which you don’t need
state maintenance and postback events. To generate images dynamically on the server, for
example, an HTTP handler is more efficient than a page.

Everything that occurs under the hood of the ASP.NET runtime environment occurs because
of HTTP handlers. When you invoke a Web page or an ASP.NET Web service method, an ap-
propriate HTTP handler gets into the game and serves your request. At the highest level of
abstraction, the behavior of an HTTP handler closely resembles that of an ISAPI extension.
While the similarity makes sense, a key difference exists. HTTP handlers are managed and
CLR-resident components. The CLR, in turn, is hosted by the worker process. An ISAPI exten-
sion, on the other hand, is a Win32 library that can live within the IIS process. In the ASP.NET
process model, the aspnet_isapi component is a true ISAPI extension that collects requests
and dispatches them to the worker process. ASP.NET internally implements an ISAPI-like ex-
tensibility model in which HTTP handlers play the role of ISAPI extensions in the IIS world.
This model changes in IIS 7.0, at which point managed HTTP modules and extensions will also
be recognized within the IIS environment.

HTTP modules are to ISAPI filters what HTTP handlers are to ISAPI extensions. HTTP modules
are good at performing a number of low-level tasks for which tight interaction and integra-
tion with the request/response mechanism is a critical factor. Modules are sort of interceptors
that you can place along an HTTP packet’s path, from the Web server to the ASP.NET run-
time and back. Modules have read and write capabilities, and they can filter and modify the
 contents of both inbound and outbound requests.

Just the Facts

 HTTP handlers and modules are like classic ISAPI extensions and filters except that they
are managed components and provide a much simpler, less error-prone programming
model.

 An HTTP handler is the ASP.NET component in charge of handling a request. In the
end, an ASP.NET page is just an instance of an HTTP handler.

 HTTP handlers are classes that implement the IHttpHandler interface and take care of
processing the payload of the request.

 HTTP modules are classes that implement the IHttpModule interface and listen to
 application-level events.

 Custom HTTP handlers and modules must be registered with the application, or all
 applications in the server machine, through special sections in the web.config file.

Pa
rt

 N
o.

 X
14

-4
01

65

See inside cover for more information

Web Development/
ASP.NET

U.S.A. $59.99
[Recommended]

9 780735 625273

ISBN-10: 0-7356-2527-1
ISBN-13: 978-0-7356-2527-3

9 0 0 0 0

About the Author
Dino Esposito is a well-known ASP.NET and
AJAX expert. He speaks at industry events,
including DevConnections and Microsoft
TechEd, contributes to MSDN® Magazine and
other publications, and is the author of several
Microsoft Press® books, including Introducing
Microsoft ASP.NET AJAX.

Your expert guide to the technology for developing
next-generation Web sites.
Get the defi nitive guide to Microsoft ASP.NET—now updated for
version 3.5. Led by well-known programming expert Dino Esposito,
you’ll delve into core features of ASP.NET as well as the latest
capabilities—and build your profi ciency creating innovative Web
applications.

Discover how to:
• Author rich, visually consistent pages with themes,
 wizards, and master pages
• Use the Dynamic Data feature to build and customize
 data-driven Web applications
• Integrate query operations into the Microsoft .NET
 platform with LINQ
• Perform state, application, and session management for optimal
 performance
• Use AJAX and Microsoft Silverlight™ to create rich, interactive
 Web applications
• Implement security strategies such as forms authentication
 and membership API
• Understand the internal mechanics of Web forms and the
 view state technique
• Employ HTTP handlers and modules to service Web requests
• Learn the three pillars of the ASP.NET data binding model

Programming Microsoft®
ASP.NET 3.5

See inside cover for more information

Get code samples on the Web
For system requirements, see the Introduction.

RESOURCE ROADMAP

Developer Step by Step
 • Hands-on tutorial covering
 fundamental techniques and features
 • Practice fi les on CD
 • Prepares and informs new-to-topic
 programmers

Focused Topics
 • Deep coverage of advanced
 techniques and capabilities
 • Extensive, adaptable coding examples
 • Promotes full mastery of a
 Microsoft technology

Developer Reference
 • Expert coverage of core topics
 • Extensive, pragmatic coding examples
 • Builds professional-level profi ciency
 with a Microsoft technology

