Data Driven Testing with WebUI Test Studio
Overview
Put simply “data driven testing” is a testing methodology in which the same sequence of test steps are performed repeatedly using some data source to drive the input values of those steps and/or the values to expect when performing verifications steps. WebUI Test Studio can be used for data driven testing. It supports four different data sources:
· An Excel spreadsheet
· A CSV file
· An XML formatted file
· A SQL database
There are three steps to creating a data driven test:
1. Add a data source to your test project – in this step you select where to get the data from for your data driven test
2. Bind the data source to your test – since you may have multiple data source definitions in your test project you need to bind your data driven to a specific data source
3. Attach the columns of your data source - in this step you are connecting the inputs of your test and/or the expected values to specific columns of the data source. There is always a column name to each column contained in your data source. You use the column name when attaching to a column.


Step 1 – Adding a data source to your test project
Adding an Excel spreadsheet
It is important to note that the entries in the first row of the Excel spreadsheet are used as the column names when attaching columns to the inputs.
[image: ]
In the above example “Input A” will be the name of the first column, “Input B” will be the name of the second column and “Results” will be the name of the third column. You will use these names when attaching the columns to the input values of the test steps.
QA Edition
From the Project tab click Add -> Excel File
[image: ]
Dev Edition
Open the data source drop down by clicking its down arrow the click Add New -> Excel
[image: ]
In both editions the “Create new data source” dialog will open:
[image: ]
Enter the path to your Excel or click the “...” button to browse and select it. Click OK to save this data source definition.
In the QA Edition a new data source definition will appear in the Data Sources pane.
[image: ]
In the Dev Edition you will be prompted to bind the new data source to the currently open test.
[image: ]
Clicking “Yes” will open the “Bind test to data source” dialog, which will be discussed in the next section. In addition a new entry is added to the Data folder of your test project.
[image: ]
Adding a CSV or XML file
Adding a CSV or XML file to your test project follows the same procedure as adding an Excel spreadsheet. It is important to note that, just like Excel spreadsheets, the first row of data will be used as the column names. You will use these names when attaching the columns to the input values of the test steps.
Adding a Database source
Adding a database source is different than adding an Excel spreadsheet or CSV or XML file. When you select Database in the “Create new data source” dialog you have a number of new options you need to specify in order to define your database connection.
· Provider – In this dropdown you need to select which database provider you want to use to access your database. The list that is displayed here depends on which providers have been installed on your computer. You should contact your database administrator if you’re not sure which one to select.
· Connection string – In this textbox you need to enter a valid connection string that will be supplied to the selected Provider. The connection string instructs the provider the details on how to connect to you database.
· Test – You can click this button to test the connection to your database. If WebUI successfully connects to your database a dialog will be displayed indicating success.
· Friendly Name – In this textbox you enter a name to represent this database connection definition. The name you enter here will be displayed in the Data Sources pane of the QA Edition and in the Data folder of the Dev Edition.
[image: ]


Step 2 – Binding a test to a data source
Now that you have added a data source definition to your test project you are ready to bind your test to this data source.
QA Edition
Select the test you want to bind to the data source then click Bind Test in the ribbon bar.
[image: ]
The “Bind test to data source” dialog will open.
Dev Edition
Click the database icon. It will say “none” next to it (unless this test was previously bound to a data source and you’re changing the binding).
[image: ]
The “Bind test to data source” dialog will open.
[image: ]
Open the Select DataSource drop down and choose the data source you just defined in step 1. If your source is an Excel spreadsheet you will need to choose which sheet from the spreadsheet to use. Once you select a sheet, the data from that sheet will be read and displayed in the dialog.
[image: ]
Note how the first row of the spreadsheet is used as the column names.
You now have the option of limiting which rows from the data source to use. Checking the “Filter data between rows” will enable this feature. If left unchecked all data rows will be used during the test run.
To limit which rows to use, first check the “Filter data between rows” checkbox. Then select which rows you want to use in your test using the numeric up/down counters, then click “Update” to apply the changes.
If your source is a SQL database, you have the option of using T-SQL to select the data you want. Using T-SQL you can get as complex as you need in your SQL select statement. For example:
[image: ]
After entering your select statement, click the “Update” button to test it and display the data it will select in the “Preview Data” table.
Click OK to bind this data source to your test.


Step 3 – Attaching columns to input values
The final step is to attach your test step inputs and verifications to the columns of your data source. Let’s look at a Set Text as our first example.
In the properties of a Set Text test step you will find a Data Driven section. Click on the down arrow to open the Data Driven Editor dialog. Click the Text node to select it. Then enter the name of the column you want to use to set the text when that step runs. In my example I want to use the column “Input A” from my spreadsheet. So I enter “$(Input A)” at the bottom and press Set.
Now when my test runs that input field will actually be set to from the values contained in my “Input A” column instead of what I actually typed when my test was recorded.
[image: ]
Most action steps have at least one property that can be bound to a column from your data source.
Now let’s look at data binding a verification to a data source column. The procedure is the same. The only difference is which property you are selecting to bind to a column from the data source.
[image: ]


Multi-level tests
That covers how a single level test behaves. Suppose I have more than one level using the “Test as step” feature? What happens? This is where WebUI Test Studio can be both complex and powerful. Here are some possible combinations and their behavior:
Data bound Test A calls Test B
In this scenario the data source definition for Test A will propagate down to Test B and be available for use by Test B. This is useful if you want to have one large data source supplying data to all the tests in a chain. Test A will run X times calling Test B for each iteration.
Test A calls data bound Test B
In this scenario Test A will execute only once. It will call Test B which will execute X times as defined by the data source. This is useful if you want Test A to perform an operation once (a login for example) then execute a sequence of data driven tests.
Data bound Test A calls data bound Test B
In this scenario Test A will execute X times according to the number of rows in its data source and call Test B X times. Test B will in turn execute Y times according to number of rows in its data source before returning to Test A. In the end Test B will execute a total of X * Y times. This is useful if you want to perform the same data driven test in different environments (alternate login ID’s for example).
image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.png

image2.png

image3.png

image4.png

image5.png

