

WebUI Test Studio Developer Edition
Made Easy

by Falafel Software Inc.

Welcome to WebUI Test Studio Developer Edition Made
Easy.

We hope you enjoy the book as much as we, at Falafel
Software, enjoyed creating it.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: April 2010

WebUI Test Studio Developer Edition Made Easy

© 2010 Falafel Software Inc.

Publisher

Special thanks to:

All the team members at Telerik worldwide for creating a magnificant
piece of software in WebUI Test Studio for Developers. The authors
also would like to thank the Falafel team members in Colorado,
Texas, Michigan, North Carolina and California for their feedback,
guidance and recommendations on the subjects of the courseware

Falafel would like to thank Faris Sweis, Chris Eyhorn, Vassil Terziev
and Svetozar Georgiev for their trust and belief in the quality of
Falafel Software's work .

Falafel would like to thank Todd Anglin and Gabe Sumner for their
support.

Last but not least, thank you to all our families for their support and
patience while we wrote the book.

Authors

Technical Editors

Cover Designer

Falafel Software Inc.

Noel Rice
Lino Tadros

Lino Tadros
Noel Rice

Matt Kurvin

Production

Falafel Software Inc.

Team Coordinator
Lino Tadros

WebUI Test Studio Developer Edition Made Easy4

© 2010 Falafel Software Inc.

Table of Contents

Foreword 0

Part I Introduction 11

... 111 Who Should Read This Courseware

... 112 About Telerik

... 113 About Falafel

... 124 Introducing WebUI Test Studio

Part II Installation 17

... 171 Objectives

... 182 Install WebUI Test Studio

... 213 Wrap Up

Part III Getting Started 23

... 231 Objectives

... 232 Walk Through

.. 23Create a New Visual Studio Test Project

.. 24Create a New WebAii Test

.. 26Record a WebAii Test

.. 33Run a WebAii Test

.. 36Modify a WebAii Test

... 373 Wrap Up

Part IV Visual Studio Integration 39

... 391 Objectives

... 402 Tour of the Environment

... 403 WebUI Test Studio Toolbar

... 414 Test Tab

.. 42Storyboard Tab

.. 43Steps Tab

... 46Walk Through

... 52Test Case Reuse Walk Through

.. 53Data Tab

... 545 Test Tab Toolbar

... 556 Recording Surface

.. 56Toolbar

.. 57Elements Menu

.. 61Common Tasks Menu

.. 62Walk Through

... 687 Elements Explorer

.. 68Toolbar

.. 69Properties pane

5Contents

5

© 2010 Falafel Software Inc.

.. 70Context Menu

.. 71Find Expression Builder

... 748 DOM Explorer

... 819 User Settings

.. 81Overview

.. 81Automation Overlay Surface

.. 82Recording Options

.. 83Identification Logic

.. 84Translators

.. 84Installation

... 8510 Step Failure Details Dialog

... 8911 Wrap Up

Part V Verification Engine 91

... 911 Objectives

... 912 Overview

... 923 Verification Access

... 944 Sentence Verification Builder

... 955 Sentence Structure

... 956 Verification Types

.. 95IsVisible

.. 96Content

.. 99Attribute

.. 100Style

.. 100DropDown

.. 101AJAX and Silverlight

... 1027 Verification Types Walk Through

.. 102Test Project Setup

.. 103Create Verifications

... 1058 3D Viewer

... 1079 3D Viewer Walk Through

.. 107Test Project Setup

.. 108Use 3D Viewer to Create Verifications

... 11110 Verification Walk Through

.. 112Test Project Setup

.. 113Successful Login Test

.. 117Build Master Test

.. 120Incorrect User Name Test

.. 122Incorrect Password Test

.. 124Empty User Name Test

.. 126Empty Password Test

... 12711 Wrap Up

Part VI Translators 129

... 1291 Objectives

... 1302 Overview

... 1333 Standard vs Translated Comparison

WebUI Test Studio Developer Edition Made Easy6

© 2010 Falafel Software Inc.

... 1344 Walk Through

... 1385 Wrap Up

Part VII Testing AJAX Applications 140

... 1401 Objectives

... 1412 JavaScript

... 1423 Introducing AJAX

... 1434 ASP.NET AJAX

.. 145Walk Through

... 146Project Setup

... 147Add Test Steps

... 149Intermittent Timing Problems

... 1535 RadControls for ASP.NET AJAX

.. 155Walk Through

... 155Project Setup

... 156Testing RadComboBox

... 1596 Testing RadGrid

... 1637 Wrap Up

Part VIII Drag and Drop 165

... 1651 Objectives

... 1652 Overview

... 1663 Drag & Drop Basics

... 1684 Dragging to an Element

... 1705 Hitting a Moving Target

... 1716 Using the Elements Menu

... 1747 Translators

... 1758 Wrap Up

Part IX Testing Silverlight Applications 177

... 1771 Objectives

... 1782 Overview

... 1803 Visual Studio Integration

... 1884 Cascading Combo Boxes Walk Through

... 1925 RadGridView Walk Through

... 1986 Validation Testing Walk Through

.. 199Test Project Setup

.. 200Master Test

.. 202Check for No Errors

.. 207Check for Errors

.. 209Validating for No Entry

.. 211Validate Calendar

.. 213Validate Slider

... 2157 Wrap Up

7Contents

7

© 2010 Falafel Software Inc.

Part X Handling Dialogs 217

... 2171 Objectives

... 2172 Overview

... 2183 HTML Popups

... 2214 Win32 Dialogs

.. 222Alert

.. 223Logon

.. 225File Upload

.. 227Download

.. 228Generic

... 2285 Wrap Up

Part XI MSTest 230

... 2301 Objectives

... 2302 Overview

.. 231Running Tests From the Command Line

.. 232Understanding Key MSTest Parameters

... 2353 Wrap Up

Part XII Unit Testing 237

... 2371 Objectives

... 2372 Overview

... 2383 Creating a Unit Test

... 2444 Wrap Up

Part XIII Load Testing 246

... 2461 Objectives

... 2462 Overview

... 2473 Creating a Load Test

... 2534 Web Test Step Properties

... 2555 Load Test Settings

... 2566 Wrap Up

Part XIV WebAii Framework 258

... 2581 Objectives

... 2592 Overview

... 2613 Getting Started Walk Through

... 2654 Common Operations

.. 266Navigate

... 266NavigateTo()

... 266Relative Urls

... 267WaitForUrl()

.. 268Locate Elements

WebUI Test Studio Developer Edition Made Easy8

© 2010 Falafel Software Inc.

... 269Finding a Single Element

... 269Minimal Example

... 272Find Methods

... 285Find Operators

... 286RadControls Wrappers

... 287Finding Multiple Elements

... 290Elements Explorer

... 291Search Scope

... 293jQuery Support

.. 293Wait for Elements

... 294WaitSync

... 296Wait

... 301HtmlWait

.. 302Work With Element Properties

.. 305Make Assertions

... 306Assert

... 309AssertAttribute

... 311AssertStyle

... 312AssertContent

... 313AssertTable

... 315AssertSelect

... 316AssertCheck

... 3175 Testing Silverlight Applications

.. 318Finding Silverlight Elements

.. 323Find Strategies

.. 324Wait for Elements

... 3266 Automating the Browser

... 3337 Walk Through

... 3388 Wrap Up

Part XV Data Driven Testing 340

... 3401 Objectives

... 3402 Overview

... 3423 The Built-In Grid

.. 343Walk Through

... 3464 Connecting to External Data

.. 347Spreadsheet Files

.. 349XML Files

.. 351Database Tables

... 3555 Using Code to Access Data

... 3566 Advanced Scenarios

... 3577 Wrap Up

Part XVI Test Regions 359

... 3591 Objectives

... 3592 Overview

... 3613 TestRegion Sample

... 3644 TestRegion in ASP.NET

9Contents

9

© 2010 Falafel Software Inc.

... 3695 Wrap Up

Part XVII Debugging 371

... 3711 Objectives

... 3722 Overview

... 3763 Debugging Walk Through

... 3824 Wrap Up

Part XVIII Support and Services 384

Index 385

Part

I
Introduction

Introduction 11

© 2010 Falafel Software Inc.

1 Introduction

1.1 Who Should Read This Courseware

This courseware assumes that you are familiar with VB.NET or C# code. The courseware uses Visual
Studio 2008/2010 and assumes you know your way around one of these environments. You should be able
to navigate the basic functional areas of the IDE (e.g. Solution Explorer, Properties, code/designer web
pages etc.) and be able to run applications.

This courseware assumes some familiarity with testing and focuses on adapting your existing skills to the
WebUI Test Studio product.

1.2 About Telerik

Telerik is a leading vendor of development, automated testing, and team productivity tools, as well as UI
components and content management solutions for Microsoft .NET. Created with passion, Telerik products
help software development teams every day to be more productive and to deliver reliable applications on
time and under budget. Telerik was founded in 2002 by a few friends with a simple idea – to “deliver more
than expected”. Nowadays, a market leader with a team of more than 220 professionals spread around the
globe in 5 offices, Telerik is still true to its motto – building outstanding products and serving customers with
fanatical dedication.

1.3 About Falafel

Founded in 2003, Falafel Software, Inc. provides the highest quality software development, consultation, and
training services available. Starting initially with consulting and training, Falafel Software found itself
expanding rapidly on the excellence of its engineers and the incredible sense of teamwork exhibited by
everyone in the company. This common mutual respect for each other's talents has been a major asset for
Falafel, causing extraordinary growth, and a level of quality that very few other IT companies can match.
Employees include best-selling authors, industry speakers, technology decision makers, and former
Microsoft and Borland engineers. All of Falafel engineers are Microsoft Certified Professionals, Certified
Application Developers, or Most Valuable Professionals.

Falafel has written the following Telerik courseware:

RadControls for ASP.NET

RadControls for ASP.NET AJAX

RadControls for Winforms

RadControls for Silverlight

Telerik Reporting

Telerik OpenAccess ORM

Sitefinity User Manual

WebUI Test Studio Developer Edition Made Easy12

© 2010 Falafel Software Inc.

1.4 Introducing WebUI Test Studio

Telerik WebUI Test Studio delivers dramatically better productivity than code-based frameworks thanks to
its robust test recording surface. WebUI Test Studio requires no coding. Navigate, point and click is all it
takes to generate most automated tests. Telerik automated testing tools come with proprietary tools to
further enhance your productivity:

No more wasted time on determining coordinates. A unique configurable algorithm is used to
automatically determine the best parameters to use to locate a specific element on a page. Fine tune
the find criteria for special cases. Intelligent tools help you correct problem situations.

Introduction 13

© 2010 Falafel Software Inc.

Telerik WebUI Test Studio handles failure resolution of tests on a completely new level. Its capture
feature allows you to see the DOM in its recorded and executed versions and quickly spot the reason
for the failure. Additionally, when changing elements in a test, you can simply check if the change is
valid without running the whole test.

WebUI Test Studio Developer Edition Made Easy14

© 2010 Falafel Software Inc.

You don’t need to duplicate your tests for different browsers anymore. You can have your test recorded
just once and played on multiple browsers without re-recording.

To make crafting verification and synchronization as simple as possible, we present an innovative
adaptive wizard that guides you through crafting verifications and test synchronization with elements.
Using the “Sentence Based” UI you can craft a wide range of verification types.

All web page elements targeted for automation in your tests are abstracted out and filed in the
"Elements Explorer". If there are multiple actions that use the same element, the element is referenced
from the “Elements Explorer” instead of being duplicated in the test. This enables you to maintain only
one unique element and update it in the event of a required change instead of having to modify multiple
duplicate elements.

Introduction 15

© 2010 Falafel Software Inc.

As you record your test, a screenshot of your action on the target element is captured to the Visual
Storyboard. This gives you a visual flow of how your test has progressed. It is a great time saver in
helping others understand the state of the test at the time of recording along with what the target
elements of the tests were.

Part

II
Installation

Installation 17

© 2010 Falafel Software Inc.

2 Installation

2.1 Objectives

In this chapter you will learn how to install Telerik WebUI Test Studio Developer Edition.

WebUI Test Studio Developer Edition Made Easy18

© 2010 Falafel Software Inc.

2.2 Install WebUI Test Studio

1) To install Telerik WebUI Test Studio Developer Edition, run the installation executable and follow the
prompts in the wizard.

2) When you first run the installation, the setup wizard dialog displays a welcome message. Click the
Next button to continue.

3) The next page of the setup wizard displays the "End-User License Agreement". Review the license
agreement and if you approve the agreement, click the "Accept the terms in the License
Agreement" checkbox. Click the Next button to continue.

Installation 19

© 2010 Falafel Software Inc.

4) The next page of the setup wizard displays the "Choose Setup Type" page. Click either the Complete
button to install all features and additional material. Click the Custom button if you want to choose
which features you want installed.

 Notes

If you choose the Custom button, an additional page, "Select Features to Install", will appear. Use
the drop down list next to each feature to tailor your installation. You can also specify an Install
Path that is different from the default. You can leave the default path, enter a new path directly
or click the Browse... button to select a new path. Click the Next button to continue.

WebUI Test Studio Developer Edition Made Easy20

© 2010 Falafel Software Inc.

5) The next page of the setup wizard displays the "Ready to install WebUI Test Studio" page. This page
lists the features that will be installed and is your last chance to click the Back button to make any
changes before actually installing the product. Click the Install button to install Telerik WebUI Test
Studio Developer Edition to your computer.

6) The status of the installation will display on the "Installing WebUI Test Studio" page. Depending on the
resources for your computer, this step make take some time to complete.

Installation 21

© 2010 Falafel Software Inc.

7) When Telerik WebUI Test Studio Developer Edition has been installed to your computer, the last page
of the wizard displays a completion message. If you want to run the WebUI Test Studio QA version,
leave the "Launch Test Studio" checkbox selected. Click the Register Now button to both register the
product and get access to a free weekly demonstration webinar. Click the Finish button to close the
setup wizard.

Telerik WebUI Test Studio Developer Edition will now be available from the Windows Start menu, from a
shortcut placed on the desktop and also from inside the Visual Studio environment.

2.3 Wrap Up

In this chapter you learned how to install Telerik WebUI Test Studio Developer Edition.

Part

III
Getting Started

Getting Started 23

© 2010 Falafel Software Inc.

3 Getting Started

3.1 Objectives

In this chapter you will learn how to create a new Visual Studio test project and a WebUI Test Studio test.
You will learn how to interactively record a test, how to run the test and how to look at the results. You will
run the test at full speed and also learn how to enable "Annotations" in order to watch the test at a slower
speed, with notes displayed as the test runs. You will learn how to modify the test and see both failing and
succeeding test steps and drill down to greater detail provided for failing steps.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\GettingStarted\GettingStarted.sln

3.2 Walk Through

3.2.1 Create a New Visual Studio Test Project

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project:

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

WebUI Test Studio Developer Edition Made Easy24

© 2010 Falafel Software Inc.

3.2.2 Create a New WebAii Test

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

2) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

Getting Started 25

© 2010 Falafel Software Inc.

3) When the WebUI Test Studio test is created, several new areas become available: a Test Tab that
contains a Storyboard Tab, Steps Tab and Data Tab, and a Elements Explorer that outlines named
elements that are specific to your test. We will be talking in detail about all of these in the upcoming
"Visual Studio Integration" chapter.

WebUI Test Studio Developer Edition Made Easy26

© 2010 Falafel Software Inc.

3.2.3 Record a WebAii Test

1) Locate the Record button and click it. This will display the Recording Surface.

 Notes

It may take a moment to initially invoke the browser. The WebUI Test Studio toolbar will be
anchored to the title bar area of the browser.

...and the browser will display instructions on how to use the Recording Surface:

2) In the the Recording Surface, enter "www.google.com" to the browser address bar and then press the
Enter key. This will load the "Google" web page.

http://www.google.com

Getting Started 27

© 2010 Falafel Software Inc.

3) Notice that a "Navigate to..." test step has been added in the Steps Tab.

4) Enter "WebAii" to the Google web page search edit box and click the "Google Search" button.

 Notes

If the Google page displays a drop down list of search possibilities, you can click the search
button that appears there, but object names and step descriptions will not exactly match those
described below.

5) Notice that two new lines, the entry and the button click, have been added as test steps to the Steps
Tab.

6) Locate the Highlighting button above the Recording Surface and click it.

WebUI Test Studio Developer Edition Made Easy28

© 2010 Falafel Software Inc.

7) Now, elements will be highlighted as the mouse passes over in the Recording Surface. The screenshot
below shows the mouse hovering above the "Google" logo image. After waiting a moment, a small circle
called a "Nub" displays above the element.

 Notes

The Nub displays a menu of tasks that can be performed on the web page element. This interface will
be described in detail in the upcoming Visual Studio Integration chapter.

Getting Started 29

© 2010 Falafel Software Inc.

8) Hover the mouse over the first item in the Google search. Click the Nub to display the Elements Menu.
Move the mouse over the buttons until you locate the Quick Tasks button. Click the Quick Tasks
button.

Note: The results that Google returns may change over time, but will typically contain the word we're
counting on: "WebAii".

WebUI Test Studio Developer Edition Made Easy30

© 2010 Falafel Software Inc.

9) Clicking the Quick Tasks button produces a context sensitive list of useful possibilities that we can
perform against the highlighted element. Double click the first item in the list. This will close the
Elements Menu and add a test step.

10)Notice that the new test step performs a verification that the text of the highlighted element contains a
specific string...

Getting Started 31

© 2010 Falafel Software Inc.

 Notes

Also notice that an "ArtOfTestLink" element used by the test step is added to the Elements Explorer.

11)With the "Verify..." step still selected in the Elements Explorer, in the Properties pane, locate the
ExpectedString property and change its value to "WebAii". Locate the TagSegmentType property
and select "InnerText" from the drop down list.

WebUI Test Studio Developer Edition Made Easy32

© 2010 Falafel Software Inc.

 Notes

WebUI Test Studio lets you verify properties of an element by looking at different parts of the
element, e.g. the "InnerMarkup" and comparing that information against a particular string. You
can compare with simple criteria such as "contains" or "doesn't contain". You can also use
Regular Expressions for more detailed and rigorous examinations. We will look at verifications in
more detail in upcoming chapters "Visual Studio Integration" and "Verification Engine".

Getting Started 33

© 2010 Falafel Software Inc.

3.2.4 Run a WebAii Test

1) Locate the Quick Execute button in the Steps Tab and click it. This will run the WebUI Test Studio test
with all the test steps you have defined so far.

2) A console window outputs the results as the test is run. The actions you defined in the test will also take
place in the browser, but at a very quick pace. When the test completes, the browser window will close.

3) The Steps Tab will display a test summary. Each test step will show a green icon to indicate success.

4) In the Steps Tab toolbar, locate the View Test Log button and click it.

WebUI Test Studio Developer Edition Made Easy34

© 2010 Falafel Software Inc.

5) This will display a simple text viewer that will allow you to view or copy the test results to the clipboard.

 Notes

This is just a quick summary look at the test results. If you need to do more with the test results or
automate based on the output, you can use MSTest to run the test. See the MSTest chapter for
more information.

6) The test may have run quickly without allowing you to easily see what was happening in the browser. We
can turn on "Annotations" to slow down the action and automatically display notes as the test runs. Click
the Enable Annotations to enable annotations.

7) Click the Quick Execute button to rerun the test.

Getting Started 35

© 2010 Falafel Software Inc.

8) As the test runs the element being tested will be highlighted and an annotation will display.

WebUI Test Studio Developer Edition Made Easy36

© 2010 Falafel Software Inc.

3.2.5 Modify a WebAii Test

Lets go back to the verification we performed against an element's inner text and change it so the test fails.

1) In the Steps Tab, select the verification step.

2) In the Properties pane, change the ExpectedString to "xyz".

3) Click the Quick Execute button to rerun the test.

4) The Steps Tab summary indicates that only three of the four tests passed and the step that failed
displays an "X" icon. Double-click the icon to display detail about the error.

Getting Started 37

© 2010 Falafel Software Inc.

5) The "Step Failure Details" breaks down the exact cause for the test failing. Here we can see that the
expected value for the ExpectedString property was "xyz", but the actual value was "ArtOfTest:..".
This screen also allows you view the exception details, the complete test log and to resolve the failure
right on the spot. See the Visual Studio Integration for more information on the Step Failure Details
dialog.

3.3 Wrap Up

In this chapter you learned how to create a new Visual Studio test project and a WebUI Test Studio test.
You learned how to interactively record a test, how to run the test and how to look at the results. You ran
the test at full speed and also learned how to enable "Annotations" in order to watch the test at a slower
speed. You learned how to modify the test to see both failing and succeeding test steps and you examined
the information provided for failing steps.

Part

IV
Visual Studio Integration

Visual Studio Integration 39

© 2010 Falafel Software Inc.

4 Visual Studio Integration

4.1 Objectives

This chapter explains how WebUI Test Studio is integrated with Visual Studio. The chapter starts with a
tour of the panels and toolbars in Visual Studio that make up the WebUI Test Studio environment, then
shows how to use the Storyboard Tab to organize and navigate test steps, the basics of building simple
data driven tests and how to interact with the Visual Studio testing mechanism. You will learn how to create
tests interactively using the Recording Surface, the Common Tasks Menu and the Elements Menu.

You will work with the Elements Explorer to organize elements used in test steps, learn how the Elements
Explorer interacts with the Properties pane and fine tune how elements are located and recognized. You will
use the Steps Tab to manage test steps and add to add unique types of test steps such as screen
captures, delays and annotations. You will also learn how to reuse existing tests.

You will use the DOM Explorer to look at all elements in a page. In particular, you will learn how to search
for elements using simple comparisons and more complex searches using comparison operators, Regex
and XPath.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Visual Studio Integration\VisualStudioIntegration.sln

WebUI Test Studio Developer Edition Made Easy40

© 2010 Falafel Software Inc.

4.2 Tour of the Environment

The WebUI Test Studio environment is contained within multiple Visual Studio windows. The panes may be
docked in different locations in your particular Visual Studio configuration.

WebUI Test Studio Toolbar: has tools to display the Elements Explorer pane and the Settings dialog.

Test Tab: This tab represents a single WebAii test and contains tabs for the Storyboard Tab, Steps
Tab and Data Tab. The toolbar at the top of this area allows you to perform actions against the test as
a whole, such as converting the test to an MSTest or starting test recording.

Elements Explorer: Unlike the DOM Explorer, the Elements Explorer shows only specific elements
relevant to your test. You can right-click an element to select actions from the context menu. These
actions can be performed against the element or children of an element. Elements are added to the
Elements Explorer from multiple origins including the Recording Surface and the DOM Explorer.
Elements are also added automatically when they are used in test steps.

4.3 WebUI Test Studio Toolbar

The WebUI Test Studio Toolbar is a top level Visual Studio toolbar that have actions that work against the
product in Visual Studio as a whole. If the toolbar is not visible, enable it through the Visual Studio menu
View > Toolbars > WebUI Test Studio option. The screenshot below shows the toolbar and the available
tools.

Visual Studio Integration 41

© 2010 Falafel Software Inc.

4.4 Test Tab

The Test Tab represents a single WebAii test and contains Storyboard Tab, Steps Tab, Data Tab and a
toolbar. Use this panel to:

Organize and navigate test steps.

Build Data Driven tests.

Start recording a test interactively.

Add code to a test.

Interact with the built-in testing features of Visual Studio.

WebUI Test Studio Developer Edition Made Easy42

© 2010 Falafel Software Inc.

4.4.1 Storyboard Tab

The Storyboard Tab is a three-dimensional, visual representation of test steps. WebUI Test Studio
automatically takes screenshots where appropriate and highlights the element of interest for each
screenshot. You can click background images to bring the image "up front". The screenshot below shows
step #3, "Click 'BtnGSubmit'" as the current step, and where the right-most background is being clicked to
make that step the current test step.

The Storyboard Tab is synchronized with the
selected item of the Steps Tab so that items
clicked in the Storyboard Tab will be highlighted
in the Steps Tab list of test steps.

Visual Studio Integration 43

© 2010 Falafel Software Inc.

4.4.2 Steps Tab

The Steps Tab contains the individual list of test steps, controls test step order and the speed that the
steps are executed. You can also use the Steps Tab to add delays, annotations, dialog handling and other
specialized test steps.

Toolbar

Starting with the buttons across the top of the Steps Tab toolbar:

Clear all Steps removes all test steps in one shot.

Move Selected Down/Up moves selected test steps down or up in the list.

Undo/Redo rewinds previous actions in the Steps Tab.

Select Browser presents a drop down list of browsers (e.g. Internet Explorer, Firefox, Safari). The
browser selected here will be used when the Quick Execute button is pressed.

Enable Annotation causes the test to run slower, with pauses specified in milliseconds by Execution
Delay. A highlighted annotation will appear in the browser as the test executes describing each step.

Quick Execute runs the test in the selected browser.

WebUI Test Studio Developer Edition Made Easy44

© 2010 Falafel Software Inc.

Additional Steps allows you to add specialized test steps that don't originate from interaction with the
browser. Here are some of the items you can add and the unique properties that can be set for each:

Screen capture: CaptureType can be Desktop or Browser. FileNamePrefix is "Snapshot" by
default. Important note!: To make screen capture work you cannot run the test using the "Quick
Execute button". Instead, run the test from the Visual Studio Test menu. You can use the Visual Studio
menu Test > Windows > Test View, right-click your WebAii Test and select Run Selection from the
context menu.

Custom Annotation: Annotations are notes that display right in the browser as the test executes. You
can use Custom Annotation to communicate with whoever is reviewing the tests. If you wanted to point
out some information to the developer, e.g. "This test step fails intermittently", then you could add that
message as an annotation. AnnotationText is the text displayed on the screen. DisplayLocation
determines where the annotation displays relative to the element such as TopCenter or TopLeftCorner.
DisplayTime is the number of milliseconds that the annotation displays.

Test as Step lets you run a another WebAii Test as a single step. TestPath is the path to the WebAii
test.

Delay Execution lets you set the WaitTime property to a number of milliseconds.

Clear Cookies clears all cookies from the active browser unconditionally. This is useful when you want
to start a clean test without saved information (e.g. user id), or saved state information ("logged in", last
visit date, preferences, etc).

Wait for Url suspends the test until a particular Url is loaded into the browser address bar. "Wait for
Url" is particularly useful when you have a redirection and need to wait for the final Url to be loaded.

Inspection Point pauses the test and displays the DOM Explorer.

Recapture Storyboard runs your test and stores new screenshots of each test step to the
storyboard.

Preview Code shows what your test will look like in code-behind form.

Visual Studio Integration 45

© 2010 Falafel Software Inc.

Test Steps Grid

The actions you can take on test steps are to enable/disable a step or delete a step. The other columns are
informational and show the type of test step as an icon, a sequential number, a description of the test step
and a "Continue on Failure" icon. Each test step also has a context menu with further actions that can be
taken. Note that some context menu items will show up only for certain test step types. For example, the
Load Page... item displays for Navigation test steps.

Customize Step in Code creates a new test method in the code-behind. You'll also notice that the
description and icon change to indicate the step is coded. Once you have converted to code, you
cannot convert back. See the WebAii Framework chapter for more information

View Code simply navigates you to the code-behind for the test.

Continue On Failure allows the test to carry on even if the step fails.

Set as Wait can be used to convert a Verification step type to a Wait step type. Instead of passing or
failing based on a comparison, we're waiting for the comparison to be true before proceeding. Converting
to a Wait enables the Timeout and CheckInterval properties. You can toggle back and forth between the
test step as Verification and Wait.

Enabled allows you to temporarily turn off a test step and is the same option that can be set in the
Enabled checkbox within the test steps grid.

Record Next Step... allows you to start recording following the step selected in the grid or optionally,
to start recording after the last step.

Edit... is enabled for Verification steps and displays the Sentence Verification Builder. See the
"Verification Engine" chapter for more information.

Properties simply navigates over to the Properties pane so you can change the properties for the
selected test step.

WebUI Test Studio Developer Edition Made Easy46

© 2010 Falafel Software Inc.

4.4.2.1 Walk Through

This walk through will help familiarize you with the Steps Tab and give you a chance to use some of the
features discussed so far.

Adding New Test Steps

1) Start with the "Getting Started" Walk Through project or a copy.

2) In the Steps Tab, select the first test step (that navigates to www.google.com). Right-click the step and
select Record Next Step > After Selected Step from the context menu.

3) From the Add... menu select Wait for Url. This will add a test step that waits for the www.google.com
url. The first two steps should now look like the screenshot below. Set the Url to www.google.com

 Notes

Once the Wait step is added you can tweak the WaitTimeout (in milliseconds), the Url and the
IsPartial properties. When IsPartial is true, the Url can be appended with additional path
information and still match. For example, Url could be "http:\\www.xyz.com" and both http:\
\www.xyz.com\test and http:\\www.xyz.com\version2 would match.

4) In the Steps Tab, select the step that clicks the "Search" button. Right-click the step and select
Record Next Step > After Selected Step from the context menu.

5) From the Add... menu select Delay Execution. Use the Properties pane to change the WaitTime
property to "1000".

6) From the Add... menu select Capture > Desktop. Use the Properties pane to change the
FileNamePrefix property to "GoogleTest".

Visual Studio Integration 47

© 2010 Falafel Software Inc.

7) From the Add... menu select Capture > Browser. Use the Properties pane to change the
FileNamePrefix property to "GoogleTest".

The affected steps in the Steps Tab should now look like the screenshot below:

8) From the Add... menu select Custom Annotation. Use the Properties pane to change the
AnnotationText property to "Watch for regression bug #1123 where text is truncated". Set the
DisplayLocation to "AbsoluteCenter" and the DisplayTime to "2000". Now drag the test step to a
point just before "Set 'QText' text to 'WebAii'".

This step simulates communication you might have as a tester with a developer, using the annotation
to let the developer know of a specific condition in the test to look out for.

9) From the Add... menu select Inspection Point. Make this the last step in the test.

Running the Test

1) In the Steps Tab tool bar, select Internet Explorer as the browser type.

2) Click the Enable Annotations button.

WebUI Test Studio Developer Edition Made Easy48

© 2010 Falafel Software Inc.

3) Click the Quick Execute button to run the test. All test steps should pass. Watch out for the Inspection
Point step at the end that displays the Inspection Point dialog that shows a tree view of the page in DOM
(Document Object Model) form. Close the Inspection Point dialog to let the test complete.

4) Change the browser type to "Safari" and rerun the test using the Quick Execute button. All test steps
should pass. Note that you need to have the Safari browser installed to perform this step.

5) Change the browser type to "Firefox" and rerun the test using the Quick Execute button. All test steps
should pass. Note that you need to have the Firefox browser installed to perform this step.

So, where are the screen captures kept? The screen capture steps will run, but the log will show "Image not
captured to disk. CreateLogFile is set to 'false'." To save your screen captures to disk, see the next section
that shows how to execute your test in MSTest.

Visual Studio Integration 49

© 2010 Falafel Software Inc.

Running in MSTest

Some features, notably screen capture, need to be run from MSTest to work. Also be aware that
annotations will only show when initiated from the Quick Execute button. To run from MSTest, first select
the Visual Studio menu Test > Windows > Test View. Locate the test in the Test View panel, right-click
and select the Run Selection option from the context menu.

The Test Results panel will display in Visual Studio and show the current status of the test. Be aware that
annotations will not display when running from MSTest.

Viewing Test Results

When the test completes, a completion message link will display and the result of the test will display next
to the test. Clicking the link will display a short summary. Double-clicking the test detail will display the log
of the test.

WebUI Test Studio Developer Edition Made Easy50

© 2010 Falafel Software Inc.

The log shows a path to the persisted test results where you can find the screen captures for the test.

A "\TestResults" folder will have been created in your project directory. It will contain a "trx" test results file
and a matching folder that contains the screenshots. Both items will use the name of the computer and
append a date and time stamp.

Visual Studio Integration 51

© 2010 Falafel Software Inc.

The "trx" file is simply an XML file something like the example shown in the screenshot below.

The matching folder holds an "\Out" directory with the output from the text, including an "aii" XML file of the
test itself and the screen captures from the test execution. Notice the two "png" screen capture files have
been named according to the FileNamePrefix property that we set earlier to "GoogleTest".

WebUI Test Studio Developer Edition Made Easy52

© 2010 Falafel Software Inc.

4.4.2.2 Test Case Reuse Walk Through

A frequently asked question in forums and webinars is "how do I reuse some set of test steps?". Without
the ability to reuse a test in multiple locations, any changes to a test must be maintained in every location
where it occurs. For example, if you have a login page that gets used in ten different tests, and the login
page changes to require more password characters, you certainly don't want to change your password tests
in ten different locations. This maintenance is time consuming, labor intensive and error prone.

WebUI Test Studio allows you to reuse an existing test as if it were a single step. This allows you to
modularize tests so that they can be maintained in one place and plugged in where needed. To illustrate,
we can add a test to the previous walk through that navigates to the Google Translate page. The new test
will have several steps, but will be invoked as a single step.

Create the New Test

1) In the Visual Studio Solution Explorer, right-click the project and select Add > New Test... from the
context menu.

2) In the Add New Test dialog, select the WebAii test type. Name the test "GoogleTranslate.aii" and click
the OK button to create the test and close the dialog.

3) In the GoogleTranslate.aii Test Tab, click the Record button. This will bring up the Recording Surface.

4) Enter "http://www.google.com" in the browser address bar.

5) In the Recording Surface browser, click the Google "more" menu link. Select "Translate" from the
menu.

The "GoogleTranslate" test should now contain the three steps shown in the screenshot below.

 Notes

Note that the naming of the links may vary depending on the current state of the Google site and
the part of the "More" link you click on. In this example we click on the "More" text, not the drop
down arrow.

Call the New Test

1) In the Steps Tab, locate your original test (the copy of the "Getting Started" test) and double-click to
open it.

Visual Studio Integration 53

© 2010 Falafel Software Inc.

2) From the Steps Tab toolbar, select Add... > Test as Step.This will display the "Select Testcase" dialog.
Select "GoogleTranslate" from the list and click the OK button to create the step and close the dialog.

3) Now when you run your test, the "GoogleTranslate" test is invoked as a single step.

4.4.3 Data Tab

The Data Tab tab allows you to build simple, ad-hoc, data-driven tests. For example, you may have a test
with a login screen and want to feed the test several user names and passwords, but you're not really
interested in building and connecting to a database. With the Data Tab you can define "user name" and
"password" columns in a table, add several sample rows and immediately run your test. The screenshot
below shows a sample table with "UserName" and "Password" columns.

 See the "Data Driven Testing" chapter for information on more complex data driven scenarios.

WebUI Test Studio Developer Edition Made Easy54

© 2010 Falafel Software Inc.

4.5 Test Tab Toolbar

Perform high-level tasks with the Test Tab Toolbar including adding your own test methods as code,
converting your test steps into a Visual Studio load tests, converting your test into unit tests, defining data
sources and navigating to the Recording Surface.

Add Code Behind: This button navigates to "code-behind", i.e. either Visual Basic or C# code that run
as as part of a WebAii Test. You don't need to use code-behind to create and run tests, but code-
behind allows special behaviors and fine-tune control over your test steps. WebUI Test Studio lets you
mix-and-match test steps created in Test Tab with coded steps so you can gradually add code at your
own pace. The screenshot below shows a test step created in code called "MyCustomStep".

Code-behind steps automatically show up in the Test Tab. The screenshot below shows
"MyCustomStep" has been added as the last test step in the Test Tab. See the chapters "WebAii
Framework" and "MSTest" for more detailed information.

Convert to VS Load Test: "Load" tests help measure how well a web site performs when stressed with
a given amount of traffic. The "Convert to VS Load Test" button generates a Visual Studio load test
based on your WebAii functional test created in the Test Tab. A file is created automatically with the
name in the format of: "<my test name>.Load.WebTest". You can configure the load test to run any
number of times and to simulate different browsers and types of networks. See the "Load Testing"
chapter for more information.

Visual Studio Integration 55

© 2010 Falafel Software Inc.

Generate Unit Test: "Unit" tests verify specific behavior as opposed to overall business logic. In other
words, unit tests tell us that we're "doing things right", while functional/business logic tests tell us that
we're "doing the right things". There are a number of popular frameworks for managing tests such as
"NUnit" and "JUnit". The "Generate Unit Test" button converts your WebAii test into a unit test. When
you click the button, the "Unit Test Template Selector" dialog appears and lets you choose a "Unit
Testing Template", i.e. testing framework. If you have defined some rows of data in the Data Tab tab,
the data is converted to XML (Extended Markup Language) and placed in a file name you specify for use
by the selected testing framework.

See the "Unit Testing" chapter for more information.

Data Sources: This drop down allows you to create new data sources to Excel, CSV (Comma
delimited files), XML and external databases, select existing data sources and to UnBind the test from
any data. See the Data Driven Testing chapter for more information.

Go to Recording Surface: This button navigates to the Recording Surface.

4.6 Recording Surface

Much of the time you spend with WebUI Test Studio will be in the Recording Surface. The Recording
Surface browser provides the ability to record all your actions against a web page. The Recording Surface
also lets you identify specific elements in the page and to handle many common dialogs that might pop up.

WebUI Test Studio Developer Edition Made Easy56

© 2010 Falafel Software Inc.

4.6.1 Toolbar

The Recording Surface toolbar controls your interaction with the browser page and has tools to start and
pause the recording of test steps, refresh the recorder, display a DOM explorer and return back to the host
(Visual Studio).

The parts of the toolbar are:

Back to Host: Activates Visual Studio.

Enable Highlighting: When pressed, elements in the page are highlighted as the mouse passes over.
Highlighting allows you to add elements to the Elements Explorer and to display the Elements Menu for
additional actions.

Pause Recording: Use this button to temporarily disable recording.

Record: When you click this button, actions din the Recording Surface are added as test steps in the
Steps Tab.

Refresh Recorder: Refreshes the DOM.

Show DOM Explorer: Displays a tree view of the DOM (Document Object Model) showing all the
elements in the page.

Visual Studio Integration 57

© 2010 Falafel Software Inc.

4.6.2 Elements Menu

When the mouse pauses over highlighted element in Recording Surface, a "Nub" appears. This rich element
menu makes it easy to work with the recording surface. The Elements Menu is extensible and will be open
to user applications that can incorporated into the menu.

Clicking the Nub displays the Elements Menu.

The Elements Menu provides quick access to relevant functions right in the page you are testing.

Locate in DOM navigates to DOM Explorer and selects the corresponding element.

Add to Project Element adds the highlighted element to the Elements Explorer.

Build Verification navigates to the Sentence Verification Builder where you can interactively build
verification criteria based on the elements Content, Style, Attributes or visibility. See the "Verification
Engine" chapter for details.

WebUI Test Studio Developer Edition Made Easy58

© 2010 Falafel Software Inc.

Javascript Events can be invoked against the highlighted element and supports OnBlur, OnChange,
OnClick, OnDblClick, OnFocus, OnKeyDown, OnKeyPress, OnKeyUp, OnLoad, OnMouseDown,
OnMouseMove, OnMouseOut, OnMouseOver, OnMouseUp, OnReset, OnSelect, OnSubmit and
OnUnload.

View 3D provides an alternate view of all the elements in the DOM. The top portion displays elements
in a 3D representation and allows you to "flip" through the elements as with a stack of cards, either by
using the mouse to click on background elements, using the mouse wheel or using the slider. "View"
controls allow you to filter the elements. The lower part of the screen has tabs that list the elements and
allow you to select and build verifications. Buttons on screen let you "Lock on Surface", i.e. navigate to
the Recording Surface with the corresponding element highlighted. The "Add to Project" button adds all
verifications you have checked as test steps, all at one time. See the section "3D Viewer" in the
"Verification Engine" chapter for more information.

Drag-and-Drop allows you to interactively setup a drag and drop operation. You can drag an element
onto another element or anywhere in the window. You can also configure the position of the dragged
element and the drop target. See the "Drag and Drop" chapter for more information.

Visual Studio Integration 59

© 2010 Falafel Software Inc.

Scroll Element scrolls the highlighted element to the top or the bottom of the page.

Quick Tasks presents a context sensitive list of tasks that can be performed against the highlighted
element. The screenshot below shows a Verify and a Wait task that is appropriate used with a
RadControls for AJAX input control. Clicking the Quick Task creates a test step that can be
manipulated in the Steps Tab and Properties pane.

WebUI Test Studio Developer Edition Made Easy60

© 2010 Falafel Software Inc.

Mouse Actions can be invoked, as if the user was directly using the mouse to click or hover the
highlighted element. This option mimics a click on the button and is browser based.

Visual Studio Integration 61

© 2010 Falafel Software Inc.

4.6.3 Common Tasks Menu

The Common Tasks Menu allows you to associate an element in the Recording Surface to a common task.
You can add the element to the Elements Explorer, the 3D Viewer or the DOM Explorer.

To get at common tasks quickly, drag the
Nub to the left side of the screen.

The Common Tasks Menu will pop out.
Drop the element onto an icon to initiate a
task you want performed against that
element. The screenshot shows the
Google logo image element being dragged
to the Elements Explorer icon.

WebUI Test Studio Developer Edition Made Easy62

© 2010 Falafel Software Inc.

4.6.4 Walk Through

This walk through will help familiarize you with the Recording Surface, the Elements Menu and the Common
Tasks Menu. During the walk through you will add test steps using the Recording Surface.

Create a New WebAii Test

1) Open an existing Test Project or create a new Test Project (See the "Getting Started" walk through for
directions on creating a new Test Project).

2) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

3) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

Use the Recording Surface to Create Test Steps

1) Click the Record button from the Test Tab toolbar. This step will navigate to the Recording Surface, with
recording turned on.

2) In the browser address bar, enter "www.google.com".

3) Click the Go to Url button or press Enter. This step will display the Google home page.

4) In the Google home page, click the "More" link.

5) Click the "Translate" link from the menu. This step will navigate the browser to Google Translate page.

6) Click the link that toggles instant translation.

Visual Studio Integration 63

© 2010 Falafel Software Inc.

7) During the last step where the 'toggle instant translation' link was clicked, the link element was added
automatically to the Elements Explorer. Locate the element in the Elements Explorer and select it. In
the Properties pane, change the FriendlyName property to "Toggle Instant Translation Link". The new
FriendlyName should reflect in both the Elements Explorer and any test steps where its used in the
Steps Tab. The screenshot below shows the Properties pane, Elements Explorer and Steps Tab where
the "Toggle Instant Translation Link" is shown.

8) In the Google Translate text box, enter the text "Hello world" (this is case sensitive, so enter this
exactly to get a consistent translation).

9) Select "English" in the "Translate From" drop down list.

10)Select "Spanish" in the "Translate To" drop down list.

11)Click the Highlighting button from the Recording Surface toolbar.

12)Pass the mouse over the "Translate From" drop down list and wait for the Nub to display under the
mouse. Click to display the Elements Menu.

13)Click the Elements Menu Build Verification icon. This will display the Sentence Verification
Builder.

WebUI Test Studio Developer Edition Made Easy64

© 2010 Falafel Software Inc.

14)In the "Available Verifications" area, locate the Content button and click it.

15)Change the comparison to "Contains" using the drop down list. Click the "pencil" button to allow
editing, change the value to "English", then click the "pencil" button a second time to save your
changes.

16)Click the OK button to create the verification test step and close the Sentence Verification Builder.

17)Pass the mouse over the "Translate Into" drop down list and wait for the Nub to display under the
mouse. Click to display the Elements Menu.

18)Click the Elements Menu View 3D icon.

19)Click the Available Verifications tab.

20)From the View group, click the categories drop down list and select the "DropDown" item. This step
will filter the list so that only the "DropDown" related verifications will show.

21)Click the "ByText Contains Spanish" and ByValue Contains es" check boxes. Change the comparison
criteria from "Contains" to "Exact" using the drop down list for both verifications.

22)Click the Add to Projects button to add the verifications test steps.

23)Click the Close button located in the upper right of the 3D Viewer.

Visual Studio Integration 65

© 2010 Falafel Software Inc.

24)Pass the mouse over the "Translate" button and wait for the Nub to display under the mouse. Drag the
Nub over to the left side of the screen. The Common Tasks Menu will appear. Drop the Nub onto the
"Add to Element Explorer" icon. This step will add the "Translate" button to the Elements Explorer.

25)Click the "Translate" button.

26)Pass the mouse over the translated text and wait for the Nub to display under the mouse.

WebUI Test Studio Developer Edition Made Easy66

© 2010 Falafel Software Inc.

27)Select Quick Tasks from the Elements Menu. Select the "Verify - text contains" task from the
list and double click to create the test step and close the dialog.

28)In the Steps Tab, double-click the last test step (this should be the "Verify - text contains" step just
added from Quick Tasks. Double-click the test step. This will display the Sentence Verification Builder.

29)Change the comparison operator to "Exact" using the dropdown list. Click the "Validate Rule" button.
The "Validation Passed!" message should display.

30)Click OK to change the validation and close the Sentence Verification Builder.

Visual Studio Integration 67

© 2010 Falafel Software Inc.

31)The steps in the Steps Tab should now look something like the list in the screenshot below.

Run the Test

1) Click the Quick Execute button to run the test.

2) The test steps should run through to completion and all test steps should show as passed:

WebUI Test Studio Developer Edition Made Easy68

© 2010 Falafel Software Inc.

4.7 Elements Explorer

The Elements Explorer is similar to the DOM Explorer in that it displays a tree of elements, but the
Elements Explorer only contains elements you want to use in your tests. Also, the elements in the tree
view have properties that are more specific to testing. Although elements may be used in several tests and
test steps, each element is shown only once in the Elements Explorer.

4.7.1 Toolbar

The toolbar options are:

Enable Highlighting: When this button is pressed, elements selected in the tree view are highlighted
in the Recording Surface.

Refresh: Reloads the tree view.

Visual Studio Integration 69

© 2010 Falafel Software Inc.

4.7.2 Properties pane

As elements are selected, the Properties pane contents change to reflect the current element. The
screenshot below shows the Google search text box element. Notice that the FriendlyName property,
originally the cryptic "QText", is now "Search Entry Text Box". Friendly names are automatically reflected
in Steps Tab test step descriptions. Also notice the FindLogic property is used for locating and identifying
the element while the Expression property is a representation of the FindLogic. See the upcoming "Find
Expression Builder" section for information on fine-tuning the find logic.

Tip!

Use friendly names to make the Elements Explorer tree view and test step descriptions more
readable. You can also use friendly names to make the names in the code-behind conform to
your organization's naming conventions.

 Gotcha!

Friendly names also affect the naming conventions for objects in the code-behind. Try to set your
FriendlyName properties straight away as the current version of the product does not
automatically rename objects in the code-behind to match.

If we click on one of the pages in the Elements Explorer, the properties displayed are used to locate and
identify the page.

WebUI Test Studio Developer Edition Made Easy70

© 2010 Falafel Software Inc.

AlwaysUseTitleInCompare: Title is used
regardless of CompareMode.

BaseUrl: Url without full path or query string.

CompareMode: The method used to match
the URL. Possible values: BaseUrl, FullPath,
FullPathAndQuery,
FullPathAndQueryNoFragment,
RelativePathOnly, RelativePathAndQuery,
RelativePathQueryNoFragment, Title.

Fragment: From the "#" to the end of the
Url.

Path: Located between the base url and the
query string.

Query: Query string, i.e. follows the "?".

Title: The Title element located in the head
tag of the page.

4.7.3 Context Menu

The screenshot below shows the context menu for items in the Elements Explorer tree view.

Edit Element invokes the Find Expression Builder so that you can detail exactly how the element
should be located.

Validate All Elements is enabled when using the context menu against a page with elements that
have verification test steps. A green check will appear next to all elements of the page that pass the
verification and a red X icon next to any failures. If validation fails, you can click the View Error context
menu item to read the detail.

The Delete item is available for any element that isn't already involved in a test step.

 Gotcha!

Currently, if the test step has been converted to code-behind, you will be able to delete the item.
The deletion can take place even though your code-behind may no longer compile.

Visual Studio Integration 71

© 2010 Falafel Software Inc.

Locate in DOM Explorer navigates to the DOM Explorer and selects the item that matches the
current item in the Elements Explorer. It will also highlight the corresponding item in the Recording
Surface.

Load Page... loads or re-loads the page that contains the element.

Properties navigates to the Properties pane and displays properties for the selected element.

4.7.4 Find Expression Builder

The Find Expression Builder allows you to interactively build the comparison expression used to locate and
identify an element. The screenshot below shows the Find Expression Builder populated with default values
for the Google search text box element.

If we look at the element in the DOM explorer we can see that the actual HTML tag might look something
like this abbreviated example:

<input name="q" .../>

The expression in the "Find Logic" portion of the builder is telling us that the element must have a "name"
attribute exactly equal to "q" and it must be an "input" tag. You can click the Validate button to make

sure that the find logic will work.

WebUI Test Studio Developer Edition Made Easy72

© 2010 Falafel Software Inc.

Tip!

You must have the page loaded to validate. When you first load the Find Expression Builder, a note
displays that has a link to the page. Click the link to load page.

Each line of criteria for the Find Logic window has a Delete button to remove the line and a Attribute and
Value comparison. The And/Then drop down establishes a relationship between the criteria and any criteria
following. By default, "And" will be used and all verification passes or fails as a single entity.

If you select "Then", this criteria is verified separately from any following verification. The screenshot below
shows two lines of criteria separated by a "Then" where the first verification passes, but the second fails.
The icon following the And/Then is an read-only indicator and has no effect when pressed.

 Notes

Also notice that the Failed message includes a suggestion to fix the problem. The Find Expression
Builder already knows that we're comparing against "tagname" and that the tagname for the element
is "input". Clicking the "Update" button will change the invalid value "xyz" to "input". Then, if you click
the Validate button, the validation will pass.

Visual Studio Integration 73

© 2010 Falafel Software Inc.

Building a Find Expression

You can click the Attribute textbox to get a list of possible attribute names for the element. The list includes
the usual possibilities such as "InnerText" or "TagName". You can also build the find criteria by comparing
to a node or HTML path. You can even use powerful XPath expressions to build the expression.

The comparison drop down list defaults to "Exact" and also includes Contains, NotContain, StartsWith,
EndsWith, RegEx, Missing and Exists.

WebUI Test Studio Developer Edition Made Easy74

© 2010 Falafel Software Inc.

4.8 DOM Explorer

The DOM (Document Object Model) is a language neutral and platform independent abstraction that allows
the content, structure and style of HTML pages to be updated dynamically. The DOM Explorer displays the
DOM in a tree format where you see all elements of a page at one time. The DOM Explorer is helpful when
the page is complex enough that simply using the mouse with the highlighter may not be enough to find
the element you're looking for.

The DOM Explorer typically shows the HTML page as the parent element, with HEAD and BODY element
forming the next level. The elements we're testing are usually within the BODY element.

Visual Studio Integration 75

© 2010 Falafel Software Inc.

Context Menu

When right-clicking any of the elements, the context menu lets you to perform several operations against a
DOM element. The Goto menu item lets you navigate to a parent element. The screenshot below shows the
Goto submenu has entries for the entire page and for an IFrame element within that page.

The Show Element Menu item brings up the Recording Surface with the element highlighted and the
Elements Menu showing. The Add to Project Elements option adds the selected element to the Elements
Explorer. The Elements Explorer in turn allows you to name an element and use test specific properties.
The Copy to Clipboard item lets you copy the DOM element as HTML, either copying the Tag Only or
Tag and Children.

WebUI Test Studio Developer Edition Made Easy76

© 2010 Falafel Software Inc.

Toolbar

The DOM Explorer toolbar allows you to display the DOM outline hierarchically or show in tag order. If you
press the Enable Highlight button, elements are highlighted in the Recording Surface to match selections in
the DOM Explorer tree view. Clicking the Refresh button re-reads the DOM and reloads the tree view. The
Goto drop down list has entries for the entire page and for IFrame elements within the page. The Show Find
Toolstrip button displays a second toolbar that performs searches over the DOM tree.

You can enter a Find Expression and click the Evaluate expression button. The Search Results drop down
will display the number of elements found or an "Invalid Expression" error message. If elements are found,
the first element is selected. Use the Previous/Next Result buttons to navigate between the found
elements.

Visual Studio Integration 77

© 2010 Falafel Software Inc.

Searching for Elements

A simple text search may not have enough horsepower to locate elements located deep in a large or
complex DOM. For that reason, the DOM Explorer search tool has rich element identification capabilities
that range from simple "find an element called 'myElement'" to complex criteria expressed using XPath and
Regular Expression searches.

You can use simple find expressions that test an element against some value as shown in the screenshot
below. Here we're looking for an element that has an "id" attribute of "pmolnk".

On the left side of the expression you can use any valid attribute name (i.e. "id", "div", "name", etc), or any
of the following: TextContent (the element has text that matches), InnerText, InnerMarkup,
OuterMarkup, StartTagContent, NodeIndexPath, TagName, TagIndex (zero based) or XPath. In the
screenshot below we're looking for any tag named "div" and seventeen results are returned.

 Notes

In Silverlight applications you can use the Silverlight specific search terms AutomationId,
TextContent, XamlTag, and Name.

TextContent simply returns an element that has certain text within it. The screenshot below shows a
search for the text content "help" where a link element (the "<a>" tag) that contains "Help" is returned.

WebUI Test Studio Developer Edition Made Easy78

© 2010 Falafel Software Inc.

InnerText looks for text content inside some set of element tags. This type of search returns all elements
that contain the text content. The example in the screenshot below looks for the text "help" and returns all
the nested elements that ultimately contain the matching inner text.

 From the Forums...

Question: What is the difference between TextContent and InnerText?

Answer: InnerText is the combined text for a given node and everything below it. TextContent is
only the text at the same level as the node. For example:

 <div id="div1">
 Text1<div id="div2">
 Text2</div>

In this example, the TextContent of div1 is “Text1” while the InnerText for div1 is “Text1Text2”.
Likewise, InnerMarkup and OuterMarkup are "recursive" and look at all the nodes contained
within a given node.

InnerMarkup returns an element with specific HTML markup inside it. Here is an example search that
looks for a link tag that contains "Search settings".

InnerMarkup=Search settings

The search returns the element that contains the inner markup "Search settings". In this case the returned
element a link "<A>" tag shown in the screenshot below.

OuterMarkup looks for specific HTML markup inclusive of the element itself. If we change the left hand side
of the previous search to "OuterMarkup" and include the entire tag:

OuterMarkup=Search settings

...this search returns the same link element.

Visual Studio Integration 79

© 2010 Falafel Software Inc.

The DOM Explorer search tool recognizes XPath (XML Path Language) expressions, a syntax for selecting
elements in an XML document. The screenshot below shows an XPath expression that selects child
elements of the "HTML" element. The search returns two elements, the "HEAD" element for the page and
the IFrame.

 Notes

Find more XPath examples at http://msdn.microsoft.com/en-us/library/ms256086.aspx.

Tip!

XPath syntax can be daunting, so here's a shortcut: Install the Firebug debugger in the Firefox

browser. Press the "Inspect Element" button , then click the element that you need to create
an XPath for. In the Firebug HTML tab, right-click the element and select "Copy XPath" from the
context menu. You can use this path on the right hand side of the search. For example, using this
method against the "Translate" button, the copied XPath on the clipboard is:

//*[@id="old_submit"]

The screenshot below shows the DOM Explorer search with the new XPath. A single element, the
"Translate" button, has been located and selected in the DOM Explorer.

Firebug can be found at http://getfirebug.com/.

WebUI Test Studio Developer Edition Made Easy80

© 2010 Falafel Software Inc.

You're not stuck with only an "=" operator to make comparisons. You can use "~" (contains), "!" (does not
contain), "^" (starts with), "?" (ends with) and "#" (regular expression). The screenshot below shows a
search looking for elements where the "type" attribute starts with "hi". Eleven elements are returned where
the type is "hidden".

Regular expressions ("regex" for short) are sequences of text characters used to describe a search
pattern. Regular expressions are somewhat akin to "wildcard" characters, i.e. "*" or "?", but much more
flexible and powerful. Regular expressions start with the "#" character. Regular expressions are a big topic
all on their own, but here is a quick example showing a regular expression in the DOM Explorer search tool
shown in the screenshot below. The example searches for an element with the "onload" attribute containing
the word "focus".

 From the Forums...

Question: I want to make sure my tests are easy to maintain. What are the best practices for
finding elements?

Answer: Using a tag index in your test code results in test code that isn't very robust. A small
change to the page being tested can easily break your code because the tag index number may
change. Generally the best way to find a control is by its name or ID. When the control I want
doesn't have a name or ID then I resort to finding the closest control that has a name or ID and
navigate from it to the control that I want. Other testers like to use the XPath to the control.
Another method is to use test regions (see the Test Regions chapter for more information).

Visual Studio Integration 81

© 2010 Falafel Software Inc.

4.9 User Settings

4.9.1 Overview

WebUI Test Studio user settings can be accessed from the WebUI Test Studio toolbar and from the
Recording Surface. The screenshot shows the Settings button in the WebUI Test Studio toolbar.

4.9.2 Automation Overlay Surface

The "Automation Overlay Surface" defines the highlight border color, border width and the amount of time
before the Nub displays. Click the Border button to display a color selector and use the sliders to adjust
Highlight Border Width and Menu Hold Time. The screenshot below shows a blue border with a six pixel
width and a Menu Hold Time of .5 seconds before the Nub displays. Delaying the Nub display can be
helpful if you're trying to hover the mouse and the Nub is popping up too quickly.

The highlight for these settings looks something like the screenshot below.

WebUI Test Studio Developer Edition Made Easy82

© 2010 Falafel Software Inc.

4.9.3 Recording Options

"Recording Options" configures how recording will take place. Some of the options are only needed for very
specialized circumstances. Other options such as "Clear Url History" and "Enable Storyboard" configure
the Recording Surface environment.

Base Url: The base url is pre-pended to urls in your test steps. If our base url is "www.google.com" and
we first navigate to Google, then click the "News" link, the steps in the Steps Tab will look like this
screenshot where the first step navigates to "/", i.e. "www.google.com" and the second to "NewsLink",
i.e. "www.google.com/Newslink".

Code Base Class: This option allows you to create and use a specialized test class. For example, you
could create a class that knows how to log to your corporations database. The code-behind for a
WebAii Test uses "BaseWebAiiTest" by default. BaseWebAiiTest is an object that knows how to
execute test steps, find elements on a page, perform actions against all browser types (i.e. click, scroll,
etc) and log test results. BaseWebAiiTest also keeps track of the active browser and the test data.

Silverlight Connect Timeout: The amount of time in milliseconds to wait for WebUI Test Studio to
connect to a Silverlight application.

Elements Page Compare Mode: This setting determines the CompareMode property to use when
adding a page to the Elements Explorer. CompareMode determines when a page is active.
CompareMode can be checked against the page's Title or one of multiple settings that look at various
parts of a Url. The screenshot below shows the parts of a url. The base url is the part of the url before
the first "/". The Path is the part of the url after the base and before the "Query" portion. The query is the
portion after the "?" and before "#". The "#" marks the beginning of the "Fragment" portion of the url, if
present.

The possible CompareMode values are BaseUrl, FullPath, FullPathAndQuery,
FullPathAndQueryNoFragment, RelativePathOnly, RelativePathAndQuery,
RelativePathQueryNoFragment and Title. Comparisons may ignore part of the url, e.g. "FullPath"
ignores the query and fragment portions of the url.

Default DropDown Record Option: This setting determines the SelectDropDownType property
value will be used when recording selections in a drop down control. Possible values are ByText,
ByValue and ByIndex.

Enable Storyboard: By default, screenshots are automatically added to the Storyboard Tab. When
this option is unchecked, a placeholder image is used. Uncheck the option when you want to conserve
memory and disk space. The Scale slider adjusts the size of the Storyboard Tab between "10%" and
"100%".

Verbose Mode: If enabled, exceptions are written to the output window.

Simulate Real Clicks/Real Typing: By default, clicks and typing are recorded as sending clicks or
text directly to the element. Setting these options will cause clicks and typing to be simulated by
sending Windows events.

Visual Studio Integration 83

© 2010 Falafel Software Inc.

4.9.4 Identification Logic

As elements are added to the Elements Explorer, WebUI Test Studio uses an intelligent element
identification scheme to auto generate find expressions. When an element is first about to be added to the
Elements Explorer, WebUI Test Studio tries to use the first item in the list, e.g. "id". Using this criteria, if
the item is unique for the entire page, the element is added, a find expression is created and WebUI Test
Studio stops evaluating. You can add new tags to the list, reorder them or delete them (except for
TextContent and TagIndex which are locked from deletion).

 From the Forums...

Question: On the Web application we are automating, we have one page that has four Tables on
it. When we record, we record the Tables Menu to add, delete; move; etc. to each table - this all
seems to record correctly. During Playback it performs all the tests (adding, deleting, moving,
etc.) on just the first table (all tests from all four tables). The same is happening with Verification.
Looking at the recording WebUI Test Studio seems to have called all the four tables the same ID.

Answer: You can start by studying the HTML code generated by your web server and sent to the
browser window. If all 4 tables are given the same ID by the web server, then that's what we're
going to record against. You may need to modify your code on the server in order to give each
table a unique ID. Another option you can try is to modify the Identification Logic of WebUI Test
Studio. Open up the User Settings, go to the Identification Logic tab, then modify it such that it
works properly for your web page. This may take some trial and error as this is a very advanced
feature.

WebUI Test Studio Developer Edition Made Easy84

© 2010 Falafel Software Inc.

4.9.5 Translators

Translators are extensions to Visual Studio that open up an element to work with WebUI Test Studio, to
allow interaction with the Elements Menu and to expose a rich set of verification tasks. The product ships
with basic translators for HTML and Silverlight, and translators built specifically for each AJAX and Silverlight
RadControl. WebUI Test Studio was built with extensibility in mind, so as additional controls become
available, new translators can be plugged in. Telerik is committed to maintaining translators in step with
RadControl changes, so you can expect the translators to always be up-to-date. The settings on this page
list loaded translators and allow you to disable translators.

4.9.6 Installation

The installation page simply shows you the version of the product that's installed and the activation key.

Visual Studio Integration 85

© 2010 Falafel Software Inc.

4.10 Step Failure Details Dialog

The Step Failure Details dialog collects all the information related to a single failed test step, including,
failure details, screenshots, and a snapshot of the DOM, are all in this one window.

The Failure tab displays the test name, the test step description and a summary of what caused the step
to fail. The example test step below is verifying that the TextContent exactly matches the string "iHola".
The Exception Details View link under the summary lists the log for just the failed test step while the
Complete Test Log View link displays the entire log (also accessible from the Steps Tab View Test Log
button).

The Copy to Clipboard icon copies the exception details for the failed step to the clipboard where you can
easily paste them to some other application. Export Result To File saves a zipped file containing a text
file with the failed step log, the complete test log, a screenshot of the web page when the failure occurred
and a snapshot of the DOM tree in XML form. The Resolve Failure icon navigates to the Resolve Failure
tab.

WebUI Test Studio Developer Edition Made Easy86

© 2010 Falafel Software Inc.

The Image tab displays an screenshot of the browser taken when the failure occurred.

Visual Studio Integration 87

© 2010 Falafel Software Inc.

The Page DOM tab displays a tree view of the page's object model state at the time of failure. The DOM
explorer here has the same controls and search utilities as explained in the previous DOM Explorer topic.

WebUI Test Studio Developer Edition Made Easy88

© 2010 Falafel Software Inc.

The Resolve Failure tab of the dialog provides the opportunity to identify and correct the issue that caused
the failure. For validation steps, for example, the Sentence Verification Builder allows you to reload the
page, make changes to the verification sentence and re-run the verification until the verification passes.

The example below shows that a validation failed because the TextContent was supposed to be "¡Hola",
exactly, but when the validation button is pressed, the actual value turns out to be "¡Hola, mundo".

By changing the value to "¡Hola, mundo", the validation passes.

Visual Studio Integration 89

© 2010 Falafel Software Inc.

4.11 Wrap Up

This chapter explained how WebUI Test Studio is integrated with Visual Studio. The chapter started with a
tour of the panels and toolbars in Visual Studio that make up the WebUI Test Studio environment. You
learned how to use the Storyboard Tab to organize and navigate your test steps, the basics of building
simple data driven tests and how to interact with the Visual Studio testing mechanism. You used the
Recording Surface, the Common Tasks Menu and the Elements Menu to create test steps.

You worked with the Elements Explorer to organize elements used in test steps, learned how the Elements
Explorer interacts with the Properties pane and fine tuned how elements are located and recognized. You
used the Steps Tab to manage test steps. You also used Steps Tab to add unique types of test steps
such as screen captures, delays and annotations. You also learned how to reuse existing tests.

You used the DOM explorer to look at all elements in a page. In particular, you learned how to search for
elements using simple comparisons and also learned about more complex searches using comparison
operators, Regex and XPath.

Part

V
Verification Engine

Verification Engine 91

© 2010 Falafel Software Inc.

5 Verification Engine

5.1 Objectives

In this chapter you will learn what a verification is and how verifications are applied using WebUI Test
Studio. You will learn how WebUI Test Studio implements verification using "sentences", how these
sentences are structured and how sentences are accessed using WebUI Test Studio. You will learn the
types of verification available for basic HTML and how the consistent interface provided by WebUI Test
Studio allows Silverlight and AJAX elements to be verified using the same mechanism. You will use both the
Sentence Verification Builder and the 3D Viewer to create verifications. Finally, you will create a suite of
tests against a login page that exercises several different verifications.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Verification\Verification.sln

5.2 Overview

Automated testing actually consists of two parts. The first part, automation, is the ability of WebUI Test
Studio to manipulate the browser automatically without the tester having to intervene. Once you've
automated the interaction you still have to test something, i.e. measure and record that some occurrence
happened or do not happen as expected.

That's where verification come in. WebUI Test Studio verification allows you to measure against multiple
criteria at one time and to build these measurements in an interactive manner without code. With
verifications you detect if elements are in a particular state (e.g. visible, exist) and that attribute and
properties compare with specific values. WebUI Test Studio can verify content, attributes, styles, visibility,
drop down selections, checkboxes, radio buttons, tables and Silverlight property values. WebUI Test Studio
implements verification through "sentences" that compare a portion of an element to a value, e.g. "textbox
content is equal to 'order 8599'" or "image path contains 'http://www.falafel.com'".

"Translators", i.e. extensions that open up the internals of a control to WebUI Test Studio, allow for rich
verifications against the exposed portions of the translated control. See the Translators chapter for more
information.

WebUI Test Studio Developer Edition Made Easy92

© 2010 Falafel Software Inc.

5.3 Verification Access

You can reach sentence verification through a number of avenues:

You can reach sentence verification builder through the Elements Menu Quick Tasks button. The
screenshot below shows a "Verify" quick task selected for a highlighted drop down list.

A single verification is created for you automatically where the verification type is inferred from the task
and is read-only. This route doesn't provide options for adding more verifications or changing the type.
The screenshot below shows a single "DropDown" verification. The verification checks that the selected
item text in the drop down contains "Spanish".

Through the Elements Menu Sentence Verification Builder you can access all available verification
types and create multiple verifications for a single element. The element can be changed on-the-fly by
selecting a new target item in the DOM Explorer. The screenshot below shows a "DropDown" type
verification added where the selection index must equal the value "44".

Verification Engine 93

© 2010 Falafel Software Inc.

The 3D Viewer takes verifications a step further by letting you generate multiple pre-built verifications all
at one time. The screenshot below shows two "DropDown" verifications checking against both index and
text. Because the 3D Viewer loads an element and everything that contains it, you can switch between
elements and add verifications to the project as you go.

WebUI Test Studio Developer Edition Made Easy94

© 2010 Falafel Software Inc.

5.4 Sentence Verification Builder

The Sentence Verification builder has three main sections: the Target Element shows the complete
element in HTML or XAML (Extended Application Markup Language used for Silverlight). The Available
Verifications section is populated with buttons for each type of verification that can be applied to a given
element. More verification types may be available depending on the presence of "Translators" (see the
"Translators" chapter for more information). Click the buttons to add verification sentences to the Selected
Sentences area.

The Selected Sentences area allows you to interactively build a verification rule, validate it against a live
document or to invoke the DOM Explorer with the target element selected. Sentences have a general "key -
comparison - value" structure. The "key" is some aspect of the markup that we want to compare a value
against.

Once you have added a sentence using one of the Available Verifications buttons, use the drop down lists
to select a key and comparison, then use the Edit "Pencil" icon to open the value for editing. After editing
the value, click the Edit button a second time to close it. Then click the Validate Rule button to verify that
the rule is satisfied.

You can create or modify several verifications at one time. When your sentences are complete, click the
OK button to create the verifications in the Steps Tab or Cancel to abandon your edits.

Verification Engine 95

© 2010 Falafel Software Inc.

5.5 Sentence Structure

The structure of the "sentence" changes according to verification type. The general pattern is a "key"
followed by a comparison and then a value. For example, a Content verification has the following parts:
Content Type - Comparison - Value. The screenshot shows a verification of a text box where the InnerText
Content must Compare exactly with the Value "Spanish" to satisfy the verification rule.

Here are the general structures for some of the basic verification types used against HTML elements.

Verification Type Structure

Content Content Type-Compare-Value

Attribute Attribute Name-Compare-Value

IsVisible Value

Style Inline/Computed-Category-Attribute-Compare-Value

DropDown Attribute Name-Compare-Value

Notice that in some cases there may be additional "keys" that come before the comparison. For example,
Style actually has three different pieces: Inline/Computed, a style category and the attribute name. For
simple Boolean true/false verifications, such as "IsVisible", only the value part of the sentence is used.

5.6 Verification Types

5.6.1 IsVisible

The most basic verification you can perform is against an element's visibility. WebUI Test Studio determines
visibility by following the CSS chain and analyzing "visibility" and "display" attributes for an element.
Despite the underlying complexity, all you need to do is set the verification value "True" to test if the
element is visible or "False" to check that the element is not visible.

WebUI Test Studio Developer Edition Made Easy96

© 2010 Falafel Software Inc.

5.6.2 Content

Content verifications test some portion of element content against a string of characters. Consider a table
cell tag "<td>" that has content shown in the screenshot below. What comparisons would successfully
match?

The full HTML for the table cell is shown below. It has a starting "<td>" tag that contains a style attribute
followed by several bits of text content separated with break "
" tags and ending up with a closing tag
"</td>".

<td style="white-space:nowrap">Thai
Turkish
Ukrainian
Vietnamese
Welsh
Yiddish
</td>

Content Type

The portion of the element that is matched against is determined by a content type. The InnerText content
type exactly matches "ThaiTurkishUkrainianVietnameseWelshYiddish", i.e. the text contained by the
element without markup.

InnerMarkup matches text content + markup located inside the table cell element.

OuterMarkup matches the entire table cell element, including the start tag, content and closing tag.

StartTagContent matches only the start tag, not the content between the start and end tags, and also
excludes the ending tag.

TextContent, like InnerText content matches "ThaiTurkishUkrainianVietnameseWelshYiddish". So what's
the difference between TextContent and InnerText?

Verification Engine 97

© 2010 Falafel Software Inc.

Similar to the searches discussed in the Visual Studio Integration chapter on the DOM Explorer,
TextContent only looks at the content of the immediate element while InnerText is "recursive" and looks at
all the text content in elements contained by the current element. Let's look at the HTML table that contains
the "<td>" cell we've been working with:

In this case, TextContent is an exact match to "Languages available for translation:", i.e. the content of the
table, but not of any of the cells.

...while InnerText looks at the table element content and all the cells element content within the table:

"Languages available for translation:
AfrikaansAlbanianArabicBelarusianBulgarianCatalanChineseCroatianCzechDanishDutchEnglishEstonia
nFilipinoFinnishFrenchGalicianGermanGreekHebrewHindiHungarianIcelandicIndonesianIrishItalianJapa
neseKoreanLatvianLithuanianMacedonianMalayMalteseNorwegianPersianPolishPortugueseRomanianRu
ssianSerbianSlovakSlovenianSpanishSwahiliSwedishThaiTurk ishUkrainianVietnameseWelshYiddish".

WebUI Test Studio Developer Edition Made Easy98

© 2010 Falafel Software Inc.

Comparison

Content is equated against a value using a comparison. The possible comparisons
depend on the content type. For strings of alpha numeric characters, the possible
comparisons are shown in this screenshot.

Exact performs a strict match against the value and is case sensitive. Same also performs a precise
match but the value can be upper or lower case. Consider the previous table example where the content is
"Languages available for translation:". If we change the content to "languages available for TRANSLATION:"
where the "L" in "languages" is lower case and "TRANSLATION" is all uppercase, the Exact comparison
will fail and the Same comparison will pass.

You will often need partial matches against an element value. For these, use the Contains, NotContain,
StartsWith and EndsWith comparisons. The screenshot below shows a comparison of InnerText that
contains the word "Bulgarian".

Regular expressions ("regex" for short) are concise sequences of text characters used to describe a search
pattern. Regular expressions are somewhat akin to "wildcard" characters, i.e. "*" or "?", but much more
flexible and powerful. Complex matches can be performed using the RegEx comparison. The example
below matches InnerText containing either "Estonian" or "English". This is a relatively simple expression by
RegEx standards, so you may want to look up a good regular expression reference online, particularly if you
have a number of complex comparisons that require this potent syntax.

Numeric comparisons have their own set of operators as shown in this
screenshot.

Verification Engine 99

© 2010 Falafel Software Inc.

Value

The Value portion of the content verification is simply text entered to the edit box. Click the edit "Pencil"
button to open the edit for modification and click the same button a second time to close it.

 Gotcha!

After editing a value, be sure to close the edit box.

If you click the comparison button without closing, you will be comparing against the initial
value, not the modified text that's currently in the edit box.

5.6.3 Attribute

The Attribute verification allows a great deal of flexibility against any attribute in an element. The attribute
name drop down lists all the attributes in the element. When you select an attribute, the Value will
automatically populate with appropriate matching text.

The Comparison and Value portions of the sentence work identically to the Content verification.

WebUI Test Studio Developer Edition Made Easy100

© 2010 Falafel Software Inc.

5.6.4 Style

Style verification has a relatively complex sentence structure. The first part is style type that can be
"Computed" (follows the CSS chain to get the active style setting) or "Inline" (uses only styles applied
directly to the element). The next drop down is a category, such as "Display", "Font" or "Text". The
category is used to filter the style attributes that populate the next drop down list to the right. The last two
drop down lists are the comparison and value. The screenshot below shows a style verification where the
category is "Display", the style attribute is "Top" and the comparison is Exact against a value of "758px".

The drop down values were populated automatically against the HTML element shown below.

<img alt="Falafel Blog" src="images/blogs_home.gif" style="border-top-style: solid;
 border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-width: 0px;
 border-right-width: 0px; border-bottom-width: 0px; border-left-width: 0px; position: absolute;
 top: 758px; left: 25px; " />

5.6.5 DropDown

The DropDown verification has built-in attribute types "ByIndex", "ByValue" and "ByText".

Verification Engine 101

© 2010 Falafel Software Inc.

5.6.6 AJAX and Silverlight

AJAX and Silverlight up to now have been difficult to test against, but WebUI Test Studio puts AJAX and
Silverlight testing on an "equal footing" with standard HTML by way of the consistent Sentence Verification
Builder interface. Sentence Verification Builder is a consistent mechanism that works the same way no
matter if you are working with plain HTML, AJAX or Silverlight elements.

In later chapters when we test AJAX and Silverlight controls and work with "Translators", i.e. extensions that
open up RadControls for more complete examination, the number of verifications expands. For example, the
screenshot below shows a verification against an ASP.NET AJAX grid. Using the built-in translator we're
able to drill right down to the grid cell and test the Cell Text.

WebUI Test Studio also allows us to peer into the world of Silverlight. Instead of looking at the HTML DOM,
we're able to test against Silverlight elements in a XAML (Extended Application Markup Language)
document. The screenshot below shows a verification against a RadControls for Silverlight RadGridView.
Notice that the markup for the "Target Element" section is XAML, not HTML markup.

WebUI Test Studio Developer Edition Made Easy102

© 2010 Falafel Software Inc.

5.7 Verification Types Walk Through

5.7.1 Test Project Setup

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project:

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

Verification Engine 103

© 2010 Falafel Software Inc.

5.7.2 Create Verifications

1) Locate the Record button and click it. This will display the Recording Surface.

2) In the Recording Surface, enter "http://www.google.com/translate" to the browser address bar and then
click the Go to Url button. This will load the Google translation web page.

3) Press the Highlighting button to enable it.

4) Move the mouse over the "Google Translate" image to highlight it. Wait for the Nub to appear.

5) Click the Nub to display the Elements Menu.

6) Click the Build Verification icon

7) Click the Attributes button from the Available Verifications area. This will add an Attributes verification
sentence to the Selected Sentences area.

8) In the new sentence, select the "alt" attribute from the drop down list. The comparison and value should
be automatically set to "Exact" and "Google", respectively.

9) Click the Validate Rule button. The message should read "Validation Passed".

10)Click the Attributes button from the Available Verifications area to add a second verification sentence.

11)In the new sentence, select the "src" attribute from the drop down list, set the comparison to
"Contains" and the value to "http://www.google.com". Click the Validate Rule button. The message
should read "Validation Passed".

WebUI Test Studio Developer Edition Made Easy104

© 2010 Falafel Software Inc.

12)Click the Attributes button from the Available Verifications area to add a third verification sentence. In
the new sentence, select the "height" attribute from the drop down list, set the comparison to "Exact"
and the value to "40". Click the Validate Rule button. The message should read "Validation Passed".

13)Click the IsVisible button from the Available Verifications area and leave the default settings. Click the
Validate Rule button. The message should read "Validation Passed".

The Sentence Verification Builder should now look like the screenshot below:

14)Click the OK button to create test steps for all four verification rules. The steps in the Steps Tab should
look like the screenshot below:

1) Click the Quick Execute button to run the test. All test steps should pass.

Verification Engine 105

© 2010 Falafel Software Inc.

5.8 3D Viewer

The 3D Viewer is an innovation that saves time by handling verifications for multiple elements all at one
time. It consists of a top area showing a 3D view of elements, a Find Element tab, an Available Verifications
tab and a set of buttons to filter verifications and to add selected verifications to the project.

The top of the screen shows elements as three dimensional panels. To navigate, click any of the panels in
the 3D view to select and bring the panel to the front, or drag the navigation slider or select an element in
the Find Element tab list. The selected, front-most item corresponds to the items loaded into the Find
Element and the Available Verifications tabs. Click the Lock on Surface button to navigate back to the
Recording Surface with the element highlighted and the Elements Menu already showing.

The Find Element tab lists all elements from the target element you first used to invoke the Elements Menu,
right up to the root of the tree (the HTML element in this case). As you select items in the Find Element
tab, the corresponding 3D panel at the top of the screen rotates to the front.

WebUI Test Studio Developer Edition Made Easy106

© 2010 Falafel Software Inc.

The heart of the 3D Viewer is the Available Verifications tab that lists all possible verifications against a
selected element. You can limit the number of verifications by using the View Filters to show verifications for
a particular category or only checked verifications. Click any of the verification sentences to make the
selected row the active sentence. Click the checkbox on the left of any verification sentence to select it for
adding to the project. Edit any one sentence in the same manner as explained in the preceding "Sentence
Verification Builder" section, i.e. by selecting from the drop down lists and editing the Value. When all your
verification sentences have been selected and edited, click the Add to Project button. This step will create
test steps in the Steps Tab for each verification sentence.

Verification Engine 107

© 2010 Falafel Software Inc.

5.9 3D Viewer Walk Through

5.9.1 Test Project Setup

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project:

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

WebUI Test Studio Developer Edition Made Easy108

© 2010 Falafel Software Inc.

5.9.2 Use 3D Viewer to Create Verifications

1) Locate the Record button and click it. This will display the Recording Surface.

2) In the Recording Surface, enter "http://www.google.com/translate" to the browser address bar and then
click the Go to Url button. This will load the "Google" translation web page.

3) Press the Highlighting button to enable it.

4) Move the mouse over the "Google Translate" image to highlight it. Wait for the Nub to appear.

5) Click the Nub to display the Elements Menu.

6) Click the 3D Viewer option .

7) Click the Available Verifications tab. This will display all verifications for the "Google Translate" image
element.

8) Drop down the categories filter list and select "Attributes".

Verification Engine 109

© 2010 Falafel Software Inc.

9) In this step we want to verify that the "alt" (alternate tag for browsers that don't support images) is
"Google", that the path to the image points to a Url at Google.com and that the height of the image is
40 pixels.

Select checkboxes for "alt Contains Google", "src Contains http://www.google.com...", and "height
Contains 40".

10)Select the "src Contains http://www.google.com..." sentence. Change the comparison to "StartsWith"

and the value to "http://www.google.com". Click the Validate Rule button. A message should
display below the sentence that reads "Validation Passed".

11)Select the "height Contains 40" sentence. Change the comparison to "Exact". Click the Validate Rule

 button. A message should display below the sentence that reads "Validation Passed".

12)From the View filter select "IsVisible" from the drop down list. In the verification sentence, select the

"IsVisible True" sentence check box. Click the Validate Rule button. A message should display
below the sentence that reads "Validation Passed".

WebUI Test Studio Developer Edition Made Easy110

© 2010 Falafel Software Inc.

13)From the View filter, select "All Categories". Then check the Selected Only check box. This will
display all the verifications we intend to add to the project.

14)Click the Add to Project button.

15)Click the Close, "X" icon to exit the 3D Viewer.

16)The test steps in the Steps Tab should look like the steps shown in the screenshot below:

17)Click the Quick Execute button to run the test. All test steps should pass.

Verification Engine 111

© 2010 Falafel Software Inc.

5.10 Verification Walk Through

In practice, verification usually involves additional planning and steps. For example, to automate a suite of
tests to verify that a login page is working correctly involves not only the actual logging in and verifying that
the login was successful, but also that we check the correct behavior for failed logins, blank passwords,
incorrect passwords and so on. Running all of these tests requires that we return to some known state
before launching the next test. For example, our login scenario will go nicely through the first login attempt,
but unless we log back out, the second login attempt may not perform as expected.

We will be working with a login page and simple "Orders" page to test various paths from the login. For this
walk through we will not be testing the "Remember me" feature as this would require some coding steps to
test a cookie that's created when the option is checked. See the WebAii Framework chapter for more
information about testing cookies in code.

Depending on the rigor of your testing standards, you may want to test each feature in various combinations
with the other features. For our purposes we will create the following tests, each with their own unique
verifications:

1. Successful login.

2. Incorrect user name.

3. Incorrect password.

4. Blank user name

5. Blank password

WebUI Test Studio Developer Edition Made Easy112

© 2010 Falafel Software Inc.

5.10.1 Test Project Setup

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project:

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

Verification Engine 113

© 2010 Falafel Software Inc.

5.10.2 Successful Login Test

Automate Test Steps

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "LoginSuccess.aii" and
click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://training.falafel.com/orders/" to the browser address bar and then
click the Go to Url button. This will load the login page.

5) In the User Name edit box enter "training". Note that the user name and password are printed right on
the page for your reference.

6) In the Password edit box enter "falafel".

7) Click the Login button.

The Orders Sample Application screen should now be displayed in the browser.

The test steps so far should match the list in the screenshot below:

WebUI Test Studio Developer Edition Made Easy114

© 2010 Falafel Software Inc.

 Notes

You may have extra steps due to navigating in the page or extra keystrokes. You can delete these
steps from the Steps Tab.

Add Verifications

1) Press the Highlighting button to enable it.

2) Pass the mouse over the "Order Sample Application"

3) Click the Nub to display the Elements Menu, then click the Build Verification icon .

 Gotcha!

Notice that the target element is an "object", not something that would contain text content such
as a DIV. What's happened here?

The element we expected to select was actually covered by a Flash object. The blue logo image to
the left of the text uses Flash to animate a slight ripple effect on its surface when the mouse
passes over. This is a perfect time to use the DOM Explorer to find elements hidden by other
elements. See the next step that demonstrates using the DOM Explorer search capability to locate
the "Orders Sample Application" element. Then we will use the "Lock on Surface" feature to
highlight the element an popup the Elements Menu all in one move.

4) In the Recording Surface, navigate to the DOM Explorer.

5) In the DOM Explorer, click the search button .

Verification Engine 115

© 2010 Falafel Software Inc.

6) In the "Find" edit box enter the expression "TextContent=Orders Sample Application". Click the Search
button. The search should find one element, a heading tag: "<H1>".

 Notes

If you open up the H1 tag you'll find that it contains our text:

7) Click the Content button from the Available Verifications area.

8) The verification sentence should have "InnerText - Exact - Orders Sample Application" as shown in the

screenshot below. Click the Validate Rule button . The completion message should read "Validation
Passed!". Click the OK button to add the verification as a test step.

9) In Visual Studio, save and build the application.

WebUI Test Studio Developer Edition Made Easy116

© 2010 Falafel Software Inc.

10)Click the Quick Execute button to run the test. All test steps should pass.

Verification Engine 117

© 2010 Falafel Software Inc.

5.10.3 Build Master Test

Building a single successful test by itself isn't enough. You need a mechanism to add more related tests, e.
g. "login fails". The Steps Tab allows you to call other tests by adding a "Test as Step". In this next part of
the walk through we will create a new "master" test and call the successful login test from it. We will call
the successful login test a second time to verify that we have a repeatable test. As we add other tests, we
can run the entire suite each time to see how the tests work when run in a series.

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Login.aii" and click
OK to create the test.

3) In the Steps Tab, click Add... > Test as Step. This will display the "Select testcase..." dialog.

4) Select the "LoginSuccess" test case and click the OK button to add that test as a step.

"Execute test 'LoginSuccess' should show up in the Steps Tab as a test step, as shown in the
screenshot below.

5) In the Steps Tab, click Add... > Test as Step a second time. Select the "LoginSuccess" test case
again and click the OK button to add that test as the second test step.

6) In Visual Studio, save the project.

7) Click the Quick Execute button to run the test.

WebUI Test Studio Developer Edition Made Easy118

© 2010 Falafel Software Inc.

 Gotcha!

The second iteration of the test fails unexpectedly. What happened here?

We can take a look at the log file by clicking the Steps Tab View Test Log button . In the log,
shown below, the failure occurred when the "User Name" edit box entry couldn't be found.

^^
'12/23/2009 11:47:25 AM' - Executing test 'LoginSuccess' as a step.
--
'12/23/2009 11:47:28 AM' - 'Pass' : 1. Navigate to : 'http://training.falafel.com/orders/'
'12/23/2009 11:47:30 AM' - 'Pass' : 2. Set 'ContentPlaceHolder1LoginView1Login1UserNameText' text to 'training'
'12/23/2009 11:47:31 AM' - 'Pass' : 3. Set 'ContentPlaceHolder1LoginView1Login1PasswordPassword' text to 'falafel'
'12/23/2009 11:47:34 AM' - 'Pass' : 4. Click 'ContentPlaceHolder1LoginView1Login1LoginButtonSubmit'
'12/23/2009 11:47:34 AM' - 'Pass' : 5. Verify 'InnerText' 'Exact' 'Orders Sample Application' on 'OrdersSampleH1Tag'
^^
'12/23/2009 11:47:34 AM' - 'Pass' : 1. Execute test 'LoginSuccess'
^^
'12/23/2009 11:47:34 AM' - Executing test 'LoginSuccess' as a step.
--
'12/23/2009 11:47:57 AM' - 'Pass' : 1. Navigate to : 'http://training.falafel.com/orders/'
'12/23/2009 11:48:03 AM' - 'Fail' : 2. Set 'ContentPlaceHolder1LoginView1Login1UserNameText' text to 'training'
--
Failure Information:
~~~~~~~~~~~~~~~
Unable to locate element. Details: Attempting to find [Html] element using 
Find logic

One of the first steps in troubleshooting is to look at the steps preceding an error. What
happened just before we tried to set the user name? The step just prior to the failure was a
navigation to the orders page. The navigation does not guarantee that a particular page is
loaded, just that navigation was attempted. Another debugging measure you can take is to

Enable Annotation  so you can see the action in slow motion and get a better idea of what
happened. With annotation enabled you may be able to see that the second time "Navigate to
http://training.falafel.com/orders" runs, the browser is already at the orders page, not the
expected login page. 

To fix the problem and allow the test to complete successfully, we simply need to logout at the
end of the test, so the browser is in the exact same state it was when the test was first run. 

8) Using Visual Studio  Solution Explorer, double click "LoginSuccess.aii" to open it.



Verification Engine 119

© 2010 Falafel Software Inc.

9) In the Elements Explorer, right click "OrdersSampleH1Tag" and select Load Page... from the context
menu.

10)Using the Recording Surface toolbar, make sure that Recording is turned on. 

11)Click the "Logout" link.

12)In the Elements Explorer, select the "ContentPlaceHolder1LoginView1LoginStatus1Link", then in the
Properties pane, change the FriendlyName property to "Logout". The test steps should now look
something like the screenshot below. 

13)In Visual Studio, save and build the project.

14)Using Visual Studio  Solution Explorer, double click "Login.aii" to open it.

15)Click the Quick Execute button to run the test. Both test steps should pass.



WebUI Test Studio Developer Edition Made Easy120

© 2010 Falafel Software Inc.

5.10.4 Incorrect User Name Test

Now that our test can be repeated, i.e. the state of the browser returns to its original state each time the
test is run, we can add other tests and verify that the entire suite works as a whole. 

Automate Test Steps

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "IncorrectUserName.
aii" and click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://training.falafel.com/orders/" to the browser address bar and then
click the Go to Url button. This will load the login page. 

5) In the User Name edit box enter "xyz". 

6) In the Password edit box enter "falafel". 

7) Click the Login button.

8) An error message will display in red type.

Add Verifications

1) Press the Highlighting button to enable it. 

2) Pass the mouse over the error message to highlight it and wait for the Nub to appear. 

3) Select the View 3D icon  from the Elements Menu.

4) Select the 3D Viewer "Available Verifications" tab.  



Verification Engine 121

© 2010 Falafel Software Inc.

5) Select the checkbox for the "TextContent - Contains - "Your login attempt was not successful..."
verification rule. Change the comparison to "Exact". Click the Validate rule button. A message should
display "Validation Passed!". 

6) Drop down the View filter list and select "Attributes". 

7) Select the checkbox for the "style - contains  - "COLOR:red" verification rule. Click the Validate rule
button. A message should display "Validation Passed!". 

8) Click the Add To Project button. 

9) Click the close "X" button.

10)In Visual Studio, save and build the application.

11)Click the Quick Execute button  to run the test. All test steps should pass.

 

12)In the Visual Studio Solution Explorer, double click "login.aii" to open it. 

13)Select the Steps Tab Add... > Test as Step. In the Select Testcase Dialog, select the
"IncorrectUserName" test and click OK to create the test step.  

14)In Visual Studio, save and build the application.

15)Click the Quick Execute button  to run the test. All test steps should pass.



WebUI Test Studio Developer Edition Made Easy122

© 2010 Falafel Software Inc.

5.10.5 Incorrect Password Test

The next test will be nearly identical to the "Incorrect User Name" test, except that we will test the
password. You can try building this test yourself and check your results against this section of the tutorial. 

Automate Test Steps

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "IncorrectPassword.aii"
and click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://training.falafel.com/orders/" to the browser address bar and then
click the Go to Url button. This will load the login page. 

5) In the User Name edit box enter "training". 

6) In the Password edit box enter "xyz". 

7) Click the Login button.

8) An error message will display in red type.

Add Verifications

1) Press the Highlighting button to enable it. 

2) Pass the mouse over the error message to highlight it and wait for the Nub to appear. 

3) Select the View 3D icon  from the Elements Menu.

4) Select the 3D Viewer "Available Verifications" tab.  

5) Select the checkbox for the "TextContent - Contains - "Your login attempt was not successful..."
verification rule. Change the comparison to "Exact". Click the Validate rule button. A message should
display "Validation Passed!". 



Verification Engine 123

© 2010 Falafel Software Inc.

6) Drop down the View filter list and select "Attributes". 

7) Select the checkbox for the "style - contains  - "COLOR:red" verification rule. Click the Validate rule
button. A message should display "Validation Passed!". 

8) Click the Add To Project button. 

9) Click the close "X" button.

10)In Visual Studio, save and build the application.

11)Click the Quick Execute button  to run the test. All test steps should pass.

 

12)In the Visual Studio Solution Explorer, double click "login.aii" to open it. 

13)Select the Steps Tab Add... > Test as Step. In the Select Testcase Dialog, select the
"IncorrectPassword" test and click OK to create the test step.  

14)In Visual Studio, save and build the application.

15)Click the Quick Execute button  to run the test. All test steps should pass.



WebUI Test Studio Developer Edition Made Easy124

© 2010 Falafel Software Inc.

5.10.6 Empty User Name Test

The next test verifies that the login displays an error if the user name is left empty.

Automate Test Steps

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "EmptyUserName.aii"
and click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://training.falafel.com/orders/" to the browser address bar and then
click the Go to Url button. This will load the login page. 

5) In the Password edit box enter "falafel" (Leave the User Name edit box empty). 

6) Click the Login button.

7) A red asterisk will display next to the User Name edit box. 

Add Verifications

1) Press the Highlighting button to enable it. 

2) Pass the mouse over the asterisk to highlight it and wait for the Nub to appear. 

3) Select the View 3D icon  from the Elements Menu.

4) Select the 3D Viewer "Available Verifications" tab.  

5) Select the checkbox for the "TextContent - Contains - "*" verification rule. Change the comparison to
"Exact". Click the Validate rule button. A message should display "Validation Passed!". 

6) Drop down the View filter list and select "Attributes". 



Verification Engine 125

© 2010 Falafel Software Inc.

7) Select the checkbox for the "style - contains" verification rule. Change the value portion of the verification
sentence to "COLOR: red". Click the Validate rule button. A message should display "Validation
Passed!". 

8) Click the Add To Project button. 

9) Click the close "X" button.

10)In Visual Studio, save and build the application.

11)Click the Quick Execute button  to run the test. All test steps should pass.

 

12)In the Visual Studio Solution Explorer, double click "login.aii" to open it. 

13)Select the Steps Tab Add... > Test as Step. In the Select Testcase Dialog, select the "
EmptyUserName" test and click OK to create the test step.  

14)In Visual Studio, save and build the application.

15)Click the Quick Execute button  to run the test. All test steps should pass.



WebUI Test Studio Developer Edition Made Easy126

© 2010 Falafel Software Inc.

5.10.7 Empty Password Test

The next test verifies that the login displays an error if the password is left empty. The test is essentially the
same as the previous test. You can try building this test yourself and check your results against this
section of the tutorial. 

Automate Test Steps

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "EmptyPassword.aii"
and click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://training.falafel.com/orders/" to the browser address bar and then
click the Go to Url button. This will load the login page. 

5) In the User Name edit box enter "training" (Leave the Password edit box empty). 

6) Click the Login button.

7) A red asterisk will display next to the Password edit box. 

Add Verifications

1) Press the Highlighting button to enable it. 

2) Pass the mouse over the asterisk to highlight it and wait for the Nub to appear. 

3) Select the View 3D icon  from the Elements Menu.

4) Select the 3D Viewer "Available Verifications" tab.  

5) Select the checkbox for the "TextContent - Contains - "*" verification rule. Change the comparison to
"Exact". Click the Validate rule button. A message should display "Validation Passed!". 

6) Drop down the View filter list and select "Attributes". 

7) Select the checkbox for the "style - contains" verification rule. Change the value portion of the verification
sentence to "COLOR: red". Click the Validate rule button. A message should display "Validation
Passed!". 

8) Click the Add To Project button. 

9) Click the close "X" button.



Verification Engine 127

© 2010 Falafel Software Inc.

10)In Visual Studio, save and build the application.

11)Click the Quick Execute button  to run the test. All test steps should pass.

12)In the Visual Studio Solution Explorer, double click "login.aii" to open it. 

13)Select the Steps Tab Add... > Test as Step. In the Select Testcase Dialog, select the "EmptyPassword
" test and click OK to create the test step.  

14)In Visual Studio, save and build the application.

15)Click the Quick Execute button  to run the test. All test steps should pass.

5.11 Wrap Up

In this chapter you learned what a verification is and how verifications are applied using WebUI Test Studio.
You learned how WebUI Test Studio implements verification using "sentences",  how these sentences are
structured and how sentences are accessed using WebUI Test Studio. You learned the types of verification
available for basic HTML and how the consistent interface provided by WebUI Test Studio allows Silverlight
and AJAX elements to be verified using the same mechanism. You used both the Sentence Verification
Builder and the 3D Viewer to create verifications. Finally, you created a suite of tests against a login page
that exercised several different verification types. 



Part

VI
Translators



Translators 129

© 2010 Falafel Software Inc.

6 Translators

6.1 Objectives

In this chapter you will learn about the WebUI Test Studio extensibility model and how "translators" are
used to surface deep information about controls. You will see how information from the "intrinsic", generic
translators differ from the translators built specifically for RadControls. You will learn where the translator
binaries and documentation are kept, and work with the supplied sample projects. 

 Find the projects for this chapter at...

<install path>\Samples\RadControls Translators\ASP.NET AJAX\SampleTests.sln



WebUI Test Studio Developer Edition Made Easy130

© 2010 Falafel Software Inc.

6.2 Overview

The party that best understands the internals of a component is the party that built it. The WebUI Test
Studio extensibility model allows 3rd party web component vendors to encapsulate deep knowledge of
component internals to share with their customers.  

Translators are extensions to Visual Studio that open up an element to work with WebUI Test Studio. A
translator describes the actions of an element that can be automated and verifications that can be
performed. Translators allow interaction with the WebUI Test Studio user interface including the Elements
Menu, Elements Explorer and Steps Tab. WebUI Test Studio ships with basic translators for HTML and
Silverlight, and translators built specifically for  AJAXand Silverlight RadControls. WebUI Test Studio was
built with extensibility in mind, so as additional controls become available, new translators can be plugged
in. Telerik is committed to maintaining translators in step with RadControl changes, so you can expect the
translators to always be up-to-date.

As your mouse hovers over elements in the Recording Surface, the Nub will fan out to indicate progressively
more specific translators. The screenshot below shows the translators for a RadGrid cell. The Recording
Surface shows enhanced highlighting in the form of green borders around a "translated" element that
indicate how elements are contained within each other. In the screenshot of the RadGrid below we see a
the enhanced highlighting and fan of translator nubs where the innermost leaf is a GridDataCell and the
outermost leaf is a RadGrid.



Translators 131

© 2010 Falafel Software Inc.

As the mouse passes over translated elements, tooltip text will popup showing the identity of a specific
element and the green highlight will show where it places in terms of containership. 

When you click on one of the nub leaves, the Elements Menu, Quick Tasks button displays tasks for the
specific leaf. The screenshot below shows verification and wait tasks for a particular grid cell. Without the
translator you couldn't get to this level of detail easily. 

If you click the Elements Menu, Build Verification button, you can create a verification sentence using
criteria supplied by the translator. In the screenshot below, the translator makes the Cell Text of a grid
available. 



WebUI Test Studio Developer Edition Made Easy132

© 2010 Falafel Software Inc.

Your WebUI Test Studio installation directory has sub-directories with: 

Documentation for both HTML and Silverlight translators. The documentation lists each of the translators
along with the actions it can automate, the verification sentences it can build and any Quick Tasks that it
can implement. 

Sample test solutions for Visual Studio with tests that exercise each type of RadControl against a
"demos" web site. 

The binary files that contain translators. These are "assemblies" with the file extension ".dll". Translators
defined in these files show up in the "Loaded Translators" tab of the User Settings. Notice that both the
HTML and Silverlight translators have a "base" or "generic" group of intrinsic translators that are used
whenever a more specific translator is not available.



Translators 133

© 2010 Falafel Software Inc.

6.3 Standard vs Translated Comparison

Depending on the complexity of the control, translators can surface volumes of detail about a control's inner
workings. To get a feel for the differences between generic translation using the intrinsic translators and
translators used for specific controls, lets compare a DropDownList control (standard ASP.NET) with a
RadComboBox (RadControls for MS AJAX ). When you display the Elements Menu over the DropDownList,
the "intrinsic" HTML translator kicks in and recognizes a standard "<Select>" tag. Looking at the Quick
Tasks we can see that the HTML translator knows about the Text, Value, existence and visibility of the
element.

In contrast, the translator for RadComboBox recognizes a text box portion of the control, a drop down arrow,
and the RadComboBox as a whole. 

The RadComboBox is actually a relatively complex control in the browser made up of a "<DIV>", a
"<TABLE>" and a number of special CSS styles, yet the translator doesn't bury you in detail you can't use.
The screenshot below shows that we can find the text, selected index, item count and the "drop down"
status. We can also show the Elements Menu for the text box or drop down arrow portion of the control. 



WebUI Test Studio Developer Edition Made Easy134

© 2010 Falafel Software Inc.

6.4 Walk Through

In this walk through, you will open the ASP.NET AJAX samples solution and run one of the pre-built tests
against a RadGrid. Along the way we will open up the Telerik demo site for ASP.NET AJAX RadControls
and look at some of the RadGrid translators. 

1) In Visual Studio menu click File > Open Project/Solution...  The Open Project dialog will display. In
the Open Project dialog, navigate to the WebUI Test Studio installation directory, then to the directory /
RadControls Translators/ASP.NET AJAX/SampleTests.sln

 Notes

You can also find all of the sample programs from the Start menu. There you can find folders for
both ASP.NET AJAX and Silverlight sample tests. Both folders will contain a "Translators"
solution that focuses on the WebUI Test Studio tests built in the Recording Surface. 



Translators 135

© 2010 Falafel Software Inc.

2) In the Solution Explorer, open the Grid directory, then double-click the "AddNewRecord.aii" test to open
it. 

3) In the Steps Tab, click the second test step that reads "RadGridDataItem: item '0' is in edit mode'". 

4) In the Elements Explorer, find the currently selected element with the yellow arrow next to it. Right
click the element and select Load Page... from the context menu. 

5) Click the Highlighting button  to enable highlighting in the Recording Surface.



WebUI Test Studio Developer Edition Made Easy136

© 2010 Falafel Software Inc.

6) Hover the mouse over the "First Name" column of the last visible row in the grid. 

7) Move the mouse over each of the fanned out translators to view the tool tip for each. Notice the
enhanced highlighting as the mouse passes over each element.

8) Click the innermost leaf "GridDataCell" to invoke the Elements Menu. Click the Quick Tasks button.
Quick Tasks should show a Verify and a Wait task for the GridDataCell element. Click the "Back"

button  until the Elements Menu closes.

9) Again, hover the mouse over the "First Name" column of the last visible row in the grid. 



Translators 137

© 2010 Falafel Software Inc.

10)Click the outermost leaf for the RadGridView. Click the Quick Tasks button to see the available
verifications. The screenshot below shows verifications for properties that enable various features such

as client selection or row resizing.  Click the "Back" button  until the Elements Menu closes.

11)In the Steps Tab, review the test steps. 

The test steps will navigate to the RadControls for ASP.NET AJAX Grid demos, check that the first row
is in edit mode, cancel the edit mode, then wait for the row to exit the edit mode. Then the test will
create a new row, populate the new row and verify the data exists in the last row cells. 

12)Press the Quick Execute button to run the test. All test steps should pass.



WebUI Test Studio Developer Edition Made Easy138

© 2010 Falafel Software Inc.

6.5 Wrap Up

In this chapter you learned about the WebUI Test Studio extensibility model and how "translators" are used
to surface deep information about controls. You saw how information from the generic translators differed
from specific translators built specifically for RadControls. You learned where the translator binaries and
documentation are kept, and you worked with the supplied sample projects.



Part

VII
Testing AJAX Applications



WebUI Test Studio Developer Edition Made Easy140

© 2010 Falafel Software Inc.

7 Testing AJAX Applications

7.1 Objectives

In this chapter we will talk about the evolution of web applications, the challenges these new evolutionary
changes present to testing and how WebUI Test Studio addresses each of these issues. In particular, you
will learn how to overcome timing issues that occur in AJAX applications. You will test against sample
controls from the Microsoft asp.net AJAX web site and RadControls for ASP.NET AJAX.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\TestingAjax\TestingAjax.sln



Testing AJAX Applications 141

© 2010 Falafel Software Inc.

7.2 JavaScript

Prior to the advent of JavaScript in 1995 by Netscape, the browser experience was completely server based.
That is, you pressed a button or clicked a link, the page was sent to the server and a new batch of HTML
was constructed and sent back to the browser. The entire page was refreshed each time. With JavaScript
you can have an action take place instantly without refreshing the page. This presents a whole new set of
paths that need to be checked to get full testing coverage. 

Let's take an example where we have two text boxes. The first text box takes a user name and the second
is automatically updated with a unique ID. We will want to test that after the first text box is filled, the
second text box is not blank. The screenshot below shows two text boxes exhibiting correct behavior for
this scenario. 

By default, WebUI Test Studio wants to directly assign the textbox a value without using JavaScript or
simulating actual typing. This is a best practice for most situations; robust and unlikely to be disturbed by
changes in the environment. But in our example scenario, the JavaScript event is never triggered and the
second text box is left empty. The screenshot of the Steps Tab below shows a failing test step where a
regular expression is verifying that the second text box is non-blank. 

Fortunately, WebUI Test Studio can trigger specific JavaScript events as test steps. Use the Elements

Menu, JavaScript Events button  to invoke available events. This JavaScript example happens to have an
OnKeyPress event hooked up to the first text box. 



WebUI Test Studio Developer Edition Made Easy142

© 2010 Falafel Software Inc.

With the OnKeyPress event invocation test step, the text for the second text box is updated properly and
the test runs successfully. 

7.3 Introducing AJAX

AJAX stands for Asynchronous Javascript And XML and is a melding of browser, "client side" functionality
with traditional server communication. JavaScript is capable of making calls to the server and updating
selected portions of the page. From the testing perspective, AJAX may add a pause while information is
retrieved from the server. AJAX is also "asynchronous" where not all parts of the page are necessarily
updated at one time. For example, if you have prices from multiple locations, these prices can be displayed
as they are received, and in any order. Web application testing has to take into account that any portion of
a page can be updated at any time, without a total page refresh.

One of the principal ways AJAX can be handled in WebUI Test Studio is by waiting for a particular element
to reach some state, e.g. "text content = '1234'".

  From the Forums...

Question: Am I right in thinking that the test is not waiting for the AJAX call, specifically, to end,
it's just waiting for the element to change to what it expects?

Answer: Since the problem with AJAX is that you must wait some unknown time for the
operation to complete, you can easily introduce reliable testing by simply configuring the test to
"wait" before validating. This method, while simple, is very useful, effective and reusable for many
scenarios.



Testing AJAX Applications 143

© 2010 Falafel Software Inc.

7.4 ASP.NET AJAX

ASP.NET AJAX is a Microsoft framework for AJAX web development. Here's the marketing blurb: 

"ASP.NET AJAX is the free Microsoft AJAX framework for building highly interactive and responsive web
applications that work across all popular browsers...NET AJAX enables developers to choose their preferred
method of AJAX development, whether it is server-side programming, client-side programming, or a
combination of both."

ASP.NET AJAX comes with a set of components that make AJAX applications easier to develop, including
a ScriptManager that supplies the JavaScript used to enable AJAX functionality, an UpdatePanel that allows
AJAX updates to selected portions of a page and a number of AJAX enabled controls that use the ASP.NET
AJAX framework. From a testing perspective, ASP.NET AJAX can be thought of as similar to manually
programmed AJAX. 

You can find more information about ASP.NET AJAX at the official site, http://www.asp.net. The toolkit
samples at http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/ are particularly useful when learning to test
AJAX scenarios. You can encounter some of the common AJAX related challenges by using the "Text Box
Watermark" demonstration project. A text box "watermark" shows as gray prompt text, e.g. "Type Last
Name Here" that displays when a text box is empty. The demonstration page takes a first and last name.
When the "Submit" button is pressed, a label is updated from the server using AJAX. 

The typical smoke test here is to simply fill in the first and last name, click the "Submit" button and verify
that the label ends up with the expected text. If we set up just those steps in the Steps Tab, the last test
step fails. Why? And just as important, how do we find out what is wrong with the construction of the test? 

 



WebUI Test Studio Developer Edition Made Easy144

© 2010 Falafel Software Inc.

 Notes

WebUI Test Studio is a tool that measures behavior of a software product under certain
conditions. As you become proficient with WebUI Test Studio  you can turn your attention from
"what's wrong with the construction of my test?" to "what's wrong with the product I'm testing?"
 

There's no magic involved. Working with smaller examples, such as the www.asp.net sample
projects, you can learn why test steps succeed or fail. You can also begin to develop a "base line"
of test steps that are repeatable and always return the results you expect. Then, when a test step
fails, you will know that your test is valid and that some change in the product or environment
has caused the product being tested to fail. 

By turning on annotations  in the Steps Tab, we can slow down the action a bit. When the "Submit"
button is clicked, the text is blanked out and the label still shows "Hello [blank] [blank]!". We don't have
visibility to what is happening when the first and last name is typed in. There could be JavaScript events
firing or even processing on the server happening in the background. We can turn on the 
SimulateRealTyping property for the two test steps that set the first and last name text content. Now
when we run the test, the label contains the expected text. 

What if we turn off annotations and run the test at full speed? The last step fails again. How do we
troubleshoot this situation? We know that the test runs successfully when slowed down, and that it fails
when speeding up. This appears to be a timing issue and we know that AJAX can take extra time waiting for
the server to respond. The verification test step fails because the text content of the label is checked before
the server has responded. What we need is a way to perform the verification after the server has responded.

WebUI Test Studio allows you to change any verification step to a "wait" step. You can add a wait step from
the Elements Menu Quick Tasks or you can right-click the verification test step and select Set as Wait
from the context menu. 

Now when we run the test, all test steps pass. The key portions of the test that we changed to work with
AJAX: 1) Simulated real key strokes to invoke underlying JavaScript events and 2) Waited for the AJAX to
return a response from the server. 



Testing AJAX Applications 145

© 2010 Falafel Software Inc.

The verification step, when acting as a wait, has a few properties to know about: 

CheckInterval is the number of milliseconds between evaluations of the verification.

Timeout is the number of milliseconds before the test step will fail when used as a wait. 

WaitOnElements indicates that the test step should wait WaitOnElementsTimeout milliseconds for
step elements to exist before executing the test step. 

SupportsWait, IsWaitOnly and StepType are read-only properties that indicate this test step can be
used as a wait, that the step can only be used as a wait and that this particular test step is a wait
step. 

7.4.1 Walk Through

In this walk through you will construct a simple test of the ASP.NET AJAX Toolkit "ValidatorCallout" control.
The demo contains AJAX functionality, so we can expect to see the same timing issue as shown in the
preceding text box "watermark" example. This walk through will show the failing test, then change the
verification steps to work as "wait" steps.



WebUI Test Studio Developer Edition Made Easy146

© 2010 Falafel Software Inc.

7.4.1.1 Project Setup

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

4) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.



Testing AJAX Applications 147

© 2010 Falafel Software Inc.

7.4.1.2 Add Test Steps

1) Locate the Record button and click it. This will display the Recording Surface.

2) In the Recording Surface, enter "http://www.asp.net/AJAX/AjaxControlToolkit/Samples/ValidatorCallout/
ValidatorCallout.aspx" to the browser address bar and then click the Go to Url button. This will load the
"ValidatorCalllout" demonstration web page. 

3) Enter the content "Mr. Telerik" into the "Name" text box.

4) Enter the content "(555)123-1234" into the "Phone Number" text box.

5) Click the "Submit" button. 

6) Press the Highlighting button  to enable it. 

7) Move the mouse over the confirmation label, just below the "Submit" button, to highlight it. Wait for the
Nub to appear.

8) Click the Nub to display the Elements Menu.

9) Click the Build Verification icon 

10)In the Sentence Verification Builder, create two Content verifications. In the first, TextContent should
Contain "Mr. Telerik". In the second, TextContent should Contain "(555)123-1234". Click OK to close
the dialog and create the verification steps. 

11)In the Steps Tab, click the Quick Execute button to run the test. The first "TextContent" verification
may fail (depending on the speed that the test was run at) because the verification takes place before
the label is updated from the server. The last step is canceled because the step just before it failed. 

12)Convert the last two test steps to "wait" steps. Right click each step and select "Set as Wait" from the
context menu. 



WebUI Test Studio Developer Edition Made Easy148

© 2010 Falafel Software Inc.

13)In Visual Studio, save the project. 

14)In the Steps Tab, click the Quick Execute button to run the test. Now all test steps will complete
successfully.



Testing AJAX Applications 149

© 2010 Falafel Software Inc.

7.4.1.3 Intermittent Timing Problems

When AJAX enabled components interact on a page you may experience intermittent timing issues where
sometimes the server returns quickly enough to satisfy a test and at other times fails. We can see this in
action using the "CascadingDropDown" AJAX toolkit demonstration project. 

"CascadingDropDown enables a common scenario in which the contents of one list depends on the
selection of another list ... All the logic about the contents of the set of DropDownList controls lives on the
server in a web service."

When the "Make" of the car is selected from the top-most list, the "Model" list is populated from the server
and enabled. As items are selected in each drop down list, the next list in line is populated and enabled.
When all three lists have selections, one last trip to the server creates a confirmation message, e.g. "You
have chosen a Yellow BMW 5 series. Nice car!"

Any one of these steps can fail if the trip to the server takes too long. Multiple runs of the test show different
lines flagged as an error, or in some cases, no error at all. The screenshot below shows the third test step
for this particular test run happened to fail. 

The logged error message for this test run indicates that a drop down value wasn't found. The step was
expecting a value of "5 series", but instead found nothing. 

"Unexpected error thrown while setting the dropdown ---> System.
ArgumentOutOfRangeException: Specified argument was out of the range of valid values.
Parameter name: DropDown was unable to find the item '5 series (value)' in the dropdown
requested..."

In this walk through we will create test steps "defensively" and assume a slow trip to the server that will not
complete in time for the following test step. We will check that a given option already exists in the list
before trying to pick it. 

1) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).



WebUI Test Studio Developer Edition Made Easy150

© 2010 Falafel Software Inc.

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

2) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

3) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

4) Locate the Record button and click it. This will display the Recording Surface.

5) In the Recording Surface, enter "http://www.asp.net/AJAX/AjaxControlToolkit/Samples/
CascadingDropDown/CascadingDropDown.aspx" to the browser address bar and then click the Go to Url
button. This will load the "CascadingDropDown" demonstration web page. 

6) Select "BMW" from the "Make" drop down list. 

7) Hover the mouse above the "Model" drop down list until the Elements Menu appears. 

8) Select Build Verification from the Elements Menu. Click the Content button from the "Available
Verifications" section. Configure the verification sentence so that "OuterMarkup - Contains - "<OPTION
value="5 series (value)">5 series</OPTION>". Click OK to create the verification step.The screenshot
below shows the completed verification sentence. 

Tip!

Note that when you edit the value portion of the sentence, the entire markup including all the
OPTION tags will exist. You can simply cut away everything but the option you want to verify. If
the option contains the attribute "selected", be sure to remove it. When the drop down list is first
loaded and enabled, selection is on the "Please select a model" option.



Testing AJAX Applications 151

© 2010 Falafel Software Inc.

 Notes

This step ensures that the "5 series" option will exist in the drop down list before we try to pick it.
Later in this chapter we will use a RadControls drop down list. The special purpose translator
provides additional information, such as the number of items in the list. The special purpose
translator can answer the question "has my drop down list been populated" more directly and
easily. When you don't have a special purpose translator, you can still use the intrinsic translator to
examine an element.

9) Select Build Verification from the Elements Menu. Click the Content button from the "Available
Verifications" section. Configure the verification sentence so that

10)Right-click the verification step and select "Set as Wait" from the context menu. 

11)Select "5 Series" from the "Model" drop down list. 

12)Hover the mouse above the "Color" drop down list until the Elements Menu appears. 

13)Select Build Verification from the Elements Menu. Click the Content button from the "Available
Verifications" section. Configure the verification sentence so that "OuterMarkup - Contains - "<OPTION
value="Yellow (value)">Yellow</OPTION>". Click OK to create the verification step.

14)Right-click the verification step and select "Set as Wait" from the context menu. 

15)Select "Yellow" from the "Color" drop down list.

16)Now we need to find the "You have chosen a Yellow BMW 5 series. Nice car!" confirmation label. This
label is located deep within a collection of DIV, TABLE and SPAN tags, making it hard to locate with the

highlighter. Instead, go to the DOM Explorer button. Click the search button  and enter the search
"TextContent=~Yellow BMW 5". This will locate the SPAN tag that contains the confirmation message.
Right-click the SPAN tag and select "Show Elements Menu" from the context menu.



WebUI Test Studio Developer Edition Made Easy152

© 2010 Falafel Software Inc.

17)Click the Elements Menu, Quick Tasks button. Double-click the "Wait - text contains 'You have chosen
a Yellow BMW 5 series. Nice car!'". 

18)Click the Steps Tab, Quick Execute button to run the test. All test steps should pass. 



Testing AJAX Applications 153

© 2010 Falafel Software Inc.

7.5 RadControls for ASP.NET AJAX

RadControls for ASP.NET AJAX are built on top of the ASP.NET AJAX framework. They include
components for handling partial updates of pages easily and with fine-grained control. RadControls for ASP.
NET AJAX also includes a full suite of productivity enhancing,  skinnable controls, e.g. grid, tree, etc.
Testing these controls may involve previously mentioned techniques for handling JavaScript and AJAX. What
makes testing RadControls for ASP.NET AJAX different from any other control are the translators provided
by Telerik. Translators provide a greater degree of specificity but at a reduced cost in terms research and
expertise on the part of the tester.

In the ASP.NET AJAX example, we looked at the outer markup of a "<SELECT>" (i.e., a drop down list) to
see if options had been loaded. If we found an option we could assume the list was loaded from the server.
The translator for the RadComboBox lets you simply check the count of items. The screenshot below
shows the Quick Tasks for the RadComboBox where you can find the text, the index of the currently
selected item, the item count and the drop down state of the combo box (i.e. is the drop down open or not).



WebUI Test Studio Developer Edition Made Easy154

© 2010 Falafel Software Inc.

Each of the items in the drop down list also has its set of verifications and Quick Tasks. The screenshot
below shows the quick tasks for the third item in the drop down.

The State verification for a RadComboBox item has all the possible values in the drop down and also lets
you test if a particular item is Selected, Visible, Enabled or Highlighted. 

Along with this extra information provided from the translators, you still have access to the HTML elements
that make up the RadComboBox as rendered in the browser. 



Testing AJAX Applications 155

© 2010 Falafel Software Inc.

7.5.1 Walk Through

In this walk through we will exercise some of the major RadControls for ASP.NET AJAX using the Telerik
demos page. First we will use a set of RadComboBox controls set in a cascading series similar to the
previous ASP.NET AJAX example. You can contrast this approach with the earlier version that used only
intrinsic translators. 

7.5.1.1 Project Setup

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.



WebUI Test Studio Developer Edition Made Easy156

© 2010 Falafel Software Inc.

7.5.1.2 Testing RadComboBox

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://demos.telerik.com/aspnet-ajax/combobox/examples/
functionality/multiplecomboboxes/defaultcs.aspx" to the browser address bar and then click the Go to
Url button. This will load the "Related Combo Boxes" demonstration web page. 

5) Select "Europe" from the "Continent" drop down list. 

6) Press the Highlighting button  to enable it. 

7) Check that the "Country" drop down list item count is greater than zero: 

a) Move the mouse over the "Country" drop down list. Wait for the Nub to appear and fan out. 

b) Click the RadComboBox leaf to display the Elements Menu (see the screenshot below). 

c) Click the Quick Tasks button to display Quick Tasks for RadComboBox. 

d) Double-click the "Wait - radComboBox: item count is..." item to add the wait step. 



Testing AJAX Applications 157

© 2010 Falafel Software Inc.

e) Select the new "wait" test step in the Steps Tab. In the Properties pane, change the CompareType
property to "GreaterThan" and the ItemCount to "0". 

The test steps so far should look like the screenshot below:

8) Select "Germany" from the "Country" drop down list. 

9) Check that the "City" drop down list item count is greater than zero: 

a) Move the mouse over the "City" drop down list. Wait for the Nub to appear and fan out. 

b) Click the RadComboBox leaf to display the Elements Menu. 

c) Click the Quick Tasks button to display Quick Tasks for RadComboBox. 

d) Double-click the "Wait - radComboBox: item count is..." item to add the wait step. 

e) Select the new "wait" test step in the Steps Tab and in the Properties pane, change the 
CompareType property to "GreaterThan" and the ItemCount to "0". 

10)Select "Frankfurt" from the "City" drop down list. 

11)Verify the text contents of all three combo boxes. 

a) Move the mouse over the "Continent" drop down list and wait for the Nub to appear, then click the
RadComboBox leaf. 

b) Click the Quick Tasks button and double-click "Verify - radComboBox: text is 'Europe'" to add the item
as a verification test step. 

c) Move the mouse over the "Country" drop down list and wait for the Nub to appear, then click the
RadComboBox leaf. 

d) Click the Quick Tasks button and double-click "Verify - radComboBox: text is 'Germany" to add the
item as a verification test step. 

e) Move the mouse over the "City" drop down list and wait for the Nub to appear, then click the
RadComboBox leaf. 

f) Click the Quick Tasks button and double-click "Verify - radComboBox: text is 'Frankfurt" to add the
item as a verification test step. 



WebUI Test Studio Developer Edition Made Easy158

© 2010 Falafel Software Inc.

12)Click the Quick Execute button to run the test. All test steps should pass. 

Tip!

In this example, JavaScript code automatically opens the drop down list after the list is loaded.
Selecting an item in the drop down list does just that (selects the item), but no more. To close the
combo box, you can open it, start recording and close it. The translator for the RadComboBox
running in the Recording Surface will pick this up as a "Drop Down Action - Close". You can place
the test step just after the item selection. 



Testing AJAX Applications 159

© 2010 Falafel Software Inc.

7.6 Testing RadGrid

In this example you will add a row of data to a RadGrid, verify that the expected values ended up in the
correct cells and delete the row.

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, provide a meaningful Test Name and
click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://demos.telerik.com/aspnet-ajax/grid/examples/client/
insertupdatedelete/defaultcs.aspx" to the browser address bar and then click the Go to Url button. This
will load the "Grid / Client Side Insert/Update/Delete" demonstration web page.

5) Click the "Add new employee" tab. 

6) In the "Last Name" edit box enter "Smith".

7) In the "First Name" edit box enter "Bob".

8) In the "Title" edit box enter "Sales Representative".

9) Select "Mr." from the "Title of courtesy" drop down list. 

10)In the "Birth date" enter "12/2/1965". 

 Notes

Optionally, you could click the "Fast navigation" or "Year" button, but that will add a number of steps
as you navigate to the correct year. The additional steps in the Steps Tab will look something like the
screenshot below. 

11)In the "Notes" edit box enter "Formerly worked for WidgetCo in wholesale division.".



WebUI Test Studio Developer Edition Made Easy160

© 2010 Falafel Software Inc.

12)Click the "Add" button. At this point the test steps in Steps Tab should look like the screenshot
below. 

13)Press the Highlighting button  to enable it.

14)Locate the grid row that holds the newly added "Bob Smith" record. Hover the mouse over the cell for
the "LastName" column. When the Elements Menu appears, select the "GridDataCell" leaf. 



Testing AJAX Applications 161

© 2010 Falafel Software Inc.

15)Double-click the entry titled "Verify - radGridDataCell: cell[9,1] text is 'Smith'.". 

16)Hover the mouse over the cell for the "FirstName" column of the grid. When the Elements Menu
appears, select the "GridDataCell" leaf. Double-click the entry titled "Verify - radGridDataCell: cell[9,2]
text is 'Bob'.". 

17)Hover the mouse over the cell for the "Title" column of the grid. When the Elements Menu appears,
select the "GridDataCell" leaf. Double-click the entry titled "Verify - radGridDataCell: cell[9,3] text is
'Sales Representative'.".

18)Hover the mouse over the cell for the "TitleOfCourtesy" column of the grid. When the Elements Menu
appears, select the "GridDataCell" leaf. Double-click the entry titled "Verify - radGridDataCell: cell[9,4]
text is 'Mr.'.".

19)Hover the mouse over the cell for the "BirthDate" column of the grid. When the Elements Menu
appears, select the "GridDataCell" leaf. Double-click the entry titled "Verify - radGridDataCell: cell[9,5]
text is '12/02/1965'.".

20).Press the TAB key to exit the "BirthDate" field. This workaround needs to be done to register the
entry made in the "BirthDate" field. If you miss this step, the birth date doesn't show up in the row that
is added. 



WebUI Test Studio Developer Edition Made Easy162

© 2010 Falafel Software Inc.

21)Hover the mouse over any cell in the grid. When the Elements Menu appears, select the second from
the outermost  leaf of the Nub. The hint shows that this leaf is the displayed by the "GridTableView"
translator. 

22) Double-click the Quick Tasks entry titled "Verify - radGridTable: data item count is '10'.".

23)Click the "Delete" button located below the grid in the "Edit employee" tab. 

24)In the confirmation dialog that appears, click the OK button.



Testing AJAX Applications 163

© 2010 Falafel Software Inc.

25)Hover the mouse over any cell in the grid. When the Elements Menu appears, select the second from
the outermost  leaf of the Nub. The hint shows that the leaf is displayed by the "GridTableView"
translator. Double-click the Quick Tasks entry titled "Verify - radGridTable: data item count is '9'.".

The test steps at this point should look like the screenshot below:

26)Click the Quick Execute button to run the test. All test steps should pass.

 Gotcha!

There are a few possible issues you may run into while performing this exercise: 

The birth date as entered is "12/2/1965". When the row is added to the grid, the cell displays
"12/02/1965". You need to verify the date exactly as formatted in the grid.

The step can fail because the a cell doesn't contain the right data, but also because it can't be
found. To see how the element is located, use the Elements Explorer, right-click and select the
Edit option from the context menu. 

Make sure that the browser is maximized. When the space is reduced, all input may end up in the
same control, e.g. "Last: SmithBobSales...".

7.7 Wrap Up

In this chapter we talked about the evolution of web applications, the challenges these new evolutionary
changes present to testing and how WebUI Test Studio addresses each of these issues. In particular, you
learned how to overcome timing issues that occur in AJAX applications. You tested sample controls from
the Microsoft asp.net AJAX web site and RadControls for ASP.NET AJAX.



Part

VIII
Drag and Drop



Drag and Drop 165

© 2010 Falafel Software Inc.

8 Drag and Drop

8.1 Objectives

In this chapter you will learn how to automate drag & drop operations, both by simply recording the drag &
drop and by using the enhanced user interface of the Drag & Drop option in the Elements Menu. You will
learn basic terminology and some of the key properties used in drag & drop operations. You will learn how
to automate the drag of an element to an arbitrary point in the browser window and also learn how to drag
elements onto other elements. You will learn how to control offsets to precisely set the location of the
dragged element and the drop target. 

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\DragAndDrop\DragAndDrop.sln

8.2 Overview

You can automate the drag & drop of any element in a web page including simple HTML elements,
RadControls for ASP.NET AJAX and Silverlight elements. Automating drag & drop operations has been
abstracted by WebUI Test Studio so that the general automation process is the same no matter if we're
dragging an HTML element or a Silverlight element. 

There are two ways to automate a drag & drop operation. The first is simply to turn on recording in the
Recording Surface and drag elements directly with the mouse. The second is to use the Elements Menu
Drag & Drop option. This second method provides enhanced visual tools that assist in placing dragged
elements in precise locations. The result of both methods is to create a drag & drop action as a test step in
the Steps Tab.  

The destination of the drag & drop operation is called the "drop target" and can be the entire browser
window or another element. The drag & drop mechanism is flexible enough to handle drop targets that are
resized or that move multiple times. WebUI Test Studio allows you to fine tune the exact placement of the
element in relation to the drop target. 



WebUI Test Studio Developer Edition Made Easy166

© 2010 Falafel Software Inc.

8.3 Drag & Drop Basics

Let's try dragging a simple element to some location in the page. The example page has three HTML
"<DIV>" elements colored green, blue and maroon. Recording is turned on in the Recording Surface and the
blue element is dragged and dropped onto a new location in the page.

A new "Desktop command" action is created and added to the Steps Tab list of test steps as shown in the
screenshot below. 



Drag and Drop 167

© 2010 Falafel Software Inc.

The properties for this drag & drop test step control the behavior and location of the drop. 

The Drag Element property is the key to the element being dragged, i.e. the name of the element as
listed in the Elements Explorer. In the screenshot, the Drag Element is named "BlueBox" and lives on a
page called "BasicDragAndDrop".

The Offset property controls where the element is being dragged from. This is the location of the mouse
cursor when the user presses  the left mouse button to begin the drag. In this example, the Offset 46,26
pixels from the top left corner of the element. The ClickUnitType setting can be "Pixel" or "Percentage".
The offset is calculated in relation to the OffsetReference which may be set to any of the corners of the
element (e.g. "BottomRightCorner"), the center line of the element (e.g. "LeftCenter", "BottomCenter") or
to the "AbsoluteCenter" of the element. 

DropTargetType is a key property that can be "Window" or "Element" and determines if the element is
dragged to some location in the browser window or to a location on another element.

DropElement is the key to the element being dropped onto. In the screenshot, the DropTargetType is
"Window", so the Drop element is not specified. DropOffset serves the same purpose as the Offset
property, but allows you to fine tune the exact location of the drop.



WebUI Test Studio Developer Edition Made Easy168

© 2010 Falafel Software Inc.

Tip!

The ClickUnitType property "Percentage" setting is handy when the element may be resized to some
unknown dimensions. For example, if the ClickUnitType is "Percentage" and the X & Y location is 50,
50, the element will be dropped at the center point.

If the Focus property value is "True", then elements are scrolled into view before performing actions on
them. If the DropTargetType property value is "Window", then the browser window will be resized as well. 

DragDropWindowData is used when the entire window is considered the drop target. The settings in
this property determine the location and dimensions of the window. If DropTargetType is "Window", and
Focus is "True", then the browser window is resized to the dimensions specified in this property. 

8.4 Dragging to an Element

For the sake of comparison, here's another drag & drop automation sample where the "Blue" element is
being dragged and the "Maroon" element is the drop target.

 Notes

Even though we're dropping elements "on to" other elements, the dragged element may appear
underneath the drop target, as shown in the screenshot above where the drop target "maroon
box" partially covers the dragged "blue box" element. 



Drag and Drop 169

© 2010 Falafel Software Inc.

The properties of this drag operation in the screenshot below show the Drag Element is the "BlueBox", the
Drop Element is the "MaroonBox", the DropTargetType is "Element", and finally the Offset of the dragged
element is 25% from the top left corner.



WebUI Test Studio Developer Edition Made Easy170

© 2010 Falafel Software Inc.

8.5 Hitting a Moving Target

One of the nice drag & drop features in WebUI Test Studio is the ability to drag to an element that may have
moved by the time the drag takes place. The drag target is an element, not a fixed location on the web
page, so if the element gets moved, you can still drop to it. You can test this yourself by adding a step that
drags the target element to a new location just before it becomes a drop target. Starting from the previous
example, we can drag the "MaroonBox" to a new location, just before we try to drop the "BlueBox" element
on it. The test steps appear in the screenshot below. 

The "Drag & Drop MaroonBox to Windows Target" step drags the maroon box to a point below its initial
position. The next step uses the exact same definition as the previous example where the blue box element
is dragged to the maroon box. Nothing has changed in this step, yet the blue box "follows" the maroon box
to its new position. 



Drag and Drop 171

© 2010 Falafel Software Inc.

8.6 Using the Elements Menu

The Drag & Drop feature of the Elements Menu displays an enhanced user interface that allows you to
visually pinpoint the exact offset locations for both the dragged element and drop target. The enhanced UI is
somewhat like a "Wizard" dialog that asks a series of questions. To illustrate how the enhanced UI is used,
we will again drag the "BlueBox" onto the "MaroonBox" element. 

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

a) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Basics.aii" and click 
OK to create the test.

b) Locate the Record button and click it. This will display the Recording Surface.

c) In the Recording Surface, enter "http://developer.yahoo.com/yui/examples/dragdrop/dd-basic_clean.
html" to the browser address bar and then click the Go to Url button.

4) To use the enhanced UI, click the Highlighting button , hover the mouse above the element to be
dragged until the Nub appears. Click the Nub, then click the Drag & Drop button. 



WebUI Test Studio Developer Edition Made Easy172

© 2010 Falafel Software Inc.

5) A prompt appears where you set the drop target be the entire window or a specific element. 

6) The next prompt asks you to select a drop target element. Click OK to continue. 

7) Hover the mouse over the maroon element and click the "Select Element" button. 

8) The next prompt asks you to select a drop point. Click OK to continue. 



Drag and Drop 173

© 2010 Falafel Software Inc.

9) Position the crosshairs near the center of the element, click the "%" percentage button, leave the
"Reference" button in the upper left hand corner and finally, click the OK ("check mark") button.

10)A summary of the Drag & Drop operation will appear in the Elements Menu. Click the "Add to Project"
button to include the new drag & drop action as a test step. 

11)Run the test. The blue element should drag over to the maroon element. All test steps should pass.



WebUI Test Studio Developer Edition Made Easy174

© 2010 Falafel Software Inc.

8.7 Translators

The translators for RadControls for ASP.NET AJAX or Silverlight allow more sophisticated drag & drop
operations based on the translators internal knowledge of the elements being manipulated. In the example
below, an AJAX enabled RadTreeView node is dragged to a TextBox. 

A TreeView DragAndDropAction action is created automatically with properties that contain the identity of
the tree view node being dragged and the location of the drop target. The drop target can be an offset in
relation to the source node using the OffsetX and OffsetY properties or can be another element by using
the SecondaryTarget property. 

Here's another example where a RadControls for Silverlight RadTreeView node was dragged to a data grid.
The properties look familiar except for the EnsureDropPointInBrowser and ApplicationDropOffset
properties. The ApplicationDropOffset is similar to the other offset properties we've seen so far except that
the offset, in this case, is relative to the Silverlight application. 



Drag and Drop 175

© 2010 Falafel Software Inc.

8.8 Wrap Up

In this chapter you learned how to automate drag & drop operations, both by simply recording the drag &
drop and by using the Drag & Drop option in the Elements Menu. You learned basic terminology and some
of the key properties used in drag & drop operations. You learned how to automate the drag of an element
to an arbitrary point in the browser window and also learned how to drag elements onto other elements. You
learned how to control offsets that set the location of the dragged element and the drop target. 



Part

IX
Testing Silverlight Applications



Testing Silverlight Applications 177

© 2010 Falafel Software Inc.

9 Testing Silverlight Applications

9.1 Objectives

In this chapter we will talk briefly about what Silverlight is, the unique issues that arise when testing
Silverlight applications and how WebUI Test Studio addresses Silverlight specific situations. You will review
differences to the Visual Studio environment when testing a Silverlight application, paying special attention
to the 3D Viewer, DOM Explorer and Elements Explorer. 

You will perform walk through exercises that test cascading combo boxes and RadGridView. You will also
test an entry form that performs validation and has several Silverlight controls including standard TextBlock,
RadSlider, RadCalendar and RadMaskedTextBox.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\TestingSilverlight\TestingSilverlight.sln



WebUI Test Studio Developer Edition Made Easy178

© 2010 Falafel Software Inc.

9.2 Overview

Microsoft created Silverlight to support the building of rich media applications. Silverlight is a "plug in",
object embedded to a standard web page that runs right in the browser. Silverlight applications present
unique testing issues, e.g. the Silverlight elements are not readily accessible, the user interface can be
asynchronously updated and elements are likely to be animated. 

WebUI Test Studio is the first scriptless record and playback solution for Silverlight. With WebUI Test
Studio you can build a single test case that interacts with both HTML and Silverlight elements, even on the
same page. WebUI Test Studio allows you to test applications that have heavy interaction between HTML,
AJAX and Silverlight, for example when an HTML element triggers an event in the Silverlight application.
With WebUI Test Studio you can automate end-to-end scenarios, verify results and re-test against multiple
browsers (IE/Firefox/Safari).

WebUI Test Studio features a consistent user interface that makes testing HTML and Silverlight elements
substantially similar. Once the tester is familiar with the WebUI Test Studio user interface, learning to test
Silverlight elements is a short learning curve. Likewise, the programming interface (see the "WebAii
Framework" chapter) doesn't require you to learn an entirely new automation framework. Silverlight tests
can be added incrementally to match Silverlight "islands" as they are added to existing applications. 

Silverlight Basics

Although you don't have to be thoroughly familiar with the inner workings of Silverlight to use WebUI Test
Studio against a Silverlight application, you should be aware of a few fundamental terms and concepts. 

Silverlight user interfaces are defined using XAML (rhymes with "Camel" and stands for "Extended
Application Markup Language"). The XAML for a new, empty Silverlight application looks something like the
example below. Again, you may not have occasion to use XAML directly, so this example is only to
familiarize you with what the basic building blocks look like.

 

<UserControl x:Class="SilverlightApplication2.MainPage"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
    <Grid x:Name="LayoutRoot">

    </Grid>
</UserControl>

When the XAML is rendered in the browser, the Silverlight elements form a conceptual "visual tree". Each
object in the visual tree may contain other objects. For example, a panel may contain a button and the
button may in turn contain a text box. Fortunately, the Recording Surface allows you to navigate the visual
tree with the mouse, using advanced highlighting cues to guide your way. The screenshot below shows an
Image element contained by a RadPanelBarItem that in turn is contained by a RadPanelBar. The
highlighting shows the relationship of the elements in the visual tree. 



Testing Silverlight Applications 179

© 2010 Falafel Software Inc.

. 

How Does WebUI Test Studio Address Silverlight Testing Issues?

Identification: Real Silverlight applications may use "control templates" and data binding to produce
quite complex visual trees. The visual tree can contain elements that are not easily searchable by name
because the name is not known ahead of time or the element names may be duplicated. WebUI Test
Studio allows elements to be identified and located by other criteria or combination of criteria, e.g. by
text, partial text or element type. 

Synchronization: Testing Silverlight, like testing AJAX applications, requires synchronizing with events
that can occur at any time. But Silverlight throws in a new twist: elements may be moving when you want
to perform some action against it. When you perform an action, not only does WebUI Test Studio need to
wait for an element to be exist and be visible, but Silverlight elements may also fly-in, fly-out, expand,
collapse or animate. WebUI Test Studio provides a robust run time mechanism that performs several
checks against an element's state. You can wait for an element to exist in the Visual Tree or be removed
from the Visual Tree. You can wait for an element to be visible or not. For elements that are animated and
may still be moving at any time, you can wait for the element to stop moving. All of these checks happen
automatically by default. 

Reveal Control Internals: The generic Silverlight translator provides common property information for
any Silverlight element while control specific translators surface additional information about RadControls
for Silverlight elements. 



WebUI Test Studio Developer Edition Made Easy180

© 2010 Falafel Software Inc.

9.3 Visual Studio Integration

WebUI Test Studio provides seamless integration with Visual Studio that is consistent between standard
HTML based applications and Silverlight applications. If you are working with an HTML or AJAX application,
then navigate to a Silverlight application embedded on the page, all the WebUI Test Studio tools in Visual
Studio work with few or no changes. 

For example, the 3D Viewer graphical representation of elements show the highlighted element up to the
Silverlight Page element. How the tester finds elements and works with the 3D Viewer has the same usage
pattern, regardless of the type of element. The screenshot below shows the 3D Viewer where a Silverlight
"StackPanel" element has been highlighted. Elements containing the StackPanel are displayed to the right
side in the graphical representation. The "Find Element" tab also lists the StackPanel and elements that
contain the StackPanel. "Available Verifications" list the possible verification sentences for any selected
element. These functions are identical when to their HTML counterparts. 

DOM Explorer

The DOM Explorer is unique in that it shows the relationship between the HTML page and a Silverlight
application. In a Silverlight application, a web page contains a special "<object>" tag that "hosts" the
Silverlight application. The Silverlight application itself is defined in a special XML dialect called
"XAML" (Extended Application Markup Language). The DOM Explorer lets you navigate the web page
elements and the Silverlight application in a seamless manner that doesn't require you to know the internal
structure of the web page or the Silverlight XAML. The screenshot below shows a typical Silverlight

application in the DOM Explorer.  The Silverlight logo  displays next to each Silverlight element. 



Testing Silverlight Applications 181

© 2010 Falafel Software Inc.

If you right-click an element in the DOM Explorer, the context menu will allow you to "Goto" the Page,
Frame, or Silverlight application. To find Silverlight elements with the DOM Explorer search tool use the
Silverlight specific search terms AutomationId, TextContent, XamlTag and Name. For example, to find
an element with the name of "layoutRoot", use the search criteria "Name=layoutRoot".

AutomationId is a property used to identify an element that can be automated. You can search for elements
with specific AutomationId property values. The example in the screenshot below shows a Silverlight image
element with an AutomationId of "splashLoader". The search string is "AutomationID=splashloader".



WebUI Test Studio Developer Edition Made Easy182

© 2010 Falafel Software Inc.

You can also look for specific types of XAML tags. The screenshot below shows that 90 elements were
found in the example application where the tag was "<StackPanel>". The search string is
"XAMLTag=StackPanel".

Silverlight elements with particular text can be found using TextContent. The screenshot below shows that 5
elements were found where the TextContent contains ("~") the text "RadControls". The search string is
"TextContent=~RadControls".



Testing Silverlight Applications 183

© 2010 Falafel Software Inc.

Elements Explorer

The Elements Explorer identifies and names elements to support centralized maintenance. Silverlight
elements are located beneath the page and the Silverlight application object.  

Right-clicking a Silverlight element in the Elements Explorer displays the context menu where you can
choose to edit the element in the Find Expression Builder. Again, this is the same behavior that occurs
when working with HTML elements. Notice in the screenshot below that the "Find Logic" uses Silverlight
specific criteria "XamlTag" and "XamlPath" to uniquely identify the element. The "Find Logic" first locates a
Silverlight "Grid" element with the name "searchBox", then locates the first "StackPanel" element within the
grid.  



WebUI Test Studio Developer Edition Made Easy184

© 2010 Falafel Software Inc.

When a Silverlight element is selected in the Elements Explorer, the Properties pane displays a set of
properties similar to the those for a HTML element. The differences are that the TechnologyType property is
"Silverlight", not "HTML"  and the find logic uses some of the Silverlight specific expressions. 



Testing Silverlight Applications 185

© 2010 Falafel Software Inc.

RadControls for Silverlight Translators

The Translators tab of the Settings dialog shows translators used to provide deep information about
elements in Silverlight applications. The screenshot below shows the "Generic Silverlight Translators", the
translators for groups of controls (e.g. "Silverlight Simple Controls") up to the more specific controls for
individual RadControls (e.g. "RadGridView"). 

The Generic Silverlight translator allows you to work with the common set of properties available to all
Silverlight elements. The properties that will be used most often are listed in the Quick Tasks list, as shown
in the screenshot below. 



WebUI Test Studio Developer Edition Made Easy186

© 2010 Falafel Software Inc.

The complete set of properties can be found in the Sentence Verification Builder.The Visibility can be either
"Visible" or "Collapsed". You can verify if a Silverlight element is visible or collapsed. You can verify a
Silverlight element's location relative to the element's Top, Bottom, Left or Right edge. If the element has an
irregular shape, the rectangle will be sized sufficient to contain the entire shape. The "Property" verification
button shown in the screenshot below is a catch-all for any properties not in the other available
verifications. 



Testing Silverlight Applications 187

© 2010 Falafel Software Inc.

RadControls specific translators show up as "leaves" in the Elements Menu. The screenshot below shows
the Elements Menu for a RadButton control. 

These translators augment the generic translator by providing tasks specific to a given control. For example,
the tasks for a "RadRibbonSplitButton" are shown in screenshot below. Because the translator has
knowledge about the internals of the RadRibbonSplitButton, it knows that the button has a drop down,  a
"checked" state, a "split text" property and so on. 



WebUI Test Studio Developer Edition Made Easy188

© 2010 Falafel Software Inc.

9.4 Cascading Combo Boxes Walk Through

To get a feel for how testing Silverlight applications differs from standard HTML web pages or AJAX, we can
test against a set of cascading combo boxes. The relationship of the three combo boxes will be somewhat
similar to the AJAX RadComboBox example, but will contain different content.

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

a) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "CascadingCombo.aii"
and click OK to create the test.

b) Locate the Record button and click it. This will display the Recording Surface and start the recording. 

c) In the Recording Surface, enter "http://demos.telerik.com/silverlight/#ComboBox/FirstLook" to the
browser address bar and then click the Go to Url button. This will load the RadControls for Silverlight
demo application to the RadComboBox "First Look" example. 

d) Click the downward pointing arrow to collapse the text description area. This will provide a little extra
real estate.  

4) Click the drop down arrow of the Manufacturer combo box. Select the "Opel" item from the list.

5) Press the Tab key.

6) Click the Highlighting button  to enable it.



Testing Silverlight Applications 189

© 2010 Falafel Software Inc.

7) Hover the mouse above the car description until the Nub displays, then click the TextBlock leaf. 

8) Double click the Quick Tasks item that starts "Verify - verify text content matches 'Opel - The Opel
Corsa is a supermini that has...". This will add the verification as a test step. 

9) Hover the mouse above the "Model" drop down until the Nub displays and click the RadComboBox
leaf. 

10)Double click the Quick Tasks item "Verify - radcombobox: text is 'Corsa'. This will add the verification
as a test step.

11)Click the "Model" drop down arrow to open the list. 

12)Click the "Model" drop down arrow a second time to close the list.



WebUI Test Studio Developer Edition Made Easy190

© 2010 Falafel Software Inc.

 Notes

Why are we opening the list? This is done to force the drop down list to load its items. The next
step in this walk through will be to check the number of items in the RadComboBox. Without
opening the list, the items count is zero. You can check this yourself by creating a "wait for"
verification step that is valid when the number of items matches the count in the list. The test will
pause at this point to wait for the number of items to match. If you manually drop down the list,
the wait condition will be satisfied and the test will continue immediately. 

13)Type the characters "an" into the "Model" drop down edit box. This should cause the Autocomplete to
fire and automatically choose "Antara" from the list.

14)Hover the mouse above the "Model" drop down until the Nub displays and click the RadComboBox leaf.

15)Double click the Quick Tasks item "Verify - radcombobox: text is Antara." This will add the verification
as a test step.

16)Hover the mouse above the car description until the Nub displays and click the TextBlock leaf. 

17)Double click the Quick Tasks item that starts "Verify - verify text content matches 'Opel - The Opel
Antara is a mid-size crossover...". This will add the verification as a test step. 

18)Click the "Country" drop down arrow to open the list. Select the "Canada" item. 

19)Hover the mouse above the "Dealer" drop down until the Nub displays and click the RadComboBox
leaf.



Testing Silverlight Applications 191

© 2010 Falafel Software Inc.

20)Double click the Quick Tasks item "Wait - radcombobox: text is Canada Auto-Osa Ericsson." This will
add the verification as a test step.

21)Click the Quick Execute button to run the test. All steps should pass. 



WebUI Test Studio Developer Edition Made Easy192

© 2010 Falafel Software Inc.

9.5 RadGridView Walk Through

Like the AJAX RadGrid example, you can test multiple elements of the Silverlight RadGridView: the
RadGridView as a whole, rows, cells, headers, footers and other individual Silverlight elements inside the
grid (images, TextBlocks, etc.). This walk through will use the RadGridView Row Details example and test
a sampling of information at different levels within the grid, i.e. the grid itself, the row, etc. 

 Gotcha!

Be aware that the RadGridView grid control is "virtualized" by default. For testing purposes this
means that only the visible rows are guaranteed to exist. The reason for this is performance. The
grid may need to display millions of records, so creating all rows at once would make the
performance of the grid prohibitively slow. Instead, the grid loads only the rows that it needs to
show at any one time. You will need to keep this in mind when designing your tests. 

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 



Testing Silverlight Applications 193

© 2010 Falafel Software Inc.

a) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "GridViewRows.aii"
and click OK to create the test.

b) Locate the Record button and click it. This will display the Recording Surface and start the recording. 

c) In the Recording Surface, enter "http://demos.telerik.com/silverlight/#GridView/RowDetails" to the
browser address bar and then click the Go to Url button. This will load the RadControls for Silverlight
demo application to the RadGridView "Row Details" example. 

4) Click the Highlighting button  to enable it.

5) Drag and drop the "Title" column up into the "group panel" area to group the rows by "Title" (See the
Drag and Drop chapter for more detail on using the Elements Menu to control drag and drop
operations). 

a) Hover the mouse above the "Title" column header until the Nub appears. 

b) Click the Nub to open the Elements Menu. Select the Drag and Drop option from the Elements Menu. 

c) To the "Do you want the drop target to be a Window or Element" prompt, click the Element button.

d) In the "Select an Element as the target for the drop" prompt, click the OK button.

e) Hover the mouse above the "Title" column until the Select Element button appears. Click the Select
Element button.

f) In the "Select the drop point by dragged..." prompt, select the OK button.

g) Drag the cross hairs up into the "group panel" area. Then click the checkmark button to complete the
drag.



WebUI Test Studio Developer Edition Made Easy194

© 2010 Falafel Software Inc.

h) Click the Add to Project button.

i) Pause recording momentarily , then drag the "Title" column up into the "group panel" area. 

This step will cause the rows to be grouped by title and to look something like the screenshot below. 

j) Turn recording back on .



Testing Silverlight Applications 195

© 2010 Falafel Software Inc.

6) Click the first group row to open the group. 

7) Click to the left of the row to select the entire row. 

When the row is selected, an information section will expand below the row: 

Now that the automation has setup the grid where the rows are grouped by title and the first row is
selected and expanded, we can perform verifications against the grid, row, cell and individual Silverlight
elements. 

8) Hover the mouse above any part of the grid until the Nub displays and click the RadGridView leaf. 



WebUI Test Studio Developer Edition Made Easy196

© 2010 Falafel Software Inc.

9) Double-click the Quick Tasks item "wait - radgridview: group row count is '4'." to add the verification test
step. 

10)Hover the mouse over the first row until the Nub displays and click the GridViewRow leaf. 

11)Double-click the Quick Tasks item "wait - gridviewrow: cell count is '6'." to add the verification test
step. 



Testing Silverlight Applications 197

© 2010 Falafel Software Inc.

12)Hover the mouse over the "Title" cell of the first row until the Nub displays and click the GridViewCell 
leaf. 

13)Double-click the Quick Tasks item "wait - gridviewcell: cell index is '3'." to add the verification test step.

14)Hover the mouse over the text in the "Title" cell of the first row until the Nub displays and click the
TextBlock leaf. 

15)Double-click the Quick Tasks item "wait - verify text content matches 'Inside Sales Coordinator" to add
the verification test step.



WebUI Test Studio Developer Edition Made Easy198

© 2010 Falafel Software Inc.

16)Press the Quick Execute button to run the test. All steps should pass. 

Tip!

Depending on your internet connection speed, computer resources and the size of the Silverlight
application, loading a Silverlight application or its resources can take longer than expected and
cause test steps to fail. To fix this, try bumping the "Wait on Elements" timeout property to a
larger value. 

9.6 Validation Testing Walk Through

A common quality assurance task is to verify that a series of user entries are validated correctly. This can
take the form of simply pressing the "OK" button and sequentially adding entries to resolve the error
messages. The walk through below uses the Telerik validation application to demonstrate automating and
verifying Silverlight applications. 



Testing Silverlight Applications 199

© 2010 Falafel Software Inc.

9.6.1 Test Project Setup

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.



WebUI Test Studio Developer Edition Made Easy200

© 2010 Falafel Software Inc.

9.6.2 Master Test

In this part of the walk through you will create a master test that will set up the basic environment and call
other tests as test steps. 

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Validation.aii" and
click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) In the Recording Surface, enter "http://demos.telerik.com/silverlight/#DataValidation/FirstLook" to the
browser address bar and then click the Go to Url button. This will load the RadControls for Silverlight
demo application to the Data Validation example. 

5) Click the downward pointing arrow to collapse the text description area. This will provide a little extra
real estate.  

6) Locate the checkbox in the upper right corner labeled "Disable Submit button on errors" and check the
box. 



Testing Silverlight Applications 201

© 2010 Falafel Software Inc.

 Gotcha!

Be sure to leave the zoom level of your browser at 100%. In the current version of WebUI Test
Studio, settings other than 100% cause problems in test steps that use mouse coordinates. The
test steps are always recorded in the Recording Surface at 100%. The screenshot below shows
the test executing in the browser with the zoom set to 50%. The mouse coordinates used to
record the test at 100% zoom will not match the coordinates when the test is played back at 50%
and the test steps will fail.

If you have test steps that suddenly stop working, verify the zoom level. In the Internet Explorer
browser, find the Zoom control in the lower right hand corner. You can change the zoom level
using the keyboard with "Ctrl  +" and "Ctrl -". 

You can also use "Ctrl" plus the mouse wheel to change zoom level. This last method can occur
quite accidentally and cause problems if you don't know to look for it.



WebUI Test Studio Developer Edition Made Easy202

© 2010 Falafel Software Inc.

9.6.3 Check for No Errors

Checking error conditions occurs several times throughout the test and consists of the same set of steps
each time its performed. If you find yourself repeating a certain series of test steps, you should move those
test steps into a separate test. This approach cuts down on the work you need to perform. You only need to
write the test once and then call this test from other tests as appropriate. If you need to go back and make
changes later, you only need to maintain the one test.

If you were to click the "Submit" button at this point, a validation summary would display and the "Submit"
button would become disabled, as shown in the screenshot below. The two Silverlight elements are named
"ValidationSummary" and "SubmitButton" respectively and can be found using the DOM Explorer. This test
will check that there are no validation errors on the page. To do this, we will check that the "Submit" button
is enabled and that the error validation summary is not showing.

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test
"Validation_CheckForNoError.aii" and click OK to create the test.

 Notes

This test assumes that there are no validation errors showing on the page. If there are, click the

Recording Surface Refresh  button to reload the page. 

3) Navigate to the DOM Explorer, click the Search button , enter the find expression

"Name=ValidationSummary" and click the "Evaluate Expression"  button. This will locate a Silverlight
Grid element named "ValidationSummary".



Testing Silverlight Applications 203

© 2010 Falafel Software Inc.

4) Still in the DOM Explorer, right-click the "ValidationSummary" and select "Show Element Menu" from
the context menu. This will display the Elements Menu for the error summary.

5) In the Elements Menu, click the "Build Verification" button. This will display the Sentence Verification
Builder.



WebUI Test Studio Developer Edition Made Easy204

© 2010 Falafel Software Inc.

6) In the Sentence Verification Builder, click the Property button from the Available Verifications. Set the
property to be "ActualHeight", the comparison to "Equal" and the Value to "0". 
 

 Notes

In this example, the "ValidationSummary" Grid element doesn't use the "Visibility" property to
show and hide. Instead the element is hidden by setting its height to zero. To find this out for
yourself, you will need to look at the properties of an element in the various states you are testing
against. For example, you can cause the error summary element to show, then create a
verification that checks Visibility, then cause the error summary to hide and check the Visibility
property again. In this example, "Visibility" is "True" both when the error summary is showing or
hidden. Reducing height to zero is a common way to hide an element, so the next step was to
look at the height related properties. "ActualHeight" is zero when the validation summary is
hidden and greater than zero when showing.



Testing Silverlight Applications 205

© 2010 Falafel Software Inc.

7) Navigate to the DOM Explorer, click the Search button , enter the find expression

"Name=SubmitButton" and click the "Evaluate Expression"  button. This will locate a Silverlight Grid
element named "SubmitButton".

 Gotcha!

The current version of the product does not display the Nub for disabled buttons. Instead you can
use the DOM Explorer to locate the button and invoke the Elements Menu. Use the "Show the

DOM Explorer" button  from the main WebUI toolbar. Locate the "Submit" button using the

DOM Search tool  and the criteria "Name=SubmitButton". When you locate the item in the
DOM Explorer, right-click the item and select "Lock on Surface" from the context menu. This will
display the Elements Menu. From there you can perform any of the tasks from the Elements
Menu. 

8) Still in the DOM Explorer, right-click the "SubmitButton" item and select "Lock On Surface" from the
context menu. This will display the Elements Menu for the "Submit" button.



WebUI Test Studio Developer Edition Made Easy206

© 2010 Falafel Software Inc.

9) In the Elements Menu, click the "Build Verification" button. This will display the Sentence Verification
Builder.

10)In the Sentence Verification Builder, click the Property button from the Available Verifications. Set the
property to "IsEnabled", the comparison to "Equal" and the Value to "True".

The test steps should look like those in the screenshot below:



Testing Silverlight Applications 207

© 2010 Falafel Software Inc.

9.6.4 Check for Errors

This test will check if there are validation errors on the page. To do this, we will check that the "Submit"
button is disabled and that the error validation summary is showing. 

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test
"Validation_CheckForError.aii" and click OK to create the test.

3) Click the "Submit" button. This will display the validation summary and disable the "Submit" button.

4) Navigate to the DOM Explorer, click the Search button , enter the find expression

"Name=ValidationSummary" and click the "Evaluate Expression"  button. This will locate a Silverlight
Grid element named "ValidationSummary".

5) Still in the DOM Explorer, right-click the "ValidationSummary" and select "Lock On Surface" from the
context menu. This will display the Elements Menu for the error summary.

6) In the Elements Menu, click the "Build Verification" button. This will display the Sentence Verification
Builder.

7) In the Sentence Verification Builder, click the Property button from the Available Verifications. Set the
property to be "ActualHeight", the comparison to "Greater Than" and the Value to "0". 
 

8) Navigate to the DOM Explorer, click the Search button , enter the find expression

"Name=SubmitButton" and click the "Evaluate Expression"  button. This will locate a Silverlight Grid
element named "SubmitButton".

9) Still in the DOM Explorer, right-click the "SubmitButton" item and select "Lock On Surface" from the
context menu. This will display the Elements Menu for the "Submit" button.

10)In the Elements Menu, click the "Build Verification" button. This will display the Sentence Verification
Builder.



WebUI Test Studio Developer Edition Made Easy208

© 2010 Falafel Software Inc.

11)In the Sentence Verification Builder, click the Property button from the Available Verifications. Set the
property to "IsEnabled", the comparison to "Equal" and the Value to "False".

The test steps should look like those in the screenshot below:



Testing Silverlight Applications 209

© 2010 Falafel Software Inc.

9.6.5 Validating for No Entry

This part of the walk through will make sure that validation logic for empty fields is working correctly. 

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) Click the Highlighting button  to enable it.

3) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Validation_NoEntry.
aii" and click OK to create the test.

4) Click the "Submit" button. This will trigger validation errors that signal the name and phone fields are
not filled in. Also notice that the "Submit" button itself is disabled. An error summary title at the bottom
of the screen shows the text "2 Errors". 

5) In the Steps Tab, click the Add... button and select "Test As Step" from the drop down list. This will
open the "Select Testcase" dialog. 

6) In the "Select Testcase" dialog, select "Validation_CheckForError" from the list. Click the OK button to
add the test step.

7) Type "Bob Smith" into the "Name" text block.

8) In the Steps Tab, click the Add... button and select "Test As Step" from the drop down list. This will
open the "Select Testcase" dialog. 

9) In the "Select Testcase" dialog, select "Validation_CheckForError" from the list. Click the OK button to
add the test step. 

10)Type "123456789" into the "Phone" text block.



WebUI Test Studio Developer Edition Made Easy210

© 2010 Falafel Software Inc.

11)In the Steps Tab, click the Add... button and select "Test As Step" from the drop down list. This will
open the "Select Testcase" dialog. 

12)In the "Select Testcase" dialog, select "Validation_CheckForNoError" from the list. Click the OK button
to add the test step. 

The steps for this test should look like the screenshot below. 

13)In the Solution Explorer, double-click "Validation.aii". 

14)In the Steps Tab, click the Add button and select "Test as Step" from the drop down list. This will
display the "Select testcase" dialog. 

15)Select "Validation_NoEntry" from the list and click the OK button to create the test step.



Testing Silverlight Applications 211

© 2010 Falafel Software Inc.

9.6.6 Validate Calendar

This part of the walk through will make sure that validation logic for handling the "Check In Date" is
working correctly. 

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog. 

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Validation_Calendar.
aii" and click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) Click the "Check in Date" calendar icon to open the calendar drop down.

5) Press the Left Arrow key. This will trigger a validation error "Invalid check-in date! You cannot check-in
on past dates."

6) Click the "Check in Date" calendar icon to close the calendar. 

7) In the Steps Tab, click the Add button and select "Test as Step" from the drop down list. This will
display the "Select testcase" dialog. 

8) In the "Select Testcase" dialog, select "Validation_CheckForError" from the list. Click the OK button to
add the test step. 

9) Click the "Check in Date" calendar icon to open the calendar drop down.

10)Press the Right Arrow key two times.

11)Click the "Check in Date" calendar icon to close the calendar. 

12)In the Steps Tab, click the Add... button and select "Test As Step" from the drop down list. This will
open the "Select Testcase" dialog. 



WebUI Test Studio Developer Edition Made Easy212

© 2010 Falafel Software Inc.

13)In the "Select Testcase" dialog, select "Validation_CheckForNoError" from the list. Click the OK button
to add the test step.

The test steps should look like the screenshot below:

14)In the Solution Explorer, double-click "Validation.aii". 

15)In the Steps Tab, click the Add button and select "Test as Step" from the drop down list. This will
display the "Select testcase" dialog. 

16)Select "Validation_Calendar" from the list and click the OK button to create the test step.



Testing Silverlight Applications 213

© 2010 Falafel Software Inc.

9.6.7 Validate Slider

This part of the walk through will make sure that validation logic for handling the "Arrival Time" slider is
working correctly. In this example we're testing that the arrival start time is later than the current time. 

1) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

2) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Validation_Slider.aii"
and click OK to create the test.

3) Locate the Record button and click it. This will display the Recording Surface.

4) Click the left slider thumb to select it. This will add a test step and also create a new item in the
Elements Explorer called "PathPath".

5) In the Elements Explorer, make sure that "PathPath" is selected. In the Properties pane, change the 
FriendlyName property to "StartThumb". 

6) Press the Page Down key five times.  This will generate a series of "Press Next" and "KeyPress" test
steps. In the Steps Tab, delete all but the first "Press Next" step.

7) In the Properties pane, set the RepeatCount property to "5". 

  

8) In the Steps Tab, click the Add button and select "Test as Step" from the drop down list. This will
display the "Select testcase" dialog. 

9) In the "Select Testcase" dialog, select "Validation_CheckForError" from the list. Click the OK button to
add the test step. 



WebUI Test Studio Developer Edition Made Easy214

© 2010 Falafel Software Inc.

10)Again, click the left slider thumb. 

11)Press the Page Up key five times. This will generate a series of "Press Up"  and "KeyPress" test
steps. In the Steps Tab, delete all but the first "Press Up" step.

12)In the Properties pane, set the RepeatCount property to "5". 

13)In the Steps Tab, click the Add button and select "Test as Step" from the drop down list. This will
display the "Select testcase" dialog. 

14)In the "Select Testcase" dialog, select "Validation_CheckForNoError" from the list. Click the OK button
to add the test step. 

The test steps should look like the screenshot below: 

15)In the Solution Explorer, double-click "Validation.aii". 

16)In the Steps Tab, click the Add button and select "Test as Step" from the drop down list. This will
display the "Select testcase" dialog. 

17)Select "Validation_Slider" from the list and click the OK button to create the test step.

18)Click the Quick Execute button to run the test. All test steps should pass.



Testing Silverlight Applications 215

© 2010 Falafel Software Inc.

9.7 Wrap Up

In this chapter we talked briefly about what Silverlight is, the unique issues that arise when testing
Silverlight applications and how WebUI Test Studio addresses Silverlight specific situations. You reviewed
differences in the Visual Studio environment when testing a Silverlight application, paying special attention
to the 3D Viewer, DOM Explorer and Elements Explorer. 

You tested cascading combo boxes and RadGridView. You also tested an entry form that performs
validation and has several Silverlight controls including standard TextBlock, RadSlider, RadCalendar and
RadMaskedTextBox.



Part

X
Handling Dialogs



Handling Dialogs 217

© 2010 Falafel Software Inc.

10 Handling Dialogs

10.1 Objectives

In this chapter you will learn how to respond to pop-up dialogs that occur in your tests. You will learn how to
handle "Win32" type dialogs including the specialized handlers for Alert, Logon, File Upload, Download and
the generic "Win32" handler.  You will also learn how to control HTML popup dialogs.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Dialogs\Dialogs.sln

10.2 Overview

Not all test steps play out directly inside the browser. Web pages can display popup dialog windows in the
form of alerts, confirmations and other web browser instances. WebUI Test Studio allows you to track and
respond to dialog windows. For example, if a confirmation dialog asks if the user wants to save changes, we
can automatically close the dialog as a test step by responding with "OK" or "Cancel". WebUI Test Studio
can handle both HTML popup and "Win32" dialogs. HTML popups are new browser windows that are used
to collect information from the user. A "Win32" dialog is not a browser window, but a dialog displayed by the
Windows operating system.

 Notes

Review the "Automation Design Canvas User Guide" chapter "Configuring Your Browser for Test
Automation" for detailed instructions on how to configure your browser to prevent interference
from pop-up blockers and security settings. The information covers multiple browser types and
operating systems. You can find a link to this PDF at http://www.telerik.com/support/
documentation-and-tutorials.aspx. You can also find the information at http://www.artoftest.
com/support/webaii/topicsindex.aspx in the "Getting Started > Configuring Your Browser"
section. 



WebUI Test Studio Developer Edition Made Easy218

© 2010 Falafel Software Inc.

10.3 HTML Popups

HTML popups are detected by WebUI Test Studio automatically. When an HTML popup is about to appear,
WebUI Test Studio allows you to automate the popup. 

If you click the "Yes" button in the prompt, WebUI Test Studio will display the popup window along with a
toolbar that includes buttons for turning on highlighting, recording and the DOM Explorer. WebUI Test
Studio automatically includes test steps for connecting to, recording steps inside the new browser window
and finally closing the Html popup. The sequence is typically like the test steps shown in the screenshot
below. First the pop-up window is connected, then you can perform any arbitrary actions inside the new
browser window and finally, the pop-up window is closed. 



Handling Dialogs 219

© 2010 Falafel Software Inc.

The properties for the "connecting" test step are shown in the screenshot below. The PopupUrl should
match the address for the popup. If IsUrlPartial is true you can get away with only writing in part of the
PopupUrl. For example, if IsUrlPartial is "True" and PopupUrl is "www.google.com", the actual url could be
"www.google.com/maps". The HandleState property indicates that we're handling the "Popup", i.e. the
state of the popup as it connects. 



WebUI Test Studio Developer Edition Made Easy220

© 2010 Falafel Software Inc.

The screenshot below shows an HTML popup window and associated toolbar. Once the pop-up is open, you
can highlight, add verifications and record test steps. 



Handling Dialogs 221

© 2010 Falafel Software Inc.

When you close the pop-up, a last test step that handles the "Close" state is added. 

10.4 Win32 Dialogs

You can respond to a number of common Win32 dialogs using the Recording Surface "Dialogs" drop down
list. Choosing an item from this list creates a test step that handles a particular type of dialog. The
screenshot below shows the possible dialog types that can handled as test steps. 



WebUI Test Studio Developer Edition Made Easy222

© 2010 Falafel Software Inc.

10.4.1 Alert

An "Alert" dialog displays a message and a single "OK" button. 

When you create a test step to handle the Alert dialog, the Properties pane includes a HandleButton
property that should be set to "OK" or "CANCEL". 

A typical set of test steps are shown in the screenshot below where some action triggers the alert to
display (in this case the "Click 'PopupNotifyLink'" triggers a popup), followed by the alert handling test step. 



Handling Dialogs 223

© 2010 Falafel Software Inc.

10.4.2 Logon

Some web pages may require a user name and password to gain access. A logon dialog displays before
the page itself displays. The logon handler fills in the user name and password and then clicks the OK or
Cancel button to close the dialog.  



WebUI Test Studio Developer Edition Made Easy224

© 2010 Falafel Software Inc.

When you create a test step to handle a logon dialog, the Properties pane includes a HandleButton
property that can only be set to "OK", "CANCEL" or "CLOSE". Set the UserName and Password
properties to a valid logon values. 

If the UserName or Password property values are incorrect, the logon dialog may display multiple times and
the handler will attempt to fill  in the values each time. The behavior of the page depends on how security is
configured for a particular web site. For example, a typical web site may allow three logon tries before
displaying an error message page like the one shown in the screenshot below: 



Handling Dialogs 225

© 2010 Falafel Software Inc.

10.4.3 File Upload

When files need to be uploaded from the user's desktop to the server, an "Upload" control similar to the one
shown in the screenshot allows the user to browse and select a valid file path. 

When the user clicks the "Browse" button, a File Upload dialog displays.



WebUI Test Studio Developer Edition Made Easy226

© 2010 Falafel Software Inc.

It's this dialog that gets handled by the
File Upload dialog handler test step.
When you create a test step to handle
the File Upload dialog, the Properties
pane includes a HandleButton
property that can only be set to
"OPEN", "CANCEL" or "CLOSE". Set
the FileUploadPath property to the
path of an existing file. 

 Gotcha!

Be sure that FileUploadPath is valid and points to an existing file. If the FileUploadPath is
incorrect, the test step will generate an unexpected alert dialog and cause your test to hang.



Handling Dialogs 227

© 2010 Falafel Software Inc.

10.4.4 Download

When a user clicks a link to some resource on a server, such as a downloadable file, the browser displays
a File Download dialog. The handler for this dialog lets you save the resource to disk. 

When you create a test step to handle the File Upload dialog, the Properties pane includes a 
HandleButton property that can only be set to "SAVE" or "CANCEL". Set the DownloadPath property to
the path of an existing file. 



WebUI Test Studio Developer Edition Made Easy228

© 2010 Falafel Software Inc.

10.4.5 Generic

"Generic" is a customizable dialog handler that deals with "Win32" dialogs that don't have a specific
handler. The key properties of the generic dialog handler help identify the dialog and identify the button used
to close the dialog. 

If the MatchPartialTitle property is "False", then the DialogTitle property value must match the title of the
popup dialog exactly. When MatchPartialTitle is set to "True", DialogTitle can occur anywhere in the popup
dialog title. In addition, the ChildWindowTextContent property holds text that can be found somewhere in
the dialog and is used to further pinpoint the dialog. 

The HandleButtonMethod property determines how the dialog will be closed. If you set
HandleButtonMethod to the "NoneCloseDialog" setting, the dialog is closed using the close button (i.e. the
little "X" in the upper right hand corner of the dialog). If you use "ButtonId", the matching ButtonId property
must contain a number used to identify the window (you need a UI "Spy" utility to find out what the button id
is). If the HandleButtonMethod is "ButtonPartialText", then a use the ButtonPartialText property to match
some portion of the button text. For example, a ButtonPartialText property value of "Save" would match a
button with the actual text "Save All". 

10.5 Wrap Up

In this chapter you learned how to respond to pop-up dialogs that occur in your tests. You learned how to
handle "Win32" type dialogs including the specialized handlers for Alert, Logon, File Upload, Download and
the generic "Win32" handler.  You also learned how to control HTML popup dialogs.



Part

XI
MSTest



WebUI Test Studio Developer Edition Made Easy230

© 2010 Falafel Software Inc.

11 MSTest

11.1 Objectives

In this chapter you'll learn how MSTest can be used to automate tests. You will learn how to run MSTest
from the command line and some of the key parameters used with MSTest.

11.2 Overview

MSTest is a Microsoft utility that lets you run tests directly in Visual Studio or on the command line. Telerik
WebUI Test Studio Developer Edition make use of MSTest as the engine behind running WebUI Tests. 

 Notes

In the QA edition, WebUI Test Studio has its own engine to run its tests without the need for MSTest
to be available on the machine.

The command line version can be especially helpful when you need to automate your build and testing
processes. If your organization has a "Continuous Integration" process that performs daily check-in, build
and testing of your software, WebUI tests can be included to complete your testing coverage.



MSTest 231

© 2010 Falafel Software Inc.

11.2.1 Running Tests From the Command Line

MSTest is highly configurable, but we can get by with a minimal set of parameters to get started. For
example, to run the "GettingStarted" test project from the command line: 

1. From the Window's "Start" menu, find the Visual Studio command prompt (usually under the Visual
Studio Tools menu item). 

2. In the command line, navigate, using standard DOS commands, to the directory that contains the
"GettingStarted" project DLL. 

3. In the command line enter mstest.exe /testcontainer:GettingStarted.dll. An example run of the
command is shown below. Notice that it executes the test, prints a listing of the results and outputs a
results file.

mstest.exe /testcontainer:GettingStarted.dll
Microsoft (R) Test Execution Command Line Tool Version 9.0.30729.1
Copyright (c) Microsoft Corporation. All rights reserved.

Loading GettingStarted.dll...
Starting execution...

Results               Top Level Tests
-------               ---------------
Passed                GettingStarted.UnitTest1.TestMethod1
1/1 test(s) Passed

Summary
-------
Test Run Completed.
  Passed  1
  ---------
  Total   1
Results file: ...\TestResults\falafel_WEBUI 2010-04-24 15_11_42.trx
Run Configuration: Default Run Configuration



WebUI Test Studio Developer Edition Made Easy232

© 2010 Falafel Software Inc.

11.2.2 Understanding Key MSTest Parameters

To get the full list of parameters available to MSTest, run "MSTest /help" from the Visual Studio command
prompt. 

The key command parameters that matter to WebUI Test Studio in a continuous integration environment
are:

/testcontainer:  This option tells MSTest which DLL contains your unit test code and is required.
Typically the current working directory is the root of the project. You need to take this into account and
specify a path that is relative to the projects root such as '/testcontainer:bin/debug/SydneyTests.dll.

/testlist: If you've taken the time to configure test lists, you can use this option to specify which list of
tests to run by name. This option requires you also specify '/testmetadata:' which is the path to the
projects metadata file (i.e. the .vsmdi file). The test lists defined in your project are kept in this metadata
file and nowhere else. To run multiple test lists simply add this option multiple times to the command
line, each time specifying one test list. You only need to specify '/testmetadata:' once however.

 Gotcha!

If you do not specify /testlist or the '/tests:' option MSTest will run all unit tests it can find in the unit
test .DLL.

/test:  This option tells MSTest to run one specific test found in the unit test .dll file. Unlike the '/testlist:'
option, you do not need to specify '/testmetadata:' with this option. This is because you're not
specifying a list, but a single specific test instead.



MSTest 233

© 2010 Falafel Software Inc.

 Notes

To run multiple tests, simply add this option multiple times to the command line, each time
specifying a different test.

 Gotcha!

If you do not specify this option or the '/testlist:' option MSTest will run all unit tests it can find in
the unit test .DLL.

/resultsfile: This option specifies the path and name of the results file to create. Normally MSTest
creates the results in a uniquely named .trx file in a 'TestResults' folder. This folder is contained in the
root of the project. For example: 'TestResults\agentuser_agent-pc4 2009-04-10 11_34_07.trx'. Because
the name of this file is based on the logged on user ID, machine name and the date & time, it can be
hard for some continuous integration systems to find this results file, especially those that run MSTest
via an 'exec' task. By specifying a fixed filename, it's easier for the continuous integration systems to
find the results file and pull it into the build report. 

 Gotcha!

The only drawback is that MSTest will fail (not even run tests) if the file specified already exists.
Therefore you need to delete any results file that may have been left behind from previous builds.
But be careful that your delete operation doesn't throw an error if the file to delete doesn't exist
(e.g. a simple 'del myResults.trx' will return an error if the file doesn't exist). This can cause some
automated build systems to stop if it detects the error being returned by a simple delete
operation.



WebUI Test Studio Developer Edition Made Easy234

© 2010 Falafel Software Inc.

The "trx" results file is simply an XML file that contains the conditions that the test was run under and
the results of the test. If you change the extension of the "trx" file to "xml", you can see the raw XML in
the browser: 

To see the results formatted within Visual Studio, double-click the "trx" file. Visual Studio will display
the file contents in the Test Results window, where you can use the IDE to drill down for greater detail.

Integration with Team Foundation Server



MSTest 235

© 2010 Falafel Software Inc.

If you use Team Foundation Server (TFS) there are several other options for running MSTest that will
integrate with TFS directly that will allow for checking in the result file and associate the test with a specific
team project, etc... The list of parameters generated by "mstest /help" will include a section of TFS specific
parameters that you can reference. 

11.3 Wrap Up

In this chapter you learned how MSTest can be used to automate tests. You also learned how to run
MSTest from the command line and some of the key parameters used with MSTest.



Part

XII
Unit Testing



Unit Testing 237

© 2010 Falafel Software Inc.

12 Unit Testing

12.1 Objectives

In this chapter you will learn about the purpose, advantages and types of unit testing frameworks. You will
create a simple WebAii test with coded steps and data, then convert the WebAii test into a Visual Studio
unit test and run it. 

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\UnitTesting\UnitTesting.sln

12.2 Overview

The goal of unit testing is to verify that each element or "unit" of an application, performs as expected. Unit
tests are generally superior to manual testing:

Automated tests are consistent, predictable and can be repeated. Running unit tests regularly helps
ensure that the software works now and in the future. By contrast, manual testing tends to be less
thorough over time. 

Errors are discovered early and at less cost. Problems discovered early on are usually easier to fix than
those that get "baked in" to the software. Automated unit tests are more likely to be run often to catch
errors early.

Software can be changed more frequently when unit tests ensure that the software is fit to deliver. This
confidence level allows easier integration of new features and cleanup ("refactoring") of aging software. 

Unit testing reduces "truck factor", i.e. if a key programmer is hit by a truck tomorrow, new
programmers can take over with less fear of trashing the quality of the software. No single person
"owns" any part of the software. Unit tests also guide new programmers by documenting feature
requirements and grouping related features. 

There are a large number of unit testing frameworks that provide a consistent model for testing and that
allow test automation.  Unit testing frameworks provide infrastructure for common testing tasks, such as
setting up the conditions of a test, providing data to the test, reporting test conditions (e.g. "the invoice total
is incorrect") and cleaning up after the test is complete.

Tests recorded in WebUI Test Studio can be converted to any of several popular unit testing frameworks,
namely NUnit, MbUnit, VsUnit and xUnit.



WebUI Test Studio Developer Edition Made Easy238

© 2010 Falafel Software Inc.

12.3 Creating a Unit Test

The "Generate a Unit Test" feature takes an existing WebUI Test Studio test and creates a unit test that
works for one of the supported unit test frameworks. When the unit test is created, the conversion sweeps
up all the test steps, any code that we've added and any data we've defined. All this material is added to the
new unit test. As an example we will walk through creating a VsUnit, i.e. Visual Studio unit test. 

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "VsUnitTest.aii" and
click OK to create the test.

5) In the Recording Surface, enter "http://www.google.com" to the browser address bar and then click the
Go to Url button.

6) In the Steps Tab, click the Add... > Custom Annotation button. 

7) In the Steps Tab, select the Custom Annotation test step. In the Properties pane, change the
AnnotationText property to "This will be a coded step". 

8) In the Steps Tab, right-click the Custom Annotation test step and select "Customize Step in Code" from
the context menu. This test step will create a "VsUnitTest.aii.cs" file and populate it with the coded
step. 

9) Navigate to the Test Tab, then click on the Data Tab tab. 

10)In the Data Tab tab, set the number of columns to "2" and click the Update Columns button . 

11)Right-click the first column and select "Rename Column" from the context menu. Rename the column
"UserName".

12)Right-click the second column and select "Rename Column" from the context menu. Rename the
column "Password".



Unit Testing 239

© 2010 Falafel Software Inc.

13)Enter two lines of random data to the table. The Data Tab tab should look something like the screenshot
below. 

At this point we have two test steps, a coded test step and some sample data. Next, you will convert the
WebUI Test Studio test into a unit test.

14)In the Test Tab toolbar, click the "Generate a Unit Test" button. This will display the "Unit Test Template
Selector" dialog. 



WebUI Test Studio Developer Edition Made Easy240

© 2010 Falafel Software Inc.

15)In the Unit Test Template Selector dialog, drop down the list of unit testing templates and select
"MSTest". Because we have data defined, the Data Source area of the dialog is enabled. Enter "MyData"
as the name of the XML file where the data will be placed. Click the OK button to begin the conversion. 

16)When you have coded steps, a warning dialog may appear. Click the Yes button to continue. 



Unit Testing 241

© 2010 Falafel Software Inc.

17)Lets review the new materials that are created in the Visual Studio Solution Explorer. 

The test data is converted to an XML file shown in the screenshot below as "MyData.xml" and a new unit
test file is created, named after your WebAii test name plus "UnitTest".

In the unit test file we find a test method named after our WebAii test "VsUnitTest". The method is
annotated as a TestMethod, with parameters that point to "MyData.xml". The first step in the test
(navigates to the "www.google.com") has been included in the unit test code. The Custom Annotation
that was converted to a coded step is also included, but commented out. You can remove the comments
but you should recompile the project to make sure the code still works. 

 

[TestMethod(), DeploymentItem("UnitTesting\\MyData.xml"), 
DataSource("Microsoft.VisualStudio.TestTools.DataSource.XML", 
"|DataDirectory|\\MyData.xml", "WebAiiBuiltinData", DataAccessMethod.Sequential)]
public void VsUnitTest()
{
    // Launch an instance of the browser
    Manager.LaunchNewBrowser();

    // Navigate to : 'http://www.google.com'
    ActiveBrowser.NavigateTo("http://www.google.com");

    // Coded Step From Test
    // 
    //            // Custom Annotation : This will be a coded step
    //            ActiveBrowser.Annotator.Annotate("This will be a coded step", 1000, ArtOfTest.Common.OffsetReference.TopCenter);
    //
    //
}



WebUI Test Studio Developer Edition Made Easy242

© 2010 Falafel Software Inc.

Tip!

If you want to see how the code looks without actually creating the unit test, click the code
preview button in the Steps Tab tool bar. 

18)From the Visual Studio menu select Test > Windows > Test Results to open the Test Results window.

19)From the Visual Studio menu select Test > Windows > Test View to open the Test View window.



Unit Testing 243

© 2010 Falafel Software Inc.

20)In the Test View window, right-click the unit test item (it should be the last test in the list) and select
Run Selection from the context menu. 

21)The unit test will begin to execute. You can observe the progress of the unit test in the Test Results
window. When the unit test completes, the Test Results window will report the results. All test steps
should pass.

 Notes

If you want to use one of the unit test framework types other than VsUnit, you need to locate
and download the framework, install it on your testing computer and reference the framework
assemblies in your test project.



WebUI Test Studio Developer Edition Made Easy244

© 2010 Falafel Software Inc.

 Notes

Be aware that once a WebAii test is converted, the connection between the WebAii test and the
unit test is severed. Changes to the WebAii test are not reflected in the unit test and visa versa. To
keep these in sync we recommend that you use the WebAii as a "master" test and re-generate
new unit tests whenever you change the WebAii test.

12.4 Wrap Up

In this chapter you learned about the purpose, advantages and types of unit testing frameworks. You
created a simple WebAii test with coded steps and data, then converted the WebAii test into a Visual
Studio unit test and ran it. 



Part

XIII
Load Testing



WebUI Test Studio Developer Edition Made Easy246

© 2010 Falafel Software Inc.

13 Load Testing

13.1 Objectives

In this chapter you will learn the basic purpose of load testing and how a WebAii test can be made available
to a Visual Studio load test. The chapter will discuss the Visual Studio load testing mechanism only as it
relates to consuming WebAii tests. 

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\LoadTest\LoadTest.sln

13.2 Overview

Web applications don't run one-at-a-time for a single user in isolation. Instead, web applications run
simultaneously for multiple concurrent users and have a limited set of resources. Unlike unit tests that verify
individual features function as they should, load testing ensures that the application behaves well under
normal and peak work loads and that the application responds to the user in a reasonable time.  

WebUI Test Studio can make a recorded WebAii test usable by a Visual Studio load test. The built-in
Visual Studio tools can help you model the load conditions, e.g. number of concurrent, band width
resources, browsers used, think times (estimated time that a user takes to think before performing some
action) and numbers of new users (new users have nothing cached in the browser yet). Visual Studio also
supplies reporting and charting to interpret the test results. 

Like the unit test, once a load test is created, there is no direct link between the WebAii test and the Visual
Studio test. Again, the recommended best practice is to use the WebAii test as the "master" test and re-
generate the Visual Studio tests as required. 



Load Testing 247

© 2010 Falafel Software Inc.

13.3 Creating a Load Test

The general steps involved with creating a load test are: 

Recording or writing a WebAii test. 

Converting the WebAii test to a Visual Studio web test.

Including the web test in a Visual Studio load test. 

The following walk through will show the steps to create a very minimal WebAii test, use the "Convert
test..." button to create a Visual Studio web test and finally add the web test to a new Visual Studio load
test.

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "MyTest.aii" and click 
OK to create the test.

5) In the Recording Surface, enter "http://www.google.com" to the browser address bar and then click the
Go to Url button.

6) Click the search button.

7) Navigate to the Test Tab and click the "Convert test to a VS WebTest for load testing..." button. This will
cause a confirmation dialog to display. 



WebUI Test Studio Developer Edition Made Easy248

© 2010 Falafel Software Inc.

8) The confirmation dialog will notify you that the designer will generate a new Visual Studio "WebTest"
based on the WebAii functional test. Click the OK button to continue. 

9) At this point a web browser will display, the test will be recorded by Visual Studio, parameters will be
extracted for each web page and finally, the new web test file will be created.

The new load test in the Visual Studio editor shows the traffic with the web server and any parameters
that were sent with the requests. 



Load Testing 249

© 2010 Falafel Software Inc.

10)From the Visual Studio Solution Explorer, right-click the test project and select Add > New Test... from
the context menu. This will display the Add New Test dialog. Select "Load Test" from the templates and
click the OK button to continue. This will display the New Load Test Wizard. 

11)The New Load Test Wizard lets you select the web tests to include in the load test and to configure the
load, e.g. number of users the browsers used and network bandwidth. In this case we only want to add
our web test to the load test. 

a) Click the "Test Mix" step in the tree view. 



WebUI Test Studio Developer Edition Made Easy250

© 2010 Falafel Software Inc.

b) Click the Add... button on the right side of the dialog. This will display the Add Tests dialog. 

c) In the Add Tests dialog, select "MyTest.Load" from the Available Tests list on the left. Click the
rightward pointing arrow to move the test to the Selected Tests list. Click the OK button to continue. 



Load Testing 251

© 2010 Falafel Software Inc.

d) Back in the New Load Test Wizard, click the Finish button. 

The new load test will be created and visible in the Visual Studio editor. You can tweak any of the
configuration settings for the load test by selecting them in the tree view and editing the properties in
the Properties pane. In particular, you can select the Run Settings node and reduce the Run Duration
property from 10 minutes to some lower number. 

Click the "Run Test" button to execute the load test. The load test should run for the amount of time
specified in the Run Duration property. The Test Results window should show that the test passed.



WebUI Test Studio Developer Edition Made Easy252

© 2010 Falafel Software Inc.

e) The completed test should show graphs and tables of statistics for the completed test. 

Note that the error link at the top of the page refers to a warning about a missing database connection
used to store the test results. The web test itself has passed. 

 Notes

Remember that once you create record the Visual Studio web test, you are "not in Kansas
anymore", you are in the Visual Studio testing environment. There is no direct connection
between the WebAii test and the load test. 



Load Testing 253

© 2010 Falafel Software Inc.

13.4 Web Test Step Properties

When you create a web test in Visual Studio, the editor window displays a tree view that defines the steps
of the test. By default, the recorded steps should work just fine, but you may want to tweak the test
settings as conditions change. 

The top level node, "MyTest.Load" in the screenshot below, represents the properties for the entire test.
Here you can add authentication information for the test if user name and password are required, add a
description for the test, indicate a proxy by name or flag if the test should halt if there's an error. 



WebUI Test Studio Developer Edition Made Easy254

© 2010 Falafel Software Inc.

Under the test are a series of requests that go to the web server. Each request may pass information to the
server through query strings included in the Url or hidden fields embedded in the page. The content of the
query strings or hidden fields are included below each web request where they appear. The properties for
the web request as shown in the screenshot below can modify how the request is sent to subtly change the
test conditions. For example if you disallow caching, the request will take longer than if caching is enabled. 

The Query String Parameters that may accompany a web request each have their own properties. Consider
the Url "http://www.google.com?action=search". The Name of the query parameter is "action" and the Value
is "search". The screenshot below shows another parameter named "ghp" where the value is "fbg". You can
change the name or value of the query parameter or turn on URL Encoding (encoding formats a Url and
substitutes legal characters for illegal characters). The "Show Separate Request Results" changes how this
parameter is displayed in reports.  



Load Testing 255

© 2010 Falafel Software Inc.

13.5 Load Test Settings

When you first create a load test the New Load Test Wizard lets you model the settings for the test. You
can change these settings later when you look at the load test in the Visual Studio editor as shown in the
screenshot below. 

The settings are grouped into "Scenarios", "Counter Sets" and "Run Settings" 

Scenarios: list the elements that make up a load test including the tests themselves, the browsers
used, the types of networks being tested against and the load pattern. The test, browser and network
settings can be allocated by percentage to create a mix, e.g. a browser mix of IE 7, Firefox and
Netscape each at roughly a 33% each. Each of these mixes can be edited by right-clicking with the
mouse and selecting "Edit ... Mix" from the context menu. 

The load pattern sets the number of users making requests at any one time. A "Constant" load pattern
is a fixed number of users that doesn't change during the test. A "Step" load pattern increases over time
and properties of the load pattern let you set a minimum and maximum user count, number of users to
add and how often. In a "Goal Based" load pattern the number of users is adjusted depending on
performance criteria such as "% of Processor Time".



WebUI Test Studio Developer Edition Made Easy256

© 2010 Falafel Software Inc.

Counter Sets: These are the categories of information being collected and are grouped by category.
For example, the "Transaction" category contains "Total Transactions", "Avg. Transaction Time", and
"Avg. Response Time". 

Run Settings: These are the properties that configure the conditions of the test, such as the length of
the test or the number of test iterations, how frequently performance data is collected, warm up/cool
down durations and connection information.

13.6 Wrap Up

In this chapter you learned the basic purpose of load testing and how a WebAii test can be made available
to a Visual Studio load test. The chapter discussed the Visual Studio load testing mechanism only as it
relates to consuming WebAii tests.



Part

XIV
WebAii Framework



WebUI Test Studio Developer Edition Made Easy258

© 2010 Falafel Software Inc.

14 WebAii Framework

14.1 Objectives

In this chapter you will learn how to perform many common automated testing operations in code to work
with both Html and Silverlight based elements.

First, you will learn how to automate the browser, starting with browser navigation to web pages using both
complete and relative Urls. You will also learn how to handle browser redirection. 

You will learn how to locate both single elements and collections of  web page elements using the Find
object for the test itself and the Find object for individual elements. To fine-tune your searches you will learn
about the available Find operators. You will learn how to reference elements defined in the Elements
Explorer. You will also learn how jQuery is used to find elements. 

You will learn how to pause test execution until certain conditions. You will wait on element existence,
content, attributes, visibility, motion and custom conditions. 

You will work with properties of "wrapper" objects, including the wrappers for RadControls.  

Finally, you will use "Assert" objects to verify conditions on the page. 

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Framework\Framework.sln



WebAii Framework 259

© 2010 Falafel Software Inc.

14.2 Overview

There are two software testing products to consider: 

WebAii Testing Framework: This is a free framework that lets you write code-only tests and exercise
the full functionality of the testing platform. This framework handles all the grunt work of abstracting
browsers, the DOM and XAML. With the framework you can automate user actions, find elements, wait
for elements and work with HTML and Silverlight controls. The Recording Surface will handle much of
your testing needs and more will be possible as additional support is added to the Recording Surface,
wrappers and translators. But at some point you will want to write coded tests against this framework to
achieve the full potential of the tool. 

WebUI Test Studio: This product must be purchased and includes all the visual web testing tools we've
discussed up to this point, including the Recording Surface, DOM Explorer, Steps Tab, Elements
Explorer and the Test Tab with its Storyboard Tab and Data Tab areas. 

The diagram below shows the relationship of the free WebAii Testing Framework to the WebUI Test Studio
product. In the diagram you can see that the foundation is the WebAii Testing Framework. It provides all the
base functionality used by the WebUI Test Studio. WebUI Test Studio includes all the GUI tools, the Telerik
RadControls Translators and all the Visual Studio integration. 



WebUI Test Studio Developer Edition Made Easy260

© 2010 Falafel Software Inc.

Wrappers

Notice in the diagram that, in addition to "Translators" that let you perform actions and verifications on
RadControls on the design surface, there is a set of "Wrappers" that let you work with controls using code.
For example, Silverlight has an important object called "FrameworkElement" that represents all visual
elements. The WebAii Testing Framework has its own version of FrameworkElement that "wraps" the
original object. The wrapper allows the element to be automated and adds essential functionality such as
"Find" and "Wait". 



WebAii Framework 261

© 2010 Falafel Software Inc.

14.3 Getting Started Walk Through

To get started using the WebAii Framework, you first need to create the code-behind file for a test, then add
test steps methods. The following walk through examples demonstrate how to perform these operations.
The samples should get you up-and-running without too much background information. The sections
following this walk through dig deeper into key objects that form the backbone of the WebAii API.

There are two ways to create code for a test. The first is simply to right-click a test step in the Steps Tab
and select "Convert To Code" from the context menu. This creates the code-behind file and adds a test
method to the file. The second technique is to create the test method manually. This next walk through
demonstrates creating code steps manually. 

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "GettingStarted.aii" and
click OK to create the test.

5) In the Test Tab, click the "Add Code Behind File..." button. 

This will create a new code behind file in the language you've chosen for the test project type. In the
screenshot below, the "GettingStarted.aii" now has a "GettingStarted.aii.cs" code behind file where we
can place new coded test steps. 

6) In Visual Studio, open "GettingStarted.aii.cs" file for editing. 



WebUI Test Studio Developer Edition Made Easy262

© 2010 Falafel Software Inc.

7) Inside the "GettingStarted" test class, locate the comment "Add your test methods here..."

8) Below the comment, add a public method that doesn't return a value and that has no parameters. Name
the method "MyCodedStep". Note: following these steps are examples in both VB.NET and C# that can
be cut and pasted. 



WebAii Framework 263

© 2010 Falafel Software Inc.

9) Above the MyCodedStep() method, add a "CodedStep" attribute and pass a single string parameter "My
coded step". The CodedStep attribute is required for WebUI Test Studio to display the step in the Steps
Tab. The parameter can be any string that you want to show as the description of the step in the Steps
Tab. 

Here are complete code examples for the coded step using both VB.NET and C#: 

<CodedStep("My coded step")> _
Public Sub MyCodedStep()

End Sub

 

[CodedStep("My coded step")]
public void MyCodedStep()
{

}



WebUI Test Studio Developer Edition Made Easy264

© 2010 Falafel Software Inc.

10)In Visual Studio, press Ctrl-S to save the file (or select the Visual Studio File > Save option. Notice that
your test step is displayed in the Steps Tab. 

11)Press F6 to build the solution (or select the Visual Studio Build > Build Solution menu option.

12)Click the Quick Execute button to run the test. The new coded test step should pass.

13)Inside the curly braces for the MyCodedStep() method, add the following code that writes to the test log. 

Log.WriteLine("This is my coded step")

 

Log.WriteLine("This is my coded step");

14)Press F6 to build the solution (or select the Visual Studio Build > Build Solution menu option.

15)Click the Quick Execute button to run the test. The coded test step should pass.

16)From the Steps Tab, click the View Test Log button. The test log will display in its own window. 

17)View the test log results. Notice the "This is my coded step" entry. 



WebAii Framework 265

© 2010 Falafel Software Inc.

14.4 Common Operations

Once you have a coded step you will typically want to perform the following operations:

Navigate to a web page.

Locate and wait for elements. 

Automate element actions.

Work with the current condition of an element. 

Make assertions about conditions in a test. 

Unless you take special measures to implement your own base test object, tests descend from 
BaseWebAiiTest. BaseWebAiiTest comes with a kit of helpful methods and objects for accomplishing
"bread-and-butter" tasks including: 

Manager is the "mother ship" of a coded WebAii Test. With it you can access the ActiveBrowser,
handle Desktop input devices, launch new browsers, remove browsers, configure Settings, Log 

ActiveBrowser represents the browser running at any one time. The Browser type is a very rich object
that has access to all methods used to automate the  browser, desktop actions (i.e. controlled by
mouse and keyboard), frames, Url navigation and the DOM tree, just to name a few. 

Find provides search routines for finding elements within a document.  

Wait pauses test execution until some set of conditions in the browser is met, allowing the test to
continue. 

Log is typically used to write text to the log displayed in the Steps Tab or an external log file. Log can
also be used to capture screenshots of the browser or desktop.

Actions provides generic support for all browser types and includes setting check boxes, selecting from
drop down lists, visually annotating on the browser surface, clicking buttons and waiting for elements. 

ExecuteStep() executes a test step with a particular test step name. 

ExecuteText() executes another test in the project as a test step.



WebUI Test Studio Developer Edition Made Easy266

© 2010 Falafel Software Inc.

14.4.1 Navigate

14.4.1.1 NavigateTo()

Each WebAii test always has a browser object instance called ActiveBrowser. You will often call the
ActiveBrowser NavigateTo() method and pass the Url of the site you want displayed in the browser. The
example below navigates to the Google site and then waits for a quarter of a second. 

<CodedStep("Navigate to Google")> _
Public Sub MyTestStep()
   ActiveBrowser.NavigateTo("http://www.google.com")
   System.Threading.Thread.Sleep(250)
End Sub

 

[CodedStep("Navigate to Google")]
public void MyTestStep()
{
    ActiveBrowser.NavigateTo("http://www.google.com");
    System.Threading.Thread.Sleep(250);            
}

14.4.1.2 Relative Urls

You can set the base url either in the WebUI Test Studio Settings dialog or in code. The NavigateTo()
method parameter then takes only the fragment of the url past the base url. The example below sets the
BaseUrl in code, then calls NavigateTo() and passes only the page name. 

' set the base url
Manager.Settings.BaseUrl = "http://training.falafel.com/SampleWebSite"

' navigate to the elements sample site
ActiveBrowser.NavigateTo("/FindElementsSample.htm")

 

// set the base url
Manager.Settings.BaseUrl = "http://training.falafel.com/SampleWebSite"; 

// navigate to the elements sample site
ActiveBrowser.NavigateTo("/FindElementsSample.htm");



WebAii Framework 267

© 2010 Falafel Software Inc.

 Gotcha!

Be sure to add the leading forward slash as shown in the code example above. A
UriFormatException in the log may remind you: 

"Url passed in has invalid format. If you are trying to use relative paths, please make sure your url
starts with '/' or '~/'. If you are using fully qualified paths, make sure they are properly prefixed (i.e.
start with 'http://', 'file://' or 'c:'). InnerException: System.UriFormatException: Invalid URI: The
format of the URI could not be determined."

14.4.1.3 WaitForUrl()

You can also add a WaitForUrl() method call just after the NavigateTo() if you want to ensure that the Url
loaded. WaitForUrl() can be useful when you need to wait for browser redirects on certain sites.

The first parameter is the Url to wait for. The next parameter, IsPartial, signals that this is a partial Url when
set to "True". The last parameter is the number of milliseconds to wait before the operation times out. The
example below navigates to the Telerik web site and then waits 10 seconds for the Url to load. The
WaitForUrl() is looking for an exact match to the Url parameter. 

<CodedStep("Navigate Test")> _
Public Sub MyTestStep()
   ActiveBrowser.NavigateTo("http://www.telerik.com")
   ActiveBrowser.WaitForUrl("http://www.telerik.com", False, 10000)
End Sub

 

[CodedStep("Navigate Test")]
public void MyTestStep()
{
    ActiveBrowser.NavigateTo("http://www.telerik.com");
    ActiveBrowser.WaitForUrl("http://www.telerik.com", false, 10000);
}

 Gotcha!

The example above will actually fail because IsPartial is "false". The problem is very subtle in that
we navigate to "http://www.telerik.com", but "http://www.telerik.com/", with the trailing slash is
loaded. 

To make the test step pass you need to include the trailing slash in the Url or set the IsPartial
parameter to "true". 



WebUI Test Studio Developer Edition Made Easy268

© 2010 Falafel Software Inc.

  From the Forums...

Question: I'm just trying to test a simple asp.net login form on my site. When the login button is
clicked I want to verify that the user navigates to the "Start" page. I check that the active browser
Url contains "Start.aspx" but it always fails. 

Answer: During the redirect from Login.aspx to Start.aspx, communication between the
browser and the web server may have gone quiet just long enough for the framework to believe
it's complete. The framework keeps a copy of the DOM & URL in memory and uses that for all of
its testing. Some time later (maybe just a few milliseconds) communication to the web server
starts up again and Start.aspx actually gets control. Unfortunately by this time the WebAii
framework and the browser are now out of sync. The fix is pretty easy. Add a WaitForUrl after
your Click and your Assert such that the code now looks like the example below. Notice that the
WaitForUrl uses a tilde "~" to indicate partial matching. See the rest of this chapter to learn more
about the Find and Assert statements. 

' Cause the page to login 
Find.ById(Of HtmlInputSubmit)("ctl00_cphMainContent_Login1_LoginButton").Click()
' Wait for the redirect to finish 
ActiveBrowser.WaitForUrl("~Start.aspx", True, 5000)
Assert.IsTrue(ActiveBrowser.Url.Contains("Start.aspx"))

 

// Cause the page to login 
Find.ById<HtmlInputSubmit>("ctl00_cphMainContent_Login1_LoginButton").Click(); 
// Wait for the redirect to finish 
ActiveBrowser.WaitForUrl("~Start.aspx", true, 5000); 
Assert.IsTrue(ActiveBrowser.Url.Contains("Start.aspx")); 

14.4.2 Locate Elements

Many of the frequently asked questions on the forum deal with locating elements in the DOM or in the
XAML of Silverlight applications. WebAii Testing Framework includes a Find object with an extensive set of
methods for locating a single element or a collection of elements with specific characteristics. These
objects and methods begin where the DOM Explorer searches left off. 



WebAii Framework 269

© 2010 Falafel Software Inc.

14.4.2.1 Finding a Single Element

The Find object methods for locating a single element start with "By" + the criteria used to locate the
element. The methods include: 

ByAttributes()

ByContent()

ByCustom()

ByExpression()

ById()

ByName()

ByNodeIndexPath()

ByParam()

ByTagIndex()

ByXPath()

14.4.2.1.1  Minimal Example

To get started, here's a minimal example that searches for a single element. We have a link to the "Google"
web site where the HTML markup contains the fragment below:

 

<a href="http://www.google.com">Google</a>

This short example navigates to a sample site that contains the Google link, locates the link and finally
clicks the link. In this example we call the ByContent() method and pass the string "Google" that we're
looking for. The second parameter is a FindContentType enumeration member which is set to
TextContent for this example.

 Notes

FindContentType can be InnerText, InnerMarkup, OuterMarkup, TextContent or
StartTagContent. Refer back to the Visual Studio Integration chapter, "DOM Explorer" for more
on the meaning of these settings.



WebUI Test Studio Developer Edition Made Easy270

© 2010 Falafel Software Inc.

<CodedStep("Find Elements Example")> _
Public Sub MyTestStep()
   ActiveBrowser.NavigateTo("http://training.falafel.com/SampleWebSite/FindElementsSample.htm")
   Dim element As Element = Find.ByContent("Google", FindContentType.TextContent)
   Dim anchor As HtmlAnchor = element.As(Of HtmlAnchor)()
   anchor.Click()
End Sub

 

[CodedStep("Find Elements Example")]
public void MyTestStep()
{           
    ActiveBrowser.NavigateTo("http://training.falafel.com/SampleWebSite/FindElementsSample.htm");
    Element element = Find.ByContent("Google", FindContentType.TextContent);
    HtmlAnchor anchor = element.As<HtmlAnchor>();
    anchor.Click(); 
}

Did you notice that the Find.ByContent() method returned an Element object? "Element" has some basic
information common to any testing element such as TextContent and basic methods such as Focus(). But
the method Click() isn't available because some testing elements may not be clickable. Instead you need
an object that represents the specific element you're working with. In this case we want to click on an
HTML "anchor" tag. Use the Element As() method to convert the element to the specific type of object you
want to work with. In VB.NET you pass "Of HtmlAnchor" as a parameter. In C#, pass "HtmlAnchor"
between angle brackets. Then you can access the HtmlAnchor object directly and use all of its properties
and methods. 

Dim anchor As HtmlAnchor = element.As(Of HtmlAnchor)()

 

HtmlAnchor anchor = element.As<HtmlAnchor>();

You can eliminate the As() method call by letting the Find method know that you're expecting a HtmlAnchor
to be returned. Use the syntax below to have any of the Find methods automatically return the correct
type. 

Dim anchor As HtmlAnchor = Find.ByContent(Of HtmlAnchor)("Google", FindContentType.TextContent)
anchor.Click()



WebAii Framework 271

© 2010 Falafel Software Inc.

 

HtmlAnchor anchor = 
    Find.ByContent<HtmlAnchor>("Google", FindContentType.TextContent);
anchor.Click();



WebUI Test Studio Developer Edition Made Easy272

© 2010 Falafel Software Inc.

14.4.2.1.2  Find Methods

Consider the HTML page in the screenshot below. It contains a little of everything including tables, divs,
spans, images, links and even broken links.

The HTML markup is listed below for your reference as we go through examples of finding the elements on
this page. 



WebAii Framework 273

© 2010 Falafel Software Inc.

 

<div id="myDiv" class="OuterDiv">
myDiv
<table id="infoTable" class="TableStyle">
    <tr>
        <td>cell 1</td>
        <td>cell 2</td>
        <td>cell 3</td>
    </tr>
    <tr>
        <td><a href="http://www.google.com">
            Google</a></td>
        <td><a href="http://www.telerik.com">Telerik</a></td>
        <td>
            <a href="http://www.falafel.com">
            <img src="http://www.falafel.com/images/falafel_logo_64px.png" />
            </a>
        </td>
        <td>
            <a href="http://w.deadlink.c">
            <img src="http://w.deadlink.c/nopicture.png" />Dead Link
            </a>
        </td>
    </tr>
</table>
<div id="innerDiv" class="InnerDiv">
    innerDiv
    <input id="Button1" type="button" value="button" />
    <textarea id="TextArea1" cols="20" name="S1" rows="2">This is a text area with content
    </textarea>
    <select id="Select1" name="Select1">
        <option>Red</option>
        <option selected="selected">Blue</option>
        <option>Green</option>
    </select></div>
</div>
<span id="mySpan" class="SpanStyle">mySpan </span>



WebUI Test Studio Developer Edition Made Easy274

© 2010 Falafel Software Inc.

The examples below show additional Find methods that locate single elements.

ByAttributes()

The ByAttributes() method searches for elements that match attributes in an HTML tag such as
"bar=foo","class=myclass","src=~foo.gif","src=!bar". Use =~ for partial values or =! to exclude values. To
match multiple attributes pass an array of string

Dim table As HtmlTable = Find.ByAttributes(Of HtmlTable)("class=TableStyle")
Dim byAttributeParams() As String = { "class=TableStyle", "id=infoTable" }
' or...
table = Find.ByAttributes(Of HtmlTable)(byAttributeParams)
If table IsNot Nothing Then
   Log.WriteLine(table.ID)
Else
   Log.WriteLine("table not found")
End If

 

HtmlTable table = Find.ByAttributes<HtmlTable>("class=TableStyle");
// or...
string[] byAttributeParams = new string[] { "class=TableStyle", "id=infoTable" };
table = Find.ByAttributes<HtmlTable>(byAttributeParams);
if (table != null)
{
    Log.WriteLine(table.ID);
}
else
{
    Log.WriteLine("table not found");
}



WebAii Framework 275

© 2010 Falafel Software Inc.

  From the Forums...

Question: How can I learn the name of attributes that exist in RadControls? 

Answer: Control wrappers provide important constants related to RadControls. For example,
you can use the CssClass constant for each RadControl to locate our wrapper as shown in the
code example below. 

Dim myGrid As RadGrid = Find.ByAttributes(Of RadGrid)("class=" & GridConstants.CssGrid)

 

RadGrid myGrid = Find.ByAttributes<RadGrid>("class=" + GridConstants.CssGrid);

The naming convention for these objects is the name of the control + "Constants", i.e.
TreeViewConstants, ListBoxConstants, ComboBoxConstants, etc. 

ById()

This method allows you to search for an element by its ID. The method is case insensitive. You can also
prefix the ID with a tilde "~" to perform a partial search. The example below for instance, retrieves a Table
element where the ID is "infoTable". 

Dim element As Element = Find.ById("~info")
Log.WriteLine(element.OuterMarkup)

 

Element element = Find.ById("~info");
Log.WriteLine(element.OuterMarkup); 



WebUI Test Studio Developer Edition Made Easy276

© 2010 Falafel Software Inc.

ByName()

This method lets you perform a case-insensitive search for an element by its name. The example below
locates a list box, i.e. HtmlSelect, element, select the first item in the list and then verify that the selected
item text is "Red". 

' Locate the listbox named "Select1"
Dim [select] As HtmlSelect = Find.ByName(Of HtmlSelect)("Select1")
' Select the first item in the list
[select].SelectByIndex(0)
' Verify that the selected item text is "Red"
Assert.IsTrue([select].SelectedOption.Text.Equals("Red"))

 

// Locate the listbox named "Select1"
HtmlSelect select = Find.ByName<HtmlSelect>("Select1");
// Select the first item in the list
select.SelectByIndex(0);
// Verify that the selected item text is "Red"
Assert.IsTrue(select.SelectedOption.Text.Equals("Red")); 



WebAii Framework 277

© 2010 Falafel Software Inc.

ByNodeIndexPath()

This method searches using a forward slash delimited list that describes the path to a target element. The
path ignores the actual element tags and simply describes the hierarchy leading to that element. The
indexes are zero-based, so in an HTML document, the "Head" element is at index zero and the "Body"
element is at index "1". Using a subset of the reference HTML from the beginning of this section, let's look
for the cell in the table with text "cell 3". The node index path would be "1/0/0/0/0/2" as shown in the HTML
fragment below. 

 

      . . .
        <head></head>
-->1 <body>
  -->0 <div id="myDiv" class="OuterDiv">
    -->0  <table id="infoTable" class="TableStyle">
      -->0   <tr>
                <td>cell 1</td>
                <td>cell 2</td>
       -->2  <td>cell 3</td>
      . . .

By using the ByNodeIndexPath() method and passing the forward slash delimited of indexes we can return
the "cell 3" element. 

Dim indexPathElement As Element = Find.ByNodeIndexPath("1/0/0/0/0/2")
If indexPathElement IsNot Nothing Then
   Log.WriteLine(indexPathElement.TagName & ": " & indexPathElement.TextContent)
End If

 

Element indexPathElement = Find.ByNodeIndexPath("1/0/0/0/0/2");
if (indexPathElement != null)
{
    Log.WriteLine(indexPathElement.TagName + ": " + 
        indexPathElement.TextContent);
}



WebUI Test Studio Developer Edition Made Easy278

© 2010 Falafel Software Inc.

ByTagIndex()

This method returns an element by its tag name occurrence. The first parameter is the name of the tag and
the second is the occurrence number to retrieve. The example below retrieves the third "Option" tag in the
document. 

Dim [option] As HtmlOption = Find.ByTagIndex(Of HtmlOption)("Option", 2)
Log.WriteLine([option].Text)

 

HtmlOption option = Find.ByTagIndex<HtmlOption>("Option", 2);
Log.WriteLine(option.Text); 



WebAii Framework 279

© 2010 Falafel Software Inc.

ByXPath()

This method returns an element based on an XPath expression. 

' ByXPath
Dim button As HtmlInputButton = Find.ByXPath(Of HtmlInputButton)("//*[@id=""Button1""]")
button.Focus()

 

// ByXPath
HtmlInputButton button = Find.ByXPath<HtmlInputButton>("//*[@id=\"Button1\"]");
button.Focus(); 

Tip!

Remember that you can use the FireFox browser plugin "Firebug" to create an XPath expression for
you. You will need to locate, download and install the Firebug plugin. See getfirebug.com for more
information and tutorials. When you have it running you can click the Inspect Elements button, then
click the mouse on an element in the page to select it in the HTML tab. From there you can right-click
and select Copy XPath from the context menu to copy the XPath expression to your clipboard. The
screenshot below shows the Copy XPath that created the expression used in the example code
above. 



WebUI Test Studio Developer Edition Made Easy280

© 2010 Falafel Software Inc.

ByCustom()

ByCustom() allows you to pass a custom method as a parameter. This custom method itself takes a
parameter of the same type as that returned. In the example below, the custom method knows it has an
HtmlImage parameter and looks for an element where the "src" attribute contains the characters
"falafel_logo". 

Dim image As HtmlImage = _
  Find.ByCustom(Of HtmlImage)(Function(img) img.Src.Contains("falafel_logo"))

 

HtmlImage image =
    Find.ByCustom<HtmlImage>(img => img.Src.Contains("falafel_logo"));



WebAii Framework 281

© 2010 Falafel Software Inc.

ByExpression()

What happens if the element you're looking for doesn't have a unique ID or some other way to pinpoint it? 
The ByExpression() method allows you to follow a chain of "clauses" that describe the element you're
searching for. For example, you might be looking for a text area inside two nested "div" elements. Each
clause describes a name & value pair. These clauses can be separated by a pipe character "|". The pipe
character is interpreted as "then". The example below first looks for an element with an ID = "myDiv", then,
from that "myDiv" element the search looks for an element where the tagname = "div", then looks for an
element where the textcontent contains the string "with content". 

Find.ByExpression() can take either a HtmlFindExpression or an array of strings directly.

' create a series of dependant clauses
Dim findClauses() As String = { "id=myDiv", "|", "tagname=div", "|", "textcontent=~with content" }
' build a find expression
Dim findExpression As New HtmlFindExpression(findClauses)
' find the element using the expression
Dim el As Element = Find.ByExpression(findExpression)
Log.WriteLine(el.OuterMarkup)

 

// create a series of dependant clauses
string[] findClauses = new string[] 
    { "id=myDiv", "|", "tagname=div", "|", "textcontent=~with content" };
// build a find expression
HtmlFindExpression findExpression = new HtmlFindExpression(findClauses);
// find the element using the expression
Element el = Find.ByExpression(findExpression);
Log.WriteLine(el.OuterMarkup); 

 Notes

Expressions also support Silverlight page searches, but instead of HtmlFindExpression, use 
XamlFindExpression.



WebUI Test Studio Developer Edition Made Easy282

© 2010 Falafel Software Inc.

ByExpression() with Hierarchy Constraint

You can also place a "hierarchy constraint" on an expression. This can help find an element in a particular
relation with some other element. 

 Notes

This is an advanced technique primarily aimed at WebAii developers creating wrappers and
translators.

Consider the HTML sample below. There are two "div" elements, "OuterDiv" is the immediate child of the
"body" tag and "InnerDiv" where the "body" tag is two elements away. We can find either "div" element
based on its offset from the "body". 

 

<body>
    <div id="OuterDiv" >
        <div id="InnerDiv" >
    </div>
</body>

To use hierarchy constraints you need two find expressions. The first looks for one or more target elements.
The second serves as a reference point to the element. The hierarchy constraint defines an offset from the
reference element to the target element. The offset can be one or more integers where negative numbers
travel up the document towards the parent and positive numbers point downward towards the elements
children. For example, "-2" points to the parent's parent, "1" to the immediate child of an element, and "-
1,1" points to the first child of the parent. 

Using our HTML sample above, lets say we want to find "InnerDiv". First we create a find expression where
"tagname=div", and a second expression to get a reference point where "tagname=body". Then we create a 
HierarchyConstraint that takes the reference find expression with an offset of "-2". Finally, the
HierarchyConstraint is added to the find expression that's looking for target "div" elements. The
ByExpression() method returns the "InnerDiv" element as shown in the code sample below. If we changed
the offset to "-1", the "OuterDiv" element would be returned. 



WebAii Framework 283

© 2010 Falafel Software Inc.

' retrieve element where multiple possib ilities
Dim expression As New HtmlFindExpression("tagname=div")

' retrieve an element to use as a reference point
Dim reference As New HtmlFindExpression("tagname=body")

' build and apply the constraint
Dim constraint As New ArtOfTest.Common.HierarchyConstraint(reference, "-2")
expression.AddHierarchyConstraint(constraint)

' locate and use the element
Dim el2 As Element = Find.ByExpression(expression)
Log.WriteLine(el2.OuterMarkup)

 

// retrieve element where multiple possib ilities
HtmlFindExpression expression = new HtmlFindExpression("tagname=div");

// retrieve an element to use as a reference point
HtmlFindExpression reference = new HtmlFindExpression("tagname=body");            

// build and apply the constraint
ArtOfTest.Common.HierarchyConstraint constraint =
    new ArtOfTest.Common.HierarchyConstraint(reference, "-2");
expression.AddHierarchyConstraint(constraint); 

// locate and use the element
Element el2 = Find.ByExpression(expression);
Log.WriteLine(el2.OuterMarkup);

Here's a second example that finds the "Blue" option tag when its in the hierarchical relationship to the
table element shown in the HTML markup below. The numbers to the left of the listing show the offsets
where "0" is the starting point at the target element, -1 is the parent Select element and so on. 



WebUI Test Studio Developer Edition Made Easy284

© 2010 Falafel Software Inc.

 

-3
 1
 2

-2
-1

 0

<body>
    <div id="myDiv" class="OuterDiv">
        myDiv
        <table id="infoTable" class="TableStyle">
            <tr>
                <td>cell 1</td>
                <td>cell 2</td>
                <td>cell 3</td>
            </tr>
        </table>
        <div id="innerDiv" class="InnerDiv">
            <select id="Select1" name="Select1">
                <option>Red</option>
                <option selected="selected">Blue</option>
                <option>Green</option>
            </select></div>
    </div>
</body>

The code is similar to the last example except that the offset is -3 (up to the outer div), 2 (down to the table
child element). 

' retrieve element where multiple possib ilities
Dim target2 As New HtmlFindExpression("tagname=option", "textcontent=Blue")

' retrieve an element to use as a reference point
Dim reference2 As New HtmlFindExpression("tagname=table")

' build and apply the constraint
Dim constraint2 As New ArtOfTest.Common.HierarchyConstraint(reference2, "-3,2")
target2.AddHierarchyConstraint(constraint2)

' locate and use the element
Dim el3 As Element = Find.ByExpression(target2)
Log.WriteLine(el3.OuterMarkup)



WebAii Framework 285

© 2010 Falafel Software Inc.

 

// retrieve element where multiple possib ilities
HtmlFindExpression target2 = new HtmlFindExpression("tagname=option", "textcontent=Blue");

// retrieve an element to use as a reference point
HtmlFindExpression reference2 = new HtmlFindExpression("tagname=table");

// build and apply the constraint
ArtOfTest.Common.HierarchyConstraint constraint2 =
    new ArtOfTest.Common.HierarchyConstraint(reference2, "-3,2");
target2.AddHierarchyConstraint(constraint2);

// locate and use the element
Element el3 = Find.ByExpression(target2);
Log.WriteLine(el3.OuterMarkup);

Tip!

Getting the correct offset can be challenging. If you're having trouble, try...

Check that both your target and reference find expressions can be called with ByExpression(). 

Keep the offsets close to the target element at first and test one element at a time as you refine
the search. 

The DOM Explorer can give you some help in visualizing the parents and children of an
element. 

14.4.2.1.3  Find Operators

For Find methods that use find clauses, here are the available operators and some examples you can use
as a reference: 

Operator Constant Example Description

= Equals class=TableStyle class equals "TableStyle"

~ Contains class=~Table class contains "Table"

! NotContain class=!Table class does not contain "Table"

^ StartsWith class=^Tab class starts with "Tab"

? EndsWith class=?yle class ends with "yle"

# RegEx class=#.able. class matches the RegEx expression ".
able."



WebUI Test Studio Developer Edition Made Easy286

© 2010 Falafel Software Inc.

14.4.2.1.4  RadControls Wrappers

Telerik offers an extensive set of "Wrapper" controls that stand in for RadControls. These controls let you
access the control in the testing setting and get at many of the methods and properties of the original
control. To retrieve a RadControl "Wrapper", use one of the Find methods and specify the type. In the
example below for VB.NET this is done by adding "(Of Telerik.WebAii.Controls.Html.RadTreeView)" just
after the ById() call. In C#, follow the ById() method call with angle braces containing the type. 

Const RADCONTROLS_DEMO As String = _
 "http://demos.telerik.com/aspnet-ajax/treeview/examples/functionality/whatsnew/defaultcs.aspx"

' navigate to the elements sample site
ActiveBrowser.NavigateTo(RADCONTROLS_DEMO)

Dim radTreeView As Telerik.WebAii.Controls.Html.RadTreeView = _
Find.ById(Of Telerik.WebAii.Controls.Html.RadTreeView)("RadTreeView1")

 

const string RADCONTROLS_DEMO =
    "http://demos.telerik.com/aspnet-ajax/treeview/examples/functionality/whatsnew/defaultcs.aspx"; 

// navigate to the elements sample site
ActiveBrowser.NavigateTo(RADCONTROLS_DEMO);

Telerik.WebAii.Controls.Html.RadTreeView radTreeView =
    Find.ById<Telerik.WebAii.Controls.Html.RadTreeView>("RadTreeView1");

Tip!

Be sure to check out the example solutions for translators and wrappers in both ASP.NET AJAX
and Silverlight RadControls flavors. These solutions have extensive code examples that you can
use to borrow for your tests and to learn from. You can find the example solutions in the Start
menu under the Telerik menu item for the installed WebUI Test Studio product. 



WebAii Framework 287

© 2010 Falafel Software Inc.

14.4.2.2 Finding Multiple Elements

More than one element can satisfy a search and return a collection of objects. For this reason the Find
object has a series of methods pre-pended with "AllBy", i.e. AllByAttributes(),  AllByContent(),
AllByCustom(), AllByExpression(), AllByTagName() and AllByXPath().  The example below
demonstrates the AllByTagName() method and looks for all the links on a page by looking for only
HtmlAnchor elements. Using a "ForEach" loop, the example prints the Url and page title for each link to the
test log. 

' Log the path and title of every link in the current browser page
Public Sub LogLinks(ByVal browser As Browser)

   Dim links As IList(Of HtmlAnchor) = browser.Find.AllByTagName(Of HtmlAnchor)("a")
   For Each anchor As HtmlAnchor In links
      browser.NavigateTo(anchor.HRef)
      Log.WriteLine(anchor.HRef & "  Title:""" & browser.PageTitle & """")
   Next anchor
End Sub

 

// Log the path and title of every link in the current browser page
public void LogLinks(Browser browser)
{
    
    IList<HtmlAnchor> links = browser.Find.AllByTagName<HtmlAnchor>("a");
    foreach (HtmlAnchor anchor in links)
    {
        browser.NavigateTo(anchor.HRef); 
        Log.WriteLine(anchor.HRef + "  Title:\"" + 
            browser.PageTitle + "\"");
    }
}

The Find object also has methods to return all controls or elements. The collections returned from these
methods can be used in LINQ (see notes following on LINQ) statements. The example below uses the 
AllElements() method to return a collection of every element in the browser window. LINQ is used to filter
out elements that are not "Style" tags and that contain text content.



WebUI Test Studio Developer Edition Made Easy288

© 2010 Falafel Software Inc.

Public Sub LogElements(ByVal browser As Browser)
   Dim elements As IEnumerable(Of Element) = browser.Find.AllElements()
   Dim elementsWithContent = _
      From el In elements _
      Where (Not el.TextContent.Equals(String.Empty)) _
      Where (Not el.TagName.Equals("style")) _
      Select el

   For Each element As Element In elementsWithContent
      Log.WriteLine(element.TextContent)
   Next element
End Sub

 

public void LogElements(Browser browser)
{
    IEnumerable<Element> elements = browser.Find.AllElements();
    var elementsWithContent =
        from el in elements
        where !el.TextContent.Equals(String.Empty)
        where !el.TagName.Equals("style")
        select el;

    foreach (Element element in elementsWithContent)
    {
        Log.WriteLine(element.TextContent);
    }
}

 Notes

LINQ (Language INtegrated Query) allows .NET languages to apply standard query syntax to all
kinds of data including collections. LINQ is a big subject, beyond the scope of this tutorial, but
there is plenty of material on the web including: 

101 LINQ Samples: http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx

MSDN: .NET Language-Integrated Query:  http://msdn.microsoft.com/en-us/library/
bb308959.aspx

You can also pull back any controls on the page of a particular type using the Find.AllControls() syntax
shown below. The returned collection can be filtered using LINQ syntax. 



WebAii Framework 289

© 2010 Falafel Software Inc.

Public Sub LogControls(ByVal browser As Browser)
   Log.WriteLine("Log controls in the current browser page")
   Dim controls As IEnumerable(Of HtmlAnchor) = browser.Find.AllControls(Of HtmlAnchor)()
   Dim elementsWithContent = _
      From ctrl In controls _
      Where (Not ctrl.TextContent.Equals(String.Empty)) _
      Select ctrl

   For Each anchor As HtmlAnchor In elementsWithContent
      Log.WriteLine(anchor.TextContent)
   Next anchor
End Sub

 

public void LogControls(Browser browser)
{
    Log.WriteLine("Log controls in the current browser page"); 
    IEnumerable<HtmlAnchor> controls = 
        browser.Find.AllControls<HtmlAnchor>();
    var elementsWithContent =
        from ctrl in controls
        where !ctrl.TextContent.Equals(String.Empty)
        select ctrl;

    foreach (HtmlAnchor anchor in elementsWithContent)
    {
        Log.WriteLine(anchor.TextContent);
    }
}



WebUI Test Studio Developer Edition Made Easy290

© 2010 Falafel Software Inc.

14.4.2.3 Elements Explorer

Web pages, elements and Silverlight applications defined in the Elements Explorer are "strongly typed"
objects that you can use in your coded steps. Consider the screenshot below where the Elements Explorer
has a page "HttpTrainingFalafel" that includes "GoogleLink" and "Cell1TableCell". 

The test object itself has a Pages property that contains references to all the items in the Elements
Explorer. You can access the element properties from the page reference, i.e. Pages.HttpTrainingFalafel.
GoogleLink or use the page's Get() method. This latter technique allows you to pass a FindExpression that
allows complex expressions to pinpoint the element you're looking for. The example below first uses the
Get() method to retrieve an element with text content "Google". Then the page is used to access an HTML
table cell. 

<CodedStep("Elements Explorer Example")> _
Public Sub ElementsExplorerExample()
   ActiveBrowser.NavigateTo("http://training.falafel.com/SampleWebSite/FindElementsSample.htm")
   Dim googleLink As Element = Pages.HttpTrainingFalafel.Get("textcontent=google")
   Log.WriteLine(googleLink.OuterMarkup)
   Dim cell As HtmlTableCell = Pages.HttpTrainingFalafel.Cell2TableCell
   Log.WriteLine(cell.TextContent)
End Sub



WebAii Framework 291

© 2010 Falafel Software Inc.

 

[CodedStep("Elements Explorer Example")]
public void ElementsExplorerExample()
{
    ActiveBrowser.NavigateTo(
        "http://training.falafel.com/SampleWebSite/FindElementsSample.htm");
    Element googleLink =
        Pages.HttpTrainingFalafel.Get("textcontent=google");
    Log.WriteLine(googleLink.OuterMarkup);
    HtmlTableCell cell = Pages.HttpTrainingFalafel.Cell2TableCell;
    Log.WriteLine(cell.TextContent);
}

 Gotcha!

Elements used in test steps cannot be deleted. The "Delete" context menu item is disabled
whenever an element is used directly in a test step. In coded steps there is no such check. You can
delete items that are used in coded steps and no warning will appear until you try to compile the
project, then you will receive an error something like the sample below where an element called
"Cell2TableCell" is missing from the Elements Explorer. 

'Framework .Pages.HttpTrainingFalafelPage' does not contain a definition for 'Cell2TableCell' and
no extension method 'Cell2TableCell' accepting a first argument of type 'Framework .Pages.
HttpTrainingFalafelPage' could be found (are you missing a using directive or an assembly
reference?)

14.4.2.4 Search Scope

You may want to reduce the scope of your search to children of some element, rather than search the
entire document. Fortunately, each Element has its own Find and Wait objects so we can start our search
much lower in the visual tree. For example, if we have several HTML Table elements on a page and search
for cell elements we might return all the cells on the page, regardless of the table they occur in. But if we
get a reference to just one of those tables, we can search inside the table for table cell elements. The
example below does just that. Using the reference to an HTML table already defined in the elements
explorer, you can use the element's Find object to search inside the table for HtmlTableCell controls.  

<CodedStep("Finding an element using an element as a starting point")> _
Public Sub FindingFromElement()
   ' retrieve an HTML tab le
   Dim table As HtmlTable = Me.Pages.HttpTrainingFalafel.InfoTableTable
   ' search the tab le for tab le cells
   Dim cells As IEnumerable(Of HtmlTableCell) = table.Find.AllControls(Of HtmlTableCell)()
   ' iterate the tab le cells 
   For Each cell As HtmlTableCell In cells
      Assert.AreNotEqual(cell.TextContent, String.Empty)
   Next cell
End Sub



WebUI Test Studio Developer Edition Made Easy292

© 2010 Falafel Software Inc.

 

[CodedStep("Finding an element using an element as a starting point")]
public void FindingFromElement()
{
    // retrieve an HTML tab le
    HtmlTable table = this.Pages.HttpTrainingFalafel.InfoTableTable;
    // search the tab le for tab le cells
    IEnumerable<HtmlTableCell> cells = table.Find.AllControls<HtmlTableCell>();
    // iterate the tab le cells 
    foreach (HtmlTableCell cell in cells)
    {
        Assert.AreNotEqual(cell.TextContent, String.Empty);
    }            
}

Tip!

If your search is performing slowly or bringing back more elements than are needed, consider
reducing the scope of the search. 



WebAii Framework 293

© 2010 Falafel Software Inc.

14.4.2.5 jQuery Support

"jQuery is a lightweight cross-browser JavaScript library that emphasizes interaction between
JavaScript and HTML." (www.wik ipedia.org) 

You can find elements using the popular jQuery syntax, just by adding the ArtOfTest.WebAii.jQuery
namespace and calling the Find.jQuery() method. 

"This was a customer feature request ..., but in case you are a jQuery junk ie, you can now search the
DOM similar to how you would do it in jQuery with a strongly-typed object model in WebAii. Here is a
quick  example (make sure to import the ArtOfTest.WebAii.jQuery namespace first)"

Assert.IsTrue(Find.jQuery().id("Button3").IdAttributeValue = "Button3")
Assert.IsTrue(Find.jQuery().attributes("id*=button", "id!=2").first().IdAttributeValue = "Button3")

' Select all textboxes that are in the even rows of the first two tab les on the page
Dim allTextBoxes As IList(Of HtmlInputText) = _
Find.jQuery().tag("table").lt(2).descendant().tag("tr").even().text()

 

Assert.IsTrue(Find.jQuery().id("Button3").IdAttributeValue == "Button3");
Assert.IsTrue(Find.jQuery().attributes("id*=button", "id!=2").first().IdAttributeValue == "Button3"); 

// Select all textboxes that are in the even rows of the first two tab les on the page
IList<HtmlInputText> allTextBoxes = Find.jQuery().tag("table").lt(2).descendant().tag("tr").even().text();

14.4.3 Wait for Elements

 WebAii Testing Framework supports Wait objects that wait for some set of conditions. The conditions vary
depending on the technology we're testing against. For example, the HtmlWait object can wait for an
element to exist in the DOM, or for a set of HTML attributes to exist, a certain content to exist or even a
custom set of conditions that you set up yourself. Each method also has a mirror image that waits for the
conditions to not exist, e.g. ForVisibilityNot() that waits for an element to become invisible. In the Silverlight
world the VisualWait can wait for an element to exist, be visible, be motionless or some custom set of
conditions (see "Testing Silverlight Applications" for more information on waiting for Silverlight elements).   

http://www.wikipedia.org


WebUI Test Studio Developer Edition Made Easy294

© 2010 Falafel Software Inc.

14.4.3.1 WaitSync

The base WebAii Test Wait object is general purpose, is of type WaitSync and has several varieties of the
For() method.   These methods all allow you to add some custom code that tests for a condition that must
be true before the wait returns. The example below uses a "generic type parameter". In this case we're
looking for an HtmlSelect, so the VB.NET example uses the syntax "Of HtmlSelect"  and the C# version
uses angle braces that enclose the type, i.e. "<HtmlSelect>".

The For() method parameter expects a method name, "IsRedSelected" in the example below. Notice that
the For() method only needs the name of the method, not the parameter list. "IsRedSelected" is called for
each HtmlSelect in the document until the condition is met. 

 Notes

The parallel to the WaitSync object in Silverlight is the VisualWait object. See the "Testing
Silverlight Applications" section for more information.

The HtmlSelect parameter in the "IsRedSelected" method has an AssertSelect() method that in turn has a
SelectedText() method. SelectedText() compares the text in the select item against a string and returns
"True" if they match. Once a match occurs, the Wait.For() operation is satisfied and returns. The second
parameter to the Wait.For() method is "ColorSelect", the actual object we're waiting on. The last Wait.For()
parameter is a timeout value expressed in milliseconds. In this example we're waiting on "ColorSelect" for
ten seconds.  

<CodedStep("Wait for Red to be selected from drop down")> _
Public Sub WaitForHtmlElements()
   Const SAMPLE_SITE As String = "http://training.falafel.com/SampleWebSite/FindElementsSample.htm"

   ' navigate to the elements sample site
   ActiveBrowser.NavigateTo(SAMPLE_SITE)

   Dim ColorSelect As HtmlSelect = Pages.HttpTrainingFalafel.ColorSelect
   Wait.For(Of HtmlSelect)(AddressOf IsRedSelected, ColorSelect, 10000)
End Sub

Private Function IsRedSelected(ByVal [select] As HtmlSelect) As Boolean
   Return [select].AssertSelect().SelectedText(ArtOfTest.Common.StringCompareType.Contains, "Red")
End Function



WebAii Framework 295

© 2010 Falafel Software Inc.

 

[CodedStep("Wait for Red to be selected from drop down")]
public void WaitForHtmlElements()
{
    const string SAMPLE_SITE =
        "http://training.falafel.com/SampleWebSite/FindElementsSample.htm";

    // navigate to the elements sample site
    ActiveBrowser.NavigateTo(SAMPLE_SITE);

    HtmlSelect ColorSelect = Pages.HttpTrainingFalafel.ColorSelect;
    Wait.For<HtmlSelect>(IsRedSelected, ColorSelect, 10000);
}

private bool IsRedSelected(HtmlSelect select)
{
    return select.AssertSelect().SelectedText(
        ArtOfTest.Common.StringCompareType.Contains, "Red"); 
}

 Notes

By default the Wait object's AutoCheckResult property is "True", so Wait automatically checks
for timeouts or errors once the wait is done. You can actually get the specific result code yourself
if you wish by looking at the SyncWaitResult enumeration property. SyncWaitResult stores a
WaitResultType property of NotSet, ConditionMet, TimedOut, ErrorAbort and
ElementNotFound. SyncWaitResult can also contains an Error string property that you can
reference if the WaitResultType is ErrorAbort. 



WebUI Test Studio Developer Edition Made Easy296

© 2010 Falafel Software Inc.

14.4.3.2 Wait

While Wait.For() is a nice general purpose tool, you'll typically use the more technology and task-specific 
HtmlWait available as an object of an HTML element. HtmlWait methods are much simpler to use and
offers a set of methods used to find elements. 

ForExists(), ForExistsNot()

ForAttributes(), ForAttributesNot()

ForContent(), ForContentNot()

ForCondition()

These methods closely parallel similar methods for the Find object. Both Find and Wait rely on identifying
an element to satisfy the search or the wait condition.  We can cover the basics by showing a wait for a
particular element to exist. The example methods take no parameters, but you could pass a timeout
parameter if you wish.  

Dim ColorSelect As HtmlSelect = Pages.HttpTrainingFalafel.ColorSelect
ColorSelect.Wait.ForExists()

 

HtmlSelect ColorSelect = Pages.HttpTrainingFalafel.ColorSelect;
ColorSelect.Wait.ForExists();

Most of the methods also have a mirror "Not" version:

ColorSelect.Wait.ForExistsNot()

 

ColorSelect.Wait.ForExistsNot(); 

The next few examples will use an HTML snippet that contains a TextArea element attributes for id,
columns and rows. The snippet also encloses its own text content.  

 

<textarea id="TextArea1" cols="20" name="S1" rows="2">This is a text area with content</
textarea>



WebAii Framework 297

© 2010 Falafel Software Inc.

To wait for an HTML object that has certain attributes, call Wait.ForAttributes() and pass an array of name/
value pairs. The example below snags the TextArea element that has "rows" and "cols" attributes with
particular values. 

Dim TextArea1 As HtmlTextArea = Pages.HttpTrainingFalafel.TextArea1
Dim attributeParams() As String = { "rows=2", "cols=20" }
TextArea1.Wait.ForAttributes(attributeParams)

 

HtmlTextArea TextArea1 = Pages.HttpTrainingFalafel.TextArea1;
string[] attributeParams = new string[] { "rows=2", "cols=20" };
TextArea1.Wait.ForAttributes(attributeParams);

The example below waits until the contents of the TextArea are not "This is a text area with content".
Running this example against the HTML snippet above, the test will not continue until the text is modified.
You can actually change the text interactively in the browser while the test runs as long as you make the
change before the wait times out. Notice that the first parameter is a FindContentType enumeration that
specifies what part of the element we're looking at and can include values InnerText, InnerMarkup,
OuterMarkup, TextContent and StartTagContent. 

TextArea1.Wait.ForContentNot(FindContentType.InnerText, _ 
  "This is a text area with content")

 

TextArea1.Wait.ForContentNot(FindContentType.InnerText, 
    "This is a text area with content"); 

The ForCondition() method lets you "go to town" and make your wait condition be as elaborate as
necessary to suit your purposes. Pass ForCondition() a method that will contain your custom logic, an
"invertCondition" Boolean that can reverse the custom method's return value, the control to check and a
time out value. The custom method takes a control to check and any custom object you want to pass. This
custom object could be your own custom class, a primitive type (e.g. string, int, double) or you could pass
a null value. For example, here's a class definition that will hold comparison information. 



WebUI Test Studio Developer Edition Made Easy298

© 2010 Falafel Software Inc.

Public Class MyObject
   Private privateID As String
   Public Property ID() As String
      Get
         Return privateID
      End Get
      Set(ByVal value As String)
         privateID = value
      End Set
   End Property
   Private privateCheckString As String
   Public Property CheckString() As String
      Get
         Return privateCheckString
      End Get
      Set(ByVal value As String)
         privateCheckString = value
      End Set
   End Property
   Private privateRows As Integer
   Public Property Rows() As Integer
      Get
         Return privateRows
      End Get
      Set(ByVal value As Integer)
         privateRows = value
      End Set
   End Property
   Private privateCols As Integer
   Public Property Cols() As Integer
      Get
         Return privateCols
      End Get
      Set(ByVal value As Integer)
         privateCols = value
      End Set
   End Property
End Class

 

public class MyObject
{
    public string ID { get; set; } 
    public string CheckString { get; set; }
    public int Rows { get; set; }
    public int Cols { get; set; } 
}



WebAii Framework 299

© 2010 Falafel Software Inc.

...and here's the Wait.ForCondition() method call that consumes "MyObject". We create and populate
"MyObject" with values we want to use when checking the condition, then call ForCondition(), passing the
method "MyCheckForCondition", "False" to indicate we don't want to invert the condition, the "MyObject"
instance and finally a timeout value of five seconds. 

In the "MyCheckForCondition()" method we perform some safety checking to make sure the control and
custom objects are the types we expect. The type safety checking at the top of "MyCheckForCondition()"
makes sure that the code doesn't raise errors when we try to access properties from the control or custom
object. If these checks pass, the method continues and can make assumptions about the available
properties.  Finally, the method returns true only if all the property values in "MyObject" match the values for
the control. 

<CodedStep("Wait for HTML Elements demo")> _
Public Sub WaitForHtmlElements()
   Const SAMPLE_SITE As String =  _
"http://training.falafel.com/SampleWebSite/FindElementsSample.htm"

   ' navigate to the elements sample site
   ActiveBrowser.NavigateTo(SAMPLE_SITE)

   ' get a reference to the text area
   Dim TextArea1 As HtmlTextArea = Pages.HttpTrainingFalafel.TextArea1

   ' Create and initialize the custom object
   Dim myObject As New MyObject() With { _
.ID = "TextArea1", .Cols = 20, .Rows = 2, .CheckString = "This is a text area with content"}

   ' wait for the condition, passing the custom method
   TextArea1.Wait.ForCondition(AddressOf MyCheckForCondition, False, myObject, 5000)
End Sub

Public Function MyCheckForCondition( _
ByVal controlToCheck As ArtOfTest.WebAii.Controls.Control, _
ByVal anyCustomObject As Object) As Boolean
   ' convert to actual types
   Dim textArea As HtmlTextArea = TryCast(controlToCheck, HtmlTextArea)
   Dim myObject As MyObject = TryCast(anyCustomObject, MyObject)

   If (textArea Is Nothing) OrElse (myObject Is Nothing) Then
      Return False
   End If

   ' check the data in the custom object against control properties
   Dim result As Boolean = textArea.Text.Equals(myObject.CheckString) AndAlso _
textArea.ID.Equals(myObject.ID) AndAlso textArea.Cols.Equals(myObject.Cols) AndAlso _
textArea.Rows.Equals(myObject.Rows)

   Return result
End Function



WebUI Test Studio Developer Edition Made Easy300

© 2010 Falafel Software Inc.

 

[CodedStep("Wait for HTML Elements demo")]
public void WaitForHtmlElements()
{
    const string SAMPLE_SITE =
        "http://training.falafel.com/SampleWebSite/FindElementsSample.htm";

    // navigate to the elements sample site
    ActiveBrowser.NavigateTo(SAMPLE_SITE);

    // get a reference to the text area
    HtmlTextArea TextArea1 = Pages.HttpTrainingFalafel.TextArea1;

    // Create and initialize the custom object
    MyObject myObject = new MyObject() { 
        ID = "TextArea1", 
        Cols = 20, 
        Rows = 2,
        CheckString = "This is a text area with content"
    }; 

    // wait for the condition, passing the custom method
    TextArea1.Wait.ForCondition(MyCheckForCondition, false, myObject, 5000); 
}

public bool MyCheckForCondition(ArtOfTest.WebAii.Controls.Control controlToCheck, 
    Object anyCustomObject)
{
    // convert to actual types
    HtmlTextArea textArea = controlToCheck as HtmlTextArea;
    MyObject myObject = anyCustomObject as MyObject;

    if ((textArea == null) || (myObject == null))
        return false; 

    // check the data in the custom object against control properties
    bool result = 
        textArea.Text.Equals(myObject.CheckString) &&
        textArea.ID.Equals(myObject.ID) &&
        textArea.Cols.Equals(myObject.Cols) &&
        textArea.Rows.Equals(myObject.Rows); 

    return result; 
}

This is just one example of what can be done with ForCondition(). It's really a catch-all that can use any
logic you might need and can leverage any functionality available in the .NET platform. A few other
examples that ForCondition() might satisfy are: 

Access your company's database or other data store to get comparison values.

Access values available from a network.

Use a third party API (Application Programming Interface) or library to determine the condition results.



WebAii Framework 301

© 2010 Falafel Software Inc.

14.4.3.3 HtmlWait

HtmlWait extends Wait and adds methods that wait for an element to be visible and for elements with
particular styles: 

ForVisible(), ForVisibleNot()

ForStyles(), ForStylesNot()

The check for visibility is very simple and takes no parameters (although you can add a timeout if you
wish): 

ColorSelect.Wait.ForVisible()

 

ColorSelect.Wait.ForVisible(); 

The wait for styles is a bit more complex, includes an array of name/value pairs describing styles and can
include a Boolean flag that indicates if "computed styles" are used. "Computed styles"  consider the entire
chain of cascading styles, not just the style explicitly set on the element. 

Consider this fragment of style and a "div" element that uses that style: 

 

<head>
    <title></title>
    <style type="text/css">
        .OuterDiv
        {
            border-color: Black;
            border-width: 1px;
            border-style: solid;
        }
    </style>
</head>
<body>
    <div id="myDiv" class="OuterDiv">
    . . .

The code below waits for a div with a particular set of styles. Set up each element of your ForStyles() array
with a style attribute name, a colon ":" and then the style attribute value. The example below looks for a
particular set of border color, width and style values. 



WebUI Test Studio Developer Edition Made Easy302

© 2010 Falafel Software Inc.

Dim borderStyles() As String = { _
"border-color:Black", "border-width:1px", "border-style:solid" }
Dim MyDiv As HtmlDiv = Pages.HttpTrainingFalafel.MyDiv
MyDiv.Wait.ForStyles(borderStyles)

 

string[] borderStyles = new string[] 
{ 
    "border-color:Black", 
    "border-width:1px", 
    "border-style:solid" 
};
HtmlDiv MyDiv = Pages.HttpTrainingFalafel.MyDiv;
MyDiv.Wait.ForStyles(borderStyles); 

 Gotcha!

The syntax for styles uses a colon ":" to separate the style attribute name from the value, not the
equal sign. Be sure to use the correct syntax with the colon delimiter or this method will wait "till
the cows come home...", or at least until the method times out. 

14.4.4 Work With Element Properties

Once you've navigated to a page, located your elements or waited till the elements were in some particular
state, you can finally work with the properties of the element. Depending on the object that encapsulates a
particular element, you can get or set any available properties to that object. For example, the
HtmlTextArea lets you set the Text property to a new value: 

' get a reference to the text area
Dim TextArea1 As HtmlTextArea = Pages.HttpTrainingFalafel.TextArea1
' set the Text value
TextArea1.Text = "A new value"

 

// get a reference to the text area
HtmlTextArea TextArea1 = Pages.HttpTrainingFalafel.TextArea1;
// set the Text value
TextArea1.Text = "A new value"; 

Many of the HTML wrappers will allow you to retrieve tag-specific properties, but may not have any
properties that can be set. The example below retrieves a link and records the HtmlAnchor properties.



WebAii Framework 303

© 2010 Falafel Software Inc.

' get a link and record HtmlAnchor properties
Dim anchor As HtmlAnchor = Pages.HttpTrainingFalafel.GoogleLink
Const anchorFormat As String = _
"HtmlAnchor Href: {0}  Name: {1}  Target: {2}  Title: {3}"
Log.WriteLine(String.Format( _
anchorFormat, anchor.HRef, anchor.Name, anchor.Target, anchor.Title))

 

// get a link and record HtmlAnchor properties
HtmlAnchor anchor = Pages.HttpTrainingFalafel.GoogleLink; 
const string anchorFormat = 
    "HtmlAnchor Href: {0}  Name: {1}  Target: {2}  Title: {3}";
Log.WriteLine(String.Format(
    anchorFormat, anchor.HRef, anchor.Name, anchor.Target, anchor.Title)); 

The "wrapper" objects for the RadControls suite have extensive capabilities particular to the type of control.
The example below finds a RadTreeView control from the RadControls demo page. 

 

The RadTreeView is first located using the Find.ById() method. The RadTreeView control has a
FindNodeByText() method that retrieves the "Zanzibar" node and disables all its child nodes.

Const RADCONTROLS_DEMO As String = _
 "http://demos.telerik.com/aspnet-ajax/treeview/examples/functionality/whatsnew/defaultcs.aspx"

' navigate to the elements sample site
ActiveBrowser.NavigateTo(RADCONTROLS_DEMO)

Dim radTreeView As Telerik.WebAii.Controls.Html.RadTreeView = _
Find.ById(Of Telerik.WebAii.Controls.Html.RadTreeView)("RadTreeView1")
Dim node As RadTreeNode = radTreeView.FindNodeByText("Zanzibar")
node.Expand()
For Each childNode As RadTreeNode In node.Nodes
   childNode.Disable()
Next childNode



WebUI Test Studio Developer Edition Made Easy304

© 2010 Falafel Software Inc.

 

const string RADCONTROLS_DEMO =
    "http://demos.telerik.com/aspnet-ajax/treeview/examples/functionality/whatsnew/defaultcs.aspx"; 

// navigate to the elements sample site
ActiveBrowser.NavigateTo(RADCONTROLS_DEMO);

Telerik.WebAii.Controls.Html.RadTreeView radTreeView =
    Find.ById<Telerik.WebAii.Controls.Html.RadTreeView>("RadTreeView1");
RadTreeNode node = radTreeView.FindNodeByText("Zanzibar");
node.Expand();
foreach (RadTreeNode childNode in node.Nodes)
{
    childNode.Disable(); 
}

To discover the available methods and properties yourself, right-click the class you want to know more
about and select "Go To Definition" item from the context menu. 

You'll see a list signatures for all the control's methods and properties. 



WebAii Framework 305

© 2010 Falafel Software Inc.

14.4.5 Make Assertions

Most of what we've done up till now in this chapter has nothing to do with testing. We've automated the
browser, navigated, located elements and automated controls. To actually test something you have to verify
that some condition is true or false. We use assertions to verify some state or condition in the application.
The Microsoft Visual Studio testing API (Application Programming Interface) provides a basic Assert object
that has methods to help check the state of objects and in particular, to make comparisons between
objects. WebAii provides a whole family of assert objects that make setting up these checks easier. 
AssertAttribute, AssertContent and AssertStyle can be used against a number of HTML objects and for
your convenience, there are element-specific assertions AssertTable, AssertSelect and AssertCheck.



WebUI Test Studio Developer Edition Made Easy306

© 2010 Falafel Software Inc.

14.4.5.1 Assert

The Microsoft  Visual Studio testing API Assert object is a "work horse" object that can be used if other,
special-purpose assertion objects aren't available. 

ActiveBrowser.NavigateTo("http://training.falafel.com/SampleWebSite/FindElementsSample.htm")

Dim colorSelect As HtmlSelect = Pages.HttpTrainingFalafel.ColorSelect
Assert.IsTrue(colorSelect.Parent(Of HtmlDiv)() IsNot Nothing)
Assert.IsInstanceOfType(colorSelect, GetType(HtmlSelect))
Assert.AreEqual(colorSelect.SelectedIndex, 1)

 

ActiveBrowser.NavigateTo(
     "http://training.falafel.com/SampleWebSite/FindElementsSample.htm");

HtmlSelect colorSelect = Pages.HttpTrainingFalafel.ColorSelect;
Assert.IsTrue(colorSelect.Parent<HtmlDiv>() != null);
Assert.IsInstanceOfType(colorSelect, typeof(HtmlSelect));
Assert.AreEqual(colorSelect.SelectedIndex, 1); 



WebAii Framework 307

© 2010 Falafel Software Inc.

  From the Forums...

Question: Is there is any way to test the order of elements on a web page so that if the developer
changes the order of elements on a webpage, that the test will fail?

Answer: Yes there are a couple of methods you can use to verify the order of elements. The quick
method would be to select the element and craft a verification step that would verify the
InnerMarkup or the InnerText equals a specific value. For example, if you have a "<UL>" element
that contains a number of "<LI>" elements, you would locate the UL element in DOM explorer,
right click on it and select Record Options, select Verification, then construct a verification of the
InnerText or the InnerMarkup is exact to some value.

The other method is to add a code behind method that does something like this:

<CodedStep("Verify 'InnerMarkup'...")> _
Public Sub webaiitest1_CodedStep()
   Dim ul_1 As HtmlControl = Pages.Demo__CKEditor.ul_1
   ul_1.Wait.ForExists(10000)
   Assert.AreEqual(7, ul_1.BaseElement.ChildNodes.Count, "Selection menu count is incorrect")
   Assert.AreEqual("Choose sample", ul_1.BaseElement.ChildNodes(0).InnerText)
   Assert.AreEqual("Editor with all features", ul_1.BaseElement.ChildNodes(1).InnerText)
   Assert.AreEqual("Interface color", ul_1.BaseElement.ChildNodes(2).InnerText)
   Assert.AreEqual("Multi-language interface", ul_1.BaseElement.ChildNodes(3).InnerText)
   Assert.AreEqual("Custom toolbar", ul_1.BaseElement.ChildNodes(4).InnerText)
   Assert.AreEqual("Skins", ul_1.BaseElement.ChildNodes(5).InnerText)
   Assert.AreEqual("", ul_1.BaseElement.ChildNodes(6).InnerMarkup)
End Sub

 

[CodedStep(@"Verify 'InnerMarkup'...")]   
public void webaiitest1_CodedStep()   
{   
    HtmlControl ul_1 = Pages.Demo__CKEditor.ul_1;   
    ul_1.Wait.ForExists(10000);   
    Assert.AreEqual(7, ul_1.BaseElement.ChildNodes.Count, "Selection menu count is incorrect");   
    Assert.AreEqual("Choose sample", ul_1.BaseElement.ChildNodes[0].InnerText);   
    Assert.AreEqual("Editor with all features", ul_1.BaseElement.ChildNodes[1].InnerText);   
    Assert.AreEqual("Interface color", ul_1.BaseElement.ChildNodes[2].InnerText);   
    Assert.AreEqual("Multi-language interface", ul_1.BaseElement.ChildNodes[3].InnerText);   
    Assert.AreEqual("Custom toolbar", ul_1.BaseElement.ChildNodes[4].InnerText);   
    Assert.AreEqual("Skins", ul_1.BaseElement.ChildNodes[5].InnerText);   
    Assert.AreEqual("", ul_1.BaseElement.ChildNodes[6].InnerMarkup);   
} 



WebUI Test Studio Developer Edition Made Easy308

© 2010 Falafel Software Inc.

  From the Forums...

Here is another Assert example from the forums, just as a reference to how Assert is used when
verifying the contents of a RadDatePicker control.

Manager.LaunchNewBrowser()
ActiveBrowser.NavigateTo("http://demos.telerik.com/aspnet-ajax/calendar" & _
 "/examples/datepicker/custompopup/defaultcs.aspx")

Dim picker As Telerik.WebAii.Controls.Html.RadDatePicker = _
Find.ById(Of Telerik.WebAii.Controls.Html.RadDatePicker)("RadDatePicker1_wrapper")
CType(picker.DateInput, RadDateInput).InputValue = _
DateTime.Today.AddDays(3).ToShortDateString()
Assert.AreEqual(DateTime.Today.AddDays(3), picker.SelectedDate)

 

Manager.LaunchNewBrowser();
ActiveBrowser.NavigateTo(
    "http://demos.telerik.com/aspnet-ajax/calendar" +
    "/examples/datepicker/custompopup/defaultcs.aspx");

Telerik.WebAii.Controls.Html.RadDatePicker picker = 
    Find.ById<Telerik.WebAii.Controls.Html.RadDatePicker>("RadDatePicker1_wrapper");
((RadDateInput)picker.DateInput).InputValue = 
    DateTime.Today.AddDays(3).ToShortDateString();
Assert.AreEqual(DateTime.Today.AddDays(3), picker.SelectedDate);



WebAii Framework 309

© 2010 Falafel Software Inc.

14.4.5.2 AssertAttribute

The AssertAttribute object checks if a particular attribute exists and if the value of the attribute matches a
particular value. The Exists() method simply takes the name of the attribute and returns True if that attribute
exists. The Value() method also passes the attribute name as the first parameter but also passes a
StringCompareType enumeration value (e.g. Contains, Exact, RegEx, etc.) and the value that the attribute
should contain.

The screenshot below shows an image element that forms a banner at the top of a page...

Here is the Html markup for the image element "<src>" tag and its contents. 

 

<img src="Img/top.jpg" alt="Starski &amp; Sons Travel Agency" style="float: left; padding-left: 80px" />

The example below retrieves the HtmlImage representation of the element. Then, using the HtmlImage, the
example code checks that the "src" attribute exists and finally that the "src" attribute contains the value
"top.jpg". 



WebUI Test Studio Developer Edition Made Easy310

© 2010 Falafel Software Inc.

<CodedStep("Make Assertions")> _
Public Sub MakeAssertions()
   ActiveBrowser.NavigateTo("http://demos.telerik.com/aspnet-ajax/treeview/" & _
"examples/functionality/whatsnew/defaultcs.aspx")

   Dim topImage As HtmlImage = Pages.ASPNETTreeViewDemo.TopImage
   topImage.Wait.ForVisible()
   topImage.AssertAttribute().Exists("src")
   topImage.AssertAttribute().Value("src",  _
ArtOfTest.Common.StringCompareType.Contains, "top.jpg")
End Sub

 

[CodedStep("Make Assertions")]
public void MakeAssertions()
{
    ActiveBrowser.NavigateTo(
        "http://demos.telerik.com/aspnet-ajax/treeview/" +
        "examples/functionality/whatsnew/defaultcs.aspx");

    HtmlImage topImage = Pages.ASPNETTreeViewDemo.TopImage;
    topImage.Wait.ForVisible(); 
    topImage.AssertAttribute().Exists("src");
    topImage.AssertAttribute().Value("src", 
        ArtOfTest.Common.StringCompareType.Contains, "top.jpg");
}



WebAii Framework 311

© 2010 Falafel Software Inc.

14.4.5.3 AssertStyle

An Html element can have a mass of styles, too many possibilities to easily track. The AssertStyle object
has a series of methods that group style possibilities into reasonable subsets. The AssertStyle 
ColorAndBackground() method, for example, takes a HtmlStyleColorAndBackground enumeration
parameter that lists all the styles you might be looking for, e.g. Color, BackgroundColor, BackgroundImage,
etc. 

The AssertStyle methods you'll want to use are Box(), ColorAndBackground(), Display(), Font(), List()
and Text(). The parameters for each of these methods may only include the type of stye and the string
value you're comparing. Or you can call one of the method overloads to use additional parameters: 

HtmlStyleType: This can be Inline to look only at the style defined in the tag or Computed to include
everything in the cascaded style chain.

StringCompareType: This parameter defines how the string value is compared to the style and can
be Exact (i.e. matches exactly and is case sensitive), Same (i.e. matches but is not case sensitive),
Contains, NotContain, StartsWith, EndsWith and RegEx. 

The example below uses the Box() method to verify that the left padding of an element is "80" pixels. 

topImage.AssertStyle().Box(HtmlStyleBox.PaddingLeft, "80px", HtmlStyleType.Computed, _
ArtOfTest.Common.StringCompareType.Contains)

 

topImage.AssertStyle().Box(HtmlStyleBox.PaddingLeft, 
    "80px", HtmlStyleType.Computed, ArtOfTest.Common.StringCompareType.Contains); 



WebUI Test Studio Developer Edition Made Easy312

© 2010 Falafel Software Inc.

14.4.5.4 AssertContent

The AssertContent object has a set of methods that all take a compare type (e.g. Exact, Contains, RegEx,
etc) and a string to compare against. Each method returns True if the object and the string match,
otherwise an AssertException is thrown. You can use the AssertContent object to compare against
InnerMarkup, InnerText, OuterMarkup, StartTagContent, and TextContent. The example below uses
the AssertContent object from an HTML span element to verify that the TextContent contains "Zanzibar".

<CodedStep("Make Assertions")> _
Public Sub MakeAssertions()
   ActiveBrowser.NavigateTo("http://demos.telerik.com/aspnet-ajax/treeview/" _
& "examples/functionality/whatsnew/defaultcs.aspx")
   Dim htmlSpan As HtmlSpan = Pages.ASPNETTreeViewDemo.ZanzibarSpan
 
   htmlSpan.Wait.ForVisible()
   htmlSpan.AssertContent().TextContent( ArtOfTest.Common.StringCompareType.Contains, "Zanzibar")
End Sub

 

[CodedStep("Make Assertions")]
public void MakeAssertions()
{
    ActiveBrowser.NavigateTo(
        "http://demos.telerik.com/aspnet-ajax/treeview/" +
        "examples/functionality/whatsnew/defaultcs.aspx");
    HtmlSpan htmlSpan = Pages.ASPNETTreeViewDemo.ZanzibarSpan;

    htmlSpan.Wait.ForVisible();
    htmlSpan.AssertContent().TextContent( 
      ArtOfTest.Common.StringCompareType.Contains, "Zanzibar");
}



WebAii Framework 313

© 2010 Falafel Software Inc.

14.4.5.5 AssertTable

AssertTable lets you verify content and the number of columns and rows in an HtmlTable element. 

ColumnCount(), RowCount(): Pass these methods a NumberCompareType of Equals, LessThan,
GreaterThan, LessThanOrEqual, GreaterThanOrEqual or NotEqual. The last parameter is the
number of rows or columns to compare. 

ColumnRange(), RowRange(): This method determines if the number of columns or rows is within a
certain range. The first parameter is a NumberRangeCompareType that can be InRange or
OutsideRange. The last two parameters are the lower and upper ends of the range.

Contains(): This method verifies that the table includes certain text somewhere within the tag. It uses a
StringCompareType that can be Exact, Same, Contains, NotContain, StartsWith, EndsWith and
RegEx

Consider the RadTreeView in the screenshot below: 

This same treeview rendered as an Html table in the browser, produces the elements shown below in the
DOM Explorer. Notice the number of row "<TR>" tags, the number of column "<TD>" tags and finally, notice
the content "First Look" inside the second row.  



WebUI Test Studio Developer Edition Made Easy314

© 2010 Falafel Software Inc.

The example below verifies that a particular HtmlTable has two or more columns, that the table has at least
one, no more than five rows, and that the table contains the string "First Look". 

ActiveBrowser.NavigateTo("http://demos.telerik.com/aspnet-ajax/treeview/" & _
 "examples/functionality/whatsnew/defaultcs.aspx")

Dim treeViewTable As HtmlTable = Pages.ASPNETTreeViewDemo.TreeViewTable
treeViewTable.AssertTable().ColumnCount(ArtOfTest.Common.NumberCompareType.GreaterThanOrEqual, 2)
treeViewTable.AssertTable().RowRange(ArtOfTest.Common.NumberRangeCompareType.InRange, 1, 5)
treeViewTable.AssertTable().Contains(ArtOfTest.Common.StringCompareType.Contains, "First Look")

 

ActiveBrowser.NavigateTo(
        "http://demos.telerik.com/aspnet-ajax/treeview/" +
        "examples/functionality/whatsnew/defaultcs.aspx");

HtmlTable treeViewTable = Pages.ASPNETTreeViewDemo.TreeViewTable;
treeViewTable.AssertTable().ColumnCount(ArtOfTest.Common.NumberCompareType.GreaterThanOrEqual, 2);
treeViewTable.AssertTable().RowRange(ArtOfTest.Common.NumberRangeCompareType.InRange, 1, 5);
treeViewTable.AssertTable().Contains(ArtOfTest.Common.StringCompareType.Contains, "First Look");



WebAii Framework 315

© 2010 Falafel Software Inc.

14.4.5.6 AssertSelect

An HtmlSelect element is a drop down list that contains some set of options for the user to select from.
The AssertSelect object lets you verify the number of items, confirm the selected item and check against
the content of the options. AssertSelect has methods for: 

ItemCountIs(): This method verifies the total number of options in the list. Pass this method a
NumberCompareType (e.g. LessThanOrEqual, etc.) and a numeric value. 

SelectedIndex(): This method assures that a particular option in the list was selected by the user.
Pass this method a NumberCompareType and a numeric value. 

SelectedText(): This method checks the text of the option selected by the user. Pass a
StringCompareType (e.g. Same, Exact, etc.) and a string to compare against.

SelectedValue(): This method checks the Value attribute portion of the selected item. Pass a
StringCompareType and a string to compare against. 

TextExists(), TextExistsNot(): This method verifies that a string is contained (or not contained)
somewhere in the options list. 

ValueExists(), ValueExistsNot(): This method verifies that a string is contained (or not contained)
somewhere in an options Value attribute. 

The screenshot below shows an HtmlSelect with options for "Red", "Blue" and "Green" and where the
"Blue" option is selected. 

This same element in the DOM Explorer looks like the screenshot below. 

The code example checks that the list has at least, but no more than three items. The selected item index
is "1" (the list is zero-based, so the second item index is "1"). The selected item text is "blue", using the
case insensitive Same string compare type. None of the options in the list have a Value defined, so we can
compare the selected value to "String.Empty". Finally, the list of options contains the text "Red".  



WebUI Test Studio Developer Edition Made Easy316

© 2010 Falafel Software Inc.

ActiveBrowser.NavigateTo("http://training.falafel.com/SampleWebSite/FindElementsSample.htm")

Dim colorSelect As HtmlSelect = Pages.HttpTrainingFalafel.ColorSelect
colorSelect.AssertSelect().ItemsCountIs(ArtOfTest.Common.NumberCompareType.LessThanOrEqual, 3)
colorSelect.AssertSelect().SelectedIndex(ArtOfTest.Common.NumberCompareType.Equals, 1)
colorSelect.AssertSelect().SelectedText(ArtOfTest.Common.StringCompareType.Same, "blue")
colorSelect.AssertSelect().SelectedValue(ArtOfTest.Common.StringCompareType.Exact, String.Empty)
colorSelect.AssertSelect().TextExists("Red")

 

ActiveBrowser.NavigateTo(
     "http://training.falafel.com/SampleWebSite/FindElementsSample.htm");

HtmlSelect colorSelect = Pages.HttpTrainingFalafel.ColorSelect;
colorSelect.AssertSelect().ItemsCountIs(
    ArtOfTest.Common.NumberCompareType.LessThanOrEqual, 3);
colorSelect.AssertSelect().SelectedIndex(ArtOfTest.Common.NumberCompareType.Equals,
    1);
colorSelect.AssertSelect().SelectedText(ArtOfTest.Common.StringCompareType.Same, "blue");
colorSelect.AssertSelect().SelectedValue(ArtOfTest.Common.StringCompareType.Exact, String.Empty);
colorSelect.AssertSelect().TextExists("Red"); 

14.4.5.7 AssertCheck

The "Check" in "AssertCheck" refers to verifying the value of a checkbox. The AssertCheck object has two
methods of interest, IsTrue() and IsFalse(). The example below retrieves an HtmlInputCheckBox element
for an input check box element labeled "Classic". The example verifies that the input element has been
checked. 

ActiveBrowser.NavigateTo( _
"http://demos.telerik.com/aspnet-ajax/formdecorator/examples/default/defaultcs.aspx")

Dim checkboxClassic As HtmlInputCheckBox = _
Pages.ASPNETFormDecoratorDemo.CheckboxClassic
checkboxClassic.Wait.ForExists()
checkboxClassic.AssertCheck().IsTrue()



WebAii Framework 317

© 2010 Falafel Software Inc.

 

ActiveBrowser.NavigateTo(
"http://demos.telerik.com/aspnet-ajax/formdecorator/examples/default/defaultcs.aspx");

HtmlInputCheckBox checkboxClassic =
    Pages.ASPNETFormDecoratorDemo.CheckboxClassic;
checkboxClassic.Wait.ForExists();
checkboxClassic.AssertCheck().IsTrue(); 

14.5 Testing Silverlight Applications

The first critical step to allow coded steps against Silverlight applications is to set the RequiresSilverlight
parameter of the CodedStep attribute to "True". After that, you need a reference to a SilverlightApp instance
so you can access key objects including: 

VisualTree: Gets the serialized visual tree for this application. 

Find: Use this to locate elements in the Silverlight visual tree. The SilverlightApp.Find object is the parallel
to the Find object used to search HTML documents. SilverlightApp.Find supports some of the same
methods as its HTML counterpart including ByName() and ByCustom(), and also supports Silverlight
specific methods ByAutomationID(), ByText() and ByType(). 

Desktop: The Desktop object used for real Keyboard/Mouse automation . 

OwnerBrowser, Host, Plugin: Objects representing the browser, the Html tag hosting this Silverlight
App and the actual Silverlight plugin object.

To get a list of Silverlight application instances, call the ActiveBrowser SilverlightApps() method. If there is
only a single Silverlight application, you can pick off the first instance. You can also reference into the
SilverlightApps() array by name or use the name defined in the Elements Explorer.

Here's a short example that demonstrates the use of the RequiresSilverlight parameter, retrieving the
SilverlightApp instance and performing a ByName() find. 

<CodedStep("Find Silverlight Elements Example", RequiresSilverlight := True)> _
Public Sub FindingSilverlightElements()
   Const SILVERLIGHT_DEMO_SITE As String = "http://demos.telerik.com/silverlight/#Home"

   ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE)
   Dim silverlightApp As SilverlightApp = ActiveBrowser.SilverlightApps()(0)

   Dim frameworkElement As FrameworkElement = silverlightApp.Find.ByName("topLeftLogo")
   Log.WriteLine(frameworkElement.AutomationId)
End Sub



WebUI Test Studio Developer Edition Made Easy318

© 2010 Falafel Software Inc.

 

[CodedStep("Find Silverlight Elements Example", RequiresSilverlight = true)]
public void FindingSilverlightElements()
{
    const string SILVERLIGHT_DEMO_SITE =
        "http://demos.telerik.com/silverlight/#Home";

    ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE);
    SilverlightApp silverlightApp = ActiveBrowser.SilverlightApps()[0];
    
    FrameworkElement frameworkElement =
        silverlightApp.Find.ByName("topLeftLogo");
    Log.WriteLine(frameworkElement.AutomationId);
}

 Gotcha!

If you forget to include the RequiresSilverlight parameter and to set its value to "True", your test
will fail when you call the SilverlightApps() method. When you see a "Timeout trying to connect to
Silverlight App" error like the example below, be sure to check the RequiresSilverlight parameter. 

Exception thrown executing coded step: '[MySilverlightTest] : Silverlight Example'.
InnerException:
System.TimeoutException: Timeout trying to connect to Silverlight App.
   at ArtOfTest.WebAii.Silverlight.SilverlightApp.WaitUntilExtensionCreated(String extensionCall)
   at ArtOfTest.WebAii.Silverlight.SilverlightApp.Connect(Int32 timeout)
   at ArtOfTest.WebAii.Silverlight.SilverlightApp.Connect()
   at ArtOfTest.WebAii.Silverlight.SilverlightAppsList.get_Item(Int32 index)
   at Framework.FindElements.MySilverlightTest() in C:\Courseware\Projects\CS\Framework\FindElements.aii.cs:line 79

14.5.1 Finding Silverlight Elements

While the HTML "Find" object is from the ArtOfTest.WebAii.Core namespace, the Silverlight Find object is a
VisualFind descendant from the ArtOfTest.WebAii.Silverlight namespace. The syntax for using the object is
similar. These Find methods return FrameworkElement, the base type in Silverlight that represents a visual
element.

ByAutomationId(), AllByAutomationId(): Searches the visual tree for elements with a specific
automation id. The example below returns a Silverlight Button with an AutomationId of "searchButton" and
asserts that the width is "16". 

Dim searchButton As Button = silverlightApp.Find.ByAutomationId(Of Button)("searchButton")
Assert.AreEqual(searchButton.Width, 16)



WebAii Framework 319

© 2010 Falafel Software Inc.

 

Button searchButton =
    silverlightApp.Find.ByAutomationId<Button>("searchButton");
Assert.AreEqual(searchButton.Width, 16); 

ByName(), AllByName(): We can search for one or more Silverlight elements that match a name or part
of a name and we can also filter by the type of control. Given the DOM Explorer in the screenshot below,
two of the Grid elements contain "Panel" in the Name attribute. 

We can use the AllByName() method, entering "Grid" between the angle braces to specify the control
type and "~Panel" to get every element that contains "Panel". The screenshot of the test running in the
debugger (see the "Debugging" chapter for more information) shows that we return two Grids that match
those we found in the DOM Explorer. The code in both VB.NET and C# is listed below that returns the list
of Grid elements and then verifies that the count of Grids is greater than zero.

Dim grids As IList(Of Grid) = silverlightApp.Find.AllByName(Of Grid)("~Panel")
Assert.IsTrue(grids.Count > 0)

 

IList<Grid> grids = silverlightApp.Find.AllByName<Grid>("~Panel");
Assert.IsTrue(grids.Count > 0); 



WebUI Test Studio Developer Edition Made Easy320

© 2010 Falafel Software Inc.

ByText(), AllByText(): These methods look for any TextBlock elements that match a given text string.
The example below looks for all TextBlock elements that contain "RadControls" and then asserts that one
or more elements were returned. 

Dim elements As IList(Of TextBlock) = silverlightApp.Find.AllByText("~RadControls")
Assert.IsTrue(elements.Count > 0)

 

IList<TextBlock> elements = silverlightApp.Find.AllByText("~RadControls"); 
Assert.IsTrue(elements.Count > 0); 

ByType(), AllByType(): These methods look for elements of a given type. The example below looks for
all Image elements. 

Dim images As IList(Of Image) = silverlightApp.Find.AllByType(Of Image)()
Assert.IsTrue(images.Count > 0)

 

IList<Image> images = silverlightApp.Find.AllByType<Image>();
Assert.IsTrue(images.Count > 0);

ByCustom(), AllByCustom(): These methods find elements using custom logic that you design.
AllByCustom(), for instance, allows you to pass a custom method as a parameter. In the example below,
the custom method has a signature that passes a FrameworkElement as a parameter and returns a
Boolean. You can populate the custom method with any logic that works for you as long as the signature
matches. Return "True" for any element you want to include in the search results. The example returns all
elements where the Opacity property is smaller than "0.5". 



WebAii Framework 321

© 2010 Falafel Software Inc.

<CodedStep("Find Silverlight Elements Example", RequiresSilverlight := True)> _
Public Sub FindingSilverlightElements()
   Const SILVERLIGHT_DEMO_SITE As String = "http://demos.telerik.com/silverlight/#Home"

   ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE)
   Dim silverlightApp As SilverlightApp = ActiveBrowser.SilverlightApps()(0)

   Dim faintElements As IList(Of FrameworkElement) = silverlightApp.Find.AllByCustom(AddressOf CustomLogic)
   Assert.IsTrue(faintElements.Count = 0)
End Sub

Public Function CustomLogic(ByVal element As FrameworkElement) As Boolean
   Return element.Opacity < 0.5
End Function

 

[CodedStep("Find Silverlight Elements Example", RequiresSilverlight = true)]
public void FindingSilverlightElements()
{
    const string SILVERLIGHT_DEMO_SITE =
        "http://demos.telerik.com/silverlight/#Home";

    ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE);
    SilverlightApp silverlightApp = ActiveBrowser.SilverlightApps()[0];

    IList<FrameworkElement>  faintElements = silverlightApp.Find.AllByCustom(CustomLogic);
    Assert.IsTrue(faintElements.Count == 0);
}

public bool CustomLogic(FrameworkElement element)
{
    return element.Opacity < 0.5;
}



WebUI Test Studio Developer Edition Made Easy322

© 2010 Falafel Software Inc.

 Gotcha!

Custom methods can also help you bypass "problem" elements or parts of the document that you
want to ignore. The example below skips any element that has a XAML tag that reads "#text#". 

Public Function CustomLogic(ByVal element As FrameworkElement) As Boolean
   If element.XamlTag.Equals("#text#") Then
      Return False
   End If
   Return element.Opacity < 0.5
End Function

 

public bool CustomLogic(FrameworkElement element)
{
    if (element.XamlTag.Equals("#text#"))
    {
        return false;
    }
    return element.Opacity < 0.5;
}



WebAii Framework 323

© 2010 Falafel Software Inc.

14.5.2 Find Strategies

The VisualFind object used in Silverlight element searches has a Strategy property used to set the
behavior of the Find object when searching. Strategy can be:

AlwaysWaitForElementsVisible: Wait for the element to be visible.

WhenNotVisibleReturnElementProxy: Return the element proxy when not visible or null. An element
proxy "stands in" for a real element when used in a Wait operation. The proxy contains information on
how to find the element in the visual tree.  

WhenNotVisibleReturnNull: Return null when the element is not visible or null.

WhenNotVisibleThrowException: Throw an exception when the element is null.

Here is an example of Strategy in use that looks for an element that doesn't exist. Due to the Strategy
setting of "WhenNotVisibleReturnNull", the Find ByName() method returns null and the test succeeds. If the
Strategy had been set to WhenNotVisibleThrowException the test would have failed. 

<CodedStep("Test Find Strategy", RequiresSilverlight := True)> _
Public Sub UseFindStrategy()
   Const SILVERLIGHT_DEMO_SITE As String = "http://demos.telerik.com/silverlight/#Home"

   ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE)
   Dim silverlightApp As SilverlightApp = ActiveBrowser.SilverlightApps()(0)

   silverlightApp.Find.Strategy = FindStrategy.WhenNotVisibleReturnNull
   Dim frameworkElement As FrameworkElement = silverlightApp.Find.ByName("invalidElement")
   If frameworkElement Is Nothing Then
      Log.WriteLine("element is not visible")
   End If
End Sub

 

[CodedStep("Test Find Strategy", RequiresSilverlight = true)]
public void UseFindStrategy()
{
    const string SILVERLIGHT_DEMO_SITE =
     "http://demos.telerik.com/silverlight/#Home";

    ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE);
    SilverlightApp silverlightApp = ActiveBrowser.SilverlightApps()[0];

    silverlightApp.Find.Strategy =
        FindStrategy.WhenNotVisibleReturnNull;
    FrameworkElement frameworkElement =
        silverlightApp.Find.ByName("invalidElement");
    if (frameworkElement == null)
        Log.WriteLine("element is not visible");
}



WebUI Test Studio Developer Edition Made Easy324

© 2010 Falafel Software Inc.

14.5.3 Wait for Elements

Waiting for Silverlight elements is more challenging than handling standard web or even AJAX based
applications. The wait operation not only needs to take existence and visibility into account, the wait should
also let us know if the element is being animated. The VisualWait object takes care of all these situations,
and also allows you to craft a custom method for those really sticky situations where the stock methods
won't do. 

VisualWait has methods ForExists(), ForExistsNot(), ForVisible(), ForVisibleNot(), ForNoMotion() and
For(). The ForNoMotion() method waits for an element to cease animating. You can just pass a number of
milliseconds that the element must be stationary before the method returns. Optionally you can pass the
number of milliseconds to wait before starting to check if the element has stopped moving, and you can
also pass a timeout value. 

The example below demonstrates retrieving a TextBlock, although we could be using any Silverlight
element. Then we perform a series of Wait operations. First, ForExists() tests that the element is present
on the page, then ForVisible() ensures that the element is able to be seen. The ForNoMotion() method
waits half a second before checking the element's motion, then waits for the element to be stationary for a
entire second. If the element isn't stationary an entire second, the method times out after thirty seconds.

The last method in this example demonstrates passing a custom method to Wait.For(). This method
should take a Silverlight FrameWorkElement and return a Boolean. The custom method in the example
checks that the ActualHeight property is greater than five. 

<CodedStep("Waiting for Silverlight Elements Example", RequiresSilverlight := True)> _
Public Sub WaitForSilverlightElements()
   Const SILVERLIGHT_DEMO_SITE As String = "http://demos.telerik.com/silverlight/#Home"

   ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE)
   Dim silverlightApp As SilverlightApp = ActiveBrowser.SilverlightApps()(0)

   Dim frameworkElement As FrameworkElement = silverlightApp.Find.ByName("topLeftLogo")
   frameworkElement.Wait.ForExists()
   frameworkElement.Wait.ForVisible()
   frameworkElement.Wait.ForNoMotion(500, 1000, 30000)
   frameworkElement.Wait.For(AddressOf MyCustomSilverlightWait)
End Sub

Public Function MyCustomSilverlightWait(ByVal element As FrameworkElement) As Boolean
   Return element.ActualHeight > 5
End Function



WebAii Framework 325

© 2010 Falafel Software Inc.

 

[CodedStep("Waiting for Silverlight Elements Example", RequiresSilverlight = true)]
public void WaitForSilverlightElements()
{
    const string SILVERLIGHT_DEMO_SITE =
        "http://demos.telerik.com/silverlight/#Home";

    ActiveBrowser.NavigateTo(SILVERLIGHT_DEMO_SITE);
    SilverlightApp silverlightApp = ActiveBrowser.SilverlightApps()[0];

    FrameworkElement frameworkElement =
        silverlightApp.Find.ByName("topLeftLogo");
    frameworkElement.Wait.ForExists();
    frameworkElement.Wait.ForVisible();
    frameworkElement.Wait.ForNoMotion(500, 1000, 30000);
    frameworkElement.Wait.For(MyCustomSilverlightWait);
}
        
public bool MyCustomSilverlightWait(FrameworkElement element)
{
    return element.ActualHeight > 5; 
}



WebUI Test Studio Developer Edition Made Easy326

© 2010 Falafel Software Inc.

14.6 Automating the Browser

Earlier we looked at navigating the browser, but really you can automate any button you might click in the
browser and many other actions not directly available from the browser user interface. The rich browser
automation API includes all the usual interface browser actions such as forward, back, stop (cancel),
refresh and close. You can also resize and position the browser window, toggle full screen mode, minimize,
maximize and even scroll the browser content. 

Clearing the Browser Cache

At the start of your test you may need to set the browser to a known state. This may involve clearing the
temp files cache, history or cookies. Use the Browser ClearCache() method and pass one of the
BrowserCacheType enumeration members: 

ActiveBrowser.ClearCache(BrowserCacheType.TempFilesCache)

 

ActiveBrowser.ClearCache(BrowserCacheType.TempFilesCache);



WebAii Framework 327

© 2010 Falafel Software Inc.

Getting Browser Information

If you need to take browser differences into account you can use the BrowserType enumeration to get the
general browser flavor, e.g. Internet Explorer, FireFox, etc  and the Version property to get the specific
browser edition. 

Log.WriteLine("Browser Type: " & ActiveBrowser.BrowserType.ToString())
Log.WriteLine("Browser Version: " & ActiveBrowser.Version)

Select Case ActiveBrowser.BrowserType

   Case BrowserType.InternetExplorer
         ' handle IE specific scenarios
         Exit Select
   Case BrowserType.FireFox
         ' handle FF specific scenarios
         Exit Select
   Case BrowserType.Safari
         ' handle Safari specific scenarios
         Exit Select
End Select

 

Log.WriteLine("Browser Type: " + ActiveBrowser.BrowserType.ToString());
Log.WriteLine("Browser Version: " + ActiveBrowser.Version);

switch (ActiveBrowser.BrowserType)
{
    
    case BrowserType.InternetExplorer:
        {
            // handle IE specific scenarios
            break;
        }
    case BrowserType.FireFox:
        {
            // handle FF specific scenarios
            break;
        }
    case BrowserType.Safari:
        {
            // handle Safari specific scenarios
            break;
        }
};



WebUI Test Studio Developer Edition Made Easy328

© 2010 Falafel Software Inc.

Automate the Browser User Interface

Use the NavigateTo(), GoBack(), GoForward(), Refresh() and Stop() methods to automate the browser
user interface, effectively mimicking the browser tool bar. The example below navigates between two
different web sites, then uses the back and forward to move between the web sites and print the PageTitle
for each location. Finally, the Stop() method is called to cancel the browser's current action. 

Const TELERIK_DEMOS As String = _
 "http://demos.telerik.com/aspnet-ajax/controls/examples/default/defaultcs.aspx"

Const TELERIK_TESTING As String =  _
"http://www.telerik.com/products/web-testing-tools.aspx"

ActiveBrowser.NavigateTo(TELERIK_DEMOS)
Log.WriteLine("Navigated to " & ActiveBrowser.PageTitle)
ActiveBrowser.NavigateTo(TELERIK_TESTING)
Log.WriteLine("Navigated to " & ActiveBrowser.PageTitle)
ActiveBrowser.GoBack()
Log.WriteLine("Navigated back to " & ActiveBrowser.PageTitle)
ActiveBrowser.GoForward()
Log.WriteLine("Navigated forward to " & ActiveBrowser.PageTitle)
ActiveBrowser.Stop()
Log.WriteLine("Stop the browser's current navigation action")

 

const string TELERIK_DEMOS =
    "http://demos.telerik.com/aspnet-ajax/controls/examples/default/defaultcs.aspx";

const string TELERIK_TESTING =
    "http://www.telerik.com/products/web-testing-tools.aspx";

ActiveBrowser.NavigateTo(TELERIK_DEMOS);
Log.WriteLine("Navigated to " + ActiveBrowser.PageTitle);
ActiveBrowser.NavigateTo(TELERIK_TESTING);
Log.WriteLine("Navigated to " + ActiveBrowser.PageTitle);
ActiveBrowser.GoBack();
Log.WriteLine("Navigated back to " + ActiveBrowser.PageTitle);
ActiveBrowser.GoForward();
Log.WriteLine("Navigated forward to " + ActiveBrowser.PageTitle);
ActiveBrowser.Stop();
Log.WriteLine("Stop the browser's current navigation action");



WebAii Framework 329

© 2010 Falafel Software Inc.

Reloading the Browser Window and DOM Tree

Use the Refresh() method to reload the browser. Call the RefreshDomTree() to update the view of the
DOM when items may have changed since loading the page. 

  From the Forums...

Question: I can't find a list box element that I can see exists. Why can't I find this element?

Answer:  If there is any dynamic changes to the DOM when displaying the List Box, you can call
ActiveBrowser.RefreshDomTree(); to update the Frameworks view of the DOM when the List
Box becomes visible as in:

ActiveBrowser.RefreshDomTree()
Dim listBox1 As RadListBox = Find.ById(Of RadListBox)("ctl00_DefaultContent_lstAvailableFields")
Dim item_Session As RadListBoxItem = listBox1.Items(2)

 

ActiveBrowser.RefreshDomTree(); 
RadListBox listBox1 = Find.ById<RadListBox>("ctl00_DefaultContent_lstAvailableFields"); 
RadListBoxItem item_Session = listBox1.Items[2]; 

You can do likewise with the frames using Frames.RefreshAllDomTrees();



WebUI Test Studio Developer Edition Made Easy330

© 2010 Falafel Software Inc.

Manipulating the Browser Window

You can fully control the browser window size and position as well as scroll the browser content within the
window. The example below first toggles up to full screen and back again, then minimizes and maximizes
the browser window. The last section of code in the example resizes and repositions the browser window,
then scrolls the browser contents. 

Log.WriteLine("Toggle to Full Screen")
ActiveBrowser.ToggleFullScreen()
Log.WriteLine("Toggle back from Full Screen")
ActiveBrowser.ToggleFullScreen()

Log.WriteLine("Minimize the window")
ActiveBrowser.ContentWindow.Minimize()
Log.WriteLine("Maximize the window")
ActiveBrowser.ContentWindow.Maximize()

Log.WriteLine("Resize browser to 300x300 and place 10 pixels from upper right")
ActiveBrowser.ResizeContent(10, 10, 300, 300)
Log.WriteLine("Scroll browser 50 pixels to the right and down")
ActiveBrowser.ScrollBy(50, 50)
Log.WriteLine("Scroll browser 50 pixels to the left and up")
ActiveBrowser.ScrollBy(-50, -50)

 

Log.WriteLine("Toggle to Full Screen");
ActiveBrowser.ToggleFullScreen();
Log.WriteLine("Toggle back from Full Screen");
ActiveBrowser.ToggleFullScreen();

Log.WriteLine("Minimize the window");
ActiveBrowser.ContentWindow.Minimize();
Log.WriteLine("Maximize the window");
ActiveBrowser.ContentWindow.Maximize();

Log.WriteLine("Resize browser to 300x300 and place 10 pixels from upper right");
ActiveBrowser.ResizeContent(10, 10, 300, 300);
Log.WriteLine("Scroll browser 50 pixels to the right and down");
ActiveBrowser.ScrollBy(50, 50);
Log.WriteLine("Scroll browser 50 pixels to the left and up");
ActiveBrowser.ScrollBy(-50, -50);



WebAii Framework 331

© 2010 Falafel Software Inc.

Browser Events

You can be notified when the browser DOM tree is refreshed and when the browser is closed by subscribing
to the DomRefreshed and Closing events respectively. The example below iterates the BrowserType
enumeration, skipping any unsupported browser types, launches a browser for each browser type, saves off
a reference to the instance of the browser and finally hooks up a Closing event handler. A second "For
Each" loop iterates the open browsers and closes them all. 

The Closing event handler is defined at the end of the code listing and simply logs that the close occurred.  

<CodedStep("Assorted Browser methods")> _
Public Sub BrowserTricks()
   Dim openedBrowsers As List(Of Browser) = New List(Of Browser)()
   For Each browserType As BrowserType In System.Enum.GetValues(GetType(BrowserType))
      ' skip unsupported browsers
      If (browserType Is BrowserType.NotSet) OrElse (browserType Is BrowserType.Designer) Then
         Continue For
      End If
      Log.WriteLine("Launch a new browser instance: " & browserType.ToString())
      Manager.LaunchNewBrowser(browserType)
      openedBrowsers.Add(ActiveBrowser)
      ' hook the browser closing event to a handler
      AddHandler ActiveBrowser.Closing, AddressOf ActiveBrowser_Closing
   Next browserType

   For Each browser As Browser In openedBrowsers
      Log.WriteLine("Shut down: " & browser.BrowserType.ToString())
      browser.Close()
   Next browser
End Sub

Private Sub ActiveBrowser_Closing(ByVal sender As Object, ByVal e As EventArgs)
   Log.WriteLine("Browser closing for " & (TryCast(sender, Browser)).BrowserType.ToString())
End Sub



WebUI Test Studio Developer Edition Made Easy332

© 2010 Falafel Software Inc.

 

[CodedStep("Assorted Browser methods")]
public void BrowserTricks()
{
    List<Browser> openedBrowsers = new List<Browser>();
    foreach (BrowserType browserType in Enum.GetValues(typeof(BrowserType)))
    {
        // skip unsupported browsers
        if ((browserType == BrowserType.NotSet) || (browserType == BrowserType.Designer))
            continue;
        Log.WriteLine("Launch a new browser instance: " + browserType.ToString());
        Manager.LaunchNewBrowser(browserType);
        openedBrowsers.Add(ActiveBrowser);
        // hook the browser closing event to a handler
        ActiveBrowser.Closing += new EventHandler(ActiveBrowser_Closing);
    }

    foreach (Browser browser in openedBrowsers)
    {
        Log.WriteLine("Shut down: " + browser.BrowserType.ToString());
        browser.Close();
    }
}

void ActiveBrowser_Closing(object sender, EventArgs e)
{
    Log.WriteLine("Browser closing for " + (sender as Browser).BrowserType.ToString());
}



WebAii Framework 333

© 2010 Falafel Software Inc.

14.7 Walk Through

In this walk through you can put into practice some of the techniques that have been presented so far
including navigating, locating elements, waiting for elements and making assertions. The walk through
navigates to a web page with a "Wizard" interface. The example fills out information and clicks "Next" to
move through the steps, verifying content along the way.

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "Wizard.aii" and click 
OK to create the test.

5) Click the Add Code Behind button to create the code behind file. 

6) In the code behind file add a new WizardTest() method, compete with the CodedStep attribute: 



WebUI Test Studio Developer Edition Made Easy334

© 2010 Falafel Software Inc.

<CodedStep("Test a Wizard dialog")> _
Public Sub WizardTest()

End Sub

 

[CodedStep("Test a Wizard dialog")]
public void WizardTest()
{

}

7) Add a constant to hold the path to the web page:

Const WIZARD_URL As String = _
"http://demos.telerik.com/aspnet-ajax/tabstrip/" & _
"examples/applicationscenarios/wizard/defaultcs.aspx"

 

const string WIZARD_URL =
    "http://demos.telerik.com/aspnet-ajax/tabstrip/" + 
    "examples/applicationscenarios/wizard/defaultcs.aspx"

8) Add code to launch a new browser and navigate to the page. Optionally, you can add a Log.WriteLine()
to trace the course of execution in your log file.

Log.WriteLine("Navigate to the page")
Manager.LaunchNewBrowser()
ActiveBrowser.NavigateTo(WIZARD_URL)

 

Log.WriteLine("Navigate to the page"); 
Manager.LaunchNewBrowser();
ActiveBrowser.NavigateTo(WIZARD_URL);



WebAii Framework 335

© 2010 Falafel Software Inc.

9) Add code to find the RadTabStrip control. The RadTabStrip wrapper has an AllTabs collection that we
can index into. Get a reference to the first tab and make an assertion that the first tab is selected,
using the Assert.AreEqual() method. Again, you can use the Log.WriteLine() method to track where
you're at in the test. 

Log.WriteLine("Get a reference to the tab strip and verify we're on the first tab")
Dim tabStrip As RadTabStrip = Find.ById(Of RadTabStrip)("RadTabStrip1")
Assert.AreEqual(True, tabStrip.AllTabs(0).Selected)

 

Log.WriteLine("Get a reference to the tab strip and verify we're on the first tab");
RadTabStrip tabStrip = Find.ById<RadTabStrip>("RadTabStrip1");
Assert.AreEqual(true, tabStrip.AllTabs[0].Selected);

10) Add the code below to get references to the "First" Html input text box and set the Value property to
"First". Then get a reference to the "Last" Html input text box and enter "Last" as the Value property.
Finally, get a reference to the Html input check box and call the Check() method to set the check.

Log.WriteLine("Fill in first, last and check the terms checkbox")
Dim firstName As HtmlInputText = Find.ById(Of HtmlInputText)("~firstNameTextBox")
firstName.Value = "First"
Dim lastName As HtmlInputText = Find.ById(Of HtmlInputText)("~lastNameTextBox")
lastName.Value = "Last"
Dim agree As HtmlInputCheckBox = Find.ById(Of HtmlInputCheckBox)("~termsCheckBox")
agree.Check(True, True)

 

Log.WriteLine("Fill in first, last and check the terms checkbox");
HtmlInputText firstName = Find.ById<HtmlInputText>("~firstNameTextBox");
firstName.Value = "First";
HtmlInputText lastName = Find.ById<HtmlInputText>("~lastNameTextBox");
lastName.Value = "Last";
HtmlInputCheckBox agree = Find.ById<HtmlInputCheckBox>("~termsCheckBox");
agree.Check(true, true);

 Notes

Notice that the Find.ById() methods above use the "~", i.e. "contains" operator.



WebUI Test Studio Developer Edition Made Easy336

© 2010 Falafel Software Inc.

11)Find the "Next" button using the Find.ById() method and call the returned HtmlInputButton Click()
method. Call the Wait.For() method to make sure that the second tab has shown up. 

Notice that we're passing a custom method (a Microsoft supplied "Func" type in fact), the tab strip and
the particular tab we want to wait for. Later, we'll code the TabSelected method. 

Log.WriteLine("Click Next button and wait")
Dim buttonPersonalNext As HtmlInputButton = _
Find.ById(Of HtmlInputButton)("PersonaluserControl_nextButton")
buttonPersonalNext.Click()
Wait.For(Of RadTabStrip, RadTab)(TabSelected, tabStrip, tabStrip.AllTabs(1), 10000)

 

Log.WriteLine("Click Next button and wait");
HtmlInputButton buttonPersonalNext = 
    Find.ById<HtmlInputButton>("PersonaluserControl_nextButton");
buttonPersonalNext.Click();
Wait.For<RadTabStrip, RadTab>(TabSelected, tabStrip, tabStrip.AllTabs[1], 10000);

12)Again, get a reference to the "Next" button and call its Click() method.  Call the Wait.For() method to
make sure that the third tab has shown up.

Log.WriteLine("Click Next button again and wait")
Dim buttonEducationNext As HtmlInputButton = _
Find.ById(Of HtmlInputButton)("EducationuserControl_nextButton")
buttonEducationNext.Click()
Wait.For(Of RadTabStrip, RadTab)(TabSelected, tabStrip, tabStrip.AllTabs(2), 10000)

 

Log.WriteLine("Click Next button again and wait");
HtmlInputButton buttonEducationNext = 
    Find.ById<HtmlInputButton>("EducationuserControl_nextButton");
buttonEducationNext.Click();
Wait.For<RadTabStrip, RadTab>(TabSelected, tabStrip, tabStrip.AllTabs[2], 10000);

13)Use the Find.By() method to get the "Finish" button and again call its Click() method.



WebAii Framework 337

© 2010 Falafel Software Inc.

Log.WriteLine("Click the finish button")
Dim buttonFinish As HtmlInputButton = _
 Find.ById(Of HtmlInputButton)("ProfessionaluserControl_nextButton")
buttonFinish.Click()

 

Log.WriteLine("Click the finish button");
HtmlInputButton buttonFinish = 
Find.ById<HtmlInputButton>("ProfessionaluserControl_nextButton");
buttonFinish.Click();

14)In this last step of the method, use the Find.ByAttributes method to first get the "previewWrapper"
DIV element, then get the HtmlSpan that contains the "preview" first name label. Finally, wait for the
label to contain the text content "First".  

Log.WriteLine("Get the first name span verify content")
Dim previewWrap As HtmlDiv = Find.ByAttributes(Of HtmlDiv)("class=previewWrapper")
Dim firstNameSpan As HtmlSpan = _
previewWrap.Find.ByAttributes(Of HtmlSpan)("id=~firstNameLabel")
firstNameSpan.Wait.ForContent(FindContentType.TextContent, "First")

 

Log.WriteLine("Get the first name span verify content");
HtmlDiv previewWrap = Find.ByAttributes<HtmlDiv>("class=previewWrapper");
HtmlSpan firstNameSpan = previewWrap.Find.ByAttributes<HtmlSpan>("id=~firstNameLabel");
firstNameSpan.Wait.ForContent(FindContentType.TextContent, "First"); 

15)Earlier, we coded a Wait.For() to accept a method called "TabSelected". We need to code the
"TabSelected" method now. The signature of the method should return a Boolean. The first parameter to
the method should be a RadTabStrip type (from the Telerik.WebAii.Controls.Html namespace). The
second parameter should be a RadTab type, (also from the Telerik.WebAii.Controls.Html namespace).
The method returns the RadTab Selected property value.



WebUI Test Studio Developer Edition Made Easy338

© 2010 Falafel Software Inc.

' Custom method used in Wait.For()
Public Function TabSelected(ByVal tabStrip As RadTabStrip, ByVal tab As RadTab) As Boolean
   Return tab.Selected
End Function

 

// Custom method used in Wait.For()
public bool TabSelected(RadTabStrip tabStrip, RadTab tab)
{
    return  tab.Selected; 
}

16)Execute the test. The test should navigate to the wizard page, fill in some values, click "Next" through
the wizard and finally, verify the  "First" name in the "Preview" label. All steps should pass.

14.8 Wrap Up

In this chapter you learned how to perform many common automated testing operations in code to work
with both Html and Silverlight based elements.

First, you learned how to automate the browser, starting with browser navigation to web pages using both
complete and relative Urls. You also learned how to handle browser redirection. 

You learned how to locate both single elements and collections of  web page elements using the Find
object for the test itself and the Find object for individual elements. To fine-tune your searches you learned
about the available Find operators. You learned how to reference elements defined in the Elements
Explorer. You also learned how jQuery is used to find elements. 

You learned how to pause test execution to wait for element existence, content, attributes, visibility, motion
and custom conditions. 

You worked with properties of "wrapper" objects, including the wrappers for RadControls.  

Finally, you used "Assert" objects to verify conditions on the page. 



Part

XV
Data Driven Testing



WebUI Test Studio Developer Edition Made Easy340

© 2010 Falafel Software Inc.

15 Data Driven Testing

15.1 Objectives

In this chapter you will learn how to drive tests using the built-in data grid. You will also learn how to access
data from external spreadsheet, XML and database data sources. You will learn how to access and modify
data connections. Finally, you will learn how to access the test Data object in code.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\DataDriven\DataDriven.sln

15.2 Overview

Using the WebUI Test Studio user interface alone, you can drive tests with data from the built-in grid. You
can also use an external data source such as XML, CSV spreadsheet file or database table. Your database
can be anything that Visual Studio can hook up to, which is virtually unlimited and includes Oracle, MS
SQL, Access and ODBC. 

 Notes

Not all of these database types are right out of the Visual Studio box. For some database types,
you may need to do some research and install a "data source provider".

What we mean by "driving" a test with data is that we let the test know where a table of data exists and
then use the data wherever required in the test. For example, if we have a test of a login dialog, the data be
a user name and password. If we were driving a test of several web searches, we could supply the value to
search for, the value being compared and even the page that performs the search.

Both the built-in grid and external data sources all drive tests the same way, i.e. a one-way trip straight
through the test, one iteration of the test per row of data. During each iteration, the test can access
columns from a single row of the data. For example, consider the table of user names and passwords
below. The second iteration of the test can access the user name "nuygen" and password "@lmost". 

User Name Password

bsmith xxbox!!

----> nuygen @lmost

nigelt fl@r3



Data Driven Testing 341

© 2010 Falafel Software Inc.

There are two parts to driving a test with data: 

Define a connection. This lets the test know where the data is. You need to define a "connection string"
that tells the test what kind of data is needed and the specifics of how you're going to get at that data.
The only exception to this rule is the built-in grid. WebUI Test Studio already knows about the built-in grid
data, so you don't have to define a connection string in this case. 

Access the data. You need to identify some data item that you want to use. Data is assigned to
properties in the test through a process called "binding". Binding lets the test know what column should
be used and where. For example, we can get a value from the "User Name" column and assign it to a
text box in a login dialog.

In the following sections you'll learn how to build several different flavors of connection strings and how to
bind particular columns to properties in the test. 

 Notes

Without using code you cannot loop or branch the testing logic. 

  From the Forums...

Question: I've created a test to Boundary Test a series of fields on a Page, by entering a value in
one field and clicking the save button. Now the web page acts slightly different in several cases:-

- If the data is in the boundaries it just saves the page.

- If the data is below the lower boundary it displays a Dialog Box with a message.

- If the data is above the upper boundary it displays a Dialog Box with a different message.

Currently I have recorded entering a value and clicking Save. Now if I data-drive this recording, it
will work whenever the data is valid (lower boundary; lower boundary + 1; mid boundary; upper
boundary - 1; upper boundary) - when no dialog is displayed.

But how should I cope with the two cases (lower boundary - 1 and upper boundary + 1),
WITHOUT going to Code Behind?

Answer: In tests where you are expecting some of the data rows to make the web page react
normally and some of the data rows to cause errors on the web page, code behind is your only
option. There is no conditional type branching in WebUI Test Studio without using code.

What you can do instead is separate your two (or three or four) testing scenarios into separate
tests. Have one test in which you expect all the data rows to not generate errors. Have another
test in which all the data rows should generate error code type 1. Have yet another test in which
all the data rows generate error code type 2, etc.

One advantage to this approach is that you separate your individual test cases into individual test
scripts which can be run independently on and as needed bases rather than having to go through
every single row just to verify error type 1 is generated at the right time.



WebUI Test Studio Developer Edition Made Easy342

© 2010 Falafel Software Inc.

15.3 The Built-In Grid

The Data Tab tab allows you to build simple, ad-hoc, data-driven tests without needing to connect to an
external data source, such as the login example data shown below. You can find the Data Tab inside the
Test Tab next to the Storyboard Tab. 

The main point is that this functionality is very simple and is not expected to connect to an external
database, have multiple tables or provide fine tune control over looping or branching.

The interface for the Data Tab tab allows you to change the Number Of Columns in the table, Refresh
Columns to reflect the current number of columns, create a New Table (this option over-writes any
previous table) and to Remove the Table. Right-clicking the column headings displays a context menu
that lets you rename and delete columns. 



Data Driven Testing 343

© 2010 Falafel Software Inc.

15.3.1 Walk Through

This example extends the Walk Through project in the "Getting Started" chapter. Instead of checking
against a single hard-coded string "WebAii", this test will check against several different strings from the
data table. 

1) Start with the "Getting Started, Walk Through" project or a copy.  

2) In the Data Tab tab, click the New Data Table button ( ).

3) Enter "1" in the Columns edit box and click the Update Columns button. Click OK to accept and
close the confirmation dialog. 

4) Right-click "Col1" and select "Rename Column" from the context menu. Enter "CompareString" as the
new column name and click OK to close the Rename column... dialog. 

5) In the first row of the table, enter "WebAii" in the "CompareString" column and press Enter. 

6) Enter two more "CompareString" rows with text "ArtOfTest" and "xyz". The data table should now look
like the screenshot below:

7) In the Steps Tab, select the last test step "Verify 'InnerText' 'Contains'...". 



WebUI Test Studio Developer Edition Made Easy344

© 2010 Falafel Software Inc.

8) In the Properties pane, locate the "(Bindings)" property and click the arrow button to open the drop
down menu. Select the ExpectedString property, enter "$(CompareString)" in the value entry text box
and click the Set button.

In the Steps Tab, the test step description is changed to add "DataDriven" and "$CompareString" as
shown in the screenshot below.

9) Click the Steps Tab Quick Execute button ( ) to run the test. Notice that the test will run three times,

once for every row of data in your table. 

10)View the summary results in the Steps Tab which reads "Fail - 11 passed out of total 12 executed".
There were 4 test steps, executed three times, one for each data row. Locate the drop down list next to
the "Data:" label, drop down the list and select the third iteration. The data "WebAii" and "ArtOfTest", in
the first two iterations, both existed in the element text you were testing. The data "xyz" in the last
iteration did not exist in the element text and so the test failed. 



Data Driven Testing 345

© 2010 Falafel Software Inc.

11)If you read the log you'll see the data used to drive each iteration: 



WebUI Test Studio Developer Edition Made Easy346

© 2010 Falafel Software Inc.

15.4 Connecting to External Data

You're not restricted to the built-in grid. You can get at any external data available using Microsoft's
connectivity mechanisms. Out of the box, you can connect to standard "*.csv" spreadsheet files, Excel "*.
xls" files , XML files and database tables. The database tables can include MS SQL, Oracle, Access and
ODBC. The connectivity options are not limited to these few choices. For all practical purposes, you can
connect to any data that you're likely to find.

To connect to data use the database button  to drop down a menu that allows you to "UnBind" an existing
database connection or to add a connection (see the screenshot below).

Clicking any of the database connection possibilities (i.e. Excel, CSV, XML or Database), brings up the
"Create new data source" dialog. The user interface for the dialog will differ slightly based on the type of
data source you choose.                                      



Data Driven Testing 347

© 2010 Falafel Software Inc.

15.4.1 Spreadsheet Files

We can drive the entire test using an external spreadsheet using either a Comma Separated Value file (*.
csv) or an Excel format file (*.xls, *.xlsx). Both type of files can be created in Excel. *.csv files can actually
be created in any spreadsheet application or directly in Notepad if you follow the *.csv formatting
conventions (each line with comma separated values, the same number of commas in each line). If you
supply a spreadsheet with the same column names as the built-in grid example, you don't have to change
the test steps.

1. Click the database button  to drop down the list of connection choices. Click Add New > CSV from the
drop down menu. This action will display the "Create new data source" dialog.

2. In the "Create new data source" dialog, select the "CSV" data source type icon. Use the browse button 

 to locate a "*.csv" file and click the OK button. In this example, the "Search.csv" file has the same
data as the built-in grid example.



WebUI Test Studio Developer Edition Made Easy348

© 2010 Falafel Software Inc.

3. A confirmation dialog asking if you want to bind appears. Click the Yes button to continue. 

4. The "Bind test to data source" dialog displays. Click the Select DataSource drop down list and select
the "Search - (CSVFile)" item. Your data will display in the Preview Data section of the dialog. Click the 
OK button to complete the binding.

 Notes

Also notice in the "Configure" section of the dialog that you can select the "Filter data between rows"
check box, enter the starting and ending row number and click the Update button. This update limits
the number of rows being bound to the test.



Data Driven Testing 349

© 2010 Falafel Software Inc.

The database button will show that the test is now bound to the "Search.csv" file. You can rerun the
test and get the same results as the "Built-in Grid" example, but in this case the data will be coming
from the csv file. 

15.4.2 XML Files

Driving your test from XML (Extended Markup Language) data is similar to using a spreadsheet, but instead
of choosing the "CSV" or "Excel" options you choose the "XML File" option. Here is an XML sample that
closely matches the structure of our previous list of searches. 

<Searches>
  <Search CompareString="WebAii" />
  <Search CompareString="ArtOfTest" />
  <Search CompareString="xyz" />
</Searches>



WebUI Test Studio Developer Edition Made Easy350

© 2010 Falafel Software Inc.

The preview of the data in the wizard is slightly different in that you can use the "Table" drop down to drill
down into the XML hierarchy and select some group of data. This example uses very simple data and there
is only the one "Search" table available. 

Once again, if the column names match the data bindings from the built-in test, then the test steps don't
need to be changed. Running this test should return the same results as the built-in grid example. 



Data Driven Testing 351

© 2010 Falafel Software Inc.

15.4.3 Database Tables

Once again, you can modify the data connection of the test to use the "Database" option, you can get at
just about any external data available today. The data source possibilities include, but are certainly not
limited to, MS SQL, Oracle, Access and ODBC. In this example we'll use a MS SQL table called "Search"
that has a single "CompareString" column. Like the earlier examples, once the connection is configured,
you don't need to change any of the test steps from the "Built-In Grid Walk Through" example.

 Notes

To run this example yourself, you'll need to create a table called "Search" in your own MS SQL
database. You can use the SQL script shown below if you have a suitable utility, such as SQL
Server Management Studio, installed to run the script. 

DROP TABLE Search
CREATE TABLE Search(
   [CompareString] [nvarchar](50) NOT NULL
) 
INSERT INTO Search VALUES('WebAii')
INSERT INTO Search VALUES('ArtOfTest')
INSERT INTO Search VALUES('xyz')



WebUI Test Studio Developer Edition Made Easy352

© 2010 Falafel Software Inc.

Clicking the database connection button Add > Database displays the same "Create new data source"
dialog used in the earlier spreadsheet, but the parameters require you to enter a Provider, Connection String
and Friendly Name. The Provider drop down list may take a moment the first time you use it to collect all
the data source providers present on your system. In the screenshot below we have a "SqlClient Data
Provider".

 The Connection String must be entered manually. Finally, enter a Friendly Name for the connection

 Gotcha!

As of this writing, WebUI Test Studio does not have a built-in connection string creation dialog, so
you will need to compose your own. See the web site http://www.connectionstrings.com/ for
more information on creating connection strings.

http://www.connectionstrings.com/


Data Driven Testing 353

© 2010 Falafel Software Inc.

In the "Bind test to data source" dialog, you will need to select your data base source from the "Data
Selection" drop down list. Choose a table from the "Select Table" drop down list and, once again, the
"Preview Data" grid will display the list of records  



WebUI Test Studio Developer Edition Made Easy354

© 2010 Falafel Software Inc.

You can also enable the "Use T-SQL" checkbox if you want to use SQL to tailor the exact data set you
want returned. The screenshot below shows all the rows of the "Search" table are returned in alphabetical
order. 

And yet again, if the column names match the data bindings from the built-in test, the test should return the
same results as the built-in grid example. 



Data Driven Testing 355

© 2010 Falafel Software Inc.

15.5 Using Code to Access Data

If we wanted to simply reproduce the test from the previous "Database Tables" example we could use
something like the code below. Most of the code should look familiar except the line that uses the test's 
Data object. Data is a TestData type and can be return an object either by indexing using an integer or the
using the name of the column. The example below indexes into Data using "CompareString". 

One other change below is that we're skipping the assert if the CompareString is "xyz". What this is telling
you is that not only can you put in a simple "If" statement in the code, but you can add conditional logic of
any complexity. 

<CodedStep("Drive test with data using code")> _
Public Sub DataDriveTest()
   ActiveBrowser.NavigateTo("http://www.google.com/")
   Pages.Google.QText.Text = "WebAii"
   Pages.Google.BtnGSubmit.Click(False)

   ' get the data for this iteration 
   Dim compareString As String = Data("CompareString").ToString()

   ' ignore the "xyz" compare string
   If (Not compareString.Equals("xyz")) Then
      Pages.WebAiiGoogleSearch.ArtOfTestLink.AssertContent().InnerText( _
ArtOfTest.Common.StringCompareType.Contains, compareString)
   End If
End Sub

 

[CodedStep("Drive test with data using code")]
public void DataDriveTest()
{
    ActiveBrowser.NavigateTo("http://www.google.com/");
    Pages.Google.QText.Text = "WebAii";
    Pages.Google.BtnGSubmit.Click(false);

    // get the data for this iteration
    string compareString = Data["CompareString"].ToString();

    // ignore the "xyz" compare string
    if (!compareString.Equals("xyz"))
    {
        Pages.WebAiiGoogleSearch.ArtOfTestLink.AssertContent().InnerText(
            ArtOfTest.Common.StringCompareType.Contains, compareString);
    }
}



WebUI Test Studio Developer Edition Made Easy356

© 2010 Falafel Software Inc.

 Notes

Be aware that you can also connect to data without using the WebUI Test Studio Data object
using one of many mechanisms available from .NET such as ADO.NET or web services.

15.6 Advanced Scenarios

What if your test should be driven by data that doesn't fit the "one row at a time" scenario? What if the data
isn't a standard data source and can't be reached using a connection string? Here are a few examples: 

Your organization still uses a legacy system that can be reached only through custom software. 

You need to check that certain parts of the network are up and running in a particular configuration.

You need to test that certain documents are available at an FTP (File Transfer Protocol) site. 

The test must branch, loop or perform other complicated logic depending on the data. 

 Notes

Be aware that scenarios like these above may well require developer-level coding skills. The line
between developers and QA engineers begins to blur at this point, but its important to
understand what the possibilities are. 

All of these scenarios can be handled in code. In these situations you would not define a data connection,
but instead perform all your logic directly in the code. 

Here's a brief example that uses SQL Management Objects (SMO) to get a list of SQL servers and check
that they have "failover" capability. The point here is not to show you how SMO works or how to iterate
through a data table. The main idea is that you can use any software available in the .NET world to use in
your test code. 

The example code shows an SmoApplication object finding available SQL servers and returning a DataTable
object containing the results. The example code iterates the rows in the DataTable, looking at the
"IsClustered" column. An assertion checks that IsClustered is true and if not, fails with a message that
includes the server name. 

<CodedStep("Verify Failover Capability for Sql Servers")> _
Public Sub VerifySqlServers()
   Const fmt As String = "Server {0} is not failover capable"

   Dim table As System.Data.DataTable = SmoApplication.EnumAvailableSqlServers()
   For Each row As System.Data.DataRow In table.Rows
      Dim isFailoverReady As Boolean = Convert.ToBoolean(row("IsClustered"))
      Assert.IsTrue(isFailoverReady, String.Format(fmt, row("Name").ToString()))
   Next row
End Sub



Data Driven Testing 357

© 2010 Falafel Software Inc.

 

[CodedStep("Verify Failover Capability for Sql Servers")]
public void VerifySqlServers()
{
    const string fmt =
        "Server {0} is not failover capable";

    System.Data.DataTable table =
        SmoApplication.EnumAvailableSqlServers();
    foreach (System.Data.DataRow row in table.Rows)
    {
        bool isFailoverReady = Convert.ToBoolean(row["IsClustered"]);
        Assert.IsTrue(isFailoverReady,
            String.Format(fmt, row["Name"].ToString()));
    }
}

Here's an example excerpt from the log when the test is run: 

Exception thrown executing coded step: '[VerifySqlServers] : Verify Sql Servers'.
InnerException:
Microsoft.VisualStudio.TestTools.UnitTesting.AssertFailedException: Assert.IsTrue failed. 
Server WEBUITRAINING\SQLEXPRESS is not failover capable
   at Microsoft.VisualStudio.TestTools.UnitTesting.Assert.HandleFail(String assertionName, String message, Object[] parameters)
   at Microsoft.VisualStudio.TestTools.UnitTesting.Assert.IsTrue(Boolean condition, String message)
   at DataDriven.API_Example.VerifySqlServers() in C:\Courseware\Projects\CS\DataDriven\API_Example.aii.cs:line 61
--------------------------------------------------
'3/2/2010 9:32:28 AM' - Detected a failure. Step is marked 'ContinueOnFailure=True' continuing test execution.

15.7 Wrap Up

In this chapter you learned how to drive tests using the built-in data grid. You also learned how to access
data from external spreadsheet, XML and database data sources. You learned how to access and modify
data connections. Finally, you learned how to access the test Data object in code.



Part

XVI
Test Regions



Test Regions 359

© 2010 Falafel Software Inc.

16 Test Regions

16.1 Objectives

In this chapter you will learn how Test Regions are used to solve element identification, maintenance and
performance problems inherent in complex web pages. You will learn how to access test regions in code
and how to drill down to child elements of test regions. You will also see how the TestRegion ASP.NET
control makes it easy to keep track of regions at design time. 

16.2 Overview

What is a TestRegion?

A Test Region is an innovative technology that "sections" markup code (XML, HTML, XHTML, etc...) to
make automated tests more performant and easier to maintain.

One of the main obstacles between Development and Testing teams is the fact that code changes and
implementations grow and get more complicated. QA teams find it difficult to maintain automated tests that
count on specific IDs, Tags or even specific location of markup code in a file.

Think of a web page that contains thousands of lines of HTML markup with complicated element structures.
Most of the tags are generated dynamically by a development tool compiler (like in ASP.NET). The QA
tester is obligated to use element IDs or Tags for the outer elements while hoping that the names of the
inner elements do not change in future executions. This approach is just not possible when working with the
powerful controls being released everyday from companies like Telerik and others in the ASP.NET AJAX
and Silverlight markets.

Another problem is the fact that if the tester uses something like XPath, the tester quickly finds out that
they have to read the entire DOM each time they want to reference a particular object. If the Development
team changes the hierarchy of elements in the DOM structure, the test will probably fail. This kind of testing
is very fragile and requires heavy maintenance by a tester to make sure all changes on the R&D side are
covered and manipulated on the QA side as well. 

Take for example the simple HTML code below:



WebUI Test Studio Developer Edition Made Easy360

© 2010 Falafel Software Inc.

 

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
   <title>Falafel Software Locations</title>
</head>
<body>
    <table>
   <tr>
       <td>Falafel Software Inc.Home Page.</td>
   </tr>
    </table>
   <div>
     <input type="text" id="State" />
     <input type="text" id="zipcode" />
     <!-- Falafel offices in the area -->
     <table>
       <tr>
         <td>Office Name</td>
         <td>Address</td>
         <td>Tel.#</td>
       </tr>
       <tr>
         <td>Office Name</td>
         <td>Address</td>
         <td>Tel.#</td>
       </tr>
     </table>
   </div>
</body>
</html>

If the development team decides to add more rows in the table of offices or change the hierarchy of
containment in the HTML DOM, the tests against this simple page will fail. The tests will fail whether they
use IDs, Tags or XPath to identify the element.

 Notes

TestRegion's methodology and identification system to building testability into markup
applications, at the time of this writing, is "Patent Pending" at the US Patent and Trade Office.



Test Regions 361

© 2010 Falafel Software Inc.

16.3 TestRegion Sample

Using TestRegions

Now, let's see what TestRegions bring to the table. First, the syntax of TestRegions is recommended to be
a simple markup like:

 

<testregion id="MyRegion">...your markup goes here...</testregion>

The TestRegion technology is currently in a Patent Pending state, so the preceding example is only a
recommendation. Not many browsers or tools will recognize the syntax, so for now you should use
comment syntax like so:

 

<!-- testregion id="MyRegion" -->...your markup goes here...<!--/testregion -->



WebUI Test Studio Developer Edition Made Easy362

© 2010 Falafel Software Inc.

 Gotcha!

You see that ending close of /testregion above?  There is no space before the "/".  If you write it
this way, "<!-- /testregion -->", that includes the space, it will waste some debugging time and half
your hair will be pulled out before you figure out the problem :( 

So to use the previous HTML example with TestRegions, we would do something like:

 

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
   <title>Falafel Software Locations</title>
</head>
<body>
    <table>
   <tr>
       <td>Falafel Software Inc.Home Page.</td>
   </tr>
    </table>
   <div>
 <!--testregion id="FalafelInput"-->     
     <input type="text" id="State" />
     <input type="text" id="zipcode" />
 <!--/testregion -->    
 
<!--testregion id="FalafelLocation"-->
<!-- Falafel offices in the area -->
     <table>
       <tr>
         <td>Office Name</td>
         <td>Address</td>
         <td>Tel.#</td>
       </tr>
       <tr>
         <td>Office Name</td>
         <td>Address</td>
         <td>Tel.#</td>
       </tr>
     </table>
 <!--/testregion --> 
   </div>
</body>
</html>

Now that the markup is "sectioned" using TestRegions, it is extremely easy in WebUI Test Studio to
reference just these regions in code like the following:



Test Regions 363

© 2010 Falafel Software Inc.

Dim FalafelInput As TestRegion = Manager.ActiveBrowser.Regions("FalafelInput")
Dim FalafelLocation As TestRegion = Manager.ActiveBrowser.Regions("FalafelLocation")

 

TestRegion FalafelInput = Manager.ActiveBrowser.Regions["FalafelInput"];
TestRegion FalafelLocation = Manager.ActiveBrowser.Regions["FalafelLocation"]; 

There are two ways to access elements within a TestRegion:

1. Using the "Element" property. I don't recommend this way as it uses the DOM hierarchy inside of the
TestRegion to get to the element. So if the R&D team changes the hierarchy, using this property on the
TestRegion object will fail.

2. Using the "Find" object. This is the most robust way of finding elements inside of TestRegions. Bear in
mind that the search takes place only inside of that specific TestRegion and NOT in the entire DOM of
the page.

Dim FalafelOffice As Element = FalafelLocation.Find.ByTagIndex("table", 0)
Dim OfficeZip As Element = FalafelInput.Find.ByXPath("/input[2]")

 

Element FalafelOffice = FalafelLocation.Find.ByTagIndex("table", 0);
Element OfficeZip = FalafelInput.Find.ByXPath("//input[2]");

To find elements, you can use all the methods described in the "WebAii Framework" chapter, such as ByID
(), ByTagIndex(), ByXPath(), ByName(), ByContent(), etc...



WebUI Test Studio Developer Edition Made Easy364

© 2010 Falafel Software Inc.

16.4 TestRegion in ASP.NET

WebUI Test Studio makes it even easier to use TestRegions within ASP.NET applications by providing a
TestRegion Control in Visual Studio that encapsulates a section of markup code. To Add the control to the
Visual Studio Toolbox, first you need to launch the "Choose Toolbox items" dialog from the Visual Studio
toolbox: 



Test Regions 365

© 2010 Falafel Software Inc.

Then you will need to navigate to the "bin" directory where WebUI Test Studio has been installed on your
machine.  If you chose the default installation, that will be under the Program files (86) directory. The DLL
we are looking for is "ArtOfTest.WebAii.AspNet.dll" as shown below:



WebUI Test Studio Developer Edition Made Easy366

© 2010 Falafel Software Inc.

As soon as the DLL is loaded, a new control under the ".NET Framework Components" will appear in the
list called "TestRegion". Check that control and add it to the Visual Studio Toolbox.



Test Regions 367

© 2010 Falafel Software Inc.

The control will show up in the Toolbox under whichever Tab you had opened when you launched the dialog.
In the screenshot below, a new tab called "Testing Tools" has been created to contain the new TestRegion
Control. 



WebUI Test Studio Developer Edition Made Easy368

© 2010 Falafel Software Inc.

Now, anytime you need to encapsulate a specific complex control or a bunch of controls together for easy
access in the DOM using the TestRegion control, just drop the control in your source code and place all the
markup of your controls inside the TestRegion open and close tags.



Test Regions 369

© 2010 Falafel Software Inc.

The Control renders itself as an HTML comment at runtime in order to satisfy the requirements of all
browsers. But at design time in Visual Studio, the control renders a red dotted line around each TestRegion
so you can easily recognize your regions on the screen during test development.

16.5 Wrap Up

In this chapter you learned how Test Regions are used to solve element identification, maintenance and
performance problems inherent in complex web pages. You learned how to access test regions in code and
how to drill down to child elements of test regions. You also saw how the TestRegion ASP.NET control
makes it easy to keep track of regions at design time. 



Part

XVII
Debugging



Debugging 371

© 2010 Falafel Software Inc.

17 Debugging

17.1 Objectives

In this chapter you will learn basic techniques to get you started debugging your coded tests. You will learn
how to set breakpoints, step through your code and examine your variables. 

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Debugging\Debugging.sln



WebUI Test Studio Developer Edition Made Easy372

© 2010 Falafel Software Inc.

17.2 Overview

"Debugging?  I'm a Quality Assurance engineer and debugging is for programmers".  Actually, no. Once you
have code of any sort, including code-driven tests, you need tools to determine why code doesn't perform as
expected. That's where the debugger comes in. The debugger allows you to step one line of code at a time,
examine the variables to see what values they contain and to pause or "break" when certain conditions
exist in the code. 

The image below shows a test being debugged "in the wild". In following sections we'll look at some of the
key pieces you can use to step through your test code and examine all the variables and expressions you'll
find there.

 Notes

WebAii leverages Visual Studio debugging tools so tests must be initiated from the Test View window
or Debugging menu. You will not be able to debug tests using the Quick Execute button to run the
test. 



Debugging 373

© 2010 Falafel Software Inc.

While this certainly won't be an exhaustive look at debugging in Visual Studio, we will take a quick look at
the most powerful features that you're most likely to need. 

Breakpoints are locations in the code that you can mark where execution should stop. When you
debug the test, the code will stop running at the marked line, the line will be highlighted and you will be
able to use debugging features to examine variable values and expressions. The previous screenshot
shows a breakpoint on the line starting with "Assert.AreEqual...". The Breakpoints window shows line
position and other information about the breakpoint. 

Watches are variables or expressions that you want to view as they change during the execution of
your code. The Visual Studio Watch window stores multiple watches that can be viewed when
execution stops at a break point.

The Call Stack shows you the chain of methods that are calling other methods. The screenshot below
shows that WizardTest() was the first method called and that it called MethodA() and MethodA() called
MethodA1().



WebUI Test Studio Developer Edition Made Easy374

© 2010 Falafel Software Inc.

Locals displays variables that are visible from the method you're debugging. The screenshot below
shows the Locals window listing all the objects that can be seen when breaking at a line within the
coded test method. The "this" object refers to the test itself. 

Autos displays variables "in play" during the current statement. This is something like the Locals
window, but is focused to the specific line that execution is stopped on. On this line we have access to
the Find object, a RadTabStrip and a RadTab. The Autos window also shows us the "this" object that
represents the test itself. 

While Tool tips are not a window unto themselves, they're an important part of debugging. When
execution stops at a particular line of code, you can let the mouse hover over a variable and the tool tip
will show the current value. In addition, you can "drill down" into the variable and get information about
the object's base types and also see the objects children. 



Debugging 375

© 2010 Falafel Software Inc.

Use the QuickWatch window to evaluate variables and expressions. Like tool tips, QuickWatch lets
you expand objects with children. You can also enter new expressions and evaluate them on the fly.
Notice the Add Watch button that lets you add the current expression to the Watch window. You can
get to this window by right-clicking in the editor during a debug session and selecting QuickWatch from
the context menu. 



WebUI Test Studio Developer Edition Made Easy376

© 2010 Falafel Software Inc.

17.3 Debugging Walk Through

To keep things small and manageable, the "bug" for this project will be highly contrived, but will allow us to
navigate the code using many of the available debugging tools. 

1) From the Visual Studio choose File > New > Project... This will display the "New Project" dialog.

2) Define a new test project: 

a) In the "New Project" dialog, select the "Test" project type for your language (C# or VB).

b) Select the "Test Project" template.

c) Enter a descriptive name for the test project, a location path and a Solution name.

d) Click OK to create the new test project.

3) From the Solution Explorer, right-click the test project and select Add > New Test... from the context
menu. This will display the "Add New Test" dialog.

4) In the "Add New Test" dialog, select the "WebAii Test" template, name the test "DebugTest.aii" and
click OK to create the test.

5) Click the Add Code Behind button to create the code behind file. 

6) In the code behind file add the code below. 

The new code will provide raw material to debug through. The coded step takes a series of three
numbers, each number is doubled, then the doubled number is squared and added to a variable called
"total". On the first iteration of the "for" loop, "total" should be "4", then "20" the second time through and
finally "total" should equal "56". 



Debugging 377

© 2010 Falafel Software Inc.

<CodedStep("Work with Debugging")> _
Public Sub DebuggingTest()
   Dim numbers() As Integer = { 1, 2, 3 }
   Dim total As Integer = 0

   ' result should be: 
   '   first iteration:  4  --(2 * 2)
   '   second iteration: 20 --((4 * 4) + 4)
   '   third iteration:  56 --((6 * 6) + 20) 
   For Each number As Integer In numbers
      total = total + DoubleAndSquare(number)
   Next number
   Assert.IsTrue(total < 100)
   Assert.AreEqual(56, total)
End Sub

Public Function DoubleAndSquare(ByVal number As Integer) As Integer
   Dim doubledNumber As Integer = number + 2
   Dim result As Integer = Square(doubledNumber)
   Return result
End Function

Public Function Square(ByVal number As Integer) As Integer
   Dim result As Integer = number * number
   Return result
End Function



WebUI Test Studio Developer Edition Made Easy378

© 2010 Falafel Software Inc.

 

[CodedStep("Work with Debugging")]
public void DebuggingTest()
{
    int[] numbers = { 1, 2, 3 };
    int total = 0;

    // result should be: 
    //   first iteration:  4  --(2 * 2)
    //   second iteration: 20 --((4 * 4) + 4)
    //   third iteration:  56 --((6 * 6) + 20) 
    foreach (int number in numbers)
    {
        total = total + DoubleAndSquare(number);
    }
    Assert.IsTrue(total < 100);
    Assert.AreEqual(56, total);
}

public int DoubleAndSquare(int number)
{
    int doubledNumber = number + 2;
    int result = Square(doubledNumber);
    return result;
}

public int Square(int number)
{
    int result = number * number;
    return result;
}

7) In the Steps Tab, click the Quick Execute  button to run the test. The test should fail. 

8) View the log to see where the test failed. The log should show an AssertFailedException where the
AreEqual() method expects "56" but the actual value is "50". 

". . .Microsoft.VisualStudio.TestTools.UnitTesting.AssertFailedException: Assert.AreEqual failed. Expected:<56>.
Actual:<50>. . ." 

Now let's use the debugger to hunt down the problem...

9) In the code editor, click the "gutter" area to the left of the "for each" loop. A red circle should appear to
indicate a breakpoint has been placed on this line. 



Debugging 379

© 2010 Falafel Software Inc.

10)In the Test View window, right-click the test and select Debug Selection from the context menu. 

 Notes

If the Test View window is not open, you can open it from the Visual Studio menu Test >
Windows > Test View.  Also know that you can debug the test directly using the Visual Studio
menu Test >  Debug item. 

11)The execution of the test should stop on the line where you placed your breakpoint. The visual cue is a
yellow arrow and highlighting of the line as shown in the screenshot below. Press F10 to continue to the
next line. 

 Notes

You can also step through your debugging code using the Visual Studio Debug menu items: 

F10: "Step Over", i.e. only step through items in this method

F11: "Step Into", i.e. if this method calls another method, step into the called method.

Shift-F11: "Step Out" backs out from the method you're in to a method that called it.

F5: "Continue" runs through the code until it finishes the test or hits a breakpoint. 

Shift-F5: "Stop Debugging" ends execution of the test and returns you back to design mode.



WebUI Test Studio Developer Edition Made Easy380

© 2010 Falafel Software Inc.

12)Continue to press F10 until the line "total = total + ..." is highlighted.

13)Hover the mouse above the "total" variable. The tool tip should display that the value is currently "0". 

14)Right-click the "total" variable and select Add Watch from the context menu.

15)Right-click the "number" variable and select Add Watch from the context menu. The Watch window
should look like the screenshot below (if the Watch window isn't visible, bring it up using the Visual
Studio menu Debug > Windows > Watch > Watch 1).

16)Press F10 to continue to the next line. Notice the Watch window. The "Total" Value is highlighted in red
to indicate that it's changed from its previous value. The value is now "9", although the value should be
"4". 

17)Press Shift-F5 to end debugging. 

18)Place a breakpoint on the line "total = total + ". Remove any other breakpoints you have defined. 



Debugging 381

© 2010 Falafel Software Inc.

19)In the Test View window, right-click the test and select Debug Selection from the context menu to run
the test in debug mode again.

20)When the test execution stops on the breakpoint, press F11 to continue step into the first line of the
DoubleAndSquare() method. 

21)Press F10 until you reach the line "int result = Square...".

22)Right-click the "doubledNumber" variable and select QuickWatch from the context menu. 

We should have a value of "2" but the Value is actually "3". The reason for that appears to be that
"doubledNumber gets the number "+ 2", not "* 2", so we're adding two instead of multiplying by two.  

23)Press Shift-F5 to end debugging. 

24)In the code editor, change the DoubleAndSquare() method so that "doubledNumber" is assigned
"number * 2". The code for DoubleAndSquare() should now look like the example below. 



WebUI Test Studio Developer Edition Made Easy382

© 2010 Falafel Software Inc.

Public Function DoubleAndSquare(ByVal number As Integer) As Integer
   Dim doubledNumber As Integer = number * 2
   Dim result As Integer = Square(doubledNumber)
   Return result
End Function

 

public int DoubleAndSquare(int number)
{
    int doubledNumber = number * 2;
    int result = Square(doubledNumber);
    return result;
}

25)Build the project and rerun the test. The test should now pass.

This only scratches the surface when it comes to debugging in Visual Studio. To continue learning more
about the extensive capabilities of the Visual Studio debugger, start at the MSDN article Building,
Debugging and Testing at http://msdn.microsoft.com/en-us/library/d8k88a0k.aspx..

17.4 Wrap Up

In this chapter you learned some basic techniques to get you started debugging your coded tests. You
learned how to set breakpoints, step through your code and examine your variables. 



Part

XVIII
Support and Services



WebUI Test Studio Developer Edition Made Easy384

© 2010 Falafel Software Inc.

18 Support and Services

Support

Read the community forums, watch informative videos, see the latest blogs or send a Support Ticket to the
excellent Telerik support team, all at this link: http://www.telerik.com/automated-testing-tools/support.aspx.

Services

Telerik’s worldwide network of partners can provide your organization with training and services to help you
ramp up more quickly or help with your existing automated testing projects. Go to www.Telerik.com/
partners to find a partner that fits your needs.

WebUI Training and Services from Falafel Software

The authors of this book are from Falafel Software, Telerik’s premier services partner. Falafel has a wide
range of services ranging from WebUI training and consulting to large-scale custom enterprise application
development.  The professionals from Falafel Software are great to work with and we hear nothing but
effusive praise about them from our customers. Here’s a description of some of their WebUI related
services:  

WebUI Training from Falafel Software

Training Summit: If your team only has a few individuals in need of training, this open-enrollment
option is the most cost effective solution.

Online Training: For companies that have team members in multiple locations or in situations where
onsite training is not feasible, online training is a great option.

Onsite Training: A highly knowledgeable Falafel Software trainer will come to you and provide your
team with an enlightening 3-5 day class.  This is the best way to ramp up quickly.

WebUI Consulting from Falafel Software

On a deadline?  Need assistance from the Pros? Let Falafel provide you with world-class consulting for all
your WebUI needs.  Falafel’s consultants have been working with WebUI since the very beginning and are
the highest qualified individuals to assist you. 

WebUI Consulting Express

Need help right now? Purchase pre-paid online consulting from the Falafel Store and you'll have a WebUI
Consultant working with you live over the phone and via GotoMeeting so you can virtually work shoulder to
shoulder to get you going quickly.

http://store.falafel.com/p-56-telerik-consulting-express.aspx

For more info on Falafel Software, go to www.falafel.com or call 1-888-GOT-FALAFEL (1-888-468-3252). 

http://www.telerik.com/automated-testing-tools/support.aspx
http://www.automatedqa.com/partners
http://www.automatedqa.com/partners
http://www.falafel.com


Index 385

© 2010 Falafel Software Inc.

Index
- " -
"Win32" dialogs     217

- . -
.NET Framework Components     364

- / -
/resultsfile     232

/test     232

/testcontainer     232

/testlist     232

/testregion     361

- 3 -
3D Viewer     61, 126, 180

- A -
Access     340

Actions     265

ActiveBrowser     265, 266, 317, 326

ActiveBrowser.Regions     361

ActualHeight     202, 324

Add New Test     24

Add to Project Element     57

Add Watch     372, 376

Additional Steps     43

After Selected Step     46, 52

AJAX     101

Alert     222

Alert dialog     222

All Categories     108

AllByAttributes()     287

AllByAutomationId()     318

AllByContent()     287

AllByCustom()     287, 318

AllByExpression()     287

AllByName()     318

AllByTagName()     287

AllByText()     318

AllByType()     318

AllByXPath()     287

AllElements()     287

AllTabs     333

AlwaysUseTitleInCompare     69

AlwaysWaitForElementsVisible     323

Annotation     117

AnnotationText     43, 46

ApplicationDropOffset     174

ArtOfTest.WebAii.Core     318

ArtOfTest.WebAii.jQuery     293

ArtOfTest.WebAii.Silverlight     318

As()     269

ASP.NET     364

ASP.NET AJAX     101

Assert     305, 306

Assert.AreEqual()     333

AssertAttribute     305, 309

AssertCheck     305, 316

AssertContent     305, 312

AssertException     312

AssertSelect     305, 315

AssertSelect()     294

AssertStyle     305, 311

AssertTable     305, 313

Attribute     99

Attributes     103, 108, 120, 122, 126

AutoCheckResult     294

Automated tests     237

automation     91

Automation Overlay Surface     81

AutomationId     74, 180, 318

Autos     372

Available Verifications     62, 94, 105, 108, 180

- B -
Base Url     56, 82

BaseUrl     69, 82, 266

BaseWebAiiTest     265

binding     340

Boundary Test     340

Box()     311

Breakpoints     372

BrowserCacheType     326

BrowserType     326



WebUI Test Studio Developer Edition Made Easy386

© 2010 Falafel Software Inc.

Build Verification     57, 62, 103, 113

ButtonId     228

ButtonPartialText     228

ByAttributes()     269, 272

ByAutomationId()     317, 318

ByContent()     269

ByCustom()     269, 272, 317, 318

ByExpression()     269, 272

ById()     269, 272, 286

ByIndex     82, 100

ByName()     269, 272, 317, 318, 323

ByNodeIndexPath()     269, 272

ByParam()     269

ByTagIndex()     269, 272

ByText     62, 82, 100

ByText()     317, 318

ByType()     317, 318

ByValue     62, 82, 100

ByXPath()     269, 272

- C -
Call Stack     372

CaptureType     43

Cell Text     101

Check()     333

ChildWindowTextContent     228

Clear Cookies     43

Clear Results     43

Clear Url History     56, 82

ClearCache()     326

Click()     269, 333

ClickUnitType     166

Closing     326

Code Base Class     56, 82

CodedStep     317, 333

ColorAndBackground()     311

ColumnCount()     313

ColumnRange()     313

Common Tasks Menu     61

CompareMode     69, 82

Comparison     96, 99

Computed     100, 311

concurrent users     246

ConditionMet     294

Configuring Your Browser for Test Automation     217

Contains     62, 71, 96, 108, 120, 122, 124, 126, 285,
309, 311, 313

Contains()     313

Content     62, 113

Continue     376

Continue on Failure     43

Continuous Integration     230

Convert To Code     43

Convert to VS Load Test     54

CssClass     272

CSV     340

Custom Annotation     43, 46

- D -
Data Tab     24, 40, 259, 342

Data Tab tab     342

Debug Selection     376

Debugging menu     372

Default DropDown Record Option     56, 82

Delay Execution     43, 46

Desktop     265, 317

DialogTitle     228

Display()     311

DisplayLocation     43, 46

DisplayTime     43, 46

DOM     359

DOM Explorer     40, 61, 74, 96, 113, 180, 259, 268,
269, 272, 313, 315, 318

DomRefreshed     326

DownloadPath     227

Drag Element     166, 168

Drag-and-Drop     57

DragDropWindowData     166

drop target     165

DropDown     92, 100

DropDownList     133

DropElement     166

DropOffset     166

DropTargetType     166, 168

- E -
Edit Element     70

Edit...     43

ElementNotFound     294

Elements Explorer     24, 26, 40, 61, 68, 71, 83, 180,
259, 290, 317

Elements Menu     26, 56, 62

Elements Page Compare Mode     56, 82



Index 387

© 2010 Falafel Software Inc.

Enable Annotation     43, 117

Enable Annotations     33

Enable Highlighting     56, 68

Enable Storyboard     56, 82

Enabled     43

EndsWith     71, 96, 285, 311, 313

EnsureDropPointInBrowser     174

Equals     285, 313

Erase all Steps     43

ErrorAbort     294

Exact     62, 71, 96, 103, 108, 122, 124, 126, 309,
311, 313, 315

ExecuteStep()     265

ExecuteText()     265

Exists     71

Exists()     309

ExpectedString     26, 36, 343

Extended Application Markup Language     101, 178

- F -
File Download dialog     227

File Upload dialog     225

FileNamePrefix     43, 46

Find     265, 268, 269, 272, 285, 291, 296, 317, 318,
323

Find Element     105, 180

Find Expression     74

Find Expression Builder     69, 71

Find Logic     71

Find.AllControls()     287

Find.By()     333

Find.ByAttributes     333

Find.ById()     302, 333

Find.jQuery()     293

FindContentType     269

FindExpression     290

FindNodeByText()     302

Firebug     272

FireFox     272

Flash     113

Focus     166

Focus()     269

Font()     311

For()     294, 324

ForAttributes()     296

ForAttributesNot()     296

ForCondition()     296

ForContent()     296

ForContentNot()     296

ForEach     287

ForExists()     296, 324

ForExistsNot()     296, 324

ForNoMotion()     324

ForStyles()     301

ForStylesNot()     301

ForVisibilityNot()     293

ForVisible()     301, 324

ForVisibleNot()     301, 324

Fragment     69

Frames     326

Frames.RefreshAllDomTrees()     326

FrameWorkElement     259, 324

FriendlyName     62, 69, 213

FullPath     82

FullPathAndQuery     82

FullPathAndQueryNoFragment     82

- G -
Generate Unit Test     54

generic dialog     228

Generic Silverlight Translators     180

Go to Url button     26

GoBack()     326

GoForward()     326

GreaterThan     313

GreaterThanOrEqual     313

grid     101

GridDataCell     101, 130, 134

GridViewCell     192

GridViewRow     192

- H -
Handle Dialogs     56

HandleButton     56, 222, 223, 227

HandleButtonMethod     228

HandleState     218

Hierarchy Constraint     272

Highlighting button     26, 62

Host     317

HTML popup     217

HTML popups     218

HtmlAnchor     269, 287, 302



WebUI Test Studio Developer Edition Made Easy388

© 2010 Falafel Software Inc.

HtmlFindExpression     272

HtmlImage     272, 309

HtmlInputButton     333

HtmlInputCheckBox     316

HtmlSelect     272, 294, 315

HtmlSpan     333

HtmlStyleColorAndBackground     311

HtmlStyleType     311

HtmlTable     313

HtmlTableCell     291

HtmlTextArea     302

HtmlWait     293, 296, 301

- I -
Identification     178

Identification Logic     83

Inline     100, 311

InnerMarkup     74, 96, 269, 312

InnerText     26, 71, 74, 96, 269, 312, 343

InRange     313

Inspection Point     43, 46

IsFalse()     316

IsPartial     267

IsTrue()     316

IsUrlPartial     218

IsVisible     103, 108

ItemCountIs()     315

- J -
Javascript Events     57

jQuery     293

- L -
Language INtegrated Query     287

Launch Page in Browser     56

layoutRoot     180

LessThan     313

LessThanOrEqual     313, 315

LINQ     287

List()     311

Load Page...     70

load testing     246

Locals     372

Locate in DOM     57

Locate in DOM Explorer     70

Lock on Surface     113

Log     265

logon dialog     223

- M -
Manager     265

MatchPartialTitle     228

Maximize()     326

MbUnit     237

Minimize     326

Minimize()     326

Missing     71

Mouse Actions     57

Move Selected     43

MS SQL     340

MSTest     40, 230

mstest.exe     231

- N -
Name     74

Navigate to Url     52

NavigateTo()     266, 326

New Data Table     343

New Load Test Wizard     247

New Table     342

NodeIndexPath     74

NotContain     71, 96, 285, 311, 313

NotEqual     313

NotSet     294

Nub     26, 61

Number Of Columns     342

NumberCompareType     313, 315

NumberRangeCompareType     313

NUnit     237

- O -
ODBC     340

Offset     166, 168

OffsetX     174

OffsetY     174

Oracle     340

OuterMarkup     74, 96, 269, 312

OutsideRange     313



Index 389

© 2010 Falafel Software Inc.

OwnerBrowser     317

- P -
PageTitle     326

Password     223

Patent Pending     359

Path     69

Plugin     317

pop-up blockers     217

PopupUrl     218

Preview Code     43

Properties pane     36

- Q -
Query     69

Quick Execute     43

Quick Execute button     33

Quick Tasks     57, 62

Quick Tasks button     26

QuickWatch     372, 376

- R -
RadComboBox     133, 188

RadDatePicker     306

RadGridDataItem     134

RadGridView     180, 192

RadPanelBarItem     178

RadRibbonSplitButton     180

RadTab     333

RadTabStrip     333

RadTreeView     286, 302, 313

Real Typing     56, 82

Recapture Storyboard     43

Record button     26, 62

Record Next Step     46, 52

Record Next Step...     43

Recording     56

Recording Options     82

Recording Surface     24, 26, 40, 54, 55, 62, 68, 81,
259

Refresh     68

Refresh Columns     342

Refresh()     326

RefreshAllDomTrees()     326

RefreshDomTree()     326

RegEx     71, 96, 285, 309, 311, 313

Regions     361

Regular expressions     96

RelativePathAndQuery     82

RelativePathOnly     82

RelativePathQueryNoFragment     82

Remove the Table     342

RepeatCount     213

RequiresSilverlight     317

ResizeContent     326

resultsfile     232

RowCount()     313

RowRange()     313

- S -
Same     96, 311, 313, 315

scope     291

Screen capture     43

Scroll Element     57

ScrollBy     326

SecondaryTarget     174

security settings     217

Select Browser     43

Select Testcase Dialog     120, 124

SelectDropDownType     82

Selected     333

Selected Only     108

Selected Sentences     94, 103

SelectedIndex()     315

SelectedText()     294, 315

SelectedValue()     315

Sentence Verification Builder     92, 101, 103, 180

sentences     91

Set as Wait     43

Settings     56, 180

Silverlight     101, 272, 317, 318, 323, 324

Silverlight Connect Timeout     56, 82

Silverlight Simple Controls     180

SilverlightApp     317

SilverlightApps()     317

Simulate Real Clicks     56, 82

SourceNodeText     174

StackPanel     180

StartsWith     71, 96, 108, 285, 311, 313

StartTagContent     74, 96, 269, 312

Step Into     376



WebUI Test Studio Developer Edition Made Easy390

© 2010 Falafel Software Inc.

Step Out     376

Step Over     376

Steps Tab     24, 33, 36, 42, 43, 46, 52, 117, 259, 343

Stop Debugging     376

Stop()     326

Storyboard Tab     24, 40, 42, 259

Strategy     323

StringCompareType     309, 311, 313, 315

style     100, 120, 124, 126

Synchronization     178

SyncWaitResult     294

- T -
TabSelected     333

TagIndex     74

TagName     71, 74

TagSegmentType     26

Target Element     94, 101

Team Foundation Server     232

Telerik.WebAii.Controls.Html     333

test     232

Test as Step     43, 52

Test Results     238

Test Steps     43

Test Tab     24, 40, 54, 62, 259

Test View     43, 238

Test View window     372, 376

Testcase Selector     71

testcontainer     231, 232

testlist     232

TestPath     43

TestRegion     359, 361, 364

Text()     311

TextContent     74, 96, 120, 122, 124, 126, 180, 269,
312

TextExists()     315

TextExistsNot()     315

TFS     232

TimedOut     294

Title     69, 82

ToggleFullScreen()     326

translator     178

Translators     84, 101, 130, 133, 134, 180

trx     232

- U -
Undo/Redo     43

unit test framework     238

unit testing     237

unit testing frameworks     237

Update Columns     343

UriFormatException     266

User Settings     83

UserName     223

- V -
Validate All Elements     70

Validate Ru     113

Validate Rule     103, 108

validation     198

Value     96, 99, 315

Value()     309

ValueExists()     315

ValueExistsNot()     315

Verbose Mode     56, 82

verification     91

Version     326

View 3D     57, 62, 124, 126

View Code     43

View filter     108

View Pages     68

View Test Log button     33, 117

virtualized     192

Visibility     202

Visual Studio     259, 306

visual tree     178

VisualFind     318, 323

VisualTree     317

VisualWait     293, 294, 324

VsUnit     237, 238

- W -
Wait     265, 291, 293, 294, 296, 301

Wait for Url     43, 46

Wait.For()     296, 324, 333

WaitForUrl()     267

WaitResultType     294

WaitSync     294



Index 391

© 2010 Falafel Software Inc.

WaitTime     43, 46

Watch window     376

Watches     372

WebAii     272

WebAii Test     24, 294, 333

WebAii Testing Framework     259, 268

WebUI Test Studio     259

WhenNotVisibleReturnElementProxy     323

WhenNotVisibleReturnNull     323

WhenNotVisibleThrowException     323

Win32 dialogs     221

Wrapper     286

Wrappers     259

- X -
XAML     101, 178, 180, 318

XamlFindExpression     272

XamlTag     74, 180

XML     180

XPath     71, 74, 272, 359

xUnit     237

- Z -
Zoom     200

zoom level     200




	Introduction
	Who Should Read This Courseware
	About Telerik
	About Falafel
	Introducing WebUI Test Studio

	Installation
	Objectives
	Install WebUI Test Studio
	Wrap Up

	Getting Started
	Objectives
	Walk Through
	Create a New Visual Studio Test Project
	Create a New WebAii Test
	Record a WebAii Test
	Run a WebAii Test
	Modify a WebAii Test

	Wrap Up

	Visual Studio Integration
	Objectives
	Tour of the Environment
	WebUI Test Studio Toolbar
	Test Tab
	Storyboard Tab
	Steps Tab
	Walk Through
	Test Case Reuse Walk Through

	Data Tab

	Test Tab Toolbar
	Recording Surface
	Toolbar
	Elements Menu
	Common Tasks Menu
	Walk Through

	Elements Explorer
	Toolbar
	Properties pane
	Context Menu
	Find Expression Builder

	DOM Explorer
	User Settings
	Overview
	Automation Overlay Surface
	Recording Options
	Identification Logic
	Translators
	Installation

	Step Failure Details Dialog
	Wrap Up

	Verification Engine
	Objectives
	Overview
	Verification Access
	Sentence Verification Builder
	Sentence Structure
	Verification Types
	IsVisible
	Content
	Attribute
	Style
	DropDown
	AJAX and Silverlight

	Verification Types Walk Through
	Test Project Setup
	Create Verifications

	3D Viewer
	3D Viewer Walk Through
	Test Project Setup
	Use 3D Viewer to Create Verifications

	Verification Walk Through
	Test Project Setup
	Successful Login Test
	Build Master Test
	Incorrect User Name Test
	Incorrect Password Test
	Empty User Name Test
	Empty Password Test

	Wrap Up

	Translators
	Objectives
	Overview
	Standard vs Translated Comparison
	Walk Through
	Wrap Up

	Testing AJAX Applications
	Objectives
	JavaScript
	Introducing AJAX
	ASP.NET AJAX
	Walk Through
	Project Setup
	Add Test Steps
	Intermittent Timing Problems


	RadControls for ASP.NET AJAX
	Walk Through
	Project Setup
	Testing RadComboBox


	Testing RadGrid
	Wrap Up

	Drag and Drop
	Objectives
	Overview
	Drag & Drop Basics
	Dragging to an Element
	Hitting a Moving Target
	Using the Elements Menu
	Translators
	Wrap Up

	Testing Silverlight Applications
	Objectives
	Overview
	Visual Studio Integration
	Cascading Combo Boxes Walk Through
	RadGridView Walk Through
	Validation Testing Walk Through
	Test Project Setup
	Master Test
	Check for No Errors
	Check for Errors
	Validating for No Entry
	Validate Calendar
	Validate Slider

	Wrap Up

	Handling Dialogs
	Objectives
	Overview
	HTML Popups
	Win32 Dialogs
	Alert
	Logon
	File Upload
	Download
	Generic

	Wrap Up

	MSTest
	Objectives
	Overview
	Running Tests From the Command Line
	Understanding Key MSTest Parameters

	Wrap Up

	Unit Testing
	Objectives
	Overview
	Creating a Unit Test
	Wrap Up

	Load Testing
	Objectives
	Overview
	Creating a Load Test
	Web Test Step Properties
	Load Test Settings
	Wrap Up

	WebAii Framework
	Objectives
	Overview
	Getting Started Walk Through
	Common Operations
	Navigate
	NavigateTo()
	Relative Urls
	WaitForUrl()

	Locate Elements
	Finding a Single Element
	Minimal Example
	Find Methods
	Find Operators
	RadControls Wrappers

	Finding Multiple Elements
	Elements Explorer
	Search Scope
	jQuery Support

	Wait for Elements
	WaitSync
	Wait
	HtmlWait

	Work With Element Properties
	Make Assertions
	Assert
	AssertAttribute
	AssertStyle
	AssertContent
	AssertTable
	AssertSelect
	AssertCheck


	Testing Silverlight Applications
	Finding Silverlight Elements
	Find Strategies
	Wait for Elements

	Automating the Browser
	Walk Through
	Wrap Up

	Data Driven Testing
	Objectives
	Overview
	The Built-In Grid
	Walk Through

	Connecting to External Data
	Spreadsheet Files
	XML Files
	Database Tables

	Using Code to Access Data
	Advanced Scenarios
	Wrap Up

	Test Regions
	Objectives
	Overview
	TestRegion Sample
	TestRegion in ASP.NET
	Wrap Up

	Debugging
	Objectives
	Overview
	Debugging Walk Through
	Wrap Up

	Support and Services

