

UI for ASP.NET AJAX

UI for ASP.NET AJAX

UI for ASP.NET AJAX

Table of Contents

1. Introduction 1

1.1. Important Information 1

1.2. Who Should Read This Courseware 1

1.3. What Do You Need To Have Before You Read This Courseware? 1

1.4. What Do You Need To Know Before Reading This Courseware? 1-2

1.5. How This Courseware Is Organized 2-6

1.6. Introducing RadControls 6-13

1.7. Before You Begin... 13

2. Navigation Controls 14

2.1. Objectives 14

2.2. Introduction 14-17

2.3. Getting Started 17-22

2.4. Designer Interface 22-29

2.5. Server-Side Programming 29-37

2.6. Control Specifics 37-42

2.7. Summary 42-43

3. Input Controls 44

3.1. Objectives 44

3.2. Introduction 44-46

3.3. Getting Started 46-49

3.4. Designer Interface 49-57

3.5. Server-Side Programming 57-60

3.6. Client-Side Programming 60-64

3.7. How To 64-69

3.8. RadInputManager 69-79

3.9. Summary 79

4. Client-Side API 80

4.1. Objectives 80

UI for ASP.NET AJAX

UI for ASP.NET AJAX

4.2. Introduction 80

4.3. Referencing RadControl Client Objects 80-82

4.4. Using RadControl Client Properties and Methods 82-83

4.5. JavaScript Intellisense 83-85

4.6. Naming Conventions 85-86

4.7. Using Client Events 86-91

4.8. Client Events Walk Through 91-95

4.9. JSON: Fat-Free Data Interchange 95-98

4.10. MS AJAX Library 98

4.11. Summary 98

5. User Interface and Information Controls 99

5.1. Objectives 99

5.2. Introduction 99-100

5.3. Getting Started 100-105

5.4. Designer Interface 105-110

5.5. Server-Side Programming 110-113

5.6. Client Side Programming 113-117

5.7. How To 117-119

5.8. Summary 119

6. RadRotator 120

6.1. Objectives 120

6.2. Introduction 120

6.3. Getting Started 120-124

6.4. Designer Interface 124-126

6.5. Client-Side Programming 126-127

6.6. Client-Side Items Management 127-128

6.7. Control Specifics 128-129

6.8. Coverflow mode 129-132

6.9. Carousel mode 132-134

6.10. Summary 134

UI for ASP.NET AJAX

UI for ASP.NET AJAX

7. Ajax 135

7.1. Objectives 135

7.2. Introduction 135-136

7.3. Getting Started 136-141

7.4. Designer Interface 141-145

7.5. Server-Side Programming 145-148

7.6. Client-Side Programming 148-162

7.7. Page vs MasterPage vs UserControl 162-163

7.8. Page Lifecycle 163-165

7.9. Dynamic User Controls for Ajax-Enabling Entire Page 165-174

7.10. Using RadAjaxManagerProxy 174-176

7.11. Summary 176

8. ActiveSkill: Getting Started 177

8.1. Objectives 177

8.2. Introduction 177

8.3. Setup ActiveSkill Project Structure 177-178

8.4. Setting Up the Database 178-181

8.5. ASP.NET Membership 181-188

8.6. Create the ActiveSkill Login Page 188-192

8.7. Create Registration Page 192-201

8.8. Implement the Registration Page 201-202

8.9. The CreateUserWizardWrapper Code-Behind 202-204

8.10. The CreateUserWizardWrapperUI 204-210

8.11. Create the Billing Control Code-Behind 210-214

8.12. Create the BillingControl User Control 214-216

8.13. Add Utility Classes 216-224

8.14. Configure the Profile 224-225

8.15. Summary 225

9. Screen "Real Estate" Management 226

9.1. Objectives 226

UI for ASP.NET AJAX

UI for ASP.NET AJAX

9.2. Introduction 226-231

9.3. Getting Started 231-236

9.4. Designer Interface 236-242

9.5. Control Specifics 242-246

9.6. Server-Side Programming 246-256

9.7. Client-Side Programming 256-265

9.8. How To 265-280

9.9. Summary 280

10. Skinning 281

10.1. Objectives 281

10.2. Introduction 281-282

10.3. Getting Started 282-283

10.4. Registering and Assigning Skins 283-288

10.5. Understanding the Skin CSS File 288-292

10.6. Creating a Custom Skin 292-296

10.7. Summary 296

11. Databinding 297

11.1. Objectives 297

11.2. Introduction 297-298

11.3. Getting Started 298-309

11.4. Binding Hierarchical Data 309-315

11.5. Server-Side Programming 315-322

11.6. Binding to Business Objects 322-330

11.7. Binding to Linq 330-337

11.8. Summary 337

12. Templates 338

12.1. Objectives 338

12.2. Introduction 338-340

12.3. Getting Started 340-346

12.4. Binding Expressions 346-350

UI for ASP.NET AJAX

UI for ASP.NET AJAX

12.5. Designer Interface 350-353

12.6. Server-Side Programming 353-360

12.7. Client-Side Programming 360-361

12.8. Summary 361

13. ActiveSkill: Admin Page 362

13.1. Objectives 362

13.2. Introduction 362

13.3. Build the Admin Page 362-368

13.4. Create User Controls 368-372

13.5. Create ActiveSkill Skin 372-374

13.6. Summary 374

14. RadAsyncUpload 375

14.1. Objectives 375

14.2. Introduction 375-376

14.3. Getting Started 376-379

14.4. Important Properties 379

14.5. Upload Modules 379-380

14.6. Server-Side Programming 380-381

14.7. Client-Side Programming 381-382

14.8. Summary 382

15. RadComboBox 383

15.1. Objectives 383

15.2. Introduction 383-384

15.3. Getting Started 384-386

15.4. Designer Interface 386-390

15.5. Control Specifics 390-402

15.6. Server-Side Programming 402-408

15.7. Client-Side Programming 408-414

15.8. How To 414-427

15.9. Summary 427-428

UI for ASP.NET AJAX

UI for ASP.NET AJAX

16. RadTreeView 429

16.1. Objectives 429

16.2. Introduction 429-430

16.3. Getting Started 430-432

16.4. Designer Interface 432-437

16.5. Control Specifics 437-447

16.6. Server Side Programming 447-458

16.7. Client-Side Programming 458-463

16.8. How To 463-465

16.9. Performance 465-469

16.10. Summary 469-470

17. RadFileExplorer 471

17.1. Objectives 471

17.2. Introduction 471

17.3. Getting Started 471-474

17.4. Thumbnails Mode 474-475

17.5. Server-Side Programming 475-478

17.6. Client-Side Programming 478-479

17.7. How To 479-482

17.8. Summary 482

18. RadSiteMap 483

18.1. Objectives 483

18.2. Introduction 483-484

18.3. Getting started 484-486

18.4. Designer Interface 486-491

18.5. Server Side Programming 491-492

18.6. How To 492-495

18.7. Summary 495

19. RadGrid 496

19.1. Objectives 496

UI for ASP.NET AJAX

UI for ASP.NET AJAX

19.2. Introduction 496-497

19.3. Getting Started 497-503

19.4. Using the Design Time Interface 503-514

19.5. Server Side Code 514-525

19.6. Client Side Code 525-537

19.7. Summary 537-538

19.8. Columns 538-545

19.9. Rows 545-546

20. RadEditor 547

20.1. Objectives 547

20.2. Introduction 547-548

20.3. Getting Started 548-551

20.4. Designer Interface 551-562

20.5. Using the NewLineMode Property 562-563

20.6. Customizing Content Area 563-566

20.7. Configuring the ToolsFile 566-567

20.8. RibbonBar and Editor 567-570

20.9. Server-Side Programming 570-573

20.10. Client-Side Programming 573-578

20.11. How To 578-587

20.12. Summary 587

21. RadBarcode 588

21.1. Objectives 588

21.2. Introduction 588

21.3. Barcode types 588-589

22. RadButton 590

22.1. Objectives 590

22.2. Introduction 590-591

22.3. Getting Started 591-593

22.4. Specifying RadButton Icons 593-594

UI for ASP.NET AJAX

UI for ASP.NET AJAX

22.5. RadButton as an Image Button 594-596

22.6. RadButton as a Toggle Button 596-599

22.7. Important Properties 599-601

22.8. Creating a single click button 601-602

22.9. Bigger Icons and Buttons 602

22.10. Confirm postback with RadButton 602-604

22.11. Specifying the content of a RadButton 604-605

23. RadBinaryImage 606

23.1. Objectives 606

23.2. Introduction 606-607

23.3. Getting Started 607-608

24. RadFilter 609

24.1. Objectives 609

24.2. Introduction 609

24.3. Getting Started 609-610

24.4. Events 610

24.5. Summary 610

25. RadImageEditor 611

25.1. Objectives 611

25.2. Introduction 611

25.3. Smart Tag 611-612

25.4. Getting Started 612-613

25.5. Configuring the Toolbar 613-615

25.6. Localization 615-616

25.7. Creating a Custom Tool 616-617

25.8. Save a Thumbnail 617-620

26. RadListView 621

26.1. Objectives 621

26.2. Introduction 621

26.3. Getting Started 621-625

UI for ASP.NET AJAX

UI for ASP.NET AJAX

26.4. Using the design Time Interface 625-628

26.5. Server Side Code 628-637

26.6. RadDataPager 637-639

26.7. Summary 639

27. RadNotification 640

27.1. Objectives 640

27.2. Introduction 640

27.3. Getting Started 640-642

27.4. Notification Menu 642-643

27.5. Embedded Icons 643

27.6. Different Ways to Show A Notification 643-645

27.7. Populating Plain Text And Rich Content 645-647

27.8. Callback Support 647-648

27.9. How To Combine Properties 648-649

27.10. Auto Save RadEditor’s content and notify the user 649-650

28. RadCompression 651

28.1. Objectives 651

28.2. Introduction 651

28.3. Using RadCompression 651-652

28.4. Summary 652-653

29. RadCaptcha 654

29.1. Objectives 654

29.2. Introduction 654-655

29.3. Getting Started 655-657

29.4. Important Properties 657-658

29.5. Optimize for Maximum Security 658

29.6. Configure RadCaptcha audio 658-660

30. RadXmlHttpPanel 661

30.1. Objectives 661

30.2. Introduction and Overview 661

UI for ASP.NET AJAX

UI for ASP.NET AJAX

30.3. Supported Scenarios 661-662

30.4. Configuring the XmlHttpPanel 662-667

30.5. Client-Side Programming 667-671

30.6. Server-Side Programming 671

30.7. Known Issues 671

31. RadTagCloud 672

31.1. Objectives 672

31.2. Introduction 672

31.3. Getting Started 672-674

31.4. Important Properties 674-675

31.5. Databinding 675-678

31.6. Filtering and Sorting of the TagCloud Items 678-679

31.7. Generating TagCloud from External Sources 679

31.8. Client-Side Data Binding 679-687

32. RadRating 688

32.1. Objectives 688

32.2. Introduction 688

32.3. Getting Started 688-689

32.4. Server-Side Programming 689-691

32.5. Client-Side Programming 691-692

32.6. Summary 692

33. RadRibbonBar 693

33.1. Objectives 693

33.2. Introduction 693-695

33.3. Getting Started 695-696

33.4. Server-Side Programming 696-697

33.5. Client-Side Programming 697-698

33.6. How -to 698-699

33.7. Summary 699

34. RadOrgChart 700

UI for ASP.NET AJAX

UI for ASP.NET AJAX

34.1. Objectives 700

34.2. Introduction 700-701

34.3. Getting Started 701-702

34.4. Control Specifics 702-703

34.5. Server-Side Programming 703

34.6. How-to 703

34.7. Summary 703-704

35. RadPivotGrid 705

35.1. Objectives 705

35.2. Introduction 705

35.3. Getting Started 705-706

35.4. RadPivotGrid Fields 706-710

35.5. Summary 710

36. RadSocialShare 711

36.1. Objectives 711

36.2. Introduction 711

36.3. Button Types And Button Collections 711-712

36.4. Important Properties 712

36.5. Using The Configurator 712-714

36.6. First Steps 714-717

36.7. Controlling the URL and the Title 717-718

36.8. Using Third Party Buttons 718-719

37. RadTreeList 720

37.1. Objectives 720

37.2. Introduction 720

37.3. Getting-Started 720-729

37.4. Using the design-time interface 729-735

37.5. Data Editing 735-736

37.6. Appearance and Styling 736-739

37.7. Summary 739

UI for ASP.NET AJAX

UI for ASP.NET AJAX

37.8. Scrolling 739-740

37.9. Items Drag and Drop 740-741

37.10. Load On Demand 741-742

37.11. Columns 742-744

38. ActiveSkill: Database Maintenance 745

38.1. Objectives 745

38.2. Introduction 745-747

38.3. Building the Categories Tree Control 747-758

38.4. Implement Categories Control 758-776

38.5. Implement Questions Control 776-789

38.6. Implement CreateExams Control 789-803

38.7. Summary 803-804

39. ActiveSkill: User Functionality 805

39.1. Objectives 805

39.2. Build the User Home Page 805-812

39.3. Build the Choose Exam Control 812-816

39.4. Build the Exam Question Control 816-838

39.5. Summary 838

40. RadChart 839

40.1. Objectives 839

40.2. Introduction 839

40.3. Getting Started 839-857

40.4. Designer Interface 857-865

40.5. Control Specifics 865-867

40.6. Server-Side Programming 867-882

40.7. Client-Side Programming 882-886

40.8. How To 886-890

40.9. Summary 890

41. RadHtmlChart 891

41.1. Objectives 891

UI for ASP.NET AJAX

UI for ASP.NET AJAX

41.2. Introduction 891

41.3. Getting Started 891-896

41.4. Chart Types 896-900

41.5. Databinding 900-902

42. ActiveSkill: Building the Exam Finish Control 903

42.1. Objectives 903

42.2. Building the Exam Finish Page 903-913

42.3. Summary 913

43. Date, Time, Calendar and Scheduling 915

43.1. Objectives 915

43.2. Date-Time and Calendar Controls Getting Started 915-918

43.3. Tour of Date-Time and Calendar Controls 918-919

43.4. Date-Time and Calendar Controls Designer Interface 919-928

43.5. Date-Time and Calendar Controls Server-Side Programming 928-933

43.6. Date-Time and Calendar Controls Server-Side Walk-through 933-936

43.7. Date-Time Picker Validation 936-938

43.8. Date-Time and Calendar Controls Client-Side Programming 938-944

43.9. Getting Started with RadScheduler 944-955

43.10. Scheduler Resources 955-959

43.11. Custom Attributes 959

43.12. Scheduler Designer Interface 959-963

43.13. Scheduler Server-Side Programming 963-966

43.14. Scheduler Server-Side Events 966-972

43.15. Scheduler Client-Side Programming 972-978

43.16. Using Scheduler Templates 978-981

43.17. Summary 981-982

44. ActiveSkill: Exam Scheduling 983

44.1. Objectives 983

44.2. Defining the Markup 983-986

44.3. Handling the Drag and Drop Client-Side 986-987

UI for ASP.NET AJAX

UI for ASP.NET AJAX

44.4. Handle Server-Side Events 987-991

44.5. Integrate the Exam Scheduler 991

44.6. Summary 991

UI for ASP.NET AJAX

UI for ASP.NET AJAX

This courseware is for .NET developers who are starting their journey with Telerik UI for ASP.NET AJAX. It
contains step-by-step instructions on how to use the Telerik controls and how to create applications.

Most of the information from the courseware has already been transferred to the documentation in the form of
Getting Started articles. The documentation (http://www.telerik.com/help/aspnet-ajax/introduction.html) is
the most complete and up to date place to find information about Telerik UI for ASP.NET AJAX. We urge you to
check them out. In addition, you can also go through the live demos (http://demos.telerik.com/aspnet-ajax/)
to see the controls in action.

If you encounter issues with this courseware or its related projects, feel free to submit a support ticket
(http://www.telerik.com/account/support-tickets/available-support-list.aspx) and explain the problem you
have encountered. We will do our best to help you.

You should read this courseware if:

 You have never used AJAX or any of the Microsoft AJAX controls and want to learn what it’s all about.

 You have used AJAX or some kind of AJAX based controls and want to learn the Telerik approach using
RadControls for ASP.NET AJAX.

 You have used previous versions of RadControls and want to learn how to use RadControls for ASP.NET
AJAX.

 You have used RadControls for ASP.NET AJAX and want to make your knowledge more comprehensive.

Computer Setup

 Windows XP Professional or newer

 Microsoft .NET Framework 3.5

 Internet Information Services 5+

 Internet Explorer 7+

 Microsoft Visual Studio 2010

 Microsoft SQL Server Express or Microsoft SQL Server 2005 or above.

 RadControls for ASP.NET AJAX. You can purchase RadControls for ASP.NET AJAX from:

http://www.telerik.com/purchase/purchase-online.aspx

or download the trial from:

http://www.telerik.com/products/aspnet-ajax/download.aspx

Learn more about system requirements for RadControls for ASP.NET AJAX here
(http://www.telerik.com/products/aspnet-ajax/system-requirements.aspx).

1 Introduction

1.1 Important Information

NOTE: The courseware was last updated on 3/28/2009. It may contain outdated information.

1.2 Who Should Read This Courseware

1.3 What Do You Need To Have Before You Read This Courseware?

1.4 What Do You Need To Know Before Reading This Courseware?

UI for ASP.NET AJAX

1 UI for ASP.NET AJAX

This courseware assumes that you are familiar with ASP.NET using either VB.NET or C# code. You will also need
a basic understanding of the differences between server and client code. The courseware uses Visual Studio
2008 and assumes you know your way around this environment. You should be able to navigate the basic
functional areas of the IDE (e.g. Solution Explorer, Properties, design/source for web pages, etc.) and be able
to run and debug web applications.

Courseware Chapter Organization
The courseware chapters fall into these categories:

 The courseware has chapters on groups of RadControls where there are similarities between the controls.
For example, all of the navigation controls are more alike than different when it comes to the API and the
design-time environment. This allows you to leverage a common set of skills between controls.

 There are separate chapters for controls that don't fit together in a category with other controls, or are
larger and more involved, such as the grid, editor or chart controls.

 We have also added steps on how to create a demonstration application "ActiveSkill". These chapters
leverage your knowledge from preceding sections to see how the controls are used together in a closer-to-
real-world setting. ActiveSkill is quite a bit smaller than a production application, but also larger than your
typical demo application that may only use one or two controls at a time.

Each chapter contains:

 A list of the objectives to be accomplished in the chapter.

 A brief introduction to orientate you to the "why and where" each control should be used.

 A "Getting Started" tutorial to get your feet wet with the control.

 A tour of the design-time interface and a brief overview of significant control properties or groups of
properties.

 A guide to the server-side capabilities of the control with the focus on important properties, collections
and methods.

 A review of the client-side API that demonstrates how to get references to the control's client object,
methods and events.

 A brief review of the objectives that were accomplished.

The "ActiveSkill" chapters will only have the objectives and summary. The body of these chapters will be the
steps to build the ActiveSkill application.

Chapter Summary

Navigation Controls

This chapter tours "navigation" related RadControls so you can became familiar with how and where each of
these controls are used. You will see some of the important properties, methods and events that are common
between navigation controls. You will create a simple application that uses the menu, tab strip and tool bar
controls. This chapter shows common server-side tasks such as add/edit/delete, iterating items in a collection
and locating items based on various criteria (i.e. text, value or attribute). This chapter also shows some
control-specific tasks such as working with the tab strip and Multi-Page together and using the context menu.

Input Controls

This chapter tours "input" related RadControls. The chapter shows significant properties and notes common
properties shared by input controls. You will build a simple application that uses all four types of input control
and makes use of common properties such as labels and empty messages. You will learn how to use the server-
side API to respond to user input and to create input controls dynamically. The chapter demonstrates how to

1.5 How This Courseware Is Organized

UI for ASP.NET AJAX

2 UI for ASP.NET AJAX

perform common client-side tasks such as enabling and disabling some controls based on the responses to
others, restricting input as the user types, and handling parsing errors. The chapter also shows how to use input
controls with other controls such as an ASP.NET validator or RadSpellCheck.

Client-Side API

This chapter demonstrates basic techniques used to obtain RadControl object references in client code, how to
call client methods and use properties of the client objects. You will learn the consistent naming conventions
used throughout the RadControls client API so that you can re-apply that knowledge on new controls. The
chapter shows how to implement client side event handlers and how to add and remove event handlers on-the-
fly. Finally, you will put your knowledge to work by building a tabbed interface that displays a breadcrumb trail
as the mouse hovers each tab.

RadRotator

This chapter explores the RadRotator control and some of the ways it can display a stream of changing content.
You will become familiar with significant properties for configuring the rotator and will create a simple
application displaying data taken from an XML file. The chapter demonstrates how to start and stop the rotator
using the client-side api. The chapter also shows how to add items explicitly when the rotator is not bound to a
data source.

User Interface and Information Controls

This chapter tours the user interface and information controls RadFormDecorator, RadToolTipManager, and
RadToolTip. You will create a simple application that demonstrates how these controls change the look-and-
feel of standard ASP.NET controls and tool tips. You will became familiar with the design-time support for these
controls and will review the their most important properties. This chapter demonstrates how the server-side
API supplies content for customized tool tips. You will learn how the client-side API handles tool tip
visibility and work with client properties to perform other functions in your Web pages. The chapter also shows
how to add client-side IDs to an image map so that it can be used with RadToolTip.

AJAX

In this chapter we take a tour of the AJAX related RadControls, paying particular attention to the powerful and
flexible RadAjaxManager. You will build a simple AJAX-enabled application that first uses RadAjaxPanel, then
substitute RadAjaxManager to see how the two mechanisms contrast. You will also leverage
RadAjaxLoadingPanel to provide better user feedback during AJAX requests.

You will learn how to define AJAX settings programmatically at run-time and at design-time using the
RadAjaxManager Property Builder dialog to configure settings. Later you will use RadAjaxManagerProxy to
perform the same settings configuration within a user control.

In this chapter you will build an application that "deals" cards to demonstrate how AJAX requests can be
triggered on the client and handled on the server. You will code client-only functions to access common
RadAjaxManager properties, e.g. configuration settings, enabling AJAX, canceling requests. You will also handle
RadAjaxManager client events that let you set and restore state at the beginning and conclusion of AJAX
requests.

The chapter also looks at design decisions regarding AJAX-enabling applications. In the process we will take a
walk through the ASP.NET page lifecycle and its impact on dynamically created user controls, and finally put
this information to use in a Winform-like UI demonstrating dynamic user controls together with AJAX.

You will see how RadAjaxManagerProxy provides visibility to RadAjaxManager settings in complex container-ship
scenarios.

Finally, you will see how RadScriptBlock and RadCodeBlock handle common script + markup related issues.

Screen "Real Estate" Management

This chapter introduces the "real estate" management controls, showing how they can help organize web page
content into flexible content areas that can be moved, resized, or hidden. You will create an application that

UI for ASP.NET AJAX

3 UI for ASP.NET AJAX

uses dock zones and dock windows, a splitter, and some pop-up windows managed by a window manager. You
will also create simple applications to become familiar with minimize zones and sliding zones.

This chapter demonstrates how to use the server-side API with the RadDock family of controls, adding content
in the code-behind, implementing custom commands, and preserving dock layout in a cookie. You will learn
how to perform common client-side tasks such as responding to layout changes, implementing custom
commands, manipulating windows, printing the panes of a splitter, and using the customizable alert, confirm,
and prompt dialogs.

Finally, you will learn techniques that are important to some of the more common applications that use the
"real estate" management controls, including implementing tool windows and modal dialogs, creating a
desktop-like window by filling the entire Web page with a splitter, and creating dockable windows dynamically.

Skinning

Learn how to use built-in skins to provide a coherent, consistent style to your applications. The chapter
explores the general makeup of the skin CSS files and how the styles interact with the controls rendered in the
browser. You will learn multiple techniques for registering and assigning skins. You can use the included pre-
defined skins for these controls, or design your own skins for a completely custom look.

Databinding

This chapter introduces the interfaces that RadControls can bind to and the task specific Data Source controls
that can be used to bind declaratively. You will build a simple declarative data binding example using
RadToolBar with SqlDataSource. This chapter covers in more detail how the data binding properties are used
and how to bind to multiple data sources at one time.

In server-side code you see how simple arrays and lists, hierarchical data, business objects and LINQ data are
bound. You will also handle data binding related server events.

Templates

This chapter shows the general techniques for working with templates as used by RadControls. First you will
build a simple application that uses templates and data binding to elements within the templates. We will
explore the details of binding expressions, starting with public server methods and working through Container,
DataItem, Eval() and Bind() methods. You will also learn how to find controls within templates using both server
and client code.

RadComboBox

This chapter examines the RadComboBox control and the powerful features it provides. You will create a
simple application that populates one combo box with statically declared items and another with items loaded
from a data source.

The chapter will review the design time support for the combo box and explore many of the properties and
groups of properties you can use to configure the combo box at design time. You will learn about the different
types of templates you can use with a combo box, and how to work with combo box custom attributes. You will
also learn about the load-on-demand mechanism and how it can be used with virtual scrolling or a "More
Results" box to improve performance.

The chapter reviews some of the server-side properties and methods, especially those for working with the
items in the drop-down list. You will look at some of the important server-side events, such as responding to
selected text changes or that service the load-on-demand mechanism. The chapter also covers when and how
to sort the drop-down list in server-side code.

You will explore some of the client-side methods for working with the items collection, and use important
client-side events, including those for responding to selection changes, opening and closing the drop-down list,
and the events surrounding the load-on-demand mechanism.

Finally, you will learn some advanced techniques, including implementing custom sort criteria, keeping the
drop-down list open when an item template includes input controls, controlling when the load-on-demand
mechanism fetches items, enabling virtual scrolling when not allowing custom text, and creating a Web service

UI for ASP.NET AJAX

4 UI for ASP.NET AJAX

for loading items on demand.

RadTreeView

This chapter reviews the very useful RadTreeView control and how you can add the functionality of a desktop
TreeView to your Web applications. You will create a simple application that populates a tree view with
statically declared items and another with items loaded from a data source. In the process you will become
familiar with important tree view and tree node properties.

We will look at design time support for the tree view and review many of the properties and groups of
properties you can use to configure the tree view and its nodes at design time. You will discover how to use
special features of RadTreeView, including node editing, check boxes, drag-and-drop, and node context menus.

You will learn some of the server-side properties and methods, and will learn how to propagate changes to all
ancestors or descendants of a node. You will build a node hierarchy dynamically in server-side code, and see
how this can be used to populate a tree view with data from multiple tables. You will also learn about several
of the tree view server-side events.

This chapter explores client-side methods for working with the tree node and tree view objects, how to
implement the 'radio button' pattern for state changes on nodes, and how to attach an event handler directly to
the tree view's DOM object when the tree view first loads. This chapter also shows a few "tricks" for working
with the tree view, such as getting the text of nodes to wrap and how to add controls directly to tree nodes
without using templates.

Finally, you will see how the load-on-demand feature improves performance for large tree views, expanding
nodes using either a postback, a callback, or a Web Service.

RadGrid

This chapter explores the versitile and powerful RadGrid control. You will create a simple application that
binds the grid to live data and manipulates the auto-generated columns. You will also explore the most
fundamental features of the RadGrid such as Sorting, Filtering, Grouping and Paging.

You worked with an example of implementing add, edit and delete operations manually in server-side code.
You will learn how to access data values and manipulate the appearance of a column in server-side
code, implement powerful new client-side databinding feature of the RadGrid and finally, use advanced client-
side coding techniques, including accessing data values, manipulating appearance and binding to client-side
events to make a responsive and flashy interface.

RadEditor

In this chapter we explore RadEditor's rich feature set, learn how to configure RadEditor for the runtime
environment and look at the editor's design-time interface. You will learn how to manipulate RadEditor using
client-side code including how to reference the editor, the document and the current selection, as well as
responding to editor client events. Finally, you will learn some of the editor's customization possibilities, how
to optimize RadEditor for multiple instances and how to localize RadEditor for a specific language.

RadChart

This chapter explores the rich functionality and data presentation capabilities of the innovative RadChart
control. In this chapter you will build a simple chart with static items and also learn how to bind data to the
chart. We will take a tour of the basic RadChart elements as well as the types of charts that are available. You
will use the tools in the designer to help navigate the many RadChart capabilities. You will also learn about
some of the latest RadChart features, including zooming and scrolling. You will create and configure many of
the chart elements programmatically, including the chart series, items, legend and chart title. You will also
learn how to bind to database data and respond to events on the server side.

Date, Time, Calendar and Scheduling

This chapter explores the features of the date/time picker, the calendar and the scheduler controls. You will
create some simple applications to become familiar with the controls, review their design time interfaces and

UI for ASP.NET AJAX

5 UI for ASP.NET AJAX

use the server-side API to work with the major objects that make up each control. In particular, we will set
calendar special days, add scheduler appointments, add scheduler resources, schedule recurrence and handle
client-side events. You will also learn how to validate date and time picker control entries and how to use
scheduler templates.

Building ActiveSkill - Chapter Summary

Getting Started

In this chapter you will build the initial framework for a demonstration application that uses many of the
RadControls for ASP.NET AJAX. You will set up the project structure, learn how to set up and use ASP.NET
Membership and finally use RadFormDecorator and RadInput controls.

Building the Admin Page

In this chapter we build the Admin Home page, starting with the general layout and adding the code-behind
required to swap user controls dynamically. We will create each of the user controls and test the dynamic
swapping behavior. Finally, we will create a new custom skin (called ActiveSkill) that is based on the standard
Telerik "Black" skin and then configure the application to use that skin.

Database Maintenance

In this chapter you will build maintenance functionality for categories, questions and exam related tables. You
will use RadGrid heavily to leverage its powerful CRUD handling abilities, creating both master-detail in a single
grid and in two related grids. You will use RadControls within a standard ASP.NET FormView along with Eval()
and Bind() binding expressions. You will also build a user control that combines RadComboBox with
RadTreeView for reuse throughout the application.

User Functionality

In this chapter you will build functionality for the central purpose of the application, the taking of exams. The
work is heavily weighted to the client where you will consume a web service to bring back the exam data, use
your own JavaScript objects to encapsulate the exam, navigate through the exam and summarize the exam
results. You will bind a client exam responses object directly to the RadGrid using client code only. You will
also use LINQ to SQL within the web service to consume Exam database data.

Building the Exam Finish Control

In this chapter you will implement the "finish" page of ActiveSkill. This page will display the test results and a
chart showing results by question category. In the process you will learn how about serializing JSON and passing
JSON between client and server. You will add HTML controls to display exam results and also add and configure
a RadChart. You will bind the RadChart to a generic List of objects and display the data in a stacked bar format
with two series of data.

Exam Scheduling

In this chapter you will implement the scheduling for ActiveSkill. You will learn how to configure RadTreeView
and RadScheduler for drag and drop, how to handle scheduler events to create new appointments and modify
the attributes of existing appointments based on commands set within the appointment template. You will also
learn how to format appointments as they are created based on the logged in user role and appointment
attribute data.

Navigation Controls
RadControls for ASP.NET AJAX comes with a full set of powerful, flexible controls that help you express your
user interface with tab strips, tool bars, menus, panel bar and the ability to combine these into the Office

1.6 Introducing RadControls

UI for ASP.NET AJAX

6 UI for ASP.NET AJAX

"Ribbon Bar" style interface. These controls let your user navigate throughout your site and to trigger your
custom server or client-side code. As with all the RadControls, these controls come with a set of pre-defined
skins or design your own skin for a completely custom look.

Input Controls
The input controls make it easy to collect information from users, whether it is generic text or typed data such
as numbers and dates. You can choose from several types of input controls, RadTextBox, RadMaskedTextBox,
RadNumericTextBox and RadDateInput. Extensive support for built-in and custom masks make it easier for your
user to make valid entries.

UI for ASP.NET AJAX

7 UI for ASP.NET AJAX

User Interface and Information Controls
RadFormDecorator and RadToolTip let you extend the skin-based look and feel to standard ASP.NET elements
such as check boxes, radio buttons, command buttons and tool tips.

RadRotator lets you display and scroll images and data vertically or horizontally, either as a continuous stream

UI for ASP.NET AJAX

8 UI for ASP.NET AJAX

or as a slide show. Because this control works with templates, you have complete flexibility and control over
the layout.

RadAjax
The RadAjax family of controls let you instantly AJAX-enable your application with little programming and
configuration effort on your part. RadAjaxPanel AJAX-enables everything that sits on the panel and is an easy
way to get started. For more control and potential performance benefit, RadAjaxManager lets you AJAX-enable
specific parts of your application. Both routes let you display a "spinny" graphic during long running processes
using the RadAjaxLoadingPanel. With RadAjax controls you can get startling performance and that Windows
desktop look-and-feel.

Screen Real Estate Management Controls
The controls that let you manage screen "real estate" define regions of the Web page that can be moved around
the screen, minimized or hidden away. By using these "real estate" controls, you can organize your Web pages
and add flexibility that lets your users configure the layout in an individualized way. These controls include

UI for ASP.NET AJAX

9 UI for ASP.NET AJAX

windowing, docking, splitter bars and sliding zones.

RadComboBox
RadComboBox is an amped up version of a standard drop down list that lets you add images, animated effects,
and is templated for complete control over the layout. Unlike the ASP.NET DropDownList control, which
restricts users to selecting only items from the list, RadComboBox can optionally allow users to type in their
own entries. RadComboBox also works well for very long lists of items. The auto-complete feature
automatically scrolls the list and highlights matches, or you can use the filtering capability to limit items to
currently entered text. You can even configure the combo box to load on demand.

RadGrid
RadGrid for ASP.NET AJAX is the fastest and most feature-rich Datagrid for ASP.NET, designed to provide
desktop-like user experience with minimum HTML output. RadGrid provides real-time performance as well as
almost codeless development experience for a rich variety of features.

UI for ASP.NET AJAX

10 UI for ASP.NET AJAX

RadEditor
RadEditor is a powerful but lightweight editor control you can use in your web applications when you need a
full-featured editor. It comes loaded with lots of built-in goodies like pre-defined buttons, drop down lists and
context menus that perform any tasks you are likely to need. If the built-in tools don't fill the bill, RadEditor
can be extensively customized.

RadChart
RadChart is a powerful business data presentation tool that can show your data off with striking impact.
RadChart comes with many customizable chart types and skins to tailor the behavior and look of each chart.

You can choose to exercise fine-tune control over all aspects of your chart or use the automatic layout,
automatic text wrapping and intelligent labeling functions to handle the details. At design time you get quick
access to critical properties with the Smart Tag, convenient groups of important properties in the RadChart
wizard, or control all RadChart settings from the Properties Window.

UI for ASP.NET AJAX

11 UI for ASP.NET AJAX

Date, Time, Calendar and Scheduling Controls
RadControls comes with a full set of date and time and calendar related controls. Date and time picker controls
let the user enter directly or choose using mouse-only in a pop-up dialog. With RadCalendar you have virtually
unlimited control over appearance and formatting and can define special days for individual display of holidays
and appointments. For complete support of scheduling, RadScheduler provides automatic support of
appointment inserts/updates/deletions, multiple views (day, week, month, time-span and more), ability to
drag appointments, custom attributes, resources, inline and advanced views of appointments and many
customization options.

UI for ASP.NET AJAX

12 UI for ASP.NET AJAX

The projects in this learning guide will assume the following:

1. You will add the following "Imports" (VB) or "uses" (C#) statements to your projects to reference the
Telerik.Web.UI namespace:

2. RadControls for ASP.NET AJAX requires a ScriptManager before any of the controls on the page. You may
instead use the RadScriptManager although it is not required. RadScriptManager has some optimization
capabilities that can be used for maximum performance.

3. Example projects can be found in \VS Projects\<chapter name>\<CS or VB>\<project name>. For example,
the Navigation Controls ServerTags project for C# can be found at \VS Projects\Navigation
Controls\CS\ServerTags.

1.7 Before You Begin...

[VB] Including the Telerik.Web.UI Namespace

Imports Telerik.Web.UI

[C#] Including the Telerik.Web.UI Namespace

using Telerik.Web.UI;

UI for ASP.NET AJAX

13 UI for ASP.NET AJAX

 Inventory the "navigation" related RadControls. Explore how and where these navigation controls are used.

 See how each of the navigation controls are similar so you can leverage the same knowledge with each
control.

 Create a simple application to get confidence in using each of the controls.

 Explore the design time interface for each of the navigation controls, again taking special notice of where
the controls are similar. You will learn how to access properties and methods through Smart Tag,
Properties Window and Property Builder.

 Explore principal properties and groups of properties where 80% of the functionality is found.

 Learn server-side coding techniques, starting with an exploration of important methods and events. You
will also learn how to perform common server-side tasks (e.g. add/edit/delete items in a collection) and
control-specific tasks (e.g. set a context menu target).

Go to any popular web site and you expect to see menus and tab strips across the top and along the sides.
Traversing web pages is after all the bread-and-butter of many web sites. For web applications that mimic full
featured Windows applications you expect to see Outlook-like panel bars for organizing functionality, tool bars
for taking direct actions and context menus for making intuitive choices within the user's own data. RadControls
have you covered with a versatile set of navigation controls for building compelling user interfaces easily:

RadMenu

RadMenu is an advanced navigation control that allows you to build lightweight and search-engine-friendly
menu systems. Menus can be displayed horizontally or vertically and have multiple levels. Child items can open
up (as shown in the screenshot below) or can automatically scroll.

Menu items can display text, images or both. And because RadMenu items can be templated, you can add
virtually any content that suits your purpose:

RadContextMenu

2 Navigation Controls

2.1 Objectives

2.2 Introduction

UI for ASP.NET AJAX

14 UI for ASP.NET AJAX

RadContextMenu is similar to RadMenu but is designed to popup over a "target" control where the user right-
clicks. Context menus can also be triggered by other events and popped up programmatically (either client or
server side).

RadTabStrip

Use RadTabStrip to build tabbed interfaces for URL navigation or making choices based on tab
selection. RadMultiPage is a related control that manages content of pages that can be automatically selected
by RadTabStrip. Tabs can be located on the top or bottom (see screenshot below), left or right side of your web
page.

RadTabStrip has a number of options for customizing layout and appearance including:

 Tabs can be aligned left, center, right or justified.

 Tabs can appear on multiple rows and can "break" at any tab to form a new row.

 Tabs can scroll for better management of your screen real-estate.

UI for ASP.NET AJAX

15 UI for ASP.NET AJAX

 Tabs can be structured in a hierarchy for more complex relationships (see screenshot below).

RadPanelBar

Use RadPanelBar to create collapsible vertical menus or Outlook style panels. You can use templates to
create a tool bar or simple entry form area within panels. RadPanelBar can be configured to open only one
panel at a time, or multiple panels at one time.

RadToolBar

Tool strips are used in most web applications to allow quick access to common tools. RadToolBar mimics the
flexibility of desktop toolbars which can be floating, dockable, re-orderd and can be oriented vertically or
horizontally. RadToolBar can be used in conjunction with RadDock to creating a docking toolbar:

UI for ASP.NET AJAX

16 UI for ASP.NET AJAX

All Together Now...

Also know that navigation controls can be combined to create an Office "Ribbon Bar" style interface.

Each of the navigation controls...

 Uses "semantic rendering" for minimal HTML markup. Semantic rendering avoids costly HTML tables and
instead uses Cascading Style Sheets (CSS) to handle appearance and placement. The HTML output is
significantly reduced resulting in dramatic performance improvement.

 Can be populated at design-time, in markup, through data binding, in server code or in client code. You
can jump ahead to the chapter on Data Binding for detailed information on hooking up all kinds of database
and object data to your RadControls.

 Can be skinned for a great visual appearance that's consistent with your entire web application. Each
control comes with a standard set of matched skins (e.g. "Outlook", "Vista", "Black", "Telerik", etc.) that can
be simply selected from a list or you can create your own custom skin. You can skip ahead to the chapter
on skinning for details on building your own custom skins.

 Includes full keyboard support for navigating and activating items.

 Right-to-left support to allow your application to be internationalized.

 Except for the tool bar, the navigation controls can be animated so that visual actions such as menu
expansion uses one of several predefined effects. Animation can be disabled. Delay and duration for the
animation effect can be specified in milliseconds.

 Each item has a special Attributes collection that can contain any custom name/value pairs you might
need. Attributes can be defined declaratively and accessed in code (either client or sever-side).

 Includes a rich, consistent client-side API for adding/deleting items on-the-fly, locating/changing items and
monitoring events. All these tasks can be performed with best performance right on the client browser.

 Supports templates so that portions of your RadControl can contain any arbitrary arrangement of HTML
including ASP.NET controls, RadControls or anything else that can be entered into markup.

In this walk-through you will become familiar with the menu, tab strip and tool bar controls (more on panel bar
in the server-side section upcoming). These controls will produce the card catalog style interface you see
below.

2.3 Getting Started

UI for ASP.NET AJAX

17 UI for ASP.NET AJAX

Setup the project structure
1. Create a new Web Application and add a ScriptManager to the default page.

2. In the solution explorer, create a new \Images folder.

3. Copy images from the <Courseware projects folder> \ Navigation \ CS \ GettingStarted \ GettingStarted \
images library to the projects \images directory: CopyHS.png, CutHS.png, PasteHS.png,
EditInformationHS.png, PrintHS.png and PrintPreviewHS.png. These images will be associated with the
buttons in the navigation controls.

4. Copy the image "3X5Card.png" from the <Courseware projects folder> \ Navigation \ CS \ GettingStarted \
GettingStarted \ images folder to your projects \images folder. This image will form the background of
your interface.

5. Add the following styles to the <head> tag of the ASP.NET markup. These styles will position the card
image and the tab strip underneath the card.

Add the RadMenu

[ASP.NET] Setting Styles

<head runat="server">
 <title>Getting Started</title>
 <style type="text/css" media="screen">
 #content
 {
 background-image: url('images/3X5card.png');
 height: 165px;
 width: 500px;
 margin-left: 75px;
 vertical-align: top;
 }
 #tabs
 {
 margin-left: 75px;
 width: 500px;
 vertical-align: bottom;
 }
 </style>
</head>

UI for ASP.NET AJAX

18 UI for ASP.NET AJAX

1. Add a RadMenu to the top of the web page. Set the Skin property to "WebBlue". Set the Width property to
"100%".

2. Open the RadMenu Smart Tag and select the Build RadMenu... option.

3. Add two root level items with text "Edit" and "Print". Set the ImageUrl properties for these items to
"\images\EditInformationHS.png" and "\images\PrintHS.png" respectively.

4. Select the "Edit" item and add three child items with Text "Cut", "Copy" and "Paste". Set the ImageUrl
properties for these items to "\images\CutHS.png", "\images\CopyHS.png" and "\images\PasteHS.png"
respectively.

5. Select the "Print" item and add two child items "Print" and "Preview". Set the ImageUrl properties for these
items to "\images\PrintHS.png" and "\images\PreviewHS.png" respectively.

Add the RadToolBar
1. Add a RadToolBar underneath the tab strip. Set the Skin property to "WebBlue". Set the Width property to

"70px" and the Orientation property to Vertical.

2. Open the RadToolBar Smart Tag and select the Build RadToolBar... option.

3. Add a RadToolBarDropDown and a RadToolBarSplitButton with text "Edit" and "Print". Set the ImageUrl
properties for these items to "\images\EditInformationHS.png" and "\images\PrintHS.png" respectively.

4. Select the "Edit" item and add three RadToolBarButton child items with Text "Cut", "Copy" and "Paste". Set
the ImageUrl properties for these items to "\images\CutHS.png", "\images\CopyHS.png" and
"\images\PasteHS.png" respectively.

5. Select the "Print" item and add two RadToolBarButton child items with Text "Print" and "Preview". Set the
ImageUrl properties for these items to "\images\PrintHS.png" and "\images\PreviewHS.png" respectively.

UI for ASP.NET AJAX

19 UI for ASP.NET AJAX

Add Content Area Divs
1. Add a <div> tag with id "content" to contain the 3x5 card graphic and text.

2. Inside the "content" div add a standard ASP.NET Label control with ID "lblContent".

3. Under the "Content" div tag add another div with ID "tags".

4. Inside the "tabs" div add a RadTabStrip. Set the Orientation to "HorizontalBottom", the Skin to "WebBlue
and the Width to "500px". Note: We will add items to the tab strip later in server-side code.

[ASP.NET] Adding the Content Div

<div id="content" runat="server">
 <asp:Label ID="lblContent" runat="server" Text="Label"></asp:Label>
</div>

[ASP.NET] Adding the Tabs Div

<div id="tabs" runat="server">
 <telerik:RadTabStrip ID="RadTabStrip1" runat="server" Orientation="HorizontalBottom"
 Skin="WebBlue" OnTabClick="RadTabStrip1_TabClick" SelectedIndex="0" Width="500px">
 </telerik:RadTabStrip>
</div>

UI for ASP.NET AJAX

20 UI for ASP.NET AJAX

Adding Server-Side Code

1. Use the Properties window, Events button to create event handlers for the following:

1. RadMenu ItemClick

2. RadToolBar ButtonClick

3. RadTabStrip TabClick

2. Populate the event handlers with the code below:

Populate the TabStrip
1. In the Page_Load event handler, add the following code:

[VB] Handling Navigation Control Click Events

Protected Sub RadMenu1_ItemClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadMenuEventArgs)
 lblContent.Text = "You clicked " + e.Item.Text
End Sub
Protected Sub RadToolBar1_ButtonClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadToolBarEventArgs)
 lblContent.Text = "You clicked " + e.Item.Text
End Sub
Protected Sub RadTabStrip1_TabClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadTabStripEventArgs)
 lblContent.Text = "You clicked " + e.Tab.Text
End Sub

[C#] Handling Navigation Control Click Events

protected void RadMenu1_ItemClick(object sender, Telerik.Web.UI.RadMenuEventArgs e)
{
 lblContent.Text = "You clicked " + e.Item.Text;
}
protected void RadToolBar1_ButtonClick(object sender, Telerik.Web.UI.RadToolBarEventArgs e)
{
 lblContent.Text = "You clicked " + e.Item.Text;
}
protected void RadTabStrip1_TabClick(object sender, Telerik.Web.UI.RadTabStripEventArgs e)
{
 lblContent.Text = "You clicked " + e.Tab.Text;
}

Notice that the event handlers are substantially similar except for the specific event argument object
passed in. Each has just an "Item" property (except for TabClick which has a "Tab" property) that refers
to the item clicked by the user. Use the e.Item or e.Tab properties to get at the Text, Value, Attributes,
ImageUrl and other properties for the item.

[VB] Populating the TabStrip

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 Dim letters As String() = "ABC|DEF|GHI|JKL|MNO|PQR|STU|VWXYZ".Split("|"C)

UI for ASP.NET AJAX

21 UI for ASP.NET AJAX

When the page first loads, a string representation of the alphabet is broken up into chunks and fed into an
array of string. The first and last letter of each chunk is formatted and placed into the text for a newly
created RadTab and added to the Tabs collection.

2. Press Ctl-F5 to run the application. You should be able to click any option on the the menu above or from
the tool bar on the side. In addition you should be able to click on any of the tabs. The clicked on item
will be reflected in the label sitting on the 3x5 card image.

Each of the navigation controls has a similar designer interface with a few exceptions:

Smart Tag
The Smart Tag provides easy access to frequently needed design tasks. To display the Smart Tag, click the small
left-pointing arrow located in the upper right of the control or choose "Show Smart Tag" from the context

 For Each chunk As String In letters
 Dim tab As New RadTab(chunk(0) + " - " + chunk(chunk.Length - 1))
 RadTabStrip1.Tabs.Add(tab)
 Next
 End If
End Sub

[C#] Populating the TabStrip

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 string[] letters = "ABC|DEF|GHI|JKL|MNO|PQR|STU|VWXYZ".Split('|');
 foreach (string chunk in letters)
 {
 RadTab tab = new RadTab(chunk[0] + " - " + chunk[chunk.Length -1]);
 RadTabStrip1.Tabs.Add(tab);
 }
 }
}

Don't forget to add Telerik.Web.UI to the "Imports" (VB) or "uses" (C#) section of code.

2.4 Designer Interface

UI for ASP.NET AJAX

22 UI for ASP.NET AJAX

menu. The screenshot below shows the RadToolBar Smart Tag, but the Smart Tag for other navigation controls
is substantially similar (except where noted).

Tasks

 Choose Data Source lets you bind the control declaratively by selecting a data source from a drop-down
list of all available ASP.NET 2.0 data source components. You can also select <New Data Source...> to
display the standard Windows Data Source Configuration Wizard.

 Build displays an Item Builder dialog where you can create and configure statically defined items for your
navigation control.

Ajax Resources

 Add RadAjaxManager... adds a RadAjaxManager component to your web page and displays a
RadAjaxManager configuration settings dialog.

 Replace ScriptManager with RadScriptManager swaps out the standard ScriptManager for a
RadScriptManager. RadScriptManager is not required for RadControls for ASP.NET AJAX but does include the
ability to combine scripts for greater efficiency.

 Add RadStyleSheetManager adds a RadStyleSheetManager component to your web page.
RadStyleSheetManger combines style sheets to reduce page load time and traffic.

Skin

Use the Skin drop-down to preview and select built-in skins.

Learning Center

Navigate directly to examples for the control, find help or use the code library. You can also search the Telerik

UI for ASP.NET AJAX

23 UI for ASP.NET AJAX

web site for a given string.

Edit Templates

Click the Edit Templates link to display the template design surface. Here you can create or edit templates
used by your control. You can jump ahead to the Templates chapter for more details on how templates are
used in RadControls to build custom interfaces.

Smart Tag when Data Bound...

The Smart Tag changes when the control is bound to a data source. You can now select to Configure the Data
Source to re-execute the Windows Data Source Configuration Wizard or Refresh Schema if the underlying data
changes and you need the data source to reflect the new schema.

Property Builder
Each of the navigation controls displays a Property Builder dialog specific to that control. Display the builder
dialog either from the Smart Tag or clicking the Items property ellipses in the Properties Window (the property
is called Tabs for the RadTabStrip). The property builder will look substantially the same for all controls except
RadToolBar. RadMenu, RadPanelBar and RadTabStrip all support hierarchies of multiple levels, while
RadToolBar has a relatively flat structure.

Below is a screen shot of the property builder for RadTabStrip items. Use the buttons on the upper left to add
root and child level items. You can use the button labeled "Promote" shown below to make a child item a sibling
of its parent. Use the "demote" button to make an item a child of the preceding sibling. To edit the text of an
item in-line, select it with the mouse, then click it a second time. You can select any of the items and set item
properties using the list on the right of the dialog. Typically, you will set the Text property first.

UI for ASP.NET AJAX

24 UI for ASP.NET AJAX

The RadToolBar Item Builder has an essentially flat structure, although a second level of buttons is allowed for
drop down and split buttons. RadToolBar does not have an unlimited number of levels and so does not have
promote or demote buttons. Also, there are several types of buttons you can add:

 RadToolBarButton: Executes some immediate command, or can be configured to have a state and work like
a check box or radio button. You can add RadToolBarButton as a root level item or add it under a drop
down or split button.

 RadToolBarDropDown: This button acts as a drop down list of commands when clicked.

 RadToolBarSplitButton: This button acts much like the RadToolBarDropDown, but has a default command,
i.e. the last button in the list you clicked. The split button works well when one of the commands is used
all of the time.

The screenshot below shows the possible combinations:

UI for ASP.NET AJAX

25 UI for ASP.NET AJAX

The resulting tool bar running in the browser looks something like this:

Properties Window
The superset of properties available to the control are found in the Properties window. We will use the 80/20
rule here; that is, locate the most important properties and groups of properties common between navigation
controls that are used constantly.

UI for ASP.NET AJAX

26 UI for ASP.NET AJAX

The single most important property of the navigation controls is the Items collection (or Tabs in the case of
RadTabStrip). Items make up the content of the navigation control. You can populate your navigation control
items...

 Statically, using the Items property or using the Item Builder dialog.

 Defining items in the ASP.NET markup. For example, the ASP.NET fragment below shows RadMenu with
two levels of items defined.
[ASP.NET] Defining RadMenu Items

<telerik:RadMenu ID="RadMenu1" runat="server" >
 <Items>
 <telerik:RadMenuItem runat="server" Text="File">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Exit">
 </telerik:RadMenuItem>
 </Items>
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Edit">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Cut">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Copy">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Paste">
 </telerik:RadMenuItem>
 </Items>
 </telerik:RadMenuItem>
 </Items>

UI for ASP.NET AJAX

27 UI for ASP.NET AJAX

 Adding programmatically on the server or client side. We will cover the details in the server and client
side programming sections upcoming.

 Data Binding. We will cover data binding thoroughly in a later chapter. For now, know that the data
binding specific properties are: DataSource, DataSourceID, DataMember, DataTextField,
DataTextFormatString, DataValueField and AppendDataBoundItems. Multi-level hierarchies are
implemented (for navigation controls other than RadToolBar) with the use of DataFieldID,
DataFieldParentID and MaxDataBindDepth properties. Also, all navigation controls other than
RadToolBar have a DataNavigateUrlField that lets you bind to a column that contains a URL.

Each item within the Items collection has its own set of properties. Text is the string that displays in the UI for
an item, ImageUrl is a path to an image file that will display next to the Text and NavigateUrl is a URL that will
be navigated to when the item is clicked. With just these three properties alone, you can do quite a bit of web
site building. Use the NavigateUrl property together with Target to specify the target window or frame to
display the NavigateUrl web page content. Target can be specified as _blank (target URL will open in a new
window), _self (target URL will open in the same frame), _parent (target URL will open in the parent frameset)
and _top (target URL will open in the topmost frame).

If your purpose is not to navigate URLs, but to make choices within a web application, the Value property is a
useful place to store codes, record IDs or any arbitrary string. The Value can be retrieved in both client and
server code.

To craft the look of individual items, look for property names ending in "ImageUrl". Depending on the particular
item type you will see DisabledImageUrl, ExpandedImageUrl, HoverdImageUrl, SelectedImageUrl, etc. Also
look for properties ending in "CssClass". These properties specify CSS classes used to style the item during
particular states, e.g. ClickedCssClass, DisabledCssClass, ExpandedCssClass, FocusedCssClass, etc. Some of
these classes may be pre-populated with class names from the control's skin (see the chapter on Skinning for
details on working with RadControls skins).

Use separators to visually group items into two or more categories. Set the IsSeparator property of an item to
true; that item will not respond to user clicks or keyboard actions. The RadMenu screenshot below shows a
separator defined for an item between the "Save" and "Exit" items.

The markup for this example looks like this:

</telerik:RadMenu>

[ASP.NET] Using IsSeparator

<telerik:RadMenuItem runat="server" Text="File">
 <Items>
 <telerik:RadMenuItem runat="server" Text="New">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Open">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Save">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" IsSeparator="True" Text="My Separator">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Exit">
 </telerik:RadMenuItem>
 </Items>

UI for ASP.NET AJAX

28 UI for ASP.NET AJAX

Adding Items
The general pattern for adding items to a navigation control Items collection is:

 Create an item instance for the particular type of collection.

 Populate the instance properties.

 Add the item to the Items collection.

When you add to the Items collection and type in the open parenthesis, IntelliSense will display code
completion with the specific item type (or press ctrl-shift-spacebar to invoke IntelliSense.

The example below uses a ScriptManager (or RadScriptManager), a RadAjaxManager and a RadMenu. The
RadAjaxManager has a nifty little Alert() method that automatically pops up a client-side alert dialog. You can
skip ahead to the chapter "AjaxPanel, AjaxManager and AjaxProxy" for an exploration of these important
components. In the Page_Load event handler, two RadMenuItem instances are created. The first RadMenuItem
is assigned Text, NavigateUrl and Target properties, then added to the RadMenu.Items collection. The Target
property is set to "_blank" so that a second browser will pop up.

The second RadMenuItem is not given a NavigateUrl but instead gets a Value property. Finally, the ItemClick
event handler is hooked up. When the user clicks the first item, a second browser window pops up to display
the Telerik web site. When the second menu item is clicked, a JavaScript alert dialog displays "The value for
clicked item is: 123".

Find the code for this project in \VS Projects\Navigation\ServerSide.

</telerik:RadMenuItem>

2.5 Server-Side Programming

Notice that the RadMenuItem type in the screenshot above is in the Telerik.Web.UI namespace. Save some
time and typing effort by adding a using statement to include this reference. The remainder of this
courseware will assume that you have included the Telerik.Web.UI namespace.

Gotcha! When you populate the NavigateUrl property, be sure to type the entire URL including the
"http://" and avoid the "Resource not found" error.

[VB] Adding Items

Imports Telerik.Web.UI
Namespace ServerSide
 Public Partial Class _Default
 Inherits System.Web.UI.Page
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 ' 1) create the item instance
 Dim menuItem As New RadMenuItem()

UI for ASP.NET AJAX

29 UI for ASP.NET AJAX

 ' 2) populate properties
 menuItem.Text = "Visit the Telerik Web Site"
 menuItem.NavigateUrl = "http://www.telerik.com"
 menuItem.Target = "_blank"
 ' add the instance to the Items collection
 RadMenu1.Items.Add(menuItem)
 ' Add a second item that has a value, but no NavigateUrl
 Dim menuItem2 As New RadMenuItem()
 menuItem2.Text = "Display a value"
 menuItem2.Value = "123"
 RadMenu1.Items.Add(menuItem2)
 ' Hook up the ItemClick server side event handler.
 AddHandler RadMenu1.ItemClick, AddressOf RadMenu1_ItemClick
 End If
 End Sub
 Sub RadMenu1_ItemClick(ByVal sender As Object, ByVal e As RadMenuEventArgs)
 ' Retrieve the Item object returned in RadMenuEventArgs and
 ' display the associated Value property
 RadAjaxManager1.Alert("The value for clicked item is: " + e.Item.Value)
 End Sub
 End Class
End Namespace

[C#] Adding items

using Telerik.Web.UI;
namespace ServerSide
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 // 1) create the item instance
 RadMenuItem menuItem = new RadMenuItem();
 // 2) populate properties
 menuItem.Text = "Visit the Telerik Web Site";
 menuItem.NavigateUrl = "http://www.telerik.com (http://www.telerik.com/)";
 menuItem.Target = "_blank";
 // add the instance to the Items collection
 RadMenu1.Items.Add(menuItem);
 // Add a second item that has a value, but no NavigateUrl
 RadMenuItem menuItem2 = new RadMenuItem();
 menuItem2.Text = "Display a value";
 menuItem2.Value = "123";
 RadMenu1.Items.Add(menuItem2);
 // Hook up the ItemClick server side event handler.
 RadMenu1.ItemClick += new RadMenuEventHandler(RadMenu1_ItemClick);
 }
 }
 void RadMenu1_ItemClick(object sender, RadMenuEventArgs e)
 {
 // Retrieve the Item object returned in RadMenuEventArgs and
 // display the associated Value property
 RadAjaxManager1.Alert("The value for clicked item is: " + e.Item.Value);

UI for ASP.NET AJAX

30 UI for ASP.NET AJAX

Using Server Tags
You can use server tags to keep values in markup synchronized with your server code. Say you have a class
called "MyConstants" that defines all the actions your navigation control will take. Notice that in the example
below the namespace is called "ServerTags".

Find the code for this project in \VS Projects\Navigation\ServerTags.

Now you can refer to these constants in both the markup and the server code. Here is markup for a
RadTabStrip. Notice that the constants are emitted from the server using <%= %>.

In order for this to work notice that you need to import the "ServerTags" namespace to the markup. In the
server code you can use the MyConstants class to determine which item was clicked on:

 }
 }
}

[VB] Defining Constants

Namespace ServerTags
 Public Class MyConstants
 Public Const PURCHASE_TICKETS As String = "PURCHASE_TICKETS"
 Public Const PRINT_ITINERARY As String = "PRINT_ITINERARY"
 Public Const CHANGE_FLIGHTS As String = "CHANGE_FLIGHTS"
 End Class
End Namespace

[C#] Defining Constants

namespace ServerTags
{
 public class MyConstants
 {
 public const string PURCHASE_TICKETS = "PURCHASE_TICKETS";
 public const string PRINT_ITINERARY = "PRINT_ITINERARY";
 public const string CHANGE_FLIGHTS = "CHANGE_FLIGHTS";
 }
}

[ASP.NET] Markup using server tags

<%@ Import Namespace="ServerTags" %>
<telerik:RadTabStrip ID="RadTabStrip1" runat="server"
 ontabclick="RadTabStrip1_TabClick" SelectedIndex="1">
 <Tabs>
 <telerik:RadTab runat="server" Text="Purchase Tickets"
 Value="<%=MyConstants.PURCHASE_TICKETS%>">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Print Itinerary"
 Value="<%=MyConstants.PRINT_ITINERARY%>" Selected="True">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Change Flights"
 Value="<%=MyConstants.CHANGE_FLIGHTS%>">
 </telerik:RadTab>
 </Tabs>
</telerik:RadTabStrip>

[VB] Using the constants in server code

Protected Sub RadTabStrip1_TabClick(ByVal sender As Object, ByVal e As

UI for ASP.NET AJAX

31 UI for ASP.NET AJAX

Adding Multiple Levels
For navigation controls that allow multiple levels of hierarchy, each item has its own Items collection. The
following example demonstrates adding an "Edit" menu item, with "Cut", "Copy" and "Paste" items beneath the
"Edit". The example shows how to associate images with items. The sample project has an \Image directory
where the images are stored.

The example populates the ImageUrl property using image paths within the project. First the Edit item is

Telerik.Web.UI.RadTabStripEventArgs)
 Select Case e.Tab.Value
 Case MyConstants.PURCHASE_TICKETS
 ' do something...
 RadAjaxManager1.Alert("You clicked on " + e.Tab.Text)
 Exit Select
 Case Constants.PRINT_ITINERARY
 ' do something...
 Exit Select
 Case Constants.CHANGE_FLIGHTS
 ' do something...
 Exit Select
 End Select
End Sub

[C#] Using the constants in server code

protected void RadTabStrip1_TabClick(object sender, Telerik.Web.UI.RadTabStripEventArgs e)
{
 switch (e.Tab.Value)
 {
 case MyConstants.PURCHASE_TICKETS:
 {
 // do something...
 RadAjaxManager1.Alert("You clicked on " + e.Tab.Text);
 break;
 }
 case Constants.PRINT_ITINERARY:
 {
 // do something...
 break;
 }
 case Constants.CHANGE_FLIGHTS:
 {
 // do something...
 break;
 }
 }
}

You can find sample images to work with in the Visual Studio 2008 directory: \Microsoft Visual Studio 9.0
\Common7\VS2008ImageLibrary\1033\VS2008ImageLibrary.zip

UI for ASP.NET AJAX

32 UI for ASP.NET AJAX

created, populated and added to the RadMenu Items collection. Then child items are created and added to the
top level menu item, Items collection using the Add() method. Note: You can also use the Insert(index,
RadMenuItem) method to to place a menu item anywhere in the collection.

Find the code for this project in \Navigation\ServerSide2.

Deleting Items
To delete an item, call the navigation control Remove() method and pass the item object to be deleted, or call
RemoveAt() and pass the index of the item to be removed. The example below shows two different ways to
remove the first item in the collection.

[VB] Adding Multiple Level Items

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' Create, populate and add the top level menu item to
 ' the RadMenu Items collection
 Dim editItem As New RadMenuItem("Edit")
 editItem.ImageUrl = "\Images\EditInformationHS.png"
 RadMenu1.Items.Add(editItem)
 ' Create, populate and add child menu items to the edit
 ' menu item Items collection.
 Dim cutItem As New RadMenuItem("Cut")
 cutItem.ImageUrl = "\Images\CutHS.png"
 editItem.Items.Add(cutItem)
 Dim copyItem As New RadMenuItem("copy")
 copyItem.ImageUrl = "\Images\copyHS.png"
 editItem.Items.Add(copyItem)
 Dim pasteItem As New RadMenuItem("paste")
 pasteItem.ImageUrl = "\Images\pasteHS.png"
 editItem.Items.Add(pasteItem)
End Sub

[C#] Adding Multiple Level Items

protected void Page_Load(object sender, EventArgs e)
{
 // Create, populate and add the top level menu item to
 // the RadMenu Items collection
 RadMenuItem editItem = new RadMenuItem("Edit");
 editItem.ImageUrl = "\\Images\\EditInformationHS.png";
 RadMenu1.Items.Add(editItem);
 // Create, populate and add child menu items to the edit
 // menu item Items collection.
 RadMenuItem cutItem = new RadMenuItem("Cut");
 cutItem.ImageUrl = "\\Images\\CutHS.png";
 editItem.Items.Add(cutItem);
 RadMenuItem copyItem = new RadMenuItem("copy");
 copyItem.ImageUrl = "\\Images\\copyHS.png";
 editItem.Items.Add(copyItem);
 RadMenuItem pasteItem = new RadMenuItem("paste");
 pasteItem.ImageUrl = "\\Images\\pasteHS.png";
 editItem.Items.Add(pasteItem);
}

[VB] Deleting an Item

RadToolBar1.Items.Remove(RadToolBar1.Items(0))
RadToolBar1.Items.RemoveAt(0)

UI for ASP.NET AJAX

33 UI for ASP.NET AJAX

In the case of RadPanelBar, use the Remove() method of the RadPanelItemCollection object that contains it
(see the "Locating Items" example coming up next).

Locating Items
Each navigation controls Items collection comes with a rich set of server-side methods for locating items. All
three methods pass back an item instance of found (e.g. RadMenuItem, RadPanelBarItem, etc) or null if not
found.

 FindItemByText(string text): Pass a string that matches the Text property of an item.

 FindItemByValue(string value): Pass a string that matches the Value of an item.

 FindItemByAttribute(string attributeName, string value): This one is a little tricker. You can add
arbitrary attributes to an item's markup and this method searches by the name and value of the attribute.
For example, you could give a RadMenuItem a custom attribute and value, for example
'Category="Clothing". then call FindItemByAttribute("Category", "Clothing").

You can find this next project at \VS Projects\navigation\ServerLocatingItems.

The example uses a RadToolBar to initiate the find, looking for items in a RadPanelBar by Text, Value and
Attribute. Items are then expanded, hidden and disabled. The screenshots below show the before and after
state of the PanelBar.

Review the markup below and notice that each PanelBar item is populated with Text, a unique Value and a
"Priority" attribute. The custom attribute "Priority" may be "Low", "Medium" and "High". Also notice that the
RadToolBar has an OnButtonClick event handler defined.

[C#] Deleting an Item

RadToolBar1.Items.Remove(RadToolBar1.Items[0]);
RadToolBar1.Items.RemoveAt(0);

[ASP.NET] PanelBar Items Markup

<telerik:RadToolBar ID="RadToolBar1" Runat="server"
 onbuttonclick="RadToolBar1_ButtonClick" Skin="Outlook" Width="155px">
 <Items>
 <telerik:RadToolBarButton runat="server" ImageUrl="~/Images/FindHS.png"
 Text="Find">
 </telerik:RadToolBarButton>
 <telerik:RadToolBarButton runat="server" ImageUrl="~/Images/DeleteHS.png"
 Text="Delete">
 </telerik:RadToolBarButton>
 </Items>

UI for ASP.NET AJAX

34 UI for ASP.NET AJAX

When the "Find" button is clicked, the FindItemByText() method looks for a RadPanelItem with text "Check In".
If the item is found, the item is expanded to expose three other child items. A second search is performed
looking for a top level attribute called "Priority" with a value of "Low" and if found, makes the item invisible. By
the way, this search only looks at the top level nodes. What if you want to search all items, at all levels of the
hierarchy? We will get to a solution to that problem in a minute. The last search looks for a top level item with
a Value of "4" and disables it.

</telerik:RadToolBar>

<telerik:RadPanelBar ID="RadPanelBar1" runat="server" Skin="Outlook" >
 <Items>
 <telerik:RadPanelItem Text="Check In" Value="1" Priority="False" >
 <Items>
 <telerik:RadPanelItem Text="Quick Check In" Value="11" Priority="Low" >
 </telerik:RadPanelItem>
 <telerik:RadPanelItem Text="Bring Your Sack Lunch Members" Value="12" Priority="Low"
>
 </telerik:RadPanelItem>
 <telerik:RadPanelItem Text="Super Titanium Alloy Club Members" Value="13"
Priority="High" >
 </telerik:RadPanelItem>
 </Items>
 </telerik:RadPanelItem>
 <telerik:RadPanelItem Text="Change Seat Assignment" Value="2" Priority="Low"
></telerik:RadPanelItem>
 <telerik:RadPanelItem Text="Arrivals" Value="3" Priority="Medium">
</telerik:RadPanelItem>
 <telerik:RadPanelItem Text="Departures" Value="4" Priority="Medium"
></telerik:RadPanelItem>
 </Items>
</telerik:RadPanelBar>

[VB] Finding Items

Protected Sub RadToolBar1_ButtonClick(ByVal sender As Object, ByVal e As
RadToolBarEventArgs)
 Select Case e.Item.Text
 Case "Find"
 ' locate the top level item with text "Check In" and expand it
 Dim checkInItem As RadPanelItem = RadPanelBar1.Items.FindItemByText("Check In")
 If checkInItem <> Nothing Then
 checkInItem.Expanded = True
 End If
 ' locate the top level item with an attribute "Priority", value "Low" and hide it
 Dim lowPriorityItem As RadPanelItem = RadPanelBar1.Items.FindItemByAttribute("Priority",
"Low")
 If lowPriorityItem <> Nothing Then
 lowPriorityItem.Visible = False
 End If
 ' locate a top level item with a value of "4", change its text and disable it.
 Dim departuresItem As RadPanelItem = RadPanelBar1.Items.FindItemByValue("4")
 If departuresItem <> Nothing Then
 departuresItem.Text = "All Departures Canceled"
 departuresItem.Enabled = False
 End If

UI for ASP.NET AJAX

35 UI for ASP.NET AJAX

A more flexible way to work on Items is to iterate the collection. Let's say we want to delete all items that are
"low priority". The screenshot shows the before and after state of the PanelBar. The first item "Check In" is
collapsed but contains three items. After the "Delete" button is clicked, the two "Low priority" items are
deleted, and the top level "Change Seat Assignment" item is deleted.

First we need to get all items, not just root level items for a given Items collection. To do this, call the
navigation control's GetAllItems() method. This will return a generic IList collection containing all items, at all
levels. You can then iterate your IList and perform operations on each item.

 Exit Select
...

[C#] Finding Items

protected void RadToolBar1_ButtonClick(object sender, RadToolBarEventArgs e)
{
 switch (e.Item.Text)
 {
 case "Find":
 {
 // locate the top level item with text "Check In" and expand it
 RadPanelItem checkInItem = RadPanelBar1.Items.FindItemByText("Check In");
 if (checkInItem != null)
 {
 checkInItem.Expanded = true;
 }
 // locate the top level item with an attribute "Priority", value "Low" and hide it
 RadPanelItem lowPriorityItem = RadPanelBar1.Items.FindItemByAttribute("Priority",
"Low");
 if (lowPriorityItem != null)
 {
 lowPriorityItem.Visible = false;
 }
 // locate a top level item with a value of "4", change its text and disable it.
 RadPanelItem departuresItem = RadPanelBar1.Items.FindItemByValue("4");
 if (departuresItem != null)
 {
 departuresItem.Text = "All Departures Canceled";
 departuresItem.Enabled = false;
 }
 break;
 }
...

[VB] Deleting Items

UI for ASP.NET AJAX

36 UI for ASP.NET AJAX

Protected Sub RadToolBar1_ButtonClick(ByVal sender As Object, ByVal e As
RadToolBarEventArgs)
 Select Case e.Item.Text
 '...
 Case "Find"
 Case "Delete"
 ' get all the items in the panel bar Items collection
 Dim allItems As System.Collections.Generic.IList(Of RadPanelItem) =
RadPanelBar1.GetAllItems()
 ' iterate all items
 For Each item As RadPanelItem In allItems
 item.Expanded = True
 ' remove all "low priority" items, i.e. that have a "Priority" attribute with a value of
"Low"
 If item.Attributes("Priority").Equals("Low") Then
 ' To remove a panel item, use the Remove method of the RadPanelItemCollection
 ' object that contains it
 item.Owner.Items.Remove(item)
 End If
 Next
 Exit Select
 End Select
End Sub

[C#] Deleting Items

protected void RadToolBar1_ButtonClick(object sender, RadToolBarEventArgs e)
{
 switch (e.Item.Text)
 {
 case "Find":
 {
 //...
 }
 case "Delete":
 {
 // get all the items in the panel bar Items collection
 System.Collections.Generic.IList<RadPanelItem> allItems = RadPanelBar1.GetAllItems();
 // iterate all items
 foreach (RadPanelItem item in allItems)
 {
 item.Expanded = true;
 // remove all "low priority" items, i.e. that have a "Priority" attribute with a
value of "Low"
 if (item.Attributes["Priority"].Equals("Low"))
 {
 // To remove a panel item, use the Remove method of the RadPanelItemCollection
 // object that contains it
 item.Owner.Items.Remove(item);
 }
 }
 break;
 }
 }
}

2.6 Control Specifics

UI for ASP.NET AJAX

37 UI for ASP.NET AJAX

PageView and Multi-Page
A typical tabbed interface lets the user click a tab to see content that corresponds to the tab text. For
example, a home building supplies online store would have tabs for "Appliances", "Tools" and "Building
Materials". When the user clicks "Appliances", a list of appliance descriptions, images, and links displays.
RadMultiPage used with RadTabStrip makes this kind of interface easy to build.

Use the RadMultiPage control to organize content of tabbed pages. RadMultiPage acts as a container for
RadPageView controls, where you typically have a RadPageView holding content of a page associated with a
RadTabStrip tab. RadMultiPage is a completely separate control from RadTabStrip and can be positioned
anywhere on the page.

Even though RadMultiPage and RadTabStrip can be used independently of each other, these controls are best
used together. To automatically synchronize tabs with corresponding pages, set the MultiPageID property of
RadTabStrip to the ID of a RadMultiPage control. By default, the tabs and pages will correspond based on index.
When the user clicks on the first tab, the first page view displays; when the second tab is clicked, the second
page view displays, and so on. If you don't want this default behavior and instead want to link particular tabs to
page views, use the tab PageViewID property to link specific page views.

TabStrip and MultiPage Walk-through
You can find this project in \VS Projects\navigation\MultiPage.

1. Create a Web Application and add a ScriptManager to the default page..

2. Add a RadTabStrip to the default page. Set the Skin property to "Black".

3. Add a RadMultiPage to the default page. Note: The multipage control is a container only and has no Skin
property.

4. From the RadTabStrip Smart Tag, select the RadMultiPage from the "Related RadMultiPage" drop down list.

5. From the RadMultiPage Smart Tag, select the "Add RadPageView" link twice. RadMultiPage starts with a
single PageView by default, so you should have three PageViews at this point.

 The order of tabs is "depth first"; that is, the children of the first tab are before the second root level
tab.

 If there are more page views than tabs, the last page views are ignored.

 If there are more tabs than page views, the last tabs do not display a page view.

UI for ASP.NET AJAX

38 UI for ASP.NET AJAX

6. From the RadTabStrip Smart Tag, select the Build RadTabStrip... link.

7. Add three root level tabs and set the Text properties to "Colors", "Calendar" and "Quotes". Click OK to close
the dialog.

8. In the designer, drop a RadColorPicker into the first PageView, a RadCalendar control to the second
PageView and enter the quote "You can observe a lot just by watching - Yogi Berra" directly into the last
PageView. Set the Skin property for the RadCalendar and RadColorPicker to "Black". In addition, set the
Width property of RadColorPicker to "220px" and Preset property to "Standard".

9. Press Ctl-F5 to run the application.

That's a lot of functionality from just dragging and dropping. But be aware that all the content is present on
the page whether it is visible or not. For better performance and scalability, larger applications will need to
bring in content dynamically. We will talk about one way to do this with AJAX and user controls in the
upcoming "AjaxPanel, AjaxManager and AjaxProxy".

UI for ASP.NET AJAX

39 UI for ASP.NET AJAX

Context Menus
RadContextMenu is similar to RadMenu but has some unique aspects. The menu isn't visible when the page first
loads but is launched by client code or by specifying a "target". The target is some item in the ASP.NET markup.
When the user right-clicks that item, the context menu is displayed. The target can be a HTML element, the
document element (the user right-clicks the page to show the menu), a control or a tag name.

1. Starting with the "MultiPage" project you created in the last chapter, add a RadContextMenu control to the
default web page.

2. From the context menu Smart Tag select the Build RadContextMenu... option. Add a single root level item
with Text "Colors".

3. From the context menu Smart Tag select the Edit RadContextMenu Target's option to display the
RadContextMenu Target Editor. Note: you can also get to this dialog from the Properties Window using the
Targets property ellipses.

4. Click the Add button to create a ContextMenuControlTarget. Note: Use the downward pointing arrow next
to the Add split button for other target types, i.e. control, element, tag name and document.

5. Click the drop down arrow on the ControlID property in the Properties window and select the
RadColorPicker. Click the OK button to close the dialog.

6. In the Properties window for the RadContextMenu, select the Events button and double click the
ItemClick event to create an event handler. Add the following code to the ItemClick and the Page_Load
event handlers:

[VB] Handling the Page_Load and ItemClick Events

Imports Telerik.Web.UI
Namespace MultiPage
 Public Partial Class _Default
 Inherits System.Web.UI.Page
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 ' get the parent menu item

UI for ASP.NET AJAX

40 UI for ASP.NET AJAX

 Dim colorsItem As RadMenuItem = RadContextMenu1.Items.FindItemByText("Colors")
 ' iterate the color picker color presets
 For Each preset As ColorPreset In [Enum].GetValues(GetType(ColorPreset))
 ' add color preset names as child items
 colorsItem.Items.Add(New RadMenuItem(preset.ToString()))
 Next
 End If
 End Sub
 Protected Sub RadContextMenu1_ItemClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadMenuEventArgs)
 ' look only at child items
 If e.Item.Level = 1 Then
 ' find child items under "Colors" parent item
 If (TryCast(e.Item.Parent, RadMenuItem)).Text.Equals("Colors") Then
 ' set the color picker preset to the selected preset
 RadColorPicker1.Preset = DirectCast([Enum].Parse(GetType(ColorPreset), e.Item.Text),
ColorPreset)
 End If
 End If
 End Sub
 End Class
End Namespace

[C#] Handling the Page_Load and ItemClick Events

using Telerik.Web.UI;
namespace MultiPage
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 // get the parent menu item
 RadMenuItem colorsItem = RadContextMenu1.Items.FindItemByText("Colors");
 // iterate the color picker color presets
 foreach (ColorPreset preset in Enum.GetValues(typeof(ColorPreset)))
 {
 // add color preset names as child items
 colorsItem.Items.Add(new RadMenuItem(preset.ToString()));
 }
 }
 }
 protected void RadContextMenu1_ItemClick(object sender, Telerik.Web.UI.RadMenuEventArgs
e)
 {
 // look only at child items
 if (e.Item.Level == 1)
 {
 // find child items under "Colors" parent item
 if ((e.Item.Parent as RadMenuItem).Text.Equals("Colors"))
 {
 // set the color picker preset to the selected preset
 RadColorPicker1.Preset = (ColorPreset)Enum.Parse(typeof(ColorPreset), e.Item.Text);
 }

UI for ASP.NET AJAX

41 UI for ASP.NET AJAX

The Page_Load first gets a reference to the "Colors" menu item. This is overkill for a single menu item, but
you will need to find items when the number and complexity of menu items grows. The RadColorPicker has
a ColorPreset enumeration that defines all available preset color groups. You can use the Enum.GetValues()
static method to walk through the enumeration and add children to the "Colors" menu item.

In the ItemClick event handler we look only at child menu items and make sure that the parent is the
"Colors" menu item. Then you can use the Enum.Parse() static method to convert the preset name to its
actual ColorPreset value and assign it back to the RadColorPicker Preset property.

7. Press Ctl-F5 to run the application. Right click the color picker control to display the context menu.

In this chapter you took a tour of the "navigation" related RadControls and became familiar with how and where
each of these controls are used. You saw some of the important properties, methods and events that
are common between navigation controls. You created a simple application that used the menu, tab strip and
tool bar controls. You learned some common server-side tasks such as add/edit/delete, iterating items in a

 }
 }
 }
}

2.7 Summary

UI for ASP.NET AJAX

42 UI for ASP.NET AJAX

collection and locating items based on various criteria (i.e. text, value or attribute). You also learned some
control-specific tasks such as working with the tab strip and Multi-Page together and using the context menu.

UI for ASP.NET AJAX

43 UI for ASP.NET AJAX

 Inventory the "input" related RadControls. Explore how and where these input controls are used.

 See how each of the input controls are similar so you can leverage the same knowledge with each control.

 Create a simple application to get confidence in using each of the controls.

 Explore the design time interface for each of the input controls, again noting where the controls are
similar. You will learn how to access properties and methods through Smart Tag, Properties Window and
control-specific dialogs.

 Explore principal properties and groups of properties where 80% of the functionality is found.

 Learn how to perform common server-side tasks such as creating controls dynamically, setting values, and
responding to changed values.

 Learn how to perform common client-side tasks such as enabling and disabling, restricting input as the user
types, and handling parsing errors.

 Learn to use the input controls with other controls such as RadSpellCheck or ASP.NET validator controls.

Often, you want to create a Web application that collects data from the users who visit your Web site. This
data can be anything from details for shipping and billing to an elaborate survey form. RadControls make it easy
to collect information from users, whether it is generic text or typed data such as numbers and dates. You can
choose from several types of input controls, depending on what type of data you want users to enter:

RadTextBox

RadTextBox is a highly configurable input control that lets users enter arbitrary text values. Users can enter any
type of character into RadTextBox (alphabetic, numeric, and symbols). RadTextBox supports three different
modes:

Single-line mode lets users enter short values that fit on a single line.

Multi-line mode lets users enter longer values that can take up several lines:

Password mode hides the characters that users type so that it can be used for entering sensitive information
such as passwords:

From Q2 2011 on the RadTextBox control offers a password strength checking feature. The same can be used
inside a TextBoxSetting created with a RadInputManager.

The feature allows you to specify your custom criteria for password strength and visualize an indicator to
inform the user how strong the typed password is according to this criteria.

RadMaskedTextBox

3 Input Controls

3.1 Objectives

3.2 Introduction

UI for ASP.NET AJAX

44 UI for ASP.NET AJAX

RadMaskedTextBox is similar to RadTextBox, allowing both single- or multi-line modes. However, it is designed
to restrict user input to values that conform to a strict format. The input format is controlled by a special string
called a mask. You can select from a variety of built-in masks for common patterns such as phone numbers or
social security numbers, or you can construct your own custom masks.

RadMaskedTextBox prompts the user to enter data in the required format by displaying a prompt character of
your choosing for all text the user should enter, along with literal parts that the mask supplies. In the
screenshot below, which shows RadMaskedTextBox using a mask for a telephone number, the prompt character
is an underscore ('_').

RadNumericTextBox

RadNumericTextBox restricts users to entering numeric values. This control supports a wide variety of
formatting options; you can rely on the local culture setting to format number, currency, or percentage values,
or you can supply your own detailed formatting specifications.

While users can always type numbers into RadNumericTextBox, you can also let them change the current value
by simply incrementing or decrementing it. You can let users increment or decrement the current value in any
or all of the following ways:

 Spin buttons can be added to the right or left of the input area.

 Mouse wheel support can be enabled to let users change the value using the mouse wheel when the
numeric text box has focus.

 Arrow key support can be enabled to let users change the value using the up and down arrow keys.

RadDateInput

Use RadDateInput to let users enter date and time values. RadDateInput is a free-form date and time input
control. That is, it has a built-in parsing engine that can recognize date and time values in a wide variety of
valid formats, so that you do not need to restrict users to a limited format in order to interpret values. The
parsing engine is culture-sensitive, so that you can easily localize your Web application.

Like RadNumericTextBox, RadDateInput lets you control how values are formatted for display. You can specify
the format using standard ASP.NET date and time format strings. You can also set the culture to control how
RadDateInput interprets the culture-specific parts of those format strings (such as the names of months or
days).

Also like RadNumericTextBox, you can let users increment or decrement the current value by enabling mouse
wheel or arrow key support. (You can't add spin buttons to RadDateInput, however.)

Common Features

Each of the input controls...

 Supports interaction with the clipboard, including built-in shortcut keys for cut, copy, and paste.

 Displays a built-in context menu when the user right clicks to invoke common editing tasks such as

UI for ASP.NET AJAX

45 UI for ASP.NET AJAX

clipboard functions or undoing the last edit.

 Can be skinned for a great visual appearance that's consistent with your entire web application. You can
choose from a standard set of matched skins (e.g. "Outlook", "Vista", "Black", "Telerik", etc.) or you can
create your own custom skin.

 Lets you add an integrated label and/or button on the left or right of the input area. (On
RadNumericTextBox, you can also add a set of spin buttons).

 Supports tool tips that can give the user additional information about the value to be entered.

 Lets you specify the position of the caret and whether the text is selected when the input control gets
focus. This lets you control how the value changes when the user first starts typing.

 Distinguishes between edit mode (when the control has focus) and display mode. Except for
RadTextBox, you can specify different formatting options for edit and display mode. In display mode, you
can also specify a string that appears when the value has not yet been set (even for RadTextBox).

 Can be set to ReadOnly mode when you want to use it for display purposes only.

 Supports limitations on the range of valid values. The type of range depends on the type of input control:
RadTextBox lets you set the maximum length; RadMaskedTextBox lets you specify a range on parts of the
mask; RadNumericTextBox and RadDateInput let you specify minimum and maximum values.

 Includes a rich, consistent client-side api for managing the value range, selection, and caret position of the
input control, as well as a wide range of client events for responding to client input quickly on the browser
without the need for postbacks.

 Can be optionally set to trigger postbacks when the value changes and to trigger ASP.NET validation of
other controls on the page when that postback occurs.

In this walk-through you will become familiar with the text box, masked text box, numeric text box, and date
input controls. When you are finished, your project should match the one supplied in \VS
Projects\Input\GettingStarted. The input controls will produce the entry form you see below:

Set up the project structure
1. Create a new ASP.NET Web Application.

2. In the designer, drag a ScriptManager from the AJAX extensions section of the tool box onto your page.

Add the RadTextBox
1. Add a RadTextBox to your web page. In the Smart Tag, set the Empty Message to "- Enter your name -"

and select "Office2007" from the Skin drop-down.

2. In the Appearance section of the Properties Window, set the Label property to "Name: ".

3.3 Getting Started

UI for ASP.NET AJAX

46 UI for ASP.NET AJAX

3. In the Behavior section of the Properties Window, set the MaxLength property to 100, the
SelectionOnFocus property to "CaretToEnd", and the ToolTip property to "Name to which item should be
shipped."

Add the RadMaskedTextBox
1. Add a few line breaks after the RadTextBox, and then add a RadMaskedTextBox underneath the text box.

2. In the Smart Tag, set the Skin property to "Office2007" and then click the link labeled SetMask.

3. The Input Mask Dialog appears. Select the row for Phone Number to select a pre-defined mask, and hit OK:

4. In the Appearance section of the Properties Window, set the Label property to "Phone: ".

5. In the Behavior section of the Properties Window, set the EmptyMessage property to "- Enter phone
number -" and the HideOnBlur property to True. Because the Mask property is set, the masked text box
displays the mask when no text has been entered. By setting the HideOnBlur property, you cause the
masked text box to show the value of EmptyMessage instead when the control is in display mode.

6. Set the SelectionOnFocus property to "CaretToBeginning" and the ToolTip property to "Phone number of
contact."

Add the RadNumericTextBox
1. Add a few more line breaks after the RadMaskedTextBox, then add a RadNumericTextBox underneath the

masked text box.

2. In the Smart Tag, set the Numeric Type to 'Currency" and the Skin to "Office2007".

3. In the Appearance section of the Properties Window, set the Label property to "Cost: " and the
ShowSpinButtons property to true.

4. In the Behavior section of the Properties Window, set the EmptyMessage property to "- Enter cost -", the
SelectionOnFocus property to "CaretToEnd", and the ToolTip property to "Cost of order."

5. Set the MinValue property to 0 and the MaxValue property to 10000.

UI for ASP.NET AJAX

47 UI for ASP.NET AJAX

Add the RadDateInput
1. Add a few more line breaks after the RadNumericTextBox, and then add a RadDateInput underneath the

numeric text box.

2. In the Smart Tag, set the Skin to "Office2007", and then click the Set Display Date Format link.

3. The Date Format Dialog appears. Select the row for the long date format ("D") and then hit OK:

4. In the Smart Tag again, click the Set Date Format link to bring up the Date Format Dialog again. This time,
the date format is for edit mode. Select the row for the short date format ("d") and then hit OK:

UI for ASP.NET AJAX

48 UI for ASP.NET AJAX

5. In the Appearance section of the Properties Window, set the Label property to "Ship by: ".

6. In the Behavior section of the Properties Window, set the EmptyMessage property to "- Enter the ship by
date -", the ToolTip property to "The last date the order can be shipped." and the SelectionOnFocus
property to "SelectAll".

Run the application
1. You have just created an entry form without writing a single line of code! Press Ctl-F5 to run the

application. Note that the empty messages appear for all the input controls you entered.

2. Tab around the form and enter some values. Note the differences in where the caret appears when each
control gets focus, based on the SelectionOnFocus property. Note the tool tips that appear when the
mouse hovers over an item. Note that the range you specified for the cost field is enforced.

In the Visual Studio designer, you can configure all of the input controls using the Smart Tag and the Properties
Window. In addition, some of the input controls have special dialogs for specifying how you want the control to
format its value.

3.4 Designer Interface

UI for ASP.NET AJAX

49 UI for ASP.NET AJAX

Smart Tag
The Smart Tag provides easy access to frequently needed design tasks. You can display the Smart Tag using the
small left-pointing arrow in the upper right of the control or choose "Show Smart Tag" from the context menu,
just as with all other RadControls. The screenshot below shows the RadTextBox Smart Tag. As you can see, like
the Smart Tags for the navigation controls, this one has some tasks at the top that are specific to the control
(RadTextBox in this case), followed by Ajax Resources, Skin, and Learning center.

You have already seen the Ajax Resources, Skin selection, and Learning center when looking at the Smart Tag
for the navigation controls. This time, we will just look at the Tasks that are specific to the individual input
control types.

Tasks

The top portion of the Smart Tag for each type of input control lists a different set of tasks you can perform.

The RadTextBox Smart Tag lists two tasks at the top:

 Text lets you set the initial value of the text box. Any string you enter here appears in the input area as
the value of the text box, which the user can subsequently edit.

 Empty Message lets you specify a message that appears in the input area when no value has been set.
Using an empty message is a convenient way to provide a prompt to the user about what data should be
entered or to provide feedback that the value has not been set (as distinct from a value that is set to an
empty string).

The RadMaskedTextBox Smart Tag lists only one task at the top, but it is an important one:

 Set Mask brings up the Input Mask Dialog, where you can assign the mask that the text box uses to restrict
input. This dialog is described in more detail below. When you assign a mask using the Set Mask option, the
mask you assign controls the data the user can enter and the way it is formatted. By default, this mask

UI for ASP.NET AJAX

50 UI for ASP.NET AJAX

controls the appearance of the text box in both edit and display modes. You can, however, assign a second
mask to the DisplayMask property in the Properties Window, which is then used for formatting the text
box's value in display mode only.

The RadNumericTextBox Smart Tag lists two tasks at the top:

 Numeric Type lets you specify the type of numeric value that the numeric text box is to represent. This
can be Number, Currency, or Percent. The numeric type affects the way the value is formatted when the
numeric text box is in display mode. (In edit mode, the number is always formatted as a number only.)

 Value lets you specify the initial value of the numeric text box.

The RadDateInput Smart Tag lists two tasks at the top:

 Set Display Date Format brings up the Date Format Dialog, where you can specify the format string that is
used in display mode.

 Set Date Format also brings up the Date Format Dialog, but this time the format string you specify is used
to format the value when the text box has focus (when the user is editing its value). If you specify this
format string, but not a display date format, this string is always used to format values, even when the
text box does not have focus.

Properties Window
All of the properties available to the control are found in the Properties window. As before, we use the 80/20
rule here; that is, locate the most important properties and groups of properties of the input controls.

Properties for the value

Probably the most important property of any input control is the one that holds its value. While you may not
always want to initialize this property at design time, you will certainly want to read the value that the user

UI for ASP.NET AJAX

51 UI for ASP.NET AJAX

entered when the form is posted back. Each of the different input controls uses a different property for its
value:

 RadTextBox uses the Text property.

 RadMaskedTextBox is a little more complicated, because you may want to consider several values: with or
without the literal characters of the mask, and with or without the prompt characters in the mask. As a
result, there are four separate properties for the value:

 Text is the value without any prompt characters or literal characters from the mask. This is the value
you can set to provide an initial value.

 TextWithPrompt is just what the name implies: the text plus prompt characters for any un-entered
parts of the mask, but without literal characters from the mask. It is read-only.

 TextWithLiterals is the text plus the literal characters from the mask (but no prompt characters). This
is not read-only, so that the control can be data-bound to a source that stores values which include
literals.

 TextWithPromptAndLiterals has the text, plus prompt characters and literal characters from the
mask. This is again read-only.

 RadNumericTextBox uses the Value property for its value. Value is a double rather than a string, so that
your application does not need to worry about converting the value. If you are using the numeric text box
as part of a data-bound custom control, you can use the DbValue property instead, so that the control can
handle null values.

 RadDateInput uses the SelectedDate property. SelectedDate is, of course, a DateTime value. Like the
DbValue property of RadNumericTextBox, RadDateInput has a DbSelectedDate property that can handle
null values.

Properties for common features

The four types of input control have a lot of features in common, and these are reflected by a common set of
properties. The EmptyMessage property, which we have already encountered on the RadTextBox Smart Tag, is
available for all four types of input control. For RadMaskedTextBox, however, this property only has an effect if
the HideOnBlur property is set to true. Other important properties include ToolTip, which lets you supply a
message that appears when the mouse hovers over the control, Label, which lets you supply a text label that
appears to the left of the input area, SelectionOnFocus, which determines the default placement of the caret
and selection of text when the control gets focus, and ReadOnly, which lets you limit the control to display
mode.

Both RadTextBox and RadMaskedTextBox let you set the InputMode property to SingleLine, MultiLine, or
Password. When InputMode is MultiLine, the Rows and Columns properties determine the number of rows
displayed, and the number of characters in each row. The Wrap property specifies whether text wraps when it
exceeds the number of characters specified by Columns, or whether the control only honors line breaks and
uses scroll bars for long lines.

RadNumericTextBox and RadDateInput let you set the IncrementSettings property to specify how the user can
increment and decrement values. This is a composite property, with sub-properties for enabling arrow keys or
mouse wheel, and for specifying the step size for each increase or decrease.

Properties governing look-and-feel

Like most RadControls, you can use the Skin property to set the general appearance of the input controls to
match the other controls in your Web application. Predefined skins can be selected from a list or you can skip
ahead to the chapter on skinning for details on building your own.

You can further craft the appearance of your input control for when it appears in different states by using the
various "Style" properties. These include EnabledStyle, DisabledStyle, EmptyMessageStyle, FocusedStyle,
HoveredStyle, InvalidStyle, and (in the case of RadNumericTextBox) NegativeStyle. Also look for properties

UI for ASP.NET AJAX

52 UI for ASP.NET AJAX

ending in "CssClass". These properties specify CSS classes used to style parts of the control: CssClass for the
input area, LabelCssClass for the label, and ButtonCssClass if you have added a button to the control. On
RadNumericTextBox, you can also find SpinUpCssClass and SpinDownCssClass for the up and down spin
buttons. LabelCssClass may be pre-populated with a class name from the control's skin (see the chapter on
Skinning for details on working with RadControls skins).

Important Properties for specific input types

Because each input control handles data of a specific type, some properties that affect the data are unique to
each type of input control.

RadTextBox handles any type of input, so it does not have many of these idiosyncratic properties. There are
only two important properties to mention here: The MaxLength property lets you limit the number of
characters that users can enter when the InputMode is SingleLine. The AutoCompleteType property lets you
make use of the AutoComplete feature of certain browsers. AutoComplete is only available for certain
browsers, and usually must be enabled in the browser itself. When enabled, the browser "remembers" values
that the user has entered, and when it encounters an input control with the same AutoCompleteType as one
that was previously entered, it provides a list of previous responses for the user to select.

RadMaskedTextBox has a number of properties to let you specify the mask and how it is applied. The Mask
property specifies the mask that is used for edit mode, while the DisplayMask property specifies the mask to
use for display mode. If you only set the Mask property, it is used for both edit and display modes. In the
Properties Window, you can click on the ellipsis button for these two properties to bring up the Input Mask
Dialog (described in the next section), which lets you select a pre-defined mask or generate a custom mask. As
an alternate approach to defining the mask, you can build up a mask part by part using the MaskParts and
DisplayMaskParts properties. The ellipsis button for these two properties brings up the MaskPart Collection
Editor (also described in a following section), which lets you define each mask part using properties rather than
requiring you to remember the special characters used in mask strings. The PromptChar property lets you
specify the character that is used to prompt the user for unentered data in the mask. Finally, three properties
govern the way numeric ranges and enumerated values that make up part of a mask are applied.
AllowEmptyEnumerations determines whether enumerated mask parts can be left empty,
ZeroPadNumericRanges determines whether numeric range parts use leading zeros to ensure all values are
fixed length, and NumericRangeAlign determines whether numeric range parts are right- or left-aligned (if
ZeroPadNumericRanges is false).

RadNumericTextBox has three properties that affect the way the value is formatted. You have already seen
Type on the RadNumericTextBox Smart Tag. It lets you specify whether the value is a simple number, a
currency value, or a percentage. Culture lets you assign a culture which influences how that type is applied,
determining the currency symbol, decimal separator, and so on. NumberFormat lets you override the Type and
Culture settings to completely control the format of values. Two properties, MaxValue and MinValue, let you
set the range of valid values that the user can enter.

RadDateInput, like RadNumericTextBox, has a number of properties for the way values are formatted.
DateFormat and DisplayDateFormat specify the ASP.NET format strings for edit and display modes,
respectively. You have already seen these properties on the RadDateInput Smart Tag. Two additional properties
determine how the format string is applied: Culture lets you assign a culture that determines the value of
culture-dependent strings such as month names (and also affects the way dates are parsed), and
ShortYearCenturyEnd determines how two-digit year strings are interpreted. Again like RadNumericTextBox,
there are two properties to set the range of valid values: MaxDate and MinDate.

Input Mask Dialog
The Input Mask Dialog is used to specify a mask for a RadMaskedTextBox control. You can display this dialog
from the control's Smart Tag, or by clicking the ellipsis button next to the Mask or DisplayMask property in the
Properties Window.

UI for ASP.NET AJAX

53 UI for ASP.NET AJAX

As shown in the preceding screen shot, you can choose from a selection of pre-defined masks. Just click on the
row for a mask and the mask string automatically appears in the Mask text box, with a preview to show the
prompts and literals below it. You can modify the pre-defined type by editing the string in the Mask text box.
You can also define your own mask string from scratch by selecting the row labeled <Custom> and typing in a
mask string. The preview updates as you type.

The mask string is made up of one or more parts, where each part represents a single (possibly optional)
character or a value selected from a numeric range or set of enumerated strings. The following table lists the
mask characters that correspond to each type of mask part:

MaskPart Collection Editor

Mask Element MaskPart class Description

a FreeMaskPart Accepts a single character. If this position is blank in the
text, it is rendered as a prompt character.

L UpperMaskPart Uppercase letter (required). Restricts input to the ASCII
letters A-Z.

l LowerMaskPart Lowercase letter (required). Restricts input to the ASCII
letters a-z.

DigitMaskPart Digit or space (optional). If this position is blank in the text,
it is rendered as a prompt character.

<n..m> NumericRangeMaskPart
Restricts the user to an integer in the declared numeric
range. Numeric range mask parts can occupy multiple
positions.

<Option1|Option2|Option3>EnumerationPart Restricts the user to one of a fixed set of options. The pipe
("|") serves as a separator between the option values.

\ N/A

Escape character, allowing the following character to act as
literal text. For example "\a" is the character "a" rather than
including a free mask part. "\\" is the literal back slash
character.

Any other characters LiteralPart
All non-mask elements appear as themselves. Literals always
occupy a static position in the mask at run time, and cannot
be moved or deleted by the user.

UI for ASP.NET AJAX

54 UI for ASP.NET AJAX

If you are uncomfortable editing a mask string directly or trying to set up a particularly complicated mask, you
can use the MaskPart Collection Editor rather than the Input Mask Dialog. The MaskPart Collection Editor lets
you build up a mask part by part, setting the properties of each mask part. You can bring up the MaskPart
Collection Editor by clicking on the ellipsis button next to the MaskParts or DisplayMaskParts property in the
Properties Window for RadMaskedTextBox.

Use the MaskPart Collection Editor to build up a mask part by part. You can add parts to the mask by clicking
the Add Button. Simply clicking the Add button adds a LiteralMaskPart. If you click on the drop-down arrow, you
get a list of mask part types and can choose what type of part to add.

When a mask part in the collection is selected, the right side of the dialog shows the properties you can set for
that type of mask part. In the screenshot above, a Numeric Range is selected, with properties for the maximum
and minimum value in the range.

You can use the Remove button to remove parts from the mask you are building, and the arrow keys to re-
arrange the parts you have added. When you click the OK button to exit the dialog, the Mask or DisplayMask
property is updated to reflect the new mask you built.

Date Format Dialog
The Date Format Dialog lets you specify the format strings that RadDateInput uses to format its value. You can
bring up this dialog from the RadDateInput Smart Tag, or by clicking the ellipsis button next to the DateFormat
or DisplayDateFormat property in the Properties Window.

UI for ASP.NET AJAX

55 UI for ASP.NET AJAX

In the Date Format Dialog, you can select from a set of standard format strings by selecting a row in the table.
The expanded format string appears in the Custom Date Time Format text box, with a preview to show you how
the string formats date and time values. You can then edit the string to get just the format you want, watching
the preview update to reflect your changes.

The following table lists the format patterns to use when building a date format string:

RadDateInput uses standard ASP.NET date format strings with one exception: the one-character format
strings listed in the table of the Date Format Dialog are always expanded to their constituent parts. As a
result, if you change the Culture property, you must re-assign the DateFormat and DisplayDateFormat
properties to ensure that the parts of the date format are expanded correctly.

Format
Pattern Description

d The day of the month. Single-digit days have no leading zero. (Only if used in the context of a longer
pattern. A single "d" on its own represents the Short date pattern.)

dd The day of the month. Single-digit days have a leading zero.
ddd The abbreviated name of the day of the week.
dddd The full name of the day of the week.

M The numeric month. Single-digit months have no leading zero. (Only if used in the context of a
longer pattern. A single "M" on its own represents the Month day pattern.)

MM The numeric month. Single-digit months have a leading zero.
MMM The abbreviated name of the month.
MMMM The full name of the month.

y
The year without the century. If the year without the century is less than 10, with no leading zero.
(Only if used in the context of a longer pattern. A single "y" on its own represents the Month year
pattern.)

yy the year without the century. If the year without the century is less than 10, with a leading zero.
yyy The year in four digits, including the century.

gg The period or era (e.g. "A.D."). This pattern is ignored if the date to be formatted does not have an
associated period or era.

h The hour in a 12-hour clock. Single-digit hours have no leading zero.
hh The hour in a 12-hour clock. Single-digit hours have a leading zero.
H The hour in a 24-hour clock. Single-digit hours have no leading zero.

UI for ASP.NET AJAX

56 UI for ASP.NET AJAX

Responding when the value changes
By default, the input controls do not cause a postback when the value changes. Typically, responding to
changes, if at all, takes place in client-side code or when the form is submitted. However, there may be times
when you want to respond dynamically to changed values, in spite of the performance hit of a postback. To
accomplish this, you must do two things:

 Set the AutoPostBack property of the input control to true so that a postback occurs when the value of the
control changes.

 Provide a handler for the TextChanged event that responds when the postback occurs.

The following example uses the TextChanged event to dynamically create new input controls based on the
values of two input controls: a masked text box to specify the type of control to create, and a numeric text box
to specify the number of new input controls to create.

The masked text box has the mask "<TextBox|MaskedTextBox|NumericTextBox|DateInput>". This ensures that
the user can only select one of the four input control types, and that the resulting selection is a known string.
The numeric text box has MinValue and MaxValue set to 0 and 9, to limit the range of entries, and a
MaxLength of 1 to prevent the user from trying to enter decimal values. The NumberFormat property sets
DecimalDigits to 0 so that values are formatted as integers.

Both controls have the AutoPostBack property set to true. Because the TextChanged event for all input control
types has the same signature, they can share the same event handler. The shared TextChanged event handler
reads the values of the masked text box and numeric text box, and dynamically creates new input controls to
reflect those values. The new controls are added to a PlaceHolder.

HH The hour in a 24-hour clock. Single-digit hours have a leading zero.

m The minute. Single-digit minutes have no leading zero. (Only if used in the context of a longer
pattern. A single "m" on its own represents the Month day pattern)

mm The minute. Single-digit minutes have a leading zero.

s The second. Single-digit seconds have no leading zero. (Only if used in the context of a longer
pattern. A single "s" on its own represents the sortable time pattern.)

ss The second. Single-digit seconds have a leading zero.

t The first character in the AM/PM designator. (Only if used in the context of a longer pattern. A
single "t" on its own represents the short time pattern.)

tt The AM/PM designator.

3.5 Server-Side Programming

This example uses a full postback for handling the TextChanged event. For a smoother response, you can
look ahead to the chapter on AJAXPanel, AjaxManager, and AjaxManagerProxy to see how to handle the
event in an asynchronous callback.

UI for ASP.NET AJAX

57 UI for ASP.NET AJAX

The code for this project is in \VS Projects\Input\ServerSide.

Gotcha! Be sure that the PlaceHolder control has its EnableViewState property set to false.
Otherwise, you will get a runtime exception the second time the event handler is called because the
viewstate will not match up.

[VB] Creating controls on TextChanged

Imports Telerik.Web.UI
Partial Public Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load

 End Sub

 Protected Sub AddInputControls(ByVal sender As Object, ByVal e As EventArgs) _
 Handles RadMaskedTextBox1.TextChanged, RadNumericTextBox1.TextChanged
 PlaceHolder1.Controls.Clear()
 Dim i As Integer = 0
 While i < RadNumericTextBox1.Value
 Select Case RadMaskedTextBox1.Text
 Case "TextBox"
 Dim newTextBox As New RadTextBox()
 newTextBox.ID = "newTextBox" + i.ToString()
 newTextBox.Label = newTextBox.ID
 newTextBox.Text = i.ToString()
 newTextBox.Skin = "Inox"
 PlaceHolder1.Controls.Add(newTextBox)
 PlaceHolder1.Controls.Add(New LiteralControl("
"))
 Exit Select
 Case "MaskedTextBox"
 Dim newMaskedTextBox As New RadMaskedTextBox()
 newMaskedTextBox.ID = "newMaskedTextBox" + i.ToString()
 newMaskedTextBox.Label = newMaskedTextBox.ID
 newMaskedTextBox.Mask = "(###) ###-####"
 newMaskedTextBox.Text = "123456789" + i.ToString()
 newMaskedTextBox.Skin = "Inox"
 PlaceHolder1.Controls.Add(newMaskedTextBox)
 PlaceHolder1.Controls.Add(New LiteralControl("
"))
 Exit Select
 Case "NumericTextBox"
 Dim newNumericTextBox As New RadNumericTextBox()
 newNumericTextBox.ID = "newNumericTextBox" + i.ToString()
 newNumericTextBox.Label = newNumericTextBox.ID
 newNumericTextBox.Value = i
 PlaceHolder1.Controls.Add(newNumericTextBox)
 PlaceHolder1.Controls.Add(New LiteralControl("
"))
 Exit Select
 Case "DateInput"
 Dim newDateInput As New RadDateInput()
 newDateInput.ID = "newDateInput" + i.ToString()
 newDateInput.Label = newDateInput.ID
 newDateInput.DateFormat = "hh:mm:ss tt"
 newDateInput.SelectedDate = DateTime.Now
 PlaceHolder1.Controls.Add(newDateInput)

UI for ASP.NET AJAX

58 UI for ASP.NET AJAX

 PlaceHolder1.Controls.Add(New LiteralControl("
"))
 Exit Select

 End Select
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
 End Sub
End Class

[C#] Creating controls on TextChanged

using Telerik.Web.UI;
namespace ServerSide
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected void AddInputControls(object sender, EventArgs e)
 {
 PlaceHolder1.Controls.Clear();
 for (int i = 0; i < RadNumericTextBox1.Value; i++)
 {
 switch (RadMaskedTextBox1.Text)
 {
 case "TextBox":
 RadTextBox newTextBox = new RadTextBox();
 newTextBox.ID = "newTextBox" + i.ToString();
 newTextBox.Label = newTextBox.ID;
 newTextBox.Text = i.ToString();
 newTextBox.Skin = "Inox";
 PlaceHolder1.Controls.Add(newTextBox);
 PlaceHolder1.Controls.Add(new LiteralControl("
"));
 break;
 case "MaskedTextBox":
 RadMaskedTextBox newMaskedTextBox = new RadMaskedTextBox();
 newMaskedTextBox.ID = "newMaskedTextBox" + i.ToString();
 newMaskedTextBox.Label = newMaskedTextBox.ID;
 newMaskedTextBox.Mask = "(###) ###-####";
 newMaskedTextBox.Text = "123456789" + i.ToString();
 newMaskedTextBox.Skin = "Inox";
 PlaceHolder1.Controls.Add(newMaskedTextBox);
 PlaceHolder1.Controls.Add(new LiteralControl("
"));
 break;
 case "NumericTextBox":
 RadNumericTextBox newNumericTextBox = new RadNumericTextBox();
 newNumericTextBox.ID = "newNumericTextBox" + i.ToString();
 newNumericTextBox.Label = newNumericTextBox.ID;
 newNumericTextBox.Value = i;
 PlaceHolder1.Controls.Add(newNumericTextBox);
 PlaceHolder1.Controls.Add(new LiteralControl("
"));
 break;
 case "DateInput":
 RadDateInput newDateInput = new RadDateInput();
 newDateInput.ID = "newDateInput" + i.ToString();
 newDateInput.Label = newDateInput.ID;

UI for ASP.NET AJAX

59 UI for ASP.NET AJAX

In most cases where you want to program responses to user input, the code executes on the client side. This
leads to quicker response times and less traffic to your Web site. The client-side API for the input controls is
very powerful, letting you control and respond to most of their behavior. The following examples illustrate
some of the things you can do using this API.

Response-dependent enabling
One common task in input forms is enabling or disabling some questions based on the responses to others. The
following example illustrates how this can be done.

The example provides a handler for the client-side OnValueChanged event. The OnValueChanged event occurs
when the control loses focus after the user edits its value.

The event handler checks the value that a user entered, which is available from the event arguments, and then
calls the enable() or disable() method of another control, as appropriate. When disabling, it also calls the clear
() method to remove any previously-set value.

The code for this project is in \VS Projects\Input\ClientSide.

 newDateInput.DateFormat = "hh:mm:ss tt";
 newDateInput.SelectedDate = DateTime.Now;
 PlaceHolder1.Controls.Add(newDateInput);
 PlaceHolder1.Controls.Add(new LiteralControl("
"));
 break;
 }
 }
 }
 }
}

3.6 Client-Side Programming

This example uses OnValueChanged because that event is common to all input control types. You could,
instead, use the OnEnumerationChanged event, which is only available on RadMaskedTextBox.

[ASP.NET] Response-dependent enabling

<head runat="server">
 <title>Response-Dependent Enabling</title>
</head>
<body>
 <script type="text/javascript">
 function MaritalStatusChanged(sender, eventArgs) {
 // find the control to be enabled or disabled
 var dateEnter = $find("<%= MarriageDate.ClientID %>");
 // enable or disable the control based on newValue
 if (eventArgs.get_newValue().trim() != "Single")
 dateEnter.enable();
 else {
 dateEnter.clear();
 dateEnter.disable();
 }
 }
 </script>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div>

UI for ASP.NET AJAX

60 UI for ASP.NET AJAX

Completing User Input
You can easily write a client-side function to implement a form of auto-complete. The following example
illustrates how to accomplish this using the OnValueChanging client-side event. OnValueChanging is similar to
the OnValueChanged event used in the previous example, but it occurs slightly earlier, and allows you to
change the new value or prevent the edit that the user just made.

The event handler examines the new value, and if it represents a string that could be mapped to one of the
expected responses, it performs that mapping using the set_newValue() method. If the event handler does not
recognize the value that the user typed, it calls set_cancel(true), which cancels the event so that the value of
the text box is not changed.

 <telerik:RadMaskedTextBox ID="MaritalStatus" Runat="server"
 Label="Marital Status"
 Mask="<Single|Married|Separated|Divorced|Widowed>"
 PromptChar=" " Width="200px" Text="Single" Skin="Outlook">
 <ClientEvents OnValueChanged="MaritalStatusChanged" />
 </telerik:RadMaskedTextBox>

 <telerik:RadNumericTextBox ID="NOfChildren" Runat="server"
 Label="Number of Children" MaxLength="2"
 MaxValue="99" MinValue="0"
 Width="200px" Skin="Outlook">
 <NumberFormat DecimalDigits="0" />
 </telerik:RadNumericTextBox>

 <telerik:RadDateInput ID="MarriageDate" Runat="server"
 Culture="English (United States)"
 DisplayDateFormat="MMMM dd, yyyy"
 Label="Date of Marriage" Enabled="False"
 Width="200px" Skin="Outlook">
 <DisabledStyle BackColor="#eeeeee" />
 </telerik:RadDateInput>
 </div>
 </form>
</body>

[ASP.NET] Completing user input

<head runat="server">
 <title>Completing user input</title>
</head>
<body>
 <script type="text/javascript">
 function SetGender(sender, eventArgs) {
 // get the new value from the event arguments
 var newValue = eventArgs.get_newValue().trim();
 // any value that could represent 'male' is changed
 if (newValue == "m" || newValue == "M" ||
 newValue == "Male" ||
 newValue == "man" || newValue == "Man" ||
 newValue == "boy" || newValue == "Boy" ||
 newValue == "b" || newValue == "B")
 eventArgs.set_newValue("male");
 // any value that could represent 'female' is changed
 else if (newValue == "f" || newValue == "F" ||
 newValue == "Female" ||

UI for ASP.NET AJAX

61 UI for ASP.NET AJAX

Handling input errors
All of the input controls other than RadTextBox restrict the values that the user can enter. RadMaskedTextBox
requires the user to enter a value that matches the mask, RadNumericTextBox requires the user to enter a
number (possibly within a specified range), and RadDateInput requires users to enter a date and/or time value
(again possibly within a specified range). If the user enters an invalid value, the client-side OnError event
occurs.

The event arguments for RadMaskedTextBox are different than those for the other types of input control.
Errors only arise when the input fails to match the mask. The event arguments have a get_currentPart()
method to return the mask part that was not correctly matched. The get_newValue() method returns the text
that would not match the current mask part.

In the case of RadDateInput and RadNumericTextBox, on the other hand, there are two types of error that can
occur. The parser can fail to recognize the input as a valid value, or the value may be a recognizable date or
number, but be out of range. The get_reason() method of the event arguments indicates which of these
occurred. The get_inputText() method returns the new value that caused the problem, except in the case of
parsing errors on numeric text box, where it returns the unedited value.

You can use the OnError event to implement your own parsing algorithm when the built-in parser fails, or to
generate an error message. The following example illustrates generating an error message based on the
information in the OnError event handler. The error handler for the masked text box displays an alert and
moves the cursor to the part of the mask that failed. The error handlers for the numeric text box and date
input controls indicate the type of error that occurred and the text that caused the problem (if available).

The source for this project is in \VS Projects\Input\ClientErrorHandling.

 newValue == "woman" || newValue == "Woman" ||
 newValue == "w" || newValue == "W" ||
 newValue == "girl" || newValue == "Girl" ||
 newValue == "g" || newValue == "G")
 eventArgs.set_newValue("female");
 // any unrecognized value is rejected
 if (eventArgs.get_newValue().trim() != "male" &&
 eventArgs.get_newValue().trim() != "female")
 eventArgs.set_cancel(true);
 }
</script>
 <form id="form1" runat="server">
 <div>
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

 <telerik:RadTextBox ID="RadTextBox1" Runat="server"
 EmptyMessage="- Enter your sex -" Width="125px">
 <ClientEvents OnValueChanging="SetGender" />
 </telerik:RadTextBox>
 </div>
 </form>
</body>

[ASP.NET] Error handling

<head runat="server">
 <title>Error Handling</title>
</head>
<body>
 <script type="text/javascript">

UI for ASP.NET AJAX

62 UI for ASP.NET AJAX

 function HandleMaskError(sender, eventArgs) {
 // on masked text box, get_newValue() returns the problem value
 alert("Invalid value: " + eventArgs.get_newValue());
 // get_currentPart() returns the part that failed to match
 var part = eventArgs.get_currentPart();
 if (part) {
 // set the cursor on the problem part
 sender.set_cursorPosition(part.offset);
 }
 // we did not correct the error, so cancel the edit
 eventArgs.set_cancel(true);
 }
 function HandleNumericError(sender, eventArgs) {
 switch (eventArgs.get_reason()) {
 case 1: // Parsing error -- no invalid value available
 alert("Invalid character!");
 break;
 case 2: // Out of range
 alert("Value out of range: " + eventArgs.get_inputText());
 break;
 }
 // we did not correct the error, so cancel the edit
 eventArgs.set_cancel(true);
 // return focus to the numeric text box
 sender.focus();
 }
 function HandleDateError(sender, eventArgs) {
 switch (eventArgs.get_reason()) {
 case 1: // Parsing error
 alert("Value could not be parsed: " + eventArgs.get_inputText());
 break;
 case 2: // Out of range
 alert("Value out of range: " + eventArgs.get_inputText());
 break;
 }
 // we did not correct the error, so cancel the edit
 eventArgs.set_cancel(true);
 // return focus to the date input control
 sender.focus();
 }
 </script>
 <form id="form1" runat="server">
 <div>
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <telerik:RadMaskedTextBox ID="RadMaskedTextBox1" Runat="server"
 EmptyMessage="- Enter SSN -" HideOnBlur="True" Mask="###-##-####">
 <ClientEvents OnError="HandleMaskError" />
 </telerik:RadMaskedTextBox>

 <telerik:RadNumericTextBox ID="RadNumericTextBox1" Runat="server"
 Culture="English (United States)"
 EmptyMessage="-Enter cost below $5.00 -"
 MaxValue="5" MinValue="0.01" Type="Currency" Width="125px">
 <ClientEvents OnError="HandleNumericError" />

UI for ASP.NET AJAX

63 UI for ASP.NET AJAX

You can enhance the functionality of RadTextBox by using it in combination with other ASP.NET controls.

How-to use ASP.NET validators with input RadControls
It is easy to use the input RadControls with ASP.NET validators: simply set the ControlToValidate property of
the validator to the text box, masked text box, numeric text box, or date input control that you want to
validate.

You can assign the input controls on your Web page to different validation groups so that the validators check
them at different times. All you need do is set the ValidationGroup property of the validator to match the
ValidationGroup property of the control that initiates the validation.

You can even use an input control to initiate validation. Just set the CausesValidation property to true, and it
will initiate a validation every time its value changes.

The following example illustrates using validators with RadTextBox, although you can use them with any of the
input controls. It demonstrates both the use of validation groups and the way an input control can trigger
validation.

The form uses three validation groups: "LoginGroup", "SignUpGroup", and "PWGroup":

 The "LoginGroup" validation group is assigned to the two validators in the left-hand panel, and to the
button in that panel which triggers validation on postback. Note that no special settings are required on
the text boxes; they are validated simply because of the ControlToValidate property of the corresponding

 </telerik:RadNumericTextBox>

 <telerik:RadDateInput ID="RadDateInput1" Runat="server"
 EmptyMessage="-Enter date in 1990's-"
 MaxDate="1999-12-31" MinDate="1990-01-01">
 <ClientEvents OnError="HandleDateError" />
 </telerik:RadDateInput>
 </div>
 </form>
</body>

3.7 How To

UI for ASP.NET AJAX

64 UI for ASP.NET AJAX

validators.

 The "SignUpGroup" validation group is similar. It checks for required fields in the right-hand panel when the
"Sign Up" button triggers a postback. The only thing new here is that this group includes a regular
expression validator to check for valid email addresses as well as the required field validators.

[ASP.NET] "LoginGroup" controls and validators

<telerik:RadTextBox ID="LoginName" Runat="server"
 Skin="Outlook" Width="75%"
 Label="Name: " ToolTip="Enter your account name">
</telerik:RadTextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"
 ControlToValidate="LoginName"
 ErrorMessage="You must enter your name to log in!"
 ValidationGroup="LoginGroup">
</asp:RequiredFieldValidator>

<telerik:RadTextBox ID="LoginPassword" Runat="server"
 Skin="Outlook" Width="75%" Label="Password: "
 TextMode="Password" ToolTip="Enter your password">
</telerik:RadTextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator2" runat="server"
 ControlToValidate="LoginPassword"
 ErrorMessage="You must enter your password to log in!"
 ValidationGroup="LoginGroup">
</asp:RequiredFieldValidator>

<asp:Button ID="Button1" runat="server" Text="Log In"
 BackColor="#99CCFF" ForeColor="#0000CC"
 CausesValidation="true" ValidationGroup="LoginGroup" />

[ASP.NET] "SignUpGroup" controls and validators

<telerik:RadTextBox ID="SignUpName" Runat="server"
 Skin="Outlook" Width="75%"
 Label="Name: " ToolTip="Enter a name for your account" >
</telerik:RadTextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator3" runat="server"
 ControlToValidate="SignUpName"
 ErrorMessage="You must supply an account name!"
 ValidationGroup="SignUpGroup">
</asp:RequiredFieldValidator>

<telerik:RadTextBox ID="SignUpPW" Runat="server"
 Skin="Outlook" Width="75%" Label="Password: "
 TextMode="Password" ToolTip="Enter the password you want to use">
</telerik:RadTextBox>
...
<asp:RequiredFieldValidator ID="RequiredFieldValidator4" runat="server"
 ControlToValidate="SignUpPW"
 ErrorMessage="You must supply a password!"
 ValidationGroup="SignUpGroup">
</asp:RequiredFieldValidator>

<telerik:RadTextBox ID="SignUpPWConfirm" Runat="server"
 Skin="Outlook" Width="75%" Label="Confirm Password: " TextMode="Password"
 ToolTip="Retype your password to confirm"

UI for ASP.NET AJAX

65 UI for ASP.NET AJAX

 The "PWGroup" validation group is a little different because it is not initiated by a postback. Instead,
validators in this group are checked when the user enters a value in the password confirmation text box. To
accomplish this, the password confirmation text box has its CausesValidation property set to true and its
ValidationGroup property set to "PWGRoup". When this validation group is checked, a regular expression
validator ensures that the password is valid, and a compare validator checks that the confirmation
matches. Note that the password confirmation text box is triggering validation on itself.

 CausesValidation="True" ValidationGroup="PWGroup">
</telerik:RadTextBox>
...
<asp:RequiredFieldValidator ID="RequiredFieldValidator5" runat="server"
 ControlToValidate="SignUpPWConfirm"
 ErrorMessage="You must confirm your password!"
 ValidationGroup="SignUpGroup">
</asp:RequiredFieldValidator>

<telerik:RadTextBox ID="SignUpEmail" Runat="server"
 Skin="Outlook" Width="75%" Label="Email: "
 ToolTip="Enter your email address.">
</telerik:RadTextBox>
<asp:RegularExpressionValidator ID="RegularExpressionValidator2" runat="server"
 ControlToValidate="SignUpEmail"
 ErrorMessage="Invalid email address!"
 ValidationExpression="^[\w\.\-]+@[a-zA-Z0-9\-]+(\.[a-zA-Z0-9\-]{1,})*(\.[a-zA-Z]{2,3}){1,2}
$"
 ValidationGroup="SignUpGroup">
</asp:RegularExpressionValidator>

<asp:Button ID="Button3" runat="server" Text="Sign Up"
 BackColor="#99CCFF" ForeColor="#0000CC"
 ValidationGroup="SignUpGroup" />

[ASP.NET] "PWGroup" controls and validators

<telerik:RadTextBox ID="SignUpPW" Runat="server"
 Skin="Outlook" Width="75%" Label="Password: "
 TextMode="Password" ToolTip="Enter the password you want to use">
</telerik:RadTextBox>
<asp:RegularExpressionValidator ID="RegularExpressionValidator1" runat="server"
 ControlToValidate="SignUpPWConfirm"
 ErrorMessage="Password must be 6-10 characters, contain at least one digit and one number,
and have no special characters!"
 ValidationExpression="(?!^[0-9]*$)(?!^[a-zA-Z]*$)^([a-zA-Z0-9]{6,10})$"
 ValidationGroup="PWGroup">
</asp:RegularExpressionValidator>
...
<telerik:RadTextBox ID="SignUpPWConfirm" Runat="server"
 Skin="Outlook" Width="75%" Label="Confirm Password: "
 TextMode="Password"
 ToolTip="Retype your password to confirm"
 CausesValidation="True" ValidationGroup="PWGroup">
</telerik:RadTextBox>
<asp:CompareValidator ID="CompareValidator1" runat="server"
 ControlToCompare="SignUpPW" ControlToValidate="SignUpPWConfirm"
 ErrorMessage="Password does not match!" ValidationGroup="PWGroup">
</asp:CompareValidator>

UI for ASP.NET AJAX

66 UI for ASP.NET AJAX

The complete code for this project is in \VS Projects\Input\HowToValidators.

Spell checking text box values
Another useful control to use with RadTextBox is RadSpell. This control lets you easily enable spell checking so
that the user can check the text after it is entered into the text box.

The following walk-through guides you through the process of linking up a spell checker with a multi-line text
box. The code for this example can be found in \VS Projects\Input\HowToSpellCheck.

1. Create a new ASP.NET Web Application and add a ScriptManager onto the page from the AJAX extensions
section of the tool box.

2. Locate the English dictionary that the spell checker uses. This file is called "en-US.tdf", and can be found in
the App_Data\RadSpell folder inside the folder where you installed RadControls for ASPNET AJAX. Copy this
file and paste it into the App_Data folder of your project (using the Project Explorer).

3. Right-click on your project in the Project Explorer and choose Add|Add ASP.NET
Folder|App_GlobalResources from the context menu.

4. Locate the spell dialog resource, "RadSpell.Dialog.resx", in the App_GlobalResources folder inside the
folder where you installed RadControls for ASPNET AJAX. Copy this file and paste it into the
App_GlobalResources folder that you added in the last step. Your Project Explorer should now look
something like the following:

UI for ASP.NET AJAX

67 UI for ASP.NET AJAX

5. Add a RadTextBox control to your Web page. Set its Skin property to "WebBlue", TextMode to "MultiLine",
Rows to 10 and Columns to 50.

6. Add a RadSpell control to your Web page below the RadTextBox.

7. In the Smart Tag that appears automatically, click the Enable RadSpell Http Handlers link.

8. On the RadSpell control, set the ControlToCheck property to "RadTextBox1" and the DictionaryPath
property to "App_Data".

9. Press Ctl-F5 to run the application. You can enter a lengthy value in the text box (with some spelling errors
in it). Click the "Spell Check" button to invoke the spell checker. When you exit the dialog, any corrections
you made in the dialog are reflected in the text box.

Password strength checking of RadTextBox in password mode
The feature allows you to specify your custom criteria for password strength and visualize an indicator to
inform the user how strong is the typed password according to this criteria.

UI for ASP.NET AJAX

68 UI for ASP.NET AJAX

You can easily turn on the password strength check functionality by setting
PasswordStrengthSettings.ShowIndicator="true". This way the indicator will show and it will use its default
values for password strength until you specify your own.

Then you can specify your preferred options for the password which will be used for calculating its strength.
The available properties are:

 ShowIndicator - enables/disables the indication. By default ShowIndicator is set to false. In order to show
the indication set the property to true.

 PreferredPasswordLength - preferred length of the password.

 MinimumNumericCharacters - the number of minimum numeric characters that the user has to enter in
order for his password to be considered as a strong one.

 MinimumUpperCaseCharacters - the number of minimum upper case characters expected.

 MinimumLowerCaseCharacters - the number of minimum lower case characters expected.

 MinimumSymbolCharacters - the number of minimum symbol characters expected.

 CalculationWeightings - a list of 4 semi-colon separated numeric values used to determine the weighting
of a strength characteristic. The total of the 4 values should be 100. By default they are defined as
50;15;15;20. This means that password length will determine 50% of the strength calculation, numeric
criteria is 15% of strength calculation, casing criteria is 15% of calculation, and symbol criteria is 20% of
calculation. So the format is "A;B;C;D" where A = length weighting, B = numeric weighting, C = casing
weighting, D = symbol weighting.

 RequiresUpperAndLowerCaseCharacters - specifies whether upper and lower case characters are
required. By default the property is set to "true". When it is "false", the MinimumLowerCaseCharacters and
MinimumUpperCaseCharacters properties do not affect the calculation of the password.

 IndicatorElementID - sets a div or span element to which the indication will be applied. If this property is
not set, such element will be created automatically.

 IndicatorElementBaseStyle - the name of the CSS class that will be used for styling the indicator element.

 TextStrengthDescriptions - a list of five semi-colon separated strings which will used as descriptions for
the password strength. By default TextStrengthDescriptions is set to "Very Weak;Weak;Medium;Strong;Very
Strong".

 TextStrengthDescriptionStyles - a list of six semi-colon separated CSS classes that will be applied
depending on the calculated password strength. By default the property is
"riStrengthBarL0;riStrengthBarL1;riStrengthBarL2;riStrengthBarL3;riStrengthBarL4;riStrengthBarL5;"

The basics

Since Q3 2008, RadInput controls include a new member - the RadInputManager. This control is aimed to offer

ASPX

<telerik:RadTextBox ID="RadTextBox1" runat="server" TextMode="Password">
 <PasswordStrengthSettings ShowIndicator="true" />
</telerik:RadTextBox>

You can find the complete source for this project at:
\VS Projects\Input\PasswordStrengthChecker

3.8 RadInputManager

UI for ASP.NET AJAX

69 UI for ASP.NET AJAX

two important features:

1. An easy and intuitive way to extend a standard ASP.NET text box, and without any extra custom code,
introduce much functionality, normally related to a RadInput control. For example, a standard text box
control offers no default functionality for text parsing and validation – this has to be done via custom code,
either client or server side. This input validation is normally associated with RadInput controls. In addition
the RadInputManager is very useful for formatting and styling of regular input controls. In other words, the
RadInputManager transforms your standard text boxes into featured RadInput controls (However some
limitations apply - one of the differences between text boxes extended via the input manager, and normal
RadInput controls is that there are no additional buttons, such as a spin button.).

2. On the other hand, having a large number of input controls on the page may hurt performance. This is
where the RadInputManager comes in. It automatically adds extra functionality to separate text boxes, or
all text boxes nested in another control on the page, via a few settings added to the Input Manager. The
main aspects of the better performance are:

 Loading time - usually, having a large number of input controls on the page, each associated with
a separate object and client events and handlers, would imply a performance hit. Introducing the
RadInputManager, however, dramatically reduces the load time.

 Maximum number of controls allowed on the page - local tests showed that with the help of
RadInputManager, the number of input controls a standard application would allow can be
increased up to ten times.

 Footprint of the page - local tests showed that a standard page, with a total of 300 input controls,
generates a footprint of approximately 400KB. On the other hand, extending 300 standard text
boxes via the RadInputManager, to enhance their behavior to a NumericInput control, generates a
footprint of approximately 100KB. This brings about faster loading and better responsiveness of
the page.

Performance

The core of the performance benefit of using a RadInputManager (as opposed to input controls) is in the
following approach. A normal input control generates a client side object for each control instance. For
example, if you declare 300 input controls on the page, you will have 300 client objects, once the page is
compiled and run. On the other hand, when extending standard text boxes via the RadInputManager control,
you will have a single client side object, which will dramatically improve performance, while at the same time
providing enhanced data entry capabilities for user input validation.

To summarize, the RadInputManager offers extended functionality to standard text boxes, with little overhead
related to increased page footprint or extra coding.

Design-Time Support

The most important aspect of the design time support for the control is the ability to configure it to determine
which controls on the page will be extended through it. Essentially, the approach is similar to the one used for
Ajax-enabled controls on the page via the RadAjaxManager. First, you select what type of setting you will be
adding - TextBoxSetting / NumericTextBoxSetting / RegExpTextBoxSetting / DateInputSetting.

UI for ASP.NET AJAX

70 UI for ASP.NET AJAX

Once you have chosen one of the four possible options, you can choose which particular controls on the page
you would like to extend – the right-hand side pane lists all the controls on the current page.

After you have chosen the setting, and the controls to be extended, you can set some of the most important
properties of each setting, as shown in the screen shot below:

UI for ASP.NET AJAX

71 UI for ASP.NET AJAX

The properties which can be set include CSS classes for the different states (hover/enabled, etc), behavior
settings such as BehaviorID and EmptyMessage and the client-side events (OnBlur, OnError, OnFocus,
OnKeyPress).

Using the RadInputManager

Generally, there are two groups of controls which are extended using the RadInputManager. The first are
controls which are located directly on the page, such as a normal text box somewhere on the form. The second
are text boxes located in another control - for example, a text box nested in a repeater.

To extend the default functionality of the standard text box controls, RadInputManager defines four types of
settings which could be set:

1. telerik:TextBoxSetting – the targeted text box will exhibit behavior like a normal RadTextBox.

2. telerik:NumericTextBoxSetting – the targeted text box will be accepting numeric input.

3. telerik:DateInputSetting – the targeted text box will be accepting input in a date format.

4. telerik:RegExpTextBoxSetting – the targeted text box will be accepting characters corresponding to a
specified regular expression.

Below is a list of four tables, covering the most important properties of the elements discussed up to now:

The RadInputManager property builder is also available in the Properties window through the InputSettings
property.

UI for ASP.NET AJAX

72 UI for ASP.NET AJAX

TextBoxSetting

NumericTextBoxSetting

DateInputSetting

Property Description
BehaviorID A unique id for the settings related to a given text box.

ClientEvents-OnBlur The name of the client side function which will be raised when the
control loses focus.

ClientEvents-OnError
The name of the client side function which will be called when an
error occurs – the user enters invalid input. This event is not
raised for the text box control, since there is no input restriction.

ClientEvents-OnFocus The name of the client side function which will be called when the
control receives focus.

ClientEvents-OnKeyPress The name of the client side function which will be called when the
user presses a button, while the control has the focus.

EmptyMessage The text which will be displayed before the user has entered any
text.

InitializeOnClient A property which indicates whether the client event handlers and
css classes will be set on the client.

SelectionOnFocus A property which is used to determine whether the text in the
control will be selected once it receives focus.

Property Description
AllowRounding A setting which specifies whether the user input may be rounded.
BehaviorID A unique id for the settings related to a given text box.

ClientEvents-OnBlur The name of the client side function which will be raised when the
control loses focus.

ClientEvents-OnError The name of the client side function which will be called when an
error occurs – the user enters invalid input.

ClientEvents-OnFocus The name of the client side function which will be called when the
control receives focus.

ClientEvents-OnKeyPress The name of the client side function which will be called when the
user presses a button, while the control has the focus.

DecimalDigits Gets or sets the number of decimal places to use in numeric
values.

DecimalSeparator Gets or sets the string to use as the decimal separator in values.

EmptyMessage The text which will be displayed before the user has entered any
text.

ErrorMessage Sets the message to be displayed when invalid value is entered.

GroupSeparator Gets or sets the string that separates groups of digits to the left of
the decimal in values.

GroupSizes Gets or sets the number of digits in each group to the left of the
decimal in values.

InitializeOnClient A property which indicates whether the client event handlers and
css classes will be set on the client.

MaxValue The maximal numeric value which can be entered in the control.
MinValue The minimal numeric value which can be entered in the control
NegativePattern Gets or sets the format pattern for negative values.
PositivePattern Gets or sets the format pattern for positive values.

SelectionOnFocus A property, which is used to determine whether the text in the
control will be selected, once it receives focus.

Type The type of the control – Currency/Number/Percent.

Property Description

UI for ASP.NET AJAX

73 UI for ASP.NET AJAX

RegExpTextBoxSetting

In addition to the properties above, all 4 settings support different CSS classes to be applied for the different
states that a text box could currently be in. To use them just set the relevant ~CssClass property:

 DisabledCssClass

 EmptyMessageCssClass

BehaviorID A unique id for the settings related to a given text box.

ClientEvents-OnBlur The name of the client side function which will be raised when the
control loses focus.

ClientEvents-OnError The name of the client side function which will be called when an
error occurs – the user enters invalid input.

ClientEvents-OnFocus The name of the client side function which will be called when the
control receives focus.

ClientEvents-OnKeyPress The name of the client side function which will be called when the
user presses a button, while the control has the focus.

DateFormat Gets or sets the date and time format used by RadDateSetting.

DisplayDateFormat Gets or sets the display date format used by RadDateSetting
(Visible when the control is not on focus).

EmptyMessage The text which will be displayed before the user has entered any
text.

ErrorMessage Sets the message to be displayed when invalid value is entered.

InitializeOnClient A property which indicates whether the client event handlers and
css classes will be set on the client.

MinDate The minimal date which the user will be allowed to enter.
MaxDate The maximal date which the user will be allowed to enter.

SelectionOnFocus A property, which is used to determine whether the text in the
control will be selected, once it receives focus.

ShortYearCenturyEnd
Gets or sets a value that indicates the end of the century that is
used to interpret the year value when a short year (single-digit or
two-digit year) is entered in the input.

Property Description
BehaviorID A unique id for the settings related to a given text box.

ClientEvents-OnBlur The name of the client side function which will be raised when the
control loses focus.

ClientEvents-OnError The name of the client side function which will be called when an
error occurs – the user enters invalid input.

ClientEvents-OnFocus The name of the client side function which will be called when the
control receives focus.

ClientEvents-OnKeyPress The name of the client side function which will be called when the
user presses a button, while the control has the focus.

EmptyMessage The text which will be displayed before the user has entered any
text.

ErrorMessage A message which is displayed if the regular expression matching
fails.

InitializeOnClient A property which indicates whether the client event handlers and
css classes will be set on the client.

SelectionOnFocus A property, which is used to determine whether the text in the
control will be selected, once it receives focus.

ValidationExpression A regular expression, representing the matching criteria.

ValidationGroup The ValidationGroup to which the regular expression setting is
assigned.

UI for ASP.NET AJAX

74 UI for ASP.NET AJAX

 EnabledCssClass

 FocusedCssClass

 HoveredCssClass

 InvalidCssClass

 ReadOnlyCssClass

Each one of the setting groups also allows for different behavior and contains a BehaviorID property, which is
used to identity settings pertaining to a given text box. These can later be retrieved on the client, for example,
and access a property such as the EmptyMessage.

Give it a try

Set up the project structure

1. Create a new ASP.NET Web Application.

2. In the designer, drag a ScriptManager from the AJAX extensions section of the tool box onto your page.

Add the RadInputManager and TextBox controls.

1. Add a RadInputManager to your web page. In the Smart Tag, select "Vista" from the Skin drop-down.

2. Add a TextBox to your web page. In the Misc section of the Properties Window change its ID to
"ExtendedTextBox".

3. Add a few line breaks after the TextBox and add a new TextBox to your web page. In the Misc section of
the Properties Window change its ID to "ExtendedNumericTextBox".

4. Add a few line breaks after the TextBox and add a new TextBox to your web page. In the Misc section of
the Properties Window change its ID to "ExtendedDateTextBox".

5. Add a few line breaks after the TextBox and add a new TextBox to your web page. In the Misc section of
the Properties Window change its ID to "ExtendedRegExpTextBox".

Configure the TextBoxSetting.

1. From the RadInputManager's smart tag, open the Property Builder dialog by clicking on the "Configure
Input Manager" option.

2. Click the arrow in the Add Setting drop down in the bottom left corner of the dialog, choose
"TextBoxSetting" and select the setting once it is added in the left hand-side pane.

3. In the Behavior section of the right-hand side pane set the BehaviorID property to "TextBoxSetting", the
EmptyMessage property to "- Enter some text here -", and the SelectionOnFocus property to "SelectAll".

4. Check the check box in front of the "ExtendedTextBox" option in the middle pane of the dialog and click
"OK" to add the setting to the manager’s settings.

Configure the NumericTextBoxSetting.

1. From the RadInputManager's smart tag, open the Property Builder dialog by clicking on the "Configure
Input Manager" option.

Note that each input setting must have at least one target control, otherwise it will not be serialized to the
client and its client object would not be instantiated.

UI for ASP.NET AJAX

75 UI for ASP.NET AJAX

2. Click the arrow in the Add Setting drop down in the bottom left corner of the dialog, choose
"NumericTextBoxSetting" and select the setting once it is added in the left hand-side pane.

3. In the Behavior section of the right-hand side pane set the BehaviorID property to
"NumericTextBoxSetting", the EmptyMessage property to "- Enter a number here -", the SelectionOnFocus
property to "SelectAll", the MinValue property to "0", the MaxValue property to "10000" and the Type
property to "Number". In the Misc section set the AllowRounding property to "False", the DecimalDigits
property to "2", the DecimalSeparator property to ".", the GroupSeparator property to "," and the
GroupSizes property to "3".

4. Check the check box in front of the "ExtendedNumericTextBox" option in the middle pane of the dialog and
click "OK" to add the setting to the manager’s settings.

Configure the DateInputSetting.

1. From the RadInputManager's smart tag, open the Property Builder dialog by clicking on the "Configure
Input Manager" option.

2. Click the arrow in the Add Setting drop down in the bottom left corner of the dialog, choose
"DateInputSetting" and select the setting once it is added in the left hand-side pane.

3. In the Behavior section of the right-hand side pane set the BehaviorID property to "DateInputSetting", the
EmptyMessage property to "- Enter a date here -", the SelectionOnFocus property to "SelectAll", the
MinDate property to "2000-01-01", the MaxDate property to "2015-12-31", the DateFormat property to
"dd.MM.yyyy", the DisplayDateFormat property to "dd.MMM.yyyy". In the Appearance section set the
ErrorMessage property to "Invalid date!".

4. Check the check box in front of the “ExtendedDateTextBox” option in the middle pane of the dialog and
click "OK" to add the setting to the manager’s settings.

Configure the RegExpTextBoxSetting.

1. From the RadInputManager's smart tag, open the Property Builder dialog by clicking on the "Configure
Input Manager" option.

2. Click the arrow in the Add Setting drop down in the bottom left corner of the dialog, choose
"RegExpTextBoxSetting" and select the setting once it is added in the left hand-side pane.

3. In the Behavior section of the right-hand side pane set the BehaviorID property to "RegExpTextBoxSetting",
the EmptyMessage property to "- Enter an Email address here -", the SelectionOnFocus property to
"SelectAll". In the Appearance section set the ErrorMessage property to "Invalid Email address!", click in
the ValidationExpression text box and choose the "Internet email address" option from the Regular
Expression Editor dialog.

4. Check the check box in front of the "ExtendedRegExpTextBox" option in the middle pane of the dialog and
click "OK" to add the setting to the manager’s settings.

Run the application

1. Press Ctl-F5 to run the application. Note that the empty messages appear for all the text box controls you
entered.

2. Tab around the form and enter some values. Note that the entered value gets selected when each control
gets focus, based on the SelectionOnFocus property. Note that the ranges you specified for the Numeric
and Date text boxes are enforced. Note that when you enter a value with more than 2 decimal digits in the
numeric text box, the value is not rounded.

UI for ASP.NET AJAX

76 UI for ASP.NET AJAX

Getting and Setting Values

RadInputManager provides you with the ability of setting/getting values of the TextBox controls either client-
side or server-side.

Getting values Client-Side
To be able to get or set values client-side, first you should know how to get the TextBox client-side object. This
can be done through the client-side object of the RadInputManager. Here is an example:

For getting and setting values on the client, you can use the methods available in the RadInput control client-
side API listed below.

Each client-side object has a number of methods for getting the value of the control:

In addition to the methods listed above which are present in the client-side object for all the RadInputManager
target controls, the TextBox controls targeted under DateInputSetting have the following additional methods:

[ASP .NET] Getting values on the client

<telerik:RadCodeBlock ID="RadCodeBlock1" runat="server">
<script type="text/javascript">
 function pageLoad()
 {
 var inputManager = $find("<%= RadInputManager1.ClientID %>");
 var input = inputManager.get_targetInput("<%= TextBox1.ClientID %>");
 }
</script>
</telerik:RadCodeBlock>
<asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>
<telerik:RadInputManager ID="RadInputManager1" runat="server">
 <telerik:TextBoxSetting BehaviorID="Behavior1">
 <TargetControls>
 <telerik:TargetInput ControlID="TextBox1" />
 </TargetControls>
 </telerik:TextBoxSetting>
</telerik:RadInputManager>

Method Return Type Description
get_value(),
set_value()

NumericTextBoxSetting: number
All other input controls: string

Gets or sets the value of
the TextBox control.

Method Return Type Description

UI for ASP.NET AJAX

77 UI for ASP.NET AJAX

Getting values Server-Side
On the Server-side, you can operate with the TextBox value directly through the instance of the TextBox
control. Use the Text property of the TextBox to set/get its value.

Validation

You can use ASP.NET validators for validating TextBox controls targeted in the RadInputManager settings. In
this case validation works the same way as for regular TextBox controls. You simply have to set the ID of the
TextBox control as the value of the ControlToValidate property of the validator.

Using different Culture

get_selectedDate() Date Gets the value of the
control as a Date value.

set_selectedDate() none Sets the value of the
control.

[ASP .NET] Getting values on the client

<telerik:RadCodeBlock ID="RadCodeBlock1" runat="server">
<script type="text/javascript">
 function pageLoad()
 {
 var inputManager = $find("<%= RadInputManager1.ClientID %>");
 var input = inputManager.get_targetInput("<%= TextBox1.ClientID %>");
 input.set_value("Value Client Side");
 }
</script>
</telerik:RadCodeBlock>

[ASP .NET]

<asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>
<telerik:RadInputManager ID="RadInputManager1" runat="server">
 <telerik:TextBoxSetting BehaviorID="Behavior1">
 <TargetControls>
 <telerik:TargetInput ControlID="TextBox1" />
 </TargetControls>
 </telerik:TextBoxSetting>
</telerik:RadInputManager>

[C#] Setting values server-side

protected void Page_Load(object sender, EventArgs e)
{
 TextBox1.Text = "Setting Value Server-Side";
}

[VB] Setting values server-side

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 TextBox1.Text = "Setting Value Server-Side"
End Sub

UI for ASP.NET AJAX

78 UI for ASP.NET AJAX

With the RadInputManager you can specify different Culture per RadInputManager setting. In general this
Culture is usually different from the current Page Culture. However, when setting values, the value you assign
to the TextBox control should correspond to the current Page Culture. You should mind this rule especially
when entering dates and floating point numbers.

In this chapter you took a tour of the "input" related RadControls and became familiar with how and where they
are used. You saw some of the important properties, and noted where they all shared common properties. You
created a simple application that used all four types of input control and made use of some of the common
properties such as labels and empty messages. You learned to use the server-side API to respond to user input
and to create input controls dynamically. You learned to perform common client-side tasks such as enabling
and disabling some controls based on the responses to others, restricting input as the user types, and handling
parsing errors. You also learned to use the input controls with other controls such as an ASP.NET validator or
RadSpellCheck.

3.9 Summary

UI for ASP.NET AJAX

79 UI for ASP.NET AJAX

 Learn the basic techniques for getting RadControls object references in client code.

 Use RadControl properties and methods. Learn the naming convention that will help you out in most
RadControls client programming.

 Learn how to use the JavaScript IntelliSense, provided out-of-the-box by RadControls for ASP.NET AJAX Q1
2010 and later.

 Learn how to use RadControl client events, the standard parameter list and naming convention. Learn how
to attach and detach events on-the-fly.

 Build an application that displays a bread crumb trail as the mouse hovers over a set of hierarchical tabs.
This application incorporates knowledge on how to get object references, how to use client methods and
events, and how to build and insert HTML on-the-fly.

RadControls for ASP.NET AJAX brings a rich set of API objects, methods and events to client-side programming
that let you achieve complicated tasks with maximum speed and flexibility. It is important to get familiar with
client programming early on because every RadControl has a client API that can be used on its own or together
with AJAX so that sever and client functionality work smoothly together.

The client API is designed to be consistent between RadControls. Once you learn how to reference a
RadControl, call client methods and respond to events, you're on your way to working with the rest of the
controls the same way.

There are two helpful short cut methods supplied by the Microsoft AJAX Library, $find() and $get(), that are
used to locate objects on the page:

 $find(): Provides a shortcut to the Sys.Application.findComponent() method, which returns the specified
Component object. Expect to use this method every time you reference a RadControl on the client. This
next example shows $find() being used in its simplest form:

In some cases, "RadMenu1" will be present, but $find("RadMenu1") will return null. A safer way to find your
RadControl is to use a server tag to output the control ClientID to the $find() method. We leave it up to the
RadControl to figure out the correct ClientID in case the control is nested within a master page or user
control and the ClientID wouldn't be what we expect:

4 Client-Side API

4.1 Objectives

4.2 Introduction

4.3 Referencing RadControl Client Objects

[JavaScript] Using $find()

var menu = $find("RadMenu1");

[JavaScript] Using $find() with Server Tag

var menu = $find("<%= RadMenu1.ClientID %>");

ID and ClientID

The ID property of a control identifies an ASP.NET server control. The ID is only unique within the
current NamingContainer (page, user control, item template).

The ClientID property is unique within the entire page. The ClientID will be rendered with the container
control, an underscore and the control ID. If "RadMenu1" is located directly on the page the two

UI for ASP.NET AJAX

80 UI for ASP.NET AJAX

 $get(id, parentElement): This method is just for finding generic HTML elements, not RadControls. $get()
Provides a shortcut to the getElementById() method. "parentElement" is the element to search but is
optional. By default, the document is searched.

Fortunately, Visual Studio 2008 has some advanced client-side capabilities including JavaScript debugging,
JavaScript IntelliSense and even CSS style intellisense. If you enter a <script> tag to your markup and press Ctrl-
Space, JavaScript IntelliSense is invoked and shows available properties and methods:

properties would be:

 ID: "RadMenu1"

 ClientID: "RadMenu1"

If "RadMenu1" is located in a user control "WebUserControl1", the properties are:

 ID: "RadMenu1"

 ClientID: "WebUserControl1_RadMenu1"

See the Telerik blog "The Difference between ID, ClientID and UniqueID" by Atanas Korchev for additional
exploration of this topic.

[JavaScript] Using $get()

var myDiv = $get("myDiv");

Gotcha! If you can't find any of the "$" functions, it's likely you don't have a ScriptManager or
RadScriptManager on the page. The ScriptManager component brings in the MS AJAX library of
functions.

Just for fun, click the Ctrl key to temporarily hide the IntelliSense window so you can see the code below:

UI for ASP.NET AJAX

81 UI for ASP.NET AJAX

Once you begin typing, IntelliSense provides a hint window with the parameters for the current context (or
press Ctrl-Shift-Space to invoke the window). You can see in the screenshot below that an ID is required.

Finish up by typing the server tag "<%= %>" and reference the RadControl ClientID:

 Now you have a reference to your RadControl client object and can use its properties and methods.

For more on the Microsoft AJAX Library, see the Client Reference (http://msdn.microsoft.com/en-
us/library/bb397536.aspx).

Use the online help to list available methods or a JavaScript debugging utility to query the available methods of
a client object. You can usually find methods that mirror server side functionality. For example, the JavaScript
snippet below shows how to find a menu item by a Text value "Tickets" and perform a method on that item:

4.4 Using RadControl Client Properties and Methods

[JavaScript] Using Client Object Methods

var menu = $find("<%= RadMenu1.ClientID %>");
var item = menu.findItemByText("Tickets");
if (item)
{
 item.open();
}

UI for ASP.NET AJAX

82 UI for ASP.NET AJAX

Similar to its server-side counterpart, a collection can be iterated and each collection member can have its
methods called. In this example, all items of a RadMenu are returned, iterated and output to an alert dialog:

You can replace the $find method with the ones declared in the telerik's static library ($telerik.findGrid for
example) or cast the object returned by the $find method (using $telerik.toGrid for example) to a specific
RadControl's client object and then use its methods and properties with the help of the provided JavaScript
intellisense (Section 4.5). This new feature was introduced in RadControls for ASP.NET AJAX Q1 2010.

Since the release of RadControls for ASP.NET AJAX Q1 2010 (version 2010.1.309) writing JavaScript code with
RadControls for ASP.NET AJAX becomes very easy. No need to bury yourself in the client API documentation, no
more annoying js errors being generated from non-existing properties/methods or mistyped code slices! Simply
register Telerik.Web.UI.Common.Core.js using RadScriptManager/MS ScriptManager under VS 2010 or MS
ScriptManager under VS 2008 and enjoy the out-of-the-box JavaScript IntelliSense in the markup of your pages.

Visual Studio 2008

else
{
 alert("Tickets item not found.");
}

[JavaScript] Collection Methods

var menu = $find("<%= RadMenu1.ClientID %>");
var items = menu.get_items();
for (var i=0; i < items.get_count(); i++)
{
 alert(items.getItem(i).get_text());
}

4.5 JavaScript Intellisense

UI for ASP.NET AJAX

83 UI for ASP.NET AJAX

An important detail here is that the Telerik static client library (http://www.telerik.com/help/aspnet-
ajax/telerik-static-client-library.html) exposes to<RadControlName>(object) and find<RadControlName>(id,
parent) methods which gives you the ability to cast or find Telerik AJAX control's client object and then the
IntelliSense will expose directly its properties, methods and events. Additionally, you will get information about
the client methods signature and the type of the arguments passed to or returned from them.

Visual Studio 2010

UI for ASP.NET AJAX

84 UI for ASP.NET AJAX

The client API follows naming conventions across all RadControls:

4.6 Naming Conventions

UI for ASP.NET AJAX

85 UI for ASP.NET AJAX

 Methods are lower camel-cased. That is, the first character is lower case and the following words making
up the method name are title cased. For example focusNextItem(), hide(), findControl().

 Properties are made up of getter and setter methods. The naming consists of the get/set, and underscore
and lower-camel-cased property name. For example get_imageUrl(), set_ImageUrl().

 Internal Methods are preceded with an underscore. These methods are not intended for public use.

 Legacy Methods and Properties may still be present and show upper-camel-casing, e.g. FocusNextItem().
Because these are legacy methods and properties, they are deprecated and you cannot count on these
methods remaining usable.

Each RadControl has a set of client events that you define in the markup or at design-time in the Property
window.

If you're working in ASP.NET markup, RadControls work with Visual Studio 2008 IntelliSense to help you find the
available client events. When you drop a RadControl on the form, an XML file containing comments for classes
properties and methods is automatically added to the bin directory. In the markup, when you type into a
RadControl tag or press Ctrl-Space, a list of appropriate attributes pops up automatically. As you type, the list
will locate on the first letters typed. All RadControl client events are prefixed with "OnClient", so they should
be easy to find:

To create a client event handler, you enter a JavaScript function name to the "OnClient..." property and create
a JavaScript function to match. The parameter list of a RadControl client function will always include "sender",
i.e. the initiating object and "args". "Args" contains methods specific to the control and the event. The example
below shows the OnClientItemClicked event handled by a "itemClicked()" function. In this case "sender" is the
RadMenu client object and "args" contains a get_item() function. get_item(), as you might have guessed returns
the menu item that was clicked on. Using the item object returned from get_item() you can call the
RadMenuItem client methods, i.e. get_text(), get_value(), get_level().

4.7 Using Client Events

UI for ASP.NET AJAX

86 UI for ASP.NET AJAX

In the example, an alert dialog displays the value for the clicked menu item. The itemClicked() client event
handler first checks that the item has a "level" of 1, i.e., is a child item, so that clicking the parent "Edit" item
will not display the alert.

UI for ASP.NET AJAX

87 UI for ASP.NET AJAX

Canceling Events

Client events ending with "ing", e.g. "OnClientItemClicking", "OnClientShowing" can be canceled. Use the "args"
set_cancel() method. In its simplest form cancel can be implemented like the example below:

Client events typically come in pairs like "OnClientItemClicking" and "OnClientItemClicked" where canceling the
first event prevents the second event from firing. Take a look at this next example where a RadMenu has three
items. The first two items have NavigateUrl properties populated with external web sites, but where the
NavigateUrl for the last item has a local "#" link. If the OnClientItemClicking event handler finds a local link, the
event is canceled and the OnClientItemClicked event never fires. Note: The alert invoked by
OnClientItemClicked will display "null" because the menu items have no Value property defined.

[ASP.NET] Canceling an Event

function itemClicking(sender, args)
{
 args.set_cancel(true);
}

[ASP.NET] Canceling an Event Example

<script type="text/javascript">

 ///<summary>this event handler responds to menu clicks</summary>
 ///<param name="sender">the object that invoked this event handler</param>
 ///<param name="args">the arguments for this event</param>
 function itemClicked(sender, args)
 {
 var item = args.get_item();
 // only look at the first level child items
 if(item.get_level() == 1)
 {
 alert("ItemClicked: " + item.get_value());
 }
 }

 ///<summary>this event fires just before the client item clicked event of the
RadMenu</summary>
 ///<param name="sender">the object that invoked this event handler</param>
 ///<param name="args">the arguments for this event.
 /// Includes a set_cancel() method to abort the event</param>
 function itemClicking(sender, args)
 {
 var item = args.get_item();
 var navigateUrl = item.get_navigateUrl();

 // if the navigate url was populated and it is a local link, cancel
 // the event.
 if (navigateUrl && navigateUrl.substring(0,1) == "#")
 {
 args.set_cancel(true);
 }
 }
 </script>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

UI for ASP.NET AJAX

88 UI for ASP.NET AJAX

Did you notice the comments in the JavaScript above that start with three slashes? These provide IntelliSense
help information whether you add your JavaScript directly to the page or to a separate .js file. Your new
functions itemClicked and itemClicking now show up:

Adding and Removing Events Dynamically

You can also add or remove events on-the-fly. The naming convention here is "add_" + the event name. For
example "add_itemClicked()". If you want to temporarily "mute" all events for a RadControl on the client, call

 <div>
 <telerik:RadMenu ID="RadMenu1" runat="server" Skin="Web20"
 OnClientItemClicked="itemClicked"
 OnClientItemClicking="itemClicking">
 <Items>

 . . .
 <telerik:RadMenuItem Text="Web sites">
 <Items>
 <telerik:RadMenuItem Text="Telerik"
 NavigateUrl="http://www.telerik.com (http://www.telerik.com/)">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem Text="Falafel"
 NavigateUrl="http://www.falafel.com (http://www.falafel.com/)">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem Text="Notes"
 NavigateUrl="#notes">
 </telerik:RadMenuItem>
 </Items>
 </telerik:RadMenuItem>
 </Items>
 </telerik:RadMenu>

 <div id="notes">
 Some events can be canceled.</div>
 </div>
 </form>

UI for ASP.NET AJAX

89 UI for ASP.NET AJAX

the disableEvents() method (or its corresponding enableEvents() method to "un-mute"). This next example
shows how you can use a check box to toggle the OnClientItemClicked event and events as a whole for a
RadMenu. Both check boxes need to be enabled for the event handler to fire.

When the the application first runs, there is no event handling for the menu. When the "Enabled Clicked Event"
checkbox is clicked, checkItemClick() runs. If the check box is checked, then the add_itemClicked() method is
called, passing the event handler name "itemClicked". Likewise, if un-checked, the menu's remove_itemClicked
() method is called, passing the same "itemClicked" event handler name. The same pattern is used for the
"Enable All Events" check box.

You can find the project for this example at \VS Projects\Client API\Events.

[ASP.NET] Adding and Removing Event Handlers

<script type="text/javascript">
 function itemClicked(sender, args)
 {
 // display the text for the clicked on item
 alert(args.get_item().get_text());
 }
 function checkItemClick()
 {
 // get a reference to the menu
 var menu = $find("<%=RadMenu1.ClientID %>");
 // get a reference to the checkbox
 var checkbox = $get("cbClicked");

 if (checkbox.checked)
 {
 // add the event handler
 menu.add_itemClicked(itemClicked);
 }
 else
 {
 // remove the event handler
 menu.remove_itemClicked(itemClicked);

UI for ASP.NET AJAX

90 UI for ASP.NET AJAX

This next tutorial will put together some of the client techniques we've described so far. You will use JavaScript
to display a "bread crumb" trail while the user moves the mouse over a multi-level tab strip. This technique can
be easily adapted to any of the hierarchical navigation controls and could also be coded on the server-side.

 }
 }

 function checkAllEvents()
 {
 // get a reference to the menu
 var menu = $find("<%=RadMenu1.ClientID %>");
 // get a reference to the checkbox
 var checkbox = $get("cbAll");

 if (checkbox.checked)
 {
 // add the event handler
 menu.enableEvents();
 }
 else
 {
 // remove the event handler
 menu.disableEvents();
 }
 }

</script>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <telerik:RadFormDecorator ID="RadFormDecorator1" runat="server" Skin="WebBlue" />
 <div>

 <telerik:RadMenu ID="RadMenu1" Runat="server" Skin="WebBlue">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Human Resources">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Print Reports"></telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Lookup Employee"></telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Salary
Maintenance"></telerik:RadMenuItem>
 </Items>
 </telerik:RadMenuItem>
 </Items>
 </telerik:RadMenu>

 <input id="cbClicked" type="checkbox" onclick="checkItemClick()" />Enable Clicked Event

 <input id="cbAll" type="checkbox" onclick="checkAllEvents()"
 checked="checked" />Enable All Events
 </div>
 </form>

4.8 Client Events Walk Through

UI for ASP.NET AJAX

91 UI for ASP.NET AJAX

1. Create a new web application. Add a ScriptManager to the default page.

2. In the Solution Explorer, add a new folder and name it "Images".

3. From the Visual Studio 2008 installation directory, copy the image "DataContainer_MoveNextHS.png" to the
project \Images directory. This image will contain the rightward pointing arrow that displays between
each crumb.

4. Add a RadTabStrip to the default page. Set the Skin property to "Sunset", the OnClientMouseOut property
to "mouseOut" and the OnClientMouseOver property to "mouseOver". We will code the two client event
handlers later, after we set up the tab strip items.

5. Copy the ASP.NET markup below to inside your RadTabStrip tags. This step will populate the tab strip with
multiple levels of tabs that can best demonstrate the bread crumbs in action.

Images from Visual Studio 2008 can be found at \Microsoft Visual Studio 9.0\Common7
\VS2008ImageLibrary\1033\VS2008ImageLibrary\VS2008ImageLibrary\Actions\pngformat

[ASP.NET] Defining the Tabs

<Tabs>
 <telerik:RadTab runat="server" Text="Hot Drinks">
 <Tabs>
 <telerik:RadTab runat="server" Text="Expresso">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Mocha">
 <Tabs>
 <telerik:RadTab runat="server" Text="With Chocolate Chips">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="White Chocolate">
 </telerik:RadTab>
 </Tabs>
 </telerik:RadTab>
 </Tabs>
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Cold Drinks" >
 <Tabs>
 <telerik:RadTab runat="server" Text="Frappuccino">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Iced Coffee">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Thai Ice Tea">
 </telerik:RadTab>
 </Tabs>

UI for ASP.NET AJAX

92 UI for ASP.NET AJAX

6. Below the RadTabStrip tab, create a div called "breadCrumbDiv". The div only needs to have an id so we
can locate it. The div will be populated on the fly in client code.

7. In the <head> tag enter the following CSS. The CSS will style the HTML elements of the breadcrumb trail,
which in turn is formed using an HTML un-ordered list . Notice that the list element background
automatically places our right-ward pointing arrow graphic "DataContainer_MovenextHS.png" next to each
list element.

8. Add a set of <script> tags just inside the <body> tag.

9. Inside the <script> tag add two functions mouseOver(sender, args) and mouseOut(sender, args). Also add a
stub for a helper function getPathList(tab). The getPathList() function will walk starting from the tab
under the mouse up to the root node and return an array containing the tab text found along the way:

 </telerik:RadTab>
</Tabs>

[ASP.NET] Adding the div that will display the breadcrumb

<div id="breadCrumbDiv" ></div>

[ASP.NET] CSS to Style the Breadcrumbs

<style type="text/css">
 #Breadcrumbs
 {
 position: absolute;
 top: 135px;
 }
 #Breadcrumbs li
 {
 color: #999;
 text-decoration: underline;
 padding: 0 20px 0 0;
 float: left;
 background: transparent url("Images/DataContainer_MoveNextHS.png") no-repeat center
right;
 font: 12px "Times New Roman", serif;
 }
 #Breadcrumbs li#LastItem
 {
 background: none;
 padding-right: 0;
 color: #515151;
 text-decoration: none;
 }
</style>

[JavaScript] Adding the Client Event Handlers

<script type="text/javascript">

 function getPathList(tab)
 {
 }

 function mouseOver(sender, args)
 {

UI for ASP.NET AJAX

93 UI for ASP.NET AJAX

10. Populate getPathList() with the following code that a) creates a new Array object called "result", b)
iterates until we reach the root item, c) return the result. The while loop tests for tab.get_text to come
back null. Notice that the statement doesn't state tab.get_text() -- that would fail when we got to the
ultimate parent item, the tab strip object itself. Instead we check that the get_text function exists. When
it doesn't, we're no longer looking at a tab object, but the tab strip. Inside the while loop we use the push
() method to add the text of each tab item to the array, then get the next parent before looping again.

11. Populate the OnClientMouseOut event handler. Here we get a reference to the div object and simply clear
the contents of the tag.

12. Populate the OnClientMouseOver event handler. Start by getting references to the div that will display the
bread crumb trail and the tab that the mouse passed over. Call getPathList() and pass the tab reference.
Then build the HTML starting with the un-ordered list tag () and adding on list item tags for each
element in the pathList array. Provide a special id "LastItem" just before exiting the loop so that the CSS
style for the last item can be applied. Finally, assign the built HTML to the div tag innerHtml attribute.

 }

 function mouseOut(sender, args)
 {

 }
</script>

[JavaScript] Getting the Path as an Array

function getPathList(tab)
{
 // create an array object to return
 result = new Array();
 // loop until the get_text function is null,
 // indicating that we've reached the tab strip object
 while (tab.get_text)
 {
 // save off the text for the tab we're looking at
 result.push(tab.get_text());
 // get the next parent
 tab = tab.get_parent();
 }
 return result;
}

[JavaScript] Handling the OnClientMouseOut Event

function mouseOut(sender, args)
{
 // get a reference to the div object
 var div = $get("breadCrumbDiv");
 // clear the text
 div.innerHTML = '';
}

[JavaScript] Handling the OnClientMouseOver Event

function mouseOver(sender, args)
{
 // get a reference to the div that

UI for ASP.NET AJAX

94 UI for ASP.NET AJAX

13. Press Ctrl-F5 to run the application. Open up the tabs to get as much depth as possible and run your mouse
over the tabs.

JSON stands for "JavaScript Object Notation" and is a lightweight data-interchange format. JSON is easy to
generate and parse but also easily human-readable. JSON has a number of advantages in the JavaScript/client
environment:

 JSON can be used as an easy-to-work-with alternative to XML.

 JSON can be de-serialized into objects and the objects serialized back into strings. There are API's that can
do these transformations on both the client and server.

 Webservices can return JSON automatically for immediate use within JavaScript.

JSON supports the usual basic type flavors: numbers, strings, booleans, arrays, objects and null.

The quickest way to understand how the JSON syntax works is to look at an example. Below is a sample JSON

 // will display the bread crumb trail
 var div = $get("breadCrumbDiv");
 // get a reference to the tab that the
 // user just "moused" over to trigger this event
 var tab = args.get_tab();
 // call getPathList to get a list of text for
 // all tabs starting with the tab passed in
 // args up to the root item
 var pathList = getPathList(tab);

 // declare a variable to contain the breadcrumb html
 var crumbText = "<ul id='Breadcrumbs'>";

 // iterate the list of tabs in the trail,
 // startiing with the last in the list and
 // backup up to the first.
 for (var i = (pathList.length - 1); i >= 0; i--)
 {
 // If this isn't the last iteration, add a
 // list item tag.
 if (i != 0)
 {
 crumbText += "";
 }
 // this is the last item, so flag it with the
 // id "LastItem" so the CSS can style it appropriately
 else
 {
 crumbText += "<li id='LastItem'>";
 }

 // add the tab text
 crumbText += pathList[i];
 }

 // assign the assembled HTML to the div
 div.innerHTML = crumbText;
}

4.9 JSON: Fat-Free Data Interchange

UI for ASP.NET AJAX

95 UI for ASP.NET AJAX

object definition called "contact". It has string properties for "firstName" and "lastName". Another property,
"address" is an object that has its own properties for "streetAddress", "city", "state" and "postalCode". These
address properties are all string except "postalCode" that contains a numeric value. The last property
"phoneNumbers" is actually an array of strings.

As you can see in the sample above, the JSON object definition appears between curly braces. Each property
and value pair are separated by a colon. Arrays are contained within square brackets.

Using JSON Objects

Once the JSON object is defined you can assign and retrieve values using the properties of the object. In this
next sample the "contact" object is assigned a new first and last name and the second element of the
phoneNumbers array is also replaced with a new value.

Running this bit of JavaScript fires the alert shown below:

Serializing JSON

[JavaScript] JSON Sample

var contact = {
 // string property
 "firstName": "John",
 "lastName": "Smith",
 // address property with sub-properties
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 // numeric property
 "postalCode": 10021
 },
 // array
 "phoneNumbers": [
 "212 555-1234",
 "646 555-4567"
]
};

[JavaScript] Assigning and Retrieving JSON Properties

// change the name and phoneNumbers properties
contact.firstName = "Bob";
contact.lastName = "Jones";
contact.phoneNumbers[1] = "123 555-9999";
alert(contact.firstName + ' ' +
 contact.lastName + ' phone: ' + contact.phoneNumbers[1]);

UI for ASP.NET AJAX

96 UI for ASP.NET AJAX

You can also take a JSON string and transform it into an object. The ASP.NET AJAX Library includes a
JavaScriptSerializer object within the Sys.Serialization namespace that you get for free when you include a
ScriptManager on the page. If you call the JavaScriptSerializer deserialize() method and pass a JSON string, the
method will deserialize the string into a JSON object. Call the serialize() method to transform the a JSON
object back to a string.

The sample below shows a JSON string defined for "contact". This is exactly the same as the "contact" object
defined in the last example, but surrounded with quotes. A call to deserialize() takes the contact JSON string
and transforms it into an object representation. Following that, the contact object is converted back using the
serialize() method into its string representation.

Both of these operations can happen on the server too using the JavaScriptSerializer object from
the System.Web.Script.Serialization namespace. The example below uses a Contact object (definition not
shown here) that is instantiated, populated, serialized and deserialized.

[JavaScript] Serialize and Deserialize

var contactString = '{"firstName": "John", "lastName": "Smith", ' +
 '"address": {"streetAddress": "21 2nd Street",' +
 '"city": "New York","state": "NY", "postalCode": 10021},' +
 '"phoneNumbers": ["212 555-1234","646 555-4567"]}';
// deserialize JSON string to an object
contact =
 Sys.Serialization.JavaScriptSerializer.deserialize(contactString);
// serialize the contact JSON into a string
var contactStrings =
 Sys.Serialization.JavaScriptSerializer.serialize(contact);

[VB] Serializing and Deserializing in Code-Behind

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim contact As New Contact()
 contact.FirstName = "Bob"
 contact.LastName = "Smith"
 contact.Address.City = "San Francisco"
 contact.Address.State = "California"
 contact.Address.StreetAddress = "123 Telerik Ave"
 contact.Address.PostalCode = 91234
 contact.PhoneNumbers.Add("123 555-1234")
 contact.PhoneNumbers.Add("444 555-9876")
 Dim jss As New JavaScriptSerializer()
 Dim contactString As String = jss.Serialize(contact)
 tbServerStatus.Text = contactString
 Dim contact2 As Contact = jss.Deserialize(Of Contact)(contactString)
 tbServerStatus.Text += System.Environment.NewLine + System.Environment.NewLine +
contact2.FirstName + " " + contact2.LastName
End Sub

[C#] Serializing and Deserializing in Code-Behind

protected void Page_Load(object sender, EventArgs e)
{
 Contact contact = new Contact();
 contact.FirstName = "Bob";
 contact.LastName = "Smith";
 contact.Address.City = "San Francisco";
 contact.Address.State = "California";
 contact.Address.StreetAddress = "123 Telerik Ave";
 contact.Address.PostalCode = 91234;

UI for ASP.NET AJAX

97 UI for ASP.NET AJAX

In this chapter you learned the basic techniques used to obtain RadControl object references in client code and
how to call methods and use properties of the client objects. You learned the consistent naming convention
used throughout the RadControls client API so that you can re-apply that knowledge on new controls. You
learned how to implement client side event handlers and how to add and remove event handlers on-the-fly.
Finally, you built a web page with a tabbed interface that displays a breadcrumb trail as the mouse hovered
each tab.

 contact.PhoneNumbers.Add("123 555-1234");
 contact.PhoneNumbers.Add("444 555-9876");
 JavaScriptSerializer jss = new JavaScriptSerializer();
 string contactString = jss.Serialize(contact);
 tbServerStatus.Text = contactString;
 Contact contact2 = jss.Deserialize<Contact>(contactString);
 tbServerStatus.Text += System.Environment.NewLine + System.Environment.NewLine +
 contact2.FirstName + " " + contact2.LastName;
}

4.10 MS AJAX Library

4.11 Summary

UI for ASP.NET AJAX

98 UI for ASP.NET AJAX

 Examine how RadFormDecorator, RadToolTipManager, and RadToolTip can add polish to your user
interface.

 Create a simple application to get confidence in using each of the controls.

 Become familiar with the design time support for working with the user interface and information controls.
This support includes Smart Tag, Properties Window, ToolTipTargetControl Collection Editor, and the
RadToolTip design surface.

 Explore principal properties and groups of properties where 80% of the functionality is found.

 Learn to supply tool tip content in server-side code.

 Learn how to use the client-side api to work with tool tip properties and control when tool tips appear and
disappear.

 Learn how to use RadToolTip to provide tool tips for the areas of an ASP.NET ImageMap.

As you have seen with the RadControls we have examined so far, they all support skinning to give your Web site
a consistent look and feel. This adds a level of polish to your application that is simple to achieve. The controls
we will examine in this chapter let you extend that skin-based look and feel to standard ASP.NET elements such
as buttons or tool tips.

RadFormDecorator

There are no RadControl analogs to the standard ASP.NET Button, CheckBox, RadioButton, or ScrollBar controls.
However, when you want to add this functionality to your Web pages, this does not mean that you must go to
great lengths in order to make them fit in with the skin you are using. There is a simple way to augment these
controls by adding a skinning capability: the RadFormDecorator control. When you add RadFormDecorator to
your page, you can configure it to apply a skin to any or all of the buttons, check boxes, radio buttons, or scroll
bars on the page.

RadToolTipManager

You can use RadToolTipManager to apply your preferred skin to all of the tool tips on your page.
RadToolTipManager will automatically replace the standard ASP.NET tool tips with customized tool tips that can
be as simple or elaborate as you want.

5 User Interface and Information Controls

5.1 Objectives

5.2 Introduction

UI for ASP.NET AJAX

99 UI for ASP.NET AJAX

When using RadToolTipManager, you have complete control over the content and behavior of the tool tips on a
page. You can add tool tips to any or all of the elements on the page. You can specify when, where, and how
those tool tips appear and disappear, add animated effects, and even add your own custom content using an
asynchronous server-side callback.

RadToolTip

Where RadToolTipManager associates custom tool tips with multiple elements on the Web page, you can use
RadToolTip to create a customized tool tip for a single element. It shares many properties with
RadToolTipManager, so that you have the same level of control over when, where, and how the tool tip appears
and disappears. An advantage to using RadToolTip is that you can add custom content using the Visual Studio
designer, rather than in the code-behind.

In this walk-through you will become familiar with the RadFormDecorator, RadToolTipManager, and
RadToolTip controls. These controls will be used to produce the form shown in the following screen shot:

5.3 Getting Started

UI for ASP.NET AJAX

100 UI for ASP.NET AJAX

When you are finished, your project should match the one supplied in \VS Projects\UI\GettingStarted.

Set up the project structure
1. Create a new ASP.NET Web Application.

2. In the designer, drag a ScriptManager from the AJAX extensions section of the tool box onto your page.

3. In the solution explorer, create a new \Images folder.

4. Copy the image "music.png" from the \VS Projects\Images folder to your project's \Images folder. This
image will appear in a custom tool tip (as shown above).

Build the Web page using standard ASP.NET controls
1. From the HTML section of the Tool Box, drag a Table onto your page.

2. Use the Properties Window to assign an ID of "tblOptions" to the table.

3. Select the upper left cell of the table. Then, click the ellipsis button next to the Style attribute to display
the Modify Style dialog.

4. On the Font page of the dialog, set the font color to "Olive".

UI for ASP.NET AJAX

101 UI for ASP.NET AJAX

5. On the Border page of the dialog, uncheck the Same for all box under border-style and set the right
border style to "solid", set the border-width to "thin", and the border-color to "Olive". Then click OK to exit
the dialog.

UI for ASP.NET AJAX

102 UI for ASP.NET AJAX

6. Select the cell immediately to the left of the one you just modified, and bring up its Modify Style dialog. In
the dialog, set the font color to "Olive" and click OK.

7. If any additional columns appear to the right, select a cell in the column, right click, and select
Delete|Delete Columns to get rid of them.

8. Select the left-most cell in the second row. Using the Properties Window, set its ColSpan attribute to 2.
Then delete the cell to its right.

9. From the HTML section of the Tool Box, drag a Horizontal Rule into the cell.

10. Select the left-most cell in the third row, and bring up its Modify Style dialog. Set the Border attributes to
match the cell in the upper left corner (a solid right border with "thin" border-width and olive border-
color).

11. In the Properties Window for this cell, set the valign attribute to "top" and the Title attribute to "Check all
the styles you want to see included in the listing."

12. Select the cell to the right of the cell you just changed, and using the Properties Window, set its valign
attribute to "top" and its Title attribute to "Choose the media you want."

13. There should not be any more rows in the table, but if their are, delete them.

14. Back in the upper left cell, type the text "Music Styles". In the upper right cell, type "Media".

15. From the Standard Section of the Tool Box, drag a CheckBox control into the upper left cell of the table.
Set its Text property to "Classical".

16. Add a line break after the check box, and then add another one with the Text property of "Classic Rock".

17. Add two more check boxes in the same fashion, and set their Text properties to "Jazz and Fusion" and

UI for ASP.NET AJAX

103 UI for ASP.NET AJAX

"Rhythm and Blues".

18. Drag a RadioButtonList control from the Tool Box into the upper right cell of the table. Click on the Edit
Items... link of its Smart Tag to bring up the ListItem Collection Editor. In the editor, add two radio
buttons, with Text properties set to "CD" and "Tape", respectively. Set the Selected property of one of
them to true.

19. Drag a Button from the toolbox to below the table. Set its Text property to "See Listing".

20. Press Ctrl-F5 to run the application and see how it looks without any RadControls. Note that the titles you
added to the table cells (<TD> elements) appear as tool tips when you hover the mouse over the cells and
that the tool tip for the button is the same as its Text property.

Apply Skins to the UI controls
1. Drag a RadFormDecorator control from the Tool Box onto your Web page.

2. Using the Smart Tag, set its Skin property to "Hay".

3. Press Ctrl-F5 to run the application again. The controls have all changed to use the skin you specified!

Modify the tool tips using RadToolTipManager
1. Drag a RadToolTipManager control from the Tool Box onto your Web page. Using the Smart Tag, set its

Skin property to "Hay".

2. Using the Properties Window, set the Animation property to "FlyIn".

3. Press Ctrl-F5 to see the result of these changes. The tool tips have changed appearance, and appear by
"flying in" from the lower edge of the Web page.

UI for ASP.NET AJAX

104 UI for ASP.NET AJAX

Add a custom Tool Tip using RadToolTip
1. Drag a RadToolTip control from the Tool Box onto your Web page.

2. Drag an Image control from the Tool Box onto the surface of the RadToolTip control.

3. In the Properties Window for the Image control, click the ellipsis button next to the ImageUrl property and
navigate to the "music.png" file that you added to the Images directory. Then click OK to assign the URL.

4. On the design surface of the RadToolTip control, next to the image, type the text "Click this button to view
the listings in our catalog for all the types of music you have selected."

5. In the Properties Window for the RadToolTip control, set the Skin property to "Hay", set the ManualClose
property to "True", set the TargetControlID property to "Button1", set the Title property to "See Listings",
set the Position property to "BottomRight", and set the RelativeTo property to "Element".

6. When you set the TargetControlID property of the RadToolTip control to "Button1", you linked its tool tip
to the button. However, the RadToolTipManager is also linking a tool tip with the button. To turn off the
RadToolTipManager so that your RadToolTip control's tool tip appears, set the ToolTipZoneID property of
the RadToolTipManager to "tblOptions". This limits the scope of the RadToolTipManager so that it only
affects elements inside the table.

7. Press Ctrl-F5 to run the application. Now the tool tips in the table still "fly in", but the button now shows a
custom tool tip. The Position and RelativeTo properties determine the position of that tool tip. Because
you set the ManualClose property on the RadToolTip control, the button's tool tip does not go away until
you click on the close button or display another tool tip.

UI for ASP.NET AJAX

105 UI for ASP.NET AJAX

In the Visual Studio designer, you can configure RadFormDecorator, RadToolTipManager, and RadToolTip using
the Smart Tag and the Properties Window. On RadToolTip, you can use the design window to create custom
content for a tool tip.

Smart Tag
The Smart Tag for each of the user interface and information controls is identical (except for the title). It
contains only the common elements of RadControls Smart Tags: the Ajax Resources, Skin selection, and
Learning center:

Properties Window
At design time, most of the work you do to configure these controls can be done using the Properties Window.
As before, let us look at the most important properties of the controls.

RadFormDecorator

The most important property of RadFormDecorator is the Skin property. This property is the reason to use
RadFormDecorator, as its entire function is to apply a skin to other ASP.NET controls on the page. You can set
the Skin property using either the Smart Tag or the Properties Window.

Two other properties let you specify which controls on the page are assigned the skin you select:

 The DecoratedControls property lets you specify the types of controls that RadFormDecorator applies its
skin to. By clicking the drop-down arrow in the Properties Window, you can get a list of control types and
select the types you want:

5.4 Designer Interface

UI for ASP.NET AJAX

106 UI for ASP.NET AJAX

Only controls of the selected types have the skin applied. The selections shown above result in the
following markup:

 The DecorationZoneID property lets you limit the scope of the RadFormDecorator to apply only to the
children of a single element on the page. This is the client-side ID of an HTML element on the page. Only
the children of that element are affected by the RadFormDecorator.

RadToolTipManager and RadToolTip

The two tool tip controls share most of the same properties. When assigned to RadToolTipManager, a property
affects all of the tool tips it generates, while when assigned to RadToolTip it affects the single generated tool
tip.

Specifying the content of the tool tip

The content of a tool tip can come from a variety of sources.

 If you do not specify the content using the properties of RadToolTip or RadToolTipManager, the tool tip
displays the text it derives from the HTML element to which it is attached (called the "target" element). If
the target element has a ToolTip attribute, that is used. If there is no ToolTip attribute, the Title attribute
is used.

 You can override the text derived from the HTML element by assigning a value to the Text property of
RadToolTip or RadToolTipManager.

 You can override the Text property by supplying custom content for the tool tip. On RadToolTip, this can
be done using the design surface (described below), while on RadToolTipManager, you must use the
server-side AjaxUpdate event (described in section on server-side programming).

You can add a title area to the tool tip by setting the Title property. You can specify whether the content area
includes scroll bars by setting the ContentScrolling property.

[ASP.NET] DecoratedControls

<telerik:RadFormDecorator
ID="RadFormDecorator1" Runat="server"
DecoratedControls="Buttons, Scrollbars" />

Gotcha! Do not set DecorationZoneID to the ID of an element whose appearance you want to
change. It must be set to the ID of a parent element.

UI for ASP.NET AJAX

107 UI for ASP.NET AJAX

Specifying the position of the tool tip

To specify where a tool tip appears, set the Position and RelativeTo properties. RelativeTo specifies the
starting point to use when positioning the tool tip. This can be "Element " (the target element), "Mouse", or
"BrowserWindow". Position specifies where the tool tip appears relative to that starting point. It can be
"TopLeft", "TopCenter", "TopRight", "MiddleLeft", "Center", "MiddleRight", "BottomLeft", "BottomCenter", or
"BottomRight". You can further adjust the position by adding an offset using the OffsetX and OffsetY
properties. The MouseTrailing property causes the tool tip to follow the mouse when the RelativeTo property is
set to "Mouse".

Specifying when the tool tip appears

The ShowEvent property determines what causes the tool tip to appear. By default, this has the value
"OnMouseOver", which causes the tool tip to appear when the mouse hovers over the target element . Other
possible values are "OnClick" (when the user left clicks the target element), "OnRightClick" (when the user right
clicks the target element), "OnFocus" (when the target element gets focus), and "FromCode" (the tool tip does
not appear automatically but must be displayed using client-side or server-side code). The ShowDelay property
specifies how long (in milliseconds) after the show event occurs that the tool tip appears.

In addition to ShowEvent, the VisibleOnPageLoad property specifies whether the tool tip is visible when the
page is first loaded in the browser.

Specifying when the tool tip disappears

By default, the tool tip disappears after a fixed delay or when the mouse moves off the target element. The
AutoCloseDelay property specifies how long the tool tip is visible before it disappears when the mouse does not
move off the target element. The HideDelay property specifies how long the tool tip remains after the mouse
moves off the target element.

The Sticky property allows the tool tip to remain after the mouse moves off the target element, as long as the
mouse moves on to the surface of the tool tip. This is useful for tool tips with custom content such as buttons
and input controls. The ManualClose property adds a close button to the tool tip, and causes it to remain until
the user clicks the close button.

Look-and-feel

Like most RadControls, you can use the Skin property to set the general appearance of tool tips. In addition,
the ShowCallout property lets you specify whether the callout appears. The callout is the triangular notch in
the edge of the tool tip that gives it the appearance of a speech bubble. The Animation property lets you add
animated effects to the way the tool tip appears. The Modal property lets you make the tool tip disable the
web page while it is showing.

Attaching the tool tip to a target element

So far, we have looked at properties that are present on both RadToolTip and RadToolTipManager. There are a
few properties that are unique to one or the other control which specify how it is attached to a target element.

On RadToolTip, the TargetControlID property identifies the target element. By default, this is the server-side
ID property of the target element. If the target element does not have a server-side ID (for example, if it is not
an ASP.NET control or does not have runat="server"), you can set TargetControlID to the client-side ID of the
target element. In that case, you should also set the IsClientID property to true.

On RadToolTipManager, there are two ways to specify the controls for which it generates tool tips.

 If the AutoTooltipify property is true (the default), the tool tip manager automatically generates tool tips
for any control that has a ToolTip or Title attribute. When attaching tool tips in this manner, you can limit
the scope of the tool tip manager by setting the ToolTipZoneID property. ToolTipZoneID works the same

UI for ASP.NET AJAX

108 UI for ASP.NET AJAX

way as the DecorationZoneID property that we saw on RadFormDecorator.

 You can specify exactly which controls get tool tips by explicitly adding them to the TargetControls
property collection.

ToolTipTargetControl Collection Editor
To add HTML elements to the TargetControls property collection of RadToolTipManager, use the
ToolTipTargetControl Collection Editor. You can display this editor by clicking the ellipsis button next to the
TargetControls property in the Properties Window.

This editor works like most collection editors, with Add and Remove buttons to add or remove items from the
collection and a properties grid on the right to set the properties of the currently selected item. Each item in
the collection has a TargetControlID property and an IsClientID property to let you specify the HTML element
for which the tool tip manager should generate a tool tip. These properties work just like the properties on
RadToolTip that have the same names.

RadToolTip design surface
When you add a RadToolTip control to your Web page using the Visual Studio designer, it looks like a little
window with the name of the control in the title bar:

The content area of that window is a design surface for providing custom content for the tool tip. You can add
any HTML elements to this design surface, including ASP.NET controls. For example, the tool tip shown below
has an IMAGE element and a RadioButtonList control:

UI for ASP.NET AJAX

109 UI for ASP.NET AJAX

When you add content to the design surface, it is automatically added to the RadToolTip control:

When you add custom content to a RadToolTip control, the content is displayed in the tool tip. In this case, the
tool tip's Text property is ignored.

Adding custom content when using RadToolTipManager
We have already seen how to add custom content to RadToolTip using the Visual Studio designer. When using
RadToolTipManager, however, there is no design surface to let you visually design the content of the
generated tool tips. If you want to provide custom content, you must use the server-side AjaxUpdate event.

When you provide a handler for the AjaxUpdate event, the tool tip manager automatically generates an
asynchronous AJAX callback when it needs to generate a tool tip. The callback is asynchronous so that your Web
page does not have to reload every time you bring up a tool tip. If you want to learn more about asynchronous
AJAX callbacks, look ahead to the chapter on AjaxPanel, AjaxManager, and AjaxManagerProxy.

The following example uses the AjaxUpdate event to supply the content of tool tips generated by
RadToolTipManager. The Web page includes five buttons, which are all included in the TargetControls property
collection of the RadToolTipManager control. In the code-behind, the AjaxUpdate event handler generates the
content of tool tips. The event handler uses the TargetControlID supplied by the event arguments to identify
the control whose tool tip needs to be generated. It then generates the controls that make up the content of
the tool tip and adds them to the supplied UpdatePanel.

[ASP.NET] Custom content on RadToolBar

<telerik:RadToolTip ID="RadToolTip1" runat="server" >
 <asp:Image ID="Image1" runat="server"
 ImageUrl="~/Images/redbug.png" />
 <asp:RadioButtonList ID="RadioButtonList1" runat="server">
 <asp:ListItem Selected="True">Insects</asp:ListItem>
 <asp:ListItem>Arachnids</asp:ListItem>
 </asp:RadioButtonList>
</telerik:RadToolTip>

5.5 Server-Side Programming

By using RadToolTipManager with an AjaxUpdate event handler, you keep the size of your Web page down
because the content of tool tips does not have to be loaded until it is used.

Gotcha! The AjaxUpdate event uses an MS AJAX UpdatePanel to handle the asynchronous update.
When an UpdatePanel triggers an AJAX update, it causes all UpdatePanels to have their content
updated. As a result, if the RadToolTipManager is included in another UpdatePanel, the showing of a
tool tip triggers an update of the panel that contains the tool tip manager. This means it is possible
that showing a tool tip leads to the situation where the system is deleting the tool tip manager while
it is trying to show a tool tip. To prevent this, always set the UpdateMode of any UpdatePanel that
contains a RadToolTipManager to Conditional.

UI for ASP.NET AJAX

110 UI for ASP.NET AJAX

The complete source for this project is in \VS Projects\UI\ServerAjaxUpdate.

[VB] Adding tool tip content in AjaxUpdate

Protected Sub RadToolTipManager1_AjaxUpdate(ByVal sender As Object, ByVal e As
Telerik.Web.UI.ToolTipUpdateEventArgs) Handles RadToolTipManager1.AjaxUpdate
 Dim text As String = "Click here to learn more."
 Dim graphic As New Image()
 graphic.ID = "imgExample"
 Select Case e.TargetControlID
 Case "btnInsects"
 graphic.ImageUrl = "~/Images/redbug.png"
 text = btnInsects.ToolTip
 Exit Select
 Case "btnBirds"
 graphic.ImageUrl = "~/Images/blackbird.png"
 text = btnBirds.ToolTip
 Exit Select
 Case "btnMammals"
 graphic.ImageUrl = "~/Images/hedgehog.png"
 text = btnMammals.ToolTip
 Exit Select
 Case "btnReptiles"
 graphic.ImageUrl = "~/Images/lizard.png"
 text = btnReptiles.ToolTip
 Exit Select
 Case "btnAmphibians"
 graphic.ImageUrl = "~/Images/frog.png"
 text = btnAmphibians.ToolTip
 Exit Select
 End Select
 e.UpdatePanel.ContentTemplateContainer.Controls.Add(graphic)
 e.UpdatePanel.ContentTemplateContainer.Controls.Add(New LiteralControl(text))
End Sub

[C#] Adding tool tip content in AjaxUpdate

protected void RadToolTipManager1_AjaxUpdate(object sender, ToolTipUpdateEventArgs e)
{
 string text = "Click here to learn more.";
 Image graphic = new Image();
 graphic.ID = "imgExample";
 switch (e.TargetControlID)
 {
 case "btnInsects":
 graphic.ImageUrl = "~/Images/redbug.png";
 text = btnInsects.ToolTip;

UI for ASP.NET AJAX

111 UI for ASP.NET AJAX

Adding dynamic content to RadToolTip
In the previous example, the content of tool tips was added to an UpdatePanel. RadToolTipManager uses an
update panel to hold tool tip content because that provides a limited area to update when the AJAX callback
occurs. When adding content to RadToolTip in the code-behind, there is no need for an UpdatePanel, because
there is no asynchronous callback. Instead, you simply add content to the Controls collection of the RadToolTip
object.

The following example illustrates how to add custom content to RadToolTip in the code-behind. While the
properties of the controls it adds are hard-coded in this example, in a real application a similar technique can
be used to load content from another source such as a database.

 break;
 case "btnBirds":
 graphic.ImageUrl = "~/Images/blackbird.png";
 text = btnBirds.ToolTip;
 break;
 case "btnMammals":
 graphic.ImageUrl = "~/Images/hedgehog.png";
 text = btnMammals.ToolTip;
 break;
 case "btnReptiles":
 graphic.ImageUrl = "~/Images/lizard.png";
 text = btnReptiles.ToolTip;
 break;
 case "btnAmphibians":
 graphic.ImageUrl = "~/Images/frog.png";
 text = btnAmphibians.ToolTip;
 break;
 }
 e.UpdatePanel.ContentTemplateContainer.Controls.Add(graphic);
 e.UpdatePanel.ContentTemplateContainer.Controls.Add(new LiteralControl(text));
}

[VB] Adding content in the code-behind

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 Dim hl As New HyperLink()
 hl.Text = "Learn more about frogs."
 hl.NavigateUrl = "frogs.aspx"
 RadToolTip1.Controls.Add(hl)
 RadToolTip1.Sticky = True
 End If
End Sub

[CS] Adding content in the code-behind

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 HyperLink hl = new HyperLink();
 hl.Text = "Learn more about frogs.";
 hl.NavigateUrl = "frogs.aspx";
 RadToolTip1.Controls.Add(hl);
 RadToolTip1.Sticky = true;
 }

UI for ASP.NET AJAX

112 UI for ASP.NET AJAX

When the application is run, a hyperlink is added to the tool tip that navigates to another page in the project.
The Sticky property is also set so that the tool tip does not disappear when the user tries to click on the
hyperlink.

The source for this example can be found in \VS Projects\UI\ServerSide.

The last server-side example showed that when using RadToolTip (or RadToolTipManager), you can include
controls inside the tool tip that do more than display information. Combining this ability to add controls to the
tool tip with a powerful client-side API lets you make use of RadToolTip (or RadToolTipManager) to perform
important tasks on your Web page. The following examples illustrate some of the possibilities.

Using a tool tip to assist data entry
One simple task you can perform with RadToolTip is to assist in data entry. The following example uses the tool
tip properties to assign the current time to a RadDateInput control.

In this example, the tool tip does not appear automatically. Instead, it appears when the user clicks the assist
button on the date input control. When that happens, the current time is assigned to the tool tip's Title
property using the set_title() method, and the tool tip is displayed by calling its show() method.

If the user closes the tool tip using the button it contains, the button calls the tool tip's get_title() method to
read the current time, and assigns that value to the date input control. The button then calls the tool tip's hide
() method to close the tool tip.

}

5.6 Client Side Programming

[ASP.NET] Assisting data entry

<script type="text/javascript">
 function ShowToolTip(sender, args) {
 var toolTip = $find("<%= RadToolTip1.ClientID %>");
 if (toolTip) {
 var now = new Date();
 var time = now.getHours().toString() + ":";
 var minutes = now.getMinutes();
 if (minutes < 10)
 time = time + "0" + minutes;
 else
 time = time + minutes;

UI for ASP.NET AJAX

113 UI for ASP.NET AJAX

The complete source for this example can be found in \VS Projects\UI\ClientSide.

Using a tool tip as a log-in dialog
The last example showed how to use the show() and hide() methods to display and hide a tool tip. The tool tip
was sticky, so it remained visible until the user closed it using the button or moved the mouse off the tool tip.
The following example illustrates another approach to controlling when a tool tip appears and disappears. It
uses the OnClientBeforeHide and OnClientBeforeShow client-side events.

This example sets the Modal property of RadToolTip to true to use it as a modal log-in dialog. The
VisibleOnPageLoad property is set to true so that the page starts out disabled until the user has logged in using
the tool tip. Unlike the previous example, where the tool tip can disappear when the user moves off of it, in
this case, you can't let the tool tip go away until the user has logged in. To accomplish this, we use the
OnClientBeforeHide client side event to cancel the closing of the tool tip.

Because the tool tip is being used as a log-in dialog, the button that closes the tool tip causes a postback: you
would not want to execute code that verifies a login on the client, as that would present a huge security
problem! In the code-behind on the server, the button's Click handler injects some client-side script onto the
page to set a client-side loggedIn variable and, in the case of a successful login, close the tool tip.

To further complicate matters, the Web page protected by the tool tip contains a button that causes a
postback. After a postback, the VisibleOnPageLoad property will cause the tool tip to reappear unless it is
suppressed. This is handled by responding to the OnClientBeforeShow client-side event. The event handler
checks the client-side loggedIn flag, and if the user has already logged in, cancels the showing of the tool tip.
In order that the OnClientBeforeShow event handler can tell whether the user has logged in, the server-side
Page_Load event handler checks whether the user has logged in (using a Session variable), and injects some
client-side script onto the page to set the client-side loggedIn flag.

 toolTip.set_title(time);
 toolTip.show();
 }
 }
 function setTime() {
 var dateInput = $find("<%= RadDateInput1.ClientID %>");
 var toolTip = $find("<%= RadToolTip1.ClientID %>");
 dateInput.set_value(toolTip.get_title());
 toolTip.hide();
 }
</script>
<telerik:RadDateInput ID="RadDateInput1" Runat="server"
 DateFormat="h:mm tt" Skin="Sunset"
 Label="Enter Time: " ShowButton="True" >
 <ClientEvents OnButtonClick="ShowToolTip" />
</telerik:RadDateInput>
<telerik:RadToolTip ID="RadToolTip1" runat="server"
 Skin="Sunset" Sticky="True" ShowEvent="FromCode"
 TargetControlID="RadDateInput1">
 <input id="Button1" type="button" value="Set Time" onclick="setTime();" />
</telerik:RadToolTip>
<telerik:RadFormDecorator ID="RadFormDecorator1" Runat="server" Skin="Sunset" />

UI for ASP.NET AJAX

114 UI for ASP.NET AJAX

In the ASPX file, a <script> block declares the loggedIn flag, the OnClientBeforeShow and OnCLientBeforeHide
event handlers, and a HideLoginToolTip function that hides the login tool tip. This last function will be called
from the script that the server-side button handler injects onto the page. Note that the content of the tool tip
is contained in an UpdatePanel. This causes the "Log In" button to execute inside an asynchronous AJAX
callback, so that the page does not need to reload when the user tries to log in.

[ASP.NET] Client-side code and login tool tip declaration

<script type="text/javascript">
 var loggedIn = false;
 // OnClientBeforeHide keeps the login tool tip from closing
 // until the user is logged in
 function OnClientBeforeHide(sender, args) {
 if (!loggedIn)
 args.set_cancel(true);
 }
 // OnClientBeforeShow prevents the login tool tip from appearing
 // after a postback once the user has logged in
 function OnClientBeforeShow(sender, args) {
 if (loggedIn)
 args.set_cancel(true);
 }
 // HideLoginToolTip closes the login tool tip if it is showing
 function HideLoginToolTip() {
 var tooltip = $find("<%=RadToolTip1.ClientID%>");
 if (tooltip)
 tooltip.hide();
 }
</script>

 This page cannot be used until you log in.

<asp:Button ID="Button2" runat="server" Text="Post Back" />

<telerik:RadToolTip ID="RadToolTip1" runat="server"
 Skin="Office2007" TargetControlID="form1"
 Position="Center" RelativeTo="BrowserWindow"
 Title="Enter Name and Password"

UI for ASP.NET AJAX

115 UI for ASP.NET AJAX

On the server-side, the Page_Load event handler injects a client-side script to set the LoggedIn flag.

 Modal="True" ShowDelay="0" VisibleOnPageLoad="True"
 ShowCallout="False" ShowEvent="FromCode" Width="250px"
 onclientbeforehide="OnClientBeforeHide"
 onclientbeforeshow="OnClientBeforeShow">
 <asp:UpdatePanel runat="server" ID="UpdatePanel2">
 <ContentTemplate>

 <telerik:RadTextBox ID="RadTextBox1" Runat="server"
 Label="Name: " Skin="WebBlue" Width="200px">
 </telerik:RadTextBox>

 <telerik:RadTextBox ID="RadTextBox2" Runat="server"
 Skin="WebBlue" Label="Password: " Width="200px" TextMode="Password">
 </telerik:RadTextBox>

 <asp:Label ID="lblError" runat="server" ForeColor="Red"
 Text="Invalid Login!" Visible="False">
 </asp:Label>

 <asp:Button ID="Button1" runat="server" Text="Log In" onclick="Button1_Click" />
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Button1" EventName="Click" />
 </Triggers>
 </asp:UpdatePanel>
</telerik:RadToolTip>
<telerik:RadFormDecorator ID="RadFormDecorator1" Runat="server"
 DecorationZoneID="RadToolTip1" Skin="WebBlue" />

[VB] Injecting client-side script to set LoggedIn flag

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 If IsPostBack Then
 'Check the session to see if user has logged in
 Dim LoggedIn As Object = Session("loginFlag")
 If LoggedIn <> Nothing AndAlso DirectCast(LoggedIn, Boolean) Then
 'Set the client side logged in flag
 Dim script As String = "loggedIn = true;"
 ScriptManager.RegisterStartupScript(Me, [GetType](), "script", script, True)
 End If
 End If
End Sub

[C#] Injecting client-side script to set LoggedIn flag

protected void Page_Load(object sender, EventArgs e)
{
 if (IsPostBack)
 {
 // Check the session to see if the user has logged in
 object LoggedIn = Session["loginFlag"];
 if (LoggedIn != null && (bool)LoggedIn)
 {
 // set the client-side logged in flag
 string script = "loggedIn = true;";
 ScriptManager.RegisterStartupScript(this, GetType(), "script", script, true);

UI for ASP.NET AJAX

116 UI for ASP.NET AJAX

The button's event handler verifies the user name and password, and if the login is successful, injects a client-
side script to close the login tool tip and set the LoggedIn flag. In this example, the event handler only checks
that the user name and password are not blank. In a real application, their values would be checked.

The complete source for this project can be found in \VS Projects\UI\ClientLogin.

Using RadToolTip with an ImageMap
When using RadToolTip (or RadToolTipManager) with an ImageMap, some extra work is required to attach tool
tips to the regions of the image map. This is because RadToolTip and RadToolTipManager use a control ID to
attach to an element, and ImageMap does not provide IDs for its hot spots. The easiest way to handle this is to

 }
 }
}

[VB] Verifying login details and closing the tool tip

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) Handles
Button1.Click
 Dim userName As String = RadTextBox1.Text
 Dim password As String = RadTextBox2.Text
 ' verify userName and password.
 If Not userName.Equals(String.Empty) AndAlso Not password.Equals(String.Empty) Then
 'Use Session to remember that user is logged in
 Session("loginFlag") = True
 'Also set client-side logged in flag and hide the tool tip
 Dim script As String = "alert(""Welcome " + userName + "! You are now logged in.
"");loggedIn = true;HideLoginToolTip();"
 ScriptManager.RegisterStartupScript(Me, [GetType](), "script", script, True)
 Else
 lblError.Visible = True
 End If
End Sub

[C#] Verifying login details and closing the tool tip

protected void Button1_Click(object sender, EventArgs e)
{
 string userName = RadTextBox1.Text;
 string password = RadTextBox2.Text;
 // verify userName and password.
 if (!userName.Equals(string.Empty) && !password.Equals(string.Empty))
 {
 // Use session to remember that user is logged in
 Session["loginFlag"] = true;
 // Also set client-side logged in flag and hide the tool tip
 string script = "alert(\"Welcome " + userName + "! You are now logged in. \");loggedIn =
true;HideLoginToolTip();";
 ScriptManager.RegisterStartupScript(this, GetType(), "script", script, true);
 }
 else
 {
 lblError.Visible = true;
 }
}

5.7 How To

UI for ASP.NET AJAX

117 UI for ASP.NET AJAX

execute some javascript when the page loads that assigns the id attribute on the hot spots.

The following example illustrates how this is done. A javascript function assigns the id attribute of the hot spots
of the ImageMap:

The tool tips can then be attached to the hot spots using the TargetControlID property with IsClient set to
true:

When the mouse moves over a region of the image map, the tool tip flies in:

[ASP.NET] JavaScript to assign IDs to hotspots

<script type="text/javascript">
 var map = $get("ImageMapImageMap1")[0];
 var areas = map.getElementsByTagName("AREA");

 for (var i = 0; i < areas.length; i++)
 {
 var area = areas[i];
 area.setAttribute("id", "area" + i);
 }
</script>

[ASP.NET] Attaching tool tips to hot spots

<telerik:RadToolTip Skin="Default" ID="ttLivingRoom" runat="server"
 TargetControlID="area0" IsClientID="true"
 Animation="FlyIn" Position="BottomCenter">

</telerik:RadToolTip>
<telerik:RadToolTip ID="ttKitchen" Skin="Default" runat="server"
 TargetControlID="area1" IsClientID="true"
 Animation="FlyIn" Position="TopRight" >

</telerik:RadToolTip>
<telerik:RadToolTip ID="ttBathroom" Skin="Default" runat="server"
 TargetControlID="area2" IsClientID="true"
 Animation="FlyIn" Position="MiddleRight">

</telerik:RadToolTip>
<telerik:RadToolTip ID="ttEntry" Skin="Default" runat="server"
 TargetControlID="area3" IsClientID="true"
 Animation="FlyIn" Position="BottomRight" >

</telerik:RadToolTip>

UI for ASP.NET AJAX

118 UI for ASP.NET AJAX

The source for this project can be found in \VS Projects\UI\HowToImageMap.

In this chapter you looked at the user interface and information controls RadFormDecorator,
RadToolTipManager, and RadToolTip. You created a simple application and saw how these controls can change
the look-and-feel of standard ASP.NET controls and tool tips. You became familiar with the design-time support
for using these controls and looked at the most important properties. You learned to use the server-side API to
supply the content of customized tool tips. You learned to use the client-side API to hide and show tool tips
and work with their properties so that they can perform functions on your Web pages. You also learned to add
client-side ids to an image map so that it can be used with RadToolTip.

5.8 Summary

UI for ASP.NET AJAX

119 UI for ASP.NET AJAX

 Examine how RadRotator can display changing content on your Web page.

 Create a simple application to build confidence in using RadRotator.

 Become familiar with the design time support for working with the rotator. This support includes Smart
Tag, Properties Window, and the template design surface.

 Explore principal properties and groups of properties where 80% of the functionality is found.

 Learn to start and stop the rotator using the client-side api.

 Learn to use RadRotator when it is not bound to a data source.

 Coverflow mode

 Carousel mode

RadRotator lets you display data from multiple records using a template. It can scroll through the records either
vertically or horizontally, either as a continuous stream or as a slide show.

The rotator is highly configurable. The display of each frame is based on a template, so you can include any
controls or HTML elements to make up the display. You can also configure the way the rotator cycles through
its frames, and what actions cause the frames to cycle.

Typically, the rotator is data bound to fetch records from a data source, although that is not strictly necessary.
The items in the template are bound to fields from the data source.

In this walk-through you will become familiar with the RadRotator control. You will create a template for
rotator frames and bind the items in that template to records from a data source. The resulting Rotator will
display a collection of nursery rhymes as a slide show:

6 RadRotator

6.1 Objectives

6.2 Introduction

6.3 Getting Started

UI for ASP.NET AJAX

120 UI for ASP.NET AJAX

When you are finished, your project should match the one supplied in \VS Projects\Rotator\GettingStarted.

Set up the project structure
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. In the solution explorer, right click the project and choose Add|New Item... In the New Items dialog, select
XML file, and name the file "NurseryRhymes.xml" and then click OK.

3. Copy the following XML into the new file to create your XML data set and save the file:
[XML] NurseryRhymes.XML

<?xml version="1.0" encoding="utf-8" ?>
<Rhymes>

UI for ASP.NET AJAX

121 UI for ASP.NET AJAX

Add the XML data source
1. Drag an XMLDataSource component from the Tool Box onto your Web page.

2. In the XMLDataSource Smart Tag, click the link labelled "Configure Data Source...".

 <Rhyme>
 <Name>Cock-a-doodle-doo</Name>
 <Line1>Cock-a-doodle-doo</Line1>
 <Line2>My dame has lost her shoe;</Line2>
 <Line3>My master's lost his fiddlestick,</Line3>
 <Line4>And knows not what to do.</Line4>
 </Rhyme>
 <Rhyme>
 <Name>Little Jack Horner</Name>
 <Line1>Little Jack Horner sat in a corner</Line1>
 <Line2>Eating his Christmas pie.</Line2>
 <Line3>He stuck in his thumb, and pulled out a plumb,</Line3>
 <Line4>And said What a good boy am I!.</Line4>
 </Rhyme>
 <Rhyme>
 <Name>Peter, Peter, Pumpkin Eater</Name>
 <Line1>Peter, Peter, pumpkin eater,</Line1>
 <Line2>Had a wife and couldn't keep her;</Line2>
 <Line3>He put her in a pumpkin shell,</Line3>
 <Line4>And there he kept her very well.</Line4>
 </Rhyme>
 <Rhyme>
 <Name>If All the World</Name>
 <Line1>If all the world were apple pie</Line1>
 <Line2>And all the sea were ink,</Line2>
 <Line3>And all the trees were bread and cheese,</Line3>
 <Line4>What should we have to drink?</Line4>
 </Rhyme>
 <Rhyme>
 <Name>Little Bo-peep</Name>
 <Line1>Little Bo-peep has lost her sheep</Line1>
 <Line2>And can't tell where to find them;</Line2>
 <Line3>Leave them alone and they'll come home</Line3>
 <Line4>Bringing their tails behind them.</Line4>
 </Rhyme>
 <Rhyme>
 <Name>Little Tommy Tittlemouse</Name>
 <Line1>Little Tommy Tittlemouse</Line1>
 <Line2>Lived in a little house;</Line2>
 <Line3>He caught fishes</Line3>
 <Line4>In other men's ditches.</Line4>
 </Rhyme>
 <Rhyme>
 <Name>Hickety pickety</Name>
 <Line1>Hickety, pickety, my black hen,</Line1>
 <Line2>She lays eggs for gentlemen.</Line2>
 <Line3>Gentlemen come every day</Line3>
 <Line4>To see what my black hen doth lay.</Line4>
 </Rhyme>
</Rhymes>

UI for ASP.NET AJAX

122 UI for ASP.NET AJAX

3. Click the Browse button next to the Data File field and select "NurseryRhymes.xml".

4. Click OK to exit the Configure Data Source dialog without setting a transform file or XPath expression.

Add the RadRotator control
1. Drag a RadRotator control from the Tool Box onto your Web page.

2. Using the Smart Tag, set the rotator's Skin property to "Web20".

3. Using the Properties Window, set the DataSourceID property of the rotator to "XmlDataSource1"

4. Set the RotatorType to "SlideShowButtons" and the ScrollDirection to "Up, Down".

5. Set the SlideShowAnimation-Type to "Fade" and the SlideShowAnimation-Duration to "3000"

6. Set the Height to "194px", Width to "254px", ItemHeight to "154px" and ItemWidth to "254px". The
ItemHeight is 40 pixels smaller than the Height because the up and down buttons take up 40 pixels. This
way, one frame fits exactly in the rotator, so that we will view exactly one rhyme at a time.

Create the item template
1. Drag a Panel control from the Tool Box onto the surface of the rotator.

2. Using the Properties Window, set the BackColor to a light blue ("#99CCFF"), the BorderColor to pink
("#FF66FF"), the BorderStyle to "Double" and the BorderWidth to "2px".

3. Set the Height property to "150px" and the Width property to "250px". These values are 4 pixels (the size of
the borders) smaller than the ItemHeight and ItemWidth properties of the rotator. This means that a panel
exactly fits into one item frame of the rotator.

4. Drag a Label from the Tool Box onto the panel.

5. Expand the Font property and set Name to "Verdana", Size to "Large" and Underline to true.

6. Move to the Source window, and set the Text property to "<%# XPath("Name") %>". This binds the Text
property to the "Name" field from the data source.

7. The label declaration should now look like the following:

8. Back in the design window, hit the Enter key twice to insert two breaks after the label, and then drag a
second Label onto the panel.

9. Hit the Enter key again and drag a third Label below the others. Repeat this process to add two more
labels.

10. Back in the Source window, set the Text properties of the four labels you just added to "<%# XPath('Line1')
%>", "<%# XPath('Line2') %>", "<%# XPath('Line3') %>", and "<%# XPath('Line4') %>".

11. Add two non-breaking spaces (" ") before the labels that are bound to "Line2" and "Line4". The Item
Template should now look like the following:

Gotcha! Be sure to set the Text property using single quotes. The string you are using has double
quotes around the word "Name", and the quotation marks will not nest. If you use double quotes
around the entire property value, you will get an error telling you that the tag is not well
formed.

[ASP.NET] Label1 declaration

<asp:Label ID="Label1" runat="server"
 Font-Names="Verdana" Font-Size="Large" Font-Underline="True"
 Text='<%# XPath("Name") %>'>
</asp:Label>

[ASP.NET] Item template

<ItemTemplate>
 <asp:Panel ID="Panel1" runat="server"

UI for ASP.NET AJAX

123 UI for ASP.NET AJAX

12. Press Ctrl-F5 to run the application. The rotator shows a single nursery rhyme. If you click the up and down
arrows, you can cycle through the series of rhymes in the XML data set.

In the Visual Studio designer, you can configure RadRotator using the Smart Tag and the Properties Window.
You can design your item template using the template design surface.

Smart Tag
The RadRotator Smart Tag contains only the common elements of RadControls Smart Tags: the Ajax Resources,
Skin selection, and Learning center:

Properties Window
At design time, most of the properties you will want to set to configure the rotator are available in the

 BackColor="#99CCFF" BorderColor="#FF66FF" BorderStyle="Double" BorderWidth="2px"
 Height="150px" Width="250px" >
 <asp:Label ID="Label1" runat="server"
 Font-Names="Verdana" Font-Size="Large" Font-Underline="True"
 Text='<%# XPath("Name") %>'>
 </asp:Label>

 <asp:Label ID="Label2" runat="server" Text='<%# XPath("Line1") %>' />

 <asp:Label ID="Label3" runat="server" Text='<%# XPath("Line2") %>' />

 <asp:Label ID="Label4" runat="server" Text='<%# XPath("Line3") %>' />

 <asp:Label ID="Label5" runat="server" Text='<%# XPath("Line4") %>' />

 </asp:Panel>
</ItemTemplate>

6.4 Designer Interface

UI for ASP.NET AJAX

124 UI for ASP.NET AJAX

Properties Window. Let us look at the most important properties.

Binding the rotator

RadRotator typically gets the information it displays from a data source, where each frame displays data from a
single record. You can use the DataSourceID property to bind the rotator to a declarative data source, or use
the DataSource property in the code-behind. RadRotator can be bound to any ASP.NET datasource component,
as well as to any object that implements the IEnumerable interface (such as Array or ArrayList). Unlike many
other data-bound controls, RadRotator does not have any properties to map specific elements of the rotator to
fields from the current record: this is a mapping you must provide in the item template.

Another approach for binding a RadRotator is through a set of images that reside into a single directory. All that
needs to be done is setting the BannersPath property to the virtual path of the images’ directory and the
control will be ready for use (of course assuming that the Rotator’s and its items’ dimensions are set, which is
required for all RotatorTypes). The control will handle the creation of the items and the item’s html template.
This functionality can be used with all RotatorTypes, giving you the ability to choose the right type for your
specific scenario.

Specifying how the rotator cycles through its items

The RotatorType property specifies how the rotator cycles through its items. You have several options to
choose from:

 AutomaticAdvance causes the frames to automatically scroll in a single direction. The ScrollDirection
property specifies the direction ("Up", "Down", "Left", or "Right") that items scroll. The FrameDuration
property specifies the time, in milliseconds, that the rotator remains still before scrolling to the next set of
items. The ScrollDuration property specifies how long the rotator spends scrolling before stopping for the
next FrameDuration. The WrapFrames property specifies whether scrolling starts over at the beginning
when it reaches the last frame. The InitialItemIndex indicates the item to start on. The default value is 0
(the first item), but you can set it to a higher value to start on a later record. You can also set
InitialItemIndex to -1 to start just before the first item.

 Buttons causes frames to scroll when the user clicks on buttons that appear outside the edges of the
rotator. When RotatorType is "Buttons", the ScrollDirection property indicates both the scroll direction and
where the buttons appear. In this case, it can be any or all of the four values, although including both
horizontal and vertical scrolling can be a little confusing. To include more than one scroll direction,
separate values using commas. (For example: "Up, Down".) As with AutomaticAdvance, you can set the
ScrollDuration, WrapFrames, and InitialItemIndex properties, but the FrameDuration has no effect in this
mode.

 ButtonsOver behaves just like "Buttons", except that scrolling occurs when the mouse moves over the
buttons rather than when they are clicked.

 SlideShow is similar to "AutomaticAdvance", except that frames replace each other in a slide show fashion
rather than scrolling in a specific direction. When RotatorType is "SlideShow", the FrameDuration property
specifies the time before the current slide changes. Instead of the ScrollDirection and ScrollDuration
properties, you can use the SlideShowAnimation property to set the transition effects. The WrapFrames
and InitialItemIndex work the same way with slide shows as they do with scrolling modes.

 SlideShowButtons is to "SlideShow" what "Buttons" is to "AutomaticAdvance". That is, the rotator acquires
buttons (based on the ScrollDirection property) which the user can click to change the current slide.

 FromCode leaves the rotator displaying the first frame (specified by InitialItemIndex) until you cause a
change from a client-side script. We will look at this option more closely in the section on Client-Side
Programming.

Managing Layout

UI for ASP.NET AJAX

125 UI for ASP.NET AJAX

In addition to the ScrollDirection, four properties control the layout of the rotator and the frames it contains:
Height, Width, ItemHeight, and ItemWidth. Height and Width are the dimensions of the rotator, while
ItemHeight and ItemWidth give the dimensions of a single item. If you are trying to fit items neatly into the
rotator, it is important to keep in mind that Height and Width give the dimensions of the entire rotator,
including buttons, not just the viewing area.

Template design surface
When you add a RadRotator control to your Web page using the Visual Studio designer, it appears with a
template design surface showing in the body of the control:

You can add any HTML elements, including ASP.NET controls, to this design surface and they become part of
the template that is used to display records from the data source. To display data from the data source, add
controls and bind the relevant property to a field from the data source. As with all templates, you can use the
ASP.NET expression syntax (<% %>) to reference the data item when binding a property of a control in your
template. Typically, you use Container.DataItem inside the DataBinder.Eval() function, although when working
with XmlDataSource, you can use a simple XPath() function call. For examples of using DataBinder.Eval() with
Container.DataItem, revisit the Data Binding chapter (You can also check out the Client-Side Programming
example for this chapter). For an example of using XPath(), revisit the Getting Started section of this chapter.

The RadRotator client-side api lets you stop and start the cycling through frames. The following example
illustrates these capabilities with a rotator that scrolls its items horizontally. To do this, it uses two client-side
methods, startAutoPlay() and pause().

When the page first loads, the rotator's RotatorType property is set to "FromCode", so that it does not move.
When the "Play" button executes, it changes the RotatorType to "AutomaticAdvance" before calling
startAutoPlay(). This is so that once the rotator is started, it keeps going. If the RotatorType were left as
"FromCode", the startAutoPlay() method would merely advance the rotator a single frame, and then stop.

6.5 Client-Side Programming

[JavaScript] Play button's onclick handler

function StartRotator() {

UI for ASP.NET AJAX

126 UI for ASP.NET AJAX

While the rotator is in "AutomaticAdvance" mode, it responds when the mouse moves over it by temporarily
pausing in its scrolling until the mouse moves off.

The handler for the "Pause" button's onclick event sets the RotatorType back to "FromCode" before calling the
pause() method. This is to prevent the automatic pausing and resuming that occurs when the mouse moves over
the rotator. If the rotator is left in "AutomaticAdvance" mode, the rotator will automatically pause when
the mouse moves over it (which does nothing because the rotator is already paused) and unpause when the
mouse moves off of it. By setting the RotatorType back to "FromCode", the rotator remains paused when the
mouse moves off of it.

The complete source for this example can be found in \VS Projects\Rotator\ClientSide.

RadRotator has three methods that allow the developer to manage the control's items on the client-side:

 addRotatorItem(radRotatorItemData, index) - adds a new item to the RadRotator's client-side item
collection at the specified index. The HTML markup of the new items is configured in the Html property of
the radRotatorItemData object that is passed to this method. If the radRotatorItemData parameter is not
specified, an empty item will be inserted. If the index parameter is not set, the new item will be added at
the end of the collection:

 removeRotatorItem(index) - removes an item from the RadRotator's client-side item collection. If the

 var rotator = $find("<%= RadRotator1.ClientID %>");
 // set rotatorType to automatic advance so that it keeps going
 // once started, and then start the rotator.
 rotator.set_rotatorType(Telerik.Web.UI.RotatorType.AutomaticAdvance);
 rotator.startAutoPlay();
 // enable the pause, disable play
 var pauseButton = $get("btnPause");
 var playButton = $get("btnPlay");
 pauseButton.disabled = false;
 playButton.disabled = true;
}

[JavaScript] Pause button's onclick handler

function PauseRotator() {
 var rotator = $find("<%= RadRotator1.ClientID %>");

 // change the rotator type to FromCode so that it does
 // not resume when the mouse moves over items.
 // Then pause the rotator.
 rotator.set_rotatorType(Telerik.Web.UI.RotatorType.FromCode);
 rotator.pause();

 // disable the pause button, enable play
 var pauseButton = $get("btnPause");
 var playButton = $get("btnPlay");
 pauseButton.disabled = true;
 playButton.disabled = false;
}

6.6 Client-Side Items Management

JavaScript

radRotatorItemData = {};
radRotatorItemData.Html = "<div>Item's content</div>";

UI for ASP.NET AJAX

127 UI for ASP.NET AJAX

index parameter is not set, the last item from the collection will be removed

 clearItems() - clears the RadRotator's client-side item collection

Note that the changes made via these methods will affect only the client-side items collection. The listed
client-side methods are supported for all RadRotator modes, except CoverFlow and Carousel.

Rotator Items
So far, all of the examples in this chapter have used rotators that were bound to some sort of data source. The
rotator has had a single item template, with items bound to fields from the data source. It is possible, however,
to user RadRotator without a data source. Although it is not present in the Properties Window at design time,
RadRotator has an Items property, which you can use to populate items one by one. Each item has its own
template, to which you can add any sort of content.

The following walk-through shows you how to use the Items property collection to populate an unbound
rotator. It creates a moving banner of fish across the top of the Web page:

The complete source for this example is in \VS Projects\Rotator\ItemsCollection.

1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. In the solution explorer, add an "Images" folder to your project.

3. Copy the files "fish1.png", "fish2.png", "fish3.png", "fish4.png", and "fish5.png" from the \VS Projects\Images
folder to your project's new \Images folder.

4. Drag a RadRotator control from the Tool Box onto your Web page.

5. Using the Properties Window, set the FrameDuration property to 1(ms) and the ScrollDirection property to
"Left". This will result in a continuous stream of items from right to left across the rotator.

6. Set the Height property to "40px", the Width property to "522px" (9 images will be shown), the ItemHeight
property to "40px", and the ItemWidth property to "58px".

7. Switch to the Source window to add items directly to the markup for your page.

8. Inside the RadRotator declaration, type an open bracket ("<"). Intellisense will offer you a list of options on
what you can add. Choose "Items":

9. Inside the <Items> collection, type another open bracket. This time, there is only one option:
"telerik:RadRotatorItem". Choose this option to add an item to your rotator. Give it an ID of "item1" and
don't forget to add runat="server".

10. Inside your new item, add an <ItemTemplate>.

11. Inside the <ItemTemplate> node, add an <asp:Image>. Set ID="Image1" and runat="server".

12. When you type "ImageUrl=" to add the ImageUrl attribute, intellisense should pop up a menu of options.

6.7 Control Specifics

Because each item in the Items property collection has its own template, the items can have drastically
different appearances. By contrast, when using a bound rotator, each record from the data source is
displayed using a single item template, so every item must look alike. To add items that use a different
template to a data-bound rotator, set the AppendDataBoundItems property to true. Be aware, however,
that you can't interleaf data-bound items with items in the Items collection.

UI for ASP.NET AJAX

128 UI for ASP.NET AJAX

Choose "Pick URL..." from the list:

13. Navigate to the Images folder and select "fish1.png".

14. At this point, your RadRotator declaration should look like the following:

15. Copy the entire declaration for the first item, and paste it as a second item in the Items collection.
Change the ID of the RadRotatorItem to "item2", and on the Image, change the ID to "Image2" and the
ImageUrl to "~/Images/fish2.png".

16. Repeat this process until you have 10 items, giving each item and each image a sequential ID ("item3",
"item4", and so on and "Image3", "Image4", and so on), and setting the ImageUrl to a randomly selected
image chosen from among the 5 images you added to the Images folder.

17. Hit Ctrl-F5 to run the application. A banner at the top of your Web page shows a string of fish all moving
continuously to the left.

CoverFlow is an animated, three dimensional graphical user interface that can be used to display and browse
your image galleries.

[ASP.NET] RadRotator with first item

<telerik:RadRotator ID="RadRotator1" runat="server" FrameDuration="1"
 Width="522px" ItemWidth="58px" Height="40px" ItemHeight="40px" ScrollDirection="Left">
 <Items>
 <telerik:RadRotatorItem ID="item1" runat="server" >
 <ItemTemplate>
 <asp:Image ID="Image1" runat="server" ImageUrl="~/Images/fish1.png" />
 </ItemTemplate>
 </telerik:RadRotatorItem>
 </Items>
</telerik:RadRotator>

6.8 Coverflow mode

UI for ASP.NET AJAX

129 UI for ASP.NET AJAX

Starting from Q3 2010, Telerik RadRotator supports two additional RotatorTypes - CoverFlow and
CoverFlowButtons. Both new modes can be set using RotatorType property of the control.

You can enable CoverFlow mode of RadRotator by following the steps below:

1. Set the RotatorType property to CoverFlow.

If the RotatorType="CoverFlowButtons" is set, then the items are moved by clicking the RadRotator's
default navigation buttons located on the left and right side of the control.

2. You can use the following server code to populate the Rotator with Images:

RadRotator's declaration

<telerik:RadRotator RotatorType="CoverFlow" ID="RadRotator1" runat="server"
 Width="748px" ItemWidth="150" ScrollDirection="Left, Right" Height="233px"
ItemHeight="113"
 ScrollDuration="500" FrameDuration="2000" PauseOnMouseOver="false"
InitialItemIndex="4">
 <ItemTemplate>
 <asp:Image ID="Image1" runat="server" ImageUrl='<%# Container.DataItem %>'
AlternateText="<%# VirtualPathUtility.GetFileName(Container.DataItem.ToString()) %>" />
 </ItemTemplate>
</telerik:RadRotator>

Populating images in RadRotator - C#

string virtualPath = "~/ImagesSource"; //specify Images folder
private void Page_Load(object sender, System.EventArgs e)
{
 if (!IsPostBack)
 {
 RadRotator1.DataSource = GetFilesInFolder(virtualPath);// Set datasource
 RadRotator1.DataBind();
 }
}

// Returns all virtual paths to files located in the given virtual directory
protected List<string> GetFilesInFolder(string folderVirtualPath)
{
 string physicalPathToFolder = Server.MapPath(folderVirtualPath);// Get the physical path
 string[] physicalPathsCollection = System.IO.Directory.GetFiles(physicalPathToFolder);
Get all child files of the given folder
 List<string> virtualPathsCollection = new List<string>();// Contains the result
 foreach (String path in physicalPathsCollection)
 {
 // The value of virtualPath will be similar to '~/PathToFolder/Image1.jpg
 string virtualPath = VirtualPathUtility.AppendTrailingSlash(folderVirtualPath) +
System.IO.Path.GetFileName(path);
 virtualPathsCollection.Add(virtualPath);
 }
 return virtualPathsCollection;
}

UI for ASP.NET AJAX

130 UI for ASP.NET AJAX

3. More precise configuration of CoverFlow Animation options is available through the following JavaScript
code:

Populating images in RadRotator - VB.NET

 Private virtualPath As String = "~/ImagesSource"
 Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load
 If Not IsPostBack Then
 RadRotator1.RotatorType = RotatorType.CoverFlowButtons
 ' Change rotator's type
 RadRotator1.DataSource = GetFilesInFolder(virtualPath)
 ' Set datasource
 RadRotator1.DataBind()
 End If
 End Sub

 ' Returns all virtual paths to files located in the given virtual directory
 Protected Function GetFilesInFolder(ByVal folderVirtualPath As String) As List(Of
String)
 Dim physicalPathToFolder As String = Server.MapPath(folderVirtualPath)
 ' Get the physical path
 Dim physicalPathsCollection As String() = System.IO.Directory.GetFiles
(physicalPathToFolder)
 ' Get all child files of the given folder
 Dim virtualPathsCollection As New List(Of String)()
 ' Contains the result
 For Each path As [String] In physicalPathsCollection
 ' The value of virtualPath will be similar to '~/PathToFolder/Image1.jpg
 Dim virtualPath As String = VirtualPathUtility.AppendTrailingSlash
(folderVirtualPath) + System.IO.Path.GetFileName(path)
 virtualPathsCollection.Add(virtualPath)
 Next
 Return virtualPathsCollection
 End Function

CoverFlow Animation options - JavaScript

<script type="text/javascript">
 //<![CDATA[
 // Animation options - the set_scrollAnimationOptions method takes two arguments - the
first one is the ClientID of the rotator, which we want to configure and the second one is
 // a hash table with the options we want to apply.
 Telerik.Web.UI.RadRotatorAnimation.set_scrollAnimationOptions("<%= RadRotator1.ClientID %
>", // The ClientID of the RadRotator
 {
 minScale: 0.8, // The size scale [0; 1], applied to the items that are not
selected.
 yO: 60, // The offset in pixels of the center of the selected item from the top
edge of the rotator.
 xR: -30, // The offset in pixels between the selected items and the first item on
the left and on the right of the selected item.
 xItemSpacing: 50, // The offset in pixels between the items in the rotator.
 matrix: { m11: 1, m12: 0, m21: -0.1, m22: 1 }, // The 2d transformation matrix,
applied to the items that appear on the right of the selected item.
 reflectionHeight: 0.5, // The height of the reflection

UI for ASP.NET AJAX

131 UI for ASP.NET AJAX

Important: The CoverFlow mode of RadRotator works best, when there is only a single image in every rotator
item. The reflection feature of the CoverFlow mode is supported only when there is an image in every rotator
item.

Carousel is an animated, graphical user interface used to display and rotate your image galleries.

Starting from Q2 2010, Telerik RadRotator supports two additional RotatorTypes - Carousel and
CarouselButtons. Both new modes can be set using RotatorType property of the control.

In order to enable Carousel mode of RadRotator follow the steps below:

1. Set the RotatorType property to Carousel:

If the RotatorType="CarouselButtons" is set, then the items are moved by clicking the RadRotator's
default navigation buttons located on the left and right side of the control.

2. You can use the following server code to populate the Rotator with Images:

 reflectionOpacity: 1 // The opacity, applied to the reflection
 });
// end of animationOptions
//]]>
</script>

6.9 Carousel mode

RadRotator's declaration

<telerik:RadRotator RotatorType="CarouselButtons" ID="RadRotator1" runat="server"
Width="810px" ItemWidth="280"
 Height="350px" ItemHeight="200" ScrollDuration="500" FrameDuration="2000"
PauseOnMouseOver="false">
 <ItemTemplate>
 <asp:Image ID="Image1" runat="server" ImageUrl='<%# Container.DataItem %>'
AlternateText="<%# VirtualPathUtility.GetFileName(Container.DataItem.ToString()) %>" />
 </ItemTemplate>
 </telerik:RadRotator>

UI for ASP.NET AJAX

132 UI for ASP.NET AJAX

Populating images in RadRotator - C#

string virtualPath = "~/ImagesSource"; //specify images folder
protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 RadRotator1.DataSource = GetFilesInFolder(virtualPath);// Set datasource
 RadRotator1.DataBind();
 }
}
protected List<string> GetFilesInFolder(string folderVirtualPath)
{
 string physicalPathToFolder = Server.MapPath(folderVirtualPath);// Get the physical path
 string filterExpression = "*.gif";
 string[] physicalPathsCollection = System.IO.Directory.GetFiles(physicalPathToFolder,
filterExpression);// Get all child files of the given folder
 List<string> virtualPathsCollection = new List<string>();// Contains the result
 foreach (String path in physicalPathsCollection)
 {
 // The value of virtualPath will be similar to '~/PathToFolder/Image1.jpg
 string virtualPath = VirtualPathUtility.AppendTrailingSlash(folderVirtualPath) +
System.IO.Path.GetFileName(path);
 virtualPathsCollection.Add(virtualPath);
 }
 return virtualPathsCollection;
}

Populating images in RadRotator - VB.NET

Dim virtualPath As String = "~/ImagesSource"
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load
 If Not Page.IsPostBack Then
 RadRotator1.DataSource = GetFilesInFolder(virtualPath)
 ' Set datasource
 RadRotator1.DataBind()
 End If
 End Sub

 Protected Function GetFilesInFolder(ByVal folderVirtualPath As String) As List(Of
String)
 Dim physicalPathToFolder As String = Server.MapPath(folderVirtualPath)
 ' Get the physical path
 Dim filterExpression As String = "*.gif"

 Dim physicalPathsCollection As String() = System.IO.Directory.GetFiles
(physicalPathToFolder, filterExpression)
 ' Get all child files of the given folder
 Dim virtualPathsCollection As New List(Of String)()
 ' Contains the result
 For Each path As [String] In physicalPathsCollection
 ' The value of virtualPath will be similar to '~/PathToFolder/Image1.jpg
 Dim virtualPath As String = VirtualPathUtility.AppendTrailingSlash
(folderVirtualPath) + System.IO.Path.GetFileName(path)

UI for ASP.NET AJAX

133 UI for ASP.NET AJAX

Important: The Carousel mode of RadRotator works best when there is only a single image in every rotator
item.

In this chapter you looked at the RadRotator control and saw some of the ways it can display a stream of
changing content. You saw some of the important properties for configuring the rotator. You created a simple
application that displayed data taken from an XML file. You learned to start and stop the rotator using the
client-side api. You also learned how to add items explicitly when the rotator is not bound to a data source.

 virtualPathsCollection.Add(virtualPath)
 Next
 Return virtualPathsCollection
 End Function

6.10 Summary

UI for ASP.NET AJAX

134 UI for ASP.NET AJAX

 Take a tour of the AJAX related controls including RadAjaxManager, RadAjaxPanel, RadAjaxManagerProxy
and RadAjaxLoadingPanel.

 Build a simple AJAX-Enabled web application that first uses RadAjaxPanel, then substitutes
RadAjaxManager. The application also displays a loading panel during the AJAX request.

 Explore the design time interface for each of the AJAX controls, taking special notice of where the controls
are similar. You will learn how to access properties and methods through Smart Tag and Properties
Window.

 Programmatically define AJAX settings at run-time on the server, detect which requests are triggered by
AJAX and automatically run client-script after a response.

 Create custom AJAX requests to bridge client and server functionality and AJAX-enable controls that lack
intrinsic AJAX abilities. Learn important client methods to toggle AJAX functionality, cancel requests and
iterate AJAX settings. Also learn how to handle AJAX client events raised at request start and response end.

 Explore design decisions involved with AJAX enabling your application.

 Learn how to make Winforms-like user interfaces using AJAX enabled user controls and how the page
lifecycle impacts working with AJAX-enabled user controls.

 See how the RadAjaxManagerProxy control provides visibility to RadAjaxManager settings in complex
container-ship scenarios.

 Use RadScriptBlock and RadCodeBlock to handle common script + markup related issues.

The RadAjax controls AJAX-enable your application with little programming or configuration effort on your part.
The control set consists of RadAjaxPanel, RadAjaxManager, RadAjaxManagerProxy and RadAjaxLoadingPanel.

RadAjaxPanel lets you instantly AJAX-enable an area of a web page simply by dropping controls on the panel.
RadAjaxPanel mimics an ASP:UpdatePanel, i.e. any control on the panel that performs a postback automatically
uses AJAX updates instead of a postback. The effect from the user's perspective is that only the panel area
updates and the full page does not refresh.

Use RadAjaxPanel when...

 You want instant gratification. All controls dropped onto the panel are AJAX-enabled without further
configuration.

 You want to start learning about how AJAX-enabled applications behave.

 The page has a simple layout with no complex interactions between controls.

 The controls are placed next to one another on the page.

That AJAX is involved does not guarantee a performant application. Keep in mind that whatever you put into
the panel will be sent to the server on the AJAX update. If you put everything in the page into the panel, then
the application can perform no better than a standard application. The trick is to cut down the amount of
payload between client and server, to make discrete little updates that move the minimum amount of data.

While RadAjaxPanel is an easy development experience, RadAjaxManager should be your go-to control when
you need to AJAX-enable an application. It can do everything the RadAjaxPanel can and quite a bit more. Use
RadAjaxManager when...

 You have complex pages and where only small parts of the page need to be updated at any one time.

 You need fine-tuned control over the updates going to the server via AJAX.

7 Ajax

7.1 Objectives

7.2 Introduction

UI for ASP.NET AJAX

135 UI for ASP.NET AJAX

 You need to get every last drop of performance from all aspects of your application.

 Controls to be updated are placed in disparate locations on the page.

RadAjaxManagerProxy is a stand-in at design time when you need to configure RadAjaxManager from within
UserControls or Content pages. RadAjaxManager can only be present once in a page, so the proxy is convenient
in this situations. Later, when we use RadAjaxManager with a user control, it will be clear how
RadAjaxManagerProxy makes the development experience easier.

The RadAjaxLoadingPanel control is used to display a "spinny" graphic in the updating area while the update is
performed to provide a little user feedback.

RadAjaxPanel - Thinking Inside the Box
Let's start with a simple RadAjaxPanel demonstration that has only a button and label so that you can see the
AJAX interaction vs. a standard postback.

1. Create a new web application and add a ScriptManager component to the page.

2. Add a RadCalendar and a standard ASP Label control to the page.

3. Set the ID of the Label to "PostBackLabel" and the Text property blank ("").

4. Set the ID of the calendar to "PostbackCalendar". In the calendar's Smart Tag, check the Enable
AutoPostBack option and un-check the Enable Multi-Select option.

5. In the designer, double-click the calendar to create a "SelectionChanged" event handler and add the code
below:

6. Drop a RadAjaxPanel to the form below the calendar and label.

7. Drop another RadCalendar and Label onto the RadAjaxPanel.

8. Set the ID of the Label to "AjaxLabel" and the Text property blank ("").

9. Set the ID of the calendar to "AjaxCalendar". In the calendar's Smart Tag, check the Enable AutoPostBack
option and un-check the Enable Multi-Select option.

10. In the designer, double-click the calendar to create a "SelectionChanged" event handler and add the code
below:

7.3 Getting Started

You can find the complete source for this project at:
\VS Projects\AJAX\Getting Started

[VB] Handling SelectionChanged on Postback

Protected Sub PostbackCalendar_SelectionChanged(ByVal sender As Object, ByVal e As
Telerik.Web.UI.Calendar.SelectedDatesEventArgs)
 PostBackLabel.Text = PostbackCalendar.SelectedDate.ToShortDateString()
End Sub

[C#] Handling SelectionChanged on Postback

protected void PostbackCalendar_SelectionChanged(
 object sender, Telerik.Web.UI.Calendar.SelectedDatesEventArgs e)
{
 PostBackLabel.Text = PostbackCalendar.SelectedDate.ToShortDateString();
}

[VB] Handling SelectionChanged on Ajax Update

UI for ASP.NET AJAX

136 UI for ASP.NET AJAX

11. Press Ctrl-F5 to run the application. Click on the "Postback" calendar and observe the indications that a full
postback is taking place. In Internet Explorer 7 for example, the "spinny" icon in the page tab displays and
animates. The page may appear to blink and the progress bar will display.

12. Now click the "Ajax Update" calendar. The label will change to display the new date and no other part of
the page will change: no blinking of the page, no "spinny" in the tab and no loading progress bar.

Protected Sub AjaxCalendar_SelectionChanged(ByVal sender As Object, ByVal e As
Telerik.Web.UI.Calendar.SelectedDatesEventArgs)
 AjaxLabel.Text = AjaxCalendar.SelectedDate.ToShortDateString()
End Sub

[C#] Handling SelectionChanged on Ajax Update

protected void AjaxCalendar_SelectionChanged(
 object sender, Telerik.Web.UI.Calendar.SelectedDatesEventArgs e)
{
 AjaxLabel.Text = AjaxCalendar.SelectedDate.ToShortDateString();
}

What has changed between the first set of calendar and label properties and code? Nothing, except that
the second calendar and label are housed in a RadAjaxPanel.

UI for ASP.NET AJAX

137 UI for ASP.NET AJAX

 Having an Out-of-panel Experience with RadAjaxManager
Now try using RadAjaxManager instead of RadAjax to see how the development and run-time experience
changes.

1. Start with the previous RadAjaxPanel project and navigate to the markup for the page.

2. Remove the RadAjaxPanel from the markup, leaving the calendars and labels in place.

3. Navigate back to the design view for the page.

4. Add a RadAjaxManager component to the web page.

5. In the RadAjaxManager Smart Tag, select Configure Ajax Manager.

The dialog shows a treeview list of controls in the first column that can initiate AJAX updates. When one
of the "initiator" controls is checked, you can check controls from the next column that can be updated via
AJAX. The last column has properties for the currently selected updated control.

6. Check "AjaxCalendar" in the first column and check "AjaxLabel" in the second column. Click OK to close the
dialog.

UI for ASP.NET AJAX

138 UI for ASP.NET AJAX

7. Press Ctrl-F5 to run the application. The behavior is the same as the RadAjaxPanel version. The AJAX
update performs very quickly with no screen flicker.

RadAjaxLoadingPanel
The assignment of the label text is so quick the user is not going to notice any appreciable update time. In
longer running operations, the user needs a little feedback. The RadAjaxLoadingPanel is a templated container
associated with a RadAjaxManager. By default the loading panel has the text "Loading..." and an animated
"spinny" image.

1. Add a RadAjaxLoadingPanel to the page.

2. In the RadAjaxManager Smart Tag, select Configure Ajax Manager.

3. In the second column (updated controls), select "AjaxLabel". In the third column (updated controls
properties) select the loading panel from the LoadingPanelID property drop down list.

While this is a trivial example, complex screens with updated controls in disparate locations can be
handled just as easily.

UI for ASP.NET AJAX

139 UI for ASP.NET AJAX

4. To simulate a long-running operation, let us add a "sleep" to the SelectionChanged event handler so you
can see the loading panel. Add a call to System.Threading.Thread.Sleep() for 200 milliseconds:

5. Re-run the application. When you click a date, the "spinny" graphic displays in the same location as the
updated control. When the operation finishes, the graphic disappears and the updated control becomes
visible again.

[VB] Simulate Long Running Operation

Protected Sub AjaxCalendar_SelectionChanged(ByVal sender As Object, ByVal e As
Telerik.Web.UI.Calendar.SelectedDatesEventArgs)
 System.Threading.Thread.Sleep(200)
 AjaxLabel.Text = AjaxCalendar.SelectedDate.ToShortDateString()
End Sub

[C#] Simulate Long Running Operation

protected void AjaxCalendar_SelectionChanged(
 object sender, Telerik.Web.UI.Calendar.SelectedDatesEventArgs e)
{
 System.Threading.Thread.Sleep(200);
 AjaxLabel.Text = AjaxCalendar.SelectedDate.ToShortDateString();
}

UI for ASP.NET AJAX

140 UI for ASP.NET AJAX

Smart Tag
Both RadAjaxPanel and RadAjaxManager have Smart Tag options to control general AJAX behavior and loading
panel features (shown in the screenshot below).

 Enable AJAX is on by default, but you can disable this option to verify that your application works with
standard post backs.

 Enable AJAX history is off by default, so the forward and back buttons on the browser are disabled. With

7.4 Designer Interface

RadAjaxManager has an additional "Configure Ajax Manager" link used to define AJAX settings. This feature
was described in the previous "Getting Started" section.

In most cases your web page should work with standard post backs. A good debugging measure is to
simply turn off AJAX and re-test your application without it.

UI for ASP.NET AJAX

141 UI for ASP.NET AJAX

the Enable AJAX History turned on in Internet Explorer, the browser remembers which pages you have been
to and the state of any updated controls (assuming ViewState hasn't been disabled) that are updated.

 Enable update of Page <head> element if true allows updates to the page head element so that title and
style sheet changes are applied.

 Choose LoadingPanelID for RadAjaxPanel lets you select a RadLoadingPanel from a list. On the
RadAjaxManager Smart Tag the task is called Choose DefaultLoadingPanelID and lets you choose the
loading panel that displays for all updated controls where not already defined.

The RadAjaxManagerProxy Smart Tag has a single option that refers to the only task this control performs,
Configure Ajax Manager. RadAjaxManagerProxy doesn't include any of the RadAjaxManager properties or
methods except for the AjaxSettings property that is populated by this option.

The RadAjaxLoadingPanel Smart Tag options configure how the loading panel is positioned, the timing of when
it displays and how it displays.

 By default the loading panel displays in the same location as the updated control. If Is sticky is checked the
loading panel displays where you have it positioned on the page at design-time.

 Initial delay time is the number of milliseconds before the loading panel displays. If the request completes
before the initial delay time expires, the loading panel doesn't show. In the Getting Started example we
had a loading panel with an artificial, "sleep()" induced wait of 200 milliseconds. If you set Initial delay
time to "1000", the loading panel never displays.

 Min display time is the minimum amount of time (in milliseconds) the loading panel displays even if the
update operation completes sooner. This timing setting helps eliminate annoying flicker that can occur if
the loading panel has just appeared and the request finishes. In the Getting Started example, if you set Min
display time to "1000", the loading panel displays a full second, even though the request takes a little over
200 milliseconds.

 The loading panel doesn't actually replace the updated control but is displayed right over the top of it. Set
a Transparency value of 0-100 so that the user can see the updated control underneath loading panel. 0 is
opaque and 100 is completely transparent. The loading panel shown below is displaying over a label and

This feature works only on Internet Explorer. On other browsers the buttons will be disabled even if you
check this option.

Imagine a "heads down" order entry system where a sales person is rapidly keying multiple order lines,
one right after the other. Once the sales person enters a part number and a quantity, you might expect
the system to lookup the sales price. If the system was running quickly, you wouldn't want to slow the
sales person down with "spinny" animation for each entry, but if the database was under load and
couldn't locate the product right away you would want an indicator that processing was underway. In this
case you could set the Initial delay time to a value that is over the average amount of time it takes to
enter a line.

UI for ASP.NET AJAX

142 UI for ASP.NET AJAX

has a transparency of "25".

Properties Window
Most of the principal RadAjaxManager and RadAjaxPanel design-time properties have been touched on so far,
but there are a couple of special purpose properties that you can reach at design-time only from the Properties
Window:

 RestoreOriginalRenderDelegate: If you have configured your applications to run in medium trust
(http://msdn.microsoft.com/en-us/library/ms998341.aspx) you should set this property to false to avoid
the error "InvalidOperationException: Not enough permissions...".

 RequestQueueSize: By design, the ASP.NET AJAX framework cancels the current AJAX request if you try to
initiate a second request. Set RequestQueueSize greater than zero to automatically enable RadAjax
queueing. You can test this behavior yourself using the Getting Started project. Add a Sleep() of 1000
milliseconds to the calendar SelectionChanged event handler and set the RequestQueueSize to "3". Run the
application and click on three dates in a row quickly. Each will execute for a second and all will complete.
Set the RequestQueueSize to "0" and you only see the last update.

Queueing may make sense depending on the semantics of your application. For example if you had a list of
tasks that could be executed and weren't dependent on one another, say, selecting a series of pre-defined
emails to be sent, then queueing could be a good choice. If the application was an entry screen where the
user could randomly work on different operations in the UI, then the user might change their mind at any
time and suddenly work on something else - here queueing might not be the way to go. The usability
requirements determine the route to take.

Requests exceeding RequestQueueSize are discarded.

Gotcha!

"When I use RadAjaxManager, the AJAX-enabled controls are placed on a new line!".

The reason for this behavior is that RadAjaxManager dynamically inserts MS AJAX UpdatePanel
controls around the updated controls. The default render mode is Block. A new RadAjaxManager
property UpdatePanelsRenderMode can be set to Inline so that the layout will not change. The
screenshot below shows the effect of the default Block layout vs. the new Inline render mode:

UI for ASP.NET AJAX

143 UI for ASP.NET AJAX

The complete source for the project can be found in \VS Projects\Ajax\RenderMode. The project
simply defines a button that updates a TextBox with the current time, and a check box that switches
between the two render modes. The code to update the date is not strictly necessary to show the
change in layout.

Colorized Example Code

[ASP.NET] Render Mode Demo Markup

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<telerik:RadAjaxManager ID="RadAjaxManager1" runat="server">
 <AjaxSettings>
 <telerik:AjaxSetting AjaxControlID="Button1">
 <UpdatedControls>
 <telerik:AjaxUpdatedControl ControlID="TextBox1" />
 </UpdatedControls>
 </telerik:AjaxSetting>
 </AjaxSettings>
</telerik:RadAjaxManager>

<asp:Button ID="Button1" runat="server" OnClick="Button1_Click" Text="Button" />
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:CheckBox ID="CheckBox1" runat="server" AutoPostBack="True" Checked="True"
 OnCheckedChanged="CheckBox1_CheckedChanged"
 Text="Block" />

[VB] Changing the Render Mode

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)
 TextBox1.Text = DateTime.Now.ToLongTimeString()
End Sub

Protected Sub CheckBox1_CheckedChanged(ByVal sender As Object, ByVal e As
EventArgs)
 RadAjaxManager1.UpdatePanelsRenderMode = IIf((TryCast(sender,
CheckBox)).Checked,UpdatePanelRenderMode.Block,UpdatePanelRenderMode.Inline)
 (TryCast(sender, CheckBox)).Text = IIf((TryCast(sender,
CheckBox)).Checked,"Block","Inline")
End Sub

UI for ASP.NET AJAX

144 UI for ASP.NET AJAX

Ajax Settings
You may not know all of the controls that will be AJAX-enabled at design time. You can configure
RadAjaxManager settings programmatically using the AjaxSettings collection.

You can add a setting using the AddAjaxSetting() method that takes an initiating control, an updated control
and optionally a loading panel.

The page for this next example starts out with just a Panel:

In the Page_Load a standard button and label are added to the div, then the AjaxSettings has a single setting
added where "btnTime" is the initiator and "lblTime" is the updated control.

[C#] Changing the Render Mode

protected void Button1_Click(object sender, EventArgs e)
{
 TextBox1.Text = DateTime.Now.ToLongTimeString();
}

protected void CheckBox1_CheckedChanged(object sender, EventArgs e)
{
 RadAjaxManager1.UpdatePanelsRenderMode = (sender as CheckBox).Checked ?
 UpdatePanelRenderMode.Block : UpdatePanelRenderMode.Inline;
 (sender as CheckBox).Text = (sender as CheckBox).Checked ?
 "Block" : "Inline";
}

7.5 Server-Side Programming

[ASP.NET] The page with div element

<body>
 <form id="form1" runat="server">
 <div>
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <telerik:RadAjaxManager ID="RadAjaxManager1" runat="server">
 </telerik:RadAjaxManager>
 <asp:Panel ID="Panel1" runat="server"></asp:Panel>
 </div>
 </form>
</body>

Because the control is added dynamically, it has to be re-created along with the AjaxSetting on every page
load. The behavior of dynamically added controls will be covered in more detail in the upcoming Page Life
Cycle section.

[VB] Adding AJAX Settings

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' create a button and label, add them to the page
 Dim btnTime As New Button()
 btnTime.ID = "btnTime"

UI for ASP.NET AJAX

145 UI for ASP.NET AJAX

Other Properties
RadAjaxManager and RadAjaxPanel have a properties available at runtime only:

 RadAjaxManager and RadAjaxPanel can both indicate if they are in the middle of an AJAX request using the
IsAjaxRequest property. For example, if you dropped this line of code into the Getting Started calendar

 btnTime.Text = "Show Time"
 Dim lblTime As New Label()
 lblTime.ID = "lblTime"
 lblTime.Text = "time"
 Panel1.Controls.Add(btnTime)
 Panel1.Controls.Add(lblTime)
 ' add a click event handler
 AddHandler btnTime.Click, AddressOf btnTime_Click
 ' add an ajax setting where the panel is both initiator and label is
 ' updated control
 RadAjaxManager1.AjaxSettings.AddAjaxSetting(btnTime, lblTime)
End Sub
Protected Sub btnTime_Click(ByVal sender As Object, ByVal e As EventArgs)
 Dim lblTime As Label = TryCast(FindControl("lblTime"), Label)
 lblTime.Text = DateTime.Now.ToLongTimeString()
End Sub

[C#] Adding AJAX Settings

protected void Page_Load(object sender, EventArgs e)
{
 // create a button and label, add them to the page
 Button btnTime = new Button();
 btnTime.ID = "btnTime";
 btnTime.Text = "Show Time";
 Label lblTime = new Label();
 lblTime.ID = "lblTime";
 lblTime.Text = "time";
 Panel1.Controls.Add(btnTime);
 Panel1.Controls.Add(lblTime);
 // add a click event handler
 btnTime.Click += new EventHandler(btnTime_Click);
 // add an ajax setting where the button is initiator and label is
 // updated control
 RadAjaxManager1.AjaxSettings.AddAjaxSetting(btnTime, lblTime);
}
protected void btnTime_Click(object sender, EventArgs e)
{
 Label lblTime = FindControl("lblTime") as Label;
 lblTime.Text = DateTime.Now.ToLongTimeString();
}

Gotcha!

This is a very important gotcha! The symptoms vary for this gotcha, but in general, if something
doesn't show up on the page, disappears from the page in response to user action or bound data
doesn't show up, you should double-check your AJAX settings. Make sure that the control that
triggers the update and the updated controls are included in the list of settings.

This is more of a designed behavior than a gotcha because we want to send only certain portions of
the page to the server. If we forget to include one of those pieces by forgetting a setting, the Ajax
Manager will do exactly what we tell it to!

UI for ASP.NET AJAX

146 UI for ASP.NET AJAX

SelectionChanged event handlers, one for the full postback and one for the AJAX-enabled version, the alert
dialog would correctly reflect the state of each.

The screenshot below shows the user clicking on the AJAX-enabled calendar and the alert shows that
IsAjaxRequest is true:

 You can define JavaScript that executes when a response returns to the browser by adding to the
ResponseScripts collection:

[VB] Detecting AJAX Requests

RadAjaxManager1.Alert(RadAjaxManager1.IsAjaxRequest.ToString())

[C#] Detecting AJAX Requests

RadAjaxManager1.Alert(RadAjaxManager1.IsAjaxRequest.ToString());

[VB] Adding a Response Script

RadAjaxManager1.ResponseScripts.Add("alert('The date you selected was "_
 + AjaxCalendar.SelectedDate.ToLongDateString() + "');")

[C#] Adding a Response Script

RadAjaxManager1.ResponseScripts.Add("alert('The date you selected was " +
 AjaxCalendar.SelectedDate.ToLongDateString() + "');");

UI for ASP.NET AJAX

147 UI for ASP.NET AJAX

Accessing RadAjaxManager From Any Page
If you want to access RadAjaxManager from a page that RadAjaxManager is not directly on, e.g. in a Content
page or in a WebUserControl for example, you can use the RadAjaxManager.GetCurrent(Page) method.

Creating Custom Ajax Requests
Using the Ajax Manager and Panel you can automatically update controls on the page, but what if you want to

[VB] Using the GetCurrent() Method

Imports Telerik.Web.UI
Namespace RadAjaxManagerMethods
Public Partial Class _Default
 Inherits System.Web.UI.Page
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 RadAjaxManager.GetCurrent(Me).EnableAJAX = True
 End Sub
End Class
End Namespace

[C#] Using the GetCurrent() Method

using Telerik.Web.UI;
namespace RadAjaxManagerMethods
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 RadAjaxManager.GetCurrent(this).EnableAJAX = true;
 }
 }
}

7.6 Client-Side Programming

UI for ASP.NET AJAX

148 UI for ASP.NET AJAX

AJAX-enable dynamically created? What if you want to AJAX-enable a control that is not designed with AJAX in
mind? RadAjaxManager has a client method called ajaxRequest(), a unique method that bridges between client
and server. You call ajaxRequest() on the client and it triggers an AJAX update that's handled on the server.
You can pass any arbitrary arguments as parameters. This very powerful method provides flexibility for any
AJAX task you could think up that's not already covered by existing controls and event handlers. You can even
add AJAX functionality to controls that are not designed to be AJAX enabled.

In its simplest form, you have a JavaScript function on the client that calls ajaxRequest() with no arguments.
Calling the RadAjaxManager client method ajaxRequest() on the client causes the RadAjaxManager
OnAjaxRequest event to fire on the server. Both the client ajaxRequest() and the server OnAjaxRequest event
need to be present to make the conversation between client and server happen.

The screenshot below shows an example with all the pieces needed to communicate from client to server. A
standard ASP Button with a client onclick event handler points to "myFunction()". myFunction() gets a
reference to the ajax manager and calls the ajaxRequest() client-side API function. RadAjaxManager also has a
property OnAjaxRequest which fires in response to the client ajaxRequest() client method. The
RadAjaxManager OnAjaxRequest property points to a handler in the code-behind that performs the actual work
that responds to the request. The sequence of events is:

 The user clicks "Button1" and fires the onclick client event.

 "myFunction()" method runs in response to the client onclick event. This method gets a reference to the
RadAjaxManager and fires the RadAjaxManager ajaxRequest() client API method.

 The OnAjaxRequest event fires on the server.

 The OnAjaxRequest event handler "RadAjaxManager1_AjaxRequest" runs in response to the event.

For best Winforms-like performance you'll want to dispatch as many tasks as possible to the client. There are
some tasks that must be done back at the server, i.e. communication and networking related jobs like
database update or calculation intensive jobs where the richer .NET libraries are available. That said, the
line between the client and server is progressively blurred with mechanism like ajaxRequest(), the advent of
client data sources and richer client libraries.

UI for ASP.NET AJAX

149 UI for ASP.NET AJAX

Playing with a full deck
For a slightly more involved example, this next demo project shows how to pass a parameter and respond on
the server. The project actually injects HTML to the page which in turn calls the JavaScript and again fires the
ajaxRequest(). The first version of this project displays a playing card on the page. When the user clicks the
card, another random card is created and rendered in the page.

1. Create a new web application and add a ScriptManager component to the page.

You can find the complete source for this project at:
\VS Projects\AJAX\ClientAPI1

UI for ASP.NET AJAX

150 UI for ASP.NET AJAX

2. Add a RadAjaxManager control after the ScriptManager on the page.

3. In the Solution Explorer, create a new \Images directory.

4. Copy the 52 image files from the \VS Projects\Images\Playing Cards directory to your project's
\images directory. The images are named "1.png" through "52.png".

5. Add an HTML <div> element with id "cardDeckDiv", and runat attribute set to "server". Inside the div, place
a standard HTML tag with id "card" and src pointing to "images/1.png". You should include an
"onclick" event handler that runs a JavaScript function called "deal();" (we will write code for "deal"
momentarily). The markup should look something like the example below.

6. Just below the <body> tag add the JavaScript deal() function. The function first gets a reference to the
"card" element and gets the source path for it. Then the "deal()" function gets a reference to the
RadAjaxManager client object and calls ajaxRequest(), passing the source path.

7. In the designer, use the RadAjaxManager Smart Tag Configure Ajax Manager option. In this case, the
RadAjaxManager is actually the initiating control here. Select the RadAjaxManager checkbox and select
"cardDeckDiv" as the updated control.

If you look in the source view for the page, the markup should look something like the example below:

[ASP.NET] Adding the Image

<div id="cardDeckDiv" runat="server">

</div>

[JavaScript] Calling ajaxRequest()

function deal()
{
 // get reference to the card div and extract source path
 var card = $get("card");
 var src = card.src;

 // get a reference to the RadAjaxManager client object
 var ajaxManager = $find("<%=RadAjaxManager1.ClientID %>");
 // call ajaxRequest and pass the source path
 ajaxManager.ajaxRequest(src);
}
</script>

UI for ASP.NET AJAX

151 UI for ASP.NET AJAX

8. In the Properties window select the events icon () and create an event handler for the OnAjaxRequest
server-side event.

 In the server OnAjaxRequest handler, first use the System.Random object to get a number between
1..52.

 Add references to System.Web.UI.HtmlControls and System.Web.UI.WebControls in your
"Imports" (VB) or "uses" (C#) section of code if they don't already exist there.

 Create an HtmlImage object.

 Construct the path for the playing card graphic and assign it to the HtmlImage src property.

 Make the ID property "card" (this is the identifier that the client code will expect to find)

 Set the "onclick" client event using the Attributes collection of the image object.

 Clear and add the HtmlImage to the Controls collection of cardDeckDiv.

 Create a Literal control and set its text to display the passed in argument and the new path. This
literal also gets added to the cardDeckDiv Controls collection.

The resulting code should look like the example below:

[ASP.NET] The Full Markup

<script type="text/javascript">
 function deal()
 {
 // get reference to the card div and extract source path
 var card = $get("card");
 var src = card.src;

 // get a reference to the RadAjaxManager client object
 var ajaxManager = $find("<%=RadAjaxManager1.ClientID %>");
 // call ajaxRequest and pass the source path
 ajaxManager.ajaxRequest(src);
 }
</script>
<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <telerik:RadAjaxManager ID="RadAjaxManager1" runat="server"
 OnAjaxRequest="RadAjaxManager1_AjaxRequest">
 <AjaxSettings>
 <telerik:AjaxSetting AjaxControlID="RadAjaxManager1">
 <UpdatedControls>
 <telerik:AjaxUpdatedControl ControlID="cardDeckDiv" />
 </UpdatedControls>
 </telerik:AjaxSetting>
 </AjaxSettings>
 </telerik:RadAjaxManager>
 <div id="cardDeckDiv" runat="server">

 </div>
</form>

[VB] Handling the Ajax Request

Public Partial Class _Default
 Inherits System.Web.UI.Page
 Protected Sub RadAjaxManager1_AjaxRequest(ByVal sender As Object, ByVal e As

UI for ASP.NET AJAX

152 UI for ASP.NET AJAX

9. Press Ctl-F5 to run the example.

Events
RadAjaxPanel and RadAjaxManager both have two events. OnRequestStart fires just before the request is sent
to the server. You can examine or alter the arguments sent to the request or you can cancel the request
altogether. When the page has been updated by the AJAX request the OnResponseEnd event fires. Used
together, these two events can be used to log metrics on the performance of each request or to set and restore
state. Some state related tasks you might perform are:

 Setting the mouse cursor to a "wait" graphic, then back to its default.

 Disabling or hiding certain controls during a request, then re-enabling or making visible afterward.

Telerik.Web.UI.AjaxRequestEventArgs)
 ' get a random card number from the "deck" of 52
 Dim random As New Random()
 Dim nextCard As Integer = random.[Next](1, 52)
 ' create the new card
 Dim image As New HtmlImage()
 image.Src = "Images/" + nextCard.ToString() + ".png"
 image.ID = "card"
 image.Attributes("onclick") = "deal()"
 cardDeckDiv.Controls.Clear()
 cardDeckDiv.Controls.Add(image)
 ' display the passed in argument and the new constructed paths
 Dim label As New Literal()
 label.Text = "

Old path: " + e.Argument + "
New path: "
image.Src
 cardDeckDiv.Controls.Add(label)
 End Sub
End Class

[C#] Handling the Ajax Request

public partial class _Default : System.Web.UI.Page
{
 protected void RadAjaxManager1_AjaxRequest(object sender,
 Telerik.Web.UI.AjaxRequestEventArgs e)
 {
 // get a random card number from the "deck" of 52
 Random random = new Random();
 int nextCard = random.Next(1, 52);
 // create the new card
 HtmlImage image = new HtmlImage();
 image.Src = "Images/" + nextCard.ToString() + ".png";
 image.ID = "card";
 image.Attributes["onclick"] = "deal()";
 cardDeckDiv.Controls.Clear();
 cardDeckDiv.Controls.Add(image);
 // display the passed in argument and the new constructed paths
 Literal label = new Literal();
 label.Text =
 "

Old path: " + e.Argument +
 "
New path: " + image.Src;
 cardDeckDiv.Controls.Add(label);
 }
}

UI for ASP.NET AJAX

153 UI for ASP.NET AJAX

 Displaying an animated control to indicate processing is taking place, then displaying an un-animated
version of the control when the response returns. This also can typically be done using a RadLoadingPanel.

Both events have the same signature as other events in the client API:

In this context "sender" is the RadAjaxManager object. Args has some significant methods to control the current
event:

 get_eventTargetElement(), set_eventTargetElement(): gets or sets the client object that raised the AJAX
request.

 get_eventTarget(), set_eventTarget(): gets or sets the UniqueID of the element that raised the AJAX
request.

 get_enableAjax(), set_enableAjax(): gets or sets if an AJAX request is to be performed at all. So, based on
the initiating control or an updated control, you can actually determine if a particular request should
instead become a standard postback. Note: You'll see how to get the list of updated controls from
AjaxSettings in the upcoming Properties section of this chapter.

In this next sample we'll use both events to set the mouse cursor to reflect a busy state, and we will extend the
ajaxRequest to pass multiple parameters. The sample uses the previous project as a basis, but adds the clicked
card to a second div that contains five tags. The effect is that the cards are "dealt" into a row.

1. Start with the previous project (or a copy).

2. In the ASP.NET markup, just above "cardDeckDiv" add:

 A hidden input field tab with id "Index" and value set to "1".

 Another div with id "discardPileDiv". Make sure it is marked with runat="server". You can modify the
style attribute to suit your taste or copy it from the fragment below.

 Within the "discardPileDiv", add five tags with id's "Span1" through "Span5?. The server code is
expecting this specific naming convention. Again, make sure it is marked with runat="server".

[JavaScript] OnRequestStart, OnResponseEnd Parameters

function RequestStart(sender, args)
{
 //..
}

You can find the complete source for this project at:
\VS Projects\AJAX\ClientAPI2.

UI for ASP.NET AJAX

154 UI for ASP.NET AJAX

The Index field will be used to track a 'current span' so that as the cards are dealt out, they are
displayed in the spans from left to right. After the user deals out five cards to spans 1 through 5, the
cycle starts over again at the first span.

The completed markup should look like the example below:

3. Add "discardPileDiv" to the updated controls in the RadAjaxManager settings. Also, add ClientEvents
properties so that OnRequestStart is "RequestStart" and OnRespondEnd is "ResponseEnd". You can do this in
the Properties window or just add it directly to the markup as shown below:

4. Add client event handlers to your JavaScript for OnRequestStart and OnResponseEnd events. On the
request start, set the cursor to show that the application is busy using the cursor style "wait", then on the
response end set the cursor back using the cursor style "default".

[ASP.NET] Adding Input, New Div and Span Tags

<input id="Index" value="1" type="hidden" />
<div id="discardPileDiv" runat="server"
 style="border-style: groove; border-width: 2px; height: 100px;background-color:WhiteSmoke;
margin:5px;padding:5px">

</div>

[ASP.NET] Adding to the Updated Controls and ClientEvents

<telerik:RadAjaxManager ID="RadAjaxManager1" runat="server"
 onajaxrequest="RadAjaxManager1_AjaxRequest">
 <AjaxSettings>
 <telerik:AjaxSetting AjaxControlID="RadAjaxManager1">
 <UpdatedControls>
 <telerik:AjaxUpdatedControl ControlID="discardPileDiv" />
 <telerik:AjaxUpdatedControl ControlID="cardDeckDiv" />
 </UpdatedControls>
 </telerik:AjaxSetting>
 </AjaxSettings>
 <ClientEvents OnRequestStart="RequestStart" OnResponseEnd="ResponseEnd" />
</telerik:RadAjaxManager>

[JavaScript] Show 'Busy' Mouse Cursor

<script type="text/javascript" >
 //...

 function RequestStart(sender, args)
 {
 document.body.style.cursor = "wait";
 }

 function ResponseEnd(sender, args)
 {
 document.body.style.cursor = "default";
 }
</script>

UI for ASP.NET AJAX

155 UI for ASP.NET AJAX

5. Augment the deal() function:

 Retrieve a reference to the "card" div element. From the card element, store the "src" property. "src"
contains the path of each card image.

 Retrieve the Index hidden field value.

 Populate a new "args" variable that contains the concatenation of the "src" and "Index" joined with a
"&" delimiter. "src" will contain the path to the clicked on image and "Index" will indicate the current
span to display the next card in.

 Increment the Index value. You can use the JavaScript parseInt() function to explicitly convert the
Index string value to a numeric.

 Pass "args" to the ajaxRequest() method.

6. On the server, add the following namespaces to the "Imports" (VB) or "uses" (C#) section of the code:

You can use this same pattern to set and restore different kinds of state on the client: disabling and
enabling controls, starting and stopping timers or creating and destroying resources.

Instead of passing a single argument to ajaxRequest() directly, you can pass multiple arguments
joined by a delimiter as a single string. On the server call the String Split() method to convert the
single string to an array for easier use.

[JavaScript] Implementing the deal() function

<script type="text/javascript" >
 function deal()
 {
 // get reference to the card div and extract source path
 var card = $get("card");
 var src = card.src;
 // get the Index hidden field
 var Index = $get("Index");

 // construct arguments to pass to server:
 // use "&" as delimiter. Pass the image path
 // and Index to current span.
 var args = src + "&" + Index.value.toString();
 // increment the index between 1..5
 if (Index.value >= 5)
 {
 Index.value = 1;
 }
 else
 {
 Index.value = parseInt(Index.value) + 1;
 }
 // get ajax manager and kick off ajax request passing arguments
 var ajaxManager = $find("<%=RadAjaxManager1.ClientID %>");
 ajaxManager.ajaxRequest(args);
 }

 //. . .
</script>

[VB] Adding Namespaces

UI for ASP.NET AJAX

156 UI for ASP.NET AJAX

7. Create a generic List property to contain image paths of cards that have been "dealt". The generic list of
cards will be used to regenerate the card controls on each Page_Load.

8. Add utility methods to be used later in the Page_Load and OnAjaxRequest event handlers:

 GetSpan() locates and returns an HtmlGenericControl that represents one of the five tags.

 AddCard() creates an HTMLImage control, sets the appropriate image path for the card number and
adds the HTMLImage control to a given parent.

' supports generic List
Imports System.Collections.Generic
' supports Control
Imports System.Web.UI

[C#] Adding Namespaces

using System.Collections.Generic; // supports generic List
using System.Web.UI; // supports Control

Dynamically created controls have to be re-created each page cycle. Even though we are using AJAX and
only partially updating the page, the entire page life-cycle still occurs: the Page_Load still fires. For
more detail, see the upcoming Page Life Cycle section.

[VB] Create Generic List Property to Store Card Image Paths

' stores a list of card number "dealt" out
Const CardPathsKey As String = "CardPathsKey"
Private Property CardPaths() As List(Of String)
 Get
 Return TryCast(ViewState(CardPathsKey), List(Of String))
 End Get
 Set
 ViewState(CardPathsKey) = value
 End Set
End Property

[C#] Create Generic List Property to Store Card Image Paths

// stores a list of card number "dealt" out
const string CardPathsKey = "CardPathsKey";
private List<string> CardPaths
{
 get { return ViewState[CardPathsKey] as List<string>; }
 set { ViewState[CardPathsKey] = value; }
}

[VB] Utility Methods

' retrieve reference to a given span
Private Function GetSpan(ByVal index As Integer) As HtmlGenericControl
 Return TryCast(FindControl("Span" + index), HtmlGenericControl)
End Function
' create a card image and add it to a parent container
Private Function AddCard(ByVal parent As Control, ByVal CardPath As String) As HtmlImage
 Dim image As HtmlImage = Nothing
 If Not [String].IsNullOrEmpty(CardPath) Then
 image = New HtmlImage()

UI for ASP.NET AJAX

157 UI for ASP.NET AJAX

9. The Page_Load takes care of creating the generic list of card image paths on the first run of the page. The
Page_Load is also tasked with re-creating user controls. The five spans containing the "dealt" cards will
"disappear" if not recreated on every page load.

 image.Src = CardPath
 parent.Controls.Clear()
 parent.Controls.Add(image)
 End If
 Return image
End Function

[C#] Utility Methods

// retrieve reference to a given span
private HtmlGenericControl GetSpan(int index)
{
 return FindControl("Span" + index) as HtmlGenericControl;
}
// create a card image and add it to a parent container
private HtmlImage AddCard(Control parent, string CardPath)
{
 HtmlImage image = null;
 if (!String.IsNullOrEmpty(CardPath))
 {
 image = new HtmlImage();
 image.Src = CardPath;
 parent.Controls.Clear();
 parent.Controls.Add(image);
 }
 return image;
}

[VB] Handling the Page_Load

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' create the generic list
 If Not IsPostBack Then
 CardPaths = New List(Of String)()
 End If
 ' recreate cards on each postback and display
 ' inside appropriate spans
 Dim index As Integer = 1
 For Each CardPath As String In CardPaths
 AddCard(GetSpan(index), CardPath)
 System.Math.Max(System.Threading.Interlocked.Increment(index),index - 1)
 Next
End Sub

[C#] Handling the Page_Load

protected void Page_Load(object sender, EventArgs e)
{
 // create the generic list
 if (!IsPostBack)
 {
 CardPaths = new List<string>();
 }

UI for ASP.NET AJAX

158 UI for ASP.NET AJAX

10. The final task is to handle the OnAjaxRequest event using the new code shown below.

 Use the String Split() method to convert the AjaxRequestEventArgs.Argument parameter into an array.

 From the array extract the card image path and the index of the current span to their own variables.

 Call the AddCard() utility method to add the latest card to the current span and also add the card path
to the generic list.

 Create a new random card and display it in the "cardDeckDiv".

 // recreate cards on each postback and display
 // inside appropriate spans
 int index = 1;
 foreach (string CardPath in CardPaths)
 {
 AddCard(GetSpan(index), CardPath);
 index++;
 }
}

[VB] Handling the OnAjaxRequest Event

Protected Sub RadAjaxManager1_AjaxRequest(ByVal sender As Object, ByVal e As
Telerik.Web.UI.AjaxRequestEventArgs)
 ' retrieve arguments sent from client and convert
 ' to array for easier processing
 Dim args As String() = e.Argument.Split("&"C)
 ' store the first argument parameter
 ' (the src property of the clicked-on card)
 Dim CardPath As String = args(0)
 ' store the span index where the next card image will be displayed
 Dim index As Integer = Integer.Parse(args(1))
 ' create and add a card image to the current span:
 ' if the generic list of card image paths isn't populated
 ' yet, add to it, otherwise, re-use the list.
 AddCard(GetSpan(index), CardPath)
 If CardPaths.Count < 5 Then
 CardPaths.Add(CardPath)
 Else
 CardPaths(index - 1) = CardPath
 End If
 ' create the new card
 Dim nextCard As Integer = New Random().[Next](1, 52)
 Dim newCardPath As String = "Images/" + nextCard.ToString() + ".png"
 Dim newCardImage As HtmlImage = AddCard(cardDeckDiv, newCardPath)
 newCardImage.ID = "card"
 newCardImage.Src = newCardPath
 newCardImage.Attributes("onclick") = "deal()"
End Sub

[C#] Handling the OnAjaxRequest Event

protected void RadAjaxManager1_AjaxRequest(object sender,
Telerik.Web.UI.AjaxRequestEventArgs e)
{
 // retrieve arguments sent from client and convert
 // to array for easier processing
 string[] args = e.Argument.Split('&');

UI for ASP.NET AJAX

159 UI for ASP.NET AJAX

11. Press Ctl-F5 to run the application. Click the card enough times that the first five cards are shown and that
additional cards are displayed starting from the left-most span.

Canceling AJAX Requests
What if one of your users goes berserk and starts clicking away like a madman at your UI, attempting to start
requests before other requests have completed? The consequences in the previous example are not too serious,
but in an application with longer running processes on the server and more complex interrelationships, its
better to control when requests are made to eliminate problems before they have opportunity to occur.

One way to regulate this behavior is by calling set_cancel() to abort further processing, including the AJAX
request. If you track when you're currently processing an AJAX request, then you can cancel the request from
the OnRequestStart client event.

1. Taking the previous project as a starting point, navigate to the markup for the default page. In the
JavaScript, add a variable to track AJAX requests:

2. In the deal() function, wrap the code there with an if() statement so that the code will not execute if
another request is already in-progress.

3. In the RequestStart() function, if a request is in-process, then simply return false to cancel the new

 // store the first argument parameter
 // (the src property of the clicked-on card)
 string CardPath = args[0];
 // store the span index where the next card image will be displayed
 int index = int.Parse(args[1]);
 // create and add a card image to the current span:
 // if the generic list of card image paths isn't populated
 // yet, add to it, otherwise, re-use the list.
 AddCard(GetSpan(index), CardPath);
 if (CardPaths.Count < 5)
 CardPaths.Add(CardPath);
 else
 CardPaths[index - 1] = CardPath;
 // create the new card
 int nextCard = new Random().Next(1, 52);
 string newCardPath = "Images/" + nextCard.ToString() + ".png";
 HtmlImage newCardImage = AddCard(cardDeckDiv, newCardPath);
 newCardImage.ID = "card";
 newCardImage.Src = newCardPath;
 newCardImage.Attributes["onclick"] = "deal()";
}

[JavaScript] Adding Variable to Track Ajax Requests

<script type="text/javascript" >
 var isAjaxActive;
 //. . .

[JavaScript] Wrapping deal() Code

 function deal()
 {
 if (!isAjaxActive)
 {
 //...
 }
 }

UI for ASP.NET AJAX

160 UI for ASP.NET AJAX

request. If there is no request currently processing, set the isAjaxActive flag to true. In the ResponseEnd()
function, simply set isAjaxActive to false, indicating there are no AJAX requests currently processing.

Properties
The client API as usual lets you get and set important RadAjaxManager properties. For example, you can toggle
if AJAX is enabled at all using get_enableAJAX()/ set_enableAJAX() methods. You can also get the complete list
of AjaxSettings.

The example below is added to the OnRequestStart client event handler from our previous project, but similar
code could could be placed in any client event.

 "sender" in this example is a reference to the RadAjaxManager object.

 Call get_ajaxSettings() to retrieve an array of objects that represents the Ajax Manager's current
configuration. Iterate each of the settings and retrieve the initiating control id and yet another array of
objects that represent updated controls.

 Iterate the UpdatedControls array and collect the control id for each. While iterating these arrays, append
to strings that keep track of the initiating control and the updated controls for each initiating control.

 Display an alert that displays the collected information:

[JavaScript] Handling the OnRequestStart and OnResponseEnd Client Events

function RequestStart(sender, args)
{
 if (isAjaxActive)
 {
 args.set_cancel(true);
 }
 else
 {
 isAjaxActive = true;
 document.body.style.cursor = "wait";
 }
}
function ResponseEnd(sender, args)
{
 isAjaxActive = false;
 document.body.style.cursor = "default";
}

[ASP.NET] Retrieving AjaxSettings on the Client

function RequestStart(sender, args)
{
 var settings = sender.get_ajaxSettings();
 var settingList = '';
 for(setting in settings)
 {
 var initControlID = settings[setting].InitControlID;
 var updatedControls = settings[setting].UpdatedControls;
 var controlList = '';
 for(control in updatedControls)
 {
 controlList += ' ' + updatedControls[control].ControlID;
 }
 settingList += '\nInitiated by: ' + initControlID +

UI for ASP.NET AJAX

161 UI for ASP.NET AJAX

The screenshot below shows the output. In this case, we only have one initiating control, the RadAjaxManager
itself, and it updates the two div elements that contain the card images.

One of the issues that will impact your design of an AJAX-enabled application is the scope of the AJAX. That is,
will the entire page, including navigational controls, be AJAX-enabled, or just items within the page. Many sites
use standard postback to navigate between pages while the contents of the page may be heavily "ajaxified".
These kinds of sites are relatively straightforward and let you use the built-in capabilities of the navigation
controls, so that a RadMenu, for example, can point to other pages using the RadMenuItem NavigateUrl
property. Using the NavigateUrl automatically causes a full postback because you are loading the entire page
from scratch.

So how do we AJAX-enable an entire page to replicate that WinForms look-and-feel, but still retain the
development advantage of working on one "page" at a time?

What about using ASP.NET 2.0 MasterPage and Content pages? This seems like a clear contender because the
visual metaphor is that the MasterPage is a container for place holders where Content pages are injected.
Couldn't you put a RadAjaxPanel on the MasterPage surrounding the content place holder to AJAX-enable just
the Content page? Nope. When you navigate to a Content page, the MasterPage is merged and again, the entire
page is loaded and state is not persisted between Content pages. The MasterPage can be thought of as a
template -- it is not the same instance in two different Content pages. Navigating between Content pages in
this context works the same as navigating between standard aspx pages and so doesn't allow an opportunity to
AJAX-enable the entire page. You can take a look at the "MasterPages" project (in \VS
Projects\Ajax\MasterPages) to prove to yourself how Master/Content pages operate.

To AJAX-enable the entire page, including the navigation elements, creating UserControls dynamically is a

 '\nUpdated Controls: ' + controlList;
 }
 alert(settingList);

 //...
}

7.7 Page vs MasterPage vs UserControl

UI for ASP.NET AJAX

162 UI for ASP.NET AJAX

workable approach.

Page Life Cycle Basics
Before we tackle creating pages that swap out UserControls dynamically, you should have a basic understanding
of the ASP.NET 2.0 page lifecycle so that controls don't seem to appear and disappear like magic. The page
lifecycle is a series of stages that the page progresses through when converting your markup and code-behind to
produce the final rendered page output. This page lifecycle description will be simplified to focus on stages
relating to loading and handling state for controls.

1. Instantiation: A class is automatically generated using the ASP.NET markup that declaratively defines your
page. This class defines a control tree, a hierarchical structure starting with the HTML page as the root
and other elements (LiteralControls, WebControls, etc) arranged underneath. Note: When you add controls
dynamically, you're still adding to this control tree.

2. Initialization: Controls are instantiated and their initial properties are set. PreInit and Init events fire for
the page and for server controls at this stage. During the Init event, TrackViewState() is called so that
changes to controls are saved in the "view state".

You may typically work with ViewState as a property of the Page, but ViewState is a protected property of
Control and is at work in all WebControls. Each server control can maintain its own state across postbacks
using ViewState. ViewState rendered on the page is actually a standard HTML hidden type of input tag
named "__VIEWSTATE" where the value attribute is the encoded state information for the page (see
example below).

<input id="__VIEWSTATE" type="hidden" value="/wEPDwUJNzgzNDMwNTMzZGR6/Texf1rWyHeYqWXYXaks4woiow==

In the code-behind, view state is represented as a StateBag class -- a dictionary with the additional ability
of knowing when name/value pairs in the dictionary change. StageBag has a IsItemDirty boolean property
that tracks state changes and allow for efficient restoration of a minimal number of controls. Controls that
don't change from their declared definition do not persist ViewState.

3. Load View State: View state information saved in previous incarnations of the page are restored here.

4. Load: Page and control Load events are fired.

5. Save View State: State information is persisted.

Now imagine that you create a control, a standard TextBox for example, in reaction to a button click. The
TextBox is added to the control tree and you see the TextBox on the rendered page. Now you click a second
button that causes the page to postback and shazaam! the TextBox disappears. What happened? Starting at the
Instantiation stage, the control tree was created from the markup. The TextBox wasn't defined in the
markup and the the second button had no code-behind to create the TextBox, so on postback, the TextBox
simply isn't there to display. This brings us to the central truth about using dynamic controls -- dynamically
added controls must be recreated on every postback.

7.8 Page Lifecycle

In related news, you may see a hidden field __EVENTVALIDATION that is used to verify that the controls
on the server match the controls rendered on the client. This feature is intended to prevent someone
from injecting malicious JavaScript to your page. You may see an error "...Invalid postback or callback
argument. Event validation is enabled using <pages enableEventValidation="true"/>..." if a user submits a
form before it is completely rendered and the __EVENTVALIDATION field is not yet present.

You can find the complete source for this project at:
\VS Projects\Ajax\PageLifeCycle. This project simply shows debug output for the page methods
and events described above.

UI for ASP.NET AJAX

163 UI for ASP.NET AJAX

Dynamically Added Controls
So if I recreate controls every postback, how do I get changes that the user makes to a control "stick"? If you
add controls after view state tracking is on but before values are programmatically added to the control, this
behavior comes along for the ride automatically. In fact, even if you add controls at any time up to the actual
rendering of the control, ASP.NET plays "catch up" for the control (and any child controls) so that initialization,
load view state and load stages still occur. Here's a very brief example that loads a new TextBox on every post
back and retains the state of whatever the user enters. The page has a standard Button declared in markup on
the page to trigger postbacks, but otherwise the web page is the Visual Studio default. The user can click the
postback button multiple times and change the text as well. The text entered or modified in the TextBox
remains after the postback.

Just to recap the action so far:

 Control properties are first set to their declared values from the markup. The page has only the single
Button control with its declared defaults.

 Each control's TrackViewState() method is called during initialization.

 Each controls's LoadViewState() retrieves state information that was flagged "dirty" in the previous request.
The retrieved state information is added back to the control's StateBags. StateBags are tracking view state
at this point, so this state information is flagged "dirty" so that it will be available on the next request. This
doesn't have much effect in our "dynamically added controls" scenario because we haven't added the
TextBox yet.

 Page_Load fires. When the TextBox is added to the form Controls array, the control plays "catch up" and so
has a chance to load its view state.

Assigning IDs
How does ASP.NET know what control to update with a given piece of the ViewState? The code above has an
omission that happens to work out ok. In the example above ASP.NET automatically assigns the name "ctl02" to
the TextBox. In the example below we explicitly assign a random ID to the TextBox for each page load and the
result is that state is not retained. ASP.NET sees a different TextBox on each page load:

[VB] Adding Controls in Page_Load

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Me.form1.Controls.Add(New TextBox())
End Sub

[C#] Adding Controls in Page_Load

protected void Page_Load(object sender, EventArgs e)
{
 this.form1.Controls.Add(new TextBox());
}

Be aware that even when an action on the page is AJAX-enabled, the entire page lifecycle still executes on
the server, albeit with an smaller amount of view state information.

[VB] Assigning a random ID

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim random As New Random()
 Dim textBox As New TextBox()
 textBox.ID = "myTextBox_" + random.[Next]().ToString()

UI for ASP.NET AJAX

164 UI for ASP.NET AJAX

If you change the code above and assign the TextBox the same ID value every time, the TextBox will return to
its former behavior of automatically persisting user changes.

Armed with a basic notion of how the ASP.NET Page Lifecycle works, we can begin to build an interface with
multiple user controls that are swapped out based on user selection in a navigation control. First we'll start
with a full page refresh version, then add AJAX capability and refine it from there.

Dynamic User Controls With Full Post Back
The first example will have a RadTabStrip on the default page and two UserControls that are loaded at runtime
to the default page based on the currently selected tab. Each control will contain a button and a TextBox so
you can test how the state is maintained.

1. Create a new web application and add a ScriptManager component to the default page.

2. Add a RadTabStrip to the default page. Configure two tabs with Text property "Page 1" and "Page 2"
respectively and Value property "WebUserControl1.ascx" and "WebUserControl2.ascx" respectively. Set the
SelectedIndex property to "0" so that the first tab is automatically selected. The markup should look
something like the example below:

3. In the Solution Explorer, add two Web User Control items:

 Right-click the project

 Select Add | New Item from the context menu

 Me.form1.Controls.Add(textBox)
End Sub

[C#] Assigning a random ID

protected void Page_Load(object sender, EventArgs e)
{
 Random random = new Random();
 TextBox textBox = new TextBox();
 textBox.ID = "myTextBox_" + random.Next().ToString();
 this.form1.Controls.Add(textBox);
}

You can find the complete source for this project at:
\VS Projects\Ajax\PageLifeCycle2

7.9 Dynamic User Controls for Ajax-Enabling Entire Page

You can find the complete source for this project at:
\VS Projects\Ajax\DynamicControls1

[ASP.NET] RadTabStrip Markup

<telerik:RadTabStrip ID="RadTabStrip1" runat="server" SelectedIndex="0">
 <Tabs>
 <telerik:RadTab Text="Page One" Value="WebUserControl1.ascx" Selected="True">
 </telerik:RadTab>
 <telerik:RadTab Text="Page Two" Value="WebUserControl2.ascx">
 </telerik:RadTab>
 </Tabs>
</telerik:RadTabStrip>

UI for ASP.NET AJAX

165 UI for ASP.NET AJAX

 Select Web User Control in the Add New Item dialog

 Click the Add button.

Leave the default names for each: they should be named "WebUserControl1" and "WebUserControl2" to
match the tab Value properties.

4. Navigate to the design view for WebUserControl1 and enter the text "Page 1", a standard ASP Button and a
standard ASP TextBox.

5. Navigate to the design view for WebUserControl2 and enter the text "Page 2", a standard ASP Button and a
standard ASP TextBox.

6. With the RadTabStrip selected in design view, click the Events button () Properties Window. Double-
click the TabClick event to create an event handler. Do not enter any code for this event handler. It just
needs to be present to trigger a postback but the logic will be housed in the page_load event.

7. In the Page_Load event handler, add the code below.

 Each tab value has the path to the corresponding user control.

 The Page_Load event first uses that path to load the control.

 The same path is used as the control ID.

 The control is added to the web form's Controls collection.

8. Press Ctl-F5 to run the application.

Notice that as you click the tabs, the corresponding user control displays, and that if you enter text and
click the button, the text will also persist.

AJAX Enable
This next example simply AJAX-Enables the previous example.

Note that using the path as an ID directly could backgire if your user control was in a different
directory and contained problem "\" and "~" characters. We will address this issue later in this
chapter.

[VB] Loading the Selected Control

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim control As Control = Page.LoadControl(RadTabStrip1.SelectedTab.Value)
 control.ID = RadTabStrip1.SelectedTab.Value
 Me.form1.Controls.Add(control)
End Sub

[C#] Loading the Selected Control

protected void Page_Load(object sender, EventArgs e)
{
 Control control = Page.LoadControl(RadTabStrip1.SelectedTab.Value);
 control.ID = RadTabStrip1.SelectedTab.Value;
 this.form1.Controls.Add(control);
}

UI for ASP.NET AJAX

166 UI for ASP.NET AJAX

1. Starting with the previous project (or a copy), add a standard PlaceHolder control below the RadTabStrip.
Instead of using the form we use a PlaceHolder control to provide a little more flexibility and control on
where we can place the user controls on the page.

2. Select Configure Ajax Manager from the RadAjaxManager Smart Tag. Select the RadTabStrip check box as
the initiating control and the PlaceHolder as the updated control.

3. Change the statement that added the dynamic control to the form's Controls array to use the PlaceHolder.

4. Press Ctl-F5 to run the application. The functionality should be the same as the previous application,
except that now we have the benefits of AJAX performance and no postback flicker.

Initializing User Controls
You may have noticed when working with the previous examples that although state persists between
postbacks, state does not persist between tab clicks. You can allow initialization of the user control through a
database or other backing store. This next example extends the previous example.

1. Starting with the previous project (or a copy) create a new class file "IDynamicControl.cs" and add the code
to define the IDynamicControl interface.

 The interface will have a single method "FirstLoad()" with no parameters.

 Each web user control will implement this interface and the page that loads the control will call the

You can find the complete source for this project at:
\VS Projects\Ajax\DyanmicControls2

[VB] Add to PlaceHolder Controls

PlaceHolder1.Controls.Add(control)

[C#] Add to PlaceHolder Controls

PlaceHolder1.Controls.Add(control);

You can find the complete source for this project at:
\VS Projects\Ajax\DynamicControl3

UI for ASP.NET AJAX

167 UI for ASP.NET AJAX

method when the page is first loaded (!IsPostBack) and when the user clicks a tab.

 The method will not be fired when the postback is due to activity within the web user control.

2.

Modify the User Control
1. Navigate to the design-view for WebUserControl1, set the TextBox AutoPostBack property to True and

create an event handler for the TextChanged event.

2. In the WebUserControl1 code-behind, add a property to store text entered by the user. The property stores
the value in the Session. Notice that the key to Session is "TextInfoKey1" and will be unique.

3. In the event handler for the TextChanged event, add the code below to store the text in the TextInfo
property:

[VB] Defining the IDynamicControl Interface

Public Interface IDynamicControl
 Sub FirstLoad()
End Interface

[C#] Defining the IDynamicControl Interface

public interface IDynamicControl
{
 void FirstLoad();
}

[VB] Adding the TextInfo Property

Const TextInfoKey As String = "TextInfoKey1"
Private Property TextInfo() As String
 Get
 Return IIf(Session(TextInfoKey) = Nothing,"",Session(TextInfoKey).ToString())
 End Get
 Set
 Session(TextInfoKey) = value
 End Set
End Property

[C#] Adding the TextInfo Property

const string TextInfoKey = "TextInfoKey1";
private string TextInfo
{
 get { return Session[TextInfoKey] == null ? "" : Session[TextInfoKey].ToString(); }
 set { Session[TextInfoKey] = value; }
}

[VB] Saving to the TextInfo Property

Protected Sub TextBox1_TextChanged(ByVal sender As Object, ByVal e As EventArgs)
 Me.TextInfo = (TryCast(sender, TextBox)).Text
End Sub

[C#] Saving to the TextInfo Property

protected void TextBox1_TextChanged(object sender, EventArgs e)
{

UI for ASP.NET AJAX

168 UI for ASP.NET AJAX

4. In the code-behind for WebUserControl1, add IDynamicControl to the class declaration. Click the indicator
line just below "IDynamicControl" and select "Implement interface 'IDynamicControl'" (or right-click
IDynamicControl and select Implement Interface from the context menu).

5. In the implementation for IDynamicControl, restore the previously saved TextInfo back to the TextBox:

6. Repeat the steps for the "Modify the User Control" section on WebUserControl2. The steps are the same
except when you define the "TextInfoKey" constant it should be named "TextInfoKey2" so that it is unique.

Modify The Default Page Code-Behind
1. Create a utility method to convert user control paths to suitable ID names where slashes and tildes are

removed.

 this.TextInfo = (sender as TextBox).Text;
}

[C#] Restoring Saved Text On Control's First Load

#region IDynamicControl Members
Public Sub FirstLoad()
 Me.TextBox1.Text = Me.TextInfo
End Sub
#End Region

[C#] Restoring Saved Text On Control's First Load

#region IDynamicControl Members
public void FirstLoad()
{
 this.TextBox1.Text = this.TextInfo;
}
#endregion

[VB] Converting Control Paths to IDs

Private Function GetControlID(ByVal controlPath As String) As String
 Dim result As String = controlPath.Split("."C)(0)
 Return "uc_" + result.Replace("/", "").Replace("~", "")
End Function

[C#] Converting Control Paths to IDs

private string GetControlID(string controlPath)
{
 string result = controlPath.Split('.')[0];
 return "uc_" + result.Replace("/", "").Replace("~", "");
}

UI for ASP.NET AJAX

169 UI for ASP.NET AJAX

2. Move the control loading logic to its own method. There are several noteworthy changes in this method.

1. The parameter list includes the path to the user control and a "isFirstLoad" boolean.

2. The control is loaded to the page.

3. The Placeholder controls are cleared and the user control is added to the control's collection. Note:
Failing to clear the controls collection can lead to collisions of controls with the same id names.

4. If this is "first load", that is, if the page itself is not a postback or if one of the tabs has just been
clicked, provide an opportunity for the user control to initialize itself. You can place a
RadAjaxManager Alert() inside this If statement to get a feel for the circumstances that trigger this
method.

3. Handle the Page_Load and TabClick events. Notice that the TabClick event handler always passes True to
LoadUserControl().

[VB] Loading the User Control

Private Sub LoadUserControl(ByVal controlPath As String, ByVal isFirstLoad As Boolean
 Dim control As Control = Page.LoadControl(controlPath)
 control.ID = GetControlID(controlPath)
 PlaceHolder1.Controls.Clear()
 PlaceHolder1.Controls.Add(control)
 If isFirstLoad Then
 RadAjaxManager1.Alert("First Load!")
 (TryCast(control, IDynamicControl)).FirstLoad()
 End If
End Sub

[C#] Loading the User Control

private void LoadUserControl(string controlPath, bool isFirstLoad)
{
 Control control = Page.LoadControl(controlPath);
 control.ID = GetControlID(controlPath);
 PlaceHolder1.Controls.Clear();
 PlaceHolder1.Controls.Add(control);
 if (isFirstLoad)
 {
 RadAjaxManager1.Alert("First Load!");
 (control as IDynamicControl).FirstLoad();
 }
}

[VB] Handle Page_Load and TabClick Events

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 LoadUserControl(RadTabStrip1.SelectedTab.Value, Not IsPostBack)
End Sub
Protected Sub RadTabStrip1_TabClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadTabStripEventArgs)
 LoadUserControl(e.Tab.Value, True)
End Sub

[C#] Handle Page_Load and TabClick Events

protected void Page_Load(object sender, EventArgs e)
{
 LoadUserControl(RadTabStrip1.SelectedTab.Value, !IsPostBack);
}

UI for ASP.NET AJAX

170 UI for ASP.NET AJAX

4. Press Ctl-F5 to run the application. Experiment with changing tabs, saving values and clicking the button
and see the effect on when the alert pops up.

Handling ViewState Conflicts
One last wrinkle that you may run into is that as your control tree becomes more complex, you may see this
error intermittently:

"Failed to load viewstate. The control tree into which viewstate is being loaded must match the control tree
that was used to save during the previous request. For example, when adding controls dynamically, the
controls added during a post-back must match position of the controls added during initial request"

As the error indicates, this can happen if the expected viewstate doesn't match up with with the controls
received. So if a control, say the tree view in CategoriesTree, is present in both user controls, but is located in
different places on the page the exception will be thrown.

You can shut off viewstate just prior to first loading the control to prevent the comparison between control
trees that should not match at all. Then turn it back on so that the control may properly retain viewstate
during the first load of the control.

You can reproduce the viewstate error if you take the last example and insert a standard DropDownList control
between the button and textbox. Know that the viewstate is evaluated by position, so when we ASP.NET runs
into the first control on the page, the button, it's where it should be. Next, it's expecting the text box, but
instead it finds a drop down list and so the controls tree does not match and the exception is thrown.

An interesting side note, the internal rules that govern this comparison don't mind if a different control is
inserted at the very beginning of the control tree. For example if you put in another button before all the other
controls on the page, the exception is not thrown. In this case it appears the internal rules recognize that this
is a completely new control.

For our purposes, we certainly don't want to play with the page layout just to make the error go away. Here we
can shut off the EnableViewState for the user control just before it's added to the place holder's control array
and then turn it back on so that it can retain any new changes that occur during our FirstLoad().

Here's another code example that shows how these pieces go together.

protected void RadTabStrip1_TabClick(object sender,
 Telerik.Web.UI.RadTabStripEventArgs e)
{
 LoadUserControl(e.Tab.Value, true);
}

You can find the complete source for this project at:
\VS Projects\Ajax\DynamicControls4

[VB] Handling ViewState

Imports System
Imports System.Web.UI
Namespace DynamicControls4
 Public Partial Class _Default
 Inherits System.Web.UI.Page
 #region properties
 ' store the last selected control for reload
 Private Const CurrentControlKey As String = "CurrentControlKey"
 Private Property CurrentControl() As String
 Get
 Return IIf(ViewState(CurrentControlKey) = Nothing,"",ViewState
(CurrentControlKey).ToString())

UI for ASP.NET AJAX

171 UI for ASP.NET AJAX

 End Get
 Set
 ViewState(CurrentControlKey) = value
 End Set
 End Property
#End Region
 #region private methods
 Private Function LoadUserControl(ByVal parentControl As Control, ByVal newControlPath As
String, ByVal isFirstLoad As Boolean) As Control
 ' Load the control and set its id
 Dim control As Control = Page.LoadControl(newControlPath)
 control.ID = newControlPath
 ' the viewstate control will be out of sync with
 ' the previously loaded control. Temporarily shut off
 ' viewstate if this is the first load of the control
 If isFirstLoad Then
 control.EnableViewState = False
 End If
 ' add to the parent controls collection
 parentControl.Controls.Add(control)
 ' if this is the first load (first time the page is loaded or
 ' a new tab has been clicked) enable the viewstate again. Forgetting to
 ' reenable the viewstate will controls to be loaded only once. Then
 ' call the FirstLoad() method of the web user control for first time
 ' loading tasks.
 If isFirstLoad Then
 control.EnableViewState = True
 (TryCast(control, IDynamicControl)).FirstLoad()
 End If
 Return control
 End Function
#End Region
 #region page events
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' if this is the first load of the page,
 ' set the CurrentControl to the selected tab value
 If Not IsPostBack Then
 CurrentControl = RadTabStrip1.SelectedTab.Value
 End If
 Dim isNewControl As Boolean = Not CurrentControl.Equals(RadTabStrip1.SelectedTab.Value)
 If isNewControl Then
 CurrentControl = RadTabStrip1.SelectedTab.Value
 Else
 LoadUserControl(PlaceHolder1, CurrentControl, Not IsPostBack)
 ' new control, so wait for the tabclick to load it
 ' same control, reload it.
 End If
 End Sub
 Protected Sub RadTabStrip1_TabClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadTabStripEventArgs)
 ' this always is a first load
 LoadUserControl(PlaceHolder1, CurrentControl, True)
 End Sub
#End Region
 End Class

UI for ASP.NET AJAX

172 UI for ASP.NET AJAX

End Namespace

[C#] Handling ViewState

using System;
using System.Web.UI;
namespace DynamicControls4
{
 public partial class _Default : System.Web.UI.Page
 {
 #region properties
 // store the last selected control for reload
 private const string CurrentControlKey = "CurrentControlKey";
 private string CurrentControl
 {
 get
 {
 return ViewState[CurrentControlKey] == null ?
 "" : ViewState[CurrentControlKey].ToString();
 }
 set
 {
 ViewState[CurrentControlKey] = value;
 }
 }
 #endregion
 #region private methods
 private Control LoadUserControl(Control parentControl,
 string newControlPath, bool isFirstLoad)
 {
 // Load the control and set its id
 Control control = Page.LoadControl(newControlPath);
 control.ID = newControlPath;
 // the viewstate control will be out of sync with
 // the previously loaded control. Temporarily shut off
 // viewstate if this is the first load of the control
 if (isFirstLoad)
 {
 control.EnableViewState = false;
 }
 // add to the parent controls collection
 parentControl.Controls.Add(control);
 // if this is the first load (first time the page is loaded or
 // a new tab has been clicked) enable the viewstate again. Forgetting to
 // reenable the viewstate will controls to be loaded only once. Then
 // call the FirstLoad() method of the web user control for first time
 // loading tasks.
 if (isFirstLoad)
 {
 control.EnableViewState = true;
 (control as IDynamicControl).FirstLoad();
 }
 return control;
 }
 #endregion
 #region page events

UI for ASP.NET AJAX

173 UI for ASP.NET AJAX

RadAjaxManager is only "one per customer" -- you can have only a single RadAjaxManager on the page. In more
complex scenarios that involve containers of other controls, e.g. MasterPage/Content Page, how do you get
design-time visibility to controls when the RadAjaxManager is perhaps on a MasterPage and the updated
controls are on the content page? Likewise, how do you configure settings for controls located in a
WebUserControl but the RadAjaxManager is on the page that loads the WebUserControl? You could of course
add the settings programmatically (as shown in the Server-Side Programming section of this chapter), but if the
controls in the Content Page or WebUserControl are not added dynamically, adding controls programmatically is
unnecessary coding work and maintenance overhead.

RadAjaxManagerProxy is a stand-in that lets you configure AJAX settings in the designer and it can be present
on as many design surfaces as necessary.

This next example demonstrates loading a single WebUserControl containing a RadCalendar and a CheckListBox
that toggles calendar properties. The RadAjaxManager lives on the default.aspx page and the AJAX settings are
housed in the WebUserControl inside the RadAjaxManagerProxy tag.

1. Create a new web application and add a ScriptManager component to the default page.

2. Add a RadAjaxManager and a standard ASP PlaceHolder to the default page. Just for fun, the project as a
RadFormDecorator with Skin property set to "Sunset". Notice at this point that the RadAjaxManager has
no configuration settings. All settings will be setup in the user control.

3. In the code-behind for the default page add the following code load the WebUserControl to the
PlaceHolder on each Page_Load:

 protected void Page_Load(object sender, EventArgs e)
 {
 // if this is the first load of the page,
 // set the CurrentControl to the selected tab value
 if (!IsPostBack)
 {
 CurrentControl = RadTabStrip1.SelectedTab.Value;
 }
 bool isNewControl = !CurrentControl.Equals(RadTabStrip1.SelectedTab.Value);
 if (isNewControl)
 // new control, so wait for the tabclick to load it
 CurrentControl = RadTabStrip1.SelectedTab.Value;
 else
 // same control, reload it.
 LoadUserControl(PlaceHolder1, CurrentControl, !IsPostBack);
 }
 protected void RadTabStrip1_TabClick(object sender, Telerik.Web.UI.RadTabStripEventArgs
e)
 {
 // this always is a first load
 LoadUserControl(PlaceHolder1, CurrentControl, true);
 }
 #endregion
 }
}

7.10 Using RadAjaxManagerProxy

You can find the complete source for this project at:
\VS Projects\Ajax\RadAjaxManagerProxy

[VB] Handle the Page_Load Event

UI for ASP.NET AJAX

174 UI for ASP.NET AJAX

4. In the Solution Explorer add a WebUserControl item to the the project.

1. Add a RadCalendar to the user control design surface. Set the RadCalendar Skin property to "Sunset".

2. Add a standard ASP CheckListBox to the user control design surface. Add three items with text
"ShowColumnHeaders", "ShowOtherMonthDays" and "ShowRowHeaders". Set the Selected property of

each item to true. From the Properties Window Event () tab, double-click the
OnSelectedIndexChanged event to create an event handler. In the event handler add the code below:

5. On the WebUserControl design surface, open the Smart Tag and select Configure Ajax Manager. When the
Property Builder displays, select the CheckBoxList as the initiating control and RadCalendar as the updated
control.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim control As Control = Me.LoadControl("WebUserControl1.ascx")
 control.ID = "uc_WebUserControl1"
 PlaceHolder1.Controls.Add(control)
End Sub

[C#] Handle the Page_Load Event

protected void Page_Load(object sender, EventArgs e)
{
 Control control = this.LoadControl("WebUserControl1.ascx");
 control.ID = "uc_WebUserControl1";
 PlaceHolder1.Controls.Add(control);
}

[VB] Handling the OnSelectedIndexChanged Event

Protected Sub CheckBoxList1_SelectedIndexChanged(ByVal sender As Object, ByVal e As
EventArgs)
 RadCalendar1.ShowColumnHeaders = (TryCast(sender, CheckBoxList)).Items(0).Selected
 RadCalendar1.ShowOtherMonthsDays = (TryCast(sender, CheckBoxList)).Items(1).Selected
 RadCalendar1.ShowRowHeaders = (TryCast(sender, CheckBoxList)).Items(2).Selected
End Sub

[C#] Handling the OnSelectedIndexChanged Event

protected void CheckBoxList1_SelectedIndexChanged(object sender, EventArgs e)
{
 RadCalendar1.ShowColumnHeaders = (sender as CheckBoxList).Items[0].Selected;
 RadCalendar1.ShowOtherMonthsDays = (sender as CheckBoxList).Items[1].Selected;
 RadCalendar1.ShowRowHeaders = (sender as CheckBoxList).Items[2].Selected;
}

UI for ASP.NET AJAX

175 UI for ASP.NET AJAX

6. Press Ctl-F5 to run the application.

In this chapter we took a tour of the AJAX related RadControls, paying particular attention to the powerful and
flexible RadAjaxManager. You built a simple AJAX-enabled application that first used RadAjaxPanel, then
substituted RadAjaxManager to see how the two mechanisms contrast. You also leveraged RadAjaxLoadingPanel
to provide better user feedback during AJAX requests.

You learned how to define AJAX settings programmatically at run-time and at design-time using the
RadAjaxManager Property Builder dialog to configure settings. Later you used RadAjaxManagerProxy to perform
the same settings configuration within a user control.

You built an application that "deals" cards to demonstrate how AJAX requests can be triggered on the client and
handled on the server. You coded client-only functions to access common RadAjaxManager properties, e.g.
configuration settings, enabling AJAX, canceling requests. You also handled RadAjaxManager client events that
let you set and restore state at the beginning and conclusion of AJAX requests.

We looked at design decisions regarding AJAX-enabling applications, took a walk through the ASP.NET page
lifecycle and its impact on dynamically created user controls, and finally put this information to use in a
Winform-like UI demonstrating dynamic user controls together with AJAX.

You saw how RadAjaxManagerProxy provides visibility to RadAjaxManager settings in complex container-ship
scenarios.

Finally, we looked at how RadScriptBlock and RadCodeBlock handle common script + markup related issues.

7.11 Summary

UI for ASP.NET AJAX

176 UI for ASP.NET AJAX

 Build the initial framework for a demonstration application that uses many of the RadControls for ASP.NET
AJAX in concert.

 Setup the project structure.

 Learn how to setup and use ASP.NET Membership.

 Use RadFormDecorator and RadInput controls in an application.

Learning to use individual RadControls for ASP.NET AJAX is the beginning, not the ending of this tutorial. Your
use of RadControls will not be in button-and-a-label demos, but in real-world applications that employ multiple
controls and technologies in concert including database access, complex user interfaces, user authentication,
role assignment and personalization.

This chapter introduces "ActiveSkill", a sample on-line exam application. A user of this application can maintain
questions and create exams, as well as take an on-line exam and receive a test score. ActiveSkill has been
scoped to be much smaller than a typical business application, but is large enough to involve issues you are
likely to face in the trenches.

The ActiveSkill is a MS SQL database that includes tables for Questions, Categories of questions and Exams.
Stored procedures are included for most of the CRUD (Create, Read, Update Delete) operations so that the
focus stays away from the database mechanics and stays on the use of RadControls for ASP.NET AJAX.
ActiveSkill will also use ASP.NET Membership to handle user authentication tasks.

This track of the tutorial will work gradually from simple login and registration pages that use some of the basic
controls, to the Administration site that uses RadAjax + server code and finishing up at the user exam taking
application that leans towards heavy use of the client API. The entire application will have a custom skin and
will use a large portion of the RadControls for ASP.NET AJAX palette.

ActiveSkill consists of three projects, a user interface project that contains the web applications for both user
and administration pages, a web service used later to supply exam information and a business object project
used to define constants, classes and interfaces required by the other two projects.

The first task is to sketch out the general structure of the solution so that later we can fill out the
implementation:

1. Create a new ASP.NET Web application. In Visual Studio 2008 you can do this by navigating to File | New |
Project | ASP.NET Web Application.

Configure the User Interface Project
1. In the Solution Explorer, rename the project to "ActiveSkillUI".

2. Right-click the project and select Properties.

3. On the Application tab set the Default Namespace to "Telerik.ActiveSkill.UI"

4. On the Web tab, in the Servers section, select Use Local IIS Web Server. Set the Project Url to
http://<your machine name>/ActiveSkillUI and click the Create Virtual Directory button. Setting the Url
to your machine name will simplify some debugging steps later on.

Create and Configure the Business Object Project

8 ActiveSkill: Getting Started

8.1 Objectives

8.2 Introduction

8.3 Setup ActiveSkill Project Structure

UI for ASP.NET AJAX

177 UI for ASP.NET AJAX

1. In the Solution Explorer, right-click the solution and select Add | New Project from the context menu.
Select the Class Library project type and name the project "ActiveSkillBO".

2. Right-click the project and select Properties.

3. On the Application tab set the Default Namespace to "Telerik.ActiveSkill.Common".

Create and Configure the Web Service Project
1. In the Solution Explorer, right-click the solution and select Add | New Project from the context menu.

Select the ASP.NET Web Service Application project type and name the project "ActiveSkillWS".

2. Right-click the project and select Properties.

3. On the Web tab, in the Servers section, select Use Local IIS Web Server. Set the Project Url to
http://<your machine name>/ActiveSkillWS and click the Create Virtual Directory button.

Add User Interface Project Folders
1. In the solution explorer, right-click the ActiveSkillUI project and select Add | New Folder. Set the folder

name to "Admin". Repeat these steps to create the following folders: "Controls, "Images", "Scripts", "Skins",
"Styles" and "User".

2. Rename Default.aspx to "Login.aspx". Right-click "Login.aspx" and select Set As Start Page from the
context menu.

3. Right-click the ActiveSkillUI project and select Add | New Item and choose Web Form. Name the web
form "Register.aspx".

4. Right-click the "Admin" folder and select Add | New Item | Web Form. Name the web form
"AdminHome.aspx".

5. Right-click the "User" folder and select Add | New Item | Web Form. Name the web form
"UserHome.aspx".

Introduction to the ActiveSkill Database
The database is simplified and minimal by design. The main part of the database consists of a mere five tables.
There are categories of questions, questions that fit in those categories, responses to the questions and Exams
that are made up of questions. Exam_Question is a join table that allows the same questions to be used in
multiple exams.

We will cover quite a lot of material just in the maintenance of these tables alone. Notice the Category table ID
and ParentID columns; these will help illustrate hierarchical databinding in RadTreeView. The Exam, Question
and Response tables will be used in RadGrid to show both master/detail in a single grid and in two related
grids.

The other two tables, Appointment_Data and Exam_Dates are used to bind to RadScheduler.

You can find the complete source for this project at:

\VS Projects\ActiveSkill Getting Started\001

8.4 Setting Up the Database

UI for ASP.NET AJAX

178 UI for ASP.NET AJAX

Configuring the ActiveSkill Database
1. In Microsoft SQL Server Management studio, create a new database named "ActiveSkill":

1. Right-click the Database node of the Object Explorer. Select New Database.

2. Enter "ActiveSkill" as the database name and leave the other settings at their defaults. Click OK to

UI for ASP.NET AJAX

179 UI for ASP.NET AJAX

close the New Database dialog and create the ActiveSkill database.

2. In Microsoft SQL Server Management studio select the File menu, then Open | File. Locate the TSQL script
file "\Database\CreateActiveSkillDatabase.sql" and and Click Open.

UI for ASP.NET AJAX

180 UI for ASP.NET AJAX

3. Press F5 to execute the script. This step will create all the tables and stored procedures required by the
application.

4. In Microsoft SQL Server Management studio select the File menu, then Open | File. Locate the TSQL script
file "\Database\PopulateActiveSkill.sql" and and Click Open.

5. Press F5 to execute the script. This step will populate the ActiveSkill tables with sample data.

The database is now ready for the addition of ASP.NET Membership.

Introduction to ASP.NET Membership
ASP.NET Membership supplies the infrastructure to manage user accounts on your site and comes with a set of
controls for common tasks such as creating new users, logging in, changing passwords, displaying login status
and recovering passwords. RadControls for ASP.NET AJAX applications can use the membership system and
RadControls can also be used seamlessly inside of ASP.NET Membership controls. You can use as much or as
little of the membership functionality as your application requires. Here are just a few things you can do with
ASP.NET Membership:

 Allow users to create new accounts. The membership system includes behavior to automatically handle
familiar situations like requiring the user to verify their email address before their account is activated.
ActiveSkill will include an AJAX-enabled registration page.

 Allow users to login to your web application. The membership system can be configured to automatically
handle typical login issues: "number of failed attempts", password strength, error messages, etc. The login
UI can be completely customized. The ActiveSkill login will include RadControls and will be skinned.

 Create and assign roles. For example, your application could have roles for "admin", "accounting",
"browsers", etc., and allow people logged in with those roles to appropriate areas of your web site.
ActiveSkill will have two roles, "admin" and "user".

 Work with the ASP.NET Membership API directly. Although the membership system has a lot of functionality
that can be used right out of the box, we can also use the API along with the controls to perform any of the
membership methods. For example you could list all of the users on the system along with current login

8.5 ASP.NET Membership

UI for ASP.NET AJAX

181 UI for ASP.NET AJAX

status and display that in a RadGrid. We will use the API in ActiveSkill to create roles and to navigate based
on user role.

ASP.NET Membership Database Configuration
MS SQL includes a ASP.NET SQL Server Registration tool (Aspnet_regsql.exe), located at:

[drive:]\%windir%\Microsoft.NET\Framework\v2.0.50727
1. Run the command line and navigate to the path listed above. Run Aspnet_regsql.exe without any

parameters to display the ASP.NET SQL Server Setup Wizard. Click the Next button to display the Select a
Setup Option page.

2. Leave the Configure SQL Server for application services option selected. Click the Next button to display
the Select the Server and Database page.

UI for ASP.NET AJAX

182 UI for ASP.NET AJAX

3. Enter the name of your MS SQL server and select the "ActiveSkill" database from the drop down list. Click
the Next button to display a summary page. Click the Next button again to execute the creation of the
ASP.NET Membership schema.

4. The completion page of the wizard indicates that the ASP.NET Membership database has been created.
Click the Finish button.

UI for ASP.NET AJAX

183 UI for ASP.NET AJAX

Now the ActiveSkill database will include the ASP.NET Membership tables and stored procedures:

UI for ASP.NET AJAX

184 UI for ASP.NET AJAX

5. In Microsoft SQL Server Management studio select the File menu, then Open | File. Locate the TSQL script
file "\Database\NetworkServicePermissions.sql" and and Click Open. This step will allow ASP.NET
permissions to use the database when running on a server.

ASP.NET Application Configuration
The following steps will configure the ActiveSkill application to work with ASP.NET Membership.

1. Open the ActiveSkillUI project web.config file.

2. In the <configuration> section of web.config, locate the connection strings element:

<connectionStrings/>
...and replace it with the connection strings definition below. This defines the
"ActiveSkillConnectionString" which will be used through this application. The connection string itself points
to the localhost and expects a database called "ActiveSkill" to be present.

3. In the <system.web> tag, add a membership element to the configuration as shown below.

This element specifies that membership information will be stored in the ActiveSkill database.

ASP.NET Membership by default can create an mdb file in the project app_data folder. In our example we
want to use a MS SQL database to contain our membership data. Notice the connection string is pointed to
our "ActiveSkillConnectionString". Also notice there are a number of settings you can use to specify the
exact security profile you want for your web application, e.g. number of retries, required non-alpha
characters.

The "applicationName" setting is set to "/ActiveSkill". This is important because all users that get added
apply to the "ActiveSkill" application name.

For more information on using the ASP.NET SQL Server Registration Tool see
http://msdn.microsoft.com/en-us/library/ms229862. (http://msdn.microsoft.com/en-
us/library/ms229862.aspx)aspx.

[ASP.NET] Defining the ActiveSkill Connection String

<!-- RadControls for ASP.NET AJAX Step By Step -->
<connectionStrings>
 <add name="ActiveSkillConnectionString"
 connectionString="Data Source=localhost;Initial Catalog=ActiveSkill;Integrated
Security=True"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

[ASP.NET] Adding the MemberShip Element

<membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ActiveSkillConnectionString"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
 requiresUniqueEmail="false"

UI for ASP.NET AJAX

185 UI for ASP.NET AJAX

4. Below the membership element, add a RoleManager element.

This element specifies that Role information are contained in the ActiveSkill database under the
"ActiveSkill" application name.

5. From the Visual Studio 2008 menu select Project | ASP.NET Configuration. This step will open the Web
Site Administration Tool (WSAT).

6. On the Security tab, click the Select Authentication Type link. Select the From the Internet radio button
and click the Done button. This step will change the <authentication> element from mode="Windows" to
mode="Forms".

7. Click the Create or Manage Roles link. Enter a new role name "Admin" and click the Add Role button.
Enter another new role name "User" and click the Add Role button. Click the Back button. These roles are
added to the membership database.

 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="3"
 minRequiredPasswordLength="7"
 minRequiredNonalphanumericCharacters="1"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression=""
 applicationName="/ActiveSkill"/>
 </providers>
</membership>

[ASP.NET] Adding the Role Manager Element

<!-- RadControls for ASP.NET AJAX Step By Step -->
<roleManager enabled="true" defaultProvider="RoleProvider">
 <providers>
 <add connectionStringName="ActiveSkillConnectionString"
 applicationName="/ActiveSkill"
 name="RoleProvider"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
</roleManager>

UI for ASP.NET AJAX

186 UI for ASP.NET AJAX

8. Create a new admin user:

1. On the Security tab click the Create User link.

2. Enter a new user account "Admin", set the Password and Confirm Password to "@password" (this will
satisfy the password naming rules we have setup in the config file) and provide an email address.

3. Check the "Admin" role.

4. Click the Create User button.

5. Click the Continue button.

6. Click the Back button.

At this point, if you look at the membership database you will find an entry in the aspnet_Applications
table for "/ActiveSkill" and two related records in aspnet_Roles for "Admin" and "User".

UI for ASP.NET AJAX

187 UI for ASP.NET AJAX

The new "Admin" user will now be in the membership database.

9. In Web.Config in the <system.web> tag, add authorizations for the "admin" and "user" directories. This step
allows members of the "Admin" role to access the \admin folder and the members of the "User" role to
access the \user folder.

The application is now configured to use ASP.NET membership, so the next step is to create the login page. The
login page will use a ASP.NET Membership Login control. The Login control is templated and so can contain
other controls, in this case RadTextBox, so long as the control id's expected by Login are maintained. After the
user logs in, their role is determined in code and they are redirected to either the admin or user home pages. If
the user does not have an account, they can also click a button to land on the Register.aspx page.

[ASP.NET] Adding Access Authorizations

<!--RadControls for ASP.NET AJAX Step By Step-->
<location path="admin">
 <system.web>
 <authorization>
 <allow roles="admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</location>
<!--RadControls for ASP.NET AJAX Step By Step-->
<location path="user">
 <system.web>
 <authorization>
 <allow roles="user"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</location>

You can find the complete source for this project at:
\VS Projects\ActiveSkill Getting Started\001\ActiveSkill

8.6 Create the ActiveSkill Login Page

UI for ASP.NET AJAX

188 UI for ASP.NET AJAX

1. Go to the design view of the login page.

2. Drop a ScriptManager control on the page. Even thought the page is not AJAX-enabled, the RadTextBox and
RadFormDecorator controls require a ScriptManager or RadScriptManager to be present.

3. Add a RadFormDecorator to the form. Set the Skin property to "Black".

4. From the \Images\ActiveSkill directory, copy the image files "background.jpg" and "bggradient.jpg" to the
\images folder of your project.

5. Copy the following <style> tag to the <head> tag:

6. Add an ID to the <div> tag that is on the page by default.

7. From the Toolbox drop a Login control to the form. The markup for the page should now look like the
example below:

[CSS] Login Page Styles

<style type="text/css" media="screen">
 body {
 font-family: ariel;
 font-size: 12px;
 font-color: #376EB1;
 background-image: url('images/bggradient.jpg');
 background-repeat: repeat-x;
 margin: auto;
 text-align: center;
 color: gray;
 vertical-align: middle;
 }

 #Login1 {
 position: relative;
 top: 330px;
 margin: auto;
 text-align: center;
 left: 0px;
 width: 311px ;
 }

 #login_position {
 background-image: url('images/background.jpg');
 background-repeat: no-repeat;
 height: 500px;
 width: 375px;
 position: relative;
 top: 40px;
 margin: auto;
 text-align: center;
 }
</style>

[ASP.NET] The Login Markup

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <telerik:RadFormDecorator ID="RadFormDecorator1" runat="server" Skin="Black" />

UI for ASP.NET AJAX

189 UI for ASP.NET AJAX

The design view of the login page should look something like the example below:

8. From the Login control Smart Tag, Login Tasks, select Convert to Template.

9. Select the top-most TextBox control next to "User Name". Notice that the ID property is "UserName". Delete
the control.

10. Drag a RadTextBox from the ToolBox into the same spot occupied by UserName. Set the ID property to
"UserName". Set the Skin property to "Black". The login control is expecting controls with ID's "UserName"
and "Password", so the new RadControls we use to replace the existing controls must have those ID's.
Forgetting this step generates the error "Login1: LayoutTemplate does not contain an IEditableTextControl
with ID UserName for the username.".

11. Locate the TextBox "Password", just below "UserName" and delete it.

12. Drag a RadTextBox from the ToolBox into the same spot occupied by Password. Set the ID property to
"Password". Set the Skin property to "Black".

13. Delete the "Remember me next time" check box. We will not implement this feature.

14. Right-click the table cell that holds the "Log In" button and select Insert | Rows Below from the context
menu. Repeat this step to create a second empty row.

15. In the top empty table cell enter the literal text "Don't have an account?"

16. Drop a standard ASP Button control to the lower empty table cell. Set the ID to "RegisterButton" and the
Text property to "Sign Up".

The layout should look something like the screenshot below:

 <div id="login_position">

 <asp:Login ID="Login1" runat="server">
 </asp:Login>

 </div>
</form>

UI for ASP.NET AJAX

190 UI for ASP.NET AJAX

17. Select the Login control and in the Property Window Events () button, double-click the LoggedIn event
to create an event handler. Add the code below to the event handler. If the login is successful, the logged
in user will be redirected to the admin or user page, depending on their role.

18. For the code above to work, you need to add System.Web.Security and Telerik.Web.UI to your
"Imports" (VB) or "uses" (C#) section of code.

19. The LoggedIn event handler also references a UserNameTextBox property. Add the following property to
the code-behind:

[VB] Handling the Logged In Event

Protected Sub Login1_LoggedIn(ByVal sender As Object, ByVal e As EventArgs)
 If Roles.IsUserInRole(UserNameTextBox.Text, "Admin") Then
 Response.Redirect("~\admin\AdminHome.aspx")
 End If
 If Roles.IsUserInRole(UserNameTextBox.Text, "User") Then
 Response.Redirect("~\user\UserHome.aspx")
 End If
End Sub

[C#] Handling the Logged In Event

protected void Login1_LoggedIn(object sender, EventArgs e)
{
 if (Roles.IsUserInRole(UserNameTextBox.Text, "Admin"))
 Response.Redirect("~\\admin\\AdminHome.aspx");
 if (Roles.IsUserInRole(UserNameTextBox.Text, "User"))
 Response.Redirect("~\\user\\UserHome.aspx");
}

[VB] Adding References

Imports System.Web.Security
Imports Telerik.Web.UI

[C#] Adding References

using System.Web.Security;
using Telerik.Web.UI;

[VB] Adding the UserNameTextBox Property

UI for ASP.NET AJAX

191 UI for ASP.NET AJAX

20. Press Ctrl-F5 to run the application. Clicking the Register button should navigate the browser to a blank
Register.aspx page. Logging in as "admin" with password "@password" will navigate the browser to the blank
"AdminHome.aspx" page.

If a new user needs to add an account they are directed to the "register" page where relevant information is
gathered, i.e. user name, password, email. This information is automatically stored by the ASP.NET Membership
system. That's nice if the information being saved includes all the data you require but what if you have other
information you'd like to gather, such as a "Share my exam results" preference, credit card information or some
other proprietary data. Wouldn't you need to add a table to your database and use the ASP.NET membership
user id as a foreign key? Not really, because ASP.NET membership includes personalization support for custom
fields and a CreateUserWizard control that has a number of templates for different pages of the wizard. This
allows us the opportunity to add our own page of custom information.

The register page itself will be relatively simple, containing only a user control that wraps the
CreateUserWizard control. Within one of the CreateUserWizard "pages" is another user control "BillingControl".
BillingControl is its own control to allow this same control to be used elsewhere in the project, for example, in
a user preferences page. The BillingControl will be AJAX-enabled using RadAjaxManagerProxy and will use
RadTextBox as well as introducing RadMaskedTextBox and RadNumericTextBox.

The general steps to building the registration page are:

 Configure custom fields in web.config.

 Add utility classes to encapsulate session, user and web profile personalization information.

 Working from the inner-most user control, outwards to the page, we will build the BillingControl first.

 Build the CreateUserWizard wrapper user control. This control will consume the BillingControl.

 Implement the Registration page, using the CreateUserWizard wrapper user to supply most of the

#region Properties
Public ReadOnly Property UserNameTextBox() As RadTextBox
 Get
 Return TryCast(Login1.FindControl("UserName"), RadTextBox)
 End Get
End Property
#End Region Properties

[C#] Adding the UserNameTextBox Property

#region Properties
public RadTextBox UserNameTextBox
{
 get
 {
 return Login1.FindControl("UserName") as RadTextBox;
 }
}
#endregion Properties

You can wrap a call to FindControl() as a property for more readable code, particularly in templated
controls.

You can find the complete source for this project at:
\VS Projects\ActiveSkill Getting Started\002\ActiveSkill

8.7 Create Registration Page

UI for ASP.NET AJAX

192 UI for ASP.NET AJAX

functionality.

Configure The Profile
Add the following Profile element to the <system.web> section of web.config. This step adds a profile with a
custom property "ShareMyResults" and a group of properties to contain credit card information. Access to
these properties will be encapsulated in utility classes we will define in later steps.

Add Utility Classes
1. In Solution Explorer, navigate to the ActiveSkillBO project, right-click References an select Add Reference.

Locate System.Web in the list and click OK to add the System.Web assembly to the references list.

2. Create the WebProfile class. The class file will contain a CreditCardType enumeration, a CreditCardGroup
class and a WebProfile class.

1. Right-click the project and select Add | New Class. Name the class file WebProfile.cs.

2. Add references to System.Web.Profile and System.Web.Security to the "Imports" (VB) or "uses" (C#)
section of code.

3. Verify that the namespace for the class is Telerik.ActiveSkill.Common. This should happen
automatically if you set this namespace up as the default for the project during the Setup ActiveSkill
Project Structure section earlier.

4. Add a credit card type enumeration:

[ASP.NET] Configuring Profile Properties

<!--RadControls for ASP.NET AJAX Step By Step-->
<profile enabled="true">
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="ActiveSkillConnectionString"
 applicationName="/ActiveSkill"/>
 </providers>
 <properties>
 <add name="ShareMyResults" type="System.Boolean"/>
 <group name="CreditCard">
 <add name="Type" type="System.Byte"/>
 <add name="Number" type="System.String"/>
 <add name="Name" type="System.String"/>
 <add name="ExpMonth" type="System.String"/>
 <add name="ExpYear" type="System.String"/>
 </group>
 </properties>
</profile>

[VB] Adding References

Imports System.Web.Profile
Imports System.Web.Security

[C#] Adding References

using System.Web.Profile;
using System.Web.Security;

UI for ASP.NET AJAX

193 UI for ASP.NET AJAX

5. Add the CreditCardGroup class. This class encapsulates the profile group named "CreditCard" that was
added to web.config. The class has a property "CreditCardBase" that extracts the group of keys from
web.config. The other properties extract the individual keys for easy access.

[VB] Adding the CreditCardType Enumeration

Public Enum CreditCardType
 Unassigned = 0
 Visa = 1
 MasterCard = 2
 Amex = 3
End Enum

[C#] Adding the CreditCardType Enumeration

public enum CreditCardType
{
 Unassigned = 0,
 Visa = 1,
 MasterCard = 2,
 Amex = 3
};

[VB] Adding CreditCardGroup

''' <summary>
''' This class encapsulates the web.config
''' system.web/profile/properties/group settings
''' for the "Credit Card" group.
''' </summary>
Public Class CreditCardGroup
 Inherits ProfileGroupBase
 Private _profileBase As ProfileBase
 Public Sub New(ByVal profileBase As ProfileBase)
 _profileBase = profileBase
 End Sub
 Const TypeKey As String = "Type"
 Public Property Type() As CreditCardType
 Get
 Return DirectCast(CreditCardGroupBase.GetPropertyValue(TypeKey), CreditCardType)
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(TypeKey, DirectCast(value, Byte))
 End Set
 End Property
 Const NumberKey As String = "Number"
 Public Property Number() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(NumberKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(NumberKey, value)
 End Set
 End Property
 Const NameKey As String = "Name"
 Public Property Name() As String
 Get

UI for ASP.NET AJAX

194 UI for ASP.NET AJAX

 Return CreditCardGroupBase.GetPropertyValue(NameKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(NameKey, value)
 End Set
 End Property
 Const ExpMonthKey As String = "ExpMonth"
 Public Property ExpMonth() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(ExpMonthKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(ExpMonthKey, value)
 End Set
 End Property
 Const ExpYearKey As String = "ExpYear"
 Public Property ExpYear() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(ExpYearKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(ExpYearKey, value)
 End Set
 End Property
 Const CreditCardGroupKey As String = "CreditCard"
 Private ReadOnly Property CreditCardGroupBase() As ProfileGroupBase
 Get
 Return _profileBase.GetProfileGroup(CreditCardGroupKey)
 End Get
 End Property
End Class

[C#] Adding CreditCardGroup

/// <summary>
/// This class encapsulates the web.config
/// system.web/profile/properties/group settings
/// for the "Credit Card" group.
/// </summary>
public class CreditCardGroup : ProfileGroupBase
{
 private ProfileBase _profileBase;
 public CreditCardGroup(ProfileBase profileBase)
 {
 _profileBase = profileBase;
 }
 const string TypeKey = "Type";
 public CreditCardType Type
 {
 get
 {
 return (CreditCardType)CreditCardGroupBase.GetPropertyValue(TypeKey);
 }
 set
 {

UI for ASP.NET AJAX

195 UI for ASP.NET AJAX

 CreditCardGroupBase.SetPropertyValue(TypeKey, (byte) value);
 }
 }
 const string NumberKey = "Number";
 public string Number
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(NumberKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(NumberKey, value);
 }
 }
 const string NameKey = "Name";
 public string Name
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(NameKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(NameKey, value);
 }
 }
 const string ExpMonthKey = "ExpMonth";
 public string ExpMonth
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(ExpMonthKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(ExpMonthKey, value);
 }
 }
 const string ExpYearKey = "ExpYear";
 public string ExpYear
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(ExpYearKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(ExpYearKey, value);
 }
 }
 const string CreditCardGroupKey = "CreditCard";
 private ProfileGroupBase CreditCardGroupBase
 {
 get

UI for ASP.NET AJAX

196 UI for ASP.NET AJAX

6. Add the WebProfile class. This class will contain all the settings for a given profile. This would include
the single setting for "ShareMyResults" and also the "CreditCardGroup". When the class is first
created, a MembershipUser object is passed to it that ties the logged in user with their profile
information.

 {
 return _profileBase.GetProfileGroup(CreditCardGroupKey);
 }
 }
}

[VB] Adding the WebProfile Class

''' <summary>
''' This class contains all the settings for a given profile.
''' </summary>
Public Class WebProfile
 Private _profileBase As ProfileBase
 Public Sub New(ByVal user As MembershipUser)
 ' This next line is a key piece that ties together
 ' the logged in user and the profile. Using the
 ' HTTPContext current user may be anonymous.
 _profileBase = ProfileBase.Create(user.UserName)
 _creditCardGroup = New CreditCardGroup(_profileBase)
 End Sub
 Private _creditCardGroup As CreditCardGroup
 Public ReadOnly Property CreditCard() As CreditCardGroup
 Get
 Return _creditCardGroup
 End Get
 End Property
 Const ShareMyResultsKey As String = "ShareMyResults"
 Public Property ShareMyResults() As Boolean
 Get
 Return DirectCast(_profileBase.GetPropertyValue(ShareMyResultsKey), Boolean)
 End Get
 Set
 _profileBase.SetPropertyValue(ShareMyResultsKey, value)
 End Set
 End Property
End Class

[C#] Adding the WebProfile Class

/// <summary>
/// This class contains all the settings for a given profile.
/// </summary>
public class WebProfile
{
 private ProfileBase _profileBase;
 public WebProfile(MembershipUser user)
 {
 // This next line is a key piece that ties together
 // the logged in user and the profile. Using the
 // HTTPContext current user may be anonymous.
 _profileBase = ProfileBase.Create(user.UserName);
 _creditCardGroup = new CreditCardGroup(_profileBase);

UI for ASP.NET AJAX

197 UI for ASP.NET AJAX

Create the BillingControl User Control UI
1. Right-click the \Controls folder and select Add | New Item and choose Web User Control. Name the

control "BillingControl.ascx".

2. In the designer, add a RadAjaxManagerProxy control.

3. Below the RadAjaxManager control, add the following table definition to the markup. This table will
contain our controls for "Share my results" and credit card information. The comments indicate where
controls will be placed.

 }
 private CreditCardGroup _creditCardGroup;
 public CreditCardGroup CreditCard
 {
 get
 {
 return _creditCardGroup;
 }
 }
 const string ShareMyResultsKey = "ShareMyResults";
 public bool ShareMyResults
 {
 get
 {
 return (bool)_profileBase.GetPropertyValue(ShareMyResultsKey);
 }
 set
 {
 _profileBase.SetPropertyValue(ShareMyResultsKey, value);
 }
 }
}

[ASP.NET] Adding the Table Markup

<table>
 <tr> <%--Title--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Share my results--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Credit card type--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Credit card number --%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Credit card name--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Expire month and year--%>

UI for ASP.NET AJAX

198 UI for ASP.NET AJAX

4. Add the "Title" row controls:

 In the first cell of the "Title" row add a LoginName control from the ToolBox "Login" tab.

 Set the FormatString property of the LoginName to "Billing Info for {0}".

5. Add the "Share my results" row controls:

 In the first cell of the "Share my results" row, add a standard ASP CheckBox control. Set the ID
property to "cbShareMyResults". Set the Text property to "Share My Results".

 Put the cursor after the checkbox and hit Enter to create a hard break (
).

 Add a standard ASP Label control. Set the ID property to "lblShareMyResults". Set the Text property to
"".

6. Add the "Credit Card Type" row controls:

 In the first cell of the "Credit Card Type" row add, a standard ASP RadioButtonList control. Set the ID
property to "rblCardType". Using the Smart Tag select Edit Items. Add three items setting the Text to
"Visa", "MasterCard" and "American Express" respectively. Set the Value properties to "1", "2" and "3".
Set the first item ("Visa") Selected property to True.

7. Add the "Credit Card Number" row controls:

 Add a RadMaskedTextBox to the first cell of the row. Set the ID property to "tbCCNumber". Set the
Label property to "Credit Card Number:", the Mask property to "####-####-####-####" and Skin to
"Black".

 Add a standard ASP RequiredFieldValidator to the second cell. Set the ID property to
"valreqCCNumber". Set the ControlToValidate property to "tbCCNumber", ErrorMessage to "A valid

 <td></td>
 <td></td>
 </tr>
 <tr> <%--Validation summary--%>
 <td></td>
 <td></td>
 </tr>
</table>

UI for ASP.NET AJAX

199 UI for ASP.NET AJAX

credit card number is required" and ValidationGroup to "BillingGroup".

 Add a second standard ASP RegularExpressionValidator to the second cell. Set the ID property to
"valregexCCNumber". Set the ControlToValidate to "tbCCNumber", the ErrorMessage to "Enter a valid
credit card number" and ValidationGroup to "BillingGroup". Set the ValidationExpression to "^((4\d{3})
|(5[1-5]\d{2})|(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}$ ".

8. Add the "Credit Card Name" row controls:

 Add a RadTextBox to the first cell of the row. Set the ID to "tbCCName". Set the EmptyMessage
property to "Enter Name:" the Label to "Credit Card Name:" and Skin to "Black".

 Add a standard ASP RequiredFieldValidator to the second cell. Set the ID property to "valreqCCName".
Set the ControlToValidate property to "tbCCName", ErrorMessage to "Enter the name on the credit
card" and ValidationGroup to "BillingGroup".

9. Add the "Expire Month and Year" row controls:

 Add a RadNumericTextBox to the first cell of the row. Set the ID property to "tbExpMonth". Set the
Label property to "Exp Month:", MaxValue to "12", MinValue to "1", ShowSpinButtons to True, and
Skin to "Black". In the NumberFormat sub-properties set AllowRounding to False, DecimalDigits to "0".

 Add a second RadNumericTextBox to the first cell of the row. Set the ID property to "tbExpYear". Set
the Label property to "Exp Year:", ShowSpinButtons to True, and Skin to "Black". In the
NumberFormat sub-properties set AllowRounding to False, DecimalDigits to "0", GroupSeparator to ""
and PositivePattern to "n".

10. In the last row add a standard ASP ValidationSummary. Set the VallidationGroup property to "BillingGroup".

The BillingControl User Control Code-Behind

1. Using the Properties Window with the cbShareMyResults checkbox selected, click the events button ().
Double-click the CheckChanged event. In the event handler, add the code below.

2. In the BillingControl code-behind add the following constants:

The regular expression above is a relatively simple sample that can be used for this demo. You
should research your own regular expression based on your security needs.

[VB] Handling the CheckChanged Event

Protected Sub cbShareMyResults_CheckedChanged(ByVal sender As Object, ByVal e As EventArgs)
 lblShareMyResults.Text = IIf(cbShareMyResults.Checked,ExamsVisible,ExamsNotVisible)
End Sub

[C#] Handling the CheckChanged Event

protected void cbShareMyResults_CheckedChanged(object sender, EventArgs e)
{
 lblShareMyResults.Text = cbShareMyResults.Checked ? ExamsVisible : ExamsNotVisible;
}

[VB] Adding Constants

#region constants
Const DigitMask16 As String = "####-####-####-####"
Const DigitMask15 As String = "####-####-####-###"
Const ExamsVisible As String = "Your exam results are publicly available"
Const ExamsNotVisible As String = "Only you can see your exam results"
Const AmexIndex As Integer = 2

UI for ASP.NET AJAX

200 UI for ASP.NET AJAX

Implement the Registration Page

1. In the <head> element of the Register page add the following styles:

#End Region constants

[C#] Adding Constants

#region constants
const string DigitMask16 = "####-####-####-####";
const string DigitMask15 = "####-####-####-###";
const string ExamsVisible = "Your exam results are publicly available";
const string ExamsNotVisible = "Only you can see your exam results";
const int AmexIndex = 2;
#endregion constants

8.8 Implement the Registration Page

[CSS] Add Styles for Register Page

<style type="text/css" media="screen">
 body
 {
 font-family: ariel;
 font-size: 12px;
 font-color: #376EB1;
 background-image: url('images/bggradient.jpg');
 background-repeat: repeat-x;
 margin: auto;
 text-align: center;
 color: gray;
 vertical-align: middle;
 }
 #wizard
 {
 position: relative;
 top: 300px;
 margin: auto;
 text-align: center;
 left: 10px;
 width: 311px;
 }
 #login_position
 {
 background-image: url('images/background.jpg');
 background-repeat: no-repeat;
 height: 500px;
 width: 375px;
 position: relative;

UI for ASP.NET AJAX

201 UI for ASP.NET AJAX

2. Add a ScriptManager to the page.

3. Add a RadAjaxManager to the page.

4. Add a RadToolTipManager to the page. Set the Skin property to "Black".

5. Add a RadFormDecorator control to the page. Set the Skin property to "Black".

6. Set the id attribute for the default div on the page to "login_position". Add a second <div> tag inside the
first with id attribute "wizard".

7. Drag the CreateUserWizardWrapper control to the page. Verify that the control is placed inside the two
divs.

The purpose of the <div> tags is to place the login background graphic centered on the page and the inner
div to position the wizard control itself.

8. The resulting markup for the Register.aspx page should look like the example below:

9. There is no code for the Register page, so press Ctl-F5 to run and test the application.

 Add a new user.

 Re-run the application and login as your new user.

 Notice the styled tool tips in the billing information page.

1. In the code-behind for CreateUserWizardWrapper add two properties. One to access the "UserName" text
box and the second to access BillingControl.

Notice that to access controls on one of the templates that you first go to the object that defines the
step, then use the ContentTemplateContainer FindControl() method to locate the object.

 top: 40px;
 margin: auto;
 text-align: center;
 }
</style>

[ASP.NET] Setting Up Div Tags

<div id="login_position">
 <div id="wizard">
 </div>
</div>

[ASP.NET] Finished Register.aspx Markup

<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <telerik:RadFormDecorator ID="RadFormDecorator1" runat="server" Skin="Black" />
 <div id="login_position">
 <div id="wizard">
 <uc1:CreateUserWizardWrapper ID="CreateUserWizardWrapper1" runat="server" />
 </div>
 </div>
 </form>
</body>

8.9 The CreateUserWizardWrapper Code-Behind

UI for ASP.NET AJAX

202 UI for ASP.NET AJAX

2. In the designer, select the CreateUserWizard control and using the Properties Window Events button ()
double-click the CreatedUser event to create an event handler. Add the following code to the event
handler.

Once the user is created by the ASP.NET Membership system, this event fires. The method first retrieves
the wizard's UserName property, uses the name to create a new ASUser object. The ASUser is assigned to
the SessionManager User property. The user name is added to the "User" role.

3. Create another event for the CreateUserWizard FinishButtonClick event. This step validates the
"BillingGroup" set of validators and if the data is good, the UpdateUser() method is called to send the user
entry on the billing control to the ASP.NET Membership database.

[VB] Adding Properties

#region Properties
Private ReadOnly Property BillingControl1() As BillingControl
 Get
 Return TryCast(BillingStep.ContentTemplateContainer.FindControl("BillingControl1"),
BillingControl)
 End Get
End Property
#End Region Properties

[C#] Adding Properties

#region Properties
private BillingControl BillingControl1
{
 get { return BillingStep.ContentTemplateContainer.FindControl("BillingControl1") as
BillingControl; }
}
#endregion Properties

[VB] Handling the CreatedUser Event

Protected Sub CreateUserWizard1_CreatedUser(ByVal sender As Object, ByVal e As EventArgs)
 Dim userName As String = (TryCast(sender, CreateUserWizard)).UserName
 SessionManager.User = New ASUser(userName)
 Roles.AddUserToRole(userName, "User")
End Sub

[C#] Handling the CreatedUser Event

protected void CreateUserWizard1_CreatedUser(object sender, EventArgs e)
{
 string userName = (sender as CreateUserWizard).UserName;
 SessionManager.User = new ASUser(userName);
 Roles.AddUserToRole(userName, "User");
}

[VB] Handling the FinishButtonClick Event

Protected Sub CreateUserWizard1_FinishButtonClick(ByVal sender As Object, ByVal e As
WizardNavigationEventArgs)
 Page.Validate("BillingGroup")
 e.Cancel = Not Page.IsValid
 If Page.IsValid Then

UI for ASP.NET AJAX

203 UI for ASP.NET AJAX

4. Create another event for the CreateUserWizard ContinueButtonClick event. If we reach this event all the
validation has been performed; we have a reference to the user and the user has been added to the user
role. Here we just navigate directly to the UserHome page.

ASP.NET Membership includes a CreateUserWizard control from the Login tab of the Toolbox. The control is
similar to the Login control in that it can be templated. But this control has multiple templates, one for each
page of the wizard. The wizard starts with a "Sign up for your new account" page, has an arbitrary number of
pages of your own that you can add on the fly, and then a "Finish" page. Like the Login control, we will
substitute our own RadControls to the first page, add a "Billing" page to which we will add our billing user
control and leave the Finish page as is.

The code-behind is minimal, as most of the detail is packed away in the billing user control. First the user
enters their desired user name, enters the password twice and enters an email.

 BillingControl1.UpdateUser()
 End If
End Sub

[C#] Handling the FinishButtonClick Event

protected void CreateUserWizard1_FinishButtonClick(object sender, WizardNavigationEventArgs
e)
{
 Page.Validate("BillingGroup");
 e.Cancel = !Page.IsValid;
 if (Page.IsValid)
 {
 BillingControl1.UpdateUser();
 }
}

[VB] Handling the ContinueButtonClick

Protected Sub CreateUserWizard1_ContinueButtonClick(ByVal sender As Object, ByVal e As
EventArgs)
 Response.Redirect("~\user\UserHome.aspx")
End Sub

[C#] Handling the ContinueButtonClick

protected void CreateUserWizard1_ContinueButtonClick(object sender, EventArgs e)
{
 Response.Redirect("~\\user\\UserHome.aspx");
}

If you were allowing more than one kind of role to be created here and wanted to direct the created
user to different pages based on role you could use some code similar to this:

if (Roles.IsUserInRole(SessionManager.User.UserName, "User") { /* redirect to some page */ }

8.10 The CreateUserWizardWrapperUI

UI for ASP.NET AJAX

204 UI for ASP.NET AJAX

When the user clicks "Continue", the ASP.NET Member user is created, the user is added to the "User" role. The
billing page of the wizard shows up prompting for the custom information using BillingControl. The user fills in
the information and clicks the "Finish" button. The billing information is validated and the web profile is
updated.

The "Complete" page of the wizard displays. When the user clicks "Continue" they are directed to the user home
page.

UI for ASP.NET AJAX

205 UI for ASP.NET AJAX

To begin building the CreateUserWizardWrapper Control:

1. Right-click the \Controls folder and select Add | New Item and choose Web User Control. Name the
control "CreateUserWizardWrapper.ascx".

2. Switch to the Design view of the control. From the Toolbox, Login tab drag a CreateUserWizard control
and drop it on the design surface.

Notice from the CreateUserWizard smart tag that the wizard is made up of "steps" where each step can be
converted to a template. The Create user and Complete steps default to a template that can be altered
using the "Customize Create User Step" and "Customize Complete Step" links. We will start by customizing
the Create User Step to suit our purposes.

UI for ASP.NET AJAX

206 UI for ASP.NET AJAX

3. In the CreateUserWizard Smart Tag click the Customize Create User Step link. This change will allow the
page to be edited.

4. Change the default titling "Sign Up for Your New Account" to "Register". You can type this directly in the
designer.

5. In the designer, move the mouse to the "Security Question" row of the table, just to the left of the row.
The cursor should change to a rightward pointing arrow.

6. Right-click and select Delete | Delete Rows from the context menu. If you have any difficulty with this you
can switch to the source view of the page and delete the row from there.

UI for ASP.NET AJAX

207 UI for ASP.NET AJAX

7. Replace the Label and TextBox controls for the "User Name", "Password", "Confirm Password" and "Email"
with RadTextBox controls.

1. Be sure to set the RadTextBox ID's to the values of the TextBox controls they are replacing, that is
"UserName", "Password", "ConfirmPassword" and "Email".

2. Set the Label property of each RadTextBox to "User Name:", "Password:", "Confirm Password:" and
"Email:", respectively.

3. Set the Skin of each control to "Black".

4. Set the Width of each control to "210px".

5. Set the TextMode property for both password controls to "Password".

8. Set the Align attribute to "Left" for the table cells containing "User Name:", "Password:", "Confirm
Password:" and "Email".

9. From the CreateUserWizard Smart Tag select the Add/Remove Wizard Steps... link. This will display the
WizardStep Collection Editor.

1. Select the "Sign up for Your New Account" step and set the ID to "CreateUserWizardStep1".

2. Select the "Complete" step and set the ID to "CompleteWizardStep1".

3. Click the Add button to add a wizard step to the list. Use the Up arrow button to position it before the
"Complete" step. Set the Title to "Add Billing Information", AllowReturn to False and the ID to
"BillingStep".

4. Click the OK button to close the WizardStep Collection Editor.

UI for ASP.NET AJAX

208 UI for ASP.NET AJAX

10. From the CreateUserWizard Smart Tag, drop down the "Step" list and select the new "Add Billing
Information" step.

11. Drag BillingControl.ascx from the SolutionExplorer to the upper region of the CreateUserWizard.

UI for ASP.NET AJAX

209 UI for ASP.NET AJAX

12. Using the Smart Tag for the CreateUserWizard, drop the list of steps and select "Sign up for your new
accounts".

1. Add a reference to the ActiveSkillBO assembly. This step will provide access to the
Telerik.ActiveSkill.Common namespace.

Gotcha! Make sure you set the step to the first page before you're done. When you run the page
it will display the step that is set at design-time.

8.11 Create the Billing Control Code-Behind

UI for ASP.NET AJAX

210 UI for ASP.NET AJAX

2. Add a reference to the Telerik.ActiveSkill.Common namespace. This will provide access to our utility
classes WebProfile, ASUser and SessionManager.

3. Using the Properties Window with the cbShareMyResults checkbox selected, click the events button ().
Double-click the CheckChanged event. In the event handler, add the code below. If the "Share My Results"
check box is checked, the ExamsVisible string constant is displayed, otherwise ExamsNotVisible is shown.

4. Using the Properties Window with the cbShareMyResults checkbox selected, click the events button ().
Double-click the CheckChanged event. In the event handler, add the code below. If the "Credit Card Type"
radio button list selection changes, the RadTextBox mask changes to reflect the correct number of digits.

[VB] Adding References

Imports Telerik.ActiveSkill.Common

[C#] Adding References

using Telerik.ActiveSkill.Common;

[VB] Handling the CheckChanged Event

Protected Sub cbShareMyResults_CheckedChanged(ByVal sender As Object, ByVal e As EventArgs)
 lblShareMyResults.Text = IIf(cbShareMyResults.Checked,ExamsVisible,ExamsNotVisible)
End Sub

[C#] Handling the CheckChanged Event

protected void cbShareMyResults_CheckedChanged(object sender, EventArgs e)
{
 lblShareMyResults.Text = cbShareMyResults.Checked ? ExamsVisible : ExamsNotVisible;
}

UI for ASP.NET AJAX

211 UI for ASP.NET AJAX

American Express uses 15 digits while Visa and MasterCard use 16 digits.

5. In the BillingControl code-behind add the following constants:

6. Add the utility method UpdateUser(). This method will be called by the CreateUserWizardWrapper control
when the user clicks the "Finish" button of the wizard when registering a new account. The user's web
profile properties are populated with values scraped from the UI and then the Save() method is called to
persist those values to the ASP.NET Membership database.

[VB] Handling the SelectedIndexChanged Event

Protected Sub rblCardType_SelectedIndexChanged(ByVal sender As Object, ByVal e As EventArgs)
 tbCCNumber.Mask = IIf(rblCardType.SelectedIndex = AmexIndex,DigitMask15,DigitMask16)
End Sub

[C#] Handling the SelectedIndexChanged Event

protected void rblCardType_SelectedIndexChanged(object sender, EventArgs e)
{
 tbCCNumber.Mask = rblCardType.SelectedIndex == AmexIndex ? DigitMask15 : DigitMask16;
}

[VB] Adding Constants

#region constants
Const DigitMask16 As String = "####-####-####-####"
Const DigitMask15 As String = "####-####-####-###"
Const ExamsVisible As String = "Your exam results are publicly available"
Const ExamsNotVisible As String = "Only you can see your exam results"
Const AmexIndex As Integer = 2
#End Region constants

[C#] Adding Constants

#region constants
const string DigitMask16 = "####-####-####-####";
const string DigitMask15 = "####-####-####-###";
const string ExamsVisible = "Your exam results are publicly available";
const string ExamsNotVisible = "Only you can see your exam results";
const int AmexIndex = 2;
#endregion constants

[VB] Adding the UpdateUser Method

Public Sub UpdateUser()
 Dim profile As WebProfile = SessionManager.User.Profile
 profile.ShareMyResults = cbShareMyResults.Checked
 profile.CreditCard.Type = DirectCast(rblCardType.SelectedIndex, CreditCardType) - 1
 profile.CreditCard.Number = tbCCNumber.Text
 profile.CreditCard.Name = tbCCName.Text
 profile.CreditCard.ExpMonth = tbExpMonth.Text
 profile.CreditCard.ExpYear = tbExpYear.Text
 profile.Save()
End Sub

[C#] Adding the UpdateUser Method

public void UpdateUser()
{

UI for ASP.NET AJAX

212 UI for ASP.NET AJAX

7. Add the Page_Load event handling code. Here the ASUser is retrieved from the SessionManager. If the user
already exists (the user is already logged in) the profile data is displayed in the UI. If the user is not
logged in, we are on the registration page; set the expiration month and year to default values. Note:
The application in its current form does not implement a "preferences" page and so only the "else" portion
of this code will execute.

 WebProfile profile = SessionManager.User.Profile;
 profile.ShareMyResults = cbShareMyResults.Checked;
 profile.CreditCard.Type = (CreditCardType) rblCardType.SelectedIndex - 1;
 profile.CreditCard.Number = tbCCNumber.Text;
 profile.CreditCard.Name = tbCCName.Text;
 profile.CreditCard.ExpMonth = tbExpMonth.Text;
 profile.CreditCard.ExpYear = tbExpYear.Text;
 profile.Save();
}

[VB] Handling the Page_Load event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 Dim isUser As Boolean = (SessionManager.User <> Nothing)
 If isUser Then
 Dim profile As WebProfile = SessionManager.User.Profile
 cbShareMyResults.Checked = profile.ShareMyResults
 rblCardType.SelectedIndex = DirectCast(profile.CreditCard.Type, Byte)
 tbCCNumber.Text = profile.CreditCard.Number
 tbCCName.Text = profile.CreditCard.Name
 tbExpMonth.Text = profile.CreditCard.ExpMonth
 tbExpYear.Text = profile.CreditCard.ExpYear
 Else
 ' insert
 tbExpMonth.Text = DateTime.Now.Month.ToString()
 tbExpYear.MinValue = DateTime.Now.Year
 tbExpYear.MaxValue = DateTime.MaxValue.Year
 tbExpYear.Text = DateTime.Now.Year.ToString()
 End If
 End If
End Sub

[C#] Handling the Page_Load event

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 bool isUser = (SessionManager.User != null);

 if (isUser)
 {
 WebProfile profile = SessionManager.User.Profile;
 cbShareMyResults.Checked = profile.ShareMyResults;
 rblCardType.SelectedIndex = (byte)profile.CreditCard.Type;
 tbCCNumber.Text = profile.CreditCard.Number;
 tbCCName.Text = profile.CreditCard.Name;
 tbExpMonth.Text = profile.CreditCard.ExpMonth;
 tbExpYear.Text = profile.CreditCard.ExpYear;
 }

UI for ASP.NET AJAX

213 UI for ASP.NET AJAX

The BillingControl gathers custom profile information and saves it to the ASP.NET Membership database.

1. Right-click the \Controls folder and select Add | New Item and choose Web User Control. Name the
control "BillingControl.ascx".

2. In the designer, add a RadAjaxManagerProxy control. We will configure the proxy once the controls to be
AJAX-enabled are in place.

3. Below the RadAjaxManager control, add the following table definition to the markup. This table will
contain our controls for "Share my results" and credit card information. The comments indicate where
controls will be placed.

4. Add the "Title" row controls:

 else // insert
 {
 tbExpMonth.Text = DateTime.Now.Month.ToString();
 tbExpYear.MinValue = DateTime.Now.Year;
 tbExpYear.MaxValue = DateTime.MaxValue.Year;
 tbExpYear.Text = DateTime.Now.Year.ToString();
 }
 }
}

8.12 Create the BillingControl User Control

[ASP.NET] Adding the Table Markup

<table>
 <tr> <%--Title--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Share my results--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Credit card type--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Credit card number --%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Credit card name--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Expire month and year--%>
 <td></td>
 <td></td>
 </tr>
 <tr> <%--Validation summary--%>
 <td></td>
 <td></td>
 </tr>
</table>

UI for ASP.NET AJAX

214 UI for ASP.NET AJAX

 Enter "Billing Information" as a literal directly into the first cell.

5. Add the "Share my results" row controls:

 In the first cell of the "Share my results" row, add a standard ASP CheckBox control. Set the ID
property to "cbShareMyResults". Set the Text property to "Share My Results".

 Set the AutoPostBack property to True.

 Set the ToolTip property to "Check this box to share your results with others".

 Put the cursor after the checkbox and hit Enter to create a hard break (
).

 Add a standard ASP Label control. Set the ID property to "lblShareMyResults". Set the Text property to
"".

6. Add the "Credit Card Type" row controls:

 In the first cell of the "Credit Card Type" row, add a standard ASP RadioButtonList control. Set the ID
property to "rblCardType".

 Set the AutoPostBack property to True.

 Set the ToolTip property to "Choose a credit card type".

 Using the Smart Tag select Edit Items. Add three items setting the Text to "Visa", "MasterCard" and
"American Express" respectively. Set the Value properties to "1", "2" and "3". Set the first item ("Visa")
Selected property to True.

 Click OK to close the collection editor

7. Add the "Credit Card Number" row controls:

 Add a RadMaskedTextBox to the first cell of the row. Set the ID property to "tbCCNumber". Set the
Label property to "Credit Card Number:", the Mask property to "####-####-####-####" and Skin to
"Black". Set the ToolTip property to "Enter a valid credit card number".

 Add a standard ASP RequiredFieldValidator to the second cell. Set the ID property to
"valreqCCNumber". Set the ControlToValidate property to "tbCCNumber", ErrorMessage to "A valid
credit card number is required", Text to "*" and ValidationGroup to "BillingGroup".

 Add a second standard ASP RegularExpressionValidator to the second cell. Set the ID property to

UI for ASP.NET AJAX

215 UI for ASP.NET AJAX

"valregexCCNumber". Set the ControlToValidate to "tbCCNumber", the ErrorMessage to "Enter a valid
credit card number", Text to "*" and ValidationGroup to "BillingGroup". Set the ValidationExpression
to "^((4\d{3})|(5[1-5]\d{2})|(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}$ ".

8. Add the "Credit Card Name" row controls:

 Add a RadTextBox to the first cell of the row. Set the ID to "tbCCName". Set the EmptyMessage
property to "Enter Name:" the Label to "Credit Card Name:" and Skin to "Black". Set the ToolTip
property to "Enter the name on the credit card".

 Add a standard ASP RequiredFieldValidator to the second cell. Set the ID property to "valreqCCName".
Set the ControlToValidate property to "tbCCName", ErrorMessage to "Enter the name on the credit
card", Text to "*" and ValidationGroup to "BillingGroup".

9. Add the "Expire Month and Year" row controls:

 Add a RadNumericTextBox to the first cell of the row. Set the ID property to "tbExpMonth". Set the
Label property to "Exp Month:", MaxValue to "12", MinValue to "1", ShowSpinButtons to True, and
Skin to "Black". In the NumberFormat sub-properties set AllowRounding to False, DecimalDigits to "0".
Set the ToolTip property to "Select the credit card expiration month".

 Add a second RadNumericTextBox to the first cell of the row. Set the ID property to "tbExpYear". Set
the Label property to "Exp Year:", ShowSpinButtons to True, and Skin to "Black". In the
NumberFormat sub-properties set AllowRounding to False, DecimalDigits to "0", GroupSeparator to ""
and PositivePattern to "n". Set the ToolTip property to "Select the credit card expiration month".

10. In the last row add a standard ASP ValidationSummary. Set the VallidationGroup property to "BillingGroup".

11. Configure AJAX for the page:

1. From the RadAjaxManagerProxy Smart Tag, click the Configure Ajax Manager link.

2. Check "cbShareMyResults" as an initiating control. Check "lblShareMyResults" as the updated control.

3. Check "rblCardType" as an initiating control. Check "tbCCNumber" as the updated control.

The utility classes will include:

 A CreditCardGroup class to contain profile information for groups custom fields defined in web.config.

 A WebProfile class to contain profile information relating to each logged-in user. That information includes
the CreditCardGroup and other single fields defined in web.config (e.g. "ShareMyResults").

 The ASUser class that contains the ASP.NET Membership object for the logged in user and the associated
WebProfile.

 The SessionManager class used to make ASUser available anywhere in the application once the user has
logged in.

The regular expression above is a relatively simple sample that can be used for this demo. You
should research for your own regular expression based on your security needs.

8.13 Add Utility Classes

UI for ASP.NET AJAX

216 UI for ASP.NET AJAX

1. In Solution Explorer, navigate to the ActiveSkillBO project, right-click References an select Add Reference.
Locate System.Web in the list and click OK to add the System.Web assembly to the references list.

2. Create the WebProfile class. The class file will contain a CreditCardType enumeration, a CreditCardGroup
class and a WebProfile class.

1. Right-click the project and select Add | New Class. Name the class file WebProfile.cs.

2. Add references to System.Web.Profile and System.Web.Security to the "Imports" (VB) or "uses" (C#)
section of code.

3. Verify that the namespace for the class is Telerik.ActiveSkill.Common. This should happen
automatically if you set this namespace up as the default for the project during the Setup ActiveSkill
Project Structure section earlier.

4. Add a credit card type enumeration:

5. Add the CreditCardGroup class. This class encapsulates the profile group named "CreditCard" that was
added to web.config. The class has a property "CreditCardBase" that extracts the group of keys from
web.config. The other properties extract the individual keys for easy access.

[VB] Adding References

Imports System.Web.Profile
Imports System.Web.Security

[C#] Adding References

using System.Web.Profile;
using System.Web.Security;

[VB] Adding the CreditCardType Enumeration

Public Enum CreditCardType
 Unassigned = 0
 Visa = 1
 MasterCard = 2
 Amex = 3
End Enum

[C#] Adding the CreditCardType Enumeration

public enum CreditCardType
{
 Unassigned = 0,
 Visa = 1,
 MasterCard = 2,
 Amex = 3
};

[VB] Adding CreditCardGroup

''' <summary>
''' This class encapsulates the web.config
''' system.web/profile/properties/group settings
''' for the "Credit Card" group.
''' </summary>
Public Class CreditCardGroup
 Inherits ProfileGroupBase

UI for ASP.NET AJAX

217 UI for ASP.NET AJAX

 Private _profileBase As ProfileBase
 Public Sub New(ByVal profileBase As ProfileBase)
 _profileBase = profileBase
 End Sub
 Const TypeKey As String = "Type"
 Public Property Type() As CreditCardType
 Get
 Return DirectCast(CreditCardGroupBase.GetPropertyValue(TypeKey), CreditCardType)
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(TypeKey, DirectCast(value, Byte))
 End Set
 End Property
 Const NumberKey As String = "Number"
 Public Property Number() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(NumberKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(NumberKey, value)
 End Set
 End Property
 Const NameKey As String = "Name"
 Public Property Name() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(NameKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(NameKey, value)
 End Set
 End Property
 Const ExpMonthKey As String = "ExpMonth"
 Public Property ExpMonth() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(ExpMonthKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(ExpMonthKey, value)
 End Set
 End Property
 Const ExpYearKey As String = "ExpYear"
 Public Property ExpYear() As String
 Get
 Return CreditCardGroupBase.GetPropertyValue(ExpYearKey).ToString()
 End Get
 Set
 CreditCardGroupBase.SetPropertyValue(ExpYearKey, value)
 End Set
 End Property
 Const CreditCardGroupKey As String = "CreditCard"
 Private ReadOnly Property CreditCardGroupBase() As ProfileGroupBase
 Get
 Return _profileBase.GetProfileGroup(CreditCardGroupKey)
 End Get
 End Property

UI for ASP.NET AJAX

218 UI for ASP.NET AJAX

End Class

[C#] Adding CreditCardGroup

/// <summary>
/// This class encapsulates the web.config
/// system.web/profile/properties/group settings
/// for the "Credit Card" group.
/// </summary>
public class CreditCardGroup : ProfileGroupBase
{
 private ProfileBase _profileBase;
 public CreditCardGroup(ProfileBase profileBase)
 {
 _profileBase = profileBase;
 }
 const string TypeKey = "Type";
 public CreditCardType Type
 {
 get
 {
 return (CreditCardType)CreditCardGroupBase.GetPropertyValue(TypeKey);
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(TypeKey, (byte) value);
 }
 }
 const string NumberKey = "Number";
 public string Number
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(NumberKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(NumberKey, value);
 }
 }
 const string NameKey = "Name";
 public string Name
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(NameKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(NameKey, value);
 }
 }
 const string ExpMonthKey = "ExpMonth";
 public string ExpMonth
 {

UI for ASP.NET AJAX

219 UI for ASP.NET AJAX

6. Add the WebProfile class. This class will contain all the settings for a given profile. This would include
the single setting for "ShareMyResults" and also the "CreditCardGroup". When the class is first
created, a MembershipUser object is passed to it that ties the logged in user with their profile
information. This class also persists the profile information when the user creates a new profile.

 get
 {
 return CreditCardGroupBase.GetPropertyValue(ExpMonthKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(ExpMonthKey, value);
 }
 }
 const string ExpYearKey = "ExpYear";
 public string ExpYear
 {
 get
 {
 return CreditCardGroupBase.GetPropertyValue(ExpYearKey).ToString();
 }
 set
 {
 CreditCardGroupBase.SetPropertyValue(ExpYearKey, value);
 }
 }
 const string CreditCardGroupKey = "CreditCard";
 private ProfileGroupBase CreditCardGroupBase
 {
 get
 {
 return _profileBase.GetProfileGroup(CreditCardGroupKey);
 }
 }
}

[VB] Adding the WebProfile Class

''' <summary>
''' This class contains all the settings for a given profile.
''' </summary>
Public Class WebProfile
 Private _profileBase As ProfileBase
 Public Sub New(ByVal user As MembershipUser)
 ' This next line is a key piece that ties together
 ' the logged in user and the profile. Using the
 ' HTTPContext current user may be anonymous.
 _profileBase = ProfileBase.Create(user.UserName)
 _creditCardGroup = New CreditCardGroup(_profileBase)
 End Sub
 Private _creditCardGroup As CreditCardGroup
 Public ReadOnly Property CreditCard() As CreditCardGroup
 Get
 Return _creditCardGroup
 End Get
 End Property
 Const ShareMyResultsKey As String = "ShareMyResults"

UI for ASP.NET AJAX

220 UI for ASP.NET AJAX

 Public Property ShareMyResults() As Boolean
 Get
 Return DirectCast(_profileBase.GetPropertyValue(ShareMyResultsKey), Boolean)
 End Get
 Set
 _profileBase.SetPropertyValue(ShareMyResultsKey, value)
 End Set
 End Property
 Public Sub Save()
 _profileBase.Save()
 End Sub

End Class

[C#] Adding the WebProfile Class

/// <summary>
/// This class contains all the settings for a given profile.
/// </summary>
public class WebProfile
{
 private ProfileBase _profileBase;
 public WebProfile(MembershipUser user)
 {
 // This next line is a key piece that ties together
 // the logged in user and the profile. Using the
 // HTTPContext current user may be anonymous.
 _profileBase = ProfileBase.Create(user.UserName);
 _creditCardGroup = new CreditCardGroup(_profileBase);
 }
 private CreditCardGroup _creditCardGroup;
 public CreditCardGroup CreditCard
 {
 get
 {
 return _creditCardGroup;
 }
 }
 const string ShareMyResultsKey = "ShareMyResults";
 public bool ShareMyResults
 {
 get
 {
 return (bool)_profileBase.GetPropertyValue(ShareMyResultsKey);
 }
 set
 {
 _profileBase.SetPropertyValue(ShareMyResultsKey, value);
 }
 }
 public void Save()
 {
 _profileBase.Save();
 }
}

UI for ASP.NET AJAX

221 UI for ASP.NET AJAX

3. Create the ASUser class. The class file will encapsulate the ASP.NET Membership user information.

1. Right-click the project and select Add | New Class. Name the class file ASUser.cs.

2. Add a reference to the System.Web.Profile namespace to the "Imports" (VB) or "uses" (C#) section of
code.

3. Verify that the namespace for the class is Telerik.ActiveSkill.Common. This should happen
automatically if you set this namespace up as the default for the project during the Setup ActiveSkill
Project Structure section earlier.

4. Add the class implementation shown below. The class includes properties for the ASP.NET
membership, the web profile that in turn includes custom information about the logged in user. The
class also provides easy access to the user ID and name.

[VB] Adding References

Imports System.Web.Security

[C#] Adding References

using System.Web.Profile;

[VB] Implementing the ASUser Class

Public Class ASUser
 Private _membershipUser As MembershipUser
 Private _profile As WebProfile
 Public Sub New(ByVal userName As String)
 _membershipUser = Membership.GetUser(userName)
 _profile = New WebProfile(_membershipUser)
 End Sub
 Public ReadOnly Property MembershipUser() As MembershipUser
 Get
 Return _membershipUser
 End Get
 End Property
 Public ReadOnly Property UserName() As String
 Get
 Return _membershipUser.UserName
 End Get
 End Property
 Public ReadOnly Property UserID() As Guid
 Get
 Return DirectCast(_membershipUser.ProviderUserKey, Guid)
 End Get
 End Property
 Public ReadOnly Property Profile() As WebProfile
 Get
 Return _profile
 End Get
 End Property
End Class

[C#] Implementing the ASUser Class

public class ASUser
{
 private MembershipUser _membershipUser;
 private WebProfile _profile;

UI for ASP.NET AJAX

222 UI for ASP.NET AJAX

4. Create the ASUser class. The class file will encapsulate the ASP.NET Membership user information.

1. Right-click the project and select Add | New Class. Name the class file ASUser.cs.

2. Add a reference to the System.Web.SessionState namespace to the "Imports" (VB) or "uses" (C#) section
of code.

3. Verify that the namespace for the class is Telerik.ActiveSkill.Common. This should happen
automatically if you set this namespace up as the default for the project during the Setup ActiveSkill
Project Structure section earlier.

4. Add the class SessionContext implementation shown below. The class provides a convenient wrapper
for the session in the HttpContext.

 public ASUser(string userName)
 {
 _membershipUser = Membership.GetUser(userName);
 _profile = new WebProfile(_membershipUser);
 }
 public MembershipUser MembershipUser
 {
 get { return _membershipUser; }
 }
 public string UserName
 {
 get { return _membershipUser.UserName; }
 }
 public Guid UserID
 {
 get { return (Guid)_membershipUser.ProviderUserKey; }
 }
 public WebProfile Profile
 {
 get { return _profile; }
 }
}

[VB] Adding References

Imports System.Web.SessionState

[C#] Adding References

using System.Web.SessionState;

[VB] Implementing the SessionContext Class

Public Class SessionContext
 Protected Shared ReadOnly Property Session() As HttpSessionState
 Get
 Return IIf(HttpContext.Current <> Nothing,HttpContext.Current.Session,Nothing)
 End Get
 End Property
End Class

[C#] Implementing the SessionContext Class

ublic class SessionContext
{
 protected static HttpSessionState Session

UI for ASP.NET AJAX

223 UI for ASP.NET AJAX

5. Add the SessionManager class implementation shown below. This class only contains a single property
for "User" so that it can be accessed throughout the application once the user logs onto the system.

Add the following Profile element to the <system.web> section of web.config. This step adds a profile with a
custom property "ShareMyResults" and a group of properties to contain credit card information. Access to
these properties will be encapsulated in utility classes we will define in later steps.

 {
 get
 {
 return HttpContext.Current != null ? HttpContext.Current.Session : null;
 }
 }
}

[VB] Implementing the SessionManager Class

Public Class SessionManager
 Inherits SessionContext
 Private Const _CurrentUserKey As String = "CurrentUserKey"
 Public Shared Property User() As ASUser
 Get
 Return DirectCast(Session(_CurrentUserKey), ASUser)
 End Get
 Set
 Session(_CurrentUserKey) = value
 End Set
 End Property
End Class

[C#] Implementing the SessionManager Class

public class SessionManager: SessionContext
{
 private const string _CurrentUserKey = "CurrentUserKey";
 public static ASUser User
 {
 get
 {
 return (ASUser)Session[_CurrentUserKey];
 }
 set
 {
 Session[_CurrentUserKey] = value;
 }
 }
}

8.14 Configure the Profile

[ASP.NET] Configuring Profile Properties

<!--RadControls for ASP.NET AJAX Step By Step-->
<profile enabled="true">
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"

UI for ASP.NET AJAX

224 UI for ASP.NET AJAX

In this chapter you built the initial framework for a demonstration application that uses many of the
RadControls for ASP.NET AJAX. You setup the project structure, learned how to setup and use ASP.NET
Membership and finally used RadFormDecorator and RadInput controls.

 connectionStringName="ActiveSkillConnectionString"
 applicationName="/ActiveSkill"/>
 </providers>
 <properties>
 <add name="ShareMyResults" type="System.Boolean"/>
 <group name="CreditCard">
 <add name="Type" type="System.Byte"/>
 <add name="Number" type="System.String"/>
 <add name="Name" type="System.String"/>
 <add name="ExpMonth" type="System.String"/>
 <add name="ExpYear" type="System.String"/>
 </group>
 </properties>
</profile>

8.15 Summary

UI for ASP.NET AJAX

225 UI for ASP.NET AJAX

 Examine how the "real estate" management controls can help you manage the content areas of your Web
pages.

 Create a simple application to build confidence in using the controls.

 Become familiar with the design time support for working with the "real estate" management controls. This
support includes Smart Tag, Properties Window, and some collection editors.

 Explore principal properties and groups of properties where 80% of the functionality is found.

 Learn how to perform common server-side tasks on the RadDock control.

 Learn how to use the client-side API to perform common tasks.

 Learn how to use these controls for more complicated tasks, such as creating dialogs and tool boxes or
populating a portal page.

The controls we will examine in this chapter are designed to help you manage the layout (or "real estate") of
your Web pages. All of them define regions of the Web page where you can add the content you want to
display. Some of these regions can move around the screen, others can be minimized or hidden away. By using
these "real estate" controls, you can organize your Web pages and add flexibility that lets your users configure
the layout in an individualized way.

RadWindow

RadWindow implements a pop-up window that displays content from an external source (another URL). You can
use this control for a pop-up dialog or tool box, or simply as a secondary window for displaying additional
content. Pop-up windows can be modal (disabling the rest of the page) or nonmodal (allowing the user to
interact with the rest of the page while the pop-up is showing).

9 Screen "Real Estate" Management

9.1 Objectives

9.2 Introduction

UI for ASP.NET AJAX

226 UI for ASP.NET AJAX

You have full control over what causes windows to appear, where they appear, and what size they start at. By
specifying the icons that appear in the title bar, you can let users minimize, maximize, resize, move, pin, and
close RadWindow controls with no coding on your part. If you don't want to allow users these capabilities, you
can remove any or all of the controls from the title bar, or even hide the title bar entirely.

Unlike ordinary browser pop-up windows, RadWindow objects are not suppressed by the Windows XP SP2 pop-up
blocker mechanism. Also unlike browser windows, you can minimize RadWindow pop-ups into minimization
zones that you add to the parent window.

RadWindowManager

If your Web application uses multiple pop-up Windows, you can organize them using RadWindowManager. By
using RadWindowManager, your application also has access to "rad" versions of the alert, confirm, and prompt
pop-ups, so that you can control the appearance of these useful dialogs instead of relying on the built-in
browser versions. Unlike the built-in browser versions, which are limited to displaying simple text, you can even
add HTML content to the "rad" pop-ups:

UI for ASP.NET AJAX

227 UI for ASP.NET AJAX

RadDock and RadDockZone

RadDock appears similar to RadWindow, in that each RadDock control represents a movable "window" that
contains content and that the user can drag around the Web page. Unlike RadWindow, however, RadDock
displays content that is loaded with your Web page rather than from an external URL. RadDock windows can be
docked into special zones, implemented by RadDockZone, in the way most portal sites let users configure the
layout of controls.

As with RadWindow, you can control the command icons that appear in the RadDock title bar. RadDock windows
have built-in commands for pinning and unpinning, expanding and collapsing, or closing the window, plus the
ability to add your own custom commands. You can hide the RadDock title bar, replacing it with a simple grip
for dragging and dropping:

UI for ASP.NET AJAX

228 UI for ASP.NET AJAX

RadDock windows can be configured so that they must be docked, must be floating, or so that they can move
freely between the two states. You can also limit individual RadDock windows so that they can only be docked
in certain zones.

RadSplitter

RadSplitter also creates separate regions for displaying content to users. Unlike RadWindow and RadDock,
however, the content regions that RadSplitter uses are not pop-up windows. Instead, they are resizable frames,
called panes, that divide up a region of the Web page. The splitter can be configured to lay out its panes either
horizontally or vertically. By adding split bars between the panes, you can enable the user to resize panes in
the browser. Alternately, you can leave out the split bars, to create a static layout of separate panes on your
Web page. In a splitter that contains split bars, individual panes can be "locked", so that they are not resizable
along with the other panes of the splitter.

Panes can display content from an external URL, like RadWindow, or content that is loaded with the Web page,
like RadDock. The screenshot below shows a splitter that displays a radio button list that is loaded with the
Web page in the left pane, and content from an external Web site in the right pane:

UI for ASP.NET AJAX

229 UI for ASP.NET AJAX

Panes that load their content with the Web page can hold any HTML elements, even another splitter. By nesting
splitters with alternating horizontal and vertical orientations, you can create arbitrarily complex layouts.

RadSlidingZone

RadSlidingZone is a specialized control for optimizing layout that can only be placed directly inside the pane of
a splitter. RadSlidingZone implements a set of tabs that can be used to slide out additional panes, called sliding
panes, similar to the way Visual Studio lets you slide out panels such as the Properties Window or Solution
Explorer. Like the sliding panels in Visual Studio, the sliding panes of a RadSlidingZone control can be docked in
place by the user. By defining sliding panes in a sliding zone container, you can initially hide content that your
users do not need to see all the time.

UI for ASP.NET AJAX

230 UI for ASP.NET AJAX

You can configure the orientation of the sliding zone and whether sliding panes expand when the user moves
the mouse over their tabs or whether the user must click on a tab to expand it. Individual tabs can be
configured to display text, an icon, or both. Sliding panes can be fixed in size, or resizable in the direction that
they expand. You can also suppress the ability of the user to dock individual sliding panes.

In this walk-through you will become familiar with the following "real estate" controls:

 RadDockZone and RadDock

 RadSplitter, RadPane, and RadSplitBar

 RadWindowManager and RadWindow

These controls will be used to generate the layout shown in the following screen shot:

9.3 Getting Started

UI for ASP.NET AJAX

231 UI for ASP.NET AJAX

Set up the project structure
1. Create a new ASP.NET Web Application.

2. Drag a ScriptManager from the Tool Box onto the Web page.

Add the RadDock controls
1. Drag a RadDockZone control onto your Web page. Using the Smart Tag, set the Skin property to "Outlook".

We will look at RadSlidingZone and RadSlidingPane later, in the Control Specifics section.

You can find the complete source for this project at:
\VS Projects\RealEstate\GettingStarted

UI for ASP.NET AJAX

232 UI for ASP.NET AJAX

2. Using the Properties Window, set the Height property to "150px", the Width property to "100%" and the
Orientation property to "Horizontal".

3. Drag a RadDock control from the Tool Box onto the surface of the RadDockZone. Use the Smart Tag to
make sure that the Skin property is set to "Outlook".

4. Using the Properties Window, set the Width property to "150px", the Title property to "Quote" and the Text
property to "If at first you don't succeed… make sure nobody finds out you tried! - Anonymous".

5. Drag a second RadDock control onto the surface of the RadDockZone. On this one, set the Skin property to
"Outlook", the Width to "150px", the Title to "Calendar", and the DockMode to "Docked". That last property
(DockMode) stipulates that this RadDock must always be docked in a dock zone. The last RadDock control
left the value of DockMode as "Default", meaning that RadDock control can be dragged out of the docking
zones to act as a free-standing window.

6. Drag a RadCalendar control from the Tool Box onto the surface of the second RadDock control. Set its Skin
property to "Outlook".

7. Switch to the Source window, and make sure that the RadCalendar control is surrounded by
<ContentTemplate> and </ContentTemplate> tags. It is a known issue about RadDock that it sometimes
loses these tags in the designer. The second RadDock control should now look like the following:

8. Drag a Table from the HTML section of the tool box to below the first RadDockZone.

9. Select the upper-left cell in the table, right click, and choose Delete|Delete Rows to delete the first row.
Repeat this process until the table has only one row.

10. Select the upper-left cell in the Table, right click, and choose Delete|Delete Cell to delete that cell. The
table should now have two columns. (If it has more, continue deleting until there are only two columns.)

11. Select the lefthand cell of the table and use the Properties Window to set its Width attribute to "200px".

12. Drag a second RadDockZone from the Tool Box into the lefthand cell of the table. Set its Skin property to
"Outlook", Height to "400px", Width to "200px" and FitDocks to false. The last property (FitDocks) ensures
that when RadDock controls are docked in this zone, they do not get resized to the width of the dock zone,
but instead keep their original width.

Add the RadSplitter controls
1. Drag a RadSplitter control from the Tool Box onto the right-hand cell of the table.

2. Using the Smart Tag, set its Skin property to "Outlook".

3. Using the Properties Window, set the Orientation property to "Horizontal" and the Width to "100%"

4. Drag a RadPane control from the Tool Box onto the surface of the RadSplitter. Set its Height property to
"75px".

5. Drag a LinkButton from the Tool Box onto the surface of the RadPane control. Set its Text property to

[ASP.NET] Second RadDock control

<telerik:RadDock ID="RadDock2" Runat="server"
 Skin="Outlook" Width="235px"
 Title="Calendar" DockMode="Docked">
 <ContentTemplate>
 <telerik:RadCalendar ID="RadCalendar1" Runat="server"
 font-names="Arial, Verdana, Tahoma" forecolor="Black"
 Skin="Outlook" style="border-color:#ececec">
 </telerik:RadCalendar>
 </ContentTemplate>
</telerik:RadDock>

The <ContentTemplate> tag signals that the calendar is part of a template. You do not need to worry
about templates right now, as this one is pretty simple, but if you want to learn more about them, look
ahead at the chapter on Templates.

UI for ASP.NET AJAX

233 UI for ASP.NET AJAX

"Telerik".

6. Hit the Enter key to add a line break after the link button, and add a second LinkButton below the first.
Set this one's Text property to "Google".

7. Hit the Enter key again and add a third LinkButton. Set its Text property to "Wikipedia".

8. Drag a RadSplitBar control from the Tool Box onto the surface of the RadSplitter, below the RadPane you
just filled. This can be a little tricky, so feel free to use the Source view to move it into place if you need
to.

9. Drag a second RadPane control onto the RadSplitter. Once again, this can be a bit tricky, so check in the
Source view to make sure that it landed in the right place. At this point, your RadSplitter declaration
should look like the following:

10. Using the Properties Window, set the Skin property or the second RadPane control to "Outlook" and the
ContentUrl property to "http://www.telerik.com".

Add the RadWindowManager and RadWindow controls
1. Drag a RadWindowManager control from the Tool Box and place it at the bottom of the Web page.

2. Using the Properties Window, set the Skin property to "Outlook".

3. Click on the Configuration Manager in the Smart Tag to bring up the RadWindow collection editor.

4. In the Collection Editor, click the Add button to add a RadWindow to the RadWindowManager's Windows
collection.

5. Assign the following properties to the new window you just added:

 Set Animation to "Fade".

 Set Behaviors to "Resize, Minimize, Close, Maximize, Move, Reload".

 Set OpenerElementID to "LinkButton1".

 Set Title to "Telerik".

 Set VisibleStatusBar to false.

 Set NavigateUrl to "http://www.telerik.com". As before, be sure to include the entire URL.

6. Click the Add button again to add a second RadWindow to the collection. Set the following properties:

 Set Animation to "FlyIn".

 Set Behaviors to "Resize, Minimize, Close, Maximize, Move, Reload".

[ASP.NET] RadSplitter declaration

<telerik:RadSplitter ID="RadSplitter1" Runat="server"
 Orientation="Horizontal" Skin="Outlook" Width="100%">
 <telerik:RadPane ID="RadPane1" Runat="server" Height="75px">
 <asp:LinkButton ID="LinkButton1" runat="server">Telerik</asp:LinkButton>

 <asp:LinkButton ID="LinkButton2" runat="server">Google</asp:LinkButton>

 <asp:LinkButton ID="LinkButton3" runat="server">Wikipedia</asp:LinkButton>
 </telerik:RadPane>
 <telerik:RadSplitBar ID="RadSplitBar1" Runat="server" />
 <telerik:RadPane ID="RadPane2" Runat="server">
 </telerik:RadPane>
</telerik:RadSplitter>

Gotcha! When assigning the ContentUrl, be sure to type the entire URL including the "http://"
and avoid the "Resource not found" error.

UI for ASP.NET AJAX

234 UI for ASP.NET AJAX

 Set OpenerElementID to "LinkButton2".

 Set Title to "Google".

 Set VisibleStatusBar to false.

 Set NavigateUrl to "http://www.google.com".

7. Click the Add button again to add a third RadWindow to the collection. Set the following properties:

 Set Animation to "Resize".

 Set Behaviors to "Resize, Minimize, Close, Maximize, Move, Reload".

 Set OpenerElementID to "LinkButton3".

 Set Title to "Wikipedia".

 Set VisibleStatusBar to false.

 Set NavigateUrl to "http://www.wikipedia.org".

8. Click Ok to exit the collection editor.

Run the application
1. Press Ctrl-F5 to run the application. The two dock zones appear at the top and left of the browser window.

The top dock zone contains the two RadDock windows. Between the two dock zones, the splitter sits with
two panes: an upper pane with three link buttons, and a lower pane that displays the Telerik Web site.

2. Experiment with dragging the RadDock windows. You can drag the Quote window anywhere, but the
Calendar window snaps back to its original position unless you drop it in a dock zone.

UI for ASP.NET AJAX

235 UI for ASP.NET AJAX

3. Experiment with the splitter by dragging on the split bar.

4. Click on the three link buttons to display the RadWindow controls. Note the different animation effects as
they appear.

In the Visual Studio designer, you can configure the "real estate" management controls using the Smart Tag and
the Properties Window. In addition, you can use collection editors with the RadDockZone, RadDock, and
RadWindowManager controls to set property collections.

Smart Tag
The Smart Tag for each of the "real estate" management controls contains only the common elements of
RadControls Smart Tags: the Ajax Resources, Skin selection, and Learning center:

9.4 Designer Interface

UI for ASP.NET AJAX

236 UI for ASP.NET AJAX

The Skin property for these controls takes a bit of explanation. As you saw in the project you built in the
Getting Started section, working with the "real estate" management controls involves nesting controls inside
controls: you nested RadDock controls inside RadDockZone, RadWindow controls inside RadWindowManager, and
RadPane and RadSplitBar controls inside RadSplitter. In all cases, the controls have a Skin property, even when
(as in the case of RadWindowManager) they have no visual aspect on the Web page. For most of these controls,
setting the Skin property of the parent control changes the default skin for all of its children. Thus, when you
set the Skin property for RadWindowManager, the skin was inherited by all the child RadWindow controls, and
when you set the Skin property for RadSplitter, the skin was inherited by the child RadPane and RadSplitBar
controls. (This did not occur for RadDockZone and RadDock, but in the next section we will encounter another
control, RadDockLayout, which does set the default skin for child RadDockZone and RadDock controls).

Properties Window
At design time, most of the work you do to configure these controls can be done using the Properties Window.
As before, let us look at the most important properties of the controls.

RadWindowManager

The most important property of RadWindowManager is the Windows property. This holds the set of child
windows the manager controls. In the Properties Window, you can use the Windows property to bring up the
RadWindow Collection Editor to add and configure each window in this collection.

RadWindow

When RadWindow controls are added as children of RadWindowManager (using the Windows property
collection), you can use either the Properties Window or the RadWindow Collection Editor to set their
properties. If you add RadWindow controls to a page without using RadWindowManager, you can use the
Properties Window to configure them.

Even if the skin is inherited from a parent control, an individual child control can override that default by
setting its own Skin property.

In addition to the RadWindow controls in the Windows property collection, you can use RadWindowManager
to generate additional RadWindow controls from client-side code.

It is not necessary to use RadWindowManager with your RadWindow controls unless you want to use certain
parts of the client-side api. It does, however, provide a convenient place to keep all of your RadWindow

UI for ASP.NET AJAX

237 UI for ASP.NET AJAX

Because RadWindow must load its content from an external source, the most important property is the
NavigateUrl property. This property specifies the URL where the window gets its contents. Its value can be
another page in the same project (e.g. "Mypage.aspx"), or a reference to another server (e.g.
"http://www.google.com"). When using a reference to another server, you must always include the entire URL,
including the "http://".

By default RadWindow controls surround their content with a title bar at the top and a status bar at the
bottom. You can hide either of these using the VisibleTitleBar and VisibleStatusBar properties. The title bar
displays the window title and a set of command buttons. You can specify the window title by setting the Title
property, or leave the window to pick up its title from the title attribute of it's content. The command buttons
that appear are controlled by the Behaviors property. Possible buttons include "Close", "Pin", "Minimize",
"Maximize" and "Reload". If you are adding more than one type of button, separate values with commas.
Behaviors can also include some values that do not result in buttons: "Move" and "Resize". When these values
are included, the user can move or resize the window with the mouse. A related property, InitialBehaviors, can
be set to a subset of Behaviors, made up from the "Pin", "Minimize", and "Maximize" options to specify the initial
state of the window.

Two properties let you specify when the window should appear if you are not using the client-side api to display
it: VisibleOnPageLoad lets you have the window pop up when the page loads, and OpenerElementID lets you
specify a control on the page that causes the window to open when the user clicks it.

You can control where on the page the window appears using the Top, Left, and OffsetElementID properties.

The Modal property lets you use the window as a modal dialog. When Modal is true, the parent page is disabled
while the window is showing and it is opened centered on the screen.

Since Q1 2011, RadWindow has WAI-ARIA support - it can be enabled by setting EnableAriaSupport="true".

 RadWindow also supports MaxWidth, MaxHeight, MinWidth and MinHeight properties - if they are set, when
you resize it they will be respected

Note 1: There are default minimum width and height, determined by the icons in titlebar, etc.; if we set less
size, the visual appearance of the RadWindow is spoiled. That is why, if you set MinWidth or MinHeight less
than them, the default absolute minimums will be set

Note 2: The AutoSize functionality respects the MaxWidth, MaxHeight, MinWidth and MinHeight properties.

Note 3: If you set Width(Height) bigger than the MaxWidth(MaxHeight) or less than MinWidth(MinHeight) you
have set, the Width and Height properties will be modified in order to respect the set limits.

Note 4: The client-side width and height setters respect the set limits.

RadDockZone

The most important property on RadDockZone is the Orientation property. It specifies how the dock zone lays
out its docked controls.

 When Orientation is "Vertical" (the default), docked controls are added one below the other in a single
column. If this takes up more space than the value specified by its Height property, the dock zone acquires
a scroll bar. If Height is not set, the dock zone expands to fit its docked controls. The FitDocks property
specifies whether docked controls are resized when docked so that they fit exactly in the Width of the
dock zone.

 When Orientation is "Horizontal", docked controls are added in rows. When a row is filled (the control
would exceed the value of the dock zone's Width property, a new row is started. As with a vertical dock
zone, the dock zone can sprout a scroll bar if the Height property is exceeded, or grow to fit if the Height
property is not set. (The FitDocks property has no effect on a horizontal dock zone).

controls at design time.

UI for ASP.NET AJAX

238 UI for ASP.NET AJAX

When the Width or Height property is not set, the dock zone expands and contracts to accommodate its docked
controls. You can place a limit on how small the dock zone gets in this case by setting the MinWidth and
MinHeight properties.

While the default appearance of the dock zone is controlled by its skin, you can augment this by setting the
CssClass property. If you want to change the appearance of the dock zone when it can accept a dragged
RadDock object, you can use the HighlightedCssClass property.

The Docks property collection lists the RadDock controls currently docked in the dock zone. In the properties
window, you can click the ellipsis button for this control to bring up the RadDock Collection Editor. You can use
the collection editor to add RadDock controls at design time, or to change the properties of the RadDock
controls that start out docked in the zone.

RadDock

RadDock controls can display any HTML content, including other ASP.NET controls. The simplest type of content
you can specify is a string of text. To populate a RadDock control with text, simply set the Text property. To
add more complex elements, you can't use the Properties Window; instead, use the Visual Studio designer to
create a ContentTemplate. A simple example of this process was shown in the Getting Started project.

You can use the Title property to specify the title that appears in the RadDock title bar. By default, this title
bar is where the user clicks and drags to move the RadDock control around the Web page. If you want to hide
the title bar, you can change the DockHandle property from "TitleBar" to "Grip", and the title bar is changed to
a small grip area at the top of the control. (You can remove even that small grip area by changing the
DockHandle property to "None", but then the user has no way to drag the control unless you provide it using
client-side code).

In addition to the title string, the title bar also displays a set of command buttons. There are three basic built-
in command buttons: a Close button that is always present until the user clicks on it to hide the RadDock
control, an Expand/Collapse button that lets the user minimize the dock window so that it hides its content or
restore it so that it displays its content, and a Pin/Unpin button that appears when the dock window is not
docked. You can use the DefaultCommands property to specify which of these built-in commands you want to
have appear on the title bar. You can choose a single command, list two commands separated by a comma, or
set DefaultCommands to "All" or "None". You can augment this list by adding your own custom commands using
the Commands property. When adding custom commands, you can implement their behavior on the client-side
by assigning a function to the OnClientCommand event handler, or you can implement them on the server-side
by setting the AutoPostBack property of the command and supplying a handler for the server side Command
event. When you set the Commands property, the DefaultCommands property is ignored, so be sure to add any
built-in commands you want to the Commands collection as well.

There are two properties that affect where the user can drag a RadDock control:

 DockMode specifies whether the dock window must always be docked in one of the dock zones ("Docked"),
whether it can never be docked but must always float ("Floating") or whether it can move freely between
the two states ("Default").

 ForbiddenZones is a comma-separated list of IDs for all the dock zones where the dock window cannot be
docked. By using forbidden zones, you can arrange your Web page with different functional docking areas.

RadSplitter

The most important property on RadSplitter is Orientation. Orientation can be "Horizontal", in which case the
splitter lays out its panes in a single column, or "Vertical", in which case the panes are laid out in a single row.
That is, Orientation refers to the direction of the split bars between panes, rather than the direction in which
panes are laid out. If the splitter contains split bars between panes, the split bars resize the Height of panes in
a horizontal splitter, and the Width of panes in a vertical splitter.

The ResizeMode property lets you configure how panes resize when the user drags on a split bar. ResizeMode
can be "AdjacentPane", in which case only the panes adjacent to a split bar are resized when the bar is

You can also add content to a RadDock control in server-side code. An example of this is shown in the
section on Server-Side Programming.

UI for ASP.NET AJAX

239 UI for ASP.NET AJAX

dragged, "EndPane", in which case only the pane immediately before the split bar and the rightmost (or bottom)
pane are affected, or "Proportional", in which case the pane immediately before the split bar is resized and all
panes that follow the split bar divide up the remaining space according to their current proportions.

The ResizeWithBrowserWindow and ResizeWithParentPane properties let you control whether the size of the
splitter (and hence the size of the panes it contains) is changed when its container is resized.
ResizeWithBrowserWindow is for splitters that sit on the Web page, while ResizeWithParentPane affects
splitters that are nested in a pane on another splitter.

RadPane

RadPane represents one of the panes laid out by a splitter. It can hold any HTML content that you add in the
designer (including another splitter), or it can display external content (like RadWindow) if you set the
ContentUrl property.

When specifying the dimensions of a pane, you only need to specify the size in one direction, because the pane
matches the size of the splitter in the other direction. Thus, in a horizontal splitter, you only set the Height of
a pane, while in a vertical splitter, you only set its Width. Because users can resize the panes of a splitter, you
can place limits on how much a pane can be resized by setting the MinHeight and MaxHeight or MinWidth and
MaxWidth properties. You can prevent the splitter from resizing a pane by setting the Locked property to
true.

When a pane is resized so that it is too small to display all of its content, it can either crop its display, or
display scroll bars. The Scrolling property lets you specify which option is used. Scrolling can by "None" (always
crop), "X" (display horizontal scroll bars but crop vertically), "Y" (display vertical scroll bars but crop
horizontally), or "Both" (display both vertical and horizontal scroll bars as necessary).

In addition to resizing panes, split bars also include the ability to collapse and restore adjacent panes. You can
use the Collapsed property of a pane to specify that it starts out in the collapsed state when the page first
loads.

RadPane has built-in ability to show a loading sign while a content page set through the ContentUrl property is
being loaded in it. To turn on this functionality you should set ShowContentDuringLoad to false (the default
value is true).

RadSplitBar

RadSplitBar has two important properties that determine how it can influence adjacent panes:

 CollapseMode specifies whether the split bar has the ability to collapse and restore adjacent panes. It can
be "None", "Forward" (it can only collapse and restore the next pane), "Backward" (it can only collapse and
restore the previous pane), or "Both" (it can collapse and restore both the next and previous panes). When
you set CollapseMode to let the split bar collapse and restore adjacent panes, it acquires one or two
collapse buttons. When the adjacent pane is collapsed, the collapse button changes to a restore button.

 ResizeStep lets you configure the split bar so that it only resizes adjacent panes in fixed increments.
ResizeStep is the size, in pixels, of one increment.

Collection Editors
All collection editors work essentially the same way, with an Add button to add items to the collection and a
Remove button to remove the selected item, up and down arrow buttons to rearrange items, and a
properties pane to set the properties of the currently selected item. You display the collection editor by
clicking the ellipsis button in the Properties Window next to the property whose value is a collection.

Some of the "real estate" management controls have collection properties that let you use a Collection Editor:

 On RadWindowManager, the Windows property brings up the RadWindow Collection Editor where you can
add and remove windows and set their properties. You can also use the CofigurationManager from the
SmartTag.

 On RadDockZone, the Docks property brings up the RadDock Collection Editor, where you can edit the

UI for ASP.NET AJAX

240 UI for ASP.NET AJAX

RadDock controls that appear docked in the zone when the page loads.

 On RadDock, the Commands property brings up the DockCommand Collection Editor, where you can add
custom commands.

We have already looked at the main properties of RadWindow and RadDock, but it is worthwhile, at this point,
to look at the properties of the commands you can add using the DockCommand Collection Editor.

When adding commands to the Commands collection, use the ClientTypeName property to specify the type of
a command. Remember that when you set the value of Commands, the DefaultCommands property is ignored,
so add in any built-in commands you want to include. You can use any of the following types:

 Telerik.Web.UI.DockPinUnpinCommand: the built-in pin/unpin command.

 Telerik.Web.UI.DockExpandCollapseCommand: the built-in expand/collapse command.

 Telerik.Web.UI.DockCloseCommand: the built-in close command.

 Telerik.Web.UI.DockCommand: the default class for custom commands with one state (like the built-in
close command).

 Telerik.Web.UI.DockToggleCommand: the default class for custom commands with two states (like the
expand and collapse states of the built-in expand/collapse command).

For custom commands, you will want to set some other properties besides the ClientTypeName:

If you want to implement the behavior of your custom command in server-side code, set the AutoPostBack
property to true and provide a handler for the server-side Command event. The Command event handler is
passed the value of the Name property in its arguments so that you can identify which command generated the
postback if you have multiple custom commands.

If you want to implement the behavior of your custom command in client-side code, leave the AutoPostBack
property set to false and set the OnClientCommand property to the name of a client-side function that is
called when the user clicks on the command icon.

The Text property specifies the text of the tool tip that appears when the mouse hovers over the command
icon and the CssClass lets you change the appearance of the button from the built-in icon supplied by the skin.

UI for ASP.NET AJAX

241 UI for ASP.NET AJAX

When adding a custom toggle command, there are a few more properties you will probably want to set that are
not available using the DockCommand Collection Editor. To set these properties, switch to the Source window,
and edit the HTML markup for the commands. These properties are the AlternateText property (the text of the
tool tip for the alternate state of the command), the AlternateCssClass property (to set the appearance of the
button for the alternate state), and the State property (to specify whether the command starts in its primary or
alternate state).

Minimize Zones
As you have seen, unlike the pop-up windows in most Web applications, RadWindow-based pop-up windows can
be minimized as long as the Behaviors property includes "Minimize". By default, when the user clicks on the
minimize icon on the window's title bar, the window is minimized in its current location. If your Web page
includes many pop-up windows, this can get messy and unmanageable. To help with this issue, you can create
"minimize zones", which hold all the minimized windows. When the windows are restored from the minimized
state, they return to their previous position and size. By using minimize zones, you can enable your users to
organize their pop-up windows on the Web page using a familiar metaphor: the task bar that is available for
desktop applications.

Any control that can contain child controls, such as a panel or <div> can act as a minimize zone. All you need
do is set the MinimizeZoneID property of the RadWindow control or, if you are using one, the
RadWindowManager control, to the ID of the element that you want to have act as a minimize zone.

The following walk-through uses an ASP Panel control as a minimize zone.

9.5 Control Specifics

UI for ASP.NET AJAX

242 UI for ASP.NET AJAX

1. Create a new ASP.NET Web Application.

2. Drag a ScriptManager from the Tool Box onto the Web page.

3. Drag a Panel from the Standard section of the Tool Box onto the Web page. Set its Height property to
"350px" and its Width property to "200px".

4. Give the Panel a border by setting the BorderStyle property to "Groove", the BorderWidth property to
"5px" and the BorderColor property to "#9999FF".

5. Drag a RadWindowManager onto the Web Page below the Panel.

 Set the Behaviors property to "Resize, Minimize, Move".

 Set the OffsetElementID property to "Panel1".

 Set the VisibleOnPageLoad property to true.

 Set the MinimizeZoneID property to "Panel1". This sets the panel as the minimize zone for all the
windows in the window manager's Windows property collection.

6. Click the ellipsis button next to the Windows property to bring up the RadWindow Collection Editor.

7. In the Collection editor, add four windows to the Windows property collection.

 On the first window, set its Left property to "210px", Top property to "10px", Title property to
"Telerik", and NavigateUrl property to "http://www.telerik.com".

 On the second window, set its Left property to "230px", Top property to "30px", Title property to
"Google", and NavigateUrl property to "http://www.google.com".

 On the third window, set its Left property to "250px", Top property to "50px", Title property to
"Yahoo", and NavigateUrl property to "http://www.yahoo.com".

 On the fourth window, set its Left property to "270px", Top property to "70px", Title property to
"Wikipedia", and NavigateUrl property to "http://www.wikipedia.org".

8. Press Ctrl-F5 to run the application. When the application starts up, the four windows appear cascading to
the right of the panel. You can move them around the Web page or resize them. When you click the
minimize button in the title bar, they move to the minimize zone you created. When you restore the
windows that are in the minimize zone, they return to their last position and size.

Sliding zones
Sliding zones comprise another desktop metaphor that you can bring to your Web applications: the sliding
panels in applications like Visual Studio that hold content hidden away until it is needed. You can add Sliding
zones to the panes of a splitter by placing a RadSlidingZone control into the content area of a RadPane
control.

The RadSlidingZone acts as a parent to one or more RadSlidingPane controls. Each sliding pane implements a
sliding panel that appears either in its "closed" state, as a tab in the sliding zone, or in an expanded state to
display its content. Expanded sliding panes can optionally be made resizable, with a resize grip on the outer
edge, and can be dockable, with a pin button in the title bar to let the user lock them in an expanded position.

Before moving on to a walk-through that lets you create an application which includes a sliding zone, let's look
at some of the important properties of these controls.

RadSlidingZone

You can find the complete source for this project at:
 \VS Projects\RealEstate\MinimizeZones

RadSlidingZone is restricted so that it can only be placed inside a RadPane control. You can't use
RadSlidingZone anywhere else.

UI for ASP.NET AJAX

243 UI for ASP.NET AJAX

The properties of RadSlidingZone let you configure the way the panes slide out of the sliding zone. Probably the
most important property is SlideDirection, which determines the direction that sliding panes expand from their
tabs. In the pane of a vertical splitter, setting SlideDirection to "Right" places the sliding zone at the left of the
pane with sliding panes expanding to the right, while setting SlideDirection to "Left" places the sliding zone at
the right of the pane with sliding panes expanding to the left. Similarly, in the pane of a horizontal splitter, you
can set SlideDirection to "Bottom" or "Top" to put the zone at the top with panes that expand downward or at
the bottom with panes that expand upward.

In addition to SlideDirection, you can set the SlideDuration, to specify how long the sliding panes take to
expand from their tabs. The ClickToOpen property specifies whether sliding panes expand when the user
clicks the tab with the mouse, or whether they expand when the mouse simply moves over the tab of a sliding
pane.

By default, when the Web page loads, all the sliding panes in a sliding zone are hidden, showing only their tabs.
You can start with a single pane expanded or docked by setting the ExpandedPaneId or DockedPaneId
property.

RadSlidingPane

The dimensions of a sliding pane (Height and Width properties) refer to its dimensions when it is in the
expanded state. Because sliding panes are part of a splitter control, only one of the two properties is
meaningful: the one that indicates how far from the tab the sliding pane expands. You can control whether
users are able to resize the sliding pane from the original width or height by setting the EnableResize
property. When EnableResize is true, a resize grip appears on the outer edge to let the user resize the pane.
For resizable sliding panes, the MinHeight and MaxHeight or MinWidth and MaxWidth properties let you place
limits on how much the user can resize the sliding pane.

The Title property lets you label the sliding pane. The tile appears in the title bar of the sliding pane, and, by
default, labels the tab in the sliding zone when the sliding pane is hidden. In addition to the title, you can set
the IconUrl property to supply an image for labelling the tab in the sliding zone. The TabView property
controls whether the tab in the sliding zone shows the title, the icon, or both.

The EnableDock property specifies whether the sliding pane can be "docked" (locked into place in its expanded
state). When EnableDock is true, a pin icon appears in the title bar to let the user dock the sliding pane. While
the sliding pane is docked, the parent RadPane of the slider is automatically resized so that the sliding pane no
longer obscures any of the content of other panes.

Sliding Zone walk-through

The following walk-through creates a horizontal splitter with a sliding zone that expands to the right.

UI for ASP.NET AJAX

244 UI for ASP.NET AJAX

1. Create a new ASP.NET Web Application.

2. Drag a ScriptManager from the Tool Box onto the Web page.

3. Using the Solution Explorer, add an Images folder to your project. Add the files "Calendar.gif" and
"Colors.gif", which can be found in \VS Projects\Images, to the Images folder of your project.

4. Drag a RadSplitter from the Tool Box onto the Web page. Set its Height property to "300px", its Width
property to "75%", and its Skin property to "Sunset".

5. Drag a RadPane control from the Tool Box onto the surface of the splitter. Set its Width property to "25px".

6. Before adding the sliding zone to the pane you just added, add a second RadPane control to the splitter
below the first RadPane. In the content area of the second RadPane, type "This is the main pane of the
splitter." Note that in this application, we are not using any split bars between the panes.

7. Drag a RadSlidingZone onto the first RadPane in the splitter (the one without any text).

8. Drag a RadSlidingPane from the Tool Box onto the RadSlidingZone.

 Set its Width property to "226px".

 Set its Title property to "Calendar".

 Set its IconUrl property to "~\Images\Calendar.gif".

9. Drag a RadCalendar control from the Tool Box onto the RadSlidingPane and set its Skin property to
"Sunset".

10. Add a second RadSlidingPane to the RadSlidingZone, beneath the first one.

 Set its Title property to "Colors".

 Set its IconUrl property to "~\Images\colors.gif".

11. Drag a RadColorPicker control from the Tool Box onto the second RadSlidingPane and set its Skin property
to "Sunset".

You can find the complete source for this project at:
 \VS Projects\RealEstate\SlidingZones

UI for ASP.NET AJAX

245 UI for ASP.NET AJAX

12. Press Ctrl-F5 to run the application. When the application starts up, the main pane takes up most of the
splitter, with the sliding zone a small region on the left that displays two tabs. If you move the mouse over
either of the tabs, it expands to show its sliding pane. Note how the sliding pane covers a portion of the
main pane in the slider. Try docking a sliding pane. Note how the main pane resizes, so that none of it is
hidden by the sliding pane any more. With one sliding pane docked, move the mouse over the other tab
and see how you can expand the second sliding pane without the docked pane closing.

Adding content to a RadDock control
You have already seen how to fill a RadDock control in the designer by assigning the Text property or creating a
ContentTemplate. It is also possible to provide content by assigning a value to the ContentTemplate property
in the code-behind, but that involves a familiarity with templates that we will not cover until later. However,
there is another way to add HTML elements to the RadDock control in server-side code without having to deal
with templates: using the ContentContainer property.

The following walk-through shows how to use the ContentContainer property to populate the two RadDock
controls shown in the following screenshot:

1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Drag a RadDockLayout control from the Tool Box onto your Web page and set its Skin property to "Sunset".

We have not yet talked about the RadDockLayout control, and, as you saw in the Getting Started project,
it is not always necessary to include one in a project that uses RadDockZone and RadDock controls. The
purpose of the RadDockLayout control is to manage the state of the dock zones and dock windows. Without
a RadDockLayout control, any changes that the user makes to the position or state of dock windows are lost
as soon as the application performs a postback. RadDockLayout "remembers" the state of RadDock windows
and restores it after a postback.

9.6 Server-Side Programming

You can find the complete source for this project at:
 \VS Projects\RealEstate\ServerSide

Gotcha! RadDockLayout only "remembers" the state of RadDock and RadDockZone controls that
are created inside it. If you add other RadDockZone and RadDock controls to your Web page
outside the RadDockLayout, they will not retain their state after a postback.

UI for ASP.NET AJAX

246 UI for ASP.NET AJAX

3. Drag a RadDockZone control from the Tool Box onto the surface of the RadDockLayout control. Change its
Height to "600px" and its Width to "100px".

4. Drag a RadDock control from the Tool Box onto the surface of the RadDockZone. Set its Height to "100px"
and its Width to "200px". Set the Title property to "Details".

5. Drag a second RadDock control onto the RadDockZone below the first. Set its Height to "100px" and its
Width to "100px".

6. Switch to the code-behind, where we will be adding the content of the two RadDock controls. Before you
add code to the Page_Load event handler to populate the RadDock controls, add the following helper
method to add some space to a ControlCollection:

7. Add the following code to the Page_Load event handler to populate the two RadDock controls. Don't forget
to add an Imports or using statement for Telerik.Web.UI!

[VB] AddSpacer

Private Sub AddSpacer(ByVal container As ControlCollection)
 ' add a LiteralControl for a line break
 Dim spacer As New LiteralControl("
")
 container.Add(spacer)
 ' add a non-breaking space as well
 spacer = New LiteralControl(" ")
 container.Add(spacer)
End Sub

[C#] AddSpacer

private void AddSpacer(ControlCollection container)
{
 // add a LiteralControl for a line break
 LiteralControl spacer = new LiteralControl("
");
 container.Add(spacer);
 // add a non-breaking space as well
 spacer = new LiteralControl(" ");
 container.Add(spacer);
}

[VB] Populating RadDock controls on Page_Load

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 ' add some space to the content container
 AddSpacer(RadDock1.ContentContainer.Controls)
 ' create a text box
 Dim tb As New RadTextBox()
 tb.ID = "tbName"
 tb.Label = "Name: "
 tb.Width = New Unit("190px")
 ' add the text box to the content container
 RadDock1.ContentContainer.Controls.Add(tb)
 ' add more space
 AddSpacer(RadDock1.ContentContainer.Controls)
 ' add a second text box
 tb = New RadTextBox()
 tb.ID = "tbAddress"
 tb.Label = "Address: "
 tb.Width = New Unit("190px")
 RadDock1.ContentContainer.Controls.Add(tb)
 ' Add a spacer and button to the second RadDock control
 AddSpacer(RadDock2.ContentContainer.Controls)
 Dim postbackButton As New Button()

UI for ASP.NET AJAX

247 UI for ASP.NET AJAX

8. Press Ctrl-F5 to run the application. Drag the RadDock controls off the dock zone, or rearrange them. Add
some text to the text boxes. Then click the Postback button you added. Notice that not only do the
RadDock controls retain their new positions, but the text in the text boxes is retained as well.

Implementing Custom Commands
When you add custom commands to the title bar of a RadDock control, you must implement the code that
executes when the user clicks on the new custom command. You can do this in either client-side code or
server-side code.

The following example shows how to add custom commands that execute on the server. The RadDock controls
display a series of "pages" from a Grimm's fairy tale. Custom commands on the title bar move to the next or
previous page:

 postbackButton.ID = "btnPostback"
 postbackButton.Text = "Postback"
 RadDock2.ContentContainer.Controls.Add(postbackButton)
End Sub

[C#] Populating RadDock controls on Page_Load

protected void Page_Load(object sender, EventArgs e)
{
 // add some space to the content container
 AddSpacer(RadDock1.ContentContainer.Controls);
 // create a text box
 RadTextBox tb = new RadTextBox();
 tb.ID = "tbName";
 tb.Label = "Name: ";
 tb.Width = new Unit("190px");
 // add the text box to the content container
 RadDock1.ContentContainer.Controls.Add(tb);
 // add more space
 AddSpacer(RadDock1.ContentContainer.Controls);
 // add a second text box
 tb = new RadTextBox();
 tb.ID = "tbAddress";
 tb.Label = "Address: ";
 tb.Width = new Unit("190px");
 RadDock1.ContentContainer.Controls.Add(tb);
 // Add a spacer and button to the second RadDock control
 AddSpacer(RadDock2.ContentContainer.Controls);
 Button postbackButton = new Button();
 postbackButton.ID = "btnPostback";
 postbackButton.Text = "Postback";
 RadDock2.ContentContainer.Controls.Add(postbackButton);
}

Gotcha! Be sure to add the controls even on a postback, as shown above. Controls added to the
ContentContainer in the code-behind are not persisted in the view state.

To see why you use RadDockLayout, try removing that control from your application, running it again,
and pressing the Postback button.

UI for ASP.NET AJAX

248 UI for ASP.NET AJAX

This project adds "next page" and "previous page" custom commands to the RadDock controls from the code-
behind. This is accomplished by a helper function called AddButtons:

You can find the complete source for this project at:
\VS Projects\RealEstate\ServerCommand

[VB] Populating the Commands collection

Private Sub AddButtons(ByVal dock As RadDock)
 ' Create a command for the "Next" button
 Dim cmd As New DockCommand()
 ' Assign a name to identify it in event handlers
 cmd.Name = "cmdNextPage"
 ' Set AutoPostBack so it raises a Command event
 cmd.AutoPostBack = True
 ' Set CssClass to specify the appearance
 cmd.CssClass = "NextButton"
 ' Set Text to provide a tool tip
 cmd.Text = "Next page"
 ' Add the command to the Commands collection
 dock.Commands.Add(cmd)
 ' Repeat the process for the "Previous" button
 cmd = New DockCommand()
 cmd.AutoPostBack = True
 cmd.CssClass = "PrevButton"
 cmd.Name = "cmdPreviousPage"
 cmd.Text = "Previous page"
 dock.Commands.Add(cmd)
End Sub

[C#] Populating the Commands collection

private void AddButtons(RadDock dock)
{
 // Create a command for the "Next" button
 DockCommand cmd = new DockCommand();
 // Assign a name to identify it in event handlers
 cmd.Name = "cmdNextPage";
 // Set AutoPostBack so it raises a Command event

UI for ASP.NET AJAX

249 UI for ASP.NET AJAX

Note that the code above assigned a CssClass of "NextButton" or "PrevButton" to the commands it added. This
CSS class is defined in the <head> section of the aspx file:

When the page first loads, the Page_Load event handler initializes the RadDock controls to display the first
page of a story that is stored in a string array. It also saves the current page number for each story using session
variables. Finally, the Page_Load event handler calls the AddButtons helper function to add the custom
commands:

 cmd.AutoPostBack = true;
 // Set CssClass to specify the appearance
 cmd.CssClass = "NextButton";
 // Set Text to provide a tool tip
 cmd.Text = "Next page";
 // Add the command to the Commands collection
 dock.Commands.Add(cmd);
 // Repeat the process for the "Previous" button
 cmd = new DockCommand();
 cmd.AutoPostBack = true;
 cmd.CssClass = "PrevButton";
 cmd.Name = "cmdPreviousPage";
 cmd.Text = "Previous page";
 dock.Commands.Add(cmd);
}

[ASP.NET] CSS classes for custom buttons

<head id="Head1" runat="server">
 <title>Server-side custom command</title>
 <style type="text/css">
 .NextButton
 {
 width:18px;
 background:url(Images/arrowRight.gif) no-repeat !important;
 }
 .PrevButton
 {
 width:18px;
 background:url(Images/arrowLeft.gif) no-repeat !important;
 }
 </style>
</head>

[VB] Initializing the RadDock controls on Page_Load

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 If Not IsPostBack Then
 ' when page first loads, initialize the text to the first page
 RadDock1.Text = TheElves(0)
 RadDock2.Text = StrawCoalBean(0)
 ' Store the current page number in the Session
 Session("RadDock1Page") = 0
 Session("RadDock2Page") = 0
 End If
 ' Always add the command buttons
 AddButtons(RadDock1)
 AddButtons(RadDock2)
End Sub

[CS] Initializing the RadDock controls on Page_Load

UI for ASP.NET AJAX

250 UI for ASP.NET AJAX

Because the AutoPostBack property was set on the custom commands, they cause a server-side Command
event to fire in response to user clicks. The Command event handler checks the name of the command, and
based on the name, changes the current page by updating the text of the RadDock control and the session
variable that stores the current page:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // when page first loads, initialize the text to the first page
 RadDock1.Text = TheElves[0];
 RadDock2.Text = StrawCoalBean[0];
 // Store the current page number in the Session
 Session["RadDock1Page"] = 0;
 Session["RadDock2Page"] = 0;
 }
 // Always add the command buttons
 AddButtons(RadDock1);
 AddButtons(RadDock2);
}

Note that although the RadDock control only needs to be initialized when the page first loads, the command
buttons must be added on every page load, just like we had to add content to the ContentContainer every
time in the previous example.

[VB] Implementing the command

Protected Sub ChangePage(ByVal sender As Object, ByVal e As DockCommandEventArgs) Handles
RadDock1.Command, RadDock2.Command
 ' sender is the RadDock control
 Dim dock As RadDock = DirectCast(sender, RadDock)
 ' set the story based on the sender
 Dim story As String()
 If dock.ID = "RadDock1" Then
 story = TheElves
 Else
 story = StrawCoalBean
 End If
 ' retrieve the current page from the Session
 Dim curPage As Integer = DirectCast(Session(dock.ID + "Page"), Integer)
 ' Check the command name to determine which command fired
 If e.Command.Name = "cmdPreviousPage" Then
 ' only move to previous page if we are past the first page
 If curPage > 0 Then
 ' update curPage to the Previous page
 curPage -= 1
 ' set the text
 dock.Text = story(curPage)
 ' update the session with the new page
 Session(dock.ID + "Page") = curPage
 End If
 ElseIf e.Command.Name = "cmdNextPage" Then
 ' update curPage to the next page
 curPage += 1
 ' check if the next page exists and if so, set the text
 If curPage < story.Length Then
 dock.Text = story(curPage)
 Else

UI for ASP.NET AJAX

251 UI for ASP.NET AJAX

 ' if we passed the end, set text to "The End"
 dock.Text = "The End"
 ' don't keep increasing curPage once we reach the end
 curPage = story.Length
 End If
 ' update the session with the new page
 Session(dock.ID + "Page") = curPage
 End If
End Sub

[CS] Implementing the command

protected void ChangePage(object sender, DockCommandEventArgs e)
{
 // sender is the RadDock control
 RadDock dock = (RadDock)sender;
 // set the story based on the sender
 string[] story;
 if (dock.ID == "RadDock1")
 story = TheElves;
 else
 story = StrawCoalBean;
 // retrieve the current page from the Session
 int curPage = (int)Session[dock.ID + "Page"];
 // Check the command name to determine which command fired
 if (e.Command.Name == "cmdPreviousPage")
 {
 // only move to previous page if we are past the first page
 if (curPage > 0)
 {
 // update curPage to the Previous page
 curPage -= 1;
 // set the text
 dock.Text = story[curPage];
 // update the session with the new page
 Session[dock.ID + "Page"] = curPage;
 }
 }
 else if (e.Command.Name == "cmdNextPage")
 {
 // update curPage to the next page
 curPage += 1;
 // check if the next page exists and if so, set the text
 if (curPage < story.Length)
 dock.Text = story[curPage];
 else
 {
 // if we passed the end, set text to "The End"
 dock.Text = "The End";
 // don't keep increasing curPage once we reach the end
 curPage = story.Length;
 }
 // update the session with the new page
 Session[dock.ID + "Page"] = curPage;
 }
}

UI for ASP.NET AJAX

252 UI for ASP.NET AJAX

Before leaving this example, a mention should be made about using AJAX when implementing the server-side
Command event. You will probably want to AJAX-enable your Web page in some way so that you can avoid the
disruption of a page re-load when the Command event handler is called. However, if you are updating the
content of a RadDock control, this can be tricky:

You can't put an UpdatePanel or RadAjaxPanel around the RadDock control, because that causes problems with
RadDockZone, which will not accept anything other than a RadDock control as a child. You also can't assign the
RadDock control as the UpdatedControl of a RadAjaxManager, because it inserts a similar element behind the
scenes.

The best solution is to put an UpdatePanel or RadAjaxPanel inside the RadDock's ContentTemplate, or assign a
control inside the ContentTemplate of the RadDock control as the UpdatedControl of an AJAX manager. That
approach was not possible in this example, because this project uses the Text property rather than a content
template. This example therefore assigns the entire RadDockLayout as the UpdatedControl. This choice,
however, has its own problems. If the RadDock control is floating, a conflict arises between the RadDockLayout
and the AJAX manager, where they both try to re-create the RadDock control after a postback. To avoid this
conflict, this example sets the DockMode of the RadDock controls to "Docked", so that they can never be
floating.

Preserving Dock Layout
In the last two projects, we introduced the RadDockLayout control, and saw how it acts to preserve the layout
of RadDock controls on the page after a postback. What if you want to preserve this layout beyond the current
session? It turns out that RadDockLayout exposes some server-side methods and events that let you save the
current layout and restore it the next time the user visits your Web site.

The following example uses the methods and events of the RadDockLayout control to save the configuration of
RadDock controls on the page in a cookie and restore that configuration when the user returns to the Web
page.

You can find the complete source for this project at:
\VS Projects\RealEstate\ServerDockLayout

UI for ASP.NET AJAX

253 UI for ASP.NET AJAX

The RadDockLayout control exposes two key events: SaveDockLayout and LoadDockLayout. By saving the
current layout in the SaveDockLayout event handler, and restoring it in the LoadDockLayout event handler, you
can ensure that the layout does not change, even after the session ends.

To help you save the current layout, RadDockLayout exposes the GetRegisteredDocksState method. This
method returns a List of DockState objects, each of which represents the state of a RadDock control. By
converting each of these to a string, the SaveDockLayout handler can store the current configuration in a
cookie:

[VB] Saving the current layout

Protected Sub RadDockLayout1_SaveDockLayout(ByVal sender As Object, ByVal e As
DockLayoutEventArgs) Handles RadDockLayout1.SaveDockLayout
 ' Check whether there is already a cookie for saving the layout
 Dim dockState As HttpCookie = Page.Response.Cookies.[Get]("DockLayouts")
 If dockState Is Nothing Then
 ' cookie does not exist, create it and add it to the response
 dockState = New HttpCookie("DockLayouts")
 Page.Response.Cookies.Add(dockState)
 End If
 ' get the current layout from the RadDockLayout control
 Dim stateList As List(Of DockState) = (DirectCast(sender,
RadDockLayout)).GetRegisteredDocksState()
 ' convert the stateList into a string that can be added to the cookie
 Dim serializedList As New StringBuilder()
 Dim i As Integer = 0
 While i < stateList.Count
 serializedList.Append(stateList(i).ToString())
 serializedList.Append("|")
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
 ' Add the serialized stateList to the cookie
 dockState.Value = serializedList.ToString()
 ' Provide an expiration date for the cookie
 dockState.Expires = DateTime.Today.AddDays(1)
End Sub

[C#] Saving the current layout

protected void RadDockLayout1_SaveDockLayout(object sender, DockLayoutEventArgs e)
{
 // Check whether there is already a cookie for saving the layout
 HttpCookie dockState = Page.Response.Cookies.Get("DockLayouts");
 if (dockState == null)
 {
 // cookie does not exist, create it and add it to the response
 dockState = new HttpCookie("DockLayouts");
 Page.Response.Cookies.Add(dockState);
 }
 // get the current layout from the RadDockLayout control
 List<DockState> stateList = ((RadDockLayout)sender).GetRegisteredDocksState();
 // convert the stateList into a string that can be added to the cookie
 StringBuilder serializedList = new StringBuilder();
 for (int i = 0; i < stateList.Count; i++)
 {
 serializedList.Append(stateList[i].ToString());
 serializedList.Append("|");
 }

UI for ASP.NET AJAX

254 UI for ASP.NET AJAX

When restoring the saved dock layout, the LoadDockLayout event handler must first convert the string back
into a set of DockState objects. To convert the string for a state into a DockState object, you can use the
DockState.Deserialize method. Once you have a DockState object, the event handler performs two tasks to
restore the dock state:

 Provide the dock zones with information about the positioning of RadDock controls that they contain. This
is done by setting the Positions and Indices properties of the event arguments. Both of these properties
are indexed by the unique name of the RadDock control for each state. Positions holds the ID of the dock
zone that contains the RadDock control, and Indices holds the index of that control's position within
the zone.

 Apply the properties to the RadDock controls. This is done by calling the RadDock.ApplyState method. If
all the RadDock controls are contained inside dock zones, and none of the RadDock properties can change
with the layout, you can omit this task. The current example performs this task because if a RadDock
control is free-floating, its position must be restored.

 // Add the serialized stateList to the cookie
 dockState.Value = serializedList.ToString();
 // Provide an expiration date for the cookie
 dockState.Expires = DateTime.Today.AddDays(1);
}

The event handler shown above uses a StringBuilder to build the string for the cookie. To get the reference
to this type to compile, you must add an Imports or using statement for System.Text in addition to the
one we routinely add for Telerik.Web.UI.

[VB] Restoring the layout

Protected Sub RadDockLayout1_LoadDockLayout(ByVal sender As Object, ByVal e As
DockLayoutEventArgs) Handles RadDockLayout1.LoadDockLayout
 ' Check whether there is a cookie with a saved layout
 Dim dockState As HttpCookie = Page.Request.Cookies.[Get]("DockLayouts")
 If Not dockState Is Nothing Then
 ' get the serialized state list from the cookie
 Dim serializedList As String = dockState.Value
 If serializedList <> Nothing Then
 ' break the serialized list into individual strings
 Dim states As String() = serializedList.Split("|"c)
 Dim i As Integer = 0
 While i < states.Length
 ' deserialize each state, and use it to assign
 ' the position and index of each state to the event arguments
 Dim state As DockState = Telerik.Web.UI.DockState.Deserialize(states(i))
 e.Positions(state.UniqueName) = state.DockZoneID
 e.Indices(state.UniqueName) = state.Index
 ' apply the state to the RadDock control
 Dim dock As RadDock = DirectCast(FindControl(state.UniqueName), RadDock)
 If Not dock Is Nothing Then
 dock.ApplyState(state)
 End If
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
 End If
 End If
End Sub

[C#] Restoring the layout

protected void RadDockLayout1_LoadDockLayout(object sender, DockLayoutEventArgs e)
{

UI for ASP.NET AJAX

255 UI for ASP.NET AJAX

Once you have supplied a handler for the SaveDockLayout event, the state is saved every time the page does a
postback and restored every time the page loads. You must therefore add a control that causes a postback so
that the layout gets saved in the first place. This example uses a Button control. The button causes a
postback, but has no Click handler, because once the postback occurs, the RadDockLayout events handle saving
and loading the layout.

Responding to layout changes
The screen "real estate" management controls all support a wealth of client-side events so that you can respond
when significant changes occur. In most cases, there is a pair of events, one before the change occurs, which
lets you cancel the event, and another after the event has occurred. (e.g. The OnClientBeforeResize and
OnClientResized events of RadSplitter or RadPane). The following example illustrates one possible use of these
client-side events.

In the previous section, you saw how to use custom commands on a RadDock control to "turn the pages" of a
RadDock that acts like a book, supplying content that is fetched from the server. The following example shows
how to use the client-side OnClientDockPositionChanged event to reinforce the book metaphor, creating a
bookcase out of panels and dock zones, and resizing the "books" when they are shelved or unshelved.

 // Check whether there is a cookie with a saved layout
 HttpCookie dockState = Page.Request.Cookies.Get("DockLayouts");
 if (dockState != null)
 {
 // get the serialized state list from the cookie
 string serializedList = dockState.Value;
 if (serializedList != null)
 {
 // break the serialized list into individual strings
 string[] states = serializedList.Split('|');
 for (int i = 0; i < states.Length; i++)
 {
 // deserialize each state, and use it to assign
 // the position and index of each state to the event arguments
 DockState state = DockState.Deserialize(states[i]);
 e.Positions[state.UniqueName] = state.DockZoneID;
 e.Indices[state.UniqueName] = state.Index;
 // apply the state to the RadDock control
 RadDock dock = (RadDock)FindControl(state.UniqueName);
 if (dock != null)
 dock.ApplyState(state);
 }
 }
 }
}

Gotcha!

If you want to use an Ajax asynchronous callback for the postback that saves the layout, you must
update the entire RadDockLayout control after the callback. If you are doing this, you must set the
DockMode property of all RadDock controls to "Docked" to prevent the types of conflicts discussed in
the previous example.

9.7 Client-Side Programming

UI for ASP.NET AJAX

256 UI for ASP.NET AJAX

The client-side OnClientDockPositionChanged event occurs whenever the user stops a drag operation by
dropping the RadDock control in a new position. The event handler checks the parent dock zone ID by calling
the get_dockZoneID() method. If this is an empty string, the control was dropped in a floating position;
otherwise, it was dropped on a dock zone. When the RadDock control is dropped in a floating position, the
event handler "opens" the book by enlarging it. When the control is dropped on a dock zone, the book is
"shelved" by resizing it to the dimensions of a book spine.

Implementing RadDock client-side custom commands
You have already seen how to implement RadDock custom commands in the code-behind using the server-side

[JavaScript] Resizing docked controls in OnClientDockPositionChanged

function PositionChanged(dock) {
 // Check to zone ID to see if it landed in a dock zone
 if (dock.get_dockZoneID() == "")
 // if not, take it off the shelf
 TakeOffShelf(dock);
 else
 // if so, put it on the shelf
 PutOnShelf(dock);
}
// PutOnShelf sets the dimensions of a shelved book
function PutOnShelf(dock) {
 dock.set_width(20);
 dock.set_height(49);
}
// TakeOffShelf sets the dimensions of an open book
function TakeOffShelf(dock) {
 dock.set_width(150);
 dock.set_height(100);
}

You can find the complete source for this project at:
 \VS Projects\RealEstate\ClientSide

UI for ASP.NET AJAX

257 UI for ASP.NET AJAX

Command event. If you want to avoid the postback required for the Command event, you can implement
custom commands on the client by using the client-side OnClientCommand event.

The following example uses the client-side OnClientCommand event to enable or disable a text box in the
content area of a RadDock control:

The OnClientCommand handler uses the RadTextBox client-side methods to check the enabled state of the text
box and change it. The handler is hooked up to the command object by setting the "OnClientCommand"
property of the command object in the <Commands> collection of the RadDock control:

You can find the complete source for this project at:
\VS Projects\RealEstate\ClientCommand

[ASP.NET] Client-side commands

<script type="text/javascript">
 function ChangeEnable(dock, args) {
 // get the text box
 var edit = $find("<%= RadTextBox1.ClientID %>");
 // toggle the enabled state of the text box
 if (edit.get_enabled())
 edit.disable();
 else
 edit.enable();
 }
</script>

<telerik:RadDockZone ID="RadDockZone1" Runat="server"
 Height="150px" Width="300px" FitDocks="false">
</telerik:RadDockZone>
<telerik:RadDock ID="RadDock1" Runat="server"
 Width="200px" Title="Details">
 <ContentTemplate>
 <telerik:RadTextBox ID="RadTextBox1" Runat="server"
 EmptyMessage="(No Details)" TextMode="MultiLine"
 Height="100px" Width="180px" Rows="3" >
 </telerik:RadTextBox>
 </ContentTemplate>
 <Commands>
 <telerik:DockCommand
 Text="Toggle edit mode"
 OnClientCommand="ChangeEnable" />
 </Commands>
</telerik:RadDock>

UI for ASP.NET AJAX

258 UI for ASP.NET AJAX

Manipulating RadWindow controls
The RadWindow client-side methods give you almost complete control over the pop-up window. You can show
or hide the window, change its properties, minimize it, maximize it, move it, pin it, and so on. The following
example illustrates a few of these methods.

In this example, the RadWindow control is visible when the page first loads, but does not have its NavigateUrl
property set, so its content area is empty. In addition to the window, the page contains two buttons and two
links (<a> elements).

When the user clicks on the first button, the onclick handler assigns the content of the window using its setUrl
() method. Before setting the URL, the onclick handler first checks whether the window is open, and if not, it
sets the size and title of the window, calls the center() method to position it, and then uses the window's show
() method to open it.

The links do not use the setUrl() method of the window. Instead, they simply set their target attribute to the ID
of the window. Because RadWindow controls are automatically added to the frames collection of the browser,
this works to assign the window as the target of the link, setting its content to the URL specified by the link's
href attribute.

The first link uses only the target and href attributes. If the window is open, the URL is displayed in the
window. If not, the link does not work.

The second link behaves like the first link, except that it also has on onclick handler that calls the window's
show() method to display the window. Because of the onclick handler, this link always works.

Finally, the second button calls the window's show() method to display the window if it is not showing.

If there is a RadWindowManager present on the Web page, you can also display a window by calling the
radopen(URL, windowID) function.

[ASP.NET] Manipulating RadWindow

<script type="text/javascript">
 function SetWindowUrl() {
 // get a reference to the window
 var window1 = $find("<%= RadWindow1.ClientID %>");
 // check if it is closed

UI for ASP.NET AJAX

259 UI for ASP.NET AJAX

If you run this example and click on the first button or either of the links, you will see that they all do pretty
much the same thing: They set the URL of the window so that it displays the associated URL. If you close the
window before clicking on the first button or one of the links, you will see a difference. The button changes the
window properties and opens it to display its URL. The first link does not seem to work when you click on it
with the window closed. The second link opens the window to display its link. If you close the window again,
click on the first link, and then click the "Open Window" button, you can see that the first link actually did
change the URL of the window, it simply had no visible effect because the window was closed.

Using the alert, confirm, and prompt dialogs
If you have a RadWindowManager on the Web page, you can replace the browser-supplied alert, confirm, and
prompt dialogs with more flexible versions that are based on RadWindow. The replacement dialogs can be
displayed using the radalert(), radconfirm(), and radprompt() functions.

 if (window1.isClosed()) {
 // assign a new width and height
 window1.set_width(400);
 window1.set_height(400);
 // set the title
 window1.set_title("Reopened window");
 // display the window
 window1.show();
 // center it on the page
 window1.center();
 }
 // assign the URL
 window1.setUrl("http://www.wikipedia.org (http://www.wikipedia.org/)");
 }
 function OpenWindow() {
 // get a reference to the window and open it
 var window1 = $find("<%= RadWindow1.ClientID %>");
 window1.show();
 }
</script>
<button id="setUrl" onclick="SetWindowUrl();" >Wikipedia</button>

<a href="http://www.google.com (http://www.google.com/)" target="RadWindow1"
>Google

<a href="http://www.yahoo.com (http://www.yahoo.com/)" target="RadWindow1"
 onclick="OpenWindow();">Yahoo

<button id="openWindow" onclick="OpenWindow();">Open Window</button>
<telerik:RadWindow
 OffsetElementId="setUrl"
 Runat="server"
 Width="200px"
 Height="200px"
 Top = "100px"
 Id="RadWindow1"
 style="display:none;"
 Behaviors="Default"
 InitialBehaviors="None"
 VisibleOnPageLoad="true">
</telerik:RadWindow>

You can find the complete source for this project at:
\VS Projects\RealEstate\ClientRadWindow

UI for ASP.NET AJAX

260 UI for ASP.NET AJAX

When calling the radalert(), radconfirm() or radprompt() function, you do not need to get a reference to the
RadWindowManager control, the window manager simply needs to be present on the page. Calling radalert(),
therefore, can be as simple and straightforward as calling the browser-supplied alert() function:

The resulting alert gets its appearance from the Skin property of the window manager. Unlike the browser-
implemented alert() function, with radalert(), you can display a formatted message by supplying a string of
HTML rather than simple text as the argument to the function. You can also use additional arguments to specify
the width and height of the dialog, and to supply a title:

Where callbackFn is the function that will be called when the dialog is closed. It receives an argument that
indicates whether it was closed via the OK button (true) or via the red [X] button (null):

The radconfirm() and radprompt() functions work slightly differently from the browser-supplied confirm() and
prompt() functions. Instead of working with a return value from the function, the radconfirm() and radprompt()
functions take a callback function as a second argument. The user's response is passed to the callback function
as an argument. As with radalert(), you can supply a string of HTML instead of plain text to display a formatted
prompt in these dialogs, and optionally supply additional arguments to specify width, height, and title of the
dialog.

The following example illustrates the use of the radalert(), radconfirm() and radprompt() dialogs. The three
dialogs are used with a RadDateInput control to prompt for a value, confirm it, and assign the value to the date
input control. If the user cancels from the prompt or confirm dialog, an alert dialog is displayed.

[JavaScript] Calling radalert()

radalert("Assignment cancelled.");

[JavaScript] Calling radalert() with additional arguments

radalert("Assignment cancelled.", 160, 75, selectedValue);

[JavaScript] Handling the result when the RadAlert is closed

function callbackFn (arg){
 alert(arg);
}

You can find the complete source for this project at:
\VS Projects\RealEstate\ClientDialogs

[ASP.NET] Using radprompt(), radconfirm(), and radalert()

<script type="text/javascript">

UI for ASP.NET AJAX

261 UI for ASP.NET AJAX

When the user clicks the button on the date input control, the OnButtonClick handler calls radprompt() to
display a prompt dialog. When the user exits the prompt dialog, the callback function either calls radalert() if
the user canceled, or radconfirm() to confirm the supplied value. When the user exits the confirm dialog, the
callback function either assigns the supplied value to the date input control or displays an alert to indicate that
the assignment was cancelled.

Since Q1 2011 the predefined dialogs (radalert, radconfirm and radprompt) can be now called by using the new
server methods RadAlert, RadConfirm and RadPrompt of the RadWindowManager. Note, that the callback
function is a client side javascript function in all cases, it does not matter if you show the dialog from the

 var selectedValue = "";
 // callback function for the confirm dialog
 function assignConfirmedValue(value) {
 // value is true if the user clicked OK
 if (value) {
 // get the date input and assign the supplied value
 var di = $find("<%= RadDateInput1.ClientID %>");
 di.set_value(selectedValue);
 }
 else
 // the user canceled, display an alert
 radalert("Assignment cancelled.", 150, 75, selectedValue);
 }
 // callback function for the prompt dialog
 function confirmValue(value) {
 // save the value the user supplied in 'selectedValue'
 selectedValue = value;
 // if the user hits Cancel, value is empty
 if (value == "")
 radalert("Assignment cancelled.");
 else {
 // display the confirm dialog for the supplied value
 // note the use of rich text in the message
 var msg = "Are you sure you want to set the time to '" + value + "'?";
 radconfirm(msg, assignConfirmedValue, 300, 100, null, "Confirm Time");
 }
 }
 // OnButtonClick event hanlder
 function PromptForValue(object, args) {
 // get the current time
 var now = new Date();
 // format the current time into a default value
 var curTime = now.getHours().toString() + ":";
 if (now.getMinutes() < 10)
 curTime = curTime + "0";
 curTime = curTime + now.getMinutes().toString();
 // display the prompt dialog, supplying the default value
 radprompt("Enter the time:", confirmValue, 200, 100, null, "Current Time", curTime);
 }
 </script>
<telerik:RadDateInput ID="RadDateInput1" Runat="server" ShowButton="True"
 DateFormat="h:mm tt">
<ClientEvents OnButtonClick="PromptForValue" />
</telerik:RadDateInput>
<telerik:RadWindowManager ID="RadWindowManager1" runat="server" Skin="Telerik">
</telerik:RadWindowManager>

UI for ASP.NET AJAX

262 UI for ASP.NET AJAX

server or from the client.

Here is an example:

[ASP.NET]Default.aspx

<telerik:RadWindowManager ID="RadWindowManager1" runat="server" EnableShadow="true">
</telerik:RadWindowManager>
<asp:Button ID="btnAlert" Width="150" runat="server" OnCommand="Btn_OnCommand"
Text="radalert from server"
CommandArgument="radalert" />
 <br style="clear: both" />
 <br style="clear: both" />
<asp:Button ID="btnConfirm" Width="150" runat="server" OnCommand="Btn_OnCommand"
Text="radconfirm from server" CommandArgument="radconfirm" /><br style="clear: both" />
 <br style="clear: both" />
<asp:Button ID="btnPrompt" Width="150" runat="server" OnCommand="Btn_OnCommand"
Text="radprompt from server"
CommandArgument="radprompt" />
<script type="text/javascript">
function alertCallBackFn(arg) {
 radalert("radalert returned the following result: <h3 style='color:
#ff0000;'>" + arg + "</h3>", null, null, "Result");
}
function confirmCallBackFn(arg) {
 radalert("radconfirm returned the following result: <h3 style='color:
#ff0000;'>" + arg + "</h3>", null, null, "Result");
}
function promptCallBackFn(arg) {
 radalert("After 7.5 million years, Deep Thought answers:<h3 style='color:
#ff0000;'>" + arg + "</h3>", null, null, "Deep Thought");
}
</script>

Default.aspx.cs

protected void Btn_OnCommand(Object sender, CommandEventArgs e)
{
switch (e.CommandArgument.ToString())
{
 case "radalert":
 RadWindowManager1.RadAlert("RadAlert is called from the server", 330, 100, "Server
RadAlert", "alertCallBackFn");
 break;
 case "radconfirm":
 RadWindowManager1.RadConfirm("Server radconfirm: Are you sure?", "confirmCallBackFn", 330,
100, null, "Server RadConfirm");
 break;
 case "radprompt":
 RadWindowManager1.RadPrompt("Server RadPrompt: What is the answer of Life, Universe and
Everything?", "promptCallBackFn", 330, 160, null, "Server RadPrompt", "42");
 break;
}
}

UI for ASP.NET AJAX

263 UI for ASP.NET AJAX

Printing the contents of a RadPane control
The client-side api for RadPane includes a print() method that lets you print the content of the pane as long as
that content comes from the same domain as your Web page. This capability is demonstrated in the following
example.

The Web page contains a splitter with two panes. One has content that is internal (included as part of the Web
page). The other has content that is loaded from an external source using the ContentUrl property. Both panes
display a mixture of text and ASP.NET controls.

When the user clicks on one of the two print buttons on the bottom of the page, the onclick handler obtains a
reference to the splitter and calls its getPaneById() method to get a reference to the pane that should be
printed. When calling the pane's print() method, the onclick handler passes in an array of style sheets. Each
element in the array is the path to a CSS file. (In this example, the array elements are simple file names
because the CSS files are sitting in the project folder.) The first style sheet ("printStyles.css") changes the
default properties of text on the page. The second style sheet ("Calendar.Office2007.css") is a copy of the
Calendar style sheet for the Office2007 skin. If you click the buttons to print the splitter panes, you will see
that the style sheets are applied to the internal pane, turning the text blue, but not to the external pane,

UI for ASP.NET AJAX

264 UI for ASP.NET AJAX

where the text remains its original color.

Using RadWindow as a floating tool window
You can use RadWindow pop-ups as floating tool windows that let the user make changes to the main Web
page. The following example illustrates how this is done by using a RadWindow that contains a color picker to
change the color of a panel on the main Web page.

The main Web page contains three elements:

 a <div> element that the pop-up tool window can influence.

 a <button> element to act as an opener element for the pop-up tool window.

 a RadWindow control to hold the color picker. The NavigateUrl property of the RadWindow control is set
to a Web Form that contains the color picker.

In addition to these three elements, the main Web page includes a JavaScript function to assign a color to the
<div> element.

We will look at style sheets for skins in the next chapter. For now, it is enough to understand that by
including the "Calendar.Office2007.css" style sheet, the printed calendar can reflect the "Office2007" skin
that was assigned to the RadCalendar control in the pane. You can find the "Calendar.Office2007.css" file in
the "Skins\Office2007" folder inside the folder where you installed RadControls for ASPNET AJAX.

[JavaScript] onclick handler to print panes

function PrintPane(paneID) {
 // get a reference to the splitter
 var splitter = $find('<%= RadSplitter1.ClientID%>');
 // use the getPaneById method to get a reference to the pane
 var pane = splitter.getPaneById(paneID);
 if (!pane) return;
 // call the pane's print method, passing in the style sheets
 // note that the style sheets are only used with internal content
 var arrExtStylsheetFiles = ['printStyles.css', 'Calendar.Office2007.css'];
 pane.Print(arrExtStylsheetFiles);
}

You can find the complete source for this project at:
VS Projects\RealEstate\ClientPrinting

9.8 How To

UI for ASP.NET AJAX

265 UI for ASP.NET AJAX

The project also contains a Web Form that supplies the content of the pop-up on the main page. This Web Form
is very simple; it contains a single RadColorPicker control with an OnClientColorChange event handler. The
event handler gets a reference to the RadWindow control that is hosting the Web Form, uses that to get a
reference to the parent window, and uses the reference to the parent window to call the "SetPanelColor"
function defined on its Web page.

Using RadWindow as a modal dialog
Another use for RadWindow controls is to act as modal dialogs. You have already seen some such dialogs: the
pop-up dialogs that RadWindowManager creates for the radalert(), radconfirm(), and radprompt() functions.
The following example illustrates how you can create your own dialogs.

There are two ways to pass arguments back from a RadWindow control used as a dialog. This example
implements two dialogs, where each one illustrates one of the techniques. The main form has a button to bring
up the first dialog. That dialog returns values using a callback function. The first dialog contains a text box with
a button to bring up the second dialog. The second dialog uses the properties of the RadWindow object to
return values.

[JavaScript] Function to change the <div> color

// SetPanelColor sets the background color of the
// <div> element to the specified color
function SetPanelColor(newColor) {
 var colorpanel = $get("ColorDiv");
 colorpanel.style.backgroundColor = newColor;
}

[JavaScript] OnClientColorChange handler

// GetRadWindow returns a reference to the RadWindow
// wrapper for this page
function GetRadWindow() {
 var oWindow = null;
 if (window.radWindow)
 oWindow = window.radWindow;
 else if (window.frameElement.radWindow)
 oWindow = window.frameElement.radWindow;
 return oWindow;
}
// SelectColor handles the OnClientColorChange event
function SelectColor(sender, args) {
 // get the selected color
 var newColor = sender.get_selectedColor();
 if (newColor == null)
 newColor = "#ffffff";
 // get the RadWindow wrapper for this page
 var thisWindow = GetRadWindow();
 if (thisWindow)
 // use its BrowserWindow property to get the parent window
 // and call the SetPanelColor function on the browser window
 thisWindow.BrowserWindow.SetPanelColor(newColor);
}

You can find the complete source for this project at:
\VS Projects\RealEstate\HowToFloatingToolWindow

UI for ASP.NET AJAX

266 UI for ASP.NET AJAX

The main Web page

The main Web page is very simple. It contains only a button to bring up the "Contact Details" dialog, and a
RadWindow control to hold that dialog. The RadWindow control has its OpenerElementId property set to the
button, which is all that is needed to display the dialog. The Modal property of the window is true, so that the
dialog is modal, and the NavigateUrl property is set to the aspx file that implements the "Contact Details"
dialog. Because the "Contact Details" dialog returns its results using a callback, the RadWindow control assigns a
handler to the OnClientClose client-side event.

The Contact Details dialog

The Contact Details dialog is quite a bit more complicated, because it must interact with both the main Web
page, to which it is a child dialog, and the "Address" dialog, to which it is a parent. Let us first look at how it
communicates with the main Web page.

Any code to communicate with the main Web page must do so using the RadWindow object that hosts the
dialog. The first JavaScript function contained in this Web page is therefore one that provides a reference to
that RadWindow object. This is a function you have seen before (in the floating tool window example).

[JavaScript] OnClientClose handler

function ProcessContactDetails(sender, args) {
 alert("Contact Dialog returned '" + args + "'");
}

[JavaScript] Getting a reference to the RadWindow wrapper

// GetRadWindow returns a reference to the RadWindow
// wrapper for this page
function GetRadWindow() {
 var oWindow = null;
 if (window.radWindow)
 oWindow = window.radWindow;
 else if (window.frameElement)

UI for ASP.NET AJAX

267 UI for ASP.NET AJAX

The dialog contains two text boxes, one for name and one for address. When the user clicks the OK button, the
button's onclick handler retrieves a reference to the window wrapper, assembles a return value from the text
boxes, and passes it to the window's close() method. Passing an argument to the close() method causes the
RadWindow wrapper to execute its OnClientClose handler function, which was supplied in the main Web page.

The onclick handler for the cancel button is even simpler. It only needs to get a reference to the window
wrapper and close it:

That is it for communicating with the main Web page. Now let's turn our attention to bringing up and
communicating with the "Address" dialog. This is done using a RadWindow control on the Contact Details form.

The Address dialog is displayed when the user clicks the button of the "Address" text box. This is done by calling
the show() method of the RadWindow control.

When the main page displays the Contact Details dialog, it does not pass in any arguments. When bringing up
the Address dialog, however, the Contact Details dialog uses the current value of the Address text box to pass
in some arguments. The arguments are assigned in an OnClientShow event handler.

The Address dialog expects an arguments object with three fields: "street", "city", and "state", so the Contact
Details dialog must parse the address into its parts, create an arguments object, and assign the three fields to

 if (window.frameElement.radWindow)
 oWindow = window.frameElement.radWindow;
 return oWindow;
}

[JavaScript] Triggering the OnClientClose handler from the OK button

// HandleOk is the handler for the OK button
function HandleOk() {
 // get the RadWindow wrapper
 var currentWindow = GetRadWindow();
 if (currentWindow) {
 // combine the name and address into a string
 // and pass it as an argument to the callback
 var name = $find("<%= RadTextBox1.ClientID %>");
 var address = $find("<%= RadTextBox2.ClientID %>");
 currentWindow.close(name.get_value() + "/" + address.get_value());
 }
}

[JavaScript] Closing the window from the cancel button

// HandleCancel is the handler for the Cancel button
function HandleCancel() {
 var currentWindow = GetRadWindow();
 if (currentWindow) {
 // close the dialog
 currentWindow.close();
 }
}

[JavaScript] Displaying the Address dialog from the OnButtonClick handler

// ShowAddressDialog is the OnButtonClick handler for the address text box
function ShowAddressDialog() {
 // just display the dialog, the rest is handled by the window
 var dialog = $find("<%= RadWindow1.ClientID %>");
 dialog.show();
}

UI for ASP.NET AJAX

268 UI for ASP.NET AJAX

it. All of this is then assigned to the argument property of the RadWindow that hosts the Address dialog.

The Address dialog passes back return values using the same argument property that was used to pass in the
arguments. When the Address dialog closes, its OnClientClose event fires, and an event handler reads the
return values, assembles them into a single string, and assigns it to the address text box.

[JavaScript] Passing arguments to the dialog in the OnClientShow handler

// ParseAddress is a helper function
// It parses the value in the address text box
// and assigns the fields of the arguments object
// which will be used to initialize the address dialog
function ParseAddress(address, args) {
 // initialize variables
 var street = "";
 var city = "";
 var state = "";
 var curPart = "street";
 // go through the address string, splitting it up at commas
 // curPart keeps track of which section we are on
 for (var i = 0; i < address.length; i++) {
 if (address[i] != ",") {
 if (curPart == "street")
 street = street + address[i];
 else if (curPart == "city")
 city = city + address[i];
 else
 state = state + address[i];
 }
 else if (curPart == "street")
 curPart = "city";
 else if (curPart == "city")
 curPart = "state";
 }
 // assign the variables to the args object
 args.street = street.trim();
 args.city = city.trim();
 args.state = state.trim();
}
// InitializeDialog is the OnClientShow handler of the address dialog window
function InitializeDialog(sender, args) {
 // create a new object to pass arguments to the dialog
 var args = new Object();
 args.street = "";
 args.city = "";
 args.state = "";
 var addr = $find("<%= RadTextBox2.ClientID %>");
 // call ParseAddress to assign the current address to the args object
 ParseAddress(addr.get_value(), args);
 // assign the args object as the argument of the dialog window
 sender.argument = args;
}

[JavaScript] Assigning return values in the OnClientClose handler

// AssignAddress is the OnClientClose handler for the address dialog window
// It is called when the dialog closes
function AssignAddress(sender, args) {
 // check if the dialog closed with an argument set

UI for ASP.NET AJAX

269 UI for ASP.NET AJAX

The Address dialog

When the address dialog first appears, it initializes itself based on the arguments passed in the argument
property of the RadWindow wrapper. This is handled in a pageLoad event function which is fired once the
entire page has loaded.

 if (sender.argument != null) {
 // if so, combine the fields of the argument
 // into an address string
 var newAddress = sender.argument.street;
 if (newAddress.length > 0)
 newAddress = newAddress + ", ";
 newAddress = newAddress + sender.argument.city;
 if (sender.argument.city.length > 0)
 newAddress = newAddress + ", ";
 newAddress = newAddress + sender.argument.state;
 // get a reference to the address text box and assign the value
 var addr = $find("<%= RadTextBox2.ClientID %>");
 addr.set_value(newAddress.trim());
 }
}

[ASP.NET] Initializing the dialog

<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <script type="text/javascript">
 // GetRadWindow returns a reference to the RadWindow
 // wrapper for this page
 function GetRadWindow()
 {
 var oWindow = null;
 if (window.radWindow)
 oWindow = window.radWindow;
 else if (window.frameElement)
 if (window.frameElement.radWindow)
 oWindow = window.frameElement.radWindow;
 return oWindow;
 }
 // Initialize initializes the text boxes
 function pageLoad()
 {
 // get a reference to the RadWindow wrapper
 var currentWindow = GetRadWindow();
 // read the argument of the wrapper and use it to
 // initialize the text boxes
 if (currentWindow)
 {
 var args = currentWindow.argument;
 if (args)
 {
 var street = $find("<%= RadTextBox1.ClientID %>");
 var city = $find("<%= RadTextBox2.ClientID %>");
 var state = $find("<%= RadTextBox3.ClientID %>");
 street.set_value(args.street);

UI for ASP.NET AJAX

270 UI for ASP.NET AJAX

Note the use of our old friend, the GetRadWindow() method.

The handler for the cancel button is pretty similar to the one in the Contact Details dialog. The only difference
is that this time, the handler must set the argument property to null. That is because this dialog uses the
argument property to pass back return values, and setting argument to null signals that the user cancelled.

The handler for the OK button assigns return values to the argument property rather than passing them as a
parameter to the close() method. Because the close() method is called without arguments, no callback event
occurs, and the parent window must retrieve the arguments in response to the OnClientClose event.

 city.set_value(args.city);
 state.set_value(args.state);
 }
 }
 }
 ...

[JavaScript] The cancel button onclick handler

// HandleCancel is the handler for the cancel button
function HandleCancel() {
 // get a reference to the window wrapper
 var currentWindow = GetRadWindow();
 if (currentWindow) {
 // make sure the window argument is null and close
 currentWindow.argument = null;
 currentWindow.close();
 }
}

[JavaScript] Assigning argument in the OK button onclick handler

// HandleOk is the handler for the OK button
function HandleOk() {
 // get a reference to the window wrapper
 var currentWindow = GetRadWindow();
 if (currentWindow) {
 // read the values entered into the dialog
 var street = $find("<%= RadTextBox1.ClientID %>");
 var city = $find("<%= RadTextBox2.ClientID %>");
 var state = $find("<%= RadTextBox3.ClientID %>");
 // create an object to hold the arguments and assign values
 var args = new Object();
 args.street = street.get_value();
 args.city = city.get_value();
 args.state = state.get_value();
 // assign the arguments object to the window and close it
 currentWindow.argument = args;
 currentWindow.close();
}
}

You can find the complete source for this project at:
\VS Projects\RealEstate\HowToModalDialog

UI for ASP.NET AJAX

271 UI for ASP.NET AJAX

Filling the Web page with a splitter
To create the feel of a desktop application, you may want to have a splitter control fill the entire Web page. To
do this, you must obviously set the Width and Height properties of the splitter to "100%". However, if you just
set those properties and run your application, you may encounter some unexpected behavior. For example, you
may find the splitter with a height of 0!

To achieve the expected behavior, you need to make some changes to the tags that Visual Studio automatically
adds to the aspx file:

1. On the <html> tag, set the style attribute to give the document a height of 100%:
style="height:100%".

2. On the <body> tag, you must again set the style attribute to include a height of 100%. In addition, the
style attribute must reset the margin. The default margin of the body is 5 pixels, and you will want to
change this to 0. Optionally, you may also want to remove the page scroll bars for a more desktop-like
feel. Putting these changes together gives the tag:
<body style="height:100%;margin:0px" scroll="no">

3. Any elements that contain the splitter must also have their height set to 100% and their margin set to 0.
This includes the <form> tag:
<form id="form1" runat="server" style="height:100%;margin:0px">

Once you have added these changes, the splitter can fill the entire Web page.

The full-page splitter shown above was generated using the following markup:

Not all of the changes listed above are required for all browsers, but by including them all, you can achieve
the same effect regardless of the browser viewing your page.

[ASP.NET] Full-page splitter

<html xmlns="http://www.w3.org/1999/xhtml" style="height:100%" >
<head id="Head1" runat="server">

UI for ASP.NET AJAX

272 UI for ASP.NET AJAX

Displaying external content in a RadDock control
One of the differences between RadDock controls and RadWindow controls is that RadDock controls use content
that is loaded with the Web page, while RadWindow uses external content. However, sometimes you may want
to display content from an external source in a dockable window. You can accomplish this by putting a simple
iframe inside the content template of a RadDock control.

This is illustrated in the following example.

 <title>Full Page Splitter</title>
</head>
<body style="height:100%;margin:0px" scroll="no">
 <form id="form1" runat="server" style="height:100%;margin:0px">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <script type="text/javascript">
 function ChangeUrl(sender, args) {
 var pane = $find("<%= RadPane2.ClientID %>");
 pane.set_contentUrl(args.get_newValue());
 }
 </script>
 <div style="height:100%;margin:0px">
 <telerik:RadSplitter ID="RadSplitter1" Runat="server"
 Height="100%" Width="100%">
 <telerik:RadPane ID="RadPane1" Runat="server" Width="25px">
 <telerik:RadSlidingZone ID="RadSlidingZone1" Runat="server">
 <telerik:RadSlidingPane ID="RadSlidingPane1" Runat="server"
 Title="URL" Width="240px">

 <telerik:RadTextBox ID="RadTextBox1" Runat="server"
 Label="Enter URL " Text="http://www.telerik.com (http://www.telerik.com/)/"
Width="220px">
 <ClientEvents OnValueChanged="ChangeUrl" />
 </telerik:RadTextBox>
 </telerik:RadSlidingPane>
 </telerik:RadSlidingZone>
 </telerik:RadPane>
 <telerik:RadPane ID="RadPane2" Runat="server"
 ContentUrl="http://www.telerik.com (http://www.telerik.com/)">
 </telerik:RadPane>
 </telerik:RadSplitter>
 </div>
 </form>
</body>
</html>

You can find the complete source for this project at:
\VS Projects\RealEstate\HowToFullPageSplitter

UI for ASP.NET AJAX

273 UI for ASP.NET AJAX

Because there is no property to suppress the scroll bars of a RadDock control, you need to play a bit with the
size of the iframe and the size of the RadDock control, until the iframe fits exactly in the RadDock client area.
Thus, the only scroll bars that appear are the scroll bars of the page that has been loaded inside the iframe,
which appear as necessary based on the external content.

Dynamically creating RadDock controls
A common use of RadDock controls is to add controls to a portal page. To accomplish this, the Web application
needs to dynamically create the new RadDock controls that the user adds to the page. You have already seen
many of the techniques that are required to accomplish this: In the section on Server-Side Programming, you
saw how to add controls to the ContentContainer of a RadDock control and how to use the LoadDockLayout
and SaveDockLayout events to save and restore the dock layout. There are a few additional considerations to
take into account when the RadDock controls are dynamically created. These are illustrated in the following
example.

The Web page

The Web page in this example includes a drop-down list so that the user can select the type of control to add, a
button for adding controls, and a RadDockLayout control with two dock zones where the dynamically created
dock windows can be placed:

[ASP.NET] Using an iframe to add external content to a RadDock control

<telerik:RadDockZone ID="RadDockZone1" runat="server" Height="100px" Width="650px"
 Orientation="Horizontal">
 <telerik:RadDock ID="RadDock1" runat="server" Height="595px" Width="570px" Title="Free
Rice">
 <ContentTemplate>
 <iframe src="http://www.freerice.com (http://www.freerice.com/)" style="width:
550px; height: 550px;"></iframe>
 </ContentTemplate>
 </telerik:RadDock>
</telerik:RadDockZone>

You can find the complete source for this project at:
\VS Projects\RealEstate\HowToExternalDockContent

You can find the complete source for this project at:
\VS Projects\RealEstate\HowToDynamicDocks

UI for ASP.NET AJAX

274 UI for ASP.NET AJAX

The most important thing to note about these controls is that the EnableViewState property of the
RadDockZone control where dynamic docks are added is set to false. Because the contents of this dock zone
change in the code-behind, the controls collection of the dock zone after a postback does not match the
collection when the postback starts. This will lead to view state errors unless you disable the view state of the
dock zone.

Maintaining the dock layout

Recall how the RadDockLayout control manages the current layout of the dock windows and dock zones using a
List of DockState objects, which you can retrieve by calling its GetRegisteredDocksState method. Because the
application changes this layout every time a new dock is added, the application needs to save and access this
list every time there is a postback. To make that easier, a private property is added in the code-behind which
stores the list in a Session variable.

[VB] CurrentDockStates property

' Private property for storing the current dock states
Private Property CurrentDockStates() As List(Of DockState)
 Get
 Dim _currentDockStates As List(Of DockState) = DirectCast(Session("CurrentDockStates"),
List(Of DockState))
 If [Object].Equals(_currentDockStates, Nothing) Then
 _currentDockStates = New List(Of DockState)()
 Session("CurrentDockStates") = _currentDockStates
 End If
 Return _currentDockStates
 End Get
 Set(ByVal value As List(Of DockState))
 Session("CurrentDockStates") = value
 End Set
End Property

[C#] CurrentDockStates property

// Private property for storing the current dock states
private List<DockState> CurrentDockStates
{
 get
 {

UI for ASP.NET AJAX

275 UI for ASP.NET AJAX

This variable is maintained using the LoadDockLayout and SaveDockLayout events of the RadDockLayout
control. This is very similar to the "preserving dock layout" example, except that this time, the LoadDockLayout
event handler does not apply the dock states to the RadDock controls themselves. That is handled separately,
in a Page_Init event handler.

 List<DockState> _currentDockStates = (List<DockState>)Session["CurrentDockStates"];
 if (Object.Equals(_currentDockStates, null))
 {
 _currentDockStates = new List<DockState>();
 Session["CurrentDockStates"] = _currentDockStates;
 }
 return _currentDockStates;
 }
 set
 {
 Session["CurrentDockStates"] = value;
 }
}

[VB] LoadDockLayout and SaveDockLayout

' SaveDockLayout updates the CurrentDockStates variable when necessary
Protected Sub RadDockLayout1_SaveDockLayout(ByVal sender As Object, ByVal e As
DockLayoutEventArgs) Handles RadDockLayout1.SaveDockLayout
 CurrentDockStates = RadDockLayout1.GetRegisteredDocksState()
End Sub
' LoadDockLayout tells the dock layout control
' where the docks sit in their dock zones
Protected Sub RadDockLayout1_LoadDockLayout(ByVal sender As Object, ByVal e As
DockLayoutEventArgs) Handles RadDockLayout1.LoadDockLayout
 ' use the layout that was saved in the session
 For Each state As DockState In CurrentDockStates
 ' set the event arguments to the saved values
 e.Positions(state.UniqueName) = state.DockZoneID
 e.Indices(state.UniqueName) = state.Index
 Next
End Sub

[C#] LoadDockLayout and SaveDockLayout

// SaveDockLayout updates the CurrentDockStates variable when necessary
protected void RadDockLayout1_SaveDockLayout(object sender, DockLayoutEventArgs e)
{
 CurrentDockStates = RadDockLayout1.GetRegisteredDocksState();
}
// LoadDockLayout tells the dock layout control
// where the docks sit in their dock zones
protected void RadDockLayout1_LoadDockLayout(object sender, DockLayoutEventArgs e)
{
 // use the layout that was saved in the session
 foreach (DockState state in CurrentDockStates)
 {
 // set the event arguments to the saved values
 e.Positions[state.UniqueName] = state.DockZoneID;
 e.Indices[state.UniqueName] = state.Index;
 }
}

UI for ASP.NET AJAX

276 UI for ASP.NET AJAX

Creating and adding dock windows in the button's Click handler

The button's Click event handler creates and initializes a new RadDock control. Using the ContentContainer, it
adds the contents of the RadDock control based on the current selection in the drop-down list. In this example,
the content is built up dynamically in code, but you could also load a custom control (ascx) or even (by using
the trick with a splitter shown above) display content from another URL. Once its content has been added, the
new RadDock control is added to the dock zone.

[VB] Creating and adding a dock window in the button's Click handler

'Button to add a new dock
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) Handles
Button1.Click
 Dim dock As RadDock = CreateRadDock()
 ' Store the type of content in the tag
 dock.Tag = DropDownList1.SelectedItem.Text
 ' Use the type of content to create a title
 dock.Title = dock.Tag + CurrentDockStates.Count.ToString()
 ' add the content to the RadDock
 LoadContent(dock)
 ' Add the RadDock to the first dock zone
 RadDockZone1.Controls.Add(dock)
End Sub
' Create and initialize a new RadDock control
Private Function CreateRadDock() As RadDock
 ' get the current count of RadDock controls
 Dim docksCount As Integer = CurrentDockStates.Count
 ' Create the RadDock control
 Dim dock As New RadDock()
 ' use the skin of the dock layout
 dock.Skin = RadDockLayout1.Skin
 ' use the count to give it an ID
 dock.ID = String.Format("RadDock{0}", docksCount)
 ' use a guid to set the UniqueName
 dock.UniqueName = Guid.NewGuid().ToString()
 ' set the width to the width of the dock zones
 dock.Width = Unit.Pixel(200)
 ' make sure it must be docked
 dock.DockMode = DockMode.Docked
 Return dock
End Function
' add content based on the tag value
Private Sub LoadContent(ByVal dock As RadDock)
 Select Case dock.Tag
 Case "Calendar"
 Dim calendar As New RadCalendar()
 calendar.Skin = RadDockLayout1.Skin
 calendar.ID = dock.ID + "calendar"
 'Add the calendar to the ContentContainer
 dock.ContentContainer.Controls.Add(calendar)
 Exit Select
 Case "Colors"
 Dim colors As New RadColorPicker()
 colors.Skin = RadDockLayout1.Skin
 colors.ID = dock.ID + "colors"
 colors.Preset = ColorPreset.ReallyWebSafe

UI for ASP.NET AJAX

277 UI for ASP.NET AJAX

 'Add the color picker to the ContentContainer
 dock.ContentContainer.Controls.Add(colors)
 Exit Select
 Case "Text"
 Dim text As New RadTextBox()
 text.Skin = RadDockLayout1.Skin
 text.ID = dock.ID + "text"
 'Add the text box to the ContentContainer
 dock.ContentContainer.Controls.Add(text)
 Exit Select
 End Select
End Sub

[CS] Creating and adding a dock window in the button's Click handler

// Button to add a new dock
protected void Button1_Click(object sender, EventArgs e)
{
 RadDock dock = CreateRadDock();
 // Store the type of content in the tag
 dock.Tag = DropDownList1.SelectedItem.Text;
 // Use the type of content to create a title
 dock.Title = dock.Tag + CurrentDockStates.Count.ToString();
 // add the content to the RadDock
 LoadContent(dock);
 // Add the RadDock to the first dock zone
 RadDockZone1.Controls.Add(dock);
}
// Create and initialize a new RadDock control
private RadDock CreateRadDock()
{
 // get the current count of RadDock controls
 int docksCount = CurrentDockStates.Count;
 // Create the RadDock control
 RadDock dock = new RadDock();
 // use the skin of the dock layout
 dock.Skin = RadDockLayout1.Skin;
 // use the count to give it an ID
 dock.ID = string.Format("RadDock{0}", docksCount);
 // use a guid to set the UniqueName
 dock.UniqueName = Guid.NewGuid().ToString();
 // set the width to the width of the dock zones
 dock.Width = Unit.Pixel(200);
 // make sure it must be docked
 dock.DockMode = DockMode.Docked;
 return dock;
}
// add content based on the tag value
private void LoadContent(RadDock dock)
{
 switch (dock.Tag)
 {
 case "Calendar":
 RadCalendar calendar = new RadCalendar();
 calendar.Skin = RadDockLayout1.Skin;
 calendar.ID = dock.ID + "calendar";

UI for ASP.NET AJAX

278 UI for ASP.NET AJAX

There are a few important things to notice in the code above. The first is the use of the Tag property. Tag is a
string property of RadDock with no pre-defined use. It is a convenient place to store application-specific
information. In our case, we store the type of control the RadDock contains. If you recall from the section of
Server-Side Programming, controls added directly to the ContentContainer, as we are doing here, do not
persist in the view state. They must be re-created every time the page loads. By saving the type of control in
the Tag property, which is saved in the dock state, the application can know what types of controls to re-
create on the next postback.

The second thing to note is that the code to add content to the new RadDock control is handled by a separate
method that reads the Tag property and uses that to generate the content. By structuring the code in this way,
we can re-use the method that initially creates content when we must re-create that content on the next
postback.

The third thing to note is that when the CreateRadDock method initializes a RadDock control, it sets the
UniqueName property. RadDockLayout uses the UniqueName property to identify each of the RadDock controls
on the page. When this property is not explicitly set, it is the same as the ID property. However, by using a
GUID for UniqueName, the application can more robustly ensure that the dock windows are correctly identified.

Finally, note that the CreateRadDock method sets the DockMode property to "Docked". This example uses a
RadAjaxManager to handle the button click in an asynchronous postback that updates the dock layout. As we
have seen before, when updating a dock layout from an AJAX callback, all RadDock controls must be docked.

Re-creating controls on a postback

As was mentioned previously, content that is added to the ContentContainer must be re-created on every
postback, because it does not persist in the view state. There is a similar problem with the dynamically created
RadDock controls themselves: because they are added to a dock zone in the code-behind, they also do not
persist in the view state. As a result, the application must add a Page_Init event handler to regenerate all of
the dock windows, including their content. The properties of the dock windows can be obtained from the dock
states, which are available from our private CurrentDockStates property.

 // add calendar to the ContentContainer
 dock.ContentContainer.Controls.Add(calendar);
 break;
 case "Colors":
 RadColorPicker colors = new RadColorPicker();
 colors.Skin = RadDockLayout1.Skin;
 colors.ID = dock.ID + "colors";
 colors.Preset = ColorPreset.ReallyWebSafe;
 // add color picker to the ContentContainer
 dock.ContentContainer.Controls.Add(colors);
 break;
 case "Text":
 RadTextBox text = new RadTextBox();
 text.Skin = RadDockLayout1.Skin;
 text.ID = dock.ID + "text";
 // add text box to the ContentContainer
 dock.ContentContainer.Controls.Add(text);
 break;
 }
}

[VB] Re-creating the dock windows

' the saved dock state must be restored on page init
Protected Sub Page_Init(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Init
 Dim i As Integer = 0
 While i < CurrentDockStates.Count
 ' re-create the radDock control

UI for ASP.NET AJAX

279 UI for ASP.NET AJAX

In this chapter you looked at the "real estate" management controls, learning how they can help organize the
content on your Web pages into flexible content areas that can be moved, resized, or hidden. You saw many of
the important properties. You created a simple application that used dock zones and dock windows, a splitter,
and some pop-up windows managed by a window manager. You also created simple applications to become
familiar with minimize zones and sliding zones.

You learned to use the server-side API with the RadDock family of controls, adding content in the code-behind,
implementing custom commands, and preserving dock layout in a cookie. You learned to perform common
client-side tasks such as responding to layout changes, implementing custom commands, manipulating windows,
printing the panes of a splitter, and using the customizable alert, confirm, and prompt dialogs.

Finally, you learned techniques that are important to some of the more common applications that use the "real
estate" management controls, including implementing tool windows and modal dialogs, creating a desktop-like
window by filling the entire Web page with a splitter, and creating dockable windows dynamically.

 Dim dock As New RadDock()
 dock.ID = String.Format("RadDock{0}", i)
 ' restore properties from Current Dock States
 dock.ApplyState(CurrentDockStates(i))
 ' add it to the dock layout
 ' the dock layout can restore its position
 RadDockLayout1.Controls.Add(dock)
 ' restore the content
 LoadContent(dock)
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
End Sub

[C#] Re-creating the dock windows

// the saved dock state must be restored on page init
protected void Page_Init(object sender, EventArgs e)
{
 for (int i = 0; i < CurrentDockStates.Count; i++)
 {
 // re-create the radDock control
 RadDock dock = new RadDock();
 dock.ID = string.Format("RadDock{0}", i);
 // restore properties from the Current Dock States
 dock.ApplyState(CurrentDockStates[i]);
 // add it to the dock layout
 // the dock layout can restore its position
 RadDockLayout1.Controls.Add(dock);
 // restore the content
 LoadContent(dock);
 }
}

Gotcha! Be sure to use the Page_Init event to re-create dock windows. This event occurs at the
proper time so that the CurrentDockStates property holds the controls you need to re-create. Using
another event, such as Page_Load can result in dock windows that do not reflect the user's most
recent changes to the layout.

9.9 Summary

UI for ASP.NET AJAX

280 UI for ASP.NET AJAX

 Learn how to use the built-in skins to provide a consistent style to your controls and overall application

 Learn how skins use standard CSS files and how the styles interact with the rendered controls.

 Explore different techniques for registering and assigning skins.

 Alter an existing skin and create a custom skin.

Skins let you style your entire application with a consistent look and feel. This example (screenshot below)
shows the same application in multiple different skins. The code-behind and markup is completely identical
between screenshots, so you can see that skinning truly separates appearance from functionality.

RadControls for ASP.NET AJAX use skins to control overall look-and-feel. A skin is a set of images and a CSS
stylesheet that can be applied to control elements (items, images, etc.) to define their look and feel. To apply
a skin to a RadControl, set its Skin property, either using the properties pane or the Smart Tag. Each control is
installed with a number of preset skins that coordinate with the look of other RadControls using the same skin:

 Black

 Default

10 Skinning

10.1 Objectives

10.2 Introduction

UI for ASP.NET AJAX

281 UI for ASP.NET AJAX

 Forest

 Hay

 Office2007

 Outlook

 Simple

 Sitefinity

 Sunset

 Telerik

 Vista

 Web20

 WebBlue

 Windows7

You can also alter existing skins or create your own skin from scratch. Set the Skin individually for each control
in the designer, declaratively or in code. Or you can set the skin for the entire application in the web.config
or using code you can dynamically change the appearance of all controls in the application at runtime.

This walk-through demonstrates assigning skins in code.

1. In a new web application, add a ScriptManager to the default page.

2. Add a RadFormDecorator to the page.

3. Add a RadTabStrip to the page. Set the AutoPostBack property to True.

4. Use the Smart Tag and click the Build RadTabStrip... option.

 Add three tabs with Text "Default", "Telerik" and "Sunset".

 Make sure that the first tab "Default" has the Selected property set to True.

5. Add some standard ASP Button, RadioButton and CheckBox controls on the page. These will be skinned
automatically by the RadFormDecorator.

10.3 Getting Started

UI for ASP.NET AJAX

282 UI for ASP.NET AJAX

6. Double-click the RadTabStrip to create a TabClick event handler. Change the event handler to use the
code shown below. The code simply assigns the tab text, which happens to contain skin names, to the
RadFormDecorator and RadTabStrip Skin properties.

7. Press Ctl-F5 to run the application. Try clicking the tabs to see how the three skins are applied.

Registering Skins
Skins use Cascading Style Sheets (CSS) to define a control's visual appearance. This CSS file needs to be
registered in the page for the skin to take effect. By default, each RadControl has an EnableEmbeddedSkins
property that is set to True. When you set the Skin property to a built-in skin name the CSS file will be
automatically registered. If you have a custom skin, set EnableEmbeddedSkins to False and register the CSS
manually. Later in this chapter we will get into the specifics of creating your own custom skin starting from an
existing skin as a base.

You can drag the stylesheet from the Solution Explorer or type it directly to the markup. Both routes add a
<link> tag inside the <head>. Depending on where in the solution folder explorer you have the CSS stored the
reference can look like the example below:

[VB] Handling the TabClick Event

Protected Sub RadTabStrip1_TabClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadTabStripEventArgs)
 RadFormDecorator1.Skin = e.Tab.Text
 RadTabStrip1.Skin = e.Tab.Text
End Sub

[C#] Handling the TabClick Event

protected void RadTabStrip1_TabClick(object sender, Telerik.Web.UI.RadTabStripEventArgs e)
{
 RadFormDecorator1.Skin = e.Tab.Text;
 RadTabStrip1.Skin = e.Tab.Text;
}

10.4 Registering and Assigning Skins

[ASP.NET] Registering the CSS Manually

<head runat="server">
 . . .
 <link href="../Skins/TabStrip.MySkin.css" rel="stylesheet" type="text/css" />
</head>

UI for ASP.NET AJAX

283 UI for ASP.NET AJAX

You could also programmatically add the link on the server. The example code below creates an HtmlLink and
sets the properties to that matching a file "stylesheet1.css" residing in the root of the project and adds it to the
page header controls collection. Note:HtmlLink requires a reference to the System.Web.UI.HtmlControls
assembly.

Assigning Skins
As we saw earlier, you can assign the Skin property declaratively, in the designer or in code. If you want to
register the skin globally (setting the entire application to use a particular embedded skin), you can add
application settings to web.config. The example <appSettings> element adds a "Telerik.Skin" key with value
"Hay". This sets all the RadControls for the application that uses this configuration to display the "Hay" skin.

If you want to create a custom skin, you can also set the EnableEmbeddedSkins property for every RadControl
in the application at one time. The example below registers a custom skin for every RadControl in the
application:

You can also mix-and-match settings so that one skin applies to all RadControls except a control that has a
specific skin applied. The example below assigns the skin "Hay" globally except for RadMenu which is assigned
the "Sunset" skin.

[VB] Adding Style Sheet Programmatically

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' create and populate an HtmlLink so that it
 ' points to the file stylesheet1.css located
 ' in the root of the web application.
 Dim link As New HtmlLink()
 link.Href = "stylesheet1.css"
 link.Attributes.Add("type", "text/css")
 link.Attributes.Add("rel", "stylesheet")
 Page.Header.Controls.Add(link)
End Sub

[C#] Adding Style Sheet Programmatically

protected void Page_Load(object sender, EventArgs e)
{
 // create and populate an HtmlLink so that it
 // points to the file stylesheet1.css located
 // in the root of the web application.
 HtmlLink link = new HtmlLink();
 link.Href = "stylesheet1.css";
 link.Attributes.Add("type", "text/css");
 link.Attributes.Add("rel", "stylesheet");
 Page.Header.Controls.Add(link);
}

[ASP.NET] Adding Application Settings

<appSettings>
<!-- Sets the skin for all RadControls to Hay -->
<add key="Telerik.Skin" value="Hay"/>
</appSettings>

[ASP.NET] Disable Embedded Skins and Add Custom Skin

<appSettings>
<add key="Telerik.Skin" value="MySkin" />
<add key="Telerik.EnableEmbeddedSkins" value="false" />
</appSettings>

UI for ASP.NET AJAX

284 UI for ASP.NET AJAX

There is a specific priority to what skin is used when skins are assigned at different levels:

 The settings applied at page level have top priority.

 The settings applied for a particular control in the web.config file are next in priority.

 The settings applied for all RadControls globally in the web.config file are last in priority.

Assigning Skins Programmatically at Run Time
Somewhere back in the inheritance chain of each RadControl you will find ISkinnableControl that defines how
the control interacts with skins. The interface definition is shown below. You can see that it defines the Skin
property itself used to get and set the skin name. The EnableEmbeddedSkins property is also defined here.
There is also a GetEmbeddedSkinNames() method that returns a list of skin names as a generic list of string. We
can use this last method to populate a combo box so that we can select a skin name at run time.

Skins can be assigned to all RadControls on the page at runtime. For that purpose you can use the
RadSkinManager control by setting its Skin property. By default the Skin property of RadSkinManager is an
empty string. If the property is set to a different value and Enabled is set to true for the control, the manager
will apply automatically the specified skin to all RadControls on the form. If you set the ShowChooser property
to true the manager will display run-time RadComboBox as a part of its smart tag, populated with all embedded
skins, where you can pick a skin. You can use the RadSkinManager to assign specific Skin to a particular control
by adding a setting to its TargetControls collection. However in the cases you want RadSkinManager Skin to be
applied on any other RadControl on the page, the control Skin property should not be set explicitly.
We will create an interface with a sampling of controls and use the control to apply the chosen style at
runtime.

1. Create a new web application and add a ScriptManager to the default page.

[ASP.NET] Assigning Global and Specific Skins

<appSettings>
<add key="Telerik.Skin" value="Hay" />
<add key="Telerik.Menu.Skin" value="Sunset" />
</appSettings>

[VB] ISkinnableControl Interface Definition

Public Interface ISkinnableControl
 Inherits IControl
 Property AjaxCssRegistrations() As String
 Property EnableAjaxSkinRendering() As Boolean
 Property EnableEmbeddedBaseStylesheet() As Boolean
 Property EnableEmbeddedSkins() As Boolean
 ReadOnly Property IsSkinSet() As Boolean
 Property Skin() As String
 Function GetEmbeddedSkinNames() As List(Of String)
End Interface

[C#] ISkinnableControl Interface Definition

public interface ISkinnableControl : IControl
{
 string AjaxCssRegistrations { get; set; }
 bool EnableAjaxSkinRendering { get; set; }
 bool EnableEmbeddedBaseStylesheet { get; set; }
 bool EnableEmbeddedSkins { get; set; }
 bool IsSkinSet { get; }
 string Skin { get; set; }
 List<string> GetEmbeddedSkinNames();
}

UI for ASP.NET AJAX

285 UI for ASP.NET AJAX

2. Drop a RadSkinManager on the form. Set the ShowChooser property to True.

3. Add the following markup. It defines a RadSplitter layout and has comments embedded that we'll use to
add additional controls.

4. Add a RadMenu, RadPanelBar and RadGrid to the markup. Note: we haven't covered the RadGrid yet but
the purpose of the controls here is simply as a canvas to demonstrate skinning. The next steps will just
involve copying in the ASP.NET markup:

 Add RadMenu markup to the markup for the page where indicated by the comment. The markup
simply defines a few items and sub-items.

[ASP.NET] Defining the RadSplitter Layout

<telerik:RadSplitter ID="RadSplitter1" runat="server" Orientation="Horizontal" Width="100%"
Height="100%">
 <telerik:RadPane ID="menuPane" Runat="server" Height="23px" Scrolling="None">

 <%--add menu here--%>

 </telerik:RadPane>
 <telerik:RadPane ID="RadPane4" runat="server" Scrolling="None">
 <telerik:RadSplitter ID="RadSplitter2" runat="server" Orientation="Vertical" Width="100%"
Height="100%">
 <telerik:RadPane ID="RadPane2" runat="server" Scrolling="None">
 <telerik:RadSlidingZone ID="RadSlidingZone1" runat="server"
ExpandedPaneId="RadSlidingPane1">
 <telerik:RadSlidingPane ID="RadSlidingPane1" runat="server" Title="My Tools"
Scrolling="None">

 <%--add panel bar here --%>

 </telerik:RadSlidingPane>
 </telerik:RadSlidingZone>
 </telerik:RadPane>
 <telerik:RadSplitBar ID="RadSplitBar1" runat="server" />
 <telerik:RadPane ID="RadPane1" runat="server" Scrolling="None">

 <%--add grid here--%>

 </telerik:RadPane>
 </telerik:RadSplitter>
 </telerik:RadPane>
</telerik:RadSplitter>

As the layout becomes more complex, especially with RadSplitter controls, the design environment can
become less useful. As an application reaches this complexity you may wish to work directly in the
ASP.NET markup.

[ASP.NET] The RadMenu Definition

<telerik:RadMenu ID="RadMenu1" runat="server" Width="100%" >
 <Items>
 <telerik:RadMenuItem runat="server" Text="File">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Products">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Customers">

UI for ASP.NET AJAX

286 UI for ASP.NET AJAX

 Add RadPanelBar markup to the markup for the page where indicated by the comment. Again, this just
sets up a couple levels of panel items so we can see how that looks when styled.

 Add RadGrid markup to the markup for the page where indicated by the comment. We will add some
minimal server code-behind to display a little data in the grid.

5. Handle the Page_Load event to get a list of skins. It is used as datasource for the RadGrid. RadGrid
implements ISkinnableControl and so has a GetEmbeddedSkinNames() method. (More on RadGrid and
databinding in later chapters).

 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Orders">
 </telerik:RadMenuItem>
 </Items>
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Tools">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem runat="server" Text="Help">
 </telerik:RadMenuItem>
 </Items>
</telerik:RadMenu>

[ASP.NET] The RadPanelBar Definition

<telerik:RadPanelBar ID="RadPanelBar1" runat="server" Width="200px">
 <CollapseAnimation Duration="100" Type="None" />
 <Items>
 <telerik:RadPanelItem runat="server" Text="My Tools">
 </telerik:RadPanelItem>
 <telerik:RadPanelItem runat="server" Text="My Searches">
 <Items>
 <telerik:RadPanelItem runat="server" Text="Discontinued Products"
></telerik:RadPanelItem>
 <telerik:RadPanelItem runat="server" Text="New Products" ></telerik:RadPanelItem>
 <telerik:RadPanelItem runat="server" Text="On Order" ></telerik:RadPanelItem>
 <telerik:RadPanelItem runat="server" Text="Backorders" ></telerik:RadPanelItem>
 </Items>
 </telerik:RadPanelItem>
 <telerik:RadPanelItem runat="server" Text="Options">
 </telerik:RadPanelItem>
 </Items>
 <ExpandAnimation Duration="100" Type="None" />
</telerik:RadPanelBar>

[ASP.NET] The RadGrid Definition

<telerik:RadGrid ID="RadGrid1" runat="server" GridLines="None" >
 <MasterTableView AutoGenerateColumns="true" ></MasterTableView>
</telerik:RadGrid>

[VB] Handling the Page_Load Event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 Dim skins As List(Of String) = RadGrid1.GetEmbeddedSkinNames()
 RadGrid1.DataSource = skins
 End If

UI for ASP.NET AJAX

287 UI for ASP.NET AJAX

6. Press Ctl-F5 to run the application. Select different skins and see the effect to the UI.

Styles for RadControls are defined using Cascading Style Sheet (CSS) syntax. Each style consists of a selector
that identifies an HTML element to be styled, and property/value pairs that describe each of the style
specifics, e.g. color, padding, margins, etc. For example, the ".rcbHovered" style will have a light green
background and white text.

You can see custom styles applied to a RadComboBox in the screenshot below.

Each style maps to a "class" attribute in an HTML tag. For example, the RadComboBoxDropDown_MySkin is a
general style that applies to the entire <div> tag that represents the control. Class attributes change as the

End Sub

[C#] Handling the Page_Load Event

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 List<string> skins = RadGrid1.GetEmbeddedSkinNames();
 RadGrid1.DataSource = skins;
 }
}

You can find the complete source for this project at:
\VS Projects\Skinning\AssigningSkins

10.5 Understanding the Skin CSS File

[CSS] Example Style

.rcbHovered
{
 background:LightGreen;
 color:#fff;
}

UI for ASP.NET AJAX

288 UI for ASP.NET AJAX

property values for the control change.

The image below shows a snapshot of what the rendered HTML looks like as the mouse passes over the "Oak"
entry in the combo box. Notice the list of list item tags and that the class attribute for the second item is
"rcbHovered".

When you need to change an existing skin, you can use various tools (to be discussed in a later chapter) to
visualize the HTML and styles. From there you can discover specific styles that affect the aspects of appearance
that you want to tweak. You can also find more information in the online help about specific RadControl CSS
skin file selectors.

Skin Files
The directory where RadControls for ASP.NET AJAX are installed contains a \Skins folder. Typically the structure
will be:

\Program Files\Telerik\RadControls for ASP.NET AJAX <version>\Skins
Here's a snapshot of the \Skins directory:

UI for ASP.NET AJAX

289 UI for ASP.NET AJAX

Within the \Skins directory you will find a series of CSS files, one for each control, e.g. Editor.css,
ColorPicker.css, etc. These are the base style sheets and govern the basic appearance and layout of the
control that are not skin specific. For instance, a RadMenu has a certain general layout with menu elements
having a particular relationship to one another that makes it look like a menu and not a combo box for
instance. In the base style sheet you won't typically find colors and images. These are left to the skin specific
style sheets.

At the same level in the \Skins directory alongside the base style sheets you find a series of folders named after
the skins they define. Inside one of these skin-named folders is another set of CSS files with naming convention
<control name>.<skin name>.css.

UI for ASP.NET AJAX

290 UI for ASP.NET AJAX

The folders contain a set of images that are referenced by the the stylesheets:

The images and style sheets can be used as starting points for your own custom skins or as reference material
when creating skins from scratch.

UI for ASP.NET AJAX

291 UI for ASP.NET AJAX

Alter an Existing Skin
The "Black" skin for RadMenu floats the menu to the left and the un-selected top level menu items are
relatively dim (see screenshot below).

We can change one of the built-in skins to float the menu to the right and brighten up the top level font a few
shades (see screenshot below).

The position of the menu is defined in the base style sheet, i.e. Menu.css and the color of the top level menu
items is defined in Menu.Black.css.

1. Create a new web application, add a ScriptManager and a RadMenu to the page. Use the RadMenu Smart
Tag to invoke the Build Rad Menu option. Add a few top level and child items to the menu. Set the Skin
property to "Black".

2. Copy from the Telerik installation directory \Skins folder the file "menu.css" to the \Skins folder in your
application. Within your application's \Skins folder, create a sub folder "\Black". Copy from the Telerik
\Skins\Black folder to the \Black folder in your application both the file "Menu.Black.css" and the \Menu
folder. Your project should now look something like the screenshot below:

You can also get the original PhotoShop files for skin images at: http://www.telerik.com/skins.

10.6 Creating a Custom Skin

UI for ASP.NET AJAX

292 UI for ASP.NET AJAX

3. In the designer, select the RadMenu and set EnableEmbeddedBaseStyles to False and
EnableEmbeddedSkins to False. Now the RadMenu will display based off the CSS and images in your \Skins
directory, not the embedded resources. Any changes you make to the CSS will now show up immediately in
the control.

4. Open up "Menu.css" for editing. In the ".RadMenu" element change the "float" attribute to "right". The
entire menu will not be right-justified on the web page.

5. Open up \Black\Menu.Black.css for editing. Locate the CSS selector ".RadMenu_Black .rmLink". Change the
"color" attribute to "#DfDfDf". This brightens up the un-selected top-level font.

Create Your Own Skin
With just a little more work we can make our own unique skin with its own skin name.

1. In the Solution Explorer, right-click the \Skin folder and select Add | New Folder. Name the new folder
"\MySkin". This folder will be a sibling to the \Black folder.

2. Copy the contents of the \Black folder to \MyFolder.

3. Rename the file "Menu.Black.css" to "Menu.MySkin.css".

[CSS] Editing Menu.css

.RadMenu
{
white-space:nowrap;
float:right;
position:relative;
}

[CSS] Editing Menu

.RadMenu_Black .rmLink
{
line-height: 32px;
text-decoration: none;
color: #DfDfDf;
padding-left:3px;
}

UI for ASP.NET AJAX

293 UI for ASP.NET AJAX

4. Open Menu.MySkin.css for editing. Replace all "_Black" with "MySkin".

 Press Ctl-H to find and replace.

 "Find What:" should be "_Black"

 For "Replace with:" enter "_MySkin".

 Click the Replace All button.

UI for ASP.NET AJAX

294 UI for ASP.NET AJAX

5. Set the Skin property of the RadMenu to "MySkin".

6. At this point you might expect to see your changes, but there's one last task. Drag "Menu.MySkin.css" to the
page. This will register the new css file. It's very easy to forget this step...

UI for ASP.NET AJAX

295 UI for ASP.NET AJAX

In this chapter you learned how to use the built-in skins to provide a coherent, consistent style to your
applications. You explored the general makeup of the skin CSS files and how the styles interact with the
controls rendered in the browser. You learned multiple techniques for registering and assigning skins. You
created your own custom skin starting with the "Black" skin as a basis.

10.7 Summary

UI for ASP.NET AJAX

296 UI for ASP.NET AJAX

 Introduce the bindable interfaces and Data Source controls.

 Get a feel for declarative data binding by a RadToolBar to a SqlDataSource.

 Review the data binding related properties and learn how to bind to multiple data sources at one time.

 Learn how to bind RadControls in code, starting with binding simple arrays and lists, then binding
hierarchical data, business objects and LINQ data.

 Learn how to handle data binding related server events.

Any industry-strength web application relies on database data, for example MS SQL, Oracle or MySQL.
RadControls can automatically bind to data stores using standard Microsoft supplied data source controls
SqlDataSource, AccessDataSource, XmlDataSource, LinqDataSource and ObjectDataSource or any
DataSourceControl implementation. Once the control is bound you can use the data for display-only or
configure the data source to support full CRUD (Create Read Update and Delete) operations. This chapter deals
with some of the common ways you can work with data in your controls.

You can bind RadControls to a data source that implements one of the following interfaces:

 IEnumerable: Supports simple iteration of a collection.

 ICollection: Extends IEnumerable and supports size, enumerator, and synchronization methods for
collections.

 IList: Extends ICollection and is the base class for lists.

 IBindingList: Extends IList and supports binding to a data source.

 IListSource: Provides functionality to an object to return a list that can be bound to a data source.

Some of the implementations of these interfaces include generic lists, Arrays, ArrayLists, CollectionBase
objects, and DataView/DataTable/DataSet objects. You can also bind to business objects in multi-tier scenarios
using ObjectDataSource, bind to XML using XMLDataSource and, for best flexibility and performance in .NET
3.0, LinqDataSource fits the bill nicely.

You can bind most of the RadControls declaratively or at design-time and in server-side code. And of course you
can couple AJAX requests with your server-side code for better performance. Many RadControls, such
as RadGrid and RadTreeView, also allow binding in client code with data coming directly from a web service.

The properties used to bind each of the RadControls are very similar. Once you know how it works for one
control, you can apply that knowledge against the rest of the controls. There are some variations on this rule:

 Some of the more complex controls, particularly RadChart and RadGrid have additional properties used to
map data to particular aspects of the specific control.

 Controls that are designed to display a hierarchy like RadTreeView and RadMenu have additional properties
that define parent and child records forming the hierarchy. Controls such as RadComboBox or RadToolBar,
are designed to work with flat data structures and have fewer properties as a result.

 Hierarchical controls also have a DataBindings that let you declaratively bind columns of the database to

11 Databinding

11.1 Objectives

11.2 Introduction

Some of the more complex controls like RadChart, RadGrid and RadScheduler have additional properties,
capabilities and UI helpers that will be explored within their own chapters.

It is best to use AJAX/server-code when some kind of process is involved and to use WebServices/client-code
for data presentation. AJAX maintains the whole application state, providing integrity between the different
components on the page, while Web services are pure, lightweight but have no sense of state.

UI for ASP.NET AJAX

297 UI for ASP.NET AJAX

arbitrary properties in the control.

RadControls that allow templates for completely free-form layout can also be bound declaratively using server
tags with syntax similar to this:

These multiple binding techniques provide flexibility to let you populate RadControls in any web application
building situation.

The easiest way to bind a RadControl is declaratively, right in the designer or through ASP.NET markup. The
ASP.NET 2.0 Data Source controls allow you to simply set the control's DataSourceID property to the ID of a data
source and "taa daa!" you not only can display the data, you can access and modify the data as well (depending
on the particular functionality of the control you are working with). To set up this relationship between Data
Source and RadControl you need:

 A connection string that defines the kind of database and its location. The connection string can be
defined in the web.config file. For this walk-through we want to access standard Microsoft supplied
"Northwind" data. The file Northwind.mdf and several other example databases are stored in the
RadControls installation directory under:

\Telerik\RadControls for ASPNET AJAX<version>\Live Demos\App_Data

 A Data Source control that refers to the connection string. The Data Source defines a specific query that
defines the table and columns to be retrieved. This walk-through will pull a product category name and ID
from the Categories table in the Northwind database.

 The RadControl DataSourceID points to the ID of the Data Source on our web page and displays the data.

Simple Declarative Databinding

Let's start the walk-through using a RadToolBar control that by default displays data in a relatively simple, non-
hierarchical form.

1. In a new web application add a ScriptManager control to the web page.

2. Add a RadToolBar to the web page.

3. From the RadToolBar Smart Tag, select Choose Data Source | <New Data Source...>. This step will
display the standard Data Source Configuration Wizard.

[ASP.NET] Binding in Markup

<%# DataBinder.Eval(Container.DataItem, "ColumnName") %>

Databinding in templates will be explored in the upcoming chapter on Templates.

11.3 Getting Started

RadChart, RadGrid and RadScheduler are complex controls that have additional properties and UI helpers
that will be discussed further within their own chapters

You can find the complete source for this project at:
\VS Projects\Databinding\GettingStarted1

UI for ASP.NET AJAX

298 UI for ASP.NET AJAX

4. In the Data Source Configuration Wizard "Choose a Data Source Type" page, select the Database option.
Click the OK button.

5. In the "Choose your Data Connection" page of the wizard click the New Connection... button. This step
will display the Add Connection dialog.

UI for ASP.NET AJAX

299 UI for ASP.NET AJAX

6. Create a new connection:

 In the Add Connection dialog, click the Change... button. This step will display the Change Data
Source dialog.

 In the Change Data Source dialog, select the "Microsoft SQL Server" data source type and click the
OK button. This step will return you to the Add Connection dialog.

UI for ASP.NET AJAX

300 UI for ASP.NET AJAX

 In the Add Connection dialog:

 Enter the Server name as ".\SQLEXPRESS".

 In the Connect to a database area of the dialog, click the Attach to a Database File option. Click
the Browse button. Navigate to the directory where you installed RadControls for ASP.NET AJAX.
Select the database file you want to use, e.g. "Northwind.mdb" and click the Open button to
select the path.

 Click the Test Connection button to display a success alert if the settings are correctly entered.

 Click the OK button to close the Add Connection dialog.

UI for ASP.NET AJAX

301 UI for ASP.NET AJAX

7. At the "Choose Your Data Connection" page of the wizard, click the Next button.

UI for ASP.NET AJAX

302 UI for ASP.NET AJAX

8. In the "Save the Connection String to the Application Configuration File", leave the defaults and click the
Next button.

UI for ASP.NET AJAX

303 UI for ASP.NET AJAX

9. In the "Configure the Select Statement" of the wizard:

1. Select the Specify columns form a table or view radio button option.

2. Select "Categories" from the drop down list of table names.

UI for ASP.NET AJAX

304 UI for ASP.NET AJAX

10. In the "Configure the Select Statement" page of the wizard, select "CategoryID" and "CategoryName" from
the columns list. Click the Next button.

11. In the "Test Query" page of the wizard, click the Test Query button to see that the list of category names
and ID's are listed. Click the Finish button to automatically create the SQLDataSource control and assign it
to the RadToolBar DataSourceID.

UI for ASP.NET AJAX

305 UI for ASP.NET AJAX

12. The design view of the page will look something like the example below. Notice that the SQLDataSource
returns DataRowView objects and these are displayed because the RadToolBar doesn't know what columns
should be used yet.

13. In the Properties Window, set the DataTextField property to "CategoryName". The design view doesn't
show the actual data yet, but does show a series of "abc" to indicate the column will have string data.
Note: The Skin property here is set to "Web20".

UI for ASP.NET AJAX

306 UI for ASP.NET AJAX

14. Press Ctl-F5 to run the application. The category names show up as RadToolBarButton instances, one
button per category name.

Data Properties
RadControls that can be bound to Data Sources use these basic properties:

 DataSourceID: If you are binding declaratively in ASP.NET markup (or setting the properties at design-time)
you need to point DataSourceID at the ID of a Data Source control.

 DataSource: In complex or dynamic scenarios you may need to assign the Data Source at runtime. Instead
of setting DataSourceID, leave that blank and assign the DataSource to the Data Source object (not the ID
of the Data Source). You must also call the DataBind() method of the control after setting DataSource.

 DataMember: If your Data Source is actually a DataSet object, how does the control know which table of
the DataSet to bind to? DataMember specifies a table name of a DataSet. if DataMember is blank then the
first table of the DataSet is used.

 DataTextField: You used this property in the last walk-through to bind a column to the Text property. The
DataTextField column data is what the user will see in the user interface.

 DataValueField: This property is used to bind a column to the Value property of the control. You might
typically use the DataValueField for ID column data while the DataTextField displays what the user will
see.

 DataNavigateUrlField: Some of the navigation controls include this field to contain a column name that
holds a URL. When a navigation item is clicked on the browser automatically navigates to the associated
URL.

A few other properties fine-tune the data binding behavior of RadControls:

 DataTextFormatString: You can format the data automatically by defining a format string, e.g. "Category:
{0}". Use the same formatting rules as used by the String.Format() method. The "0" column will represent
the data found in the DataTextField column.

 AppendDataBoundItems: By default this property is false and data bound to the control will overwrite
whatever data is already there. If AppendDataBoundItems is True, you can bind to multiple data sources or
mix and match between items added at design-time and additional data introduced through binding. For
example, you could add a tool bar button at design-time "My Button", then bind to "Categories" and finally

Gotcha! If you assign both DataSourceID at design-time and DataSource at runtime you get an
error similar to "System.InvalidOperationException: Both DataSource and DataSourceID are
defined on 'RadToolBar1'. Remove one definition."

UI for ASP.NET AJAX

307 UI for ASP.NET AJAX

bind again to "Products". All these items would be displayed at one time in the tool bar. The binding at
runtime to both category and product data sources will look like the example below. Note that each
assignment of the DataSource property has to be followed by a call to the DataBind() method.

Let's extend the previous tool bar example to include some of the data binding properties.

1. Use the previous example (or a copy of the previous example) as a starting point.

2. In the design-view of the page, from the RadToolBar Smart Tag select Build RadToolBar...

3. Add a single tool bar button and set the Text property of the button to "My Button". Set the ToolTip
property to "This button defined at design-time".

4. Click OK to close the dialog.

5. In the Properties Window, set the AppendDataBoundItems property to True.

6. Set the DataTextFormatString property to "Category: {0}".

7. Set the DataValueField property to "CategoryID".

8. Add a RadToolTipManager control to the form. We will use tool tips display text and value data bound to
each button.

9. In the design view of the page, select the RadToolBar and from the Properties window events tab ()
double-click the ButtonDataBound event. In the event handler that gets created for this event add the
code below. The code will set the tool tip text to use the category name and id from the bound row data.

[VB] Binding to Multiple Data Sources

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' assign and bind the first data source
 RadToolBar1.DataSource = categoryDataSource
 RadToolBar1.DataBind()
 ' assign and bind the second data source
 RadToolBar1.DataSource = productDataSource
 RadToolBar1.DataBind()
End Sub

[C#] Binding to Multiple Data Sources

protected void Page_Load(object sender, EventArgs e)
{
 // assign and bind the first data source
 RadToolBar1.DataSource = categoryDataSource;
 RadToolBar1.DataBind();
 // assign and bind the second data source
 RadToolBar1.DataSource = productDataSource;
 RadToolBar1.DataBind();
}

You can find the complete source for this project at:
\VS Projects\Databinding\GettingStarted2

[VB] Handling the ButtonDataBound Event

Protected Sub RadToolBar1_ButtonDataBound(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadToolBarButtonEventArgs)
 ' Get a reference to the row associated with the item
 Dim row As DataRowView = (TryCast(e.Button.DataItem, DataRowView))

UI for ASP.NET AJAX

308 UI for ASP.NET AJAX

10. Press Ctl-F5 to run the application. Notice that the button added at design-time remains along with the
bound data added later. Run the mouse over the buttons to see the tool tips. You can see that both text
and value data is available when the control is bound.

Several RadControls allow self-referencing data to display a hierarchical structure: RadMenu, RadContextMenu,
RadTabStrip, RadPanelBar and RadTreeView are designed to show multiple levels of data. The data is defined
using an "ID" column that identifies a given row and a "ParentID" that defines the parent row.

The small example shown below makes it easier to see. The "President" has the top spot in this view, has an ID
of "1" and reports to no one so the ParentID is zero or null. The "Vice President" position reports to the
"President" and has a ParentID of "1". Looking farther down the data we see that "CEO" and "CTO" have a
ParentID of "2" and so refers to the "Vice President" and so on.

To hook this kind of data up to a RadControl you need to use the DataFieldID and DataFieldParentID
properties. The DataTextField property is still used to display what the user actually sees in the browser. An
additional property MaxBindDepth controls the number of levels that are included in the hierarchy. The default
is "-1" and includes all levels of the hierarchy.

This walk-through hooks this data up to a RadTreeView.

 ' Assign the tooltip using the row data
 e.Button.ToolTip = "Category Name: " + row("CategoryName") + " ID: " + row("CategoryID")
End Sub

[C#] Handling the ButtonDataBound Event

protected void RadToolBar1_ButtonDataBound(object sender,
 Telerik.Web.UI.RadToolBarButtonEventArgs e)
{
 // Get a reference to the row associated with the item
 DataRowView row = (e.Button.DataItem as DataRowView);
 // Assign the tooltip using the row data
 e.Button.ToolTip = "Category Name: " + row["CategoryName"] +
 " ID: " + row["CategoryID"];
}

11.4 Binding Hierarchical Data

You can find the complete source for this project at:
\VS Projects\Databinding\DataBindings

UI for ASP.NET AJAX

309 UI for ASP.NET AJAX

1. Create a new web project and add a ScriptManager to the default web page.

2. Add a RadTreeView to the form.

3. From the RadTreeView Smart Tag, select Choose Data Source | <New Data Source...>. From here, follow
the same steps as the "Simple Declarative Binding" example up to the point where you see the Add
Connection dialog. Instead of attaching to the Northwind.mdf database, attach the Telerik.mdf database
found in the same folder.

4. Instead of selecting a table from the list, instead select Specify a custom SQL statement or stored
procedure. This step will display the Define Custom Statements or Stored Procedure page of the wizard.

UI for ASP.NET AJAX

310 UI for ASP.NET AJAX

5. Enter the SQL below to the Select tab of the wizard page.

The general purpose of the query is to pull ID, ParentID and Name columns from the "SelfReferencing"
table.

The select statement in the "Define Custom Statements or Stored Procedures page of the wizard will look
like the screenshot below.

[T-SQL] Selecting from Table "SelfReferencing"

SELECT ID, NAME,
 CASE WHEN ParentID = 0
 THEN NULL ELSE ParentID
 end AS ParentID
FROM SelfReferencing

Gotcha! "This constraint cannot be enabled as not all values have corresponding parent values."
This error may appear if a ParentID value doesn't point to an ID that exists in the table. The
ParentID is allowed to be null though. If you look at the example data at the top of this lesson
you'll see that the ParentID for "President" is "0". There is no ID of "0" in the table. So how do you
define the top level value? You can either change the table data to be null, or change the select
statement to look like the T-SQL above where a "case" statement checks if the value is "0" and
changes it to null.

UI for ASP.NET AJAX

311 UI for ASP.NET AJAX

On the "Test Query" page of the wizard, click the Test Query button and observe the results. The
"President" will have a ParentID that is null and the ParentIDs for the other records will refer to IDs that
exist in the table.

UI for ASP.NET AJAX

312 UI for ASP.NET AJAX

6. In the Properties window, set the DataFieldID property to "ID" and the DataFieldParentID property to
"ParentID".

7. Press Ctl-F5 to run the application. The tree view control displays the self-referencing data as a hierarchy.

8. Stop the application and change the MaxBindDepth property to "3". Re-run the application to see that only
the first three levels are displayed in the tree view.

UI for ASP.NET AJAX

313 UI for ASP.NET AJAX

Using the DataBindings Property
With the DataTextField, DataValueField and DataNavigateUrlField you can map only specific properties to
columns in the database. What if you want to bind to the ImageUrl or ToolTip of a control? You could use the
ItemDataBound event handler (explained in the upcoming section on Server-Side coding) and that would
provide a flexible approach to binding any property with any database column. But, you would lose the ability
to define these relationships in ASP.NET markup.

The DataBindings property lets you map database columns directly to properties in any of the hierarchy-
capable RadControls (RadTreeView, RadContextMenu, RadMenu, RadTabView, RadPanelBar). DataBindings is
designed to be used directly within ASP.NET markup. Each binding has two attribute that can be defined: one is
the name of a property, e.g. "ImageUrl" and the other is the property name with the suffix "Field", e.g.
"ImageUrlField". The first is a hard-coded value that will be populated to the property. The second is the name
of a column in the data source for the control. The binding may use a FormatString attribute that's used to
present data from a column in a specific way. Also, each binding can use the Depth attribute to specify what
levels of the hierarchy are bound to.

For example, let's take the previous "hierarchy" demo and add DataBindings. The completed tree view will show
a star image next to the company officers in the diagram and also format the those same nodes with "Company
Officer:".

In the markup below shows the <DataBindings> element containing several RadTreeNodeBinding elements. Each
element defines the ImageUrl that's hard-coded to an image path within the project, a TextField that still
points to the "Name" column in the database and a FormatString property that formats the TextField. There are
three bindings defined with Depth set to 0..2.

UI for ASP.NET AJAX

314 UI for ASP.NET AJAX

You can find the other properties available for binding using Intellisense within the markup:

Binding in Server Code
Binding at runtime can be as simple as defining an array or generic list of strings, assigning it to the control's

[ASP.NET] Defining DataBindings

<telerik:RadTreeView ID="RadTreeView1" runat="server" DataFieldID="ID"
DataFieldParentID="ParentID"
 DataSourceID="SqlDataSource1" DataTextField="Name" Skin="Web20">
 <DataBindings>
 <telerik:RadTreeNodeBinding ImageUrl="\images\Annotation_new.png" TextField="Name"
FormatString="Company Officer: {0}" Depth="0" />
 <telerik:RadTreeNodeBinding ImageUrl="\images\Annotation_new.png" TextField="Name"
FormatString="Company Officer: {0}" Depth="1" />
 <telerik:RadTreeNodeBinding ImageUrl="\images\Annotation_new.png" TextField="Name"
FormatString="Company Officer: {0}" Depth="2" />
 </DataBindings>
 <ExpandAnimation Duration="100"></ExpandAnimation>
</telerik:RadTreeView>

11.5 Server-Side Programming

UI for ASP.NET AJAX

315 UI for ASP.NET AJAX

DataSource and calling the DataBind() method. This gets you the basic data display in the control and not much
else.

Binding Arrays and Lists
Both Array and List<> types implement IEnumerable and so can be used as fodder for binding. For example we
can create a simple array of strings, assign it to the DataSource of a RadComboBox and call DataBind():

The strings show up in the combo box but do not have associated values.

Likewise, we can bind to a generic List<> of strings:

You can find the complete source for this project at:
\VS Projects\Databinding\ServerBindingSimple

[VB] Binding to an Array of String

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 Dim movies As String() = New String() {"Inherit the Winform", "Gone With the Refresh",
"Citizen Combo"}
 RadComboBox1.DataSource = movies
 RadComboBox1.DataBind()
 End If
End Sub

[C#] Binding to an Array of String

IDataSource - system.web.ui
protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 string[] movies = new string[]
 { "Inherit the Winform", "Gone With the Refresh", "Citizen Combo" };
 RadComboBox1.DataSource = movies;
 RadComboBox1.DataBind();
 }
}

[VB] Binding a Generic List

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 'string[] movies = new string[] { "Inherit the Winform", "Gone With the Refresh", "Citizen
Combo" };
 'RadComboBox1.DataSource = movies;
 'RadComboBox1.DataBind();
 ' Create and populate a generic list
 Dim movieMenu As New List(Of String)()
 movieMenu.Add("Show Times")

UI for ASP.NET AJAX

316 UI for ASP.NET AJAX

Again, the strings show up but the implementation is a bit bare because we have no associated Values. Also
notice that we never assigned the DataTextField property. So we can see that if there's only a single column of
data to work with, the control assumes you want to bind that column.

Binding Lists of Objects
Let's say we have an object with two properties, one string "Name" and a integer "ID". We can bind to a list or
an array of these objects. Here's the object definition:

 movieMenu.Add("Movies")
 movieMenu.Add("Theaters")
 ' Bind the generic list to the RadComboBox
 RadComboBox1.DataSource = movieMenu
 RadComboBox1.DataBind()
 End If
End Sub

[VB] Binding a Generic List

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 //string[] movies = new string[] { "Inherit the Winform", "Gone With the Refresh",
"Citizen Combo" };
 //RadComboBox1.DataSource = movies;
 //RadComboBox1.DataBind();
 // Create and populate a generic list
 List<string> movieMenu = new List<string>();
 movieMenu.Add("Show Times");
 movieMenu.Add("Movies");
 movieMenu.Add("Theaters");
 // Bind the generic list to the RadComboBox
 RadComboBox1.DataSource = movieMenu;
 RadComboBox1.DataBind();
 }
}

[VB] The MovieMenuItem Class

Public Class MovieMenuItem
 Public Sub New(ByVal name As String, ByVal id As Integer)
 _name = name
 _id = id
 End Sub
 Private _name As String
 Public Property Name() As String
 Get
 Return _name
 End Get
 Set

UI for ASP.NET AJAX

317 UI for ASP.NET AJAX

Now we can bind this the same way to the control's DataSource:

 _name = value
 End Set
 End Property
 Private _id As Integer
 Public Property ID() As Integer
 Get
 Return _id
 End Get
 Set
 _id = value
 End Set
 End Property
End Class

[C#] The MovieMenuItem Class

public class MovieMenuItem
{
 public MovieMenuItem(string name, int id)
 {
 _name = name;
 _id = id;
 }
 private string _name;
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
 private int _id;
 public int ID
 {
 get { return _id; }
 set { _id = value; }
 }
}

[VB] Binding to the list of MovieMenuItem Objects

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 ' create list of MovieMenuItem objects
 Dim movieItems As New List(Of MovieMenuItem)()
 movieItems.Add(New MovieMenuItem("Show Times", 1))
 movieItems.Add(New MovieMenuItem("Movies", 2))
 movieItems.Add(New MovieMenuItem("Theaters", 3))
 ' bind movie items List to combo box
 RadComboBox2.DataSource = movieItems
 RadComboBox2.DataBind()
 End If
End Sub

[C#] Binding to the list of MovieMenuItem Objects

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)

UI for ASP.NET AJAX

318 UI for ASP.NET AJAX

But because there is more than a single property in the object, the results of binding show the object name in
the combo box, not the property contents.

Again, if you assign the DataTextField the combo box is properly populated. You can change the example above
to assign both DataTextField and DataValueField. Then set the AutoPostBack property to True and finally,
create a SelectedIndexChanged event handler to display the text and value in the page title.

 {
 // create list of MovieMenuItem objects
 List<MovieMenuItem> movieItems = new List<MovieMenuItem>();
 movieItems.Add(new MovieMenuItem("Show Times", 1));
 movieItems.Add(new MovieMenuItem("Movies", 2));
 movieItems.Add(new MovieMenuItem("Theaters", 3));
 // bind movie items List to combo box
 RadComboBox2.DataSource = movieItems;
 RadComboBox2.DataBind();
 }
}

[VB] Creating, Binding and Retrieving Bound Data

Dim movieItems As New List(Of MovieMenuItem)()
movieItems.Add(New MovieMenuItem("Show Times", 1))
movieItems.Add(New MovieMenuItem("Movies", 2))
movieItems.Add(New MovieMenuItem("Theaters", 3))
' bind text and value to specific property names
RadComboBox2.DataTextField = "Name"
RadComboBox2.DataValueField = "ID"
RadComboBox2.AutoPostBack = True
RadComboBox2.DataSource = movieItems
RadComboBox2.DataBind()

'...
Protected Sub RadComboBox2_SelectedIndexChanged(ByVal o As Object, ByVal e As
RadComboBoxSelectedIndexChangedEventArgs)
 Me.Title = "Text: " + e.Text + " Value: " + e.Value
End Sub

[C#] Creating, Binding and Retrieving Bound Data

List<MovieMenuItem> movieItems = new List<MovieMenuItem>();
movieItems.Add(new MovieMenuItem("Show Times", 1));
movieItems.Add(new MovieMenuItem("Movies", 2));
movieItems.Add(new MovieMenuItem("Theaters", 3));
// bind text and value to specific property names
RadComboBox2.DataTextField = "Name";
RadComboBox2.DataValueField = "ID";
RadComboBox2.AutoPostBack = true;
RadComboBox2.DataSource = movieItems;
RadComboBox2.DataBind();
//...
protected void RadComboBox2_SelectedIndexChanged(object o,

UI for ASP.NET AJAX

319 UI for ASP.NET AJAX

Now the data again displays correctly in the combo box and the text and values can be retrieved:

Server Events
Look for three three basic events in most data bound RadControls.

 The OnDataBinding event fires first when the controls data binding expressions are about to be evaluated.

 OnItemDataBound fires when each item in a collection is bound to data. This event is control specific and
has a different naming convention for some controls, i.e. RadTabStrip uses OnTabDataBound, RadTreeView
uses OnNodeDataBound and tool bar has OnButtonDataBound. The general pattern for all of these
OnFooDataBound events is that a custom set of event arguments are passed in to provide a reference.

In the arguments is a property for the item being bound and inside the item object are the properties for
the item (Text, Value, ToolTip, etc.) and a DataItem reference that lets you get at the underlying object
being bound. When you bind to a SqlDataSource, the DataItem will be a DataRowView. If you bind a list of
some custom object, then the DataItem will be that custom object type. This event gives you maximum
flexibility to use the data against the item in whatever way you choose. ItemDataBound is used to populate
properties that don't have directly binding support, e.g. ToolTip, Visible, Enabled, etc.

 The OnDataBound event fires when the control is finished binding its data. Use this event to guarantee
that all the control's data is present.

Here's a short example that populates the tool tip for each item in a RadComboBox. The combo is bound to a
list of "Car" objects: a simple object that has three properties, Name, ID and Comment.

 RadComboBoxSelectedIndexChangedEventArgs e)
{
 this.Title = "Text: " + e.Text + " Value: " + e.Value;
}

You can find the complete source for this project at:
\VS Projects\DataBinding\ServerSideEvents

UI for ASP.NET AJAX

320 UI for ASP.NET AJAX

Inside the ItemDataBound we get the RadComboBoxItemEventArgs passed to the event handler. Remember
that this parameter will be slightly different for each RadControl but the pattern will be quite similar. Inside
RadComboBoxItemEventArgs you can find the Item property (or Tab or Node or Button). And within Item is
DataItem that represents the chunk of data we just bound to. In this case the type is "Car" so DataItem is cast
to be a Car type so that the Comment property is accessible.

In the ItemDataBound event the DataItem is retrieved and cast to type "Car", the Comment property is accessed
and assigned to the Item's ToolTip property.

You can also put a breakpoint on the first line of this handler and see the underlying type for DataItem. In
the case of standard database data sources, its DataRowView.

[VB] Handling the ItemDataBound Event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' Create a list of car objects
 Dim cars As New List(Of Car)()
 cars.Add(New Car("Lamborghini", 1, "Based in the small Italian village of SantAgata
Bolognese, near Bologna"))
 cars.Add(New Car("Aston Martin", 1, "Headquarters are at Gaydon, England"))

UI for ASP.NET AJAX

321 UI for ASP.NET AJAX

The ASP.NET ObjectDataSource component lets you have declarative access to objects, rather than having to
populate the object directly in code. ObjectDataSource is commonly used in multi-tier scenarios when you
want to interact with objects that implement business logic.

ObjectDataSource can handle Select, Update, Delete, Insert operations. The object that ObjectDataSource
consumes needs methods that match what these operations are looking for. The Select operation for example is
looking for a method that returns an IEnumerable. If the class being consumed does not implement
IEnumerable, ObjectDataSource wraps the result of the Select method as an IEnumerable. The expected
parameters are explained briefly in the Configure Data Source... dialog available from the ObjectDataSource
Smart Tag.

 cars.Add(New Car("Rolls-Royce", 1, "Founded in 1906 by Henry Royce and C.S. Rolls"))
 cars.Add(New Car("BMW", 1, "Bayerische Motoren Werke"))
 cars.Add(New Car("Mercedes-Benz", 1, "The first Mercedes-Benz brand name vehicles were
produced in 1926."))
 ' assign and bind
 RadComboBox1.DataSource = cars
 RadComboBox1.DataBind()
End Sub
Protected Sub RadComboBox1_ItemDataBound(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadComboBoxItemEventArgs)
 ' get the DataItem for the selected item and cast back
 ' to its original type to access its Comment property.
 ' Assign the comment to the item's ToolTip
 e.Item.ToolTip = (TryCast(e.Item.DataItem, Car)).Comment
End Sub

[C#] Handling the ItemDataBound Event

protected void Page_Load(object sender, EventArgs e)
{
 // Create a list of car objects
 List<Car> cars = new List<Car>();
 cars.Add(new Car("Lamborghini", 1,
 "Based in the small Italian village of SantAgata Bolognese, near Bologna"));
 cars.Add(new Car("Aston Martin", 1,
 "Headquarters are at Gaydon, England"));
 cars.Add(new Car("Rolls-Royce", 1,
 "Founded in 1906 by Henry Royce and C.S. Rolls"));
 cars.Add(new Car("BMW", 1,
 "Bayerische Motoren Werke"));
 cars.Add(new Car("Mercedes-Benz", 1,
 "The first Mercedes-Benz brand name vehicles were produced in 1926."));
 // assign and bind
 RadComboBox1.DataSource = cars;
 RadComboBox1.DataBind();
}
protected void RadComboBox1_ItemDataBound(object sender,
 Telerik.Web.UI.RadComboBoxItemEventArgs e)
{
 // get the DataItem for the selected item and cast back
 // to its original type to access its Comment property.
 // Assign the comment to the item's ToolTip
 e.Item.ToolTip = (e.Item.DataItem as Car).Comment;
}

11.6 Binding to Business Objects

UI for ASP.NET AJAX

322 UI for ASP.NET AJAX

The following shows a stub implementation of a task list displayed in RadPanelBar. When an item is clicked, it is
deleted from the list.

We will create a Tasks object that contains a generic list of Tasks, can retrieve a list of tasks and can delete a
task. The list of "Items" are stored in the Session In the "Items" accessor, if Session "Items" is null then a few
sample items are created and fed into the list. Note: This use of the Session is merely a way to persist the data
while keeping the size of the example down and avoiding data access issues not central to this topic.

The Task object itself is relatively trivial and has two properties, one for Name and one for ID.

Much of the information here concerning CRUD operations and defining parameters is true for all the Data
Source controls.

You can find the complete source for this project at:

\VS Projects\DataBinding\ObjectDataSource

[VB] Implementing Tasks and Task Objects

Public Class Tasks
 ' Stores a list of Tasks in the Session.
 ' This simulates a kind of persistent storage
 Public ReadOnly Property Items() As List(Of Task)
 Get
 If HttpContext.Current.Session("Items") = Nothing Then
 Dim result As New List(Of Task)()
 result.Add(New Task("Sign up for seminar", 1))
 result.Add(New Task("Write Linq blog", 2))
 result.Add(New Task("Get latest RadControls download", 3))
 HttpContext.Current.Session("Items") = result
 End If
 Return DirectCast(HttpContext.Current.Session("Items"), List(Of Task))
 End Get
 End Property
 ' method used by the object data source Select
 Public Function GetMyData() As List(Of Task)
 Return Me.Items
 End Function
 ' method used by the object data source Delete
 Public Sub DeleteMyData(ByVal id As Integer)
 Dim foundTask As Task = Me.Items.Find()
 Me.Items.Remove(foundTask)
 End Sub
 Public Sub stuff(ByVal test As String)
 End Sub
End Class
#region Task object
Public Class Task
 Public Sub New()
 End Sub
 Public Sub New(ByVal name As String, ByVal id As Integer)
 _id = id

UI for ASP.NET AJAX

323 UI for ASP.NET AJAX

 _name = name
 End Sub
 Private _id As Integer
 Public Property ID() As Integer
 Get
 Return _id
 End Get
 Set
 _id = value
 End Set
 End Property
 Private _name As String
 Public Property Name() As String
 Get
 Return _name
 End Get
 Set
 _name = value
 End Set
 End Property
End Class
#End Region

[C#] Implementing Tasks and Task Objects

public class Tasks
{
 // Stores a list of Tasks in the Session.
 // This simulates a kind of persistent storage
 public List<Task> Items
 {
 get
 {
 if (HttpContext.Current.Session["Items"] == null)
 {
 List<Task> result = new List<Task>();
 result.Add(new Task("Sign up for seminar", 1));
 result.Add(new Task("Write Linq blog", 2));
 result.Add(new Task("Get latest RadControls download", 3));
 HttpContext.Current.Session["Items"] = result;
 }
 return (List<Task>)HttpContext.Current.Session["Items"];
 }
 }
 // method used by the object data source Select
 public List<Task> GetMyData()
 {
 return this.Items;
 }
 // method used by the object data source Delete
 public void DeleteMyData(int id)
 {
 Task foundTask = this.Items.Find(delegate (Task task)
 { return task.ID == id; });
 this.Items.Remove(foundTask);
 }

UI for ASP.NET AJAX

324 UI for ASP.NET AJAX

Using ObjectDataSource is much simpler than setting up the object itself. Most of the work can take place in
the designer. You drop an ObjectDataSource from the Data tab of the ToolBox to the web page and click the
Configure Data Source... option from the Smart Tag. In the "Choose a Business Object" page of the Configure
Data Source wizard you get a list of available objects. You can see in the list "_default" which is the page class,
"Task" is the single element of the Tasks list and "Tasks" which contains our generic list of Task objects.

 public void stuff(string test)
 {
 }
}
#region Task object
public class Task
{
 public Task()
 {
 }
 public Task(string name, int id)
 {
 _id = id;
 _name = name;
 }
 private int _id;
 public int ID
 {
 get { return _id; }
 set { _id = value; }
 }
 private string _name;
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
}
#endregion

UI for ASP.NET AJAX

325 UI for ASP.NET AJAX

After selecting the business object to consume and hitting the Next button, the "Define Data Methods" page
displays. There are tabs to help define each of the supported CRUD operations, Select Update, Insert and
Delete. The selections here populate ObjectDataSource properties SelectMethod, UpdateMethod, InsertMethod
and DeleteMethod that contain just the name of the methods without the parenthesis. In this example we just
want to select and delete. The Select tab has a list of methods supported by the business object. In this case,
only "GetMyData()" returns any values, and so only that method shows up in the list. If you had another
method "GetMyString()" that returned a string for example, it too would show up in the list.

UI for ASP.NET AJAX

326 UI for ASP.NET AJAX

On the Delete tab of the "Define Data Methods" page, you can choose a method that accepts a parameter.
Notice that GetMyData() doesn't show up in this list because it does not take a parameter.

UI for ASP.NET AJAX

327 UI for ASP.NET AJAX

After clicking the Finish button to complete the ObjectDataSource definition the next question is, "how does
the delete operation know what record to delete?". Each of the method properties is coupled with a parameters
collection property.

UI for ASP.NET AJAX

328 UI for ASP.NET AJAX

Clicking the DeleteParameters ellipses displays the Parameter Collection Editor where you define parameters
used by the method. In some cases you can define that the "Parameter source" as a control with a particular
property, but the collection editor does not always make this visible so we can leave the parameter source set
to "None" and supply the parameter value in code.

UI for ASP.NET AJAX

329 UI for ASP.NET AJAX

Some RadControls, like RadGrid, can automatically trigger CRUD operations from a data source. You can also
trigger data source methods directly in code. In this example we use the ItemClick event of a RadPanelBar. The
DeleteParameters "id" member is supplied the clicked on value, then the ObjectDataSource Delete() method
gets called.

LINQ (Language Integrated Query) is a powerful new extension to the .NET framework that integrates query
expressions as a part of your primary programming language (VB.NET or C# for example). LINQ provides huge
improvements to data access performance, code elegance and brevity. Our use for data binding will be limited
to the "LINQ to SQL" feature that lets us use query functionality (selects, aggregates, "where" clauses, etc)
against ADO.NET data sources without leaving the comfort of our chosen .NET language.

For an introduction to LINQ see the MSDN article LINQ: .NET Language-Integrated Query

The Select method is called implicitly by virtue of being bound to the control.
[VB] Handling the ItemClick Event

Protected Sub RadPanelBar1_ItemClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadPanelBarEventArgs)
 ' fill the delete parameter with the value for the clicked item
 ObjectDataSource1.DeleteParameters("id").DefaultValue = e.Item.Value
 ' delete the item in the data store and rebind
 ObjectDataSource1.Delete()
End Sub

[C#] Handling the ItemClick Event

protected void RadPanelBar1_ItemClick(object sender, Telerik.Web.UI.RadPanelBarEventArgs e)
{
 // fill the delete parameter with the value for the clicked item
 ObjectDataSource1.DeleteParameters["id"].DefaultValue = e.Item.Value;
 // delete the item in the data store and rebind
 ObjectDataSource1.Delete();
}

11.7 Binding to Linq

UI for ASP.NET AJAX

330 UI for ASP.NET AJAX

(http://msdn.microsoft.com/en-us/library/bb308959.aspx).

Using LinqDataSource
Our first walk-through will take place in the designer only. All the heavy lifting will be performed by Visual
Studio and the RadControls.

1. In Visual Studio, create a new web application and add a ScriptManager to the default web page.

2. Open the Server Explorer (View | Server Explorer)

3. Create a connection to the Northwind database by right-clicking the Data Connections node of the tree
and select Add Connection... from the context menu.

 In the Add Connection dialog, click the Change... button. This step will display the Change Data
Source dialog.

 In the Change Data Source dialog, select the "Microsoft SQL Server" data source type and click the
OK button. This step will return you to the Add Connection dialog.

You can find the complete source for this project at:
\VS Projects\Databinding\LinqDemo

UI for ASP.NET AJAX

331 UI for ASP.NET AJAX

 In the Add Connection dialog:

 Enter the Server name as ".\SQLEXPRESS".

 In the Connect to a database area of the dialog, click the Attach to a Database File option. Click
the Browse button. Navigate to the directory where you installed RadControls for ASP.NET AJAX.
Select the database file you want to use, e.g. "Northwind.mdb" and click the Open button to
select the path.

 Click the Test Connection button to display a success alert if the settings are correctly entered.

 Click the OK button to close the Add Connection dialog.

UI for ASP.NET AJAX

332 UI for ASP.NET AJAX

4. In the Solution Explorer, right-click the project and select Add | New Item...

5. Select the LINQ to SQL Classes template, name it Categories.dbml and click the Add button to close the
dialog. This step has created a DataContext object, a type that can be consumed by a LinqDataSource.

Gotcha! If you attempt to connect using the Server Explorer and get an error "Cannot open
default database. Login failed": click the Advanced button on the Add Connection dialog. Set the
User Instance property to True. This will redirect the connection to an instance of SQL Server
running under the users account.

UI for ASP.NET AJAX

333 UI for ASP.NET AJAX

6. Drop a LinqDataSource component from the ToolBox Data tab to the default web page. Configure the data
source:

 Using the LinqDataSource Smart Tag, click the Configure Data Source... option.

 In the "Choose a Context Object" page of the wizard, leave the default "CategoriesDataContext" and
click the Next button.

UI for ASP.NET AJAX

334 UI for ASP.NET AJAX

 In the "Configure Data Selection" page of the wizard, select the "CategoryID and "CategoryName"
columns and click the Finish button to close the wizard.

UI for ASP.NET AJAX

335 UI for ASP.NET AJAX

7. Drop a RadComboBox on the page. From the Properties window, set the DataSourceID to point to the
LinqDataSource, DataTextField property to "CategoryName" and DataValueField to "CategoryID".

8. Press Ctl-F5 to run the application.

Using LINQ Expression Results
LINQ expressions conveniently output IEnumerable objects that can be assigned as data sources. In this example
below an array of string listing LINQ features is used as raw material for a LINQ expression. The expression
selects members of the array that start with "LINQ". The results of the expression are assigned to a RadTabStrip
DataSource and bound. The advantage here is that the LINQ expression provides tremendous

The performance and ease of use here is very similar to other data source controls. As we will see in the
chapter on RadGrid, the performance differences will really show in high-volume data traffic situations in the
1+ million records neighborhood.

UI for ASP.NET AJAX

336 UI for ASP.NET AJAX

flexibility expressed succinctly.

In this chapter we introduced the interfaces that RadControls can bind to and the task specific Data Source
controls that can be used to bind declaratively. You built a simple declarative data binding example using
RadToolBar with SqlDataSource. You learned in more detail how the data binding properties were used. You
also learned how to bind to multiple data sources at one time.

In server-side code you learned how to bind simple arrays and lists, hierarchical data, business objects and LINQ
data. You also learned how to handle data binding related server events.

[VB] Assigning LINQ Expression Results

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' the raw data
 Dim LinqFeatures As String() = {"Lambda Expressions", "Expression Trees", "Predicates",
"Projections", "Key extraction", "LINQ to SQL", _
 "LINQ to XML"}
 ' LINQ expression proceses data and outputs IEnumerable
 Dim query As IEnumerable(Of String) = From s in LinqFeatures_
 Where s.StartsWith("LINQ")
 Order By s _
 Select s
 ' IEnumerable is assigned and bound
 RadTabStrip1.DataSource = query
 RadTabStrip1.DataBind()
End Sub

[C#] Assigning LINQ Expression Results

protected void Page_Load(object sender, EventArgs e)
{
 // the raw data
 string[] LinqFeatures =
 {
 "Lambda Expressions",
 "Expression Trees",
 "Predicates",
 "Projections",
 "Key extraction",
 "LINQ to SQL",
 "LINQ to XML"
 };
 // LINQ expression proceses data and outputs IEnumerable
 IEnumerable<string> query = from s in LinqFeatures
 where s.StartsWith("LINQ")
 orderby s
 select s;
 // IEnumerable is assigned and bound
 RadTabStrip1.DataSource = query;
 RadTabStrip1.DataBind();
}

11.8 Summary

UI for ASP.NET AJAX

337 UI for ASP.NET AJAX

 Learn the purpose and uses for templates in RadControls.

 Build a simple data-bound application using templates and data bound to elements within the template.

 Explore the details of binding expressions, starting with public server methods output directly to the
browser and working through Container, DataItem, Eval() and Bind() methods.

 Learn how templates are presented within the design environment: multiple templates for complex
controls like RadGrid, items templates for controls with multiple records (like the navigation controls) and
single view templates for controls like RadRotator and RadPageView.

 Learn how to create custom templates on-the-fly.

 Learn how to find controls within templates on both the server and client.

Templates let you paint a completely unique layout within your RadControls. Any arbitrary HTML can be used to
fill templates: standard ASP.NET controls, HTML elements and other RadControls can all be placed inside of
templates. RadControls may have multiple templates, each defining a particular area of the control. For
example, RadPanelBar has only an "Item" template representing each panel while RadGrid has templates for the
"no records" message, the paging area and the master table view edit form.

The screenshot below shows a RadComboBox in the designer with the template opened and a RadTextBox added
to the template surface. The diagram also shows the resulting markup.

12 Templates

12.1 Objectives

12.2 Introduction

UI for ASP.NET AJAX

338 UI for ASP.NET AJAX

Anything within the template can be bound to data for display-only or editing. The RadTextBox within the
RadComboBox is shown having the Text property bound to a "CategoryName" column in a database table:

UI for ASP.NET AJAX

339 UI for ASP.NET AJAX

The resulting combo/template/text box combination displays at runtime looking something like the example
below:

Templates are a "bread sandwich" that you can fill with whatever you please. In this example we will fill a
RadPanelBar with pictures, text and numbers from a furniture business database. When complete, the panel
bar will look something like the screenshot below:

12.3 Getting Started

UI for ASP.NET AJAX

340 UI for ASP.NET AJAX

Prepare the project
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Using the Solution Explorer, add a new Folder to your project and name it "Images".

3. Drag the contents of the "\VS Projects\Images\Stock" folder into your project's "Images" folder.

4. Locate the "Telerik.mdf" file in the "Live Demos\App_Data" folder under the folder where you installed
RadControls for ASPNET AJAX. Drag this file into the "App_Data" folder of your project.

5. Open the "Web.config" file of your project. Add the standard Northwind connection string to your project
by replacing the line
 <connectionStrings />
with
<connectionStrings>
 <add name="TelerikConnectionString"
 connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Telerik.mdf;Integrated Security=True;User
Instance=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

UI for ASP.NET AJAX

341 UI for ASP.NET AJAX

Add a data-bound Panel Bar
1. Drag a RadPanelBar from the Tool Box onto your Web page. Set its Skin property to "Telerik".

2. In the RadPanelBar Smart Tag, select "<New data source...>" from the Choose Data Source drop-down.

3. In the first page of the DataSource Configuration Wizard, select "Database" as the database type, and
click OK to move to the next page.

4. On the Choose Your Data Connection page, select "TelerikConnectionString" from the drop-down list. Then
click the Next button to continue.

5. On the Configure the Select Statement page, make sure the "Specify columns from a table or view" radio
button is selected, and then choose "Products" from the "Name" drop-down list.

6. Check "*" to return all columns.

7. Click the Next button, test the query if you wish, and then click Finish.

8. In the Properties Window for the RadPanelBar:

 Set the DataTextField property to "ProductName". The product name will show up in the title bar of
each panel.

 Set the DataValueField property to "ID".

 Also set the RadPanelBar Width property to "300px". This will accept the width of the items that will
populate it.

Edit the Template
1. In the Source view of the page, add the styles below to the <head> tag.

The Image style floats the image to the right and provides space between the image and following label.
The Frameset style provides more height to hold all the items.

2. Add a <frameset> element into the template. This will surround the other elements with a box and when
styled, provide a margin for visual separation with neighboring panels.

Gotcha! If you don't see "TelerikConnectionString" in the drop down list, either something is
wrong with the connection string (which if you copy it from above should not be an issue) or
Telerik.mdf has not been copied to the App_data folder in your application. The file has to be
present in the App_Data folder and the connection string must specify the file that is in that
folder.

[ASP.NET] Styles for Template Elements

<style type="text/css">
 .ImageStyle
 {
 float: Right;
 margin: 5px;
 }
 .FramesetStyle
 {
 height: 120px;
 margin: 5px;
 }
</style>

UI for ASP.NET AJAX

342 UI for ASP.NET AJAX

3. The controls to include in the template can all be added and data bound from the Design view of the page.
Using the RadPanelBar Smart Tag, select the Edit Templates option. Add and configure the following
controls:

 From the Standard tab of the Toolbox add an Image control. In the Properties window, set the
CssClass property to "ImageStyle".

 Using the Image Smart Tag select Edit Databindings....

 In the DataBindings dialog, leave "ImageUrl" selected in the Bindable properties list. On the right side
of the dialog, leave the Field binding radio button selected. In the Bound to drop down list, select
"Name" ("Name" contains the name of an image that will be used in a URL path). In the Format entry
add "~\\images\\{0}". Click OK to close the dialog and create the bindings in markup.

[ASP.NET] Adding the Frameset

<telerik:RadPanelBar ID="RadPanelBar1" runat="server" DataSourceID="SqlDataSource1"
 DataTextField="ProductName" Skin="Telerik" Width="300px">
 <ItemTemplate>
 <fieldset class="FramesetStyle">
 <%-- bound elements go here--%>
 </fieldset>
 </ItemTemplate>
</telerik:RadPanelBar>

UI for ASP.NET AJAX

343 UI for ASP.NET AJAX

The output for this bound field will be placed in the Image controls ImageUrl property and look
something like the markup example below. In the section on "Binding Expressions" we will explore
what these binding expressions, i.e. <%# %> mean:

 Place your cursor just to the right of the Image control and press the Enter key four times. This will
place break ("
") tags that will separate the text box controls you will add next.

 Drop four RadTextBox controls below the image, each one below the other. The design surface should
now look something like this:

[ASP.NET] Bound ImageUrl Tag

<asp:Image ID="Image1" runat="server" CssClass="ImageStyle"
 ImageUrl='<%# Eval("Name", "~\\images\\{0}") %>' />

Gotcha! The ASP image path should be pre-pended with a tilde ("~") to indicate the path is
relative to the project path. It will work without the tilde in Internet Explorer but fail to
display in FireFox.

UI for ASP.NET AJAX

344 UI for ASP.NET AJAX

 Select the first RadTextBox and set the Label property to "Mfg:", the Skin to "Telerik" and ReadOnly to
"true". Using the RadTextBox Smart Tag select Edit Databindings.... Bind the Text property to the
"Manufacturer" field. Leave the Format blank.

 Configure the next three RadTextBox controls with these same settings but change the labels and and
fields to:

 Label: "Price:", Field: "Price"

 Label: "Quantity:", Field: "Quantity"

 Label: "Dimensions:", Field: "Dimensions"

4. Press Ctrl-F5 to run the application. Notice that the standard ASP:Image control has been bound to the
data for the RadPanelBar and that the style has floated the image to the right side. All of the RadTextBox
Text properties have been bound to columns in the table. The completed markup right now if you look at it
is filled with "<%# %> server tags with expressions like "Eval("Manufacturer"). This next section on Binding
Expressions explains what these expressions are and how they are used.
[ASP.NET] The ItemTemplate Markup

<ItemTemplate>
 <fieldset class="FramesetStyle">

 <%-- bound elements go here--%>
 <asp:Image ID="Image1" runat="server" CssClass="ImageStyle"
 ImageUrl='<%# Eval("Name", "~\\images\\{0}") %>' />
 <telerik:RadTextBox ID="RadTextBox1" Runat="server" Label="Mfg:"
 LabelCssClass="radLabelCss_Telerik" Skin="Telerik" ReadOnly="true"
 Text='<%# Eval("Manufacturer") %>' Width="125px">
 </telerik:RadTextBox>

 <telerik:RadTextBox ID="RadTextBox2" Runat="server" Label="Price:"
 LabelCssClass="radLabelCss_Telerik" Skin="Telerik" ReadOnly="true"
 Text='<%# Eval("Price") %>' Width="125px">
 </telerik:RadTextBox>

 <telerik:RadTextBox ID="RadTextBox3" Runat="server" Label="Quantity:"
 LabelCssClass="radLabelCss_Telerik" Skin="Telerik" ReadOnly="true"

UI for ASP.NET AJAX

345 UI for ASP.NET AJAX

With the ASP.NET 2.0 binding syntax you can bind any RadControl within your template to its underlying data.
For that matter, you can output any public server-side method that returns a value. The syntax uses <%# %>
tags and looks something like this:

<%# MyMethod() %>
For example, in the code-behind for the web page you can declare a method that returns a string:

In the markup for the same page you can call that method within "<%# %>" tags using Intellisense. Just put your
cursor inside the tag and hit Ctl-Spacebar to get the drop down list of properties and methods available in the
page context. Don't forget to add the curly braces after the method name, i.e. MyMethod() (but don't add a
semi-colon).

If you ran this now, nothing would show in the browser. You need to call DataBind() on whatever context the

 Text='<%# Eval("Quantity") %>' Width="125px">
 </telerik:RadTextBox>

 <telerik:RadTextBox ID="RadTextBox4" Runat="server" Label="Dimensions:"
 LabelCssClass="radLabelCss_Telerik" Skin="Telerik" ReadOnly="true"
 Text='<%# Eval("Dimensions") %>' Width="125px">
 </telerik:RadTextBox>
 </fieldset>
</ItemTemplate>

12.4 Binding Expressions

[VB] Declaring the Public Method

Public Function MyMethod() As String
 Return "The time is: " + DateTime.Now.ToLongTimeString()
End Function

[C#] Declaring the Public Method

public string MyMethod()
{
 return "The time is: " + DateTime.Now.ToLongTimeString();
}

UI for ASP.NET AJAX

346 UI for ASP.NET AJAX

method is being called from. Is this case that would be the page itself. In other situations the call to DataBind()
might also be for a <div> tag surrounding your objects (if the div has an ID and runat="server"), DataBind() might
apply to a RadControl or the DataBind() call might be implicit because the RadControl is declaratively bound.

We can actually debug starting from the DataBind() and stepping to the MyMethod() call by putting a break
point on the DataBind() and pressing F11 to step into the server method called from within the markup:

...and pressing F5 to let the application continue, the output of the method shows up as a literal in the
browser:

[VB] Calling DataBind()

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Me.DataBind()
End Sub

[C#] Calling DataBind()

protected void Page_Load(object sender, EventArgs e)
{
 this.DataBind();
}

UI for ASP.NET AJAX

347 UI for ASP.NET AJAX

The point here is that there's nothing strange or mysterious going on in the server code that is embedded in
markup. We have access to all the facilities available in code-behind. And the code itself will be in the
language of the code-behind, i.e. if you were developing the code-behind in VB.NET, you can develop the code
in the markup with VB.NET.

Container and DataItem
Typically you won't be using your own methods inside the markup. More often you will use "Container.DataItem"
to access bound data from within the markup.

To see how this works, lets add a ScriptManager, SqlDataSource and RadPanelBar into the equation. In the
markup below notice that the SqlDataSource is consuming the Products table from the Telerik database. The
kind of data isn't critical to this demonstration, just so we have data that is bound to the control. The
RadPanelBar is hooked up to the SqlDataSource declaratively through the DataSourceID property. Also notice
that we have an <ItemTemplate> tag with nothing in it.

Controls can be added to the ItemTemplate and any of the properties can be populated using the <%# %>
syntax. The two objects in use constantly for this kind of markup that accesses bound data are Container and
DataItem. Here we just output the class names of each using the ToString() method.

Container and Container.DataItem types are output as strings to the template area. You can see that
"Container" is the item instance for a given row and "DataItem" is the underlying data for the row. These two
objects correspond to objects introduced in the Data Binding chapter, e.Item and e.Item.DataItem, available
from the ItemDataBound event arguments. You may also remember from this chapter that the DataItem may be
some other type besides DataRowView depending on what kind of DataSource is bound to the control.

[ASP.NET] Form with ScriptManager, SqldataSource and RadPanelbar

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:TelerikConnectionString %>"
 SelectCommand="SELECT * FROM [Products]"></asp:SqlDataSource>

 <telerik:RadPanelBar ID="RadPanelBar1" runat="server" DataSourceID="SqlDataSource1"
 Skin="Hay" DataTextField="ProductName">
 <ItemTemplate>
 </ItemTemplate>
 </telerik:RadPanelBar>

</form>

[ASP.NET] Adding Controls to the ItemTemplate

<ItemTemplate>
 <telerik:RadTextBox ID="RadTextBox1" runat="server" Width="200px"
 Text='<%# Container.ToString() %>'></telerik:RadTextBox>

 <telerik:RadTextBox ID="RadTextBox2" runat="server" Width="200px"
 Text='<%# Container.DataItem.ToString() %>'></telerik:RadTextBox>
</ItemTemplate>

UI for ASP.NET AJAX

348 UI for ASP.NET AJAX

A typical use for these two objects is to populate the Text or Value properties of a control. To use Container
you cast it to its actual runtime type and then use the methods of the type. In this case Container is a
RadPanelItem so we cast Container as a RadPanelitem to get access to Text, Value and DataItem properties.
The general rule here is that when a control is not data bound (ie when using statically declared items), you use
Container, while with data-bound controls, you generally use Container.DataItem.

The example markup below shows that you can populate any of the control's properties using information from
Container or DataItem. Text and ToolTip properties are populated here by casting Container.DataItem to a
DataRowView and accessing the corresponding columns.

The browser output for the bound RadTextBox looks like this screenshot where the Text is populated with the
manufacturer name and the tool tip shows the sales representative name.

Eval and Bind
DataBinder.Eval() is a helper method that uses reflection to resolve the DataItem type. To make it even easier,
DataBinder is the default context for data binding expressions so the syntax can be more succinct. The property
assignments from the last example are shortened substantially:

[ASP.NET] Populating Properties From Container.DataItem

<ItemTemplate>
 <telerik:RadTextBox ID="RadTextBox1" runat="server" Width="200px"
 Label="Manufacturer:" Skin="Hay"
 Text='<%# (Container.DataItem as System.Data.DataRowView)["Manufacturer"] %>'
 ToolTip='<%# (Container.DataItem as System.Data.DataRowView)["SalesRepresentative"] %>'>
 </telerik:RadTextBox>
</ItemTemplate>

UI for ASP.NET AJAX

349 UI for ASP.NET AJAX

It would be nice to pre-pend some additional text to the ToolTip so the hint is more descriptive, like this
example screenshot:

Eval has an optional format parameter that allows substitution of a single value, making it easy to combine data
values with other text:

While Eval() is used for read-only access to the data. Bind() is a similar method used in place of Eval() for two-
way data binding. Use Bind() when you want to update the data for controls containing values used as
DataSource parameters.

You can access template designers using the RadControl's Smart Tag Edit Templates options as this screenshot
of a RadComboBox control shows:

[ASP.NET] Using Eval

Text='<%# Eval("Manufacturer") %>'
ToolTip='<%# Eval("SalesRepresentative") %>'>

[ASP.NET] Formatting with Eval()

ToolTip='<%# Eval("SalesRepresentative", "The sales rep is {0}") %>'>

[ASP.NET] Using Bind()

Text='<%# Bind("ProductName") %>'

12.5 Designer Interface

UI for ASP.NET AJAX

350 UI for ASP.NET AJAX

After clicking the Edit Templates option, the designer for the control switches to "template editing mode"
where an area is reserved for dropping controls. Also notice that the Smart Tag now has an End Template
Editing option.

While RadComboBox has a single template type "Item Template", other RadControls may have multiple
template types. When in template editing mode the Smart Tag "Display" drop down list lets you navigate to
different template types for editing. RadGrid for example lists templates for portions of the master table view.

UI for ASP.NET AJAX

351 UI for ASP.NET AJAX

You can select individual templates or select one of the bolded items in the list to edit a collection of
templates all at one time. Selecting the bold "MasterTableView" from the list shows all the templates under it
in the list:

As you can see there is a fair amount of variation between how individual RadControls present templates. The
commonality between them is that the Smart Tag displays an Edit Templates link when templates are available
for editing, provides a list of templates that can be edited and finally the End Template Editing link ends
editing. The key is to look for the cues on the Smart Tag.

For example, the RadToolBar doesn't show template related options until you have added buttons to the list.
When you enter into edit template mode, the list of templates includes a template per button or split-button

UI for ASP.NET AJAX

352 UI for ASP.NET AJAX

(drop down's don't support templates). RadTreeView supports a general template for all nodes and can also
have a template per specific node that overrides the general template:

RadControls that handle a single item such as RadRotator and RadPageView have no such "Edit Templates"
Smart Tag options to begin with. Instead they are always in "template mode" as this screenshot of RadRotator
shows:

The most common programmatic task you're likely to perform on a template is locating some control within the
template. You may want to retrieve properties from controls within a template, set properties or attach event
handlers on the fly within code.

Finding Controls in a Template
For example, a RadToolBar has two elements, the first is a button with text "Add" and the second is a button
that has an item template. The first button increments a text box located in the template of the second
button:

12.6 Server-Side Programming

UI for ASP.NET AJAX

353 UI for ASP.NET AJAX

First, notice the markup for the second button defines a RadNumericTextBox within the button's template.

Depending on how deep your control is buried, you may have to go through iterations of calling FindControl(),
along the lines of:

MyBigContainer.FindControl("MyInsideContainer").FindControl
("TheControlImLookingFor");
The code below executes if the first button, "Add" is clicked. The second button is retrieved using the
FindItemByValue() method. FindControl() is called against this second button and the returned control is cast
to RadNumericTextBox. The text is retrieved, converted to int, incremented and placed back in the text of the
control.

Creating a Custom Template
If the Templates at design time don't give you enough flexibility, perhaps because you need to create templates

You can find the complete source for this project at:
\VS Projects\Templates\ServerSide

[ASP.NET] RadToolBar Markup

<telerik:RadToolBar ID="RadToolBar1" runat="server" OnButtonClick="RadToolBar1_ButtonClick">
 <Items>
 <telerik:RadToolBarButton Text="Add" />
 <telerik:RadToolBarButton Value="TemplateTextBox" runat="server">
 <ItemTemplate>
 <telerik:RadNumericTextBox ID="txtResultCount" runat="server" NumberFormat-
DecimalDigits="0"
 Value="0">
 </telerik:RadNumericTextBox>
 </ItemTemplate>
 </telerik:RadToolBarButton>
 </Items>
</telerik:RadToolBar>

[VB] Finding the Embedded Control

Protected Sub RadToolBar1_ButtonClick(ByVal sender As Object, ByVal e As
RadToolBarEventArgs)
 If e.Item.Text.Equals("Add") Then
 Dim ButtonWithTemplate As Control = RadToolBar1.FindItemByValue("ButtonWithTemplate")
 Dim textbox As RadNumericTextBox = DirectCast(ButtonWithTemplate.FindControl
("txtResultCount"), RadNumericTextBox)
 textbox.Text = (Convert.ToInt32(textbox.Text) + 1).ToString()
 End If
End Sub

[C#] Finding the Embedded Control

protected void RadToolBar1_ButtonClick(object sender, RadToolBarEventArgs e)
{
 if (e.Item.Text.Equals("Add"))
 {
 Control ButtonWithTemplate = RadToolBar1.FindItemByValue("ButtonWithTemplate");
 RadNumericTextBox textbox = (RadNumericTextBox)ButtonWithTemplate.FindControl
("txtResultCount");
 textbox.Text = (Convert.ToInt32(textbox.Text) + 1).ToString();
 }
}

UI for ASP.NET AJAX

354 UI for ASP.NET AJAX

dynamically for some reason, you can create your template and assign it at run time. Your template object only
needs to implement the ITemplate interface. ITemplate comes from the System.Web.UI namespace and has a
single method you need to implement, InstantiateIn. InstantiateIn() passes a single Control parameter, the
container for the template. Within your implementation, you create your controls, set properties, hook up
methods and add the controls to the template container. When you're hooking up your control events, you can
assign the DataBinding event. The DataBinding event is introduced in the System.Web.UI.Control class and
allows you to access the DataItem object and set your control properties based on the data.

This next example creates a simple template class and assigns it to a RadTabStrip. The tab strip will be bound
to a table of country names. As each template is instantiated and bound, if a flag image with a filename
corresponding to the country name is available, it's displayed in the tab strip.

Prepare the project
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Using the Solution Explorer, add a new Folder to your project and name it "Images".

3. Drag the contents of the "\VS Projects\Images\Flags" folder into your project's "Images" folder.

4. Locate the "Countries.mdf" file in the "Live Demos\App_Data" folder under the folder where you installed
RadControls for ASPNET AJAX. Drag this file into the "App_Data" folder of your project.

5. Open the "Web.config" file of your project. Add a connection string to your project by replacing the line
 <connectionStrings />
with
<connectionStrings>
 <add name="TelerikConnectionString"
 connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Countries.mdf;Integrated
Security=True;User Instance=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

UI for ASP.NET AJAX

355 UI for ASP.NET AJAX

Add a Data-bound Tab Strip
1. Drag a RadTabStrip from the Tool Box onto your Web page. Set its Skin property to "Office2007".

2. In the RadTabStrip Smart Tag, select "<New data source...>" from the Choose Data Source drop-down.

3. In the first page of the DataSource Configuration Wizard, select "Database" as the database type, and
click OK to move to the next page.

4. On the Choose Your Data Connection page, select "CountriesConnectionString" from the drop-down list.
Then click the Next button to continue.

5. On the Configure the Select Statement page, make sure the "Specify columns from a table or view" radio
button is selected, and then choose "Countries" from the "Name" drop-down list.

6. Check "*" to return all columns.

7. Click the Next button, test the query if you wish, and then click Finish.

8. In the Properties Window for the RadTabStrip:

 Set the DataTextField property to "Name".

 Set the DataValueField property to "ID".

 Set the Orientation property to "VerticalLeft".

Create a Custom Template Class
1. In the Solution Explorer, right-click the project and select Add | Class... from the context menu. Set the

class file name to be "MyTemplate.cs".

2. Add the following namespaces to the "Imports" (VB) or "using" (C#) section of the code:

 System.Web.UI

 System.Data;

 System.IO;

 System.Web.UI.WebControls;

 Telerik.Web.UI;

3. In the code-behind for the MyTemplate class, descend the class from ITemplate.

4. Right-click ITemplate and choose Implement Interface | Implement Interface from the context menu.

UI for ASP.NET AJAX

356 UI for ASP.NET AJAX

The class should look something like the example below:

5. Implement the InstantiateIn() method.

This method creates a standard ASP Image control, hooks up the DataBinding event so we can extract the
path name for the image and adds the image to the container's Controls collection. In this case the
container is a RadTab. The code also scales the image down slightly to fit on the tab and adds a right
margin to position the image.

A standard ASP Label control is also created and added to the containers Controls collection. Notice that

[VB] Implementing the ITemplate Interface

Public Class MyTemplate
 Implements ITemplate
 #region ITemplate Members
 Public Sub InstantiateIn(ByVal container As Control)
 Throw New NotImplementedException()
 End Sub
#End Region
End Class

[C#] Implementing the ITemplate Interface

public class MyTemplate: ITemplate
{
 #region ITemplate Members
 public void InstantiateIn(Control container)
 {
 throw new NotImplementedException();
 }
 #endregion
}

UI for ASP.NET AJAX

357 UI for ASP.NET AJAX

the label is also hooked up to the DataBinding event.

6. Implement the Image's DataBinding Event. Add the following code to the MyTemplate class.

In this event, "sender" is the object being databound, i.e.. the Image control. The parent of sender is the
container control. You can cast the container control to its runtime type and then access the DataItem
property of the container.

At this point you have references to the object being data bound and the data that is being bound to it.
After that we build a path that looks in the images directory for a "png" file with the same name as the
country name. If found, the ImageUrl path is assigned.

[VB] Implement the InstantiateIn Method

Public Sub InstantiateIn(ByVal container As Control)
 ' Create an image control, hook up to DataBinding
 ' event and add to the RadTab (the container in this case)
 Dim image As New System.Web.UI.WebControls.Image()
 image.Height = Unit.Pixel(20)
 image.Width = Unit.Pixel(25)
 image.Style.Add("Margin-right", "5px")
 AddHandler image.DataBinding, AddressOf image_DataBinding
 container.Controls.Add(image)
 ' Create a label, hook up to DataBinding event and add to
 ' the RadTab
 Dim label As New Label()
 AddHandler label.DataBinding, AddressOf label_DataBinding
 container.Controls.Add(label)
End Sub

[C#] Implement the InstantiateIn Method

public void InstantiateIn(Control container)
{
 // Create an image control, hook up to DataBinding
 // event and add to the RadTab (the container in this case)
 System.Web.UI.WebControls.Image image =
 new System.Web.UI.WebControls.Image();
 image.Height = Unit.Pixel(20);
 image.Width = Unit.Pixel(25);
 image.Style.Add("Margin-right", "5px");
 image.DataBinding += new EventHandler(image_DataBinding);
 container.Controls.Add(image);
 // Create a label, hook up to DataBinding event and add to
 // the RadTab
 Label label = new Label();
 label.DataBinding += new EventHandler(label_DataBinding);
 container.Controls.Add(label);
}

[VB] Implementing the DataBinding Event for Image

Sub image_DataBinding(ByVal sender As Object, ByVal e As EventArgs)
 Dim image As System.Web.UI.WebControls.Image = TryCast(sender,
System.Web.UI.WebControls.Image)
 Dim tab As RadTab = TryCast((TryCast(sender, Control)).Parent, RadTab)
 Dim row As DataRowView = TryCast(tab.DataItem, DataRowView)

UI for ASP.NET AJAX

358 UI for ASP.NET AJAX

7. Implement the label's DataBinding Event. Add the code below to the MyTemplate class.

Data bindiing for the Label follows the same pattern as for the Image but is less complex because we don't
need to determine a URL. The Label is created, the data is retrieved for the current tab, the label text is
assigned from the data. The Label font is also set to a blue color.

8. Press Ctl-F5 to run the application. The flag graphics should show up in tabs that have available images,

 Dim path As String = [String].Format("~\images\{0}.png", row("Name").ToString())
 Dim physicalPath As String = System.Web.HttpContext.Current.Server.MapPath(path)
 If Not File.Exists(physicalPath) Then
 image.Visible = False
 Else
 image.ImageUrl = path
 End If
End Sub

[C#] Implementing the DataBinding Event for Image

void image_DataBinding(object sender, EventArgs e)
{
 System.Web.UI.WebControls.Image image =
 sender as System.Web.UI.WebControls.Image;
 RadTab tab = (sender as Control).Parent as RadTab;
 DataRowView row = tab.DataItem as DataRowView;
 string path =
 String.Format("~\\images\\{0}.png", row["Name"].ToString());
 string physicalPath = System.Web.HttpContext.Current.Server.MapPath(path);
 if (!File.Exists(physicalPath))
 {
 image.Visible = false;
 }
 else
 {
 image.ImageUrl = path;
 }
}

[VB] Implementing the DataBinding Event for Label

Sub label_DataBinding(ByVal sender As Object, ByVal e As EventArgs)
 Dim label As Label = TryCast(sender, Label)
 Dim tab As RadTab = TryCast(label.Parent, RadTab)
 Dim row As DataRowView = TryCast(tab.DataItem, DataRowView)
 label.Text = row("name").ToString()
 label.ForeColor = System.Drawing.Color.Blue
End Sub

[C#] Implementing the DataBinding Event for Label

void label_DataBinding(object sender, EventArgs e)
{
 Label label = sender as Label;
 RadTab tab = label.Parent as RadTab;
 DataRowView row = tab.DataItem as DataRowView;
 label.Text = row["name"].ToString();
 label.ForeColor = System.Drawing.Color.Blue;
}

UI for ASP.NET AJAX

359 UI for ASP.NET AJAX

namely "USA", "China", "England" and "Canada".

You can find controls on the client-side using server code that is very similar to the server-side example. The
basic idea is to take whatever code you have on the server and place it between <% %> tags within the
JavaScript function. To output server generated values to the client, use "<%= %>" (including the = sign).

This example first verifies that the "Add" button is clicked. Inside the "if" is where it gets interesting. Take a
close look at the server tags <% %>. All this code executes before the page is even output to the browser. The
entire first block between <% %> does not even show up in the browser source, but it all executes, finds the
RadNumericTextBox and outputs the client id right between the $find() parenthesis.

Compare that with the actual output to the browser. The server code is over and done. The only thing that
remains from the server is the client id for RadNumericTextBox inside the call to $find(). Here's a screenshot of
the rendered script in a JavaScript debugger with two overlays showing the server tags before rendering:

12.7 Client-Side Programming

<%= is a shortcut for Response.Write().

[JavaScript] Getting a Reference to a Control in a Template on the Client

function clientButtonClicked(sender, args)
{
 // get a reference to the tool bar button, get it's text
 if (args.get_item().get_text() == "Add")
 {
 // run some code on the server. this evaluates well before any JavaScript executes.
 // this entire block within the server tags will not be visible in the output
 <%
 // get a reference to the second button, i.e. "ButtonWithTemplate"
 Control control = RadToolBar1.FindItemByValue("ButtonWithTemplate");
 // from the button reference, find the numeric text box
 RadNumericTextBox txtResultCount = control.FindControl("txtResultCount") as
RadNumericTextBox;
 %>
 // output the results of the server code as a parameter of the $find() method.
 // this will be visible
 var textBox = $find('<%= txtResultCount.ClientID %>');
 // retrieve, increment and reassign the text box value
 textBox.set_value(textBox.get_value() + 1);
 alert(textBox.get_value());
 }
}

UI for ASP.NET AJAX

360 UI for ASP.NET AJAX

In this chapter you learned how templates are used within RadControls. First you built a simple application that
used templates and data bound to elements within the template. We explored the details of binding
expressions, starting with public server methods and working through Container, DataItem, Eval() and Bind()
methods. You learned how to find controls in both server and client code.

12.8 Summary

UI for ASP.NET AJAX

361 UI for ASP.NET AJAX

 Build the Admin home page structure and the code-behind necessary to dynamically load user controls.

 Create user controls to be loaded into the Admin home page.

 Create a new ActiveSkill skin based on the existing "Black" skin.

If you remember in the "Getting Started" chapter we created the beginnings of an "Admin" page. In another
chapter on RadAjax we talked about how to dynamically load user controls on-the-fly. In the skinning chapter
we created a custom skin.

In this chapter we combine all of these techniques to fill out the functionality of the Admin home page so that
it has:

 A tab strip that users can use to navigate between user controls

 A series of user controls for each database function required.

 A new custom "ActiveSkill" skin that will be applied to the entire application.

The general layout of the page will have a slight black gradient along the top with a logo image positioned on
the left. The lower part of the page will have a RadTabStrip on the left with tools for the administrator to use
for tasks such as maintain questions. The tab strip will be placed on a sliding panel bar so that the "toolbox" can
slide away out of sight to allow for more usable space. The right side of the lower page will contain dynamically
loaded user controls that house the actual database maintenance functionality.

The Admin page is built in two steps. The first is to prepare the page by designing the page layout, adding
styles, adding controls and setting properties. The second is to add the code-behind to handle the dynamically
added controls.

Prepare the Page
1. In the Solution Explorer, add all the images found in the directory \VS Projects\Images\ActiveSkill\Admin to

the \images directory in the ActiveSkillUI project.

2. In the AdminHome.aspx page design view add a ScriptManager control.

3. Add a RadAjaxManager control to the page.

4. Switch to the source view of the page and add the <style> tag contents below to the <head> tag of the
page.

These styles will set the maximum height and width for the page elements. Also notice the "topDiv" style
with its "header_strip.png". This image is a one pixel wide, 86 pixel tall image of a very slight gradient
moving from dark to slightly lighter at the bottom.

13 ActiveSkill: Admin Page

13.1 Objectives

13.2 Introduction

13.3 Build the Admin Page

You can find the complete source for this project at:
\VS Projects\

[CSS] AdminHome Styles

UI for ASP.NET AJAX

362 UI for ASP.NET AJAX

5. Add the markup below to stake out the general layout structure of divs, splitter and panes. This markup
should be placed inside the <form> just after the ScriptManager and RadAjaxManager.

Notice in "bottomDiv" that "SplitterMain" contains a vertical RadSplitter with two RadPanes, one for the
tab strip area and the other for whatever context is triggered by the tab strip selection. Also notice the
commented areas with "this goes here" notes. We will fill these in shortly.

<style type="text/css">

 html, body, form
 {
 height: 100%;
 width:100%;
 margin: 0px;
 padding: 0px;
 overflow: hidden;
 }
 #mainDiv
 {
 height: 100%;
 width: 100%;
 background-color: Black;
 }

 #topDiv
 {
 background-image: url(../Images/header_strip.png);
 background-repeat: repeat;
 height: 86px;
 width: 100%;
 }

 #bottomDiv
 {
 height: 100%;
 width: 100%;
 }

 #divContent
{
 height: 100%;
 width: 100%;
 }
</style>

[ASP.NET] The Top Level Layout of AdminHome

<div id="mainDiv" runat="server">
<div id="topDiv" >
 <%--logo image goes here--%>
</div>
<div id="bottomDiv" runat="server">
 <telerik:RadSplitter ID="SplitterMain" runat="server" Height="100%" Width="100%"
 Items-Capacity="4" SplitBarsSize="">
 <telerik:RadPane ID="MainLeft" runat="server" Locked="True" Index="0" >
 <%--sliding zone, pane and RadTabstrip go here--%>

UI for ASP.NET AJAX

363 UI for ASP.NET AJAX

6. Add an HTML tag to "topDiv". This image will contain the logo.

7. To the top RadPane with ID "MainLeft", add a sliding zone, pane and tab strip.

8. To the bottom RadPane with ID "MainRight", add a <div> tag with id "divContent" and a standard
PlaceHolder control.

The PlaceHolder will be used to host user controls that will be loaded dynamically.

9. In the design view for the form, select the RadTabStrip, then click the Smart Tab Build RadTabStrip...
option. Create tabs with the following Text, Value and ImageUrl Properties:

 Text "Categories", Value "Categories.ascx", ImageUrl "~/images/Categories.png".

 Text "Questions", Value "Questions.ascx", ImageUrl "~/images/Questions.png".

 Text "Create Exams", Value "CreateExams.ascx", ImageUrl "~/images/Exams.png".

 </telerik:RadPane>
 <telerik:RadPane ID="MainRight" runat="server" Height="" Index="1" Width="">
 <%--content div and placeholder go here to contain dynamic controls--%>
 </telerik:RadPane>
 </telerik:RadSplitter>
</div>
</div>

[ASP.NET] Adding the Image Tag to "topDiv"

<div id="topDiv">

</div>

[ASP.NET] Adding the Tab Strip and Sliding Zone

<telerik:RadPane ID="MainLeft" runat="server" Locked="True" Index="0" >

 <%--sliding zone, pane and rad tabstrip go here--%>
 <telerik:RadSlidingZone ID="MasterSlidingZone" runat="server"
DockedPaneId="MasterSlidingPane"
 Height="100%" Width="15px">
 <telerik:RadSlidingPane ID="MasterSlidingPane" runat="server" EnableDock="true"
DockText="Tools"
 Title="Admin Tools" Height="100%" Scrolling="none" TabView="TextOnly" Width="160px">
 <telerik:RadTabStrip ID="tsMain" runat="server" Orientation="VerticalRight"
SelectedIndex="0" Height="336px" Width="160px">
 </telerik:RadTabStrip>
 </telerik:RadSlidingPane>
 </telerik:RadSlidingZone>

</telerik:RadPane>

[ASP.NET] Add Content Div and Placeholder

<telerik:RadPane ID="MainRight" runat="server" Index="1" >

 <%--content div and placeholder go here to contain dynamic controls--%>
 <div id="divContent" runat="server" style="height: 100%; width: 100%">
 <asp:PlaceHolder ID="PlaceHolder1" runat="server"></asp:PlaceHolder>
 </div>
</telerik:RadPane>

UI for ASP.NET AJAX

364 UI for ASP.NET AJAX

 Text "Schedule", Value "ScheduleExams.ascx", ImageUrl "~/images/Schedule.png".

10. Use the RadAjaxManager Smart Tag to select the Configure Ajax Manager option. Set the RadTabStrip
"tsMain" to update itself and the PlaceHolder1 control.

Writing the Code-Behind for the Admin Page
The code here will look similar to the examples from the RadAjax chapter that talked about dynamic user
controls.

1. Add a new IASControl interface to the ActiveSkillBO project with class file name "ASControl.cs". Replace
the code with the code shown below.

The interface has a single method FirstLoad() that is fired by the hosting page when the control should
initialize itself. A dictionary is passed to this method with a collection of parameters. The parameter is
not used in the "Admin" page and so this will always be passed null. In the "User" page we will pass
parameters from the client and so this parameter will be used then.

2. Back in the ActiveSkillUI project, in the designer, double-click the RadTabStrip to create a TabClick event
handler. Add the code below to the TabClick event handler.

This code LoadUserControl() to actually load the user control to the place holder. The first parameter is
the parent control, the second is the CurrentControl path that will contain the path to the clicked on tab
and the last parameter indicates that this is the first load (always the case when clicking the tab).

[VB] The IASControl Interface

Imports Microsoft.VisualBasic
Imports System.Collections.Generic
Namespace Telerik.ActiveSkill.Common
 Public Interface IASControl
 Sub FirstLoad(ByVal args As Dictionary(Of String, String))
 End Interface
End Namespace

[C#] The IASControl Interface

using System.Collections.Generic;
namespace Telerik.ActiveSkill.Common
{
 public interface IASControl
 {
 void FirstLoad(Dictionary<string, string> args);
 }
}

[VB] Handling the Tab Click

Protected Sub tsMain_TabClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadTabStripEventArgs)
 ' this always is a first load
 LoadUserControl(PlaceHolder1, CurrentControl, True)
End Sub

[C#] Handling the Tab Click

protected void tsMain_TabClick(object sender,
 Telerik.Web.UI.RadTabStripEventArgs e)

UI for ASP.NET AJAX

365 UI for ASP.NET AJAX

3. In the code-behind for AdminHome.aspx, add namespace Telerik.ActiveSkill.Common to the "Imports" (VB)
or "using" (C#) statements.

4. Add the "CurrentControl" property. CurrentControl tracks the last user control path loaded to the place
holder.

5. Add the code below to load the user control into the PlaceHolder.

This method uses the parentControl LoadControl() method to load a user control, given a path to the ascx
file. The path is passed to this method in the newControlPath parameter. isFirstLoad if false indicates
we're just reloading the control because of a postback due to something on the page and that we're still
looking at the same user control. If we click on a tab or it's not a postback, then isFirstLoad will be true.

{
 // this always is a first load
 LoadUserControl(PlaceHolder1, CurrentControl, true);
}

[VB] Adding Properties

' store the last selected control for reload
Private Const CurrentControlKey As String = "CurrentControlKey"
Private Property CurrentControl() As String
 Get
 Return If(ViewState(CurrentControlKey) Is Nothing, "", ViewState
(CurrentControlKey).ToString())
 End Get
 Set(ByVal value As String)
 ViewState(CurrentControlKey) = value
 End Set
End Property

[C#] Adding Properties

// store the last selected control for reload
private const string CurrentControlKey = "CurrentControlKey";
private string CurrentControl
{
 get
 {
 return ViewState[CurrentControlKey] == null ?
 "" : ViewState[CurrentControlKey].ToString();
 }
 set
 {
 ViewState[CurrentControlKey] = value;
 }
}

[VB] Load the User Control

Private Function LoadUserControl(ByVal parentControl As Control, ByVal newControlPath As
String, ByVal isFirstLoad As Boolean) As Control
 ' Load the control and set its id
 Dim control As Control = Page.LoadControl(newControlPath)

UI for ASP.NET AJAX

366 UI for ASP.NET AJAX

6. Handle the Page_Load event. Replace the Page_Load event handler with the code shown below.

The very first time the page loads, the selected tab value is saved off in CurrentControl. To determine if
this is a control that simply needs to be reloaded or if we're navigating to a new tab the CurrentControl is
compared with selected tab. If it's a new tab, then save it in CurrentControl and the TabClick event will

 control.ID = newControlPath
 ' the viewstate control will be out of sync with
 ' the previously loaded control. Temporarily shut off
 ' viewstate if this is the first load of the control
 If isFirstLoad Then
 control.EnableViewState = False
 End If
 ' add to the parent controls collection
 parentControl.Controls.Add(control)
 ' if this is the first load (first time the page is loaded or
 ' a new tab has been clicked) enable the viewstate again. Forgetting to
 ' reenable the viewstate will controls to be loaded only once. Then
 ' call the FirstLoad() method of the web user control for first time
 ' loading tasks.
 If isFirstLoad Then
 control.EnableViewState = True
 TryCast(control, IASControl).FirstLoad(Nothing)
 End If
 Return control
End Function

[C#] Load the User Control

private Control LoadUserControl(Control parentControl,
 string newControlPath, bool isFirstLoad)
{
 // Load the control and set its id
 Control control = Page.LoadControl(newControlPath);
 control.ID = newControlPath;
 // the viewstate control will be out of sync with
 // the previously loaded control. Temporarily shut off
 // viewstate if this is the first load of the control
 if (isFirstLoad)
 {
 control.EnableViewState = false;
 }
 // add to the parent controls collection
 parentControl.Controls.Add(control);
 // if this is the first load (first time the page is loaded or
 // a new tab has been clicked) enable the viewstate again. Forgetting to
 // reenable the viewstate will controls to be loaded only once. Then
 // call the FirstLoad() method of the web user control for first time
 // loading tasks.
 if (isFirstLoad)
 {
 control.EnableViewState = true;
 (control as IASControl).FirstLoad(null);
 }
 return control;
}

UI for ASP.NET AJAX

367 UI for ASP.NET AJAX

take care of calling LoadUserControl. If this is the same control and we need to reload, then call
LoadUserControl(). This second condition will happen the first time the page is loaded and on any reloads
that are not caused by a tabclick.

We need user controls for each database maintenance operation we want to perform, i.e. maintenance for
categories, exams, questions and scheduling of exams. In this phase we build those controls without filling out
their ultimate functionality.

1. Using the Solution Explorer, right-click the Admin folder of the ActiveSkillUI project. Select Add | New
Item. Select "Web User Control" from the list of item types. Set the file name to be "Categories.ascx" and
click Add.

[VB] Handling the Page_Load Event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' if this is the first load of the page,
 ' set the CurrentControl to the selected tab value
 If (Not IsPostBack) Then
 CurrentControl = tsMain.SelectedTab.Value
 End If
 Dim isNewControl As Boolean = Not CurrentControl.Equals(tsMain.SelectedTab.Value)
 If isNewControl Then
 ' new control, so wait for the tabclick to load it
 CurrentControl = tsMain.SelectedTab.Value
 Else
 ' same control, reload it.
 LoadUserControl(PlaceHolder1, CurrentControl, (Not IsPostBack))
 End If
End Sub

[C#] Handling the Page_Load Event

protected void Page_Load(object sender, EventArgs e)
{
 // if this is the first load of the page,
 // set the CurrentControl to the selected tab value
 if (!IsPostBack)
 {
 CurrentControl = tsMain.SelectedTab.Value;
 }
 bool isNewControl = !CurrentControl.Equals(tsMain.SelectedTab.Value);
 if (isNewControl)
 // new control, so wait for the tabclick to load it
 CurrentControl = tsMain.SelectedTab.Value;
 else
 // same control, reload it.
 LoadUserControl(PlaceHolder1, CurrentControl, !IsPostBack);
}

13.4 Create User Controls

UI for ASP.NET AJAX

368 UI for ASP.NET AJAX

2. Add three more user controls to the \Admin directory: "CreateExams.ascx", "Questions.ascx",
"ScheduleExams.ascx".

These file names must exactly match the Value properties of the RadTabStrip on the admin page.

3. In the design view of each user control, type in the name of the page.

This is just so we can see what control is loaded and that the user control swapping mechanism is working
as expected.

4. In the code-behind for the Categories.ascx user control:

 Add the Telerik.ActiveSkill.Common namespace to the "Imports" (VB) or "uses" (C#) sections of code.

 Add IASControl to the class declaration. Right-click IASControl and select Implement Interface from
the context menu.

 Inside the implementation, remove the the line that throws an exception so that the FirstLoad()

UI for ASP.NET AJAX

369 UI for ASP.NET AJAX

method is empty (see code example below).

In the AdminHome page, the FirstLoad() method is being called and will fail if this interface is not
present. Once the IASControl is part of the declaration of the user control class, it must be
implemented. The implementation generated by the UI will contain a NotImplementedException that
must be removed so that we can load each of the user controls without failing.

The resulting code for the user control should now look something like this example:

[VB] The UserControl with empty IASControl Implementation

Imports Microsoft.VisualBasic
Imports System
Imports System.Collections.Generic
Imports Telerik.ActiveSkill.Common
Namespace Telerik.ActiveSkill.UI.Admin
 Partial Public Class Categories
 Inherits System.Web.UI.UserControl
 Implements IASControl
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 End Sub
 #region IASControl Members
 Public Sub FirstLoad(ByVal args As Dictionary(Of String, String)) Implements
IASControl.FirstLoad
 End Sub
#End Region
 End Class
End Namespace

[C#] The UserControl with emtpy IASControl Implementation

using System;
using System.Collections.Generic;
using Telerik.ActiveSkill.Common;
namespace Telerik.ActiveSkill.UI.Admin
{
 public partial class Categories : System.Web.UI.UserControl, IASControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 #region IASControl Members

UI for ASP.NET AJAX

370 UI for ASP.NET AJAX

5. Repeat this last step for each of the user controls "CreateExams.ascx", "Questions.ascx" and
"ScheduleExams.ascx".

6. Press F5 to run the application. You should be able to click the tabs and have the names you typed in show
up in the placeholder area.

 public void FirstLoad(Dictionary<string, string> args)
 {
 }
 #endregion
 }
}

If one of your user controls fails to load, don't forget to look at the Output window in Visual Studio. For
example, if in the categories user control you place a textbox and then add another "less than" bracket
to malform the tag, this error will show up in the output window. You must run the application in
debug mode to get the output window display of the error message.

UI for ASP.NET AJAX

371 UI for ASP.NET AJAX

While the "Black" skin theme on this application is sleek, some of it is hard to read. And we may want to
customize aspects of the skin later to more exactly correspond to our visual theme. For right now we want to
set up a custom ActiveSkill skin now before we get too invested in the predefined skins. We will adjust the
colors of the splitter "Admin Tools" title and the fonts for unselected tabs so that they are just slightly brighter.
Take a look at the screen shot below that shows the user interface with the "Black" skin and again with our new
"ActiveSkill" skin.

13.5 Create ActiveSkill Skin

To create a new skin you typically start by copying an existing skin that's closest to the appearance you're
looking for. You change the file names from something like "Calendar.Hay.css" to "Calendar.MyStyle.css".

UI for ASP.NET AJAX

372 UI for ASP.NET AJAX

1. Copy the contents of \VS Projects\ActiveSkill Skins to your \Skins folder.

This step should create in your project the \Skins\ActiveSkill folder. The Skins folder will have sub-folders
for each control and a series of CSS files, also for each control. The Skins directory should look something
like the example below:

2. In the web.config file add the following appSettings to globally set the skin for the entire application. This
will set the skin for all RadControls that are not already defined by settings on the specific controls.

Then you open each of the CSS files and change the instances of "_Hay" or ".Hay" to their "_MyStyle" and
".MyStyle" equivalents. From there you change the actual style specifics to get the look and feel you're
after. In this case we've done the first two steps for you by copying the files for the "Black" skin, renaming
the files and renaming the CSS selectors. The altered files are found in the \VS Projects\ActiveSkill Skins
folder.

[XML] Defining AppSettings for Skins in Web.Config

<appSettings>
 <!-- RadControls for ASP.NET AJAX Step By Step -->
 <add key="Telerik.Skin" value="ActiveSkill"/>
 <add key="Telerik.EnableEmbeddedSkins" value="false"/>
</appSettings>

UI for ASP.NET AJAX

373 UI for ASP.NET AJAX

3. Go through Login.aspx and Register.aspx and completely remove references to the Skin and
EnableEmbeddedSkins.

4. Open the Splitter.ActiveSkill.css file for editing. Locate the string "slideHeaderDocked". Change the "color"
attribute to "color:#598FD3;".

5. Open the TabStrip.ActiveSkill.css file for editing. Locate the string "color: #717171" and change the setting
to "color: #919191".

6. Press Ctl-F5 to run the application. The login and registration pages should look as they did before. The
"AdminHome" page where the "Admin Tools" and unselected tab strip text will be slighter brighter.

In this chapter we built the Admin Home page, starting with the general layout and adding the code-behind
required to swap user controls dynamically. We created each of the user controls and tested the dynamic
swapping behavior. Finally we created a new custom ActiveSkill skin based on the standard Telerik "Black" skin
and configured the application to use that skin throughout.

13.6 Summary

UI for ASP.NET AJAX

374 UI for ASP.NET AJAX

 Get acquainted with RadAsyncUpload as well as explore some of its basic features.

 Create a simple application to get confidence in using the RadAsyncUpload.

 Explore the RadAsyncUpload design time interface, including Smart Tag and the different skins that you
can apply.

 Explore some of the most important properties that represent a sufficient part of the RadAsyncUpload
functionality.

 Learn some server-side coding techniques as well as get acquainted with the server-side events of
RadAsyncUpload.

 Explore some of the client-side methods and client-side events.

 Explore some advanced techniques, such as the three types of modules that RadAsyncUpload uses.

General Information
RadAsyncUpload offers asynchronous upload capability while maintaining the look of the regular RadUpload
control.The upload process requires that the files are uploaded to a custom handler and not to the hosting
page. Files are stored in a temporary location until a postback occurs. The temporary location is cleaned-up
automatically.

Internally, RadAsyncUpload can choose between three modules for uploading - IFrame, Flash and Silverlight.
The module with higher priority is Silverlight. If there is no Silverlight installed on the client machine,
RadAsyncUpload will utilize the Flash module. If there is no Flash as well, RadAsyncUpload will use the IFrame
module which is supported out of the box on all browsers.

The control supports Web Farm scenarios. Upload progress is available in this scenario as long there is
Flash/Silverlight installed on the client machine.

Temporary Files

14 RadAsyncUpload

14.1 Objectives

14.2 Introduction

UI for ASP.NET AJAX

375 UI for ASP.NET AJAX

RadAsyncUpload relies on saving temporary files to work. When posted, files are saved to the designated temp
folder (App_Data/RadUploadTemp by default) with unique names. Once a postback occurs the
RadAsyncUpload fires the OnFileUploaded event for each file. The target file is passed as part of the
arguments to the event and can be set as either valid (default) or invalid. After the events fire, all files marked
as valid are automatically saved to the TargetFolder if it’s set.

Finally, all processed temporary files are deleted. Temporary files are also deleted after a set amount of time
defined by the TemporaryFileExpiration property

Validation
Validation differs from RadUpload as it is now possible to validate size on the client, as long as there is
Silverlight or Flash installed on the client's browser. If the validation fails, RadAsyncUpload will fire the
OnClientValidationFailed.

Web Farms
In web farms, each server will need to use the same MachineKey as RadAsyncUpload uses it for encryption.
Most web farms should already have their MachineKeys synchronized as this is the recommended approach for
web farm deployment.

Getting Started

This tutorial will walk you through creating a Web page that uses RadAsyncUpload control. Following the steps
below you can learn how to:

 Use RadAsyncUpload to upload files.

 Use skins to provide a consistent look & feel.

1. We start by creating a new page and adding a RadAsyncUpload control to it.

2. Use the Smart Tag of the control to add RadScriptManager on the page:

14.3 Getting Started

You can find the complete source for this project at:
\VS Projects\AsyncUpload\GettingStarted

UI for ASP.NET AJAX

376 UI for ASP.NET AJAX

3. It will automatically register the Telerik.Web.UI.WebResource.axd handler in the web.config file. This
handler is used by both RadScriptManager and RadAsyncUpload.

4. You can change the Default skin of the RadAsyncUpload by choosing any of the predefined:

UI for ASP.NET AJAX

377 UI for ASP.NET AJAX

5. Set the TargetFolder property to the folder where you want the files to be automatically uploaded after
the postback.

By default the TemporaryFolder is set to App_Data / RadUploadTemp folder. The files are uploaded with
randomly generated unique names.

6. Finally, add a button on the page which will postback. Run the application and select a file - you will see

The files are automatically and asynchronously uploaded to the folder specified by the
TemporaryFolder property but are copied to the TargetFolder after the postback on the page.

[ASP.NET] Setting the target folder

<telerik:RadAsyncUpload ID="RadAsyncUpload1" TargetFolder="TargetLocation"
 runat="server"></telerik:RadAsyncUpload>

UI for ASP.NET AJAX

378 UI for ASP.NET AJAX

the loading image indicating that the file is uploaded asynchronously. During the upload the page is
interactive to the user. After clicking on the postback button - the file is saved to the TargetFolder.

Ajax Processing

Here is a sample Web page that uses RadAsyncUpload control and Ajax Processing to upload files.

Important Properties

You can find the complete source for this project at:
\VS Projects\AsyncUpload\AjaxProcessing

Keep in mind that RadAsyncUpload:

 Files are not directly uploaded to the page, but to a handler - Telerik.Web.UI.WebResource.axd.

 Uploaded files will be transferred to the TargetFolder when a postback occurs (meaning that you will
need to add a "Submit" button, so that the files will be saved in the target folder).

 The page submission is not automatically blocked until the file upload completes.

 Uploaded files are stored in a temporary location - App_Data/RadUploadTemp by default.

 Windows and Forms Authentication require special handling.

14.4 Important Properties

AllowedFileExtensions Gets or sets the allowed file extensions for uploading.

EnableInlineProgress Specifies whether RadAsyncUpload displays an in-line progress next
to each file being uploaded.

HttpHandlerUrl Specifies the URL of the HTTP Handler for which the image will be
served.

InitialFileInputsCount
Gets or sets the initial count of file input fields, which will appear in
RadAsyncUpload (should be used only when MultipleSelection
="disabled")

InputSize Gets or sets the size of the input field.

MaxFileInputsCount Gets or sets maximum file input fields that can be added to the
control(should be used only when MultipleSelection ="disabled")

MaxFileSize Gets or sets the maximum file size allowed for uploading in bytes.

MultipleFileSelection Specifies whether RadAsyncUpload allows selecting multiple files in
the File Selection dialog.

TargetFolder Gets or sets the virtual path of the folder where RadAsyncUpload will
automatically save the valid files after the upload completes.

UploadConfiguration Sets upload configuration that has additional information.

UploadedFiles Provides access to the valid files uploaded by the RadAsyncUpload
instance.

14.5 Upload Modules

UI for ASP.NET AJAX

379 UI for ASP.NET AJAX

RadAsyncUpload utilizes four different modules for file uploading – Iframe, Flash, Silverlight and File Api. The
module with highest priority is Silverlight. If there is no Silverlight installed on the client machine,
RadAsyncUpload will utilize the Flash module. If neither Flash nor Silverlight is installed – the IFrame module
takes place.

Since the three modules are based on entirely different technologies there are slight differences in the
approach they handle file uploads. The following information might be useful to developers implementing
RadAsyncUpload in their scenarios:

1. How the IFrame/Flash module handles file uploads

The IFrame and Flash modules upload the selected file(s) using normal http post request. The iframe ues
tag for file uploads whereas Flash uses the Flex FileReference object in order to upload files. The files are
uploaded using Post HTTP request in absolutely the same manner as the normal and html form. On the
server, there is no difference where you have used the normal upload or the Flash upload in order to
upload the files. The files are buffered in the ASP.NET Temporary folder, not in the
App_Data/RadUploadTemp folder. After the upload is completed, the files are automatically moved from
ASP.NET temp to the Async Upload temporary folder, which is most commonly App_Data/RadUploadTemp.
This temp folder can be set by the programmer to any folder on the system. To sum up, as the ASP.NET
runtime intercepts the request, it uses the ASP.NET Temp folder in order to assemble the files there, and
upon upload completion the latter are moved to the temporary folder.

2. How the Silverlight module handles file uploads

In contrast, we have designed the Silverlight upload in a different way. The Silverlgiht module is designed
from scratch to handle very large file uploads; on the client it divides the file to be uploaded in many
chunks, each of which is 2mb large. It then starts uploading the chunks one after another and manually
assembling them inside our temp folder (not the ASP.NET one). Dividing the file into chunks works around
the large file uploads limitation in IIS. The size of the file to upload is only limited by the max file size
allowed by the server’s operating system. Unfortunately, it is not possible to do that with IFrame/Flash
because we have no control of the overall upload process

3. Starting from Q2 2011 RadAsyncUpload introduces the new File Api module.

This API is designed to be used in conjunction with other APIs and elements on the web platform, notably:
XMLHttpRequest (e.g. with an overloaded send() method for File or Blob objects), postMessage,
DataTransfer (part of the drag and drop API defined in [HTML5,]) and Web Workers. Additionally, it should
be possible to programmatically obtain a list of files from the input element when it is in the File Upload
state[HTML5]. The new module supports the following features:

 Multiple file upload.

 Stand alone progress monitoring (No http module used!).

 Support for the same events as the other modules.

 Upload cancellation.

 Upload files via chunks, effectively walking around the ASP.NET max files size limitation.

 Limitation of the File Api module - No file filtering, i.e. it is not possible to filter the select files dialog
with the allowed extensions, because the latter functionality is not yet implemented by any browser.
This is the only disadvantage of File API compared to Silverlight.

The RadAsyncUpload control exposes the following server-side event:

FileUploaded occurs when the RadAsyncUpload is about to process an uploaded file. If there were multiple
files uploaded, the FileUploaded event is going to fire for each and every file. The FileUploaded event handler

14.6 Server-Side Programming

UI for ASP.NET AJAX

380 UI for ASP.NET AJAX

receives two arguments:

1. The RadAsyncUpload control that initiated the file upload. This argument is of type object, but can be
cast to the RadAsyncUpload type.

2. An FileUploadedEventArgs object. It has three properties:

 IsValid Allows you to specify whether the uploaded file is valid. If it is, RadAsyncUpload will
automatically save it to the TargetFolder, if one is set.

 UploadedFile Provides reference to the file uploaded.

 UploadResultContainer object containing information sent from the RadAsyncUpload file handler.

The example below demonstrates how to prepare the uploaded file for sending as an e-mail attachment:

RadAsyncUpload provides a flexible client-side API. You can easily interact with the RadAsyncUpload, object
in the browser using their client-side object. This model lets you achieve tasks while avoiding the post-backs
that would trigger file uploading.

Getting the Client-Side Object
RadAsyncUpload creates client-side objects with the ClientID of the server-side object. You can obtain a
reference using the $find() method, as shown in the following JavaScript code:

[C#] Prepare the uploaded file for sending as an e-mail attachment

void RadAsyncUpload1_FileUploaded(object sender, FileUploadedEventArgs e)
{
 e.IsValid = !CheckUploadedFileValidity();
 if (e.IsValid)
 {
 byte[] buffer = new byte[e.File.ContentLength];
 using (Stream str = e.File.InputStream)
 {
 str.Read(buffer, 0, e.File.ContentLength);
 var attachment = createAttachment(buffer);
 // more code
 }
 }
}

[VB] Prepare the uploaded file for sending as an e-mail attachment

Private Sub RadAsyncUpload1_FileUploaded(ByVal sender As Object, ByVal e As
FileUploadedEventArgs)
 e.IsValid = Not CheckUploadedFileValidity()
 If e.IsValid Then
 Dim buffer As Byte() = New Byte(e.File.ContentLength - 1) {}
 Using str As Stream = e.File.InputStream
 str.Read(buffer, 0, e.File.ContentLength)
 ' more code
 Dim attachment = createAttachment(buffer)
 End Using
 End If
End Sub

14.7 Client-Side Programming

[JavaScript] Getting the client-side object

var upload = $find("<%= RadAsyncUpload1.ClientID %>");

UI for ASP.NET AJAX

381 UI for ASP.NET AJAX

Calling Client-Side Method
 Once you have access to a client-side object, you can use it to call its client-side methods, as shown in the
following examples:

Client-Side Events
RadAsyncUpload support the following client-side events:

 OnClientAdded occurs when a row has just been added to the RadAsyncUpload control.

 OnClientFileSelected occurs when a file is selected in a file input control.

 OnClientFilesSelected occurs when files(s) are selected. These event can be cancelled, which will erase
the selected files collection.

 OnClientFileUploading occurs when a file upload has started uploading.

 OnClientFileUploaded occurs when a file has finished uploading.

 OnClientValidation occurs when a uploaded file is about to be removed from the uploaded files collection.

 OnClientFileUploadRemoving occurs before a selected file is about to be removed from the uploaded files
collection. The event can be cancelled.

 OnClientFileUploadRemoved occurs when a uploaded file is about is removed from the uploaded files
collection.

 OnClientFileUploadFailed occurs when a file upload has failed due to an HTTP or server-side error.

 OnClientProgressUpdating occurs each time the in-line progress indicator is being updated.

To use these events, simply write a javascript function that can be called when the event occurs. Then assign
the name of the javascript function as the value of the the corresponding property (just like the example
above).

In this chapter you learned about the RadAsyncUpload control and became acquainted with some of the
powerful features that it provides. You created a simple application using the control, and explored the server-
side properties of RadAsyncUpload.

Additionally, you examined the client-side properties of RadAsyncUpload, which should prove useful in the
event that you need to add to the functionality of the control.

Finally, you explored the interaction between RadAsyncUpload and various modules

[ASP.NET] Calling client-side confirmDeletes() method

<telerik:radupload id="RadUpload1" runat="server"
onclientfileuploadremoving="confirmDeletes"></telerik:radupload>

[JavaScript] Defining the client-side confirmDeletes() method

function confirmDeletes(sender, eventArgs) {
 if (!confirm("Are you sure you want to delete the selected row?"))
eventArgs.set_cancel(true);
 }

14.8 Summary

UI for ASP.NET AJAX

382 UI for ASP.NET AJAX

 Explore the features of the RadComboBox control.

 Create a simple application to get confidence in using the combo box and to see the difference between
static items and data-bound items.

 Explore the combo box design time interface, including Smart Tag, Properties Window, Property Builder,
and Template Design surface.

 Explore principal properties and groups of properties where most of the functionality is found.

 Learn to use special combo-box features such as templates, custom attributes, and load-on-demand.

 Learn server-side coding techniques, including an exploration of how to work with the items collection, an
examination of important server-side events, and a look at the properties and methods for sorting the
drop-down list.

 Explore some of the client-side methods for working with the items collection and some of the client-side
events, with special attention to the events you can use with the load-on-demand feature.

 Explore some advanced techniques, such as implementing custom sort criteria, adding input controls to an
item template, and enabling virtual scrolling without allowing custom text to be entered, and
implementing a Web service to supply items on demand.

You are probably already familiar with the ASP.NET DropDownList control. It lets users select options from a
drop-down list of items. The RadComboBox control is a similar control, but it gives you far more power and
flexibility.

Like all RadControls, RadComboBox lets you assign a Skin to instantly change the appearance to one that
harmonizes with the overall look-and-feel of your Web page. Your control over the look-and-feel does not stop
there. You can also add images to the items in the drop-down list, or even use templates for complete control
over the appearance of items. You can even add animated effects to the way the list drops down and closes
back up.

Unlike the ASP.NET DropDownList control, which restricts users to selecting only items from the list,
RadComboBox can optionally allow users to type in entries that are not in the list. When the combo box is
configured to let users enter custom text in this manner, you can provide an "empty" message to the drop-down
list, similar to the empty message that you saw on the input RadControls.

If you need to work with a very long list of items, RadComboBox can help users navigate that list with its auto-
complete feature, which automatically scrolls the list and highlights the first item that matches the currently
entered text. Alternately, you can use the filtering feature, which limits the list to items that contain the
currently entered text, and highlights the matching text. You can even configure the combo box to load items

15 RadComboBox

15.1 Objectives

15.2 Introduction

UI for ASP.NET AJAX

383 UI for ASP.NET AJAX

on demand, so that your application does not need to download all items at once.

In this walk-through you will become familiar with the RadComboBox control. You will create two combo
boxes: one with statically declared items, and one with items loaded from a database.

Prepare the project
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Using the Solution Explorer, add a new Folder to your project and name it "Images".

3. Drag the contents of the "\VS Projects\Images\Colors" folder into your project's "Images" folder.

4. Locate the "Northwind.mdf" file in the "Live Demos\App_Data" folder under the folder where you installed
RadControls for ASPNET AJAX. Drag this file into the "App_Data" folder of your project.

5. Open the "Web.config" file of your project. Add the standard Northwind connection string to your project
by replacing the line
 <connectionStrings />
with
 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 </connectionStrings>

Add a combo box with statically declared items
1. Drag a RadComboBox control from the Tool Box onto your Web page. Set its Skin property to "Telerik".

15.3 Getting Started

You can find the complete source for this project at:
\VS Projects\ComboBox\GettingStarted

UI for ASP.NET AJAX

384 UI for ASP.NET AJAX

2. From the RadComboBox Smart Tag, choose Build RadComboBox... to bring up the RadComboBox Item
Builder.

3. In the Item Builder, click the "Add Item" button () to add a new item to the combo box.

4. Using the properties pane on the right,

 Set the Text property to "Rainbow:".

 Set the IsSeparator property to true.

5. Click the "Add Item" button again to add a second item. Set its properties as follows:

 Set the Text property to "Red".

 Set the ToolTip property to "Select 'Red'".

 Set the ImageUrl property to "~/Images/Red.png".

6. Add another item and set its properties as follows:

 Set the Text property to "Orange".

 Set the ToolTip property to "Select 'Orange'".

 Set the ImageUrl property to "~/Images/Orange.png".

7. Repeat this process for four more buttons, using the colors "Yellow", "Green", "Blue", and "Violet".

8. Add another item and set its Text property to "Monochrome:" and its IsSeparator property to true.

9. Add another item and set its properties as follows:

 Set the Text property to "Black".

 Set the ToolTip property to "Select 'Black'".

 Set the ImageUrl property to "~/Images/Black.png".

10. Add a last "color" item, using the color "White".

11. Click OK to exit the Item Builder.

Add a data-bound combo box
1. Drag a second RadComboBox from the Tool Box onto your Web page. Set its Skin property to "Telerik".

2. In the RadComboBox Smart Tag, select "<New data source...>" from the Choose Data Source drop-down.

3. In the first page of the DataSource Configuration Wizard, select "Database" as the application type, and
click OK to move to the next page.

4. On the Choose Your Data Connection page, select "NorthwindConnectionString" from the drop-down list.
Then click the Next button to continue.

5. On the Configure the Select Statement page, make sure the "Specify columns from a table or view" radio
button is selected, and then choose "Territories" from the "Name" drop-down list.

6. Check all three fields of the Territories table, and then click the Where button to add a WHERE clause to
the SELECT statement.

7. Select the "RegionID" column from the Column drop-down, leave the operator as "=", and select "None"
from the Source drop down. In Parameter properties on the right, set the Value to "2".

8. Click the Add button to add the Where clause, and then Click OK.

9. Back on the Configure the Select Statement page, click the Next button, test the query if you wish, and
then click Finish.

10. In the Properties Window for the second combo box,

UI for ASP.NET AJAX

385 UI for ASP.NET AJAX

 Set the DataTextField property to "TerritoryDescription".

 Set the DataValueField property to "TerritoryID".

The combo box is now bound to the data source.

11. While you are in the Properties Window, set a few more properties:

 Expand the ExpandAnimation property and set the Type sub-property to "OutBounce".

 Expand the CollapseAnimation property and set the Type sub-property to "InBounce".

 Set the MarkFirstMatch property to true.

Run the application
1. Press Ctrl-F5 to run the application.

2. Click the drop-down arrow to expand the first combo box. Note the images next to items, the tool tips
when you hover the mouse over items, and the non-selectable separator items.

3. Expand the second combo box. Note the animated effect you added. Type an "S" in the text area and
notice how the MarkFirstMatch property causes the text to change, with the unentered portion selected.

In the Visual Studio designer, you can configure the RadComboBox control using the Smart Tag, the Properties
Window, and the RadComboBox Item Builder. In addition, you can add templates using the Template Design
surface.

Smart Tag
The RadComboBox Smart Tag contains a few control-specific entries in addition to the standard Ajax Resources,
Skin selection, and Learning center sections.

15.4 Designer Interface

UI for ASP.NET AJAX

386 UI for ASP.NET AJAX

At the top of the Smart Tag, the Choose Data Source drop-down lets you bind the combo box to a data source
control already on the Web page, or launch the DataSource Configuration Wizard to create and configure a
new data source control. Once the combo box is bound to a data source, the Smart Tag changes to include
Configure Data Source and Refresh Schema links beneath the Choose Data Source drop-down.

Below the Choose Data Source drop-down, the Build RadComboBox... link brings up the RadComboBox Item
Builder, where you can add statically declared items to the combo box.

At the bottom of the Smart Tag, the Edit Templates link lets you bring up the Template Design Surface, where
you can design a template for combo box items.

Properties Window
At design time, you can use the Properties Window to configure almost every aspect of the combo box. (A
notable exception is the creation of templates.) As with the other controls we have seen, let us look at the
most important properties of the combo box.

Specifying Items

Probably the most important property of the combo box is the one that specifies what items appear in the
drop-down list. What property you choose for this task depends on whether you want to load items from a
database:

 If you want to load items from a database, RadComboBox supports the standard data-binding properties
(DataSourceID and DataMember), which you have already seen in the chapter on Data Binding. That
chapter also introduced you to the AppendDataBoundItems property, which lets you combine data-bound
items with statically declared items, and the alternate approach to binding of using the DataSource
property and the DataBind method in the code-behind. When binding RadComboBox to a data source, use

UI for ASP.NET AJAX

387 UI for ASP.NET AJAX

the DataTextField, DataTextFormatString, and DataValueField properties to map records from the data
source to properties of the combo box items.

 If you want to use statically declared items, you can use the Items property to bring up the RadComboBox
Item Builder. The Item Builder is described in more detail below.

Specifying the behavior of the text area

The AllowCustomText property specifies whether the user can enter text into the text area of the combo box
that is not in the drop-down list. When AllowCustomText is true, you can use the EmptyMessage property to
specify a prompt string when there is no text assigned. This behaves like the EmptyMessage property you saw
on the input controls such as RadTextBox.

The MarkFirstMatch property turns on the auto-complete feature of the combo box. You already saw this
feature briefly in the Getting Started project. MarkFirstMatch interacts with the AllowCustomText property as
follows:

 When MarkFirstMatch is false, the AllowCustomText property has a major effect on the behavior of the
combo box. When AllowCustomText is false, typing a character in the text box selects the first item from
the drop-down list that starts with the entered character. If another item starts with the same character,
it can be selected by typing the character a second time. When AllowCustomText is true, typing in the text
area selects exactly the text that is typed, regardless of whether it matches a string in the list.

 When MarkFirstMatch is true, typing a character in the text box always selects the first item from the
drop-down list that matches the character. However, the text area remains editable, so that more
characters can be typed, further limiting the number of strings that match. If AllowCustomText is false,
any characters that do not match a string in the list are ignored. If AllowCustomText is true, entering a
character that does not match any items in the list causes the combo box to behave in the same way as
when the auto-complete feature is not turned on.

When MarkFirstMatch is true, two other properties influence the behavior of the auto-complete feature.

 AutoCompleteSeparator enables the user to select multiple items from the list. It specifies the character
that separates list items. Typically, AutoCompleteSeparator is set to a character such as "," or ";". After the
user enters the separator character, the next character typed begins a new selected item, and the list
items are matched to the text that follows the separator.

 EnableTextSelection controls whether the unentered text of the matched list item is selected when the
combo box adds it to the edit box as a result of the auto-complete feature. When EnableTextSelection is
true, the unentered text is selected. This is most useful for a single-selection combo box (with no
AutoCompleteSeparator), because the next character that the user types simply refines the search. When
EnableTextSelection is false, the rest of the matched list item is not selected, and the cursor appears at
the end of the string. This is most useful for a multi-selection combo box, as the cursor is placed
conveniently for typing the separator character.

Another feature that is similar to the auto-complete feature is the use of filters. You can turn on filtering by
setting the Filter property to "StartsWith" or "Contains". When Filter is "StartsWith", typing in the text area
causes the list to filter out all items that do not start with the string in the text area. The portion of list items
that matches the string in the text area is highlighted. When Filter is "Contains", the combo box uses a broader
criterion for matching the string in the text area. If the entered text falls anywhere within a list item, it is kept
in the list. Once again, the matching text is highlighted.

Specifying the behavior of the drop-down list

You can add animated effects to the way the drop-down list opens and closes by setting the ExpandAnimation
and CollapseAnimation properties. Both of these properties have two sub-properties: Type, which identifies
the desired animated effect, and Duration, which specifies how long, in milliseconds, the effect lasts.

By default, the drop-down list opens when the user clicks in the text area or on the drop-down arrow and closes

Unlike the MarkFirstMatch property, which uses the IsCaseSensitive property to determine whether to
match items in a case-sensitive manner, the Filter property is always case-insensitive.

UI for ASP.NET AJAX

388 UI for ASP.NET AJAX

when the user selects an item in the list, clicks the drop-down arrow a second time or moves focus to another
control on the page. The ShowDropDownOnTextBoxClick and CloseDropDownOnBlur properties let you
change these defaults by restricting the drop-down opening to the use of the arrow and allowing the list to
remain open when another control gets focus.

The ChangeTextOnKeyBoardNavigation property specifies whether traversing the list using the arrow keys
changes the selected item, or whether the user must use the mouse or Enter key to select an item.

Specifying appearance

As with all RadControls, you can use the Skin property to change the overall look of the combo box. In addition,
a number of properties influence the layout of combo box parts. The Width property specifies the width of the
text area plus drop-down arrow, while the DropDownWidth specifies the width of the drop-down list. The
OffsetX and OffsetY properties let you control the position of the drop-down list. The Height property lets you
control the height of the drop-down list.

You can hide the drop-down arrow by setting the ShowToggleImage property to false. When hiding the drop-
down arrow, be sure that the ShowDropDownOnTextBoxClick property is true, or the user will not be able to
open the drop-down list! You can move the drop-down arrow so that it appears to the left of the text box by
changing the RadComboBoxImagePosition property to "Left".

RadComboBox Item Builder
RadComboBox lets you edit the list of statically defined items using the RadComboBox Item Builder. This item
builder is very similar to the Property Builder dialogs you looked at in the chapter on Navigation controls, or,
for that matter, to the Property Builder dialogs for any of the controls that maintain a static collection of
items. Display the item builder either from the Smart Tag or by clicking the ellipsis button on the Items
property in the Properties Window.

Below is a screen shot of the RadComboBox Item Builder. Use the buttons on the upper left to add items to the
drop-down list or to remove or reposition the selected item. To edit the text of an item in-line, select it with
the mouse, then click it a second time. You can select any of the items and set item properties using the
properties pane on the right of the dialog. Typically, you will set the Text property first.

When you use the Filter feature, it is a good idea to explicitly set the Height property. Otherwise, the drop-
down list will be sized based on its contents the first time it opens, and if that is a small filtered list, the
combo box can become hard to use.

To configure the combo box for a right-to-left locale, don't bother using the RadComboBoxImagePosition
property. Instead, add the dir="rtl" attribute to the combo box. The dir="rtl" attribute moves the position of
item text and images as well, and even moves punctuation characters in the item text to the other side.

UI for ASP.NET AJAX

389 UI for ASP.NET AJAX

Each item has its own set of properties: Text is the string that displays in the drop-down list, IsSeparator
specifies whether the user can select the item, ImageUrl is the path to an image file that will display next to
the Text, and DisabledImageUrl is the path to an image file to use when the item is disabled. These four
properties control the basic appearance of the list items. You may also want to set the ToolTip property to
assign a tool tip for the item, or use the Selected and Enabled properties to specify the state of the item when
the Web page first loads. Another common property is the Value property, which associates a value with the
item that you can then use when programming with the combo box.

Template Design surface
You can use the Smart Tag or context menu to bring up the Template Design surface, where you can create an
item template. The item template applies to all items in the combo box, and lets you customize the
appearance of items for even more control than when using the item properties.

We will look at combo box templates in more detail in the next section (Control Specifics).

Templates
RadComboBox supports three types of template: ItemTemplate, HeaderTemplate, and FooterTemplate. The
item template is used for displaying each item in the drop-down list, while the header template and footer
template appear at the top and bottom of the drop-down list.

15.5 Control Specifics

UI for ASP.NET AJAX

390 UI for ASP.NET AJAX

Using Templates to create a multi-column combo box
The following example uses an item template with controls that are bound to the DataItem of each combo box
item. In addition to the item template, it also shows the use of header and footer templates.

The combo box in this example displays items in a multi-column format. The header template labels the
columns of the drop-down list. The footer template gives the text associated with the last selected item. (The
footer text matches the text area of the combo box unless the user navigates the drop-down list using the
arrow keys.)

Both the HeaderTemplate and the ItemTemplate are formatted using a <table> with fixed width columns. This
way, the header labels line up with the columns in the drop-down list. The FooterTemplate starts out empty,
as the text it displays is populated in client-side code.

You can find the complete source for this project at:
\VS Projects\ComboBox\Templates

[ASP.NET] ComboBox with templates

<telerik:RadComboBox ID="RadComboBox1" Runat="server"
 DropDownWidth="350px" Width="250px" Skin="Outlook"
 DataSourceID="SqlDataSource1" HighlightTemplatedItems="True"
 onitemdatabound="RadComboBox1_ItemDataBound"
 onclientselectedindexchanged="IndexChanged"
 onclientload="InitComboFooter" >
 <HeaderTemplate>
 <table style="width: 315px; text-align: left">
 <tr>
 <td style="width: 95px;">Last Name</td>
 <td style="width: 95px;">First Name</td>
 <td style="width: 125px;">Title</td>
 </tr>
 </table>
 </HeaderTemplate>

UI for ASP.NET AJAX

391 UI for ASP.NET AJAX

You may have noticed in the declaration above that the combo box has three event handlers, a server-side
ItemDataBound event handler, and two client-side event handlers (OnClientLoad and
OnClientSelectedIndexChanged).

The server-side ItemDataBound event handler is used to combine the fields from each data item and use them
to set the Text property of the item:

The two client-side event handlers set the text of the footer to the text of the selected item. The
OnClientLoad handler ("InitComboFooter") initializes the footer so that it displays the text of the combo box.
The OnClientSelectedIndexChanged ("IndexChanged") updates the footer when an item is selected.

 <FooterTemplate>
 </FooterTemplate>
 <ItemTemplate>
 <table style="width: 315px; text-align: left">
 <tr>
 <td style="width: 95px;">
 <%# DataBinder.Eval(Container.DataItem, "LastName") %>
 </td>
 <td style="width: 95px;">
 <%# DataBinder.Eval(Container.DataItem, "FirstName") %>
 </td>
 <td style="width: 125px;">
 <%# DataBinder.Eval(Container.DataItem, "Title") %>
 </td>
 </tr>
 </table>
 </ItemTemplate>
</telerik:RadComboBox>

[VB] Setting the Text property in ItemDataBound

Protected Sub RadComboBox1_ItemDataBound(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadComboBoxItemEventArgs) Handles RadComboBox1.ItemDataBound
 'Use the data item to set the combo box item's Text
 e.Item.Text = (DirectCast(e.Item.DataItem, DataRowView))("TitleOfCourtesy").ToString
().Trim() _
 + " " + (DirectCast(e.Item.DataItem, DataRowView))("FirstName").ToString().Trim() _
 + " " + (DirectCast(e.Item.DataItem, DataRowView))("LastName").ToString().Trim() _
 + " (" + (DirectCast(e.Item.DataItem, DataRowView))("Title").ToString().Trim() + ")"
End Sub

[C#] Setting the Text property in ItemDataBound

protected void RadComboBox1_ItemDataBound(object sender, RadComboBoxItemEventArgs e)
{
 // Use the data item to set the combo box item's Text
 e.Item.Text = ((DataRowView)e.Item.DataItem)["TitleOfCourtesy"].ToString().Trim() + " " +
 ((DataRowView)e.Item.DataItem)["FirstName"].ToString().Trim() + " " +
 ((DataRowView)e.Item.DataItem)["LastName"].ToString().Trim() + " (" +
 ((DataRowView)e.Item.DataItem)["Title"].ToString().Trim() + ")";
}

[JavaScript] Updating the footer

function InitComboFooter(sender) {
 // get a reference to the footer DOM element
 var footer = sender._getFooterElement();
 // set its innerHTML to the initial text of the combo box
 footer.innerHTML = sender.get_text();

UI for ASP.NET AJAX

392 UI for ASP.NET AJAX

Using ItemTemplate to replace the drop-down list with a control
In the last example, the item template was used to format information associated with each item in the combo
box. Some controls that you might want to include in an item template, however, represent all the possible
choices. Such controls include calendars, color pickers, tree views, or various custom controls. When including
such a control in the item template, you do not want a list that repeats the control. Rather, you want to
replace the list with a single embedded control. The following walk-through illustrates how this can be
accomplished.

This walk-through shows how to use the ItemTemplate to replace the drop-down list with a RadCalendar
control. It accomplishes this by using a single statically-declared item.

1. Create a Web Application and add a ScriptManager to the default page.

2. Add a RadComboBox to the default page.

 Set the Skin property to "Hay".

 Set the ShowDropDownOnTextboxClick property to false.

 Set the DropDownWidth property to "230px".

3. Bring up the RadComboBox Item Builder and add a single item with its Text property set to an empty
string.

4. Click on the Edit Templates link in the Smart Tag to bring up the Template Design Surface.

5. Drag a RadCalendar control from the Tool Box onto the Template Design Surface.

 Set the AutoPostBack property to true

 Set the EnableMultiSelect property to false.

}
function IndexChanged(sender, args) {
 // get a reference to the footer DOM element
 var footer = sender._getFooterElement();
 // set its innerHTML to the selected item text
 footer.innerHTML = args.get_item().get_text();
}

You can find the complete source for this project at:
\VS Projects\ComboBox\TemplateControl

UI for ASP.NET AJAX

393 UI for ASP.NET AJAX

 Set the ShowRowHeaders property to false.

 Set the TitleFormat property to "MMM yyyy".

6. Go to the code-behind for the default page. At the top of the page, in addition to an Imports or using
statement for "Telerik.Web.UI", add one for "Telerik.Web.UI.Calendar". Then add the following method:

Note that this event handler assigns the Text property of the single combo box item.

7. Back in the Design window for the Web page, assign the method you just created as the SelectionChanged
event handler of the RadCalendar control in the template, and then end template editing.

8. Press Ctrl-F5 to run the application. When you expand the drop-down list, the combo box displays the
calendar, and when you select a date, the selected text of the combo box updates to the value you
assigned in the event handler. However, you will also notice that there are some rough edges. Before the
SelectionChanged event handler sets the text, a different value sometimes appears, and there is a jarring
disruption when the page reloads on the postback. Shut down the running application so that we can fix
these irritations.

9. Bring up the Template Design Surface again, and on the RadCalendar control's Properties Window, expand
the ClientEvents property. Set the OnDateSelecting sub-property to "OnDateSelecting" and the
OnDateClick sub-property to "OnDateClick". Then end template editing.

10. Switch to the Source window, and add the following script block to the form.

[VB] SelectionChanged

Protected Sub RadCalendar1_SelectionChanged(ByVal sender As Object, ByVal e As
SelectedDatesEventArgs)
 Dim calendar As RadCalendar = DirectCast(sender, RadCalendar)
 'Update the combo box item Text
 'The combo box will then assign its value accordingly
 RadComboBox1.SelectedItem.Text = [String].Format("{0}/{1}/{2}",
calendar.SelectedDate.Month, calendar.SelectedDate.Day, calendar.SelectedDate.Year)
End Sub

[C#] SelectionChanged

protected void RadCalendar1_SelectionChanged(object sender,
Telerik.Web.UI.Calendar.SelectedDatesEventArgs e)
{
 RadCalendar calendar = (RadCalendar)sender;
 // Update the combo box item Text
 // The combo box will then assign its value accordingly
 RadComboBox1.SelectedItem.Text = String.Format("{0}/{1}/{2}", calendar.SelectedDate.Month,
calendar.SelectedDate.Day, calendar.SelectedDate.Year);
}

[ASP.NET] Calendar client-side events

<script type="text/javascript">
 // prevent the click from propagating up
 // to the combo box item
 function OnDateClick(sender, args) {
 args.get_domEvent().stopPropagation();
 }
 // Before the calendar causes a postback
 // call attachDropDown so that the postback
 // can be converted to a callback
 function OnDateSelecting(sender, args) {
 if (args.get_isSelecting()) {
 var combo = $find("RadComboBox1");
 combo.attachDropDown();

UI for ASP.NET AJAX

394 UI for ASP.NET AJAX

The first function ("OnDateClick") prevents the click event from bubbling up to the combo box. This
prevents the effect where you saw a different value in the combo box text box before the server-side
event handler updated the text. The second function ("OnDateSelecting") calls the client-side
attachDropDown() method before the calendar generates a postback.

11. Return to the Design view. Drag a RadAjaxManager from the Tool Box onto the Web page. Configure the
AJAX manager so that requests can be initiated by the combo box item. Set the combo box as the updated
control.

12. Press Ctrl-F5 to run the application again. Now, when you select a date in the calendar, the combo box
updates smoothly.

Custom Attributes
RadComboBox supports the use of custom attributes. You have already seen custom attributes in the chapter on
Data Binding, and saw how they could be set in an ItemDataBound event handler. You can also set custom
attributes declaratively when using statically-declared items.

The following example illustrates using declarative custom attributes with a combo box. The custom attributes
are used to bind elements in an item template.

 }
 else // just cancel de-selection of the old date
 args.set_cancel(true);
 }
</script>

Gotcha! The attachDropDown() method is required to allow postbacks initiated by any controls
inside the item template of a combo box to be converted into asynchronous AJAX callbacks.

As an alternate approach to using the attachDropDown() method, you can use the client-side events of
the calendar to update the combo box text rather than the server-side SelectionChanged event.

[ASP.NET] RadAjaxManager

<telerik:RadAjaxManager ID="RadAjaxManager1" runat="server">
 <AjaxSettings>
 <telerik:AjaxSetting AjaxControlID="i0">
 <UpdatedControls>
 <telerik:AjaxUpdatedControl ControlID="RadComboBox1" />
 </UpdatedControls>
 </telerik:AjaxSetting>
 </AjaxSettings>
</telerik:RadAjaxManager>

UI for ASP.NET AJAX

395 UI for ASP.NET AJAX

The Combo box declares its items statically. The ItemTemplate includes a <div> with its background color set to
the "Color" custom attribute of each item.

In the code-behind, the Page_Load event handler calls the DataBind method for each item:

You can find the complete source for this project at:
\VS Projects\ComboBox\CustomAttributes

[ASP.NET] Combo box with custom attributes

<telerik:RadComboBox ID="RadComboBox1" Runat="server"
 Skin="Office2007" >
 <Items>
 <telerik:RadComboBoxItem runat="server"
 Text="Red" Value="Red" Color="#ff3333" />
 <telerik:RadComboBoxItem runat="server"
 Text="Orange" Value="Orange" Color="#ff9933" />
 <telerik:RadComboBoxItem runat="server"
 Text="Yellow" Value="Yellow" Color="#ffff33" />
 <telerik:RadComboBoxItem runat="server"
 Text="Green" Value="Green" Color="#33cc66" />
 <telerik:RadComboBoxItem runat="server"
 Text="Blue" Value="Blue" Color="#0099ff" />
 <telerik:RadComboBoxItem runat="server"
 Text="Violet" Value="Violet" Color="#9900ff" />
 </Items>
 <ItemTemplate>
 <div style='background-color:<%# DataBinder.Eval(Container, "Attributes['Color']") %>;
height: 20px;' >
 <%# DataBinder.Eval(Container, "Text") %>
 </div>
 </ItemTemplate>
</telerik:RadComboBox>

[VB] Calling DataBind on Page_Load

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 Dim i As Integer = 0
 'call DataBind for each combo box item
 'so that template controls can access its properties
 While i < RadComboBox1.Items.Count
 RadComboBox1.Items(i).DataBind()
 i = i + 1
 End While
End Sub

[C#] Calling DataBind on Page_Load

protected void Page_Load(object sender, EventArgs e)
{
 // call DataBind for each combo box item
 // so that template controls can access its properties
 for (int i = 0; i < RadComboBox1.Items.Count; i++)
 {
 RadComboBox1.Items[i].DataBind();
 }
}

Gotcha! When using an item template with statically declared items, always call the DataBind()

UI for ASP.NET AJAX

396 UI for ASP.NET AJAX

Load-on-demand
When the data source for a combo box includes a very large number of items, it may be impractical to display
them all at once. For one thing, too many entries make it hard for the user to find the correct choice, and for
another, loading all of those elements at once can hurt performance. The first issue may be solved by using
filters, but the only way to solve the second is to load items only as they are needed.

To enable the combo box to load items only as they are needed, set the EnableLoadOnDemand property to
true. When load-on-demand is enabled, the combo box always allows the user to enter custom text, regardless
of the value of the AllowCustomText property. This is necessary so that the user can enter text that does not
appear in the drop-down list, which then causes the combo box to load matching items.

The load-on-demand mechanism works as follows:

1. The user types in the text area of the combo box or clicks on the drop-down arrow.

2. In response, the combo box automatically generates an AJAX callback to request a new list. The new list of
items can be supplied either by a server-side ItemsRequested event handler or by a Web Service that is
identified by the WebServiceSettings property.

3. The drop-down list opens, displaying the new list of items.

One important thing to notice here is that the load-on-demand mechanism uses an AJAX callback, not a
postback. If the ItemsRequested event handler makes any changes to controls on the Web page (other than the
combo box list of items), they are immediately lost, because they are not identified as updated controls for the
callback. Another consequence is that any code in the Page_Load event handler that is protected by a check of
the Page.IsPostBack property will execute every time the combo box requests a new list of items, since
callbacks do not change the IsPostBack property.

Loading matching items
The next example illustrates the use of the "Load on demand" mechanism. When the user types in the text area
of the combo box, the combo box automatically clears the drop-down list. New items are added by an
ItemsRequested event handler.

method for each item when the page loads. Otherwise, the template controls cannot access the item
properties.

Gotcha! When EnableLoadOnDemand is true, do not try to read the Items property of the combo
box in the code-behind. Due to performance issues, the Items property is not updated to
reflect items loaded on demand.

To prevent code in the Page_Load event handler from executing every time the combo box requests a new
list of items, check the Page.IsCallback property as well as the Page.IsPostBack property.

UI for ASP.NET AJAX

397 UI for ASP.NET AJAX

To enable load-on-demand, the RadComboBox control has its EnableLoadOnDemand property set to true. In
addition, the EnableItemCaching property is set to true. When item caching is enabled, the combo box caches
the item lists that are returned after each item request. The next time that the same text is entered in the
text area (for example if the user types some text and then hits the Backspace key), the combo box does not
generate a new callback; instead, it reloads the list of items from the cache. This reduces Web traffic, which
can improve performance if the list of items is very large or the user types the same string repeatedly.

Another property set on the combo box is the LoadingMessage property. This is the message that appears in the
drop-down list while the combo box is waiting for the list of items to appear. Because item caching is turned
on, this message only appears the first time any given string is typed in the combo box.

The ItemsRequested event handler checks whether the combo box contains any text, and if so, it generates a
database query to retrieve matching items and adds them to the combo box. In this example, checking for an
empty text string is probably not that important, but in cases where the number of items is huge, you would
probably not want to handle the request that fetches the entire data set.

You can find the complete source for this project at:
\VS Projects\ComboBox\LoadOnDemand

After the ItemsRequested event handler creates new items and adds them to the Items property of the
combo box, it causes the thread to sleep for 100 milliseconds less than the item request timeout period.
Obviously you would not want to do this in a real application, but this example inserts the command so that
you can see the effects of item caching.

[VB] Adding items in the ItemsRequested event handler

Protected Sub RadComboBox1_ItemsRequested(ByVal o As Object, ByVal e As
RadComboBoxItemsRequestedEventArgs)
 ' only add items if there is text to match
 If e.Text = [String].Empty Then
 ' open a connection to the database
 Dim dbCon As New SqlConnection(NWConnectionString)
 dbCon.Open()
 ' the query uses LIKE to match the entered text
 Dim sql As String = "SELECT * from Customers WHERE CompanyName LIKE '" + e.Text + "%'"
 ' create a data adapter and use it to fetch data into a table
 Dim adapter As New SqlDataAdapter(sql, dbCon)
 Dim dt As New DataTable()
 adapter.Fill(dt)
 dbCon.Close()
 ' use the table to add items to the combo box
 For Each row As DataRow In dt.Rows
 Dim item As New RadComboBoxItem(row("CompanyName").ToString())
 RadComboBox1.Items.Add(item)
 Next
 'Simulate a lengthy process so that the effects of caching can be seen
 Threading.Thread.Sleep(RadComboBox1.ItemRequestTimeout - 100)
 End If
End Sub

[C#] Adding items in the ItemsRequested event handler

protected void RadComboBox1_ItemsRequested(object o, RadComboBoxItemsRequestedEventArgs e)
{

UI for ASP.NET AJAX

398 UI for ASP.NET AJAX

Virtual Scrolling and Show More Results box
Another use of the load-on-demand mechanism is to introduce virtual scrolling. Virtual scrolling is when the
combo box only loads a subset of its items each time an item request is made. If the user scrolls to the bottom
of the drop-down list, another callback is made to fetch more items.

As an alternative to virtual scrolling (or in addition to it), the combo box can display a footer at the bottom of
the drop-down list that includes a link for fetching additional items. This footer is called the "Show More
Results" box.

 // only add items if there is text to match
 if (e.Text == String.Empty)
 {
 // open a connection to the database
 SqlConnection dbCon = new SqlConnection(NWConnectionString);
 dbCon.Open();
 // the query uses LIKE to match the entered text
 string sql = "SELECT * from Customers WHERE CompanyName LIKE '" + e.Text + "%'";
 // create a data adapter and use it to fetch data into a table
 SqlDataAdapter adapter = new SqlDataAdapter(sql, dbCon);
 DataTable dt = new DataTable();
 adapter.Fill(dt);
 dbCon.Close();
 // use the table to add items to the combo box
 foreach (DataRow row in dt.Rows)
 {
 RadComboBoxItem item = new RadComboBoxItem(row["CompanyName"].ToString());
 RadComboBox1.Items.Add(item);
 }
 // Simulate a lengthy process so that the effects of caching can be seen
 System.Threading.Thread.Sleep(RadComboBox1.ItemRequestTimeout - 100);
 }
}

When Virtual Scrolling or the Show More Results box is enabled, the combo box does not clear the items list
before generating a callback to request items. This is in contrast to the way load-on-demand works when
these features are not enabled.

UI for ASP.NET AJAX

399 UI for ASP.NET AJAX

The following example enables both Virtual Scrolling and the Show More Results box. The
EnableVirtualScrolling property turns on the virtual scrolling feature, while the ShowMoreResultsBox property
causes the combo box to display the "Show More Results" footer.

The ItemsRequested event handler in this example is similar to the one used in the last example, except that
this time, the query only fetches the number of items that will appear in the combo box. For very large data
sets, optimizing the query to fetch only the required records can improve performance.

In addition, the event handler uses a few additional properties of the event arguments object.

 It checks the e.NumberOfItems property to determine the number of items already loaded in the combo
box.

 It sets the e.EndOfItems property when it detects that there are no more items to fetch. By setting
e.EndOfItems, the event handler turns off the virtual scrolling mechanism. (e.EndOfItems does not affect
the Show More Results box)

 It sets the e.Message property to a string describing the items that were fetched. The e.Message property
sets the text that appears in the Show More Results box. If the event handler does not set this text, the
Show More Results box includes only the link.

Gotcha! When you set either the EnableVirtualScrolling property or the ShowMoreResultsBox
property to true, do not enable item caching. Setting the EnableItemCaching property to true
prevents the callback for additional items that is required by virtual scrolling or the show more
results box.

You can find the complete source for this project at:
\VS Projects\ComboBox\VirtualScrolling

[VB] Adding the next batch of items in the ItemsRequested handler

Protected Sub RadComboBox1_ItemsRequested(ByVal o As Object, ByVal e As
RadComboBoxItemsRequestedEventArgs) Handles RadComboBox1.ItemsRequested
 Dim connectionString As String = ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString
 ' open a connection to the database
 Dim dbCon As New SqlConnection(connectionString)
 Try
 dbCon.Open()
 Dim itemsPerRequest As Integer = 10
 Dim itemOffset As Integer = e.NumberOfItems
 Dim endOffset As Integer = itemOffset + itemsPerRequest
 ' the query only fetches the required number of records
 Dim sql As String = "SELECT top " + endOffset.ToString() + "ProductName FROM [Products
by Category] where ProductName LIKE '" + e.Text + "%'"
 ' create a data adapter and use it to fetch data into a table
 Dim adapter As New SqlDataAdapter(sql, dbCon)
 Dim dt As New DataTable()
 adapter.Fill(dt)
 ' if we did not get the requested number of records
 ' we have reached the end of the data set
 ' set EndOfItems to signal this
 If dt.Rows.Count < endOffset Then
 e.EndOfItems = True
 End If
 ' if there are no items, set the message for the more results box
 If dt.Rows.Count = 0 Then
 e.Message = "No items"

UI for ASP.NET AJAX

400 UI for ASP.NET AJAX

 Else
 ' use the table to add new items to the combo box
 If dt.Rows.Count > itemOffset Then
 Dim i As Integer = itemOffset
 While i < dt.Rows.Count
 RadComboBox1.Items.Add(New RadComboBoxItem(dt.Rows(i)("ProductName").ToString()))
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
 End If
 ' set the message for the more results box
 e.Message = [String].Format("Items 1-{0}", dt.Rows.Count.ToString())
 If e.EndOfItems Then
 e.Message += [String].Format(" out of {0}", dt.Rows.Count.ToString())
 End If
 End If
 Catch
 e.Message = "No items available"
 Finally
 dbCon.Close()
 End Try
End Sub

[CS] Adding the next batch of items in the ItemsRequested handler

protected void RadComboBox1_ItemsRequested(object o, RadComboBoxItemsRequestedEventArgs e)
{
 string connectionString = ConfigurationManager.ConnectionStrings
["NorthwindConnectionString"].ConnectionString;
 // open a connection to the database
 SqlConnection dbCon = new SqlConnection(connectionString);
 try
 {
 dbCon.Open();

 int itemsPerRequest = 10;
 int itemOffset = e.NumberOfItems;
 int endOffset = itemOffset + itemsPerRequest;
 // the query only fetches the required number of records
 string sql = "SELECT top " + endOffset.ToString() + "ProductName FROM [Products by
Category] where ProductName LIKE '" + e.Text + "%'";
 // create a data adapter and use it to fetch data into a table
 SqlDataAdapter adapter = new SqlDataAdapter(sql, dbCon);
 DataTable dt = new DataTable();
 adapter.Fill(dt);
 // if we did not get the requested number of records
 // we have reached the end of the data set
 // set EndOfItems to signal this
 if (dt.Rows.Count < endOffset)
 e.EndOfItems = true;
 // if there are no items, set the message for the more results box
 if (dt.Rows.Count == 0)
 e.Message = "No items";
 else
 {
 // use the table to add new items to the combo box
 if (dt.Rows.Count > itemOffset)

UI for ASP.NET AJAX

401 UI for ASP.NET AJAX

Working with the Items collection
RadComboBox supports a number of methods for locating items in the drop-down list. These are

 FindItemByText, which returns a reference to an item given the value of its Text property.

 FindItemByValue, which returns a reference to an item given the value of its Value property.

 FindItemIndexByText, which returns the index of an item given the value of its Text property.

 FindItemIndexByValue, which returns the index of an item given the value of its Value property.

Once you have located an item, you can use its properties to change its value, select it, disable it, delete it,
and so on.

The following example illustrates some of these methods. It uses the FindItemByText method to determine
whether the string a user types in the text area of a combo box is already in the drop-down list. If not, it adds
an item to the list with its Text property set to the new string and its Value property set to reflect the position
of the new item. Next, the Value property of the item in the drop-down list (either the matching item that was
found or the newly entered item) is passed to the FindItemIndexByValue method of a second combo box. If an
item with a matching value is found, that corresponding item is selected.

 {
 for (int i = itemOffset; i < dt.Rows.Count; i++)
 {
 RadComboBox1.Items.Add(new RadComboBoxItem(dt.Rows[i]["ProductName"].ToString
()));
 }
 }
 // set the message for the more results box
 e.Message = String.Format("Items 1-{0}", dt.Rows.Count.ToString());
 if (e.EndOfItems)
 e.Message += String.Format(" out of {0}", dt.Rows.Count.ToString());
 }
 }
 catch
 {
 e.Message = "No items available";
 }
 finally
 {
 dbCon.Close();
 }
}

15.6 Server-Side Programming

UI for ASP.NET AJAX

402 UI for ASP.NET AJAX

You can find the complete source for this project at:
\VS Projects\ComboBox\ServerSide

[VB] Working with items

Protected Sub RadComboBox1_TextChanged(ByVal sender As Object, ByVal e As EventArgs) Handles
RadComboBox1.TextChanged
 ' If the string is not in combo box 1, add it
 Dim item As RadComboBoxItem = RadComboBox1.FindItemByText(RadComboBox1.Text)
 If item Is Nothing Then
 ' create a new item with Text set to the text in the input area
 ' and value set to the position of the new item
 item = New RadComboBoxItem(RadComboBox1.Text, (RadComboBox1.Items.Count + 1).ToString())
 ' add it to combo box 1
 RadComboBox1.Items.Add(item)
 End If
 ' If an item with the same value is in combo box 2, select it
 Dim value As String = item.Value
 Dim index As Integer = RadComboBox2.FindItemIndexByValue(value)
 If RadComboBox2.SelectedIndex <> index AndAlso index >= 0 Then
 RadComboBox2.Items(index).Selected = True
 End If
End Sub

[C#] Working with items

protected void RadComboBox1_TextChanged(object sender, EventArgs e)
{
 // If the string is not in combo box 1, add it
 RadComboBoxItem item = RadComboBox1.FindItemByText(RadComboBox1.Text);
 if (item == null)
 {

UI for ASP.NET AJAX

403 UI for ASP.NET AJAX

Note that the code above illustrates two properties for determining whether an item is selected. The
SelectedIndex property of the combo box is used to identify the position of the currently selected item, and
the Selected property of a combo box item is used to select it. You can use either of these properties to
change the current selection of a combo box.

Responding to selection changes
The previous example used the TextChanged event handler to respond when the user changed the text of the
combo box. This event occurs when focus leaves the text area of the combo box after its text changes, either
because the user typed a string or because the user selected an item from the drop-down list. TextChanged is
useful for responding to selection changes in combo boxes, such as the one in the previous example, that have
the AllowCustomText property set to true. However, as you may have noticed in the last example, the event
handler has to use the properties of the combo box to determine the current values. Furthermore, there is no
way to determine which item, if any, was previously selected.

When AllowCustomText is not set to true, it can be more useful to use the SelectedIndexChanged event
instead. The SelectedIndexChanged event arguments object has properties that let you access the Text and
Value of the last selected item, as well as properties for the Text and Value of the item that was just selected.

The following example illustrates using the SelectedIndexChanged event. The event handler uses the event
arguments to update a label that gives both the text of the last selected item and the text of the currently
selected item, as well as to update a text box to reflect the current selection.

 // create a new item with Text set to the text in the input area
 // and value set to the position of the new item
 item = new RadComboBoxItem(RadComboBox1.Text, (RadComboBox1.Items.Count + 1).ToString
());
 // add it to combo box 1
 RadComboBox1.Items.Add(item);
 }
 // If an item with the same value is in combo box 2, select it
 string value = item.Value;
 int index = RadComboBox2.FindItemIndexByValue(value);
 if (RadComboBox2.SelectedIndex != index && index >= 0)
 RadComboBox2.Items[index].Selected = true;
}

UI for ASP.NET AJAX

404 UI for ASP.NET AJAX

You can find the complete source for this project at:
\VS Projects\ComboBox\ServerSelectedIndex

[VB] Updating controls in the SelectedIndexChanged event

Protected Sub RadComboBox1_SelectedIndexChanged(ByVal o As Object, ByVal e As
RadComboBoxSelectedIndexChangedEventArgs) Handles RadComboBox1.SelectedIndexChanged
 ' Display the last selection and the new selection in the label
 Label1.Text = "You just read about " + e.OldText + ". Now read about " + e.Text + ": "
 ' update the image to the one associated with the current item
 Image1.ImageUrl = RadComboBox1.SelectedItem.ImageUrl
 ' use the new value to index the appropriate blurb.
 RadTextBox1.Text = Blurbs(System.Int16.Parse(e.Value))
End Sub

[C#] Updating controls in the SelectedIndexChanged event

protected void RadComboBox1_SelectedIndexChanged(object o,
RadComboBoxSelectedIndexChangedEventArgs e)
{
 // Display the last selection and the new selection in the label
 Label1.Text = "You just read about " + e.OldText + ". Now read about " + e.Text + ": ";
 // update the image to the one associated with the current item
 Image1.ImageUrl = RadComboBox1.SelectedItem.ImageUrl;
 // use the new value to index the appropriate blurb.

UI for ASP.NET AJAX

405 UI for ASP.NET AJAX

Sorting items
You can sort the items of RadComboBox to make it easier for users to locate the item they want in the drop-
down list. To enable sorting, set the Sort property of the combo box to "Ascending" or "Descending", depending
on the order you want. By default, sorting is case sensitive, but you can change that by setting the
SortCaseSensitive property to false.

When the Sort property is set to "Ascending" or "Descending", you can sort the items by calling the combo box's
SortItems method, or by calling the Sort method of the Items collection. Both methods do the same thing: they
sort the items based on their Text property values.

The following walk-through illustrates the use of the Sort and SortItems methods.

Prepare the project
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Locate the "Northwind.mdf" and "Northwind_log.ldf" files in the "Live Demos\App_Data" folder under the
folder where you installed RadControls for ASPNET AJAX. Drag these files into the "App_Data" folder of your
project.

3. Open the "Web.config" file of your project. Add the standard Northwind connection string to your project
by replacing the line
 <connectionStrings />
with
 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 </connectionStrings>

Add the combo boxes
1. Drag a RadComboBox from the Tool Box onto your Web page. Set the Skin property to "Telerik" and the

CloseDropDownOnBlur property to false.

2. Bring up the RadComboBox Item Builder, and add ten items to the combo box with Text properties set to
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", and "Ten" (in that order).

3. Drag a second RadComboBox from the Tool Box onto your Web page. Set the Skin property to "Telerik".

4. Using the Smart Tag of the second RadComboBox control, select "<New data source...>" from the Choose
Data Source drop-down.

5. In the first page of the DataSource Configuration Wizard, select "Database" as the application type, and
click OK to move to the next page.

6. On the Choose Your Data Connection page, select "NorthwindConnectionString" from the drop-down list.
Then click the Next button to continue.

7. On the Configure the Select Statement page, make sure the "Specify columns from a table or view" radio
button is selected, and then choose "Employees" from the "Name" drop-down list.

8. Check the "FirstName" field of the "Employees" table, and then click the Next button to continue.

9. Test the query if you wish, and then click Finish.

 RadTextBox1.Text = Blurbs[System.Int16.Parse(e.Value)];
}

You can find the complete source for this project at:
\VS Projects\ComboBox\Sorting

UI for ASP.NET AJAX

406 UI for ASP.NET AJAX

10. In the Properties Window for the second combo box, Set the DataTextField property to "FirstName".

11. Click Ctrl-F5 to run the application. Open the first combo box, and then the second. Note that the items
are not sorted.

Sort the drop-down lists
1. You can sort statically declared items in a Page_Load event handler. Add the following code the

Page_Load event handler. (Remember to first add an Imports or using statement for "Telerik.Web.UI"!)

2. To sort the items in a data-bound combo box, you must use the DataBound event, which occurs once all
the items have been added to the combo box.

Because we sorted the last set of items using an ascending order, this time, set the sort order to
"Descending'. This time, also, use the Sort method of the Items collection rather than the SortItems
method you used for the other combo box.

[VB] Sorting statically declared items

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 'We only need to sort items the first time the page is loaded
 If Not IsPostBack Then
 'Sort the statically-bound items in ascending order
 RadComboBox1.Sort = RadComboBoxSort.Ascending
 RadComboBox1.SortItems()
 End If
End Sub

[C#] Sorting statically declared items

protected void Page_Load(object sender, EventArgs e)
{
 // We only need to sort items the first time the page is loaded
 if (!IsPostBack)
 {
 // Sort the statically-bound items in ascending order
 RadComboBox1.Sort = RadComboBoxSort.Ascending;
 RadComboBox1.SortItems();
 }
}

Do not confuse the DataBound event, which occurs once all items are loaded, with the ItemDataBound
event, which occurs after each item is loaded.

[VB] Sorting data-bound items

UI for ASP.NET AJAX

407 UI for ASP.NET AJAX

3. Run the application again. This time, note that the items have been sorted:

Working with the items collection
You do not need to rely on server-side code to change the items of the drop-down list. You can also add or
remove items and change their properties in client-side code. You can use the client-side findItemsByText()
and findItemsByValue() methods to locate items, just like you can use the similarly named methods on the
server side. The client-side object for the combo box has a get_items() method that provides access to the
items collection. You can use the methods of the items collection to add or delete items, or iterate through the
items collection.

The following example illustrates the use of some of these client-side methods. When the Web page loads, it
contains an empty combo box and a text box with an associated button. When the user enters a string in the
text box and clicks the button, a client-side script checks whether the string already appears in the drop-down
list of the combo box. If so, it deletes it. If not, it adds it.

Protected Sub RadComboBox2_DataBound(ByVal sender As Object, ByVal e As EventArgs) Handles
RadComboBox2.DataBound
 'Data-bound items must be sorted in the DataBound event handler
 'Sort them in descending order
 RadComboBox2.Sort = RadComboBoxSort.Descending
 RadComboBox2.Items.Sort()
End Sub

[CS] Sorting data-bound items

protected void RadComboBox2_DataBound(object sender, EventArgs e)
{
 // Data-bound items must be sorted in the DataBound event handler
 // Sort them in descending order
 RadComboBox2.Sort = RadComboBoxSort.Descending;
 RadComboBox2.Items.Sort();
}

You can also sort items using a custom sort criterion. See the How-To section for an example of how this is
done.

15.7 Client-Side Programming

UI for ASP.NET AJAX

408 UI for ASP.NET AJAX

Notice in the code above that before making any changes to the items collection, the function calls the combo
box's trackChanges() method. After the changes are complete, it calls the commitChanges() method. These
two methods are important when working with the items collection. If you do not surround any changes that
you make to the items collection with calls to trackChanges() and commitChanges(), the changes are lost the
next time the page executes a postback.

Using client-side events
In addition to a powerful set of client-side methods for manipulating the combo box and its items collection,
you can also make use of a wealth of client-side events to respond to just about any change that occurs. You

You can find the complete source for this project at:
\VS Projects\ComboBox\ClientSide

[JavaScript] Manipulating the items collection

function ChangeDropDownList(sender) {
 // check whether the text box has any text
 var text = sender.get_value();
 if (text.trim() != "") {
 // get a reference to the combo box
 var combo = $find("<%= RadComboBox1.ClientID %>");
 // find the matching combo box item
 var item = combo.findItemByText(text);
 // call trackChanges so that the changes can persist
 combo.trackChanges();
 // if the item is in the list, remove it
 if (item) {
 combo.get_items().remove(item);
 }
 else {
 // if the item is not in the list, add it
 var comboItem = new Telerik.Web.UI.RadComboBoxItem();
 comboItem.set_text(text);
 combo.get_items().add(comboItem);
 comboItem.select();
 }
 // commit the changes
 combo.commitChanges();
 }
}

Any changes made in client-side code after the call to trackChanges() can be reviewed in server-side code
by reading the server-side ClientChanges property. ClientChanges is a collection of ClientOperation objects
that describe each client-side change that was made.

UI for ASP.NET AJAX

409 UI for ASP.NET AJAX

have already seen some of these events used: in the first Templates example, the OnClientLoad and
OnClientSelectedIndexChanged events were used to maintain the footer template. The following example
illustrates some of the other client-side events.

This example uses a combo box with its AllowCustomText property set to true and its EmptyMessage property
set to "- Select a territory -". When the combo box gets focus, the OnClientFocus event handler automatically
opens the drop-down list if the user has not selected a value.

Normally, when the combo box gets focus, the EmptyMessage string disappears. To prevent this from
happening, the OnClientDropDownOpened event handler sets the text to the value of EmptyMessage if it is an
empty string. The OnClientDropDownClosed event handler restores the text to an empty string when the drop
down closes if the user has not changed the value.

You can find the complete source for this project at:
\VS Projects\ComboBox\ClientEvents

[ASP.NET] ComboBox with client events

<script type="text/javascript">
 // OnClientFocus handler
 function OpenDropDownOnFocus(sender, args) {
 // if the text is not set
 if (sender.get_text() == "");
 // open the drop down list
 sender.showDropDown();
 }
 // OnClientDropDownOpened handler
 function RestoreEmptyMessage(sender, args) {
 // if the text is not set
 if (sender.get_text() == "")
 // set it back to the empty message
 sender.set_text(sender.get_emptyMessage());
 }
 // OnClientDropDownClosed handler
 function RestoreEmptyString(sender, args) {
 // if the text is still the empty message
 if (sender.get_text() == sender.get_emptyMessage())
 // set it back to an empty string

UI for ASP.NET AJAX

410 UI for ASP.NET AJAX

Using client events with load-on-demand
When using the load-on-demand feature (EnableLoadOnDemand set to true), there are three client-side events
that surround the callback to populate the drop-down list.

 Before the callback occurs, the OnClientItemsRequesting event lets you provide additional context
information to the event handler or Web service that supplies items, or even cancel the event to prevent
the callback from occurring.

 If the callback fails for some reason, the OnClientItemsRequestFailed event lets you provide your own
response, in addition to or instead of the default error message.

 If the callback is successful, the OnClientItemsRequested event lets you provide your own post-processing.

The following example illustrates the use of these three events. The example uses two combo boxes: one bound
to a data source and the other getting its items using the load-on-demand mechanism. The combo box that
loads its items on demand uses the currently selected item in the first combo box to provide additional context
information to the server-side ItemsRequested handler. As a result, the items list of the second combo box
displays only items associated with the selected item in the first combo box. Entering text in the second combo
box further limits this list to items that match the entered text.

Before looking at the load-on-demand related events, let us first look at the first combo box. When the user
changes the selected item in the first combo box, the drop-down list and text of the second combo box become
invalid. To handle this, the first combo box has an OnClientSelectedIndexChanged handler that clears the text
and drop-down list of the second combo box. As an added nicety, the event handler moves focus to the text
area of the second combo box:

 sender.set_text("");
 }
</script>
<telerik:RadComboBox ID="RadComboBox1" runat="server"
 Skin="Gray" DataSourceID="SqlDataSource1"
 DataTextField="TerritoryDescription" DataValueField="TerritoryID"
 AllowCustomText="true" EmptyMessage="- Select a territory -"
 OnClientFocus="OpenDropDownOnFocus"
 OnClientDropDownOpened="RestoreEmptyMessage"
 OnClientDropDownClosed="RestoreEmptyString">
</telerik:RadComboBox>

You can find the complete source for this project at:
\VS Projects\ComboBox\ClientLoadOnDemand

[JavaScript] Clearing the second combo box when the first changes

UI for ASP.NET AJAX

411 UI for ASP.NET AJAX

The load-on-demand related events occur on the second combo box, which loads its items on demand. The first
of these events that gets called is OnClientItemsRequesting. This event handler looks up the currently selected
value on the first combo box, and adds that as context information to the item request:

On the server, the server-side ItemsRequested event handler uses both the text of the second combo box and
the context information that was added in the OnClientItemsRequesting handler:

function SelectionChanged(sender, args) {
 // when combo1 changes its selection,
 // we need to clear combo 2
 var combo2 = $find("<%= RadComboBox2.ClientID %>");
 // clear the current list of items
 combo2.clearItems();
 // set the text to an empty string
 combo2.set_text("");
 // move focus to the text area of the second combo
 combo2.get_inputDomElement().focus();
}

[JavaScript] Adding context information to the items request

function ItemsRequesting(sender, args) {
 // set the context to the value of the selected item in combo 1
 // the value holds the category ID
 var combo1 = $find("<%= RadComboBox1.ClientID %>");
 var item = combo1.get_selectedItem();
 args.get_context()["Category"] = item.get_value();
}

[VB] Servicing the items request on the server

Protected Sub RadComboBox2_ItemsRequested(ByVal o As Object, ByVal e As
RadComboBoxItemsRequestedEventArgs) Handles RadComboBox2.ItemsRequested
 ' build the query from the context and text values
 Dim query As New StringBuilder("SELECT ProductID, ProductName from Products WHERE")
 query.Append(" CategoryID = ")
 query.Append(e.Context("Category").ToString())
 query.Append(" AND ProductName LIKE '")
 query.Append(e.Text)
 query.Append("%'")
 ' open a connection to the database
 Dim dbCon As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 Try
 dbCon.Open()
 ' create a data adapter and use it to fetch data into a table
 Dim adapter As New SqlDataAdapter(query.ToString(), dbCon)
 Dim dt As New DataTable()
 adapter.Fill(dt)
 ' use the table to add items to the combo box
 For Each row As DataRow In dt.Rows
 Dim item As New RadComboBoxItem(row("ProductName").ToString(), row
("ProductID").ToString())
 RadComboBox2.Items.Add(item)
 If item.Value = "5" Then
 Throw New Exception("Simulated error")
 End If
 Next
 Finally
 dbCon.Close()

UI for ASP.NET AJAX

412 UI for ASP.NET AJAX

Note that the code shown above generates an exception if the list includes an item with product ID set to 5.
This is included to simulate an error when fetching items so that you can see the effects of the
OnClientItemsRequestFailed event handler. This event handler cancels the default error handling (which uses
the browser-based alert dialog to display an error message), and instead uses the radalert() function to display
the error message in a dialog that uses the same skin as the combo box:

 End Try
End Sub

[C#] Servicing the items request on the server

protected void RadComboBox2_ItemsRequested(object o, RadComboBoxItemsRequestedEventArgs e)
{
 // build the query from the context and text values
 StringBuilder query = new StringBuilder("SELECT ProductID, ProductName from Products
WHERE");
 query.Append(" CategoryID = ");
 query.Append(e.Context["Category"].ToString());
 query.Append(" AND ProductName LIKE '");
 query.Append(e.Text);
 query.Append("%'");
 // open a connection to the database
 SqlConnection dbCon = new SqlConnection(ConfigurationManager.ConnectionStrings
["NorthwindConnectionString"].ConnectionString);
 try
 {
 dbCon.Open();
 // create a data adapter and use it to fetch data into a table
 SqlDataAdapter adapter = new SqlDataAdapter(query.ToString(), dbCon);
 DataTable dt = new DataTable();
 adapter.Fill(dt);
 // use the table to add items to the combo box
 foreach (DataRow row in dt.Rows)
 {
 RadComboBoxItem item = new RadComboBoxItem(row["ProductName"].ToString(), row
["ProductID"].ToString());
 RadComboBox2.Items.Add(item);
 if (item.Value == "5")
 throw new Exception("Simulated error");
 }
 }
 finally
 {
 dbCon.Close();
 }
}

[JavaScript] Replacing the default error handling

function ItemsRequestFailed(sender, args) {
 // use the rad alert to match the skin
 radalert(args.get_errorMessage(), 200, 75, "Error");
 // set cancel to suppress the default error message
 args.set_cancel(true);
}

To trigger the simulated error and see the effects of this error handler, select "Condiments" in the first
combo box, and open the drop-down list of the second combo box when its text is an empty string or "c".

UI for ASP.NET AJAX

413 UI for ASP.NET AJAX

The last client-side event related to load-on-demand is OnClientItemsRequested, which occurs once the drop-
down list is populated with new items. In this example, the event handler selects the first item in the list if the
user has already entered text before opening the drop-down list:

Implementing a custom sort
As you saw in the section on Server-Side Programming, you can sort the items in the drop-down list by calling
the Sort method of the Items collection or the SortItems method of the combo box. Both of these methods sort
the items by the value of their Text property. However, both the Sort method and the SortItems method have
an overloaded version that takes an argument of type IComparer. By creating a class that implements
IComparer and passing an instance of your class to the Sort or SortItems method, you can sort the items in the
drop-down list using your own custom algorithm.

The following example illustrates sorting items using a custom algorithm. The custom algorithm sorts items by a
custom attribute ("Region"), and within region, by the value of the Text property.

[JavaScript] Selecting the first item in the new list

function ItemsRequested(sender, args) {
 // get the new list of items
 var items = sender.get_items();
 // if the user has started entering some text
 // and the new list of items is not empty
 if (sender.get_text() != "" && items.get_count() > 0)
 // select the first item
 items.getItem(0).select();
}

15.8 How To

UI for ASP.NET AJAX

414 UI for ASP.NET AJAX

To implement the custom sort, the application first defines a class that implements the IComparer interface.
The IComparer interface defines a single method, Compare, which compares two objects:

You can find the complete source for this project at:
\VS Projects\ComboBox\HowToCustomSort

[VB] CustomSort class

Public Class CustomSort
 Implements IComparer
 Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer Implements
IComparer.Compare
 Dim p1 As RadComboBoxItem, p2 As RadComboBoxItem
 ' first make sure the items are of type RadComboBoxItem
 If TypeOf x Is RadComboBoxItem Then
 p1 = TryCast(x, RadComboBoxItem)
 Else
 Throw New ArgumentException("Object is not of type RadComboBoxItem.")
 End If
 If TypeOf y Is RadComboBoxItem Then
 p2 = TryCast(y, RadComboBoxItem)
 Else
 Throw New ArgumentException("Object is not of type RadComboBoxItem.")
 End If
 ' get the combo box
 Dim combo As RadComboBox = p1.ComboBoxParent
 ' get the Region attribute for each item
 Dim a1 As String = p1.Attributes("Region")

UI for ASP.NET AJAX

415 UI for ASP.NET AJAX

 Dim a2 As String = p2.Attributes("Region")
 ' if the attribute does not exist, use an empty string
 If a1 Is Nothing Then a1 = ""
 If a2 Is Nothing Then a2 = ""
 ' sort by region
 Dim cmp As Integer = String.Compare(a1, a2, Not combo.SortCaseSensitive)
 ' if regions match, sort by text within region
 If cmp = 0 Then
 cmp = String.Compare(p1.Text, p2.Text, Not combo.SortCaseSensitive)
 End If
 ' for a descending sort, reverse the comparison value
 If combo.Sort = RadComboBoxSort.Descending Then
 cmp = cmp * -1
 End If
 Return cmp
 End Function
End Class

[C#] CustomSort class

public class CustomSort : IComparer
{
 public int Compare(object x, object y)
 {
 RadComboBoxItem p1, p2;
 // first make sure the items are of type RadComboBoxItem
 if (x is RadComboBoxItem)
 p1 = x as RadComboBoxItem;
 else
 throw new ArgumentException("Object is not of type RadComboBoxItem.");
 if (y is RadComboBoxItem)
 p2 = y as RadComboBoxItem;
 else
 throw new ArgumentException("Object is not of type RadComboBoxItem.");

 // get the combo box
 RadComboBox combo = p1.ComboBoxParent;
 // get the Region attribute for each item
 string a1 = p1.Attributes["Region"];
 string a2 = p2.Attributes["Region"];
 // if the attribute does not exist, use an empty string
 if (a1 == null)
 a1 = "";
 if (a2 == null)
 a2 = "";
 // sort by region
 int cmp = String.Compare(a1, a2, !combo.SortCaseSensitive);
 // if regions match, sort by text within region
 if (cmp == 0)
 cmp = String.Compare(p1.Text, p2.Text, !combo.SortCaseSensitive);
 // for a descending sort, reverse the comparison value
 if (combo.Sort == RadComboBoxSort.Descending)
 cmp = cmp * -1;
 return cmp;
 }
}

UI for ASP.NET AJAX

416 UI for ASP.NET AJAX

The Compare method casts both objects to RadComboBoxItem. It then retrieves a reference to the combo box
that contains them, so that it can look up the Sort and SortCaseSensitive properties. It compares the items
based on their "Region" attribute, and if the regions match, it compares them by their Text property.

The default Web page contains a data-bound combo box. Each item sets the "Region" custom attribute in the
ItemDataBound event handler:

In the DataBound event handler, the application calls the SortItems method, passing in an instance of the
CustomSort class:

Using an input control in an item template
In the section on Control Specifics, you built a Web page that included a RadCalendar control in the item
template. In that example project, the combo box closed as soon as the user clicked on the calendar. There are
times, however, when you may not want the drop-down list to close when the user clicks on a control in the
item template. For example, if the item template includes an input control, the control would be unusable if
the drop-down list closed as soon as the user clicked in it. However, if you simply add an input control to the
item template, this is exactly what happens. The drop-down list closes because the mouse click event bubbles
up from the embedded control to the combo box item, and when the combo box item receives the mouse click,
it closes the drop-down list. To make the input control usable, you must therefore prevent the mouse click
event from bubbling up to the combo box item.

The following example illustrates how this is done. The Web page contains a combo box that lets the user

[VB] Assigning custom attributes in ItemDataBound

Protected Sub RadComboBox1_ItemDataBound(ByVal sender As Object, _
 ByVal e As RadComboBoxItemEventArgs) _
 Handles RadComboBox1.ItemDataBound
 ' add a custom attribute for the region
 Dim dataSourceRow As DataRowView = DirectCast(e.Item.DataItem, DataRowView)
 e.Item.Attributes("Region") = dataSourceRow("RegionID").ToString()
End Sub

[C#] Assigning custom attributes in ItemDataBound

protected void RadComboBox1_ItemDataBound(object sender, RadComboBoxItemEventArgs e)
{
 // add a custom attribute for the region
 DataRowView dataSourceRow = (DataRowView)e.Item.DataItem;
 e.Item.Attributes["Region"] = dataSourceRow["RegionID"].ToString();
}

[VB] Sorting items in the DataBound handler

Protected Sub RadComboBox1_DataBound(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles RadComboBox1.DataBound
 RadComboBox1.Sort = RadComboBoxSort.Ascending
 Dim sort As IComparer = TryCast(New CustomSort(), IComparer)
 RadComboBox1.SortItems(sort)
End Sub

[C#] Sorting items in the DataBound handler

protected void RadComboBox1_DataBound(object sender, EventArgs e)
{
 RadComboBox1.Sort = RadComboBoxSort.Ascending;
 IComparer sort = new CustomSort() as IComparer;
 RadComboBox1.SortItems(sort);
}

UI for ASP.NET AJAX

417 UI for ASP.NET AJAX

select a date from its drop-down list, or, using the last item in the list, enter a custom date value that falls
within an allowable range.

To implement this, the combo box uses an item template with a RadDateInput in it. For all but the last item,
the date input control has its ReadOnly property set to true. On the last item, the ReadOnly property is set to
"False", allowing the user to enter a custom value, and has its MinDate property set to enforce a range. The
template suppresses mouse click events from bubbling up when the click occurs in the last text box.

The declaration for the combo box includes a custom attribute to indicate the "ReadOnly" status of items:

Note that the RadDateInput control in the template does not have its SelectedDate, ReadOnly, or
MinDate properties set. This is done in the Page_Load event handler:

You can find the complete source for this project at:
\VS Projects\ComboBox\HowToInputInTemplate

[ASP.NET] RadComboBox declaration

<telerik:RadComboBox ID="RadComboBox1" runat="server" >
 <Items>
 <telerik:RadComboBoxItem runat="server" Text="1/1/2005" Value="1/1/2005"
ReadOnly="True" />
 <telerik:RadComboBoxItem runat="server" Text="1/1/2006" Value="1/1/2006"
ReadOnly="True" />
 <telerik:RadComboBoxItem runat="server" Text="1/1/2007" Value="1/1/2007"
ReadOnly="True" />
 <telerik:RadComboBoxItem runat="server" Text="" ReadOnly="False" />
 </Items>
 <ItemTemplate>
 <div onclick="ClickTemplate(event)">
 <telerik:RadDateInput ID="RadDateInput1" runat="server" Width="97%" >
 <ClientEvents OnValueChanged="ValueChanged" OnFocus="FocusItem" />
 </telerik:RadDateInput>
 </div>
 </ItemTemplate>
</telerik:RadComboBox>

[VB] Initializing template controls

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 Dim i As Integer = 0
 While i < RadComboBox1.Items.Count
 Dim item As RadComboBoxItem = RadComboBox1.Items(i)
 ' get the date input inside the template
 Dim di As RadDateInput = DirectCast(RadComboBox1.Items(i).FindControl("RadDateInput1"),
RadDateInput)
 If Not di Is Nothing Then
 ' set the ReadOnly property to match the item attribute

UI for ASP.NET AJAX

418 UI for ASP.NET AJAX

The Page_Load event handler iterates through the items in the combo box, and for each one, uses the
FindControl method to locate the date input control in the template. It sets the ReadOnly and SelectedDate
properties after parsing the ReadOnly attribute and Text property of the combo box item. Finally, for the item
that permits editing, it stores the client ID of the input area in a hidden field and sets the MinDate property to
limit the range of permissible values.

If you look back at the declaration of the combo box, you will see that the ItemTemplate includes a <div>
element with an onclick handler that contains the rest of the template. This onclick handler stops the click
event from bubbling up to the combo box item if it originated from the control whose id matches the value of
the hidden field (that is, the date input that permits editing).

 di.[ReadOnly] = (item.Attributes("ReadOnly") <> "False")
 If item.Text <> "" Then
 ' Set the SelectedDate to the item text
 Dim [date] As DateTime = DateTime.Parse(item.Text)
 di.SelectedDate = [date]
 End If
 If Not di.[ReadOnly] Then
 ' if the item is editable, save its client ID in a hidden field
 HiddenField1.Value = di.ClientID + "_text"
 ' and give it a minimum date
 di.MinDate = DateTime.Parse("1/1/2008")
 End If
 End If
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
End Sub

[C#] Initializing template controls

protected void Page_Load(object sender, EventArgs e)
{
 for (int i = 0; i < RadComboBox1.Items.Count; i++)
 {
 RadComboBoxItem item = RadComboBox1.Items[i];
 // get the date input inside the template
 RadDateInput di = (RadDateInput)RadComboBox1.Items[i].FindControl("RadDateInput1");
 if (di != null)
 {
 // set the ReadOnly property to match the item attribute
 di.ReadOnly = (item.Attributes["ReadOnly"] != "False");
 if (item.Text != "")
 {
 // Set the SelectedDate to the item text
 DateTime date = DateTime.Parse(item.Text);
 di.SelectedDate = date;
 }
 if (!di.ReadOnly)
 {
 // if the item is editable, save its client ID in a hidden field
 HiddenField1.Value = di.ClientID + "_text";
 // and give it a minimum date
 di.MinDate = DateTime.Parse("1/1/2008");
 }
 }
 }
}

UI for ASP.NET AJAX

419 UI for ASP.NET AJAX

This allows the drop-down list to remain open when the user clicks on the last item. However, it also prevents
the text from getting set or the drop-down list from closing when the user finishes editing. To perform these
tasks, the date input control has a handler for the client-side OnValueChanged event:

What happens when the user enters a value in the date input control, then selects another combo box item,
and then returns to the previously entered value? Because the value of the date input control did not change,
the combo box text is not updated. To handle this situation, the date input control has a handler for the client-
side OnFocus event:

Limiting item requests with Load-on-demand
In the first load-on-demand example, the ItemsRequested event handler did not add any items to the combo
box when its Text property was an empty string. This was not really necessary for the sample database, but
represented a situation where the data set was so large that it was not reasonable to fetch items until there
was more of a filter. However, the callback to request items was still generated. To reduce this extra (and
unnecessary) traffic, you can prevent the callback from occurring when the text box contains a string that
should not generate a request (such as a string that is too short).

The following example illustrates how this is done. The Web page contains a combo box that displays a choice
of RadControls which are loaded on demand:

[JavaScript] Canceling event bubbling

function ClickTemplate(event) {
 // when <div> is clicked,
 // check whether the click originated from the editable item
 var hf = $get("HiddenField1");
 if (event.srcElement.id == hf.value)
 // if so, don't let the click through to the combo box item
 event.cancelBubble = true;
}

[JavaScript] Setting the text and closing the drop-down

function ValueChanged(sender, args) {
 // when user edits the date input control
 var combo = $find("<%= RadComboBox1.ClientID %>");
 // set the combo box text
 combo.set_text(args.get_newValue());
 // and close the drop-down list
 combo.hideDropDown();
}

[JavaScript] Setting the combo box text on focus

function FocusItem(sender, args) {
 // if the editable item gets focus and already has a value
 if (sender.get_value() != "" && !sender.isReadOnly()) {
 var combo = $find("<%= RadComboBox1.ClientID %>");
 // update the combo box text
 combo.set_text(sender.get_value());
 }
}

UI for ASP.NET AJAX

420 UI for ASP.NET AJAX

Because each control name begins with the string "Rad", it does not make sense to generate a callback unless
the text is an empty string or a string of at least four characters. A client-side ItemsRequesting event handler
ensures that the callback only occurs when it makes sense, by cancelling the request when the text is one, two,
or three characters long.

Enabling virtual scrolling without allowing custom text
The RadComboBox virtual scrolling mechanism is typically used with the load-on-demand feature. The
EnableLoadOnDemand property, however, forces the combo box to allow custom text, regardless of the value
of the AllowCustomText property. This feature is required so that the load-on-demand mechanism can fetch
items that are not already in the list.

What if you want to use virtual scrolling, but only allow the user to select items from the drop-down list? If you
set the EnableLoadOnDemand to false, you can then set the AllowCustomText property to false as well. It is
possible to enable the virtual scrolling mechanism even when EnableLoadOnDemand is false, but the drop-down
list does not immediately fill when it opens. If ShowMoreResultsBox is true, the user is presented with an
empty drop-down list and unlabelled Show More Results box, and must click on the box to fetch the first set of
items. If only EnableVirtualScrolling is true, the situation is even worse: the empty list has no scroll bar, so
there is no way to trigger the virtual scrolling.

The following example shows how to populate the drop-down list with the first set of items on a combo box
that uses only virtual scrolling without a Show More Results box.

[JavaScript] Cancelling the request in the ItemsRequesting handler

function ItemsRequesting(sender, args) {
 if ((sender.get_text().length < 4) && (sender.get_text() != ""))
 args.set_cancel(true);
}

You can find the complete source for this project at:
\VS Projects\ComboBox\HowToLimitItemRequests

UI for ASP.NET AJAX

421 UI for ASP.NET AJAX

To populate the drop-down list when it first opens, the application uses an OnClientDropDownOpening event
handler. The event handler calls the requestItems() method, which initiates a callback to fetch the first set of
items.

Because virtual scrolling requires a scroll bar to be present, the Height property is set so that the first set of
items do not all fit in the drop-down list. This ensures that a scroll bar appears when the first set of items is
loaded.

Implementing a Web service to load items on demand

[JavaScript] Initiating an item request when the drop-down opens

function OnClientDropDownOpeningHandler(sender, args) {
 // initiate an item request
 // first parameter is the text
 // second parameter is whether to append items
 sender.requestItems("", true);
}

[ASP.NET] Combo box declaration

<telerik:RadComboBox ID="RadComboBox1" runat="server"
 Skin="Hay" DropDownWidth="200px" Height="200px"
 AllowCustomText="false" EnableVirtualScrolling="true"
 OnClientDropDownOpening="OnClientDropDownOpeningHandler"
 OnItemsRequested="RadComboBox1_ItemsRequested" >
</telerik:RadComboBox>

You can find the complete source for this project at:
\VS Projects\ComboBox\HowToVirtualScrollNoCustomText

UI for ASP.NET AJAX

422 UI for ASP.NET AJAX

Instead of implementing a server-side ItemsRequested event handler, the combo box can load items on demand
from a Web service. To configure the combo box to use a Web service, set the WebServiceSettings property,
giving the name of the Web Method and the path to the Web Service:

When implementing the Web Service, any Web Method that supports the load-on-demand mechanism must take
a single parameter, which supplies context information about the request. This parameter is of type
RadComboBoxContext, but it can also be cast to IDictionary to read context information that is added in an
OnClientItemsRequesting event handler.

You have a choice of two types for the return value:

 You can always return a value of type RadComboBoxData. This type includes an Items property that lists
information about each item that is supplied. In addition, your Web Method can set the Message and
EndOfItems properties if you are supporting virtual scrolling.

 If your Web Method does not support virtual scrolling, you can return an array of RadComboBoxItemData
objects. (This is the type of the Items property of RadComboBoxData.)

The following example illustrates these different options. It implements a Web Service with two Web Methods,
"GetCustomers" and "GetCompanyNames". Both produce a list of items from the Northwind "Customers" table.

[ASP.NET] Combo box that uses a Web service for load-on-demand

<telerik:RadComboBox ID="RadComboBox1" Runat="server" Skin="Vista"
 EnableLoadOnDemand="True" ShowMoreResultsBox="True" >
 <WebServiceSettings Method="GetCompanyNames" Path="ComboWebService.asmx" />
</telerik:RadComboBox>

Gotcha! Because the context parameter is an IDictionary value, you cannot run the Web Service
directly from within Visual Studio. When running the example, select Default.aspx before hitting F5
or Ctrl-F5.

UI for ASP.NET AJAX

423 UI for ASP.NET AJAX

The Web Service itself includes an attribute to allow it to be called from AJAX script:

The first Web Method ("GetCustomers") expects the user to supply context information in an
OnClientItemsRequesting handler: therefore, it casts the context parameter to IDictionary. Because it does
not support virtual scrolling, it returns an array of RadComboBoxItemData.

You can find the complete source for this project at:
\VS Projects\ComboBox\HowToWebService

[VB] Enabling calls from AJAX script

<System.Web.Script.Services.ScriptService()>

[C#] Enabling calls from AJAX script

[System.Web.Script.Services.ScriptService]

Gotcha! Be sure to include the ScriptService attribute. If it is missing, all calls from the combo box
to the Web Service will fail.

[VB] Servicing requests that include extra context information

<WebMethod()> _
Public Function GetCustomers(ByVal context As RadComboBoxContext) As RadComboBoxItemData()
 ' create the connection
 Dim connection As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 ' read the filter from context
 Dim filterString As String = (TryCast(context, IDictionary(Of String, Object)))
("FilterString").ToString()
 ' create a command, fetching customers that match filterString
 Dim selectCommand As New SqlCommand(" SELECT * FROM Customers WHERE CompanyName LIKE '" +
filterString + "%'", connection)
 ' fill a data table with the customers
 Dim adapter As New SqlDataAdapter(selectCommand)
 Dim customers As New DataTable()
 adapter.Fill(customers)
 ' create a list of RadComboBoxItemData to hold new items
 Dim result As New List(Of RadComboBoxItemData)(customers.Rows.Count)
 ' create an item for every row in the table
 For Each row As DataRow In customers.Rows
 Dim itemData As New RadComboBoxItemData()
 itemData.Text = row("CompanyName").ToString()
 itemData.Value = row("CompanyName").ToString()
 result.Add(itemData)
 Next
 ' convert the list to an array, and return it
 Return result.ToArray()
End Function

[C#] Servicing requests that include extra context information

[WebMethod]
public RadComboBoxItemData[] GetCustomers(RadComboBoxContext context)

UI for ASP.NET AJAX

424 UI for ASP.NET AJAX

The second Web method second ("GetCompanyNames") supports virtual scrolling: it therefore returns a value of
type RadComboBoxItemData. Because it does not rely on any extra context information, it uses a parameter of
type RadComboBoxContext.

{
 // create the connection
 SqlConnection connection = new SqlConnection(ConfigurationManager.ConnectionStrings
["NorthwindConnectionString"].ConnectionString);
 // read the filter from context
 string filterString = (context as IDictionary<string, object>)["FilterString"].ToString();
 // create a command, fetching customers that match filterString
 SqlCommand selectCommand =
 new SqlCommand(@" SELECT * FROM Customers
 WHERE CompanyName LIKE '" + filterString + "%'", connection);
 // fill a data table with the customers
 SqlDataAdapter adapter = new SqlDataAdapter(selectCommand);
 DataTable customers = new DataTable();
 adapter.Fill(customers);
 // create a list of RadComboBoxItemData to hold new items
 List<RadComboBoxItemData> result = new List<RadComboBoxItemData>(customers.Rows.Count);
 // create an item for every row in the table
 foreach (DataRow row in customers.Rows)
 {
 RadComboBoxItemData itemData = new RadComboBoxItemData();
 itemData.Text = row["CompanyName"].ToString();
 itemData.Value = row["CompanyName"].ToString();
 result.Add(itemData);
 }
 // convert the list to an array, and return it
 return result.ToArray();
}

[VB] Servicing requests that use virtual scrolling

<WebMethod()> _
Public Function GetCompanyNames(ByVal context As RadComboBoxContext) As RadComboBoxData
 ' use the Text property of the context object to form the SELECT statement
 Dim sql As String = "SELECT * from Customers WHERE CompanyName LIKE '" + context.Text +
"%'"
 ' fill a data table using the SELECT statement
 Dim adapter As New SqlDataAdapter(sql, ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 Dim data As New DataTable()
 adapter.Fill(data)
 ' declare the list to hold items we return
 Dim result As List(Of RadComboBoxItemData) = Nothing
 ' Create a RadComboBoxData object to pass virtual scrolling information
 Dim comboData As New RadComboBoxData()
 Try
 ' calculate the number of records we need
 ' based on the current number of items
 Dim itemsPerRequest As Integer = 10
 Dim itemOffset As Integer = context.NumberOfItems
 Dim endOffset As Integer = itemOffset + itemsPerRequest
 ' adjust endOffset if there are not enough rows
 If endOffset > data.Rows.Count Then
 endOffset = data.Rows.Count

UI for ASP.NET AJAX

425 UI for ASP.NET AJAX

 End If
 ' set EndOfItems to reflect whether we are supplying the last items
 If endOffset = data.Rows.Count Then
 comboData.EndOfItems = True
 Else
 comboData.EndOfItems = False
 End If
 ' create the list to hold the items we will return
 result = New List(Of RadComboBoxItemData)(endOffset - itemOffset)
 ' iterate through the rows of the table, creating and adding items
 Dim i As Integer = itemOffset
 While i < endOffset
 Dim itemData As New RadComboBoxItemData()
 itemData.Text = data.Rows(i)("CompanyName").ToString()
 itemData.Value = data.Rows(i)("CompanyName").ToString()
 result.Add(itemData)
 System.Math.Max(System.Threading.Interlocked.Increment(i),i - 1)
 End While
 ' add a message for the more results box to the comboData
 If data.Rows.Count > 0 Then
 comboData.Message = [String].Format("Items 1-{0} out of {1}",
endOffset.ToString(), data.Rows.Count.ToString())
 Else
 comboData.Message = "No matches"
 End If
 Catch e As Exception
 comboData.Message = e.Message
 End Try
 ' add the list of items to the comboData and return it
 comboData.Items = result.ToArray()
 Return comboData
End Function

[C#] Servicing requests that use virtual scrolling

[WebMethod]
public RadComboBoxData GetCompanyNames(RadComboBoxContext context)
{
 // use the Text property of the context object to form the SELECT statement
 string sql = "SELECT * from Customers WHERE CompanyName LIKE '" + context.Text + "%'";
 // fill a data table using the SELECT statement
 SqlDataAdapter adapter = new SqlDataAdapter(sql,
 ConfigurationManager.ConnectionStrings["NorthwindConnectionString"].ConnectionString);
 DataTable data = new DataTable();
 adapter.Fill(data);
 // declare the list to hold items we return
 List<RadComboBoxItemData> result = null;
 // Create a RadComboBoxData object to pass virtual scrolling information
 RadComboBoxData comboData = new RadComboBoxData();
 try
 {
 // calculate the number of records we need
 // based on the current number of items
 int itemsPerRequest = 10;
 int itemOffset = context.NumberOfItems;
 int endOffset = itemOffset + itemsPerRequest;

UI for ASP.NET AJAX

426 UI for ASP.NET AJAX

In this chapter you looked at the RadComboBox control and saw some of the powerful features it provides. You
created a simple application that populated one combo box with statically declared items and another with
items loaded from a data source. At the same time, you looked at some properties of the combo box and combo
box items.

You looked at the design time support for the combo box and explored many of the properties and groups of
properties you can use to configure the combo box at design time. You learned about the different types of
template you can use with a combo box, and how to work with combo box custom attributes. You also learned
about the load-on-demand mechanism, and saw how it can be used with virtual scrolling or a "More Results" box
to improve performance.

 // adjust endOffset if there are not enough rows
 if (endOffset > data.Rows.Count)
 {
 endOffset = data.Rows.Count;
 }
 // set EndOfItems to reflect whether we are supplying the last items
 if (endOffset == data.Rows.Count)
 {
 comboData.EndOfItems = true;
 }
 else
 {
 comboData.EndOfItems = false;
 }
 // create the list to hold the items we will return
 result = new List<RadComboBoxItemData>(endOffset - itemOffset);
 // iterate through the rows of the table, creating and adding items
 for (int i = itemOffset; i < endOffset; i++)
 {
 RadComboBoxItemData itemData = new RadComboBoxItemData();
 itemData.Text = data.Rows[i]["CompanyName"].ToString();
 itemData.Value = data.Rows[i]["CompanyName"].ToString();
 result.Add(itemData);
 }
 // add a message for the more results box to the comboData
 if (data.Rows.Count > 0)
 {
 comboData.Message = String.Format("Items 1-{0} out of {1}",
endOffset.ToString(), data.Rows.Count.ToString());
 }
 else
 {
 comboData.Message = "No matches";
 }
 }
 catch (Exception e)
 {
 comboData.Message = e.Message;
 }
 // add the list of items to the comboData and return it
 comboData.Items = result.ToArray();
 return comboData;
}

15.9 Summary

UI for ASP.NET AJAX

427 UI for ASP.NET AJAX

You learned some of the server-side properties and methods, especially those for working with the items in the
drop-down list. You looked at some of the important server-side events, including those that respond when the
selected text changes or that service the load-on-demand mechanism. You learned when and how to sort the
drop-down list in server-side code.

You explored some of the client-side methods for working with the items collection, and used some of the
important client-side events, including those for responding to selection changes, opening and closing the drop-
down list, and the events surrounding the load-on-demand mechanism.

Finally, you learned some advanced techniques, including implementing custom sort criteria, keeping the drop-
down list open when an item template includes input controls, controlling when the load-on-demand
mechanism fetches items, enabling virtual scrolling when not allowing custom text, and creating a Web service
for loading items on demand.

UI for ASP.NET AJAX

428 UI for ASP.NET AJAX

 Explore the features of the RadTreeView control.

 Create a simple application to develop confidence in using the tree view and to see how to build a node
hierarchy either statically or using data supplied from a data source.

 Explore the tree view design time interface, including Smart Tag, Properties Window, Property Builder,
Collection Editors and Template Design surface.

 Explore principal properties and groups of properties where most of the functionality is found.

 Learn to use special tree view features such as node editing, check boxes, drag-and-drop, and node
context menus.

 Learn server-side coding techniques, including traversing the node hierarchy to make a change to all parent
nodes or all child nodes, building the tree view dynamically in code to accommodate data from multiple
database tables, and handling server-side events.

 Explore some of the client-side methods of the tree node and tree view client-side objects, learn to
implement the 'radio button' pattern for state changes, and learn to expand the number of client side
events you can respond to by accessing the DOM object for the tree view.

 Learn to wrap the text that appears on tree view nodes and to add controls directly to tree nodes without
using templates.

 Explore the different options for using load-on-demand to improve performance.

You are undoubtably aware of tree view controls, which appear in many desktop applications. For example, the
Solution Explorer in Visual Studio is a tree view control that lets you navigate the components of your project
and perform basic operations such as adding and deleting new components. RadTreeView lets you add the
same capability to your Web applications. It displays a hierarchy of items that you can declare statically or load
from a data source.

RadTreeView combines the highly efficient rendering of RadControls for ASP.NET AJAX with a powerful set of
features. You can use the familiar skinning capabilities to make the tree view fit in with the look and feel of

16 RadTreeView

16.1 Objectives

16.2 Introduction

UI for ASP.NET AJAX

429 UI for ASP.NET AJAX

your Web site, as well adjusting the appearance using styles or item templates. You can add images to the
nodes without using templates, and even specify different images depending on the state of the node.

The capabilities of RadTreeView extend beyond simply changing the appearance. You can configure the tree
view to allow multiple nodes to be selected at a time. The tree view can be augmented with check boxes on
nodes, or configured to allow users to edit the nodes. There is built-in support for adding context menus to
nodes, based on the RadContextMenu control you learned about in the chapter on Navigation controls.
RadTreeView also supports drag-and-drop operations: you can let users drag nodes to new positions in the tree
view, to another tree view, or to a another element on the page of an entirely different type. If your tree view
has many items, you can improve performance by using its load-on-demand mechanism, similar to the load-on-
demand feature you saw with RadComboBox.

In addition, RadTreeView offers the rich client-side API that you can expect from all RadControls, and a wealth
of server-side events and methods.

In this walk-through you will become familiar with the RadTreeView control. You will create two tree views:
one with statically declared nodes, and one with nodes loaded from a database.

Prepare the project
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Using the Solution Explorer, add a new Folder to your project and name it "Images".

3. From the "\VS Projects\Images\Controls" folder drag the "RadMenu.png", "RadPanelBar.png",
"RadTabStrip.png", "RadTextBox.png" and "RadToolBar.png" files to your project's Images folder.

4. Locate the "Northwind.mdf" file and drag it into the "App_Data" folder of your project.

5. Open the "Web.config" file of your project. Add the standard Northwind connection string to your project
by replacing the line

16.3 Getting Started

You can find the complete source for this project at:
\VS Projects\TreeView\GettingStarted

UI for ASP.NET AJAX

430 UI for ASP.NET AJAX

 <connectionStrings />
with
 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 </connectionStrings>

Add a tree view with statically declared nodes
1. Drag a RadTreeView control from the Tool Box onto your Web page. Set its Skin property to "Telerik".

2. From the RadTreeView Smart Tag, choose Build RadTreeView... to bring up the RadTreeView Item
Builder. The Item Builder should look familiar: you have seen similar Item Builders on the navigation
controls.

3. In the Item Builder, click the "Add root item" button to add a root node to the tree view.

4. Using the properties pane on the right,

 Set the Text property to "RadControls for ASP.NET AJAX".

 Set the Checkable property to false.

5. Click the "Add child item" button again to add a child node to the root node. Set its properties as follows:

 Set the Text property to "Navigation".

 Set the Checkable property to false.

 Set the ToolTip property to "Navigation controls".

6. With the "Navigation" node selected, click the "Add child item" button five times to add five child nodes.

 On the first, set the Text property to "RadMenu" and the ImageUrl property to
"~/Images/RadMenu.png".

 On the second, set the Text property to "RadContextMenu" and the ImageUrl property to
"~/Images/RadMenu.png".

 On the third, set the Text property to "RadTabStrip" and the ImageUrl property to
"~/Images/RadTabStrip.png".

 On the fourth, set the Text property to "RadPanelBar" and the ImageUrl property to
"~/Images/RadPanelBar.png".

 On the fifth, set the Text property to "RadToolBar" and the ImageUrl property to
"~/Images/RadToolBar.png".

7. Select the root item and click the "Add child item" button to add a second child node to the root node.

 Set the Text property to "Input".

 Set the Checkable property to false.

 Set the ToolTip property to "Input controls".

8. With the "Input" node selected, click the "Add child item" button four times to add four child nodes.

 On the first, set the Text property to "RadTextBox" and the ImageUrl property to
"~/Images/RadTextBox.png".

 On the second, set the Text property to "RadMaskedTextBox" and the ImageUrl property to
"~/Images/RadTextBox.png".

 On the third, set the Text property to "RadNumericTextBox" and the ImageUrl property to
"~/Images/RadTextBox.png".

UI for ASP.NET AJAX

431 UI for ASP.NET AJAX

 On the fourth, set the Text property to "RadDateInput" and the ImageUrl property to
"~/Images/RadTextBox.png".

9. Click OK to exit the Item Builder.

10. Using the Properties Window, set the CheckBoxes and SingleExpandPath properties to true.

Add a data-bound tree view
1. In the designer, hit the Enter key to add a line break, and then drag a second RadTreeView control from

the Tool Box onto your Web page. Set its Skin property to "Telerik".

2. In the RadTreeView Smart Tag, select "<New data source...>" from the Choose Data Source drop-down.

3. In the first page of the DataSource Configuration Wizard, select "Database" as the application type, and
click OK to move to the next page.

4. On the Choose Your Data Connection page, select "NorthwindConnectionString" from the drop-down list.
Then click the Next button to continue.

5. On the Configure the Select Statement page, make sure the "Specify columns from a table or view" radio
button is selected, and then choose "Employees" from the "Name" drop-down list.

6. Check the "EmployeeID", "LastName" and "ReportsTo" fields. Then click the Next button to continue.

7. Test the query if you wish, and then click Finish.

8. In the Properties Window for the second tree view,

 Set the DataTextField property to "LastName".

 Set the DataFieldID property to "EmployeeID".

 Set the DataFieldParentID property to "ReportsTo".

 Run the application
1. Press Ctrl-F5 to run the application.

2. Click the "+" buttons to expand nodes on the tree view controls. On the first tree view, note that only the
leaf items have check boxes. This is because the Checkable property of the other nodes was set to false.
Note that you can't expand both the "Navigation" and "Input" nodes at the same time. This is because of the
SingleExpandPath property.

3. On the second tree view, note that the items form a hierarchy, although they all came from the same
table. This hierarchy is built using the DataFieldID and DataFieldParentID properties of items.

In the Visual Studio designer, you can configure the RadTreeView control using the Smart Tag, the Properties
Window, and the RadTreeView Item Builder. In addition, you can add data bindings using the
NavigationItemBinding collection editor, add context menus using the RadTreeViewContextMenu collection
editor, and add templates using the Template Design surface.

Smart Tag
The RadTreeView Smart Tag looks like the typical Smart Tag of a RadControl that contains items which can be
either statically declared or loaded from a data source:

16.4 Designer Interface

UI for ASP.NET AJAX

432 UI for ASP.NET AJAX

At the top of the Smart Tag, the Choose Data Source drop-down to bind the tree view and the Build
RadTreeView link to bring up the Item Builder should be familiar by now. So should the standard Ajax
Resources, Skin Selection, and Learning Center items. Because you can define item templates for the tree
view, there is also an Edit Templates link to bring up the Template Design Surface.

If you bind the tree view to a data source, the Smart Tag changes to its bound version:

The bound Smart Tag lets you change the data source, reconfigure the current data source, or refresh the
schema. In addition, there is a link to bring up the NavigationItemBinding Collection Editor. This collection
should be familiar to you from the Data Binding chapter.

The bound Smart Tag still contains the Edit Templates item to bring up the Template Design Surface.

Properties Window
At design time, you can use the Properties Window to configure almost every aspect of the tree view, with the
exception of templates. As before, let us look at the most important properties.

Specifying Items

Probably the most important property of the tree view is the one that specifies what items appear and their
hierarchical relationships. What properties you choose for this task depends on whether you want to load items
from a data source:

 If you want to load items from a data source, you can use the the standard data-binding properties

UI for ASP.NET AJAX

433 UI for ASP.NET AJAX

(DataSourceID and DataMember), or use the DataSource property and DataBind method in the code-
behind. When binding RadTreeView to a data source, you can use the DataTextField,
DataTextFormatString, DataValueField, and DataNavigationUrlField properties to map fields from the
data source to properties of the nodes, or use the DataBindings property to map even more node
properties.

 If you want to establish a hierarchical relationship between nodes, use the DataFieldID and
DataFieldParentID properties. When setting up a hierarchy in this way, you can use the
MaxDataBindDepth property to limit the depth of the hierarchy.

 When using an inherently hierarchical data source such as an XmlDataSource or SiteMapDataSource,
there is no need to use the DataFieldID and DataFieldParentID properties. The hierarchy is
automatically honored by the tree view.

 If you want to use statically declared items, you can use the Nodes property to bring up the RadTreeView
Item Builder, or you can switch to the Source view and define the structure directly in the mark-up.

 If you want to use both data-bound and statically-declared items, set the AppendDataBoundItems property
to true.

Other tree view properties

In addition to the Skin property, you can affect the look-and-feel of the tree view by setting the
ShowLineImages property to control whether the tree view displays lines connecting its nodes, and setting the
ExpandAnimation and CollapseAnimation properties to specify animated effects when the nodes are expanded
or collapsed.

Basic behavior is controlled by the MultipleSelect property, which specifies whether the user can select more
than one node at a time, and the SingleExpandPath, which allows only one node at any level to be expanded at
a time.

In addition, a few properties can be used to enable or disable RadTreeView features.

 The AllowNodeEditing property makes nodes editable. When AllowNodeEditing is true, users can edit the
text of nodes by clicking on a node a second time once it is selected (the same way you can edit the item
text in RadControl Item Builder dialogs).

 The CheckBoxes property adds check boxes to the nodes. The check boxes feature is described in more
detail later in this chapter.

 The EnableDragAndDrop property allows the user to drag nodes and drop them on other nodes, or on other
elements of the Web page. The drag-and-drop feature is also described in more detail later.

 The ContextMenus property lets you bring up the RadTreeViewContextMenus Collection Editor, where you
can define the context menus that are used by items.

RadTreeVeiw Item Builder
RadTreeView lets you edit the list of statically defined nodes using the RadTreeView Item Builder. This item
builder is very similar to the hierarchical Property Builder dialogs you looked at in the chapter on Navigation
controls. Display the item builder either from the Smart Tag or by clicking the ellipsis button on the Nodes
property in the Properties Window.

Below is a screen shot of the RadTreeView Item Builder. Use the buttons on the upper left to build or edit the
node hierarchy. You can select any of the nodes and set its properties using the properties pane on the right of
the dialog. Typically, you will set the Text property first.

UI for ASP.NET AJAX

434 UI for ASP.NET AJAX

Each node has its own set of properties: Text is the string that represents the node, ToolTip is the tool tip for
the node, and Value is a value associated with the node. You can add images to a node by setting the
ImageUrl, DisabledImageUrl, ExpandedImageUrl, HoveredImageUrl and SelectedImageUrl properties. If any
of the other image properties is not set, the node uses the ImageUrl property as the image default. You may
also want to use the Selected, Enabled, and Expanded properties to specify the state of the item when the
Web page first loads. The NavigateUrl and Target properties let you use the node to navigate to another Web
page.

A few properties determine whether the node participates in specific features that are enabled at the tree
view level:

 The AllowEdit property controls whether the node can be edited when the tree view's AllowNodeEditing
property is true.

 The Checkable property controls whether the node gets a check box when the tree view's CheckBoxes
property is true. The Checked property specifies whether the check box is checked when the page first
loads.

 The AllowDrag and AllowDrop properties specify how the node participates in the drag-and-drop feature
when the tree view's EnableDragAndDrop property is true.

 The EnableContextMenu property specifies whether the node displays a context menu when the user right
clicks and the ContextMenus property collection defines a set of context menus. ContextMenuID specifies
which context menu to use.

Collection Editors

UI for ASP.NET AJAX

435 UI for ASP.NET AJAX

RadTreeView uses two associated collection editors, the NavigationItemBinding Collection Editor, which is
used to edit the DataBindings property collection, and the RadTreeViewContextMenu Collection Editor, which
is used to edit the ContextMenus property collection.

You have already seen how the NavigationItemBinding Collection Editor works in the Data Binding chapter. Let
us look briefly at the RadTreeViewContextMenu Collection Editor.

When using the RadTreeViewContextMenu Collection Editor, the order of items does not matter, because each
node is associated with a context menu by its ContextMenuID property. To make this work, you must take note
of the ID property of each context menu in the collection, as this is the string that should be assigned to the
ContextMenuID property. Another important property is the Items property, which can be used to bring up the
RadContextMenu Item Builder, where you can define the items in the context menu. You may also wish to set
the Skin property for the menu, as this is not inherited from the tree view.

Template Design surface
You can use the tree view's Smart Tag or context menu to bring up the Template Design surface, where you can
create item templates. RadTreeView supports two types of template: a global RadTreeNode template that
affects all nodes in the tree view, and individual item templates, which are associated with specific nodes in
the Nodes collection. A drop-down control on the RadTreeView Smart Tag (when it is in template editing mode)
lets you specify which template you want to edit:

UI for ASP.NET AJAX

436 UI for ASP.NET AJAX

When a tree view includes both a RadTreeNode template and individual item templates, the item templates
have priority over the RadTreeNode template. That is, the RadTreeNode template is used for every node that
does not have its own item template.

Check boxes
When the CheckBoxes property of RadTreeView is true, the tree view adds check boxes to any nodes that have
the Checkable property set to true (the default). For any node with Checkable set to true, the Checked
property indicates its state.

In the code-behind, you can check all of the checkable nodes in a tree view by calling its CheckAllNodes
method. Similarly, you can set all nodes to the unchecked state by calling the ClearCheckedNodes method.
You can quickly find all of the checked nodes in a tree view by reading the CheckedNodes property.

By default, all check boxes behave independently. However, in some applications, you may want to implement
a cascading effect. That is, when a parent node is checked, all of its children are automatically checked as
well, and when a parent node is unchecked, all of its children inherit that state. Achieving this effect is simple:
just set the CheckChildNodes property to true.

You can convert the check boxes in the tree view from ordinary two-state check boxes to tri-state check boxes
by setting the TriStateCheckBoxes property to true. Tri-state check boxes have three states: "Checked",
"Unchecked", and "Indeterminate". The state of a tri-state check box is intended to reflect the state of the
check boxes on child nodes. When all the child nodes of a tri-state check box are checked, the tri-state check
box is checked. When they are all unchecked, the tri-state check box is unchecked. When the child nodes are a
mix of checked and unchecked nodes, the tri-state check box is in an indeterminate state. Changing the
checked state of a child node automatically changes the state of all parent tri-state check boxes.

The following walk-through explores some of the features of RadTreeView check boxes. It creates a Web page
with two tree views on it, one with ordinary check boxes, and one with tri-state check boxes. Both have the
CheckChildNodes property set to true so that child nodes are updated when the parent node is checked. In
addition, an event handler automatically expands or contracts the child nodes of a node when its check box is

16.5 Control Specifics

Gotcha! Do not try checking nodes in the code-behind by adding them to the CheckedNodes
property collection. Instead, check nodes by setting their Checked property to true.

Because of the relationship between the child nodes and parent nodes, set the CheckChildNodes property to
true when using tri-state check boxes. Otherwise, changing the checked state of parent nodes does not make
much sense. After a postback, the state will always revert to one that reflects the checked state of child
nodes.

UI for ASP.NET AJAX

437 UI for ASP.NET AJAX

checked or unchecked.

Prepare the project
1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Drag an HTML table from the Tool Box onto the Web page and delete rows and columns until it has a single
row with two cells. Set the valign attribute of both cells to "top". Set the Width attribute of the first cell
to "200px".

3. Using the Solution Explorer, add an XML file to the project named "Entertainment.xml".

4. Add the following XML to the "Entertainment.xml" file.

You can find the complete source for this project at:
\VS Projects\TreeView\CheckBoxes

Entertainment.xml

<?xml version="1.0" encoding="utf-8" ?>
<Categories>
 <Category Name="Books">
 <SubCategory Name="Arts" />
 <SubCategory Name="Biographies" />
 <SubCategory Name="Children's Books" />
 <SubCategory Name="Computers &amp; Internet" />
 <SubCategory Name="Cooking" />
 <SubCategory Name="History" />
 <SubCategory Name="Fiction" />
 <SubCategory Name="Mystery" />
 <SubCategory Name="Nonfiction" />
 <SubCategory Name="Romance" />
 <SubCategory Name="Science Fiction" />
 <SubCategory Name="Travel" />
 </Category>

UI for ASP.NET AJAX

438 UI for ASP.NET AJAX

5. Save "Entertainment.xml" and return to the designer for your default Web page.

Add the first tree view
1. Drag a RadAjaxPanel from the Tool Box into the first cell of the table. Remove the values of the Width and

Height properties.

2. Drag a RadTreeView control from the Tool Box onto the RadAjaxPanel. Set its Skin property to "Vista".

3. In the RadTreeView Smart Tag, select "<New data source...>" from the Choose Data Source drop-down.
The Data Source Configuration Wizard appears.

4. In the Data Source Configuration Wizard, select "XML File" and click OK to continue.

5. On the Configure Data Source page, set the Data File to "~/Entertainment.xml", and click OK to exit.

6. In the RadTreeView Smart Tag, select "Edit RadTreeView Data Bindings...".

7. In the NavigationItemBinding Collection Editor, add two data bindings.

1. On the first, set the TextField property to "Name".

2. On the second, set the Depth property to 0 and the Text property to "Ordinary Check Boxes".

8. Using the Properties Window, set the CheckBoxes and CheckChildNodes properties to true. At this point,
the RadTreeView declaration should look like the following:

 <Category Name="Music">
 <SubCategory Name="Alternative" />
 <SubCategory Name="Blues" />
 <SubCategory Name="Children's Music" />
 <SubCategory Name="Classical" />
 <SubCategory Name="Country" />
 <SubCategory Name="Dance" />
 <SubCategory Name="Folk" />
 <SubCategory Name="Hard Rock" />
 <SubCategory Name="Jazz" />
 <SubCategory Name="Soundtracks" />
 </Category>
 <Category Name="Movies">
 <SubCategory Name="Action" />
 <SubCategory Name="Animation" />
 <SubCategory Name="Classics" />
 <SubCategory Name="Comedy" />
 <SubCategory Name="Documentary" />
 <SubCategory Name="Drama" />
 <SubCategory Name="Horror" />
 <SubCategory Name="Musicals" />
 <SubCategory Name="Mystery" />
 <SubCategory Name="Westerns" />
 </Category>
</Categories>

[ASP.NET] RadTreeView with CheckBoxes and CheckChildNodes

<telerik:RadTreeView ID="RadTreeView1" runat="server"
 Skin="Vista" DataSourceID="XmlDataSource1"
 CheckBoxes="True" CheckChildNodes="True">
 <DataBindings>
 <telerik:RadTreeNodeBinding TextField="Name" />
 <telerik:RadTreeNodeBinding Depth="0" Text="Ordinary Check Boxes" />
 </DataBindings>

UI for ASP.NET AJAX

439 UI for ASP.NET AJAX

Add the second tree view
1. Copy the RadAjaxPanel in the first cell of the table and paste it into the second cell.

2. Move to the Source view.

3. Change the DataSourceID property of the second tree view to "XmlDataSource1" and delete the second
data source component.

4. Change the Text property on the second RadTreeNodeBinding from "Ordinary Check Boxes" to "Tri-state
Check Boxes".

5. Return to Design view.

6. Using the Properties Window, set the TriStateCheckBoxes property of the second tree view to true.

Add event handlers
1. To remove the check box from the root node and start it in the expanded state, add the following

DataBound event handler to both tree views. Be sure to add an Imports or using statement for
"Telerik.Web.UI" first!

2. To respond when the user checks or unchecks a node in the tree view, add the following NodeCheck event
handler to both tree views:

Run the application

</telerik:RadTreeView>

[VB] Adjusting the root node

Protected Sub RadTreeView1_DataBound(ByVal sender As Object, ByVal e As EventArgs) _
 Handles RadTreeView1.DataBound, RadTreeView2.DataBound
 Dim node As RadTreeNode = (TryCast(sender, RadTreeView)).Nodes(0)
 node.Checkable = False
 node.Expanded = True
End Sub

[C#] Adjusting the root node

protected void RadTreeView1_DataBound(object sender, EventArgs e)
{
 RadTreeNode node = (sender as RadTreeView).Nodes[0];
 node.Checkable = false;
 node.Expanded = true;
}

[VB] Expanding or contracting a node when checked or unchecked

Protected Sub RadTreeView1_NodeCheck(ByVal sender As Object, ByVal e As
RadTreeNodeEventArgs) _
 Handles RadTreeView1.NodeCheck, RadTreeView2.NodeCheck
 If e.Node.Nodes.Count > 0 Then
 e.Node.Expanded = e.Node.Checked
 End If
End Sub

[C#] Expanding or contracting a node when checked or unchecked

protected void RadTreeView1_NodeCheck(object sender, RadTreeNodeEventArgs e)
{
 if (e.Node.Nodes.Count > 0)
 e.Node.Expanded = e.Node.Checked;
}

UI for ASP.NET AJAX

440 UI for ASP.NET AJAX

1. Press Ctrl-F5 to run the application.

2. Note the difference between the appearance of the ordinary check boxes and the tri-state check
boxes. The ordinary check boxes are standard HTML <input> elements of type "checkbox" , while the tri-
state check boxes are rendered as elements. (This means that you can change the appearance of
the ordinary check boxes using RadFormDecorator, but not the tri-state check boxes.)

3. Check one of the check boxes in each tree view. Note that the node automatically expands because of the
NodeCheck event handler. All child nodes are checked because of the CheckChildNodes property.

4. Uncheck one of the leaf nodes. Note that this effects only the child node when using ordinary check boxes,
but changes the parent to an "indeterminate" state when using tri-state check boxes.

Drag-and-Drop
To enable the drag-and-drop feature, set the EnableDragAndDrop property of the tree view control to true.
When drag-and-drop is enabled, the user can drag any node that has its AllowDrag property set to true and
drop it on any node that has its AllowDrop property set to true. The node can also be dropped on any element
on the page that has its id attribute set, including the nodes of other tree views, as long as the other tree view
has EnableDragAndDrop set to true and the node has AllowDrop set to true.

By default, when the user drops a node onto a tree view, it can only be dropped on another node. If you want
to let the user drop a node between two other nodes, set the EnableDragAndDropBetweenNodes property to
true. When EnableDragAndDropBetweenNodes is true and the user drags a node between two nodes on the tree
view, the tree view displays a line where the node will land if dropped.

When the user drops a node (or nodes) on a valid drop location (a node with AllowDrop set to true or an
element with an id attribute), the server-side NodeDrop event handler is called. This is where you must handle
the drop event, implementing whatever changes the action implies.

The following example illustrates how to implement drag-and-drop. It contains a tree view control with drag-
and-drop enabled and an ASP.NET panel. When the user drags a node from one position in the tree view to
another, the node is removed from its old position and added to the new one. When the user drags a node from
the tree view to the panel, a label inside the panel is updated to indicate where the node came from.

If the MultipleSelect property of the tree view is set to true, the user can drag multiple nodes at a time.

You can find the complete source for this project at:
\VS Projects\TreeView\DragAndDrop

UI for ASP.NET AJAX

441 UI for ASP.NET AJAX

To enable drag-and-drop, the tree view has EnableDragAndDrop set to true. It also has
EnableDragAndDropBetweenNodes set to true, to allow nodes to be dragged between other nodes, as shown in
the screen shot above.

The NodeDrop event occurs when a drag operation ends on a valid target:

[VB] NodeDrop event handler

Protected Sub RadTreeView1_NodeDrop(ByVal sender As Object, _
 ByVal e As RadTreeNodeDragDropEventArgs) _
 Handles RadTreeView1.NodeDrop
 Dim sourceNode As RadTreeNode = e.SourceDragNode
 Dim destNode As RadTreeNode = e.DestDragNode
 ' don't allow a node to be dropped on itself
 If sourceNode.Equals(destNode) Then
 Return
 End If
 ' destNode is set if dropping on another node of the tree
 If Not destNode Is Nothing Then
 ' remove the node from its current parent
 sourceNode.Owner.Nodes.Remove(sourceNode)
 If destNode.Level = 0 Then
 ' dropping on a group node
 ' insert in the first position
 destNode.Nodes.Insert(0, sourceNode)
 Else
 ' dropping on a leaf node
 Select Case e.DropPosition
 Case RadTreeViewDropPosition.Over, RadTreeViewDropPosition.Below
 ' add after
 destNode.InsertAfter(sourceNode)
 Exit Select
 Case RadTreeViewDropPosition.Above
 ' add before
 destNode.InsertBefore(sourceNode)
 Exit Select
 End Select
 End If
 ElseIf e.HtmlElementID = "Panel1" Then
 ' node was dropped on the panel
 If Label1.Text <> "" Then Label1.Text += "
"
 Label1.Text += String.Format("{0} is in {1}", sourceNode.Text,
sourceNode.ParentNode.Text)
 End If
End Sub

[C#] NodeDrop event handler

protected void RadTreeView1_NodeDrop(object sender, RadTreeNodeDragDropEventArgs e)
{
 RadTreeNode sourceNode = e.SourceDragNode;
 RadTreeNode destNode = e.DestDragNode;
 // don't allow a node to be dropped on itself
 if (sourceNode.Equals(destNode)) return;
 // destNode is set if dropping on another node of the tree

UI for ASP.NET AJAX

442 UI for ASP.NET AJAX

The event handler first checks that a node is not being dropped on itself, as that would have no impact. It then
looks at the DestDragNode argument, which is set when the node is dropped on another node of the tree view
(including between nodes). If the destination node is one of the two group nodes, the dragged node
(e.SourceDragNode) is added to the beginning of the destination node's collection of nodes. If the destination
node is another leaf node, the event handler checks the DropPosition argument to determine whether the node
was dropped above, below, or on the destination node, and then adds it to the parent node in the indicated
position.

If the destination node is not set, then the node was dragged onto an element with an id (the panel). In that
case, the event handler checks the HtmlElementID argument to verify that the node was dropped on the panel,
and if so, updates a label inside the panel to display the dropped node's text and its parent node's text.

If the application were run with only the server-side NodeDrop handler, it would work for nodes that were
dropped inside the tree view, but not for nodes dropped on the panel. This is because the panel is not rendered
as a single element with the id "Panel1". It is rendered as a pair of nested <div> elements with a <fieldset>
element inside them. What looks like dropping on the panel is actually dropping on the <fieldset> element.
Because the <fieldset> element does not have an id, it is not a valid drop target, and the NodeDrop handler
never gets called.

To allow the NodeDrop handler to get called for the panel, the application uses a client-side

 if (destNode != null)
 {
 // remove the node from its current parent
 sourceNode.Owner.Nodes.Remove(sourceNode);
 if (destNode.Level == 0) // dropping on a group node
 {
 // insert in the first position
 destNode.Nodes.Insert(0, sourceNode);
 }
 else // dropping on a leaf node
 {
 switch (e.DropPosition)
 {
 case RadTreeViewDropPosition.Over:
 case RadTreeViewDropPosition.Below:
 // add after
 destNode.InsertAfter(sourceNode);
 break;
 case RadTreeViewDropPosition.Above:
 // add before
 destNode.InsertBefore(sourceNode);
 break;
 }
 }
 }
 // node was dropped on the panel
 else if (e.HtmlElementID == "Panel1")
 {
 if (Label1.Text != "")
 Label1.Text += "
";
 Label1.Text += string.Format("{0} is in {1}", sourceNode.Text,
sourceNode.ParentNode.Text);
 }
}

This example uses a tree view with MultipleSelect set to false. If MultipleSelect were true, the event handler
would need to use the DraggedNodes argument instead of the SourceDragNode argument.

UI for ASP.NET AJAX

443 UI for ASP.NET AJAX

OnClientNodeDropping event handler. This client-side event always occurs, regardless of whether the target is
valid.

This event handler starts with the element that is the actual drop target and moves up the change of parent
elements until it reaches the tree view, the panel, or runs out of parent elements. The tree view and panel
elements can be recognized by their client-side id. Because the tree view has
EnableDragAndDropBetweenNodes set to true, the event handler must also recognize a drop between nodes.
This lands on a <div> element that is not actually inside the tree view. To recognize this element, the event
handler must use the class name, which begins with the string "rtDrop".

When the event handler detects that the drop target is in the tree view (or between lines), it simply exits,
because the NodeDrop event will be correctly called by default. If the drop target is inside the panel, the
event handler changes the drop target to the <div> with the proper id, so that the NodeDrop event handler can
be called.

Context Menus
To add context menus to the nodes of the tree view, you must first add the context menus to the
ContextMenus property collection of the tree view. Then, assign the ContextMenuID property of each node to
the ID of the desired context menu. Use the EnableContextMenu property of each node to enable or disable
context menus for that item.

When the user clicks on an item in the context menu, you can implement the response by using the server-side
ContextMenuItemClick event, or by using the client-side OnClientContextMenuItemClicking or
OnClientContextMenuItemClicked event.

[JavaScript] OnClientNodeDropping handler

function nodeDropping(sender, args) {
 // set target to the element on which the node is dropped
 var target = args.get_htmlElement();
 // check whether target is in the panel or tree view
 // by working up the parent chain to a known element
 while (target) {
 var targetID = target.id;
 var className = target.className;
 // we reached the tree view -- this is a good target
 if (targetID == "RadTreeView1")
 return;
 // the "between nodes" lines are not actually in the tree view,
 // but they have class names that begin "rtDrop"
 else if (className.startsWith("rtDrop"))
 return;
 // we are inside the panel -- this is a good target
 else if (targetID == "Panel1") {
 args.set_htmlElement(target);
 return;
 }
 target = target.parentNode;
 }
 // we were not in a good target, cancel the drop
 args.set_cancel(true);
}

Gotcha! You must add the context menus to the ContextMenus property collection. Adding a
separate RadContextMenu control to the page and setting the ContextMenuID property of a tree view
node to its ID does not work.

UI for ASP.NET AJAX

444 UI for ASP.NET AJAX

The following example creates a tree view with two context menus: one for internal nodes and another for leaf
nodes. It implements a ContextMenuItemClick event handler to respond when the user invokes the context
menu on leaf nodes, and an OnClientContextMenuItemClicking event handler to respond when the user
invokes the context menu on internal nodes.

The tree view includes the definitions of the two context menus in its ContextMenus property collection. Each
node sets its ContextMenuID property to the ID of the context menu it uses:

You can find the complete source for this project at:
\VS Projects\TreeView\ContextMenus

[ASP.NET] Tree view with context menus

<telerik:RadTreeView ID="RadTreeView1" Runat="server" Skin="Sunset"
 oncontextmenuitemclick="RadTreeView1_ContextMenuItemClick"
 OnClientContextMenuItemClicking="HandleInternalNodeContextMenu" >
 <ContextMenus>
 <telerik:RadTreeViewContextMenu ID="LeafMenu" runat="server" Skin="Sunset">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Move up" />
 <telerik:RadMenuItem runat="server" Text="Move down" />
 <telerik:RadMenuItem runat="server" Text="Delete" />
 </Items>
 </telerik:RadTreeViewContextMenu>
 <telerik:RadTreeViewContextMenu ID="InternalNodeMenu" runat="server" Skin="Sunset">
 <Items>
 <telerik:RadMenuItem runat="server" Text="Reset nodes" />
 </Items>
 </telerik:RadTreeViewContextMenu>
 </ContextMenus>
 <Nodes>
 <telerik:RadTreeNode runat="server"
 Text="Languages" Expanded="true" ContextMenuID="InternalNodeMenu" >
 <Nodes>
 <telerik:RadTreeNode runat="server" Text="English" ContextMenuID="LeafMenu" >
 </telerik:RadTreeNode>
 ...
 </Nodes>
 </telerik:RadTreeNode>
 ...
 </Nodes>
</telerik:RadTreeView>

UI for ASP.NET AJAX

445 UI for ASP.NET AJAX

The ContextMenuItemClick event handler responds in the code-behind to the items on the LeafMenu:

[VB] ContextMenuItemClick handler

Protected Sub RadTreeView1_ContextMenuItemClick(ByVal sender As Object, _
 ByVal e As RadTreeViewContextMenuEventArgs) _
 Handles RadTreeView1.ContextMenuItemClick
 ' get the collection that holds the node who owns the menu
 Dim collection As RadTreeNodeCollection = e.Node.ParentNode.Nodes
 ' get the index of the node
 Dim curIndex As Integer = e.Node.Index
 Select Case e.MenuItem.Text
 Case "Move up"
 If curIndex > 0 Then
 ' only move up if not at top
 ' remove the node and insert in new position
 collection.Remove(e.Node)
 collection.Insert(curIndex - 1, e.Node)
 End If
 Exit Select
 Case "Move down"
 If curIndex < collection.Count - 1 Then
 ' only move down if not at end
 ' remove the node and insert in new position
 collection.Remove(e.Node)
 collection.Insert(curIndex + 1, e.Node)
 End If
 Exit Select
 Case "Delete"
 ' remove the node
 collection.RemoveAt(curIndex)
 Exit Select
 End Select
End Sub

[C#] ContextMenuItemClick handler

protected void RadTreeView1_ContextMenuItemClick(object sender,
RadTreeViewContextMenuEventArgs e)
{
 // get the collection that holds the node who owns the menu
 RadTreeNodeCollection collection = e.Node.ParentNode.Nodes;
 // get the index of the node
 int curIndex = e.Node.Index;

 switch (e.MenuItem.Text)
 {
 case "Move up":
 if (curIndex > 0) // only move up if not at top
 {
 // remove the node and insert in new position
 collection.Remove(e.Node);
 collection.Insert(curIndex - 1, e.Node);
 }
 break;
 case "Move down":
 if (curIndex < collection.Count - 1) // only move down if not at end

UI for ASP.NET AJAX

446 UI for ASP.NET AJAX

The event arguments provide a reference to the node that was right clicked (e.Node) and to the menu item on
the context menu (e.MenuItem).

Because there is a server-side ContextMenuItemClick handler, client-side handling should be done in an
OnClientContextMenuItemClicking handler rather than an OnClientContextMenuItemClicked handler. This
way, the handler can cancel the postback to the server for any menu items it handles.

The client-side handler also has access to the node that was right clicked (by calling args.get_node()) and to
the menu item that was invoked (by calling args.get_menuItem()).

 {
 // remove the node and insert in new position
 collection.Remove(e.Node);
 collection.Insert(curIndex + 1, e.Node);
 }
 break;
 case "Delete":
 // remove the node
 collection.RemoveAt(curIndex);
 break;
 }
}

[JavaScript] OnClientContextMenuItemClicking handler

// create a new node and add it to the node collection
function AddNodeToList(list, text) {
 var node = new Telerik.Web.UI.RadTreeNode();
 node.set_text(text);
 list.add(node);
}
function HandleInternalNodeContextMenu(sender, args) {
 var node = args.get_node();
 // handle the "Reset nodes" menu item
 if (args.get_menuItem().get_text() == "Reset nodes") {
 // track changes so they will persist
 sender.trackChanges();
 var nodeList = node.get_nodes();
 // clear the node's children
 nodeList.clear();
 // add a new set to the node collection
 AddNodeToList(nodeList, "English");
 AddNodeToList(nodeList, "French");
 AddNodeToList(nodeList, "German");
 AddNodeToList(nodeList, "Spanish");
 // commit the changes
 sender.commitChanges();
 // cancel the event to prevent the postback
 args.set_cancel(true);
 }
}

Note that because the nodes of the tree view are being changed on the client, the event handler calls the
tree view's trackChanges() and commitChanges() methods. These perform the same functions as the
methods with the same names that you saw on the combo box.

16.6 Server Side Programming

UI for ASP.NET AJAX

447 UI for ASP.NET AJAX

When working with RadTreeView in the code-behind, you can leverage what you have learned already from
other controls. In the chapter on Navigation controls, you were introduced to controls that have similarly
hierarchical items collections, and the techniques for manipulating those items is similar: the main difference
is that in RadTreeView, the items collection is called Nodes rather than Items.

Traversing the node hierarchy
A common technique when working with RadTreeView is to perform some task for all the ancestors of a node or
all the descendants of a node. When traversing up the hierarchy, from child node to parent node, use the
ParentNode property to locate the parent of a node. When traversing down the hierarchy, from parent node to
child nodes, use the Nodes property collection. At any step in either of these processes, you can use a node's
Level property to ascertain the depth of a node in the hierarchy.

The following example illustrates how to traverse the node hierarchy. The Web page includes a text box, a
button, and a tree view. When the user enters a string into the text box and clicks the button, the tree view
selects the node that matches the string, and expands all of its parent and child nodes, collapsing any other
nodes that were previously expanded.

The button's Click handler starts out by collapsing all nodes in the tree view, so that in the end, only the path
of the specified node will be open. Then it locates the node that matches the text in the text box and selects
it. Next the Click handler traverses the node hierarchy from the specified node, first upwards, to expand all
ancestor nodes, and then downwards, to expand all descendants.

You can find the complete source for this project at:
\VS Projects\TreeView\ServerSide

[VB] Expanding nodes upward and downward

Private Sub ExpandAllChildren(ByVal node As RadTreeNode)

UI for ASP.NET AJAX

448 UI for ASP.NET AJAX

 ' if the node has no children, we are done
 If node.Nodes.Count > 0 Then
 ' expand the node
 node.Expanded = True
 ' recurse for each of the child nodes
 For Each child As RadTreeNode In node.Nodes
 ExpandAllChildren(child)
 Next
 End If
End Sub
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) Handles
Button1.Click
 ' collapse any open nodes
 RadTreeView1.CollapseAllNodes()
 ' look up the name the user entered
 Dim controlName As String = RadTextBox1.Text
 ' find the node in the tree view
 Dim node As RadTreeNode = RadTreeView1.FindNodeByText(controlName)
 If Not node Is Nothing Then
 ' select the node
 node.Selected = True
 ' traverse the hierarchy upwards, expanding parent nodes
 Dim parentNode As RadTreeNode = node.ParentNode
 While Not parentNode Is Nothing
 parentNode.Expanded = True
 parentNode = parentNode.ParentNode
 End While
 ' if this is not a leaf node, expand all child nodes
 If node.Level <> 3 Then
 ExpandAllChildren(node)
 End If
 End If
End Sub

[C#] Expanding nodes upward and downward

private void ExpandAllChildren(RadTreeNode node)
{
 // if the node has no children, we are done
 if (node.Nodes.Count > 0)
 {
 // expand the node
 node.Expanded = true;
 // recurse for each of the child nodes
 for (int i = 0; i < node.Nodes.Count; i++)
 {
 ExpandAllChildren(node.Nodes[i]);
 }
 }
}
protected void Button1_Click(object sender, EventArgs e)
{
 // collapse any open nodes
 RadTreeView1.CollapseAllNodes();
 // look up the name the user entered
 string controlName = RadTextBox1.Text;

UI for ASP.NET AJAX

449 UI for ASP.NET AJAX

When traversing the hierarchy upwards, the simplest approach is a while loop, with the looping variable
iterated using the ParentNode property. When the loop reaches a root node, the ParentNode property is
Nothing (null), and the loop stops.

When traversing the hierarchy downwards, you can either use nested loops, or you can use a recursive
procedure. The code above uses a recursive procedure ("ExpandAllChildren"), because the depth of the tree
below the selected node can vary.

Building the tree view when binding to related tables
You have already seen examples of binding the tree view control to a data source. In the Getting Started
example, you defined the hierarchy by using the DataFieldID and DataFieldParentID properties of the tree
view, while in the Check Boxes example, you bound the tree view to an XmlDataSource, which was inherently
hierarchical. In many cases, however, your database may be structured in such a way that the nodes at each
level of the hierarchy need to come from a different table. There are two approaches for handling this:

 The SELECT statement of your data source can flatten all of the tables into a single table, using one or
more JOIN or UNION clauses.

 You can build the tree view node hierarchy in the Page_Load event handler.

The following example illustrates the latter approach. In the Page_Load event handler, it builds the node
hierarchy of a tree view from three separate data tables ("Regions", "Territories", and "Employees").

 // find the node in the tree view
 RadTreeNode node = RadTreeView1.FindNodeByText(controlName);
 if (node != null)
 {
 // select the node
 node.Selected = true;
 // traverse the hierarchy upwards, expanding parent nodes
 RadTreeNode parentNode = node.ParentNode;
 while (parentNode != null)
 {
 parentNode.Expanded = true;
 parentNode = parentNode.ParentNode;
 }
 // if this is not a leaf node, expand all child nodes
 if (node.Level != 3)
 ExpandAllChildren(node);
 }
}

UI for ASP.NET AJAX

450 UI for ASP.NET AJAX

The Page_Load event handler only needs to generate the node hierarchy the first time the page loads:

The code to generate the node hierarchy first creates a data set with the three related tables. It then traverses
each table in the data set, building the node hierarchy as it goes. For descendant nodes, the data table is
accessed using a Relation, so that only the nodes that should descend from the parent node are traversed.

You can find the complete source for this project at:
\VS Projects\TreeView\ServerRelatedTables

[VB] Page_Load event handler

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 ' we only need to generate the table when the page first loads
 If Not IsPostBack Then
 GenerateTreeView()
 End If
End Sub

[C#] Page_Load event handler

protected void Page_Load(object sender, EventArgs e)
{
 // we only need to generate the table when the page first loads
 if (!IsPostBack)
 GenerateTreeView();
}

[VB] Building the node hierarchy

UI for ASP.NET AJAX

451 UI for ASP.NET AJAX

Private Function GenerateDataSet() As DataSet
 ' open a connection to the database
 Dim dbCon As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 dbCon.Open()
 ' create a data set to hold the three tables
 Dim ds As New DataSet()
 ' create the tables
 Dim regions As New DataTable("Regions")
 Dim territories As New DataTable("Territories")
 Dim employees As New DataTable("Employees")
 ' create adapters to fill the tables
 Dim regionAdapter As New SqlDataAdapter("SELECT * FROM Region", dbCon)
 Dim territoryAdapter As New SqlDataAdapter("SELECT * FROM Territories", dbCon)
 Dim employeeAdapter As New SqlDataAdapter("SELECT * FROM Employees inner join
EmployeeTerritories on Employees.EmployeeID = EmployeeTerritories.EmployeeID", dbCon)
 regionAdapter.Fill(regions)
 territoryAdapter.Fill(territories)
 employeeAdapter.Fill(employees)
 ' now add the filled tables to the data set
 ds.Tables.Add(regions)
 ds.Tables.Add(territories)
 ds.Tables.Add(employees)
 ' create relations to express the links between tables
 ds.Relations.Add("RegionTerritory", ds.Tables("Regions").Columns("RegionID"), ds.Tables
("Territories").Columns("RegionID"))
 ds.Relations.Add("TerritoryEmployee", ds.Tables("Territories").Columns("TerritoryID"),
ds.Tables("Employees").Columns("TerritoryID"))
 Return ds
End Function
Private Sub GenerateTreeView()
 ' generate the data set with three tables and their relations
 Dim ds As DataSet = GenerateDataSet()
 ' now build the node hierarchy, starting at the top
 For Each regionRow As DataRow In ds.Tables("Regions").Rows
 ' create a root node for each region
 Dim regionNode As New RadTreeNode(regionRow("RegionDescription").ToString())
 RadTreeView1.Nodes.Add(regionNode)
 ' use the RegionTerritory relation to find the child rows
 For Each territoryRow As DataRow In regionRow.GetChildRows("RegionTerritory")
 ' create a territory node for each territory in the region
 Dim territoryNode As New RadTreeNode(territoryRow("TerritoryDescription").ToString())
 regionNode.Nodes.Add(territoryNode)
 ' use the TerritoryEmployee relation to find the child rows
 For Each employeeRow As DataRow In territoryRow.GetChildRows("TerritoryEmployee")
 ' create an employee node for each employee that covers the territory
 Dim employeeNode As New RadTreeNode(employeeRow("TitleOfCourtesy").ToString() + " "
+ employeeRow("FirstName").ToString() + " " + employeeRow("LastName").ToString())
 territoryNode.Nodes.Add(employeeNode)
 Next
 Next
 Next
End Sub

[C#] Building the node hierarchy

UI for ASP.NET AJAX

452 UI for ASP.NET AJAX

private DataSet GenerateDataSet()
{
 // open a connection to the database
 SqlConnection dbCon = new SqlConnection(ConfigurationManager.ConnectionStrings
["NorthwindConnectionString"].ConnectionString);
 dbCon.Open();
 // create a data set to hold the three tables
 DataSet ds = new DataSet();
 // create the tables
 DataTable regions = new DataTable("Regions");
 DataTable territories = new DataTable("Territories");
 DataTable employees = new DataTable("Employees");
 // create adapters to fill the tables
 SqlDataAdapter regionAdapter = new SqlDataAdapter("SELECT * FROM Region", dbCon);
 SqlDataAdapter territoryAdapter = new SqlDataAdapter("SELECT * FROM Territories", dbCon);
 SqlDataAdapter employeeAdapter = new SqlDataAdapter("SELECT * FROM Employees inner join
EmployeeTerritories on Employees.EmployeeID = EmployeeTerritories.EmployeeID", dbCon);
 regionAdapter.Fill(regions);
 territoryAdapter.Fill(territories);
 employeeAdapter.Fill(employees);
 // now add the filled tables to the data set
 ds.Tables.Add(regions);
 ds.Tables.Add(territories);
 ds.Tables.Add(employees);
 // create relations to express the links between tables
 ds.Relations.Add("RegionTerritory", ds.Tables["Regions"].Columns["RegionID"], ds.Tables
["Territories"].Columns["RegionID"]);
 ds.Relations.Add("TerritoryEmployee", ds.Tables["Territories"].Columns["TerritoryID"],
ds.Tables["Employees"].Columns["TerritoryID"]);
 return ds;
}
private void GenerateTreeView()
{
 // generate the data set with three tables and their relations
 DataSet ds = GenerateDataSet();
 // now build the node hierarchy, starting at the top
 foreach (DataRow regionRow in ds.Tables["Regions"].Rows)
 {
 // create a root node for each region
 RadTreeNode regionNode = new RadTreeNode(regionRow["RegionDescription"].ToString());
 RadTreeView1.Nodes.Add(regionNode);
 // use the RegionTerritory relation to find the child rows
 foreach (DataRow territoryRow in regionRow.GetChildRows("RegionTerritory"))
 {
 // create a territory node for each territory in the region
 RadTreeNode territoryNode = new RadTreeNode(territoryRow
["TerritoryDescription"].ToString());
 regionNode.Nodes.Add(territoryNode);
 // use the TerritoryEmployee relation to find the child rows
 foreach (DataRow employeeRow in territoryRow.GetChildRows("TerritoryEmployee"))
 {
 // create an employee node for each employee that covers the territory
 RadTreeNode employeeNode = new RadTreeNode(employeeRow["TitleOfCourtesy"].ToString()
+ " " + employeeRow["FirstName"].ToString() + " " + employeeRow["LastName"].ToString());
 territoryNode.Nodes.Add(employeeNode);

UI for ASP.NET AJAX

453 UI for ASP.NET AJAX

Server-side events
RadTreeView supports a wealth of server-side events for responding in the code-behind when the user interacts
with the tree view. You have already seen some of these: The NodeCheck event that occurs when the user
changes the state of a check box on a node, the NodeDrop event that occurs when the user drops a dragged
node, and the ContextMenuItemClick event that occurs when the user selects an item in the context menu of a
node.

NodeClick
One of the most useful server-side events is the NodeClick event, which fires when the user clicks on a node.

The following example illustrates one use of the NodeClick event. The Web page contains a tree view control
and a PlaceHolder. When the user clicks on a leaf node of the tree view, the associated text is fetched from the
server and added to the PlaceHolder.

When the NodeClick event handler is assigned, all nodes automatically trigger a postback when the user clicks
on them. To prevent the postback from occurring on internal nodes, the PostBack property for those nodes is
set to false.

 }
 }
 }
}

Gotcha! When using the NodeClick event, do not assign a value to the node's NavigateUrl property.
When NavigateUrl is set, clicking on a node causes a different page to be loaded in the same or
another browser window. The page redirection means that the NodeClick event will not fire.

You can find the complete source for this project at:
\VS Projects\TreeView\ServerNodeClick

[ASP.NET] Suppressing the postback on internal nodes

<telerik:RadTreeView ID="RadTreeView1" runat="server" Skin="Office2007"
 OnNodeClick="RadTreeView1_NodeClick" >
 <Nodes>
 <telerik:RadTreeNode runat="server"
 Text="Nursery Rhymes"
 ExpandedImageUrl="~/Images/FolderOpen.gif" ImageUrl="~/Images/folder.gif"
 PostBack="False" >
 <Nodes>
 <telerik:RadTreeNode runat="server" Text="Jack and Jill" />
 <telerik:RadTreeNode runat="server" Text="Little Bo-Peep" />
 <telerik:RadTreeNode runat="server" Text="Little Jack Horner" />
 </Nodes>
 </telerik:RadTreeNode>
 <telerik:RadTreeNode runat="server"
 Text="Random"

UI for ASP.NET AJAX

454 UI for ASP.NET AJAX

In the code-behind, the NodeClick event handler uses the Text property of the clicked node to locate the
nursery rhyme, joke, or quote to add to the placeholder. It then generates and adds literal controls to the
placeholder for the current selection.

 ExpandedImageUrl="~/Images/FolderOpen.gif" ImageUrl="~/Images/folder.gif"
 PostBack="False" >
 <Nodes>
 <telerik:RadTreeNode runat="server" Text="Joke" />
 <telerik:RadTreeNode runat="server" Text="Quote" />
 </Nodes>
 </telerik:RadTreeNode>
 </Nodes>
</telerik:RadTreeView>

[VB] NodeClick event handler

Protected Sub RadTreeView1_NodeClick(ByVal sender As Object, _
 ByVal e As RadTreeNodeEventArgs) _
 Handles RadTreeView1.NodeClick
 Dim r As Random
 ' initialize textToDisplay
 Dim textToDisplay As String() = {}
 ' Fetch the lines of text for the clicked node
 Select Case e.Node.Text
 Case "Jack and Jill"
 textToDisplay = JackAndJill
 Exit Select
 Case "Little Bo-Peep"
 textToDisplay = LittleBoPeep
 Exit Select
 Case "Little Jack Horner"
 textToDisplay = LittleJackHorner
 Exit Select
 Case "Joke"
 ' select a joke at random
 r = New Random(DateTime.Now.Millisecond)
 textToDisplay = Jokes(r.[Next](Jokes.Length))
 Exit Select
 Case "Quote"
 ' select a quote at random
 r = New Random(DateTime.Now.Millisecond)
 textToDisplay = Quotes(r.[Next](Quotes.Length))
 Exit Select
 End Select
 ' Add each line of text to the placeholder as a Literal control
 ' Add a break between lines (two breaks for random jokes or quotes)
 For Each s As String In textToDisplay
 PlaceHolder1.Controls.Add(New LiteralControl(s))
 PlaceHolder1.Controls.Add(New LiteralControl("
"))
 If e.Node.ParentNode.Text = "Random" Then
 PlaceHolder1.Controls.Add(New LiteralControl("
"))
 End If
 Next
End Sub

[C#] NodeClick event handler

protected void RadTreeView1_NodeClick(object sender, RadTreeNodeEventArgs e)

UI for ASP.NET AJAX

455 UI for ASP.NET AJAX

NodeEdit
When node editing is enabled (the AllowNodeEditing property is true), the tree view automatically permits the
user to edit the Text property of nodes. This is true even if you use an item template (in that case, when the
user finishes editing the text, any controls in the template that are bound to the item's Text or the field
specified by DataTextField are automatically updated.)

Unfortunately, any changes that the user makes by editing nodes do not persist after a postback. To allow the
edits to persist, you must handle the NodeEdit event.

The following walk-through illustrates this issue.

1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Drag a Button from the Tool Box onto the Web page. Set its Text property to "Postback".

{
 Random r;
 // initialize textToDisplay
 string[] textToDisplay = {};
 // Fetch the lines of text for the clicked node
 switch (e.Node.Text)
 {
 case "Jack and Jill":
 textToDisplay = JackAndJill;
 break;
 case "Little Bo-Peep":
 textToDisplay = LittleBoPeep;
 break;
 case "Little Jack Horner":
 textToDisplay = LittleJackHorner;
 break;
 case "Joke":
 // select a joke at random
 r = new Random(DateTime.Now.Millisecond);
 textToDisplay = Jokes[r.Next(Jokes.Length)];
 break;
 case "Quote":
 // select a quote at random
 r = new Random(DateTime.Now.Millisecond);
 textToDisplay = Quotes[r.Next(Quotes.Length)];
 break;
 }
 // Add each line of text to the placeholder as a Literal control
 // Add a break between lines (two breaks for random jokes or quotes)
 foreach (string s in textToDisplay)
 {
 PlaceHolder1.Controls.Add(new LiteralControl(s));
 PlaceHolder1.Controls.Add(new LiteralControl("
"));
 if (e.Node.ParentNode.Text == "Random")
 PlaceHolder1.Controls.Add(new LiteralControl("
"));
 }
}

You can find the complete source for this project at:
\VS Projects\TreeView\ServerNodeEdit

UI for ASP.NET AJAX

456 UI for ASP.NET AJAX

3. Drag a RadFormDecorator from the Tool Box onto the Web page and set its Skin property to "Black".

4. Drag a RadTreeView from the Tool Box onto the Web page and set its Skin property to "Black".

5. Bring up the RadTreeView Item Builder and add some nodes at random. You do not need to set any node
properties.

6. Set the AllowNodeEditing property of the tree view to true.

7. Press Ctrl-F5 to run the application.

8. Click on a node and edit its text. You can do this to as many nodes as you like.

9. Click the "Postback" button. After the postback, all the nodes revert to their old Text values!

10. To allow the new text values to persist, add the following NodeEdit event handler:

11. Before trying out this change, add a RadAjaxManager to the Web page, and configure it so that postbacks
initiated by the tree view cause the tree view to update.

12. Press Ctrl-F5 again. This time, if you edit the Text of some nodes and hit the "Postback" button, the change
persists.

[VB] NodeEdit event handler

Protected Sub RadTreeView1_NodeEdit(ByVal sender As Object, _
 ByVal e As RadTreeNodeEditEventArgs) _
 Handles RadTreeView1.NodeEdit
 ' Assign the Text property of the node
 ' so that the new value persists
 e.Node.Text = e.Text
End Sub

[C#] NodeEdit event handler

protected void RadTreeView1_NodeEdit(object sender, RadTreeNodeEditEventArgs e)
{
 // Assign the Text property of the node
 // so that the new value persists
 e.Node.Text = e.Text;
}

Another good use of the NodeEdit event is to save the user's edits back to a database or other permanent
storage.

UI for ASP.NET AJAX

457 UI for ASP.NET AJAX

You have already seen some examples of working with the client-side API of RadTreeView. In the drag-and-drop
example, you saw how to use the OnClientNodeDropping event to assign an id to drop targets, or cancel the
postback for the NodeDrop event. In the context menus example, you saw how to use the
OnClientContextMenuItemClicking event, and to use client side methods to alter the node hierarchy. That
example showed that, just like RadComboBox, RadTreeView has trackChanges() and commitChanges()
methods, which must surround any client-side code that makes changes to the node hierarchy if those changes
are to persist.

Using the tree node object
In addition to methods for getting and setting node properties, the client-side RadTreeNode object has an
number of methods for changing the state of the node. These methods tend to come in pairs:

 The expand() and collapse() methods let you change whether the node is expanded. (You can also use the
toggle() method to change the node's state from one to the other.)

 The select() and unselect() methods let you change whether the node is selected.

 The check() and uncheck() methods let you change the checked state of a check box on the node.

 The startEdit() and endEdit() methods let you switch the node in and out of edit mode.

 The highlight() and unhighlight() methods let you change whether the node is highlighted.

Another useful method is the scrollIntoView() method, which scrolls the tree view so that the node becomes
visible.

The following example illustrates a number of the methods of the client-side RadTreeNode object. The Web
page has a RadTextBox and a RadTreeView on it. When the user enters a string in the text box and clicks its
button, the tree view expands all parents of the matching node, selects it, and scrolls it into view.

The text box's OnButtonClick client-side event handler first locates the matching node by calling the tree

16.7 Client-Side Programming

The scrollIntoView() method scrolls the tree view so that the node's current position is in view. However,
this method does not expand any of the node's parent nodes. If one of the parent nodes is not expanded, the
node will still not be visible, even after a call to scrollIntoView().

You can find the complete source for this project at:
\VS Projects\TreeView\ClientSide

UI for ASP.NET AJAX

458 UI for ASP.NET AJAX

view's findNodeByText() method. It then traverses the node hierarchy upward, making sure all of the node's
parents are expanded. Then it scrolls the node into view and selects it.

Note that the scrollIntoView() method is called after the parent nodes are expanded. This is important,
because expanding the parent nodes can change the position of the node within the tree view.

Establishing a 'radio button' pattern
You have already looked at examples that traverse the node hierarchy to apply a change to all parents of a
node or all children of a node. Another common technique is to establish a 'radio button' pattern on a set of
sibling nodes.

The following example establishes a 'radio button' pattern on the checked state of the nodes in a tree view.

[JavaScript] Using tree node methods

function FindNode(sender, args) {
 // get a reference to the tree view
 var treeView = $find("<%= RadTreeView1.ClientID %>");
 // locate the node
 var node = treeView.findNodeByText(sender.get_value());
 if (node != null) {
 // make sure the nodes parent's are all expanded
 var parent = node.get_parent();
 while (parent != treeView) {
 parent.expand();
 parent = parent.get_parent();
 }
 // scroll the node into view --
 // this should happen AFTER expanding parent nodes
 node.scrollIntoView();
 // and select it
 node.select();
 }
}

UI for ASP.NET AJAX

459 UI for ASP.NET AJAX

To establish a 'radio button' pattern, the application supplies a handler to the OnClientNodeChecked event.
The event handler calls the get_parent() method to get a reference to the parent of a checked node. This
method can return either another node, or the tree view object itself (although in this example it is always
another node). Whichever one is returned, the object has a get_nodes() method to access the node collection
that contains the node that was just checked. By iterating the node collection, the event handler can uncheck
every node except the one that was just checked.

Using the tree view object
The RadTreeView client-side object , like the server-side object, has a number of methods for locating nodes.
In addition to the findNodeByText() method, which you saw in the tree node example above, the tree view
also supports the findNodeByValue() method to locate nodes by the Value property, and a
findNodeByAttribute() method, which locates nodes based on custom attributes. (Unlike the server-side
object, on the client side there is no method for locating a node by its NavigateUrl property.)

In addition to the get_nodes() method, which returns the root nodes of the tree view, the tree view also has a
get_allNodes() method, which returns all of the nodes in the entire tree view.

These methods are illustrated in the following example. In addition, the example illustrates how you can use
the get_element() method to access the DOM element for the tree view to add a handler to client-side events
that are not available on the RadTreeView client-side object (in this case, the onfocus event).

The example is similar to the one shown above for working with tree nodes. As in that example, the Web page
contains a text box and a tree view. The tree view displays the top levels of a taxonomic tree for animal
classifications. In this example, the user does not need to press a button to locate the node named by the value
in the text box; the tree view automatically locates, selects, and displays the node when it gains focus, so all
the user needs to do is tab to the tree view.

Another difference is that the tree view searches not just the text of its nodes, but also for matches to custom
attributes that have been added to nodes. (The custom attributes give the common names associated with
nodes in the tree.)

You can find the complete source for this project at:
\VS Projects\TreeView\ClientRadioPattern

[JavaScript] Establishing a 'radio button' pattern

function NodeChecked(sender, args) {
 // uncheck all siblings when a node is checked
 // first get the parent node
 var parentNode = args.get_node().get_parent();
 // iterate through all its children
 var siblings = parentNode.get_nodes();
 for (var i = 0; i < siblings.get_count(); i++) {
 var sibling = siblings.getNode(i);
 // uncheck all but the node that was just checked
 if (args.get_node() != sibling)
 sibling.uncheck();
 }
}

UI for ASP.NET AJAX

460 UI for ASP.NET AJAX

The tree view has an OnClientLoad event handler which accesses the DOM element for the tree view and
attaches a handler to its onfocus event. It also saves a reference to the tree view object in a global variable, so
that there is no need for a call to the Sys.Application.findComponent() method ($find()) every time the
application needs to call one of the tree view methods.

Before looking at the FindNode function, which handles the onfocus event of the tree view, let use first look at
two helper functions that illustrate the difference between the results from the get_nodes() method and the
get_allNodes() method.

The get_nodes() method returns a tree node collection object. To iterate through all the nodes in this
collection, use its getNode() method to access nodes and its get_count() method to get the number of nodes.
(The node collection also has methods for inserting and removing nodes, which we are not using here.)

You can find the complete source for this project at:
\VS Projects\TreeView\ClientTreeView

[JavaScript] Attaching a handler to the onfocus event of the DOM object

var tree;
function OnLoad(sender) {
 // save a reference to the tree view for later
 tree = sender;
 // add the event handler to the onfocus event of the tree view
 var treeDiv = sender.get_element();
 treeDiv.onfocus = function() { FindNode(); };
}

[JavaScript] Iterating nodes returned by get_nodes()

function ExpandRootNodes() {
 // get the nodes collection
 var rootNodes = tree.get_nodes();
 var index;
 // iterate the nodes collection, expanding every node

UI for ASP.NET AJAX

461 UI for ASP.NET AJAX

The get_allNodes() method, by contrast, returns an array. To iterate through all the nodes in the array, simply
index into the array using square brackets ([]), and use the length property to get the number of nodes.

Now let us look at the FindNode function. This function is quite similar to the function of the same name that
was used in the tree node example above. The main differences are

 In addition to using the findNodeByText() method to match the text of a node, it also calls the
findNodeByAttribute() method to look for a match to the "CommonName" or "AltName" custom attributes.

 It calls the ExpandRootNodes() function shown above to expand the root nodes if no match is found.

 It calls the CollapseAllNodes() function shown above before opening a path to the matching node so that
any other nodes in the tree view are collapsed.

 It does not call the scrollIntoView() method, but rather, just lets the tree view grow to accommodate its
contents.

 for (index = 0; index < rootNodes.get_count(); index++) {
 var node = rootNodes.getNode(index);
 if (!node.get_expanded()) {
 node.expand();
 }
}
}

[JavaScript] Iterating nodes returned by get_allNodes()

function CollapseAllNodes() {
 // get all the nodes
 var allNodes = tree.get_allNodes();
 var index;
 // iterate the nodes array, collapsing them
 for (index = 0; index < allNodes.length; index++) {
 var node = allNodes[index];
 if (node.get_expanded()) {
 node.collapse();
 }
 }
}

[JavaScript] Locating a node by text and custom attribute

function FindNode() {
 // get a reference to the text box
 var textBox = $find("<%= RadTextBox1.ClientID %>");
 // if no text specified, just expand the root nodes
 if (textBox.get_value() == "")
 ExpandRootNodes(tree);
 else {
 // locate the node
 var node = tree.findNodeByText(textBox.get_value());
 // if the entered string was not the text of a node,
 // try the CommonName attribute
 if (node == null)
 node = tree.findNodeByAttribute("CommonName", textBox.get_value());
 // if the common name was not found either, try the AltName attribute
 if (node == null)
 node = tree.findNodeByAttribute("AltName", textBox.get_value());
 if (node != null) {
 // collapse the tree
 CollapseAllNodes(tree);

UI for ASP.NET AJAX

462 UI for ASP.NET AJAX

Wrapping the text of tree nodes
The text of nodes in RadTreeView occupies a single line. This can be an issue if the node text is very long. The
following walk-through illustrates the problem, and how to reconfigure the tree view so that it can wrap the
text of nodes.

1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Drag a RadTreeView control onto the Web Page.

3. Open the RadTreeView Item Builder to add some nodes to the tree view.

1. Add a root node to the tree view. Set its Text property to "The root node of this tree view has a very,
very, long text value."

2. Add any additional nodes you want to fill out the tree view.

4. Using the Properties Window, set the Width property of the tree view to "150px"

5. Press CTRL-F5 to run the application. The tree view does not wrap the node text. Instead, it adds a
horizontal scroll bar. Then, because the horizontal scroll bar obscures the text of the last root node, it
adds a vertical scroll bar (if there is more than one root node). The result is almost impossible to use!

If there is only a single root node, it is impossible to use because the scroll bar obscures the expand
button.

6. Close the running application, and switch to the Source view of your Web page.

7. Locate the tag for the root node with the long text values and add the style="white-space: normal;"
attribute to the node.

8. Press CTRL-F5 to run the application again. This time, the text of the root node wraps to fit in the allotted
width.

 // open a path to the specified node
 var parent = node.get_parent();
 while (parent != tree) {
 parent.expand();
 parent = parent.get_parent();
 }
 // select the node
 node.select();
 }
 else // couldn't find the node, just expand the root
 ExpandRootNodes(tree);
 }
}

16.8 How To

[ASP.NET] Long tree node with style attribute

<telerik:RadTreeNode runat="server" style="white-space: normal;"
 Text="The root node of this tree view has a very, very, long text value.">
 <Nodes>
 ...
 </Nodes>
</telerik:RadTreeNode>

UI for ASP.NET AJAX

463 UI for ASP.NET AJAX

Adding controls to nodes in the code-behind
While you can always use an item template to customize the appearance of the nodes in a tree view, another
approach is to simply add controls directly to the Controls collection of a node in the code-behind. This gives
you the power to customize nodes in the code-behind without having to implement an ITemplate class.

The following example illustrates how to add controls to the Controls collection of a node. It adds a color picker
to the nodes of a tree view when the page first loads. Once controls are added to the Controls collection, the
node no longer displays its Text property, but instead shows only the controls that were added.

The color picker is added in the Page_Load event handler:

You can also add the style="white-space: normal;" to the <telerik:RadTreeView> tag to enable wrapping for
all of the nodes in the tree view.

You can find the complete source for this project at:
\VS Projects\TreeView\HowToWrappingNodeText

You can find the complete source for this project at:
\VS Projects\TreeView\HowToControlsCollection

[VB] Adding controls to a node

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 ' Go through all of the nodes in the tree view

UI for ASP.NET AJAX

464 UI for ASP.NET AJAX

RadTreeView supports a large number of nodes, but it can only show a limited number of nodes at a time on
the client side. As the number of nodes increases, the size of the HTML file that clients must download can
become significant. Not only must the tree view itself be downloaded, but the View State for state
management and JavaScript that implements the behavior adds to the size of the Web page. If a tree contains
more than about 200 nodes, it is not practical to load the entire tree at once.

To manage the size of downloads and improve performance, you can configure the tree view to load nodes only
when they are needed. Similar to the load-on-demand mechanism you have already seen with RadComboBox,
you can load tree view nodes on demand from either a server-side event handler or a Web service.

Load on demand
The tree view load-on-demand mechanism is designed to work on a node by node basis. That is, you can use
load-on-demand to expand some nodes, while allowing others to be expanded on the client as in a smaller tree

 For Each node As RadTreeNode In RadTreeView1.GetAllNodes()
 'Replace nodes with text "Color" by a color picker
 If node.Text = "Color" Then
 Dim colors As New RadColorPicker()
 colors.ID = node.ID + "_colors"
 colors.Preset = ColorPreset.Opulent
 colors.ShowEmptyColor = False \VS Projects\
 colors.PreviewColor = False
 'Add the color picker to the controls collection
 node.Controls.Add(colors)
 End If
 Next
End Sub

[C#] Adding controls to a node

protected void Page_Load(object sender, EventArgs e)
{
 // Go through all of the nodes in the tree view
 foreach (RadTreeNode node in RadTreeView1.GetAllNodes())
 {
 // Replace nodes with the text "Color" by a color picker
 if (node.Text == "Color")
 {
 RadColorPicker colors = new RadColorPicker();
 colors.ID = node.ID + "_colors";
 colors.Preset = ColorPreset.Opulent;
 colors.ShowEmptyColor = false;
 colors.PreviewColor = false;
 // add the color picker to the controls collection
 node.Controls.Add(colors);
 }
 }
}

Gotcha! Be sure to add the controls every time the page loads, not just when IsPostBack is false.
Controls that are added this way do not persist in the View State.

16.9 Performance

UI for ASP.NET AJAX

465 UI for ASP.NET AJAX

view. To enable the load-on-demand mechanism for a RadTreeView node, set its ExpandMode property.
ExpandMode can have any of four possible values:

 ClientSide (the default): nodes are not loaded on demand, but rather, they are downloaded with the Web
page.

 ServerSide: When the user expands the node, it generates a postback and the NodeExpand event handler
is called to supply child nodes.

 ServerSideCallBack: This is the same as ServerSide, except that the tree view generates an AJAX callback
rather than a postback. While waiting for the results of the callback, the string specified by the tree view's
LoadingMessage property is displayed in the position specified by the LoadingStatusPosition property.

 WebService: When the user expands the node, it generates a callback to the Web Service (and Web
Method) specified by the WebServiceSettings property.

The following example illustrates four different expand modes. It contains a tree view that starts with four
nodes, a root node and three child nodes. The root node has its ExpandMode property set to "ClientSide"; the
first child node has its ExpandMode property set to "ServerSide"; the second child node has its ExpandMode
property set to "ServerSideCallBack"; the third child node has its ExpandMode property set to "WebService".
When the user expands a node, the NodeExpand callback or WebService method adds 10 child nodes, each with
the same expand mode as the node that is expanding.

You can find the complete source for this project at:
\VS Projects\TreeView\LoadOnDemand

UI for ASP.NET AJAX

466 UI for ASP.NET AJAX

The NodeExpand event handler is called to add the children of nodes with ExpandMode set to "ServerSide" or
"ServerSideCallBack".

[VB] Adding child nodes using a NodeExpand callback

Protected Sub RadTreeView1_NodeExpand(ByVal sender As Object, _
 ByVal e As Telerik.Web.UI.RadTreeNodeEventArgs) _
 Handles RadTreeView1.NodeExpand
 Dim i As Integer = 1
 While i <= 10
 ' get the naming index
 Dim nameIndex As String = e.Node.Value
 If nameIndex <> "" Then
 nameIndex += "."
 End If
 nameIndex += i.ToString()
 ' create a new node
 Dim newNode As New RadTreeNode("Child " + nameIndex)
 ' set the Value to the nameIndex
 newNode.Value = nameIndex
 ' with the same expand mode as the node currently expanding
 newNode.ExpandMode = e.Node.ExpandMode
 ' add the new node to the node that is expanding
 e.Node.Nodes.Add(newNode)
 System.Math.Max(System.Threading.Interlocked.Increment(i),i - 1)
 End While
 ' now that the nodes are added, change the current node's expand mode to client-side
 e.Node.ExpandMode = TreeNodeExpandMode.ClientSide
 ' signal that the node is now expanded
 e.Node.Expanded = True
End Sub

[C#] Adding child nodes using a NodeExpand callback

protected void RadTreeView1_NodeExpand(object sender, Telerik.Web.UI.RadTreeNodeEventArgs e)
{
 for (int i = 1; i <= 10; i++)
 {
 // get the naming index
 string nameIndex = e.Node.Value;
 if (nameIndex != "")
 nameIndex += ".";
 nameIndex += i.ToString();
 // create a new node
 RadTreeNode newNode = new RadTreeNode("Child " + nameIndex);
 // set the Value to the nameIndex
 newNode.Value = nameIndex;
 // with the same expand mode as the node currently expanding
 newNode.ExpandMode = e.Node.ExpandMode;
 // add the new node to the node that is expanding
 e.Node.Nodes.Add(newNode);
 }
 // now that the nodes are added, change the current node's expand mode to client-side
 e.Node.ExpandMode = TreeNodeExpandMode.ClientSide;

UI for ASP.NET AJAX

467 UI for ASP.NET AJAX

The event handler uses the properties of the node that is expanding to determine what child nodes to create
(in this example, it is only to set the text and expand modes). It then adds each newly created node into the
Nodes property collection of the expanding node. Finally, it changes the ExpandMode property of the
expanding node to "ClientSide", since the items are now on the client, and sets its Expanded property to true.

The Web Service Method that supplies child nodes to any node that has an ExpandMode of "WebService" is very
similar:

 // signal that the node is now expanded
 e.Node.Expanded = true;
}

[VB] Web Service to supply child nodes

<System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:="http://tempuri.org/")> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<ToolboxItem(False)> _
Public Class TreeNodeService
 Inherits System.Web.Services.WebService
 <WebMethod()> _
 Public Function GetChildNodes(ByVal node As RadTreeNodeData, ByVal context As Object) As
RadTreeNodeData()
 Dim result As New List(Of RadTreeNodeData)()
 Dim i As Integer = 1
 While i <= 10
 ' get the naming index
 Dim nameIndex As String = node.Value
 If Not nameIndex Is Nothing Then
 nameIndex += "."
 End If
 nameIndex += i.ToString()
 ' create data for the new node
 Dim newNode As New RadTreeNodeData()
 ' assign the text
 newNode.Text = "Child " + nameIndex
 ' set the Value to the nameIndex
 newNode.Value = nameIndex
 ' with the same expand mode as the node currently expanding
 newNode.ExpandMode = TreeNodeExpandMode.WebService
 ' add the new node to the list
 result.Add(newNode)
 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)
 End While
 Return result.ToArray()
 End Function
End Class

[C#] Web Service to supply child nodes

[WebService(Namespace = "http://tempuri.org (http://tempuri.org/)/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
[System.Web.Script.Services.ScriptService]
public class TreeNodeService : System.Web.Services.WebService
{
 [WebMethod]
 public RadTreeNodeData[] GetChildNodes(RadTreeNodeData node, object context)

UI for ASP.NET AJAX

468 UI for ASP.NET AJAX

The chief differences are

 Instead of an event arguments object that provides access to the RadTreeNode object for the expanding
node, the Web Method has a RadTreeNodeData argument, which supplies information about the node
properties.

 Instead of adding new nodes directly into the Nodes property collection of the expanding node, the Web
Method returns an array of RadTreeNodeData objects for the nodes that need to be added.

In this chapter you looked at the RadTreeView control and saw how you could add the functionality of a desktop
tree view to your Web applications. You created a simple application that populated one tree view with
statically declared items and another with items loaded from a data source. At the same time, you looked at
some properties of the tree view and tree nodes.

You looked at the design time support for the tree view and saw many of the properties and groups of
properties you can use to configure the tree view and its nodes at design time. You learned about the special
features of RadTreeView, including node editing, check boxes, drag-and-drop, and node context menus.

You learned some of the server-side properties and methods, and explored how to propagate a change to all of
the ancestors or descendants of a node. You learned to build the node hierarchy dynamically in server-side
code, and saw how this could be used to populate a tree view with data from multiple tables. You also learned
about several of the tree view server-side events.

You explored some of the client-side methods for working with the tree node and tree view objects. You
learned how to implement the 'radio button' pattern for state changes on nodes, and saw how to attach an
event handler directly to the tree view's DOM object when the tree view first loads.

You learned a few "tricks" for working with the tree view, such as getting the text of nodes to wrap and how to
add controls directly to tree nodes without using templates.

 {
 List<RadTreeNodeData> result = new List<RadTreeNodeData>();
 for (int i = 1; i <= 10; i++)
 {
 // get the naming index
 string nameIndex = node.Value;
 if (nameIndex != null)
 nameIndex += ".";
 nameIndex += i.ToString();
 // create data for the new node
 RadTreeNodeData newNode = new RadTreeNodeData();
 // assign the text
 newNode.Text = "Child " + nameIndex;
 // set the Value to the nameIndex
 newNode.Value = nameIndex;
 // with the same expand mode as the node currently expanding
 newNode.ExpandMode = TreeNodeExpandMode.WebService;
 // add the new node to the list
 result.Add(newNode);
 }
 return result.ToArray();
 }
}

Note the second parameter of the Web Method. This is a context object (of type IDictionary) that can
supply context information supplied by a client-side OnClientNodeExpanding event handler. This context
object works the same way as the context object used with the RadComboBox load-on-demand feature.

16.10 Summary

UI for ASP.NET AJAX

469 UI for ASP.NET AJAX

Finally, you learned how to use the load-on-demand feature to improve performance for large tree views,
expanding nodes using either a postback, a callback, or a Web Service.

UI for ASP.NET AJAX

470 UI for ASP.NET AJAX

 Explore features of the FileExplorer control.

 Learn how to configure RadFileExplorer using Property window in Visual Studio.

 Learn how to configure RadFileExplorer on the server.

 Learn how to localize RadFileExplorer.

 Learn some advance customizations: create and register a custom FileBrowserContentProvider.

 Learn how to control RadFileExplorer’s content using its client-side API.

RadFileExplorer was officially included in the Q1 2009 release of RadControls for ASP.NET AJAX. It allows you to
easily add file explorer functionality to your pages providing the users an ability to organize files and folders on
the server through web interface.

Main features:

 A single control, integrated in Telerik.Web.UI - ready to drag and drop on the page

 Load on demand approach to load its content using ASP.NET AJAX Callback mechanism

 Uses a ContentProvider model which introduces an abstraction of the underlying datasource. This allows
the control to be connected to any kind of datasource like OS filesystem, database, MOSS SharePoint,
Amazon S3, Windows Azure, etc.

 Supports files and folders sorting

 Ability to delete and rename files and folders, create new folders, etc.

 Client and server side events for file operations like delete, create new folder, etc.

 Context menu commands for common operations

17 RadFileExplorer

17.1 Objectives

17.2 Introduction

UI for ASP.NET AJAX

471 UI for ASP.NET AJAX

Setting up RadFileExplorer

Here are the basic steps in order to use the RadFileExplorer control in a web application.

1. Create a new ASP.NET AJAX - enabled web site.

2. Add a RadScriptManager or a standard ASP ScriptManager to the page - this step is mandatory if you are
using ASP.NET AJAX controls.

3. Drag a RadFileExplorer from your VS Toolbox and drop it on the page.

4. Right-click on the inserted RadFileExplorer control and select properties.

5. Set the following properties in the Configuration section: ViewPaths, DeletePaths and UploadPaths in the
following format: ~/<path> where the tilde (~) represents the root of your web application.

6. Save the page and run it in the browser.

RadFileExplorer components

RadFileExplorer is built using these controls: RadGrid , RadTreeView, RadToolBar, RadContextMenu,
RadSplitter, RadLaodingPanel, RadWindow (for previewing files) and an input element for the AddressBar.

Designer Interface

17.3 Getting Started

UI for ASP.NET AJAX

472 UI for ASP.NET AJAX

Smart tags

The RadFileExplorer Smart Tag contains only the common elements of RadControls Smart Tags: the Ajax
Resources, Skin selection, and Learning center:

Property window

At design time, you can use the configuration window to configure almost every aspect of RadFileExplorer.
Probably the most important properties of RadFileExplorer are combined in a group called Configuration.

These are some of the Configuration properties:

 ViewPaths – accepts an array of folder paths that will be listed in the RadFileExplorer.

 UploadPaths / DeletePaths – accepts an array of folder paths where the user should have Upload / Delete
permissions. If you wish to restrict Upload and Delete you can simply do not provide value to these
properties.

 SearchPatterns - this property is used in order to filter the files displayed in RadFileExplorer. The values
set to this property may contain wildcards. The default value of the property is “*.*”. which means “All
files”.

 MaxUploadFileSize - sets limit of the uploaded files.

 ContentProviderTypeName - sets the qualified assembly name of the custom content provider which will

UI for ASP.NET AJAX

473 UI for ASP.NET AJAX

be used by the RadFileExplorer control.

In the property window you can assign RadFileExplorer's client-side event handlers:

 OnClientCreateNewFolder is fired when the user creates a new folder.

 OnClientDelete is fired when the user deletes file or folder.

 OnClientFileOpen is fired when the user opens a file for preview (this feature have to be enabled
setting the EnableFileOpen=”true” property).

 OnClientFolderChange is fired when the user selects a folder from the TreeView.

 OnClientFolderLoaded is fired when the folder's content is fully loaded.

 OnClientItemSelected is fired when the user selects a file item (not a folder).

 OnClientLoad is fired when the RadFileExplorer control is fully loaded.

 OnClientMove is fired when the client tries to move or rename a file and /or folder.

Properties that control the RadFileExplorer's behavior:

 EnableOpenFile - If the value is true, by default when a file is double clicked it will be opened in a
RadWindow dialog for preview. This default behavior can be easily overridden, however, in order
to cover more specific scenarios. For example, if the implemented scenario requires the file to be
opened in a different dialog than the default one.

 EnableCopy - enables or disables copy feature of the control.

 AllowPaging - enables paging on the Grid. This property can be combined with the PageSize
property.

 EnableCreateNewFolder - allows or restricts creating a new folder.

 VisibleControls - controls which of the of RadFileExplorer elements (Grid, TreeView, etc.) to be
visible. You can provide multiple values to this property by separating them with commas (,) in the
markup or using bitwise OR (|) on the server.

 ExplorerMode - accepts two enum values:

 Default - the default mode of the control.

 FileTree - In this mode the Grid part of the control will be disabled and the files will be
displayed in the TreeView.

Since Q1 2012 the RadFileExplorer offers the Thumbnails Explorer mode. This is a new way to display the list of
files, just as you would expect in Windows Explorer. The special feature is displaying images through
thumbnails, not as file icons.

To enable this mode just set the ExplorerMode property to Thumbnails, e.g.

<telerik:RadFileExplorer runat="server" ID="FileExplorer1"

17.4 Thumbnails Mode

UI for ASP.NET AJAX

474 UI for ASP.NET AJAX

ExplorerMode="Thumbnails"></telerik:RadFileExplorer>

Getting familiar with the Server-Side API

The embedded controls are exposed as RadFileExplorer's properties:

 Grid - returns reference to the RadGrid embedded in RadFileExplorer

 TreeView - returns reference to the RadTreeView embedded in RadFileExplorer

 GridContextMenu - returns reference to the context menu shown over the grid's items

 ToolBar - returns reference to the radToolBar control

 ToolTip - returns reference to the RadToolBarControl

 WidnowManager - returns reference to the RadWindowManager control embedded in RadFileExplorer

 Splitter - returns reference to the RadSplitter control embedded in RadFileExplorer

17.5 Server-Side Programming

UI for ASP.NET AJAX

475 UI for ASP.NET AJAX

Server-Side events

ItemCommand

This event is called when Deleting, Uploading, Creating, Moving (move and rename are the same operations) a
file/folder. The event can be canceled by setting Cancel=”true” property of the passed argument to the
ItemCommand event

ExplorerPopulated

This event is fired twice - once when the TreeView's items are populated and second time when the Grid's items
are populated. The ControlName property contains the name of the control, which will consume the populated
data (e.List). This event can be used to sort the FileExplorer's items for example.

C#

protected void RadFileExplorer1_ItemCommand(object sender, RadFileExplorerEventArgs e)
{
 switch (e.Command)
 {
 case "UploadFile": break;
 case "MoveDirectory": break;
 case "CreateDirectory": break;
 case "DeleteDirectory": break;
 case "DeleteFile": break;
 case "MoveFile": break;
 }
// e.Cancel = true; // Cancel the operation
}

VB.NET

Protected Sub RadFileExplorer1_ItemCommand(ByVal sender As Object, ByVal e As
RadFileExplorerEventArgs)
 Select Case e.Command
 Case "UploadFile"
 Exit Select
 Case "MoveDirectory"
 Exit Select
 Case "CreateDirectory"
 Exit Select
 Case "DeleteDirectory"
 Exit Select
 Case "DeleteFile"
 Exit Select
 Case "MoveFile"
 Exit Select
 ' e.Cancel = true // Cancel the operation
 End Select
End Sub

UI for ASP.NET AJAX

476 UI for ASP.NET AJAX

Example:

ASPX

<telerik:RadFileExplorer
 runat="server"
 ID="RadFileExplorer1"
 Width="575px"
 EnableCopy="true"
 Height="375px"
 OnExplorerPopulated="RadFileExplorer1_ExplorerPopulated">
 <Configuration
 ViewPaths="~/ROOT/"
 DeletePaths="~/ROOT/"
 UploadPaths="~/ROOT/" />
</telerik:RadFileExplorer>

C#

protected void RadFileExplorer1_ExplorerPopulated(object sender,
Telerik.Web.UI.RadFileExplorerPopulatedEventArgs e)
{
 switch (e.ControlName)
 {
 case "tree":
 {// The TreeView control will be populated
 // Sorts the items shown in the Tree by name
 e.List.Sort(delegate(FileBrowserItem fileBrowserItem1, FileBrowserItem
fileBrowserItem2)
 {
 return fileBrowserItem1.Name.CompareTo(fileBrowserItem2.Name);
 });
 } break;
 case "grid":
 {// The Grid control will be populated
 // Sorts the items shown in the Grid by name
 e.List.Sort(delegate(FileBrowserItem fileBrowserItem1, FileBrowserItem
fileBrowserItem2)
 {
 return fileBrowserItem1.Name.CompareTo(fileBrowserItem2.Name);
 });

 // DESC order
 e.List.Reverse();
 } break;
 }

VB.NET

Protected Sub RadFileExplorer1_ExplorerPopulated(sender As Object, e As
Telerik.Web.UI.RadFileExplorerPopulatedEventArgs)
 Select Case e.ControlName
 Case "tree"
 If True Then
 ' The TreeView control will be populated

UI for ASP.NET AJAX

477 UI for ASP.NET AJAX

Both events are shown in the ServerSideProgramming example project.

As with all the RadControls you can get reference to the RadFileExplorer client-side object using the $find()
method:

Then you can use the rich client-side API of the control for achieving various scenarios. The example below
(ClientSideProgramming project) shows how to create a new folder on the server using only client-side
functionality of the control:

createNewDirectory(path, newName) - accepts two optional parameters. Here are the possible scenarios:

 If you do not provide any of parameters a dialog will pop-up asking for name of the folder and will
create it as a sub-folder to the currently selected one.

 If the function is called passing the path parameter, then the folder will be created to that path. A
dialog will pop-up asking for name of the folder.

 ' Sorts the items shown in the Tree by name
 e.List.Sort(Function(fileBrowserItem1 As FileBrowserItem, fileBrowserItem2 As
FileBrowserItem) fileBrowserItem1.Name.CompareTo(fileBrowserItem2.Name))
 End If
 Exit Select
 Case "grid"
 If True Then
 ' The Grid control will be populated
 ' Sorts the items shown in the Grid by name
 e.List.Sort(Function(fileBrowserItem1 As FileBrowserItem, fileBrowserItem2 As
FileBrowserItem) fileBrowserItem1.Name.CompareTo(fileBrowserItem2.Name))

 ' DESC order
 e.List.Reverse()
 End If
 Exit Select
 End Select
End Sub

17.6 Client-Side Programming

JavaScript

var explorer = $find("RadFileExplorer1");

ASPX

<asp:Button ID="Button1" runat="server" Text="Creaste a 'TEMP' folder"
OnClientClick="createTempFolder();return false;" />
<telerik:RadFileExplorer ID="RadFileExplorer2" runat="server">
 <Configuration ViewPaths="~/ROOT/" DeletePaths="~/ROOT/" UploadPaths="~/ROOT/" />
</telerik:RadFileExplorer>
<script type="text/javascript">
 function createTempFolder() {
 var applicationRoot = '<%= VirtualPathUtility.ToAbsolute("~") %>';
 var oExplorer = $find("<%= RadFileExplorer1.ClientID %>");
 oExplorer.createNewDirectory(applicationRoot + "/ROOT", "TEMP");
 }
</script>

UI for ASP.NET AJAX

478 UI for ASP.NET AJAX

 If both of parameters are passed then the folder will be created without showing any pop-up dialog.

When the createNewDirectory is called, the CreateDirectory method of the FileBrowserContentProvider will
be called on the server, if the event is not canceled in RadFileExplorer’s ItemCommand server-side event.

All client-side objects of the RadFileExplorer component (grid, TreeVIew, etc.) are exposed as properties and
can be used to modify the default behavior of the control. For example, this JavaScript code shows how to get
reference to the RadGrid’s client object:

Set configuration properties in codebehind

The Configuration properties can be set using server-side code as well. This is an example setup:

JavaScript

var gridObject = radFileExplorer.get_grid();

17.7 How To

C#

protected void Page_Load(object sender, EventArgs e)
{
 // ROOT folder's content will be visible, including CanUploadDirectory and
CanDeleteDirectory directories
 string[] viewPaths = new string[] { "~/ROOT" };

 // Allows upload TO ~/ROOT/CanUploadDirectory
 // Delete is not allowed, so a file/folder cannot be moved FROM this folder
 // Allows copy TO this folder as well (if EnableCopy="true" is set)
 string[] uploadPaths = new string[] { "~/ROOT/CanUploadDirectory" };

 // Allows Delete FROM ~/ROOT/CanDeleteDirectory
 // A folder/file can be moved FROM this directory as well
 // Upload, copy or move TO this folder is not allowed
 string[] deletePaths = new string[] { "~/ROOT/CanDeleteDirectory" };

 RadFileExplorer1.Configuration.ViewPaths = viewPaths;
 RadFileExplorer1.Configuration.UploadPaths = uploadPaths;
 RadFileExplorer1.Configuration.DeletePaths = deletePaths;

 // Only .jpg and .gif files will be shown
 string[] searchPaterns = new string[] { "*.jpg", "*.gif" };
 RadFileExplorer1.Configuration.SearchPatterns = searchPaterns;

 // Sets the max allowed size of the uploaded files
 RadFileExplorer1.Configuration.MaxUploadFileSize = 3000;

 // Sets the AssemblyQualifiedName of a FileBrowserContentProvider class. The
FileSystemContentProvider is the default provider used by RadFileExplorer
 RadFileExplorer1.Configuration.ContentProviderTypeName = typeof
(Telerik.Web.UI.Widgets.FileSystemContentProvider).AssemblyQualifiedName;
}

VB.NET

UI for ASP.NET AJAX

479 UI for ASP.NET AJAX

The configuration properties should be set in Page_Load event.

Localization

The RadFileExplorer control uses the same localization mechanism as RadEditor (.resx files in the
App_GlobalResources folder). If you want to change the localization strings, you need to copy the
RadEditor.Dialogs.resx file in the App_GlobalResources folder of your application

and edit the strings inside.

For example the Language="de-DE" property forces the RadEditor.Dialogs.de-DE.resx file to be used by the
RadFileExplorer control:

Protected Sub Page_Load(sender As Object, e As EventArgs)
 ' ROOT folder's content will be visible, including CanUploadDirectory and
CanDeleteDirectory directories
 Dim viewPaths As String() = New String() {"~/ROOT"}

 ' Allows upload TO ~/ROOT/CanUploadDirectory
 ' Delete is not allowed, so a file/folder cannot be moved FROM this folder
 ' Allows copy TO this folder as well (if EnableCopy="true" is set)
 Dim uploadPaths As String() = New String() {"~/ROOT/CanUploadDirectory"}

 ' Allows Delete FROM ~/ROOT/CanDeleteDirectory
 ' A folder/file can be moved FROM this directory as well
 ' Upload, copy or move TO this folder is not allowed
 Dim deletePaths As String() = New String() {"~/ROOT/CanDeleteDirectory"}

 RadFileExplorer1.Configuration.ViewPaths = viewPaths
 RadFileExplorer1.Configuration.UploadPaths = uploadPaths
 RadFileExplorer1.Configuration.DeletePaths = deletePaths

 ' Only .jpg and .gif files will be shown
 Dim searchPaterns As String() = New String() {"*.jpg", "*.gif"}
 RadFileExplorer1.Configuration.SearchPatterns = searchPaterns

 ' Sets the max allowed size of the uploaded files
 RadFileExplorer1.Configuration.MaxUploadFileSize = 3000

 ' Sets the AssemblyQualifiedName of a FileBrowserContentProvider class. The
FileSystemContentProvider is the default provider used by RadFileExplorer
 RadFileExplorer1.Configuration.ContentProviderTypeName = GetType
(Telerik.Web.UI.Widgets.FileSystemContentProvider).AssemblyQualifiedName
End Sub

UI for ASP.NET AJAX

480 UI for ASP.NET AJAX

Implementing a custom provider

RadFileExplorer loads its data through a content provider. This approach frees the developers to implement
their own provider which can be used in order to connect RadFileExplorer to any kind of data sources (FTP
filesystem, Database, etc.). Base class for all content providers is
Telerik.Web.UI.Widgets.FileBrowserContentProvider. To implement a custom Content Provider you need to
inherit that abstract class and implement its methods:

 ResolveRootDirectoryAsTree – Called in order to load all sub folders of the passed as parameter folder.

 ResolveDirectory - called in order to load all child files of the passed as parameter folder.

 StoreFile – called in order to save an uploaded file.

 DeleteFile – called in order to delete a file.

 DeleteDirectory - called in order to delete a directory.

 CreateDirectory - called in order to create a directory.

 CanCreateDirectory – a readonly boolean property. This property allows explicitly restricting creating a
new folder on the ContentProvider level.

 GetFile - used in two cases:
1) To identify if a file with the same name exists in the same path when uploading a file.
2) When creating a thumbnail used to get the original image content.

 StoreBitmap - used to save a newly created bitmap to the storage.

 GetFileName - used to get the file name only from the given URL.

 GetPath - used to get the directory path of an item (file or directory) from the given URL.

The ContentProvider model provides full server-side control over the content shown in RadFileExplorer. The
model introduces a flexibility which allows customizations in order to cover unique scenarios that appear during
development.

Filter TextBox

RadFileExplorer supports filtering of the files and folders in the Grid. Simply set the EnableFilterTextBox
property to true and a search box will be rendered above the Grid's header. The items are filtered on every key
stroke, so you don't need to press "Enter" to invoke the filtering process. Note that the FileExplorer searches for
the keyword in the currently selected directory, omitting the items in the subfolders.

The text of the Label is set through the localizable FilterTextBoxLabel property.

Example Title

<telerik:RadFileExplorer
 runat="server"
 ID="RadFileExplorer1"
 Width="575"
 Height="375"
 Language="de-DE"
 >
 <Configuration ViewPaths="~/ROOT/" DeletePaths="~/ROOT/" UploadPaths="~/ROOT/" />
</telerik:RadFileExplorer>

UI for ASP.NET AJAX

481 UI for ASP.NET AJAX

It is not necessary to have the built-in filter textbox enabled in order to perform filtering. The FileExplorer's
filter(keyWord) client-side method can be used to filter the items in the currently selected directory.

The filter client-side event (OnClientFilter property) is raised before the filtering occurs, and event argument
object with the following properties and methods is passed to the event handler method:

 get_text() - gets the text (keyword) to search for.

 set_text(newText) - sets the text (keyword) to search for.

 set_cancel(toCancel) - sets bool value that determines whether the filtering will be cancelled - set_cancel
(true) will cancel the filtering process.

 get_domEvent() - gets a reference to the current domEvent - it comes handy when you need to determine
which key was pressed.

In this chapter you looked at the RadFileExplorer control and saw some of the powerful features it provides.

 We explored the client-side and server-side properties of the control.

 Learned how to configure the control server-side or using Property window.

 You used the server-side events in order to sort the items shown in the RadFileExplorer control or detect
server-side activity.

 Learned how to change the localization of the control using .resx files.

 We explored the basic steps in order to use a custom Content Provider with the RadFileExplorer control.

17.8 Summary

UI for ASP.NET AJAX

482 UI for ASP.NET AJAX

 Explore the features of the RadSiteMap control.

 Create a simple application to build confidence in using the site map and to see how to bind to various
types of data sources, including declarative data sources.

 Explore the site map design time interface, including Smart Tag, Properties Window, Property Builder,
Collection Editors and Template Design surface.

 Explore principal properties and groups of properties where most of the functionality is found.

 Learn server-side coding techniques and handling server-side events.

With the ease of Telerik’s SiteMap for ASP.NET AJAX you can organize and list the pages on your web site,
customize the layout, choose from a variety of appearance options and templates. Add value to your web site
by optimizing it for crawler and search engines with no extra development effort.

RadSiteMap combines the highly efficient rendering of RadControls for ASP.NET AJAX with a powerful set of
features. You can use the familiar skinning capabilities to make the site map fit in with the look and feel of
your Web site, as well adjusting the appearance using styles or item templates.

The capabilities of RadSiteMap extend beyond simply changing the appearance. You can configure the layout of
RadSiteMap in a variety of modes. The nodes can be viewed in either list or flow mode. By selecting the flow
property items in the group will be arranged in rows one after the other, instead of displaying them as a list.
You can also alternate between single, multi-column, horizontal or vertical view. In addition you can display
node lines in a fashion similar to RadTreeView.

The ASP.NET SiteMap by Telerik allows you to define a collection of dynamic templates that customize the
presentation of the hierarchy and the individual nodes
Following our long tradition of industry best cross-browser support, Telerik ASP.NET SiteMap doesn’t make an
exception. The component supports all major browsers, including Internet Explorer, Firefox, Safari, Opera and
Google Chrome and produces identical results.

18 RadSiteMap

18.1 Objectives

18.2 Introduction

UI for ASP.NET AJAX

483 UI for ASP.NET AJAX

RadSiteMap completely follows the principles of Search Engine Optimization. The control renders semantic lists
and standard anchor tags, which are properly recognized by search engines. As a result, all content accessible
through this control will be automatically indexed and ranked with no extra effort required from the developer.

In this walk-through you will become familiar with the RadSiteMap control. You will create two site maps: one
binded to a RadSiteMapDataSource which is inherently hierarchical, and one bound to a non-hierarchical data
source as SqlDataSource.

18.3 Getting started

UI for ASP.NET AJAX

484 UI for ASP.NET AJAX

Prepare the project

1. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

2. Locate the "SiteMap.mdf" file and drag it into the "App_Data" folder of your project.

3. Open the "Web.config" file of your project. Add SiteMap connection string to your project by replacing the
line <connectionStrings />
with:

Bind RadSiteMap to a RadSiteMapDataSource
1. Drag RadSiteMap control from the Toolbox to your Web page. Set its Skin property to “Web20”.

2. In the Solution Explorer, choose Add New Item... In the templates dialog, select Site Map.

3. Click the Add button. Visual Studio generates the web.sitemap file with the initial code. Populate the
Web.sitemap as follows:

1. On the first siteMapNode, set the url to ”http://www.telerik.com”, title=”Telerik” and the description
to "Telerik home page".

2. On the second, set the url to “http://www.telerik.com/radcontrols”, title=”Telerik RadControls for
ASP.NET” and the description to "Telerik RadControls for ASP.NET".

3. On the third, set the url to “http://www.telerik.com/products/aspnet-ajax/sitemap.aspx”,
title=”Telerik RadSiteMap” and the description to "Telerik RadSiteMap control".

4. On the fourth, set the url to “http://www.telerik.com/products/aspnet-ajax/treeview.aspx”,
title=”Telerik RadTreeView” and the description to "Telerik RadTreeView".

4. Drag a RadSiteMapDataSource instance from the Toolbox to your Web page.

5. In the RadSiteMapDataSource, set the “web.sitemap” file as a value of the SiteMapFile property.

6. From the RadSiteMap Smart Tag, choose RadSiteMapDataSource1 from the “Choose Data Source” drop-
down.

Bind RadSiteMap to a SqlDataSource
1. In the designer, hit the Enter key to add a line break, and then drag a second RadSiteMap control from the

Tool Box onto your Web page. Set its Skin property to "Sunset".

2. In the RadSiteMap Smart Tag, select "<New data source...>" from the “Choose Data Source” drop-down.

3. In the first page of the DataSource Configuration Wizard, select "Database" as the application type, and

You can find the complete source for this project at:
\VS Projects\SiteMap\GettingStarted

web.config

 <connectionStrings>
 <add name="SiteMapConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\SiteMap.mdf;Integrated
Security=True;User Instance=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

UI for ASP.NET AJAX

485 UI for ASP.NET AJAX

click OK to move to the next page.

4. On the Choose Your Data Connection page, select "SiteMapConnectionString" from the drop-down list. Then
click the Next button to continue.

5. On the Configure the Select Statement page, make sure the "Specify columns from a table or view" radio
button is selected, and then choose "SiteMap" from the "Name" drop-down list.

6. Check the "*” field to select all table fields. Then click the Next button to continue.

7. Test the query if you wish, and then click Finish.

8. In the Properties Window for the second site map,

1. Set the DataFieldID property to "ID".

2. Set the DataFieldParentID property to "ParentID".

3. Set the DataTextField property to "Title".

4. Set the DataNavigateUrlField property to "URL".

 Run the application
1. Press Ctrl-F5 to run the application.

2. On the first site map you can click on any node and easily navigate to the page it refers to.

3. On the second site map, note that the items form a hierarchy, although they all came from the same table.
This hierarchy is built using the DataFieldID and DataFieldParentID properties of items.

In the Visual Studio designer, you can configure the RadSiteMap control using the Smart Tag, the Properties
Window, and the RadSiteMap Item Builder. In addition, you can add data bindings using the
NavigationItemBinding collection editor and add templates using the Template Design surface.

Smart Tag
The RadSiteMap Smart Tag looks like the typical Smart Tag of a RadControl that contains items which can be
either statically declared or loaded from a data source:

18.4 Designer Interface

UI for ASP.NET AJAX

486 UI for ASP.NET AJAX

The drop-down to bind the site map and the link to bring up the Item Builder should be familiar by now. So
should the standard Ajax Resources, Skin Selection, and Learning Center items. Because you can define item
templates for the site map, there is also an Edit Templates link to bring up the Template Design Surface.

If you bind the site map to a data source, the Smart Tag changes to its bound version:

The bound Smart Tag lets you change the data source, reconfigure the current data source, or refresh the
schema. In addition, there is a link “Edit RadSiteMap Databindings …” to bring up the NavigationItemBinding
Collection Editor. This collection should be familiar to you from the Data Binding chapter.

The bound Smart Tag still contains the Edit Templates item to bring up the Template Design Surface.

Properties Window

At design time, you can use the Properties Window to configure almost every aspect of the site map, with the
exception of templates. As before, let us look at the most important properties.

Specifying Items
Probably the most important property of the site map is the one that specifies what items appear and their
hierarchical relationships. What properties you choose for this task depends on whether you want to load items
from a data source:

 If you want to load items from a data source, you can use the standard data-binding properties
(DataSourceID and DataMember), or use the DataSource property and DataBind>method in the code-
behind.

When binding RadSiteMap to a data source, you can use the DataTextField, DataValueField and
DataNavigationUrlField properties to map fields from the data source to properties of the nodes, or use the
DataBindings property to map even more node properties.

 If you want to establish a hierarchical relationship between nodes, use the DataFieldID and
DataFieldParentID properties. When setting up a hierarchy in this way, you can use the MaxDataBindDepth
property to limit the depth of the hierarchy.

 When using an inherently hierarchical data source such as an XmlDataSource or SiteMapDataSource there
is no need to use the DataFieldID and DataFieldParentID properties. The hierarchy is automatically honored

UI for ASP.NET AJAX

487 UI for ASP.NET AJAX

by the site map.

 If you want to use statically declared items, you can use the Nodes property to bring up the RadSiteMap
Item Builder or you can switch to the Source view and define the structure directly in the mark-up.

 If you want to use both data-bound and statically-declared items, set the AppendDataBoundItems property
to true.

Other site map properties
In addition to the Skin property, you can affect the look-and-feel of the site map by setting the
ShowNodeLines property to node lines in a fashion similar to RadTreeView.

The following properties can be used to customize the List Layout mode: RepeatColumns, RepeatDirection and
RowAlign.

RepeatDirection property determines the order in which the nodes in the level are rendered.

If this property is set to RepeatDirection.Vertical, the nodes in the level are displayed in columns loaded from
top to bottom, then left to right, until all nodes are rendered.

If this property is set to RepeatDirection.Horizontal, the nodes in the level are displayed in rows loaded from
left to right, then top to bottom, until all nodes are rendered.

RepeatDirection has no effect if RepeatColumns is set to 0 (default).

The RepeatColumns property specifies the number of columns for the given level.

Setting the RowAlign property to "true" forces the nodes in different columns to align to each other, as if they
were rendered in a table.

RadSiteMap Item Builder
RadSiteMap lets you edit the list of statically defined nodes using the RadSiteMap Item Builder. This item
builder is very similar to the hierarchical Property Builder dialogs you looked at in the chapter on Navigation
controls. Display the item builder either from the Smart Tag or by clicking the ellipsis button on the Nodes
property in the Properties Window.

Below is a screen shot of the RadSiteMap Item Builder. Use the buttons on the upper left to build or edit the
node hierarchy. You can select any of the nodes and set its properties using the properties pane on the right of
the dialog. Typically, you will set the Text property first.

UI for ASP.NET AJAX

488 UI for ASP.NET AJAX

Each node has its own set of properties: Text is the string that represents the node, ToolTip is the tool tip for
the node, and Value is a value associated with the node. You can add images to a node by setting the
ImageUrl, DisabledImageUrl, HoveredImageUrl and SelectedImageUrl properties. If any of the other image
properties are not set, the node uses the ImageUrl property as the image default. You may also want to use the
Selected and Enabled properties to specify the state of the item when the Web page first loads. The
NavigateUrl and Target properties let you use the node to navigate to another Web page.

Collection Editors
RadSiteMap uses two associated collection editors, the NavigationItemBinding Collection Editor which is used
to edit the DataBindings property collection, and the LevelSettings Collection Editor, which is used to define
the appearance of the nodes according to their level in the hierarchy.

You have already seen how the NavigationItemBinding Collection Editor works in the Data Binding chapter. Let
us look briefly at the LevelSettings Collection Editor:

UI for ASP.NET AJAX

489 UI for ASP.NET AJAX

When using the LevelSettings Collection Editor, you can control the appearance of the associated Level in the
RadSiteMap.

With the Level property you can choose to which Level you will perform changes in appearance. When set to -1
the following changes will be made to all levels.

The Layout property has two values: List and Table-Like. It controls the way the nodes are aligned.

MaximumNodes property controls the number of nodes per parent level. When the number of nodes over
reaches this property – all the nodes over the value of MaximumNodes are moved to other column.

SeparatorText determines the character which will separate the nodes.

Template Design Surface
You can use the site map’s Smart Tag or context menu to bring up the Template Design surface, where you can
create item templates. RadSiteMap supports two types of template: a global RadSiteMap template that affects
all nodes in the site map, and individual item templates, which are associated with specific nodes in the Nodes
collection. A drop-down control on the RadSiteMap Smart Tag (when it is in template editing mode) lets you
specify which template you want to edit:

UI for ASP.NET AJAX

490 UI for ASP.NET AJAX

When a site map includes both a RadSiteMap template and individual item templates, the item templates have
priority over the RadSiteMap template. That is, the RadSiteMap template is used for every node that does not
have its own item template.

When working with RadSiteMap in the code-behind, you can leverage what you have learned already from other
controls. In the chapter on Navigation controls, you were introduced to controls that have similarly hierarchical
items collections, and the technique for manipulating those items is similar: the main difference is that in
RadSiteMap, the items collection is called Nodes rather than Items.

Server-Side events
RadSiteMap supports a number of server-side events for responding in the code-behind when the user interacts
with the site map.

NodeDataBound

The NodeDataBound event fires for every Node that is bound to data. The following example illustrates the use
of the NodeDataBound event. The Web Page contains a RadSiteMap binded to a SqlDataSource. When user
hovers on a node of the site map – tooltip appears referencing the text and the url of the node.

From the Getting Started chapter you are already familiar how to bind the RadSiteMap to a declarative data
sources such as SqlDataSource. The addition here is that we are subscribing to the NodeDataBound event of the
RadSiteMap.

18.5 Server Side Programming

You can find the complete source for this project at:
\VS Projects\SiteMap\ServerNodeDataBound

UI for ASP.NET AJAX

491 UI for ASP.NET AJAX

In the code-behind, the NodeDataBound event handler uses the DataItem property to access the underlying
object or data row being bound to. The Tooltip of the current node is set with appending the Title and Url
attributes:

Use Templates
Templates allow you to embed any content inside a RadSiteMapNode. The following walk-through illustrates
how to use templates in the RadSiteMap control.

1. Create a new ASP.NET Web Site and drag a ScriptManager from the Tool Box onto the Web page.

2. Drag RadSiteMap control from the Toolbox to your Web page. Set its Skin property to “Black”. Set Width to
”300px” and ShowNodeLines to “true”.

3. In the Solution Explorer, choose "Add New Item..." In the templates dialog, select Site Map.

4. Click the Add button. Visual Studio generates the web.sitemap file with the initial code. Populate the
Web.sitemap as follows:

 On the first siteMapNode, set only the title=”Software” and the description to "Telerik home page".

 On the second, set the url to “http://www.microsoft.com/student/en/us/software/windows-7.aspx”,
title=”Windows 7” and the description to "Windows 7".

 On the third, set the url to “http://www.microsoft.com/student/en/us/software/visual-studio.aspx”,
title=”Visual Studio” and the description to "Visual Studio".

 On the fourth, set the url to “http://www.microsoft.com/student/en/us/software/expression-
studio.aspx”, title=”Expression Studio” and the description to "Expression Studio".

 On the fifth, set the url to “http://www.microsoft.com/student/en/us/software/windowslive.aspx”,
title=”Windows Live” and the description to "Windows Live".

[ASP.NET] Setting Tooltip when subscribing to the NodeDataBound event
<telerik:RadSiteMap ID="RadSiteMap1" runat="server" Skin="Sunset" DataFieldID="ID"
 DataFieldParentID="ParentID" DataSourceID="SqlDataSource1"
DataTextField="Title" DataNavigateUrlField="URL"
 OnNodeDataBound="RadSiteMap1_NodeDataBound" >
 </telerik:RadSiteMap>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:SiteMapConnectionString %>"
 SelectCommand="SELECT * FROM [SiteMap]">
 </asp:SqlDataSource>

[VB] NodeDataBound event handler
Protected Sub RadSiteMap1_NodeDataBound(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadSiteMapNodeEventArgs)
 Dim nodeData As DataRowView = TryCast(e.Node.DataItem, DataRowView)
 e.Node.ToolTip = nodeData("Title").ToString() + " - " + nodeData("URL").ToString()
 End Sub

[CS] NodeDataBound event handler
protected void RadSiteMap1_NodeDataBound(object sender, RadSiteMapNodeEventArgs e)
 {
 DataRowView nodeData = e.Node.DataItem as DataRowView;
 e.Node.ToolTip = nodeData["Title"].ToString() + " - " + nodeData["URL"].ToString
();
 }

18.6 How To

UI for ASP.NET AJAX

492 UI for ASP.NET AJAX

 On the sixth, set the url to “http://www.microsoft.com/student/en/us/software/office-2007.aspx”,
title=”Microsoft Office” and the description to "Microsoft Office".

In the RadSiteMap Smart Tag, select "<New data source...>" from the “Choose Data Source” drop-down. 6.

1. In the first page of the DataSource Configuration Wizard, select "SiteMap" as the application type, and click
OK to move to the next page.

2. Right-click on the project in Solution Explorer Window and add new folder with name “Images”. Locate the
5 needed images for the project: windows7.png, visual_studio.png, expression.png, windowslive.png and
office2010.png.

3. Add the following code lines to your RadSiteMap:

1. As you see we’ve attached to the NodeDataBound event to be able to set different images for different
nodes. Here’s the code in the code-behind:

[ASP.NET] How To Use Templates
<telerik:RadSiteMap ID="RadSiteMap1" runat="server" DataSourceID="SiteMapDataSource1"
 OnNodeDataBound="RadSiteMap1_NodeDataBound" ShowNodeLines="True"
 Skin="Black" Width="300px">
 <LevelSettings>
 <telerik:SiteMapLevelSetting Level="0" MaximumNodes="1">
 <NodeTemplate>
 <h3 class="Header">
 <%# DataBinder.Eval(Container.DataItem, "title") %></h3>
 </NodeTemplate>
 </telerik:SiteMapLevelSetting>
 <telerik:SiteMapLevelSetting>
 <NodeTemplate>
 <asp:Image ID="Image1" runat="server" Width="60px" Height="50px"
CssClass="align" />
 <a href='<%# DataBinder.Eval(Container.DataItem, "url") %>'>
 <%# DataBinder.Eval(Container.DataItem, "title") %>

 </NodeTemplate>
 </telerik:SiteMapLevelSetting>
 </LevelSettings>
 </telerik:RadSiteMap>

[CS] How To use Templates: NodeDataBound event handler

protected void RadSiteMap1_NodeDataBound(object sender, RadSiteMapNodeEventArgs e)
 {
 if (!e.Node.Text.Equals("Software"))
 {
 Image img = (Image)e.Node.FindControl("Image1");
 string imageUrl = null;
 switch (e.Node.Text)
 {
 case "Windows 7": imageUrl = "Images/windows7.png";
 break;
 case "Visual Studio": imageUrl = "Images/visual_studio.png";
 break;
 case "Expression Studio": imageUrl = "Images/expression.png";
 break;
 case "Windows Live": imageUrl = "Images/windowslive.png";

UI for ASP.NET AJAX

493 UI for ASP.NET AJAX

1. Press CTRL-F5 to run the application. You see that each node has a link and image in front of it.

2. We need to make the link to be on the line of the image – not on top. To change this add CssClass property
to the Image control and set it “align”:

1. Add this under the <title></title> tag:

 break;
 case "Microsoft Office": imageUrl = "Images/office2010.png";
 break;
 default:
 break;
 }
 img.ImageUrl = imageUrl;
 }
 }

[VB] How To use templates: NodeDataBound event handler
Protected Sub RadSiteMap1_NodeDataBound(ByVal sender As Object, ByVal e As
RadSiteMapNodeEventArgs)
 If Not e.Node.Text.Equals("Software") Then
 Dim img As Image = DirectCast(e.Node.FindControl("Image1"), Image)
 Dim imageUrl As String = Nothing
 Select Case e.Node.Text
 Case "Windows 7"
 imageUrl = "Images/windows7.png"
 Exit Select
 Case "Visual Studio"
 imageUrl = "Images/visual_studio.png"
 Exit Select
 Case "Expression Studio"
 imageUrl = "Images/expression.png"
 Exit Select
 Case "Windows Live"
 imageUrl = "Images/windowslive.png"
 Exit Select
 Case "Microsoft Office"
 imageUrl = "Images/office2010.png"
 Exit Select
 Case Else
 Exit Select
 End Select
 img.ImageUrl = imageUrl
 End If
 End Sub

[ASP.NET]
<asp:Image ID="Image1" runat="server" Width="60px" Height="50px" CssClass="align"/>

[CSS]

<style type="text/css">
 .align
 {
 vertical-align: middle;
 }
 </style>

UI for ASP.NET AJAX

494 UI for ASP.NET AJAX

1. Ctrl-F5 to run the application again. This time the images and links are on one level. All of the nodes of the
RadSiteMap have images except the “Software” node. This is because it is in a different level and needs to
differentiate from the others.

In this chapter you’ve looked at the RadSiteMap control and saw how you could add an attractive site map to
your Web applications. You’ve created a simple application that populated one site map from a
RadSiteMapDataSource and another with items loaded from a SqlDataSource.

You’ve explored the design time support for the site map and understood many of the properties and groups of
properties you can use to configure the site map and its nodes at design time.

You’ve learned some of the server-side properties and methods, especially the NodeDataBound event.

Finally, you’ve learned how to use Templates in a RadSiteMap. You’ve built a simple application that used
templates learned how to find controls in server code.

You can find the complete source for this project at:
\VS Projects\SiteMap\HowToSiteMapTemplates

18.7 Summary

UI for ASP.NET AJAX

495 UI for ASP.NET AJAX

 Explore the features of the RadGrid control.

 Create a simple application that binds to some data to see the basic functionality of auto-generated
columns and column manipulation.

 Explore the RadGrid design time interface, including Smart Tag, Properties View and Property Builder.

 Enable and explain the principal properties and groups of properties where the most common functionality
is found.

 Learn the most commonly used server-side API events and properties.

 Learn server-side coding techniques, including manual CRUD (create, read, update and delete) operations
and accessing and changing the data in a grid by replacing values with images.

 Learn the client-side API with a comprehensive reference to all of the events, methods and properties of
the RadGrid and GridTableView.

 Explore some advanced techniques in client-side code, such as client-side databinding and accessing
values, changing appearance and binding to events with an example of client cell selection.

In any web application where you need to display a list of data with more than one field, you are likely going to
want to use a grid. The RadGrid is an advanced control with many built in features that allow you to enable the
most popular features of a grid with very little customization work.

The RadGrid...

 Allows you to enable fully functional multi-column sorting with a single setting. Sorting can be useful for
arranging data in ways that are more useful to the user at any given time.

 Can enable a powerful filtering interface that can help in finding data without having to display all of it at
the same time.

 Has an easily customizable paging feature that displays only small amounts of data at once to increase
performance and decrease real estate usage while allowing access to a large number of records.

19 RadGrid

19.1 Objectives

19.2 Introduction

UI for ASP.NET AJAX

496 UI for ASP.NET AJAX

 Supports sub-grids to display hierarchical data.

 Can easily implement multilevel grouping of data from a single table - just drag the column header(s) to
the group panel on the top, which defines the grouping order and hierarchy. You can also programmatically
group the data using the group-by expressions.

 Supports all widely used column types (GridEditCommandColumn, GridBoundColumn, GridCheckBoxColumn,
GridDropDownColumn, GridButtonColumn, GridHyperLinkColumn, GridClientSelectColumn, etc.), columns
with other Telerik controls as column editors (GridDateTimeColumn, GridNumericColumn,
GridMaskedColumn, GridHTMLEditorColumn, etc.) as well as GridTemplateColumns, which give you
complete freedom over the data layout and formatting.

 Can easily export the content to Microsoft Excel/Microsoft Word/CSV/PDF.

This article will introduce you to the main features of the RadGrid control. You will see that in most cases they
can be set up with little or no server-side coding.

Paging
RadGrid natively supports table paging, which lets you view large sets of data in small chunks for faster loading

19.3 Getting Started

UI for ASP.NET AJAX

497 UI for ASP.NET AJAX

and easier navigation. It also provides a set of events, helper methods and properties if the paging operation
requires custom intervention. Set the AllowPaging property to True to have RadGrid handle paging. By default,
the AllowPaging property is False. You can set the AllowPaging property on the entire grid, or set it for each
GridTableView individually.

If you want to handle paging in a custom manner, set the grid's AllowCustomPaging property to True as well
and pass only the data needed for the current page in the NeedDataSource event. Examples of custom
paging are shown in this online demo (http://demos.telerik.com/aspnet-
ajax/grid/examples/programming/custompaging/defaultcs.aspx).

Set the PageSize property on the grid or table view to specify the number of records that should appear in each
chunk. When paging is enabled, RadGrid renders a pager item on the bottom and/or top of each GridTableView
displayed when the number of records in the table view exceeds the page size. If you want to show the pager
even if there is a single page of items displayed, set GridTableView.PagerStyle.AlwaysVisible to true.

Sorting
You can have RadGrid automatically sort its columns by setting the AllowSorting property to True. When sorting
is enabled you can click the column headers to trigger it. Sort arrows will appear next to the header text to
indicate the sort order. There are three sorting modes:

 Ascending

 Descending

 No Sort

They are toggled subsequently by clicking the column header.

You can configure the grid to allow sorting by more than one DataField. For this purpose set
AllowMultiColumnSorting property to true.

To control the sorting of RadGrid, you can modify the GridTableView's SortExpressions collection. You can add
a SortExpression both declaratively and programmatically to provide a default sorting for your grid.

Scrolling
When constructing a Web page that contains a grid, there are design limitations regarding the size of the grid.
In such cases, you may need to enable client-side grid scrolling, so that the RadGrid can fit it in the allowed
space. You can enable scrolling by setting the ClientSettings.Scrolling.AllowScroll property to True (By default
its value is False.)

RadGrid enhances the simple scrolling by supporting static headers (grid-scroll-with-static-headers.html) and
frozen columns (grid-frozen-columns.html) - grid header and pager remain static, even when the grid is
scrolled. Furthermore, there is a virtual scrolling (grid-virtual-scroll-paging.html) option that fetches only
specified range of records to be visualized on the current page.

Filtering
RadGrid natively supports filtering of table columns. To enable or disable filtering, set the
AllowFilteringByColumn property of the RadGrid. When filtering is enabled, a filtering item appears below the
column header. The user can enter a filter value in the filter box. A menu can be toggled by clicking the button
next to the filter box to allow the user to select a filter function that is applied to the column. When the user
makes a selection in this menu the grid will display the records matching the filter criteria specified using the
filter boxes.

You can disable filtering for specific columns by setting the column's AllowFiltering property to false. If you set
AutoPostBackOnFilter property of a column to True, the user does not need to press the filter button to
initiate filtering. Instead, a postback filter operation occurs when the user types a filter in the filter box and
presses [Enter] from the keyboard. When AutoPostBackOnFilter is True, the column assumes a filter operation

The ClientSettings.Scrolling.ScrollHeight property specifies the height value beyond which scrolling is
turned on. The default value is 300px.

UI for ASP.NET AJAX

498 UI for ASP.NET AJAX

of Contains for string types or EqualTo for numeric types. You can change this to another filter function by
setting the CurrentFilterFunction property.

To customize filtering in RadGrid, you can manipulate the FilterExpression property of the
respective GridTableView object. This string represents the current filter function in the same way as the
DataView.Filter property, you can picture it as the text of a WHERE clause for filtering a table of data. If you
want to customize filtering using your own custom statements, clear the FilterExpression string (to prevent the
default filtering) and bind the grid to a filtered data set.

Grouping
RadGrid supports grouping of items based on the value of a particular column. You can even have multilevel
grouping based on different criteria. To group the data in a grid, specify grouping criteria by setting the
GroupByExpressions property of a table view in the grid. You can set the group-by expressions declaratively at
design time, or programmatically in the code-behind.

To facilitate grouping, a special area called the GridGroupPanel can be displayed at the top of the grid to
display grouping options. To display the group panel, set the grid's ShowGroupPanel property to True. When a
table view is grouped, all group fields appear in this group panel as elements along with an icon that indicates
the sort order. To allow users to change the grouping by dragging column headers, set the
ClientSettings.AllowDragToGroup property to True.

You can specify whether a table view in the grid handles grouping on the client or on the server:

 Server-side group loading: To enable grouping on the server, set the GroupLoadMode property of a table
view to "Server". When grouping is handled on the server, the grid performs a postback to the server every
time a group is expanded.

 Client-side group loading: To enable loading the groups on the client, set the GroupLoadMode property of
a table view to "Client" and the ClientSettings.AllowGroupExpandCollapse property to True. When grouping
is handled on the client, groups are expanded client-side, without a postback. This means that the data for
all groups, whether they are expanded or not, will be loaded on the client.

Each GridTableView object contains a GroupHeaderTemplate and GroupFooterTemplate properties for
specifying a template that will show inside each group's header and footer rows. You can use them to provide a
more customized look for the group totals display. For more information on working with group header and
footer templates, check out the online documentation.

Data Editing
RadGrid exposes a number of options for editing the data that it is bound to. You could easily set up automatic
operations or go to more custom scenarios with manual data editing. There are different editing modes and
types of forms which you could use to deliver various ways of enabling the user to edit the grid data source.

Edit modes

RadGrid offers the following edit modes. They are switched through the GridTableView.EditMode property:

 InPlace: displays the grid column editors inline when the grid switches into edit mode - the edit controls
show in place of the text values of the cells.

 EditForms: The grid column editors display in an auto-generated form when the grid switches into edit
mode, the edit form appears immediately below the item that is being edited.

 Popup: The grid column editors display in an auto-generated popup form when the grid switches into edit
mode.

Edit form types

RadGrid supports three types of edit forms: auto-generated, user control and form template. You can use the
GridTableView.EditFormSettings.EditFormType property to switch between them. The default type is auto-
generated. The three types function as follows:

UI for ASP.NET AJAX

499 UI for ASP.NET AJAX

 AutoGenerated: RadGrid will generate the edit form for you - when an item goes in edit mode, the built-in
editors for each column, which is not marked as ReadOnly, will be displayed.

 Template: provides you with full control over what is shown in the grid edit form, you can define your
template in the FormTemplate tag of the control (GridTableView-EditFormSettings-FormTemplate). Note
that you can use the template edit form only with EditForms and Popup edit modes.

 WebUserControl: when you want to reuse the edit form, it would be best to define it in a user control and
assign it to the grids which you want to use it. In this case you need to set the EditFormType property to
WebUserControl. In addition in the EditFormSettings set the UserControlName property to the path of the
custom user control.

Hierarchical RadGrid
 RadGrid gives you the ability to display hierarchical data through DetailTables or by defining its
NestedViewTemplate. Below are listed the different approaches you can use:

DetailTables

The RadGrid control renders one or more detail tables for each item (row) in the MasterTableView. In a multi-
level hierarchy, each item of every detail table can have one or more detail tables as well. To describe the
data hierarchy, each table view must have its own data source with ParentTableRelations or implement the
DetailTableDataBind event handler. In the next section you can see how to build a hierarchical grid with detail
tables through RadGrid designer.

NestedViewTemplate

With the NestedViewTemplate you have the ability to model the look and feel of the child table container in
order to display the detail info in non table-dependant format.

In addition RadGrid exposes a property for its table view objects called NestedViewSettings. The
NestedViewSettings allow you to specify a data source object contained on the page to which the template
should be bound, as well as a relation to the parent level. These can be defined declaratively or
programmatically through the NestedViewSettings.DataSourceID and
NestedViewSettings.ParentTableRelation properties respectively. The ParentTableRelation is specified in the
same way as the declarative relations for hierarchical tables.

With the hierarchy declarative relations, you should have a WHERE clause in the SelectCommand of the data
source control for the nested view template to retrieve the record for it. The WHERE clause should include the
field from the ParentTableRelation definition between the master/child table. Furthermore, the same field has
to be included in the SelectParameters of the "inner" data source controls with exactly the same Name.
However, no SesssionField value is required.
If more than one record is fetched from the data source for the nested view template, only the first one will be
used to bind the controls in the latter.

Below is a code extraction:

ASPX

<telerik:ScriptManager ID="ScriptManager1" runat="server" />
 <telerik:RadAjaxManager ID="RadAjaxManager1" runat="server">
 <AjaxSettings>
 <telerik:AjaxSetting AjaxControlID="RadGrid1">
 <UpdatedControls>
 <telerik:AjaxUpdatedControl ControlID="RadGrid1"
LoadingPanelID="RadAjaxLoadingPanel1" />
 </UpdatedControls>
 </telerik:AjaxSetting>
 </AjaxSettings>
 </telerik:RadAjaxManager>
 <telerik:RadAjaxLoadingPanel ID="RadAjaxLoadingPanel1" runat="server" />

UI for ASP.NET AJAX

500 UI for ASP.NET AJAX

 <telerik:RadGrid ID="RadGrid1" DataSourceID="SqlDataSource1" runat="server"
AutoGenerateColumns="False"
 AllowSorting="True" AllowPaging="True" PageSize="5" GridLines="None"
ShowGroupPanel="True">
 <MasterTableView DataSourceID="SqlDataSource1" DataKeyNames="CustomerID"
AllowMultiColumnSorting="True"
 GroupLoadMode="Server">
 <Columns>
 <telerik:GridBoundColumn DataField="CustomerID" HeaderText="CustomerID"
ReadOnly="True"
 SortExpression="CustomerID" UniqueName="CustomerID">
 </telerik:GridBoundColumn>
 <telerik:GridBoundColumn DataField="CompanyName" HeaderText="CompanyName"
 SortExpression="CompanyName" UniqueName="CompanyName">
 </telerik:GridBoundColumn>
 <telerik:GridBoundColumn DataField="ContactName" HeaderText="ContactName"
 SortExpression="ContactName" UniqueName="ContactName">
 </telerik:GridBoundColumn>
 </Columns>
 <NestedViewSettings DataSourceID="SqlDataSource2">
 <ParentTableRelation>
 <telerik:GridRelationFields DetailKeyField="CustomerID"
MasterKeyField="CustomerID" />
 </ParentTableRelation>
 </NestedViewSettings>
 <NestedViewTemplate>
 <asp:Panel ID="NestedViewPanel" runat="server" CssClass="viewWrap">
 <div class="contactWrap">
 <fieldset style="padding: 10px;">
 <legend style="padding: 5px;">Detail info for Customer:<%#Eval
("ContactName") %>
 </legend>
 <table>

 <tr>
 <td>
 ContactTitle:
 </td>
 <td>
 <asp:Label ID="titleLabel" Text='<%#Bind("ContactTitle")
%>'
 runat="server"></asp:Label>
 </td>
 </tr>
 <tr>
 <td>
 Address:
 </td>
 <td>
 <asp:Label ID="addressLabel" Text='<%#Bind("Address") %
>'
 runat="server"></asp:Label>
 </td>
 </tr>

UI for ASP.NET AJAX

501 UI for ASP.NET AJAX

Auto-generated hierarchy

RadGrid also has the capability to auto-generate a hierarchical representation of a mutli-table DataSet. Just set
the AutogenerateHierarchy property of RadGrid to true and it will automatically generate the hierarchy based
on the tables in the DataSet and their relations with one another.

The detail tables generation will start from the table which name has been set to the DataMember property of
the DataSet. In other words, RadGrid will assume this data-table as the data source for its MasterTableView. If
no table name has been specified for the DataMember of the DataSet object, the first table in the ladder will
be treated as the data source for the grid's MasterTableView and the generation of the detail tables will go
from there following the root data-table child relations.

Enabling Ajax
When using the RadGrid, you will almost always want to use AJAX to prevent postbacks every time something in
the RadGrid is changed.

1. If you do not already have a ScriptManager or RadScriptManager on your webpage, add a
RadScriptManager using the RadGrid's Smart Tag.

2. In the Smart Tag there will be a link to register the RadScriptManager. Click that to register it in
web.config.

3. Add a RadAjaxManager and configure it to have the RadGrid have an association with itself.

 </table>
 </fieldset>
 </div>
 </asp:Panel>
 </NestedViewTemplate>
 </MasterTableView>
 <PagerStyle Mode="NumericPages"></PagerStyle>
 <ClientSettings AllowDragToGroup="true" />
 </telerik:RadGrid>
 <asp:SqlDataSource ID="SqlDataSource2" ConnectionString="<$ ConnectionStrings>"
 SelectCommand="SELECT [CustomerID],[ContactName],[ContactTitle], [Address],[City],
[PostalCode],[Country],[Phone],[Fax] FROM [Customers] where CustomerID=@CustomerID"
 runat="server">
 <SelectParameters>
 <asp:Parameter Name="CustomerID" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:SqlDataSource ID="SqlDataSource1" ConnectionString="<$ ConnectionStrings>"
 SelectCommand="SELECT [CustomerID], [CompanyName], [ContactName]FROM [Customers]"
 runat="server"></asp:SqlDataSource>

UI for ASP.NET AJAX

502 UI for ASP.NET AJAX

4. Now that the association is made, enable the RadGrid's ShowStatusBar property which will add an indicator
to your grid that shows if it is loading or not.

Now you have a working, databound, Ajaxified RadGrid.

Smart Tag
The Smart Tag for RadGrid contains the most popular properties so they can be easily enabled without digging
through the Properties window. This includes the common databinding options.

There are three options to auto generate columns. By default, "Auto-generate columns at runtime" is turned
on. The Auto-generate edit and delete column properties add ButtonColumns for deleting records and putting
records into edit mode. The General Features area lets you turn on the commonly used Paging, Sorting,
Filtering, Scrolling and Grouping features with their default options. Column Reordering can be enabled on the
client or server side which allows you to drag columns around and change the order they appear in the grid.

19.4 Using the Design Time Interface

UI for ASP.NET AJAX

503 UI for ASP.NET AJAX

It also provides useful links that allow you to easily Ajaxify the control and optimize the web page that the grid
appears on.

Property Builder
 You can open the Property Builder in the Smart Tag.

The Property Builder is a way of accessing almost every property available to the RadGrid in a more organized
format than the Properties window. It is also good at displaying the current layout of columns, allowing easy
access to column layout and properties.

UI for ASP.NET AJAX

504 UI for ASP.NET AJAX

Properties Window
If you know your way around the control, the Properties window can be a quicker way to manipulate the
RadGrid and it is the only way to access and auto-create the server-side events in the CodeBehind from the
Design Time Interface.

UI for ASP.NET AJAX

505 UI for ASP.NET AJAX

UI for ASP.NET AJAX

506 UI for ASP.NET AJAX

 Commonly Used Properties
The RadGrid has more design-time properties than perhaps any other RadControl. The most commonly used of
these options are in the Smart Tag. We will also cover some of the important properties to be familiar with
such as Detail Tables.

Paging

Paging allows you to limit the amount of data displayed at one time and provides controls to navigate pages of
that limited data. This feature can be the single most important option for improving performance of a data-
heavy web page. It also reduces the real estate usage and eliminates clumsy horizontal scrollbars. To enable
this feature, simply check the Enable Paging checkbox in the Smart Tag. The default setting for this feature
includes showing 10 records at once and some basic navigation controls. There are many options to customize
this behavior, accessible through the Property Builder:

Possible settings here include the number of rows per page and navigation button settings. If you enable paging
and enable AJAX, then run the application, you'll notice as you navigate the data that there are no postbacks.
This slick performance is achievable with just a few mouse clicks.

Sorting

Sorting is a three-state functionality. When the contents of a sort-enabled grid are first displayed, they
are sorted based on ordering from a SQL statement. When the Enable Sorting option is enabled, data is sorted
by clicking on a column header. The first time the column header is clicked, the data will be sorted into
ascending order, indicated by the triangular icon shown in the left-hand image below; the second time, it will
be sorted in descending order, as shown in the right-hand image; and the third click will return the column to
the original (grid-unsorted) order.

UI for ASP.NET AJAX

507 UI for ASP.NET AJAX

By default, only one sort specification is applied at a time; clicking on a different column header will do away
with any previously selected sort order. In order to enable multiple column sorting, set the
AllowMultiColumnSorting property.

Filtering

Filtering is really used as a search and navigation tool. If you have paging enabled, the page navigation
interface can take too much work to find specific data. Enabling filtering will allow your users to easily navigate
to specific data quickly while keeping the performance advantage of paging. Enabling filtering is easily done by
selecting the Enable Filtering property in the Smart Tag.

Special-type fields (such as dates and bit fields) have filter conditions conditions appropriate to the data type
you're dealing with. The following screenshot shows the PreferredVendorStatus column showing only filter
options that would apply to a boolean value, while the Modified column shows filter options that would only
apply to dates.

UI for ASP.NET AJAX

508 UI for ASP.NET AJAX

Column Grouping

The next property is the Enable Grouping property. When grouping is enabled, an extra area will be displayed
at the top of the grid, indicating that you can drag a column header to the grouping area to group by that
column. When your cursor is hovered over a groupable column, you'll first see a tooltip indicating that the
column is groupable, and the cursor will change to a "Move" cursor:

To create a column grouping, simply left-click a column header and drag it into the grouping header. As your
cursor enters the grouping header, it will change back into an arrow, indicating that the group may be dropped
and take effect. You can create multiple groupings that will be nested in the order that they appear in
the grouping header. This order may be changed by dragging the existing groupings around in the grouping
header. You may sort groupings using the arrow icon next to each grouping and each group may be expanded
or collapsed using the arrow icon next to each group value.

UI for ASP.NET AJAX

509 UI for ASP.NET AJAX

Enabling and disabling Sorting, Filtering and Grouping

It may not make sense to have one or more of the sorting, filtering and grouping features available for any
particular column. These features may be disabled on a column-by-column basis using the property builder and
the appropriate column's properties.

UI for ASP.NET AJAX

510 UI for ASP.NET AJAX

Scrolling

When scrolling is enabled using the Enable Scrolling checkbox in the Smart Tag, you'll see a vertical scrollbar
along the right-hand edge of the grid. The Enable Scrolling checkbox setting has a convenient set of defaults.
 The other properties associated with the scrolling sub-property look like this:

The EnableVirtualScrolling property is especially useful if you're dealing with large data sets. What this
property does is to fill up the grid with data to the extent of the ScrollHeight property. Then, as you scroll
down, RadGrid makes a request for additional data and displays that section of the grid. If virtual scrolling is
not enabled, all data rows are returned and stored in the grid. Virtual scrolling improves initial load time when
using large datasets, but will be slightly less smooth during scrolling when data is retrieved.

Using the RadGrid to Edit, Add and Delete Data

You will certainly want to edit live data in your database using the RadGrid at some point. RadGrid offers a
fully functional and customizable interface to do so and most of it can be done directly from the designer. The
following is the simplest path to enabling that functionality.

1. Go into the Property Builder, select the Master Table, select the Columns collection and then expand the
Button Column tree in the Available Columns area. You will see three options there. Go ahead and add
all three. These are simply button columns that perform the select action, the delete action or initiate
edit mode. There are properties for each of these columns that allow you to change how they look, but for

UI for ASP.NET AJAX

511 UI for ASP.NET AJAX

now, concentrate on the default configuration.

2. In the Properties View of the RadGrid, go to the MasterTableView property and expand it, and then change
the CommandItemDisplay property to "Top".

This will add a header to the top of the RadGrid that has an "Add" button and that will allow you to put the
grid into an insert mode.

3. Next you need to set an edit mode for the table view. Go to the MasterTableView property in the
Properties View, expand it and change the EditMode property to "InPlace". This is the simplest mode to
use if you do not have any complex data entry requirements.

4. Now run the web application and play with the add, edit, select and delete buttons. You will see that the
add and edit buttons create a row of entry fields to edit or change data based on the EditMode property
"InPlace". You will also note that none of the buttons actually do anything to the data.

5. Close the web application and configure the datasource for the RadGrid.

UI for ASP.NET AJAX

512 UI for ASP.NET AJAX

6. Click Next and choose "Select a custom SQL statement or stored procedure" and click Next again.

7. In the UPDATE, INSERT and DELETE tabs, enter the following queries:

8. Click Next and Finish.

9. Finally, in the RadGrid properties view, go to the Data Editing section and turn the following three
properties to true. This will allow the grid to automatically use the provided SQL statements to perform
these actions.

Now when you run the application you will be able to perform all of the edit, add and delete functions and
you never had to leave the designer.

RadGrid, MasterTableView and DetailTables

The RadGrid control has a MasterTableView property that represents the top table in the grid. The instances of
RadGrid and MasterTableView are almost identical, although they are of different types (RadGrid and
GridTableView, respectively).

The main difference between RadGrid and MasterTableView is that the properties of RadGrid specify the
defaults for every GridTableView in the grid (the MasterTableView and any DetailTables). The properties of
MasterTableView apply only to the top-level table in the grid. In other words, property settings on
MasterTableView are not inherited by any DetailTables nested inside it. The properties of MasterTableView,
as with the properties of any DetailTable in the grid, act as overrides to the defaults set on the RadGrid
object.

For example, if you set a blue border for the RadGrid, the MasterTableView and any DetailTables will also
have blue border (assuming they do not override the property setting), while if you set blue border for the
MasterTableView, this border will appear only on the top-level table, and not on any detail tables.

The DetailTables property of the MasterTableView is a collection of GridViewTables and therefore each
DetailTable can have its own collection of DetailTables. This is how a grid hierarchy can be created. Here is a
look at the DetailTables editor:

[T-SQL] Update

UPDATE Purchasing.[Vendor] SET [AccountNumber] = @AccountNumber, [Name] = @Name,
[CreditRating] = @CreditRating, [PreferredVendorStatus] = @PreferredVendorStatus,
[ActiveFlag] = @ActiveFlag, [PurchasingWebServiceURL] = @PurchasingWebServiceURL,
[ModifiedDate] = @ModifiedDate WHERE [VendorID] = @VendorID

[T-SQL] Insert

INSERT INTO Purchasing.[Vendor] ([AccountNumber], [Name], [CreditRating],
[PreferredVendorStatus], [ActiveFlag], [PurchasingWebServiceURL], [ModifiedDate]) VALUES
(@AccountNumber, @Name, @CreditRating, @PreferredVendorStatus, @ActiveFlag,
@PurchasingWebServiceURL, @ModifiedDate)

[T-SQL]

DELETE FROM Purchasing.[Vendor] WHERE [VendorID] = @VendorID

UI for ASP.NET AJAX

513 UI for ASP.NET AJAX

Getting familiar with the Server Side API
Writing code for the RadGrid using the server-side API can be very useful for times when you need to
manipulate the RadGrid right before or after a major event like when data is bound, altered, an item is
created, a report is generated or a row drop event is invoked. We will first go over the most often used
properties used in server-side code and the most useful events to use them in. We will also cover a couple
examples of using server-side code to accomplish some common tasks.

Often used properties
The following properties at the RadGrid level are typically set at design-time and usually not changed in server-
side code:

 RadGrid.ClientSettings: Provides access to the client-side events and properties.

 RadGrid.*Style: Allows change to the appearance of the various interfaces of the RadGrid that applies to
the entire hierarchy of GridTableViews unless overridden by a non-default setting.

19.5 Server Side Code

UI for ASP.NET AJAX

514 UI for ASP.NET AJAX

 RadGrid.MasterTableView: This is the base level GridTableView of the RadGrid, which is the only table
you will work with if there are no details or hierarchal tables.

The next properties are important to every every GridTableView including the MasterTableView:

 GridTableView.DetailTables: The collection of GridTableViews that make up the sub-tables of a
GridTableView.

 GridTableView.*Style properties: The individual settings of the GridTableView that will override any
settings in the RadGrid.*Style settings.

 GridTableView.GroupByExpressions: Add or remove objects to this collection to set grouping
programmatically.

 GridTableView.SortExpressions: Add or remove objects to this collection to set sorting programmatically.

 GridTableView.Columns: Access the Columns collection created at design-time.

 GridTableView.AutoGeneratedColumns: Collection of columns created at run-time.

 GridTableView.RenderColumns: Collection of all columns created at design-time and runtime including
interface columns such as expand/collapse and group splitters.

Often used events
There are many server-side events associated with the RadGrid and the GridTableView. Here is a brief list of
some of the most commonly used events and the property groups they appear in.

Action

Events in the "Action" group of properties happen in response to interface interaction:

 *Command: ItemCommand, CancelCommand, DeleteCommand, EditCommand, InsertCommand,
UpdateCommand and SortCommand. ItemCommand is a catch-all for any clicked RadGrid button such
as Edit, Delete, or Update command events. The other commands are operation specific, e.g.
DeleteCommand fires when a Delete command bubbles up.

All these events except for SortCommand pass a GridCommandEventArgs object.
GridCommandEventsArgs contains a Canceled property that you can set to kill the event, CommandName
to help determine the kind of operation to expect, CommandArgument, Item,
and CommandSource. CommandSource is a reference to the control that triggered the command. For
example, the control might be a button that triggered an Expand or Collapse command. Item is a GridItem
type that may be cast to an type appropriate for the event, i.e. GridEditableItem during the Update
command. Here's a brief extract from a Update command event handler that shows the Item event
argument in play:

[VB] Handling the UpdateCommand Event

UI for ASP.NET AJAX

515 UI for ASP.NET AJAX

The SortCommand event passes a GridSortCommandEventArgs (descends from GridCommandEventArgs)
and adds NewSortOrder, OldSortOrder and SortExpression properties. To determine the new/previous sort
order on sort command, check the values for the e.NewSortOrder and e.OldSortOrder arguments.

 PageIndexChanged: Fired when a page selection arrow is clicked.

 GroupsChanging: Fired when a grouping is created or removed. You can use this event to hide or unhide
columns that are being used for grouping.

 RowDrop: Fires when a grid row is dragged and dropped. To make this event fire, set the
ClientSettings.AllowRowsDragDrop property and the ClientSettings.Selecting.AllowRowSelect property to
true. The example below shows a row with product information being dropped at another location in the
same grid and an alert reporting the ProductID of the dragged row. Also be aware that the arguments
passed in contain a list of the dragged items, the identity of the grid being dragged onto, the DropPosition
(Above, Below), and HTMLElement (the ID of an HTML element that the row was dropped on).

Protected Sub gridQuestions_UpdateCommand(ByVal source As Object, ByVal e As
GridCommandEventArgs)
 ' Get the item that appears when grid is in Update Mode.
 ' Use the item object ExtractValues()method
 ' to fill a HashTable with values for the current row.
 Dim item As GridEditableItem = TryCast(e.Item, GridEditableItem)
 Dim ht As New Hashtable()
 item.ExtractValues(ht)
 '...

 e.Item.OwnerTableView.Rebind()
End Sub

[C#] Handling the UpdateCommand Event

protected void gridQuestions_UpdateCommand(object source, GridCommandEventArgs e)
{
 // Get the item that appears when grid is in Update Mode.
 // Use the item object ExtractValues()method
 // to fill a HashTable with values for the current row.
 GridEditableItem item = e.Item as GridEditableItem;
 Hashtable ht = new Hashtable();
 item.ExtractValues(ht);
 //...

 e.Item.OwnerTableView.Rebind();
}

[VB] Handling the RowDrop Event

Protected Sub RadGrid1_RowDrop(ByVal sender As Object, ByVal e As
Telerik.Web.UI.GridDragDropEventArgs)
 Dim item As GridDataItem = TryCast(e.DraggedItems(0), GridDataItem)
 RadAjaxManager1.Alert("Dropped ProductID: " + item.GetDataKeyValue("ProductID"))
End Sub

[C#] Handling the RowDrop Event

protected void RadGrid1_RowDrop(object sender,
 Telerik.Web.UI.GridDragDropEventArgs e)
{
 GridDataItem item = e.DraggedItems[0] as GridDataItem;

UI for ASP.NET AJAX

516 UI for ASP.NET AJAX

For info on the NeedDataSource and DetailTableDataBind events, see the Data section below.

Behavior

Events in the "Behavior" group of properties can be used to intercept and alter elements of the RadGrid before
or after they are created.

 ItemCreated: Fired on the server when an item in the RadGrid control is created.

 ItemDataBound: Fired after an item is databound to the RadGrid control.

 ColumnCreating: Fired before a custom column is being created.

 ColumnCreated: Fired after an auto-generated column is created.

Data

Events in the "Data" group of properties respond to databinding and CRUD (Create, Remove, Update, Delete)
operations.

 DataBinding: Fired right before the server control binds to a data source.

 DataBound: Fired when the server control is bound to a data source.

These next two appear in the Action group, but we're including them here along with the other data related
events:

 NeedDataSource: Fired when RadGrid needs a data source for rebinding. This event can be useful when
the data source may change at runtime or you for some reason don't want to set the data source
declaratively. In this event you would set the DataSource property, not the DataSourceID.

 DetailTableDataBind: Fired when a DetailsTable binds to a data source.

Data Editing

These events ItemInserted, ItemUpdated and ItemDeleted, fire right after automatic inserts, updates and
deletes. The arguments passed into these events all descend from GridDataChangeEventArgs and are very
similar to one another. The arguments include an integer number of the AffectedRows, an Exception object, a

 RadAjaxManager1.Alert("Dropped ProductID: " + item.GetDataKeyValue("ProductID"));
}

UI for ASP.NET AJAX

517 UI for ASP.NET AJAX

GridEditableItem and a ExceptionHandled event that can be set to true if you want to prevent the exception
from propagating. The example below fires after an item is inserted. If there is an exception, the exception is
considered handled, the record stays in insert mode so the user can correct it and a message displays that the
product couldn't be inserted.

Misc / Exporting

The events in this group handle exporting behavior.

 GridExporting: Fires when the grid exports to any output type. The event arguments include OutputType,
an enumeration that indicates the format, e.g. Excel, MSWord, etc., and ExportOutput, a string that will
be output to the Response.

 Excel specific events ExcelExportingCellFormatting, ExcelMLExportRowCreated,
ExcelMLExportStyesCreated.

What are good things to do in server side code?
In cases where new data is retrieved, data is being bound or dynamic data operations must be performed,
server-side code is ideal.

In these examples, we will show some commonly useful code using the server-side API of the RadGrid. The first
will be a simple grid that binds to the datasource but does not use the AllowAutomaticUpdates,
AllowAutomaticDeletes or AllowAutomaticInserts properties. This will require that we use the
UpdateCommand, InsertCommand, and DeleteCommand event handlers. The second example will show how to
use the ColumnCreating event to convert some column data to representative images before rendering.

Server-side CRUD Example
1. Create a new Web Application for ASP.NET.

2. Drop a RadGrid onto the Default.aspx page.

[VB] Handling the ItemInserted Event

Protected Sub RadGrid1_ItemInserted(ByVal source As Object, ByVal e As
GridInsertedEventArgs)
 If Not e.Exception Is Nothing Then
 e.ExceptionHandled = True
 e.KeepInInsertMode = True
 DisplayMessage("Product cannot be inserted. Reason: " + e.Exception.Message)
 Else
 DisplayMessage("Product inserted")
 End If
End Sub

[C#] Handling the ItemInserted Event

protected void RadGrid1_ItemInserted(object source, GridInsertedEventArgs e)
{
 if (e.Exception != null)
 {
 e.ExceptionHandled = true;
 e.KeepInInsertMode = true;
 DisplayMessage("Product cannot be inserted. Reason: " + e.Exception.Message);
 }
 else
 {
 DisplayMessage("Product inserted");
 }
}

UI for ASP.NET AJAX

518 UI for ASP.NET AJAX

3. In the Smart Tag, click on Add RadScriptManager.

4. In the RadScriptManager's Smart Tag, click Register Telerik.Web.UI.WebResource.axd.

5. Configure a new datasource for the RadGrid.

6. Connect to the NorthWind database and save the connection string.

7. Choose the "Shippers" table and select all of the rows (*) for the SELECT query.

8. Click Next | Test Query | Finish.

9. Open the Smart Tag and select the Auto-generate edit column at runtime and Auto-generate delete
column at runtime options.

UI for ASP.NET AJAX

519 UI for ASP.NET AJAX

10. In the Property Builder, navigate to Master table | Columns | Selected Columns | ShipperID | Behavior |
Visible, set it to "False" and click OK.

11. In the Properties View, navigate to Layout | MasterTableView | CommandItemDisplay and set it to "Top".

12. In the Properties View for the RadGrid go to the events tab and double click on the DeleteCommand event.

13. Add the following code to the event handler:

[VB] DeleteCommand event handler

'Get the GridDataItem of the RadGrid
Dim item As GridDataItem = DirectCast(e.Item, GridDataItem)
'Get the primary key value using the DataKeyValue.
Dim ShipperID As String = item.OwnerTableView.DataKeyValues(item.ItemIndex)
("ShipperID").ToString()
Try
 'Delete command execute
 SqlDataSource1.DeleteCommand = "DELETE from Shippers where ShipperID='" + ShipperID +
"'"
 SqlDataSource1.Delete()
Catch ex As Exception
 RadGrid1.Controls.Add(New LiteralControl("Unable to delete Shipper. Reason: " +
ex.Message))
 e.Canceled = True
End Try

[C#] DeleteCommand event handler

//Get the GridDataItem of the RadGrid
GridDataItem item = (GridDataItem)e.Item;
//Get the primary key value using the DataKeyValue.

UI for ASP.NET AJAX

520 UI for ASP.NET AJAX

14. Create an UpdateCommand event handler the same way the DeleteCommand handler was created and
insert the following code:

string ShipperID = item.OwnerTableView.DataKeyValues[item.ItemIndex]["ShipperID"].ToString
();
try
{
 //Delete command execute
 SqlDataSource1.DeleteCommand = "DELETE from Shippers where ShipperID='" + ShipperID +
"'";
 SqlDataSource1.Delete();
}
catch (Exception ex)
{
 RadGrid1.Controls.Add(new LiteralControl("Unable to delete Shipper. Reason: " +
ex.Message));
 e.Canceled = true;
}

[VB] UpdateCommand event handler

'Get the GridEditableItem of the RadGrid
Dim editedItem As GridEditableItem = TryCast(e.Item, GridEditableItem)
'Get the primary key value using the DataKeyValue.
Dim ShipperID As String = editedItem.OwnerTableView.DataKeyValues(editedItem.ItemIndex)
("ShipperID").ToString()
'Access the textbox from the edit form template and store the values in string variables.
Dim CompanyName As String = TryCast(editedItem("CompanyName").Controls(0), TextBox).Text
Dim Phone As String = TryCast(editedItem("Phone").Controls(0), TextBox).Text
Try
 'Update Query execution
 SqlDataSource1.UpdateCommand = "UPDATE Shippers set CompanyName='" + CompanyName +
"',Phone='" + Phone + "'"
 SqlDataSource1.Update()
Catch ex As Exception
 RadGrid1.Controls.Add(New LiteralControl("Unable to update Shippers. Reason: " +
ex.Message))
 e.Canceled = True
End Try

[C#] UpdateCommand event handler

//Get the GridEditableItem of the RadGrid
GridEditableItem editedItem = e.Item as GridEditableItem;
//Get the primary key value using the DataKeyValue.
string ShipperID = editedItem.OwnerTableView.DataKeyValues[editedItem.ItemIndex]
["ShipperID"].ToString();
//Access the textbox from the edit form template and store the values in string variables.

string CompanyName = (editedItem["CompanyName"].Controls[0] as TextBox).Text;
string Phone = (editedItem["Phone"].Controls[0] as TextBox).Text;
try
{
 //Update Query execution
 SqlDataSource1.UpdateCommand = "UPDATE Shippers set CompanyName='" + CompanyName +
"',Phone='" + Phone + "'";

UI for ASP.NET AJAX

521 UI for ASP.NET AJAX

15. Create an InsertCommand event handler the same way the DeleteCommand and UpdateCommand handlers
were created and insert the following code:

 SqlDataSource1.Update();
}
catch (Exception ex)
{
 RadGrid1.Controls.Add(new LiteralControl("Unable to update Shippers. Reason: " +
ex.Message));
 e.Canceled = true;
}

[VB] InsertCommand event handler

'Get the GridEditableItem of the RadGrid
Dim
newItem As GridEditableItem = TryCast(e.Item, GridEditableItem)
'Access the textbox from the edit form template and store the values in string variables.
Dim CompanyName As String = TryCast(newItem("CompanyName").Controls(0), TextBox).Text
Dim Phone As String = TryCast(newItem("Phone").Controls(0), TextBox).Text
Try
 'Insert Query execution
 SqlDataSource1.InsertCommand = "INSERT INTO Shippers (CompanyName, Phone) Values ('" +
CompanyName + "','" + Phone + "')"
 SqlDataSource1.Insert()
Catch ex As Exception
 RadGrid1.Controls.Add(New LiteralControl("Unable to insert Shipper. Reason: " +
ex.Message))
 e.Canceled = True
End Try

[C#] InsertCommand event handler

//Get the GridEditableItem of the RadGrid
GridEditableItem newItem = e.Item as GridEditableItem;
//Access the textbox from the edit form template and store the values in string variables.

string CompanyName = (newItem["CompanyName"].Controls[0] as TextBox).Text;
string Phone = (newItem["Phone"].Controls[0] as TextBox).Text;
try
{
 //Update Query execution
 SqlDataSource1.InsertCommand = "INSERT INTO Shippers (CompanyName, Phone) Values ('" +
CompanyName + "','" + Phone + "')";
 SqlDataSource1.Insert();
}
catch (Exception ex)
{
 RadGrid1.Controls.Add(new LiteralControl("Unable to insert Shipper. Reason: " +
ex.Message));
 e.Canceled = true;
}

Gotcha! You will need to add the Telerik.Web.UI assembly to the code-behind using or Imports
clause.

UI for ASP.NET AJAX

522 UI for ASP.NET AJAX

Now you can run the web application and try out the CRUD functionality. Note that when you try to delete you
will see an error message at the foot of the RadGrid. This is due to a dependency constraint of a master/detail
relationship in the database schema. To fix this you can either disallow deletions by not showing the Delete
link or handle the delete command event and disable the record as suggested in the error message.

Changing a data row to images.
Images always make things look better. Where you either have a reference to an image directly, or there is a
limited number of possible values that might be better displayed as images, you might want to replace the data
with some nice pictures to spruce things up in your web application. This example will also demonstrate how
to extract a value out of a field in a server-side event and re-assign the column text to an image path. The
images can be found in the completed example project listed below:

1. Create an \Images folder in your project. Drag the three images to represent the three shipping companies
in the database into the \Images folder.

2. In the Properties View, go to the events tab for the RadGrid and double-click on ItemDataBound.

3. Now simply add this code to the event handler:

You can find the complete source for this project at:
\VS Projects\Grid\RadGridServerSideAPI

[VB] Converting a data field to an image

UI for ASP.NET AJAX

523 UI for ASP.NET AJAX

4. Press Ctl-F5 to run the application. This code above extracts the field value for every row in the
CompanyName column and uses that to replace that value with an HTML image tag. Now when we run the
application it should look something like this:

If TypeOf e.Item Is GridDataItem Then
 Dim item As GridDataItem = DirectCast(e.Item, GridDataItem)
 If item("CompanyName").Text = "Federal Shipping" Then
 item("CompanyName").Text = ""
ElseIf item("CompanyName").Text = "Speedy Express" Then

 item("CompanyName").Text = ""
ElseIf item("CompanyName").Text = "United Package" Then

 item("CompanyName").Text = ""
 End If
End If

[C#] Converting a data field to an image

if (e.Item is GridDataItem)
{
 GridDataItem item = (GridDataItem)e.Item;
 if (item["CompanyName"].Text == "Federal Shipping")
 {
 item["CompanyName"].Text = "";
 }
 else if (item["CompanyName"].Text == "Speedy Express")
 {
 item["CompanyName"].Text = "";
 }
 else if (item["CompanyName"].Text == "United Package")
 {
 item["CompanyName"].Text = "";
 }
}

UI for ASP.NET AJAX

524 UI for ASP.NET AJAX

When your web application is launched and the RadGrid has been populated with data, you want to avoid going
back to the server to retrieve data you already have. This is where client-side code can be useful.
Manipulating the RadGrid and elements of the data based on user interaction is great for performance and an
immediate feedback feel of the interface. We will start this chapter by going over the properties, events and
methods of the client-side API. We will also have some example projects that showcase some great usage of
client-side coding.

Properties
You will need to access either column or row client objects in the GridTableView to manipulate data,
appearance and behavior. The following are properties accessible in the client-side API that you would most
likely use to access and alter elements of the RadGrid and that grid's GridTableViews.

To get the main RadGrid object, pass the grid's ClientID to the $find() method:

var grid = $find("<%= RadGrid1.ClientID %>").

To get the grid's root GridTableView object, use the get_masterTableView() method. Likewise you can get at
the grid header, footer using get_masterTableViewHeader() and get_masterTableViewFooter().

Once you have the the MasterTableView object you can call its client methods. Here's an example that calls the
exportToExcel() method:

19.6 Client Side Code

[JavaScript] Getting TableView, Header and Footer Client Objects

var tableView = $find("<%= RadGrid1.ClientID %>").get_masterTableView();
var header = $find("<%= RadGrid1.ClientID %>").get_masterTableViewHeader();
var footer = $find("<%= RadGrid1.ClientID %>").get_masterTableViewFooter();

[JavaScript] Exporting to Excel

function exportGrid() {
 var masterTable = $find("<%=RadGrid1.ClientID %>").get_masterTableView();

UI for ASP.NET AJAX

525 UI for ASP.NET AJAX

If you have your grid configured to show detail tables, you can get the entire collection:

Once you have a GridTableView object returned from get_masterTableView() or get_detailsTables(), you can
get at these properties:

 get_owner(): This property is of type RadGrid and is the parent of the current object.

 get_element(): Returns an HTML table which represents the respective table for the GridTableView object
rendered on the client.

 get_dataItems(): A collection which holds all data items (objects of type GridDataItem) in the respective
table.

 get_columns(): A collection which holds objects of type GridColumn (the client-side objects) in the
respective table.

 get_name(): String which represents the Name property (set on the server) for
the corresponding GridTableView client object. Can be used to identify table in grid hierarchy client-side.

 get_selectedItems(): A collection which holds all selected items (objects of type GridDataItem) in the
respective table. This collection will also include the selected items from child tables if they exist.

 get_isItemInserted(): Boolean value returns true if the table is in insert mode.

 get_pageSize(), set_pageSize(): The page size for the respective GridTableView object.

 get_currentPageIndex(), set_currentPageIndex: The current page index for the respective GridTableView
object.

 get_pageCount(): Returns the page count for the respective GridTableView object.

 get_clientDataKeyNames(): One-dimensional array which holds the key fields set through the
ClientDataKeyNames property of GridTableView on the server. To extract the key values you can use the
eventArgs.getDataKeyValue inside any row-related client event handler of RadGrid.

 get_parentView(): If called from a nested table view returns the parent table view (of type
GridTableView) in the grid hierarchy; returns null if called from the MasterTableView.

 get_parentRow(): If called from a nested table view returns the parent row (html table row: <tr>) for the
current nested hierarchical table view; returns null if called from the MasterTableView.

You can further refer to the elements of the RadGridTable using the functions below:

<GridTableViewInstance>.get_columns()[n].get_element(): the real HTML table column for the n-th column
(<th> for header cell)
<GridTableViewInstance>.get_dataItems()[n].get_element(): the real HTML table row for the n-th row (<tr>
element)

Here's an example that iterates the master table view selected items and shows the inner text of each.

 masterTable.exportToExcel();
}

[JavaScript] Getting Detail Tables

function pageLoad(sender, args) {
 var detailTables = $find("<%= RadGrid1.ClientID %>").get_detailTables();
 for (var i = 0; i < detailTables.length; i++) {
 alert(detailTables[i].get_name());
 }
}

[JavaScript] Iterating Selected Items

function showSelectedRows() {
 var dataItems = $find("<%=RadGrid1.ClientID%>").get_masterTableView().get_selectedItems();
 for (var i = 0; i < dataItems.length; i++) {

UI for ASP.NET AJAX

526 UI for ASP.NET AJAX

RadGrid Events
You can follow the life-cycle of the grid using the OnGridCreating, OnGridCreated and OnGridDestroying
client events.

GridTableView Events
The following shows some of the key events for the GridTableView (either the MasterTableView or any of the
detail tables). For a more complete list, consult the online help.

Creation

Like the RadGrid object, GridTableView has events that follow the life cycle of these objects
OnMasterTableViewCreating, OnMasterTableViewCreated, OnColumnCreating, OnColumnCreated,
OnColumnDestroying, OnRowCreating, OnRowCreated and OnRowDestroying.

Columns

You can find out when columns are resized, reordered, hidden, clicked, when the mouse hovers over a column
or when a context menu appears for a column heading:

 OnColumnResizing, OnColumnResized: These events fire before and after a column is resized.

 OnColumnSwapping, OnColumnSwapped: These events fire before two columns are swapped.

 OnColumnMovingToLeft, OnColumnMovedToLeft, OnColumnMovingToRight, OnColumnMovedToRight:
These events fire before and after columns are moved left or right.

 OnColumnClick, OnColumnDblClick: These events fire before and after a column is clicked.

 OnColumnMouseOver, OnColumnMouseOut: These events fire when the mouse first hovers over a column
and then moves away from the column.

 OnColumnShowing, OnColumnShown: These events fire before and after a column is shown.

 OnColumnContextMenu: This event is fired when the context menu for a column is called.

 OnColumnHiding, OnColumnHidden, OnColumnShowing, OnColumnShown: These events fire before and
after a column changes visibility.

Rows

A parallel set of events exist for grid columns:

 OnRowResizing, OnRowResized: These events fire before and after a row is resized.

 OnRowSelecting, OnRowSelected, OnRowDeselecting, OnRowDeselected: These events occur before and
after the row selection is toggled..

 OnRowClick, OnRowDblClick: These events fire when a row is clicked/double-clicked.

 OnRowMouseOver, OnRowMouseOut: These events fire when the mouse first hovers over a row and again
when the mouse leaves the row.

 OnRowContextMenu: This event is fired when the context menu for a row is called.

 OnRowShowing, OnRowShown, OnRowHiding, OnRowHidden: These events fire before and after a row's

 alert(i + ": " + dataItems[i].get_element().innerText);
 }
}

[JavaScript] Handling the OnGridCreating Event

function gridCreating(sender, args) {
 alert("creating: " + sender.ClientID);
}

UI for ASP.NET AJAX

527 UI for ASP.NET AJAX

visibility is toggled.

 OnRowDeleting, OnRowDeleted: These events fire before and after a row is deleted (client-side delete).

Rows have an additional set of events to handle drag and drop operations on the client side:

 OnRowDragStarted: This event is fired when a row is about to be dragged.

 OnRowDropping: This event is fired before a row is dropped.

 OnRowDropped: This event is fired after a row is dropped.

You can also track the active row:

 OnActiveRowChanging: This event is fired before the active row change.

 OnActiveRowChanged: This event is fired after the active row is changed.

And finally, you can be notified when a row is about to be bound on the client using OnRowDataBound.

Group and Hierarchy Expansion

GridTableView has a series of events for the group and hierarchy expanding and collapsing:
OnHierarchyExpanding, OnHierarchyExpanded, OnHierarchyCollapsing, OnHierarchyCollapsed,
OnGroupExpanding, OnGroupExpanded, OnGroupCollapsing and OnGroupCollapsed. As with the other
RadControls client API, the "ing" events can be canceled using the args.set_cancel(true) method.

Command

OnCommand: This event is fired for each grid command which is about to be triggered (sorting, paging,
filtering, editing, etc.) before postback/ajax request .

Methods
After you have retrieved the column or data item that you want to change, these are the methods you will most
likely call to affect that change.

Data item methods

Using GridTableView methods you can toggle selection, visibility and the collapse/expand state of individual
items:

 selectItem (gridItem), deselectItem(gridItem): The row passed as an argument will become
selected/deselected.

 hideItem(index), showItem(index): Hide or show the row at the indexed position.

 expandItem(index), collapseItem(index): Expand or show the indexed row. If the index corresponds to
nested table item, all parent items will be expanded to top. Applicable for HierarchyLoadMode = Client
only!

If you have items selected in the grid, you can call methods to clear, edit, update and delete the selected
items all at once:

 clearSelectedItems(): Method which clears the selected items for the respective GridTableView client
object. This method will clear the selected items from the table's child tables (meaningful in hierarchical
grid only).

 editSelectedItems(): Method which switches all selected items in the grid in edit mode.

[JavaScript] Collapsing an item

function CollapseFirstDetailTableFirstItem()
{
 $find("<%= RadGrid1.Items[0].ChildItem.NestedTableViews[0].ClientID %>").collapseItem(0);
}

UI for ASP.NET AJAX

528 UI for ASP.NET AJAX

 updateSelectedItems(): Method which updates all edited items in the grid. The new data will be taken
from the edit form editors.

 deleteSelectedItems(): Method which deletes all selected items in the grid.

You can set the grid's edit mode using GridTableView methods:

 showInsertItem(): Method which switches the grid in insert mode and displays the insertion form.

 cancelUpdate(gridItem): Method which cancels the update for the edited table row passed as an argument
or the row corresponding to the index passed as an argument. If you have several items switched in edit
mode, you can cancel the update for all of them with subsequent calls to this method.

 cancelInsert(): Method which cancels the insert action and switches the grid in regular mode.

 editItem(gridItem): Method which switches the table row passed as an argument or the row corresponding
to the index passed as an argument in edit mode. If you set AllowMultiRowEdit to true, you can switch
multiple grid items in edit mode with subsequent calls to this method.

 editAllItems(): Method which switches all GridDataItems in edit mode.

 cancelAll(): Cancels the edit mode for all grid items that are switched in edit mode prior to the method
call.

...and you can perform CRUD operations directly on the client. The data for insertion or update is taken from
the form editor's fields.

 deleteItem(gridItem): Method which deletes the table row passed as an argument or the row
corresponding to the index passed as an argument.

 updateItem(gridItem): Method which updates the edited table row passed as an argument or the row
corresponding to the index passed as an argument. If you have several items switched in edit mode, you
can update all of them with subsequent calls to this method.

 insertItem(): Method which inserts new table row to the grid.

Grid column methods

Handle column sizing, order, visibility and grouping using these GridTableView methods:

 resizeColumn(columnIndex, columnWidth): The column at the specified columnIndex will be resized to

[JavaScript] Deleting a selected item

function DeleteSelectedGridItems()
{
 var masterTable = $find("<%= RadGrid1.ClientID %>").get_masterTableView();
 masterTable.deleteSelectedItems();
}

[JavaScript] Using cancelAll()

function CancelEditMode()
{
 var masterTable = $find("<%= RadGrid1.ClientID %>").get_masterTableView();
 masterTable.cancelAll();
}

[JavaScript] Using insertItem()

function AddNewItem()
{
 var masterTable = $find("<%= RadGrid1.ClientID %>").get_masterTableView();
 masterTable.insertItem();
}

UI for ASP.NET AJAX

529 UI for ASP.NET AJAX

the width specified through the columnWidth argument.

 swapColumns(colUniqueName1, colUniqueName2): The columns with unique names colUniqueName1 and
colUniqueName2 will be swapped.

 reorderColumns(colUniqueName1, colUniqueName2): colUniqueName1 is the "from" unique name of the
table column while colUniqueName2 is the "to" unique name of the column (i.e. the new location).

 moveColumnToLeft(columnIndex), moveColumnToRight(columnIndex): The column at the specified
columnIndex will be moved to the left or right.

 hideColumn(columnIndex), showColumn(columnIndex): Hide or show the column at the specified
columnIndex position.

 groupColumn(colUniqueName), ungroupColumn(colUniqueName): Group or un-group by the column with
specified UniqueName.

What are good things to do with Client API
When working with client-side code, the advantage is that you can use the client's readily available processing
power to manipulate the web application as long as no information is needed from the server. This makes your
server's job easier and frees up cycles for things like retrieving and transferring data to the world. Changing the
behavior, appearance and data in the grid based on user interaction is a great use of client-side code.

Client-side databinding
RadGrid for ASP.NET AJAX supports client-side binding to web services or page methods as demonstrated in this
(http://demos.telerik.com/aspnet-ajax/grid/examples/client/declarativedatabinding/defaultcs.aspx) and
this (http://demos.telerik.com/aspnet-ajax/grid/examples/client/databinding/defaultcs.aspx) online demo
of the product. In order to assign data source for the grid and refresh its state on the client, utilize the
set_dataSource(dataSource) (http://www.telerik.com/help/aspnet-ajax/set-datasource.html) and dataBind
() (http://www.telerik.com/help/aspnet-ajax/databind.html) methods from its client-side API. Keep in mind
that the data source passed as an argument to the set_dataSource method should have JSON signature which
can be serialized by a web service or a page method.

The following example demonstrates how to find a control on a web form and load data into a grid on the
client.

1. First, create a new web application.

2. You will need an XML file that contains sets of values. In this example we have an XML file that I have put
in the App_Data folder of the project with values that look like the screenshot below. You can get this file
in the complete demonstration or create your own:

You can find the complete source for this project at:
\VS Projects\Grid\RadGridClientSideAPI

Databinding on the client only works in RadControls for ASP.NET AJAX 2008 Q2 and later.

UI for ASP.NET AJAX

530 UI for ASP.NET AJAX

3. Add the Contact class definition listed below. You can place this in a separate Contact.cs file or to the end
of the default web page code-behind.
[VB] The Contact class used to define the data structure

Public Class Contact
 Private _ID As Integer
 Private _Name As String
 Private _Age As Integer
 Private _Sex As String
 Private _Email As String
 Private _Phone As String
 Public Property ID() As Integer
 Get
 Return Me._ID
 End Get
 Set(ByVal value As Integer)
 Me._ID = value
 End Set
 End Property
 Public Property Name() As String
 Get
 Return Me._Name
 End Get
 Set(ByVal value As String)
 Me._Name = value
 End Set
 End Property
 Public Property Age() As Integer
 Get
 Return Me._Age
 End Get
 Set(ByVal value As Integer)
 Me._Age = value
 End Set
 End Property

UI for ASP.NET AJAX

531 UI for ASP.NET AJAX

4. Now create the Webmethod that parses the XML file and returns the data as a list of objects.

 Public Property Sex() As String
 Get
 Return Me._Sex
 End Get
 Set(ByVal value As String)
 Me._Sex = value
 End Set
 End Property
 Public Property Email() As String
 Get
 Return Me._Email
 End Get
 Set(ByVal value As String)
 Me._Email = value
 End Set
 End Property
 Public Property Phone() As String
 Get
 Return Me._Phone
 End Get
 Set(ByVal value As String)
 Me._Phone = value
 End Set
 End Property
End Class

[C#] The Contact class used to define the data structure

public class Contact
{
 public int ID { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
 public string Sex { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
}

[VB] Parsing the XML file and returning a list of Contact objects

 <WebMethod()> _
 Public Shared Function GetData() As List(Of Contact)
 Dim path As String = HttpContext.Current.Server.MapPath("App_Data\contacts.xml")
 Dim data As DataSet = New DataSet()
 data.ReadXml(path)
 Dim contacts As List(Of Contact) = New List(Of Contact)()
 For Each row As DataRow In data.Tables(0).Rows
 Dim contact = New Contact()
 contact.ID = CType(row.Item("ID"), Integer)
 contact.Name = CType(row.Item("Name"), String)
 contact.Age = CType(row.Item("Age"), Integer)
 contact.Sex = CType(row.Item("Sex"), String)
 contact.Email = CType(row.Item("Email"), String)
 contact.Phone = CType(row.Item("Phone"), String)

UI for ASP.NET AJAX

532 UI for ASP.NET AJAX

5. Now drop a RadGrid onto your web form.

6. In the RadGrid's Properties window, change EnableViewState in the Behavior catagory to "false".

7. Add a RadScriptManager to the form using the RadGrid's Smart Tag.

8. Register Telerik.Web.UI.WebResources.axd using the RadScriptManager's Smart tag.

9. In the RadScriptManager's Properties View, change the EnablePageMethods property to "true".

10. We need to have the columns in this grid already created to match the fields in the Contact object. You
can add them manually in the Property Builder with a DataKey name of "ID" or you can add the following
code in the markup in your grid:

 contacts.Add(contact)
 Next
 Return contacts
 End Function

[C#] Parsing the XML file and returning a list of Contact objects

[WebMethod]
public static List<Contact> GetData()
{
 var path = HttpContext.Current.Server.MapPath(@"App_Data\contacts.xml");
 var data = new DataSet();
 data.ReadXml(path);
 var contacts = new List<Contact>();
 foreach (DataRow row in data.Tables[0].Rows)
 {
 contacts.Add(new Contact {
 ID = Convert.ToInt32(row["ID"]),
 Name = Convert.ToString(row["Name"]),
 Age = Convert.ToInt32(row["Age"]),
 Sex = Convert.ToString(row["Sex"]),
 Email = Convert.ToString(row["Email"]),
 Phone = Convert.ToString(row["Phone"])
 });
 }
 return contacts;
}

[ASP.NET] MasterTableView of the RadGrid including columns

<MasterTableView DataKeyNames="ID">
 <Columns>
 <telerik:GridBoundColumn DataField="ID"
 HeaderText="ID" />
 <telerik:GridBoundColumn DataField="Name"
 HeaderText="Name" />
 <telerik:GridBoundColumn DataField="Age"
 HeaderText="Age" />
 <telerik:GridBoundColumn DataField="Sex"
 HeaderText="Sex" />
 <telerik:GridBoundColumn DataField="Email"
 HeaderText="Email" />
 <telerik:GridBoundColumn DataField="Phone"
 HeaderText="Phone" />
 </Columns>

UI for ASP.NET AJAX

533 UI for ASP.NET AJAX

11. In the markup, add the following javascript. This will retrieve data from a web method when the page
loads in the "pageLoad" event. The updateGrid() function, which is executed in response to the GetData()
function call, finds the control on the page called "RadGrid1", gets its MasterTableView, sets the
datasource to the list of Contacts and calls the RadGrid client dataBind() method to bind the data to the
table.

12. Add a reference to the OnCommand event in the markup as shown below.

Now when you run the application you should see a fully populated grid. This code takes as much of the burden
of databinding to the client as possible.

</MasterTableView>

You can add static methods to an ASP.NET page and qualify them as Web methods. Then in your
JavaScript you call PageMethods.<my page method name>, and the static method declared within your
page gets called.

[ASP.NET] Javascript functions for databinding

<script type="text/javascript">
 function pageLoad(sender, args)
 {
 // Load data from web service
 PageMethods.GetData(updateGrid);
 }

 function updateGrid(result)
 {
 var tableView = $find("<%= RadGrid1.ClientID %>").get_masterTableView();
 tableView.set_dataSource(result);
 tableView.dataBind();
 }

 function RadGrid1_Command(sender, args)
 {
 // Handle the RadGrid's Command event here
 }

</script>

[ASP.NET] OnCommand event binding

<ClientSettings>
 <ClientEvents OnCommand="RadGrid1_Command" />
</ClientSettings>

As of this writing, handling the OnCommand event is required to avoid errors. It's expected that in later
versions of the product that this limitation will be removed.

UI for ASP.NET AJAX

534 UI for ASP.NET AJAX

Client-side cell selection
Since Q1 2012 RadGrid provides Client-side cell selection feature.

This example demonstrates RadGrid's cell selection functionality which is controlled through the
ClientSettings.Selecting.CellSelectionMode property:

 SingleCell: switches on the single cell selection functionality.

 MutliCell: allows for the selection of multiple cells.

 Column: enables single column selection by clicking on a grid column header.

 MultiColumn: turns on multi column selection for RadGrid.

RadGrid's cells can be selected with the mouse, through the keyboard or both. Regardless of the method cell
selection is applied through, the following three rules always hold true: if a given cell is currently in a non-
selected state and cell selection is inflicted upon it, then the cell is selected; if a given cell is currently in a
selected state and cell selection is inflicted upon it, the cell will be deselected; if cell selection is applied to a
certain cell or a set of cells and neither the Shift nor the Control keys are being held, then any previously
selected cells will be deselected. The same rules go for column selection.

With this example we will illustrate how to access the data by collecting selected cell values and displaying
them in a div elements.

1. Using the same project from the last exercise, change the grid's width to 700 pixels.

2. Add two div elements.

3. In the markup, add these javascript functions:

[ASP.NET] Javascript function that will fire for each row created

<script type="text/javascript">

UI for ASP.NET AJAX

535 UI for ASP.NET AJAX

function cellSelected(sender, args) {

 var columnName = args.get_column().get_uniqueName();
 var customer = args.get_gridDataItem().getDataKeyValue("CustomerID")

 var cellInfo = "Cell: " + columnName + " for " + customer + "
selected
";

 $get("cellSelectedEvents").innerHTML += cellInfo;
 }
 function cellDeselected(sender, args) {
 var columnName = args.get_column().get_uniqueName();
 var customer = args.get_gridDataItem().getDataKeyValue("CustomerID")

 var cellInfo = "Cell: " + columnName + " for " + customer + "
deselected
";

 $get("cellDeselectedEvents").innerHTML += cellInfo;
 }

 function selectColumn() {
 var columnName = $get("columnNameSelect").value.replace(" ", "");

 var columns = $find("<%= RadGrid1.ClientID %>").get_masterTableView
().get_columns();

 var col;

 for (var i = 0; i < columns.length; i++) {
 if (columns[i].get_uniqueName() == columnName) {
 col = columns[i];
 break;
 }
 }

 if (col != null) {
 col.set_selected(true);
 }
 }

 function deselectColumn() {
 var columnName = $get("columnNameDeselect").value.replace(" ", "");

 var columns = $find("<%= RadGrid1.ClientID %>").get_masterTableView
().get_columns();

 var col;

 for (var i = 0; i < columns.length; i++) {
 if (columns[i].get_uniqueName() == columnName) {
 col = columns[i];
 break;
 }
 }

UI for ASP.NET AJAX

536 UI for ASP.NET AJAX

4. Finally we need to bind the cellSelection and cellDeselection functions to the respective events of the
RadGrid.

Now when you run the web application and select some cell, the cell will be highlighted with yellow color and
its data will be added to the div elements above the grid.

This example is a great reference for using the RadGrid in client-side code, as retrieving values, setting events
are very common tasks.

In this chapter you looked at the RadGrid control and saw some of the powerful features it provides. You
created a simple application that bound the grid to live data and manipulated the auto-generated columns.

 if (col != null) {
 col.set_selected(false);
 }

 }</script>

[ASP.NET] Binding the OnRowCreated event

<ClientEvents OnCellSelected="cellSelected" OnCellDeselected="cellDeselected" />

19.7 Summary

UI for ASP.NET AJAX

537 UI for ASP.NET AJAX

You also explored the most fundamental features of the RadGrid such as Sorting, Filtering, Grouping
and Paging.

You worked with an example of implementing CRUD maintenance manually in server-side code.

You learned how to access data values and manipulated the appearance of a column in server-side code by
replacing cell values with an HTML image tag.

You implemented the powerful new client-side databinding feature of the RadGrid which showed the
overwhelming versatility of the RadGrid to bind to any form of data.

Finally, you learned some advanced client-side coding techniques, including accessing data values,
manipulating appearance and binding to client-side events to make a responsive and flashy interface.

This article will introduce you to the main specifics of creating, using and customizing RadGrid columns. We
will start by creating a simple web application with a single RadGrid. We will bind the grid to a datasource and
take a quick look at how to manipulate the grid's columns.

Auto-generated Columns
1. Start by creating a web application.

2. With the new default.aspx page in design view, open the Toolbox and locate the RadGrid component,
which looks like this:

3. Drag it onto your design surface. Immediately, the RadGrid’s Smart Tag will open.

4. Configure the datasource to connect to the AdventureWorks database.

19.8 Columns

UI for ASP.NET AJAX

538 UI for ASP.NET AJAX

5. In the Configure the Select Statement step, select the "Specify a custom SQL statement" option and click
Next. In the SELECT statement tab, enter the following query:

6. Click Next, test your query and click Finished.

7. You may recall that when the RadGrid’s Smart Tag was first presented, the "Auto-generate columns at
runtime" option is checked by default.

Because we did so, the columns are automatically added to the RadGrid on our design surface. When the
RadGrid is displayed once again, the columns will be captioned with the corresponding columns from the
database table. Automatic column generation saves a lot of manual work by automatically matching the
data types with the appropriate column types, such as checkboxes for boolean fields.

Manipulating Columns
1. Open the RadGrid's Smart Tag.

2. Click on the Open Property Builder link.

[SQL] Vendor select statement

SELECT * FROM Purchasing.[Vendor]

UI for ASP.NET AJAX

539 UI for ASP.NET AJAX

This displays the Telerik RadGrid Property editor dialog:

Let’s consider the columns that are being displayed, and how we might present them differently:

Vendor ID: This is a data key assigned automatically by the database, so it will never be editable.
Furthermore, its primary function is to relate the vendor records to data in other tables, so although it has
significance within the database, it has no intrinsic meaning to the end user. Set the Visible property to
"false" to hide this column.

CreditRating: This is a numeric score with a value between 1 and 5, so it’s pretty clear that the heading is
forcing the column to be much wider than it needs to be. One way to solve this problem is to shorten the
column header and provide a tooltip with the full "Credit Rating" description. Shorten the header by
changing the HeaderText property found in the Appearance category to "CR". Similarly, shorten the
headings for the columns "PreferredVendorStatus" to "Stat", and "ActiveFlag" to "Act" Adding the tooltips

UI for ASP.NET AJAX

540 UI for ASP.NET AJAX

takes a little bit of code:

[VB] Adding tooltips to column headers

Imports Telerik.Web.UI
Protected Sub RadGrid1_ItemCreated(ByVal sender As Object, ByVal e As GridItemEventArgs)
 "Check for GridHeaderItem if you wish tooltips only for the header cells
 If TypeOf e.Item Is GridHeaderItem Then
 Dim headerItem As GridHeaderItem = TryCast(e.Item, GridHeaderItem)
 headerItem("CreditRating").ToolTip = "CreditRating"
 headerItem("PreferredVendorStatus").ToolTip = "PreferredVendorStatus"
 headerItem("ActiveFlag").ToolTip = "ActiveFlag"
 End If
End Sub

VB.NET

If you run the application at this point, you’ll see that the columns resize themselves dynamically to
accommodate the actual data. Note the tooltip above the Credit Rating column.

You will also notice that the "ModifiedDate" column shows the date and time. Since the date portion is
probably all you would care about in this context, let's take a look at how to set the format.

3. Close the web application and open the Property Builder again.

4. Select the Master Table | Columns | Modified Date entry to display the properties for the Modified Date
column.

5. Locate the DataFormatString property in the Behavior section and enter the format string
"{0:MM/dd/yyyy}" without the quote marks.

When you run the application, it will look something like this:

[C#] Adding tooltips to column headers

using Telerik.Web.UI;
protected void RadGrid1_ItemCreated(object sender, GridItemEventArgs e)
{
 //Check for GridHeaderItem if you wish tooltips only for the header cells
 if (e.Item is GridHeaderItem)
 {
 GridHeaderItem headerItem = e.Item as GridHeaderItem;
 headerItem["CreditRating"].ToolTip = "CreditRating";
 headerItem["PreferredVendorStatus"].ToolTip = "PreferredVendorStatus";
 headerItem["ActiveFlag"].ToolTip = "ActiveFlag";
 }
}

The format string follows the Microsoft formatting conventions. The "0" at the beginning of the string
indicates that the argument passed in to the formatter should be used as input.

UI for ASP.NET AJAX

541 UI for ASP.NET AJAX

Declarative Column Creation
Whenever you connect the Grid to a data source for the first time the columns are automatically added to the
GridColumnCollection, and more often than not you need to remove unwanted columns from the collection
rather than adding them declaratively. However, if you have removed a column by mistake, it’s worthwhile to
know how to add the column back in to the collection.

If you have turned off automatic column generation in the smart tag, there will be a new smart tag entry
available to access the columns collection editor:

Clicking the ellipses will display the Grid Column Collection Editor. The same editor can be invoked by
expanding the MasterTableView property for the RadGrid, and clicking the ellipses on the Columns property
there:

This editor allows access to the same properties that you’d find in the property builder. If you have removed a
column that you later find you’d rather include in the display, you can add it back here. Start by clicking on the

UI for ASP.NET AJAX

542 UI for ASP.NET AJAX

Add button. This will expand a list of different column types you can add to your grid:

 GridBoundColumn: This will typically be used for unconstrained data; something other than a Boolean
value or list-type data (which you would put in a GridDropDownColumn).

 GridCheckBoxColumn: Used for Boolean data.

 GridDropDownColumn: When the data entry choices are limited to items in a list, use this column type.
When the column is in display mode, it will look just like a GridBoundColumn. You can also specify a data
source, list text field, and list value field, so that in edit mode, the input is limited to the elements of the
list.

 GridTemplateColumn: There’s a extensive discussion of templates included in the RadGrid
documentation. When you create a template column, you have complete control over the contents of the
template. You can include textboxes and images, set the background, control the arrangement and
presentation of controls using tables, include labels; in short, there’s a complete web page environment
contained within each cell of the grid.

 GridEditCommandColumn: The EditCommandColumn enables editing of the data contained in the row.
When you add a GridEditCommandColumn, the ButtonType property can be set to one of three types:
LinkButton, PushButton, and ImageButton.

 GridButtonColumn: A button column is very similar to the GridEditCommandColumn, except that you (not
the designer) specify the name of the command that is sent to the web server for execution.

 GridHyperLinkColumn: As the name implies, this column has properties for the text and a URL to create a
hypertext link.

 There are also GridDateTimeColumn, GridMaskedColumn, GridNumericColumn, GridCalculatedColumn,
GridClientSelectColumn, GridHTMLEditorColumn, GridImageColumn, GridBinaryImageColumn,
GridRatingColumn, GridAttachmentColumn - you can find more information about the rest of the
columns in the Column Types help topic in the online documentation.

Column Resizing
If you want the columns in your grid to be resizable, set the ClientSettings.Resizing.AllowColumnResize
property to True. When AllowColumnResize is True, users can resize columns by dragging the handle between
column headers. The default value for this property is false.

The resizing feature can be adjusted using the following properties:

 When resizing is enabled (AllowColumnResize is True), you can disable column resizing for individual
columns by setting the column's Resizable property to False. Setting a column"s Resizable property has no
effect if AllowColumnResize is False.

 To specify whether columns are resized using real-time resizing, set the
ClientSettings.Resizing.EnableRealTimeResizeproperty. The default value for this property is False.

 The ClientSettings.Resizing.ResizeGridOnColumnResize property lets you specify whether the entire grid
changes size when its columns are resized. If you set ResizeGridOnColumnResize to True, the grid changes
its size dynamically when the user resizes a column. All other columns retain their original sizes.

 The ClientSettings.Resizing.ClipCellContentOnResize property controls whether users can resize a column
to the point where it can't display its entire contents. When ClipCellContentOnResize is True (the default),
users can resize a column so that it is too narrow to display its entire contents. Instead, the content is
clipped.

 Grid columns also support the "resize to fit" functionality. Double-clicking the resize handle or choosing
"Best Fit" from the grid header context menu will automatically resize the target column to fit the widest
cell's content without wrapping. To enable this feature you need to allow column resizing and set
ClientSettings.Resizing.AllowResizeToFit to true.

You can see column resizing in action in the online demo available here (http://demos.telerik.com/aspnet-
ajax/grid/examples/client/resizing/defaultcs.aspx).

UI for ASP.NET AJAX

543 UI for ASP.NET AJAX

Column Reordering
You can allow users to set the order of the grid columns by dragging and dropping them. Just set the
ClientSettings.AllowColumnsReorder property to True. There are two possible modes for column reordering:
client and server-side. If you want to reorder columns on client, set the
ClientSettings.ReorderColumnsOnClient property to True.

 When columns are reordered on the client, The ClientSettings.ColumnsReorderMethod property
determines what happens when the user drops a column in a new position. When ColumnsReorderMethod is
"Swap" (the default), the dragged column switches places with the column that is currently in the target
position. When ColumnsReorderMethod is "Reorder", all the columns between the dragged column's start
position and its drop position shift over to make room for the dragged column. Changes do not persist on
the server until after a postback.

 When columns are reordered on the server, the grid uses the "swap" method multiple times to re-order
columns.

You can see column reordering in action in the online demo available here (http://demos.telerik.com/aspnet-
ajax/grid/examples/client/resizing/defaultcs.aspx).

Column Aggregates
The GridBoundColumn object has an Aggregate property that you can set to specify a function for aggregating
the values that the column displays. The Aggregate property can be set to any of the following values: "Sum",
"Min", "Max", "Last", "First", "Count", "Avg", or "Custom". When you set the Aggregate property to "Custom", the
grid raises an OnCustomAggregate event, where you can calculate the aggregate in server-side code and assign
the result to the Result property of the event arguments object.

The grid calculates aggregated values if the ShowFooter property is set to True. The grid footer displays
aggregates that are calculated based on all the data from the data source, except for any values that are
excluded by a filter expression. When grouping is enabled in the column, you can display group aggregates by
setting the ShowGroupFooter property to True.

The Column Aggregates feature is demonstrated in the online demo available here
(http://demos.telerik.com/aspnet-ajax/grid/examples/generalfeatures/aggregates/defaultcs.aspx).

Multi-column headers
The multi-column headers of the RadGrid represent a tree-like structure where one or more columns can be
grouped together by a common header. That common header in its turn can be child of another upper multi-
column header which can also span both columns and other headers.

Structure rules:

 A MultiColumn Header can be a child of only one other multicolumn header.

 A MultiColumn Header must span at least one column.

 A MultiColumn Header should be defined only for a single row header per level. Hence a multicolumn
header always has RowSpan=1.

 A column can have as a parent only one MultiColumn Header.

 Each column header can span only a single column. Hence a column header always has ColSpan=1.

 A column surrounded (in order of definition) by other columns with common multi header cannot have a
different multicolumn header on the same or higher row level than the columns that surround it. This rule
ensures proper rendering and avoids overlapping of multicolumn headers.

Definition:

In order to define the MultiColumn Headers in RadGrid Column Groups should be set.

ASPX

UI for ASP.NET AJAX

544 UI for ASP.NET AJAX

In order to add the needed column in the MultiColumn Header the ColumnGroupName property should be used:

The above definition will be presented in the following output:

Rows in RadGrid are presented by the GridItem class and its descendants. There are two types of rows:

 Static rows - always present in the grid structure regardless of whether they are visible or not. The number
of these items is always known. To this group belong Header and Footer rows, CommandItem, Status bar
item and Pager row.

 Dynamic rows - each dynamic row in the grid represents a record from the specified data source. Dynamic
rows are represented by the GridDataItem class (a descendent of GridItem).

Each GridTableView has a set of rows (the Items collection) of type GridDataItem. The collection does not
provide any methods to add or remove items. However, you can control the content of an item by providing a
handler for the ItemCreated event. The number of dynamic rows depends on the number of rows (records) in
the Data Source and the number of groups (if grouping is enabled). Dynamic rows consist of data items, nested-
view items, group-header items and edit-form items.

Data items can come in two types:
Normal Rows - these are the odd rows of the grid. The appearance of the normal rows is controlled by the
ItemStyle property.
Alternating Rows - these are the even rows of the grid. The appearance of the alternating rows is controlled by
the AlternatingItemStyle property.

Below are described the main grid row features.

Row Resizing
You can allow row resizing by setting the ClientSettings.Resizing.AllowRowResize property to true. When you
set this property, RadGrid automatically generates a column of type GridRowIndicatorColumn, to make it
easier for users to resize rows. Rows can be resized by dragging any part of their bottom edge, so if you prefer
to hide the RowIndicatorColumn, please set ClientSettings.Resizing.ShowRowIndicatorColumn to false.

You can see row resizing in action here (http://demos.telerik.com/aspnet-
ajax/grid/examples/client/resizing/defaultcs.aspx).

<ColumnGroups>
 <telerik:GridColumnGroup HeaderText="Product Details" Name="ProductDetails"/>
 <telerik:GridColumnGroup HeaderText="Location" Name="Location"/>
 <telerik:GridColumnGroup HeaderText="Category" Name="Category"
ParentGroupName="ProductDetails"/>
 <telerik:GridColumnGroup HeaderText="Order Details" Name="OrderDetails"
ParentGroupName="ProductDetails"/>
</ColumnGroups>

ASPX

<telerik:GridBoundColumn UniqueName="Address" DataField="Address" ColumnGroupName="Location"
HeaderText="Address"/>

Frozen columns, show/hide columns on the client and resizing functionalities are officially not supported
with multi-column headers.

19.9 Rows

UI for ASP.NET AJAX

545 UI for ASP.NET AJAX

Row Reordering
RadGrid exposes flexible event-driven mechanism to drag and drop grid records to reorder them within the
same grid, move them to different grid instance or drop them over other html element on the page. In order to
enable drag and drop of grid items, you need to set the two boolean grid properties to true, namely
AllowRowsDragDrop and AllowRowSelect. This will make the grid data rows draggable and the end user will be
able to relocate them if needed. Additionally, you can define a GridDragDropColumn in your GridTableView's
Columns collection. This will make your grid items draggable only when grabbed by the drag handle in the
GridDragDropColumn.

The event-driven model which allows you to process and complete the drag and drop operation can be
separated into two phases: client-side and server-side phase.

 Client-side phase: there are three client grid events exposed to handle drag/drop action:
OnRowDragStarted (cancelable), OnRowDropping (cancelable) and OnRowDropped. The
OnRowDragStarted event can be intercepted if you want to perform some conditional check and
determine whether to cancel the drag operation or not. The OnRowDropping event should be attached to
identify the target element on which the dragged grid record is dropped. If this element does not meet
your criteria for acceptable target, cancel the operation. The OnRowDropped event can be handled if you
would like to execute some extra code logic prior to the server-side OnRowDrop event rising.

 Server-side phase: On the server there is a single event (named OnRowDrop). Subscribing to this event
allows you to reorder the items in the source grid or remove them and append these rows to a destination
grid instance. The sequence of actions you will have to undertake in order to change the source structure
may vary because this depends strictly on the underlying data source and its data model. The common
logic in all cases, however, is that you can use three arguments passed in the handler to accomplish the
task:

1. e.HtmlElement - holds the html element (or grid item).

2. e.DestDataItem - the destination grid item object (either GridDataItem or GridNoRecordsItem).

3. e.DraggedItems - a collection of GridDataItems which holds the rows that are taking part in the current
drop operation.

4. e.DestinationGrid - a reference to the grid instance to which the row has been dragged to.

5. e.DestinationTableView - a reference to the table to which the row has been draggged to, points to the
MasterTableView or detail table in hierarchical grid.

Combining the client and server part completes the circle and separates logically each part of the drag and
drop process until it is finalized.

You can see a live demo of the drag and drop functionality at this address (http://demos.telerik.com/aspnet-
ajax/grid/examples/programming/draganddrop/defaultcs.aspx).

UI for ASP.NET AJAX

546 UI for ASP.NET AJAX

 Explore features of the Editor control.

 Learn how to configure RadEditor for the runtime environment.

 Explore the RadEditor design time interface including the Smart Tag and major property groups.

 Learn how to configure the tools file.

 Learn some advanced tasks including creating custom modules, content filters, buttons and drop down
lists. You will also learn how to optimize for multiple editors and localize RadEditor for international use.

 Learn how to control RadEditor using the client API.

RadEditor is a powerful but lightweight editor control you can use in your web applications where you need a
full-featured editor, not a text box. It comes loaded with lots of built-in goodies like pre-defined buttons, drop
down lists, File Browser dialogs and context menus that perform any tasks you are likely to need. If the built-in
tools don't fit the bill, RadEditor can be extensively customized. Some of the hottest features are:

 Unmatched Loading Speed

 Minimal Script Size

 New Semantic Rendering

 Out-of-the-box XHTML-enabled Output

 Industry-best Cross-browser Support

 Single-file, Drag-and-drop Deployment (all editor resources, including the dialogs reside in the same dll)

 Multilevel Undo/Redo with Action Trails

 7 Ways to Paste from Word

 AJAX-Based File Browser Dialogs

 Full keyboard accessibility

 Flexible Skinning mechanism

 Simplified and intuitive toolbar configuration

 Ability to have editors with different skins on the same page

20 RadEditor

20.1 Objectives

20.2 Introduction

UI for ASP.NET AJAX

547 UI for ASP.NET AJAX

Using RadEditor with Dialogs and Spell Check
The minimum steps to getting RadEditor up and running in a browser are:

1. In a new ASP.NET Web Application, drag a RadEditor to the default page.

2. In the Smart tag select the following links:

1. Enable RadEditor Dialogs

2. Enable Spell Check for RadEditor

20.3 Getting Started

UI for ASP.NET AJAX

548 UI for ASP.NET AJAX

3. Locate the RadControls installation directory \App_Data folder and copy the contents to your project's
\App_Data folder. Note: You really only need to copy the en-us.tdf dictionary file to allow spell checking.

4. This next part is not "minimal", but is still included here. From the Smart Tag, drop down the list of Skins
and select the "Vista" skin.

5. Press Ctl-F5 to run the application. In the example below, some marketing text has been pasted to editor.

 You can paste any text or HTML that is on your clipboard using the paste button.

 Try clicking the spell check button. The spell check occurs right in the editor content area and drops
down a list of suggestions at each misspelled word with the industry standard options for Ignore, Add to

UI for ASP.NET AJAX

549 UI for ASP.NET AJAX

Dictionary, etc. When you're done you can click the Finish Spellchecking button to retain your changes or
Cancel to abandon your changes. Spell checking was enabled by the Smart Tag "Enable Spell Check for
RadEditor" link.

 Try clicking the Find button and locate some string of text. The option that allows the Find dialog to
appear, or any other dialog that RadEditor supports, is enabled by the Smart Tag option you took labeled
"Enable RadEditor Dialogs".

RadEditor Elements
RadEditor is made up of toolbars, the content area and various modules. The toolbar in turn contains buttons,
dropdown lists, toolstrips and dialogs.

UI for ASP.NET AJAX

550 UI for ASP.NET AJAX

 Toolbars: The main elements of RadEditor are the Toolbars. They are in fact containers, which
accommodate the buttons and dropdown lists of the various tools.

 Buttons: Used to edit content, to launch different dialogs, to Undo / Redo the content, save or cancel the
changes, etc.

 Dropdowns: Used to format the font appearance (family, size, color, apply css class) as well as to insert
objects into the content area such as html code snippets.

 ToolStrip: Dropdowns that contain a group of tools with related functionality and can be a very convenient
means of arranging tools used in the editor.

 Dialogs: Used to insert objects into the content area such as images, links, media and flash files.

 Context Menus: Shortcut menus that include commands associated with objects on the screen. With
RadEditor, you can use the default context menus as well as specify custom menus for various HTML
elements (e.g. different context menus for images, tables, hyperlinks etc.) You can also disable the
context menus for certain elements (e.g. for tables).

 Modules: Special tools used to provide extra information such as Dom Inspector, real time HTML Viewer,
Statistics module

 Editor Mode buttons: Used to switch between the editor's viewing modes: Design, HTML and Preview.

 Resize Handle: Lets the user drag the editor boundaries within the browser.

In the Visual Studio designer, you can configure the RadEditor control using the Smart Tag and the Properties
Window.

Smart Tag

20.4 Designer Interface

UI for ASP.NET AJAX

551 UI for ASP.NET AJAX

The RadEditor Smart Tag contains a few control-specific entries in addition to the standard Ajax Resources, Skin
selection, and Learning center sections. The two entries "Enable RadEditor Dialogs" and "Enable spell check for
RadEditor" add dialog and spell check handlers to your web config. After these items are clicked they no longer
appear in the Smart Tag. Failing to click these two links will generate errors at runtime when you attempt to
use one of the dialogs or the spell checker.

Properties Window
The most important property is Content. Content can be assigned any text or any HTML. As a user, you can
copy and paste HTML directly from the clipboard to the editor. Programmatically, you can just assign to the
Content property:

[VB] Assigning Content

RadEditor1.Content = "<H1>RadEditor Properties</H1>" + "Content" +
"ToolbarMode" + "AutoResizeHeight"

[C#] Assigning Content

RadEditor1.Content =
 "<H1>RadEditor Properties</H1>" +
 "Content" +
 "ToolbarMode" +
 "AutoResizeHeight";

UI for ASP.NET AJAX

552 UI for ASP.NET AJAX

RadEditor has an extensive set of properties, but we can group some of these to make it easier to navigate. In

the Properties Window, click the Categorized button to follow along. We won't look at every single
property or group of properties, but try to get a feel for where the significant properties are found.

Appearance

This group of properties controls appearance on several levels:

 Individual property settings such as BorderColor, BorderWidth, ForeColor, etc. These properties will work
in limited scenarios where the styles or skins are not already at work and where you have a property that
already addresses the visual change you need to make.

 CSS styles: You can set CssClass to assign a style to the control as a whole. You can also point
ContentAreaCssFile to a file name that holds styles for the content area.

 Skins: You can set the Skin to an predefined value to get a coordinated look-and-feel. You can also
customize an existing skin or build your own from scratch. Skins provide a generalized framework for
changing editor appearance so that it works with the other controls in your application.

Behavior

ContentFilters list a set of JavaScript objects that can be enabled to act on the content when submitting a
page or when switching between Design and HTML views. For example, if no filters are activated, we can add a
JavaScript tag in the editor, move between HTML and normal views and the JavaScript will actually
execute. The screenshot below shows the script entered in HTML mode.

UI for ASP.NET AJAX

553 UI for ASP.NET AJAX

The next screenshot shows what happens when you navigate back to the Design tab and then back to the HTML
tab.

When you select the RemoveScripts content filter, the script is completely removed when you move between
edit modes. You can add this at design time from the Property window:

UI for ASP.NET AJAX

554 UI for ASP.NET AJAX

In code you can combine these flags using the bitwise OR operator:

Using the Behavior properties you can also:

 Turn off the EnableResize property to prevent the user from changing the editor dimensions.

 Toggle the NewLineBr property. NewLineBr is true by default which means that every time the user hits
Enter, a
 tag is generated. If you set NewLineBr false, each line is surrounded with page <p> tags.

 Configure the StripFormattingOptions property to one or more of these values: None,
NoneSuppressCleanMessage, MSWord, MSWordNoFonts, MSWordRemoveAll, Css, Font, Span,
AllExceptNewLines and All. These can be selected from the Properties window or use the bitwise OR
operator to combine these values. When you paste from MS Word with this property set to "None", you get
quite the formatting circus:

With this property set to the other extreme of "All", you get simple HTML elements only:

[VB] Assign Content Filters

RadEditor1.ContentFilters = Telerik.Web.UI.EditorFilters.MakeUrlsAbsolute Or
Telerik.Web.UI.EditorFilters.FixEnclosingP

[C#] Assign Content Filters

RadEditor1.ContentFilters =
 Telerik.Web.UI.EditorFilters.MakeUrlsAbsolute |
 Telerik.Web.UI.EditorFilters.FixEnclosingP;

UI for ASP.NET AJAX

555 UI for ASP.NET AJAX

 Change the ToolBarMode property from Default, where the tool bar is static and positioned over the
content area to PageTop, ShowOnFocus or Floating. If you use PageTop, the toolbar docks to the top of
the entire web page, so that if you have multiple editors open, the one toolbar applies to all. This
screenshot shows PageTop with two editors.

ShowOnFocus will cause the ToolBar to appear right above the editor when it gets focus. Later we will talk
about how ShowOnFocus can be used together with the ToolProviderID for awesome performance when
loading multiple editors on the same page. Floating will cause the toolbar to pop up in a window and will
allow the user to move it over the page. This next screenshot is an example of the floating toolbar:

UI for ASP.NET AJAX

556 UI for ASP.NET AJAX

Client-Side Events

We will explore these events in the upcoming section on Client-Side Programming. For now, just know the
events fire on the client when editor is first initialized and loaded, and when the user causes events to fire, i.e.
when commands are executing, a paste is in process or when the text selection changes.

Dialog Configuration

RadEditor dialogs are used to insert objects into the content area. These "FileBrowser" dialogs handle images,
Flash, documents, Silverlight, media and templates. The FileBrowser dialogs consist of a FileBrowser object, an
object previewer/property manager and a file uploader tab. The FileBrowser provides the ability to browse
directories and locate a file item. Selected file items are loaded into the previewer.

This Dialog Configuration section of the Properties Window has a number of "Manager" properties that
correspond to dialogs.

UI for ASP.NET AJAX

557 UI for ASP.NET AJAX

The sub-properties are similar between specific managers. The ContentProviderTypeName allows you to create
your own dialog manager by inheriting from FileSystemContentProvider and plugging it in to this property. The
various "paths" properties determine what files can be seen by the dialog:

 ViewPaths specifies where files are located. The dialog will display all files found in this directory and
children of this directory.

 UploadPaths specifies where users can upload files. To be visible, these paths need to be within
"ViewPaths".

 DeletePaths specifies where users can delete files. Again, these paths need to be within the "ViewPaths"
paths to be visible.

For example, the markup that defines the ImageManager paths shows the base path, that is ViewPaths is the
"images" directory, files can be uploaded to "images/new" and files can be deleted from "images/new/articles"
and "images/new/news".

[ASP.NET] Defining Dialog Paths

<telerik:radeditor runat="server" ID="RadEditor1" >
 <ImageManager
 ViewPaths="~/Images"
 UploadPaths="~/Images/New"
 DeletePaths="~/Images/New/Articles,~/Images/New/News"
 />

UI for ASP.NET AJAX

558 UI for ASP.NET AJAX

The last couple of properties for a dialog manager are SearchPatterns, that defines a list of extensions that can
be displayed by a dialog and MaxUploadFileSize that controls the maximum allowed file size.

DropDown Configuration

The DropDown Configuration section of properties are collections that populate drop down lists within the

</telerik:radeditor>

You can set up role-based security by dynamically assigning dialog paths at runtime. For example:

[VB] Assigning Paths based on Role

Select Case userRole
 Case "Mike"
 'Administrator
 RadEditor1.ImageManager.ViewPaths = New String() {"~/"}
 RadEditor1.ImageManager.UploadPaths = New String() {"~/"}
 RadEditor1.ImageManager.DeletePaths = New String() {"~/"}
 Exit Select
 Case "John"
 'John
 RadEditor1.ImageManager.ViewPaths = New String() {"~/Common"}
 RadEditor1.ImageManager.UploadPaths = New String() {"~/Common"}
 RadEditor1.ImageManager.DeletePaths = New String() {"~/Common", "~/Marketing"}
 Exit Select
 Case Else
 'all users
 RadEditor1.ImageManager.ViewPaths = New String() {"~/Common/Resources"}
 RadEditor1.ImageManager.UploadPaths = New String() {"~/Common/Resources"}
 RadEditor1.ImageManager.DeletePaths = New String() {"~/Common/Resources",
"~/Marketing/Resources"}
 Exit Select
End Select

[C#] Assigning Paths based on Role

switch (userRole)
{
 case "Mike": /*Administrator*/
 RadEditor1.ImageManager.ViewPaths = new string[] { "~/" };
 RadEditor1.ImageManager.UploadPaths = new string[] { "~/" };
 RadEditor1.ImageManager.DeletePaths = new string[] { "~/" };
 break;
 case "John": /*John*/
 RadEditor1.ImageManager.ViewPaths = new string[] { "~/Common" };
 RadEditor1.ImageManager.UploadPaths = new string[] { "~/Common" };
 RadEditor1.ImageManager.DeletePaths = new string[] { "~/Common", "~/Marketing" };
 break;
 default: /*all users*/
 RadEditor1.ImageManager.ViewPaths = new string[] { "~/Common/Resources" };
 RadEditor1.ImageManager.UploadPaths = new string[] { "~/Common/Resources" };
 RadEditor1.ImageManager.DeletePaths = new string[] { "~/Common/Resources",
"~/Marketing/Resources" };
 break;
}

UI for ASP.NET AJAX

559 UI for ASP.NET AJAX

editor.

Clicking the ellipses for any of these properties brings up a collection editor that will allow you to define
members of the collection. Properties for each member are specific to the kind of members being defined, like
the context menu editor collection shown in the image below.

Tools

During the "Getting Started" section on "RadEditor Elements" we talked about how the editor was made up of
Tools, Modules and content. The Tools category of properties controls what tools and modules you will see. The
tools can be defined by either the Tools collection or by specifying an XML file and pointing to it with the
ToolsFile property.

If you go the Tools collection route and click the ellipses for this property the "EditorToolGroup Collection
Editor" displays. From there you can create tool groups. For each group you click the Tools collection to display

UI for ASP.NET AJAX

560 UI for ASP.NET AJAX

a second dialog "EditorTool Collection Editor". For each tool you select the Name property from a predefined
drop down list of possible commands. You can also supply your own tooltip text as well as toggle the display of
text and icons. The screenshot below shows the omnipresent "Cut, Copy and Paste" commands defined.

As you can see from the next screenshot, the tools defined in the Tools collection or from the ToolsFile
completely replace the default tool set.

When you click the Modules collection ellipses, the EditorModule Collection Editor displays. You can add
modules and select the Name property from the drop down list.

UI for ASP.NET AJAX

561 UI for ASP.NET AJAX

Here is some general info on how the browser works with
 and <p> tags.

Carriage returns (when pressing Enter) are not significant when it comes to HTML. It doesn’t matter how much
whitespace is in the HTML code - it is automatically converted to a single space when your HTML document is
displayed in a browser. For an example, if you put in your HTML file the following text:

Introducing Telerik RadEditor for ASP.NET AJAX. Improved user experience. Enhanced cross-browser
support.

In the browser it will be displayed as a single line (empty spaces and carriage returns are being converted to a
single whitespace):

Introducing Telerik RadEditor for ASP.NET AJAX. Improved user experience. Enhanced cross-browser
support.

If you wish to enter line breaks, e.g. you want your text to be displayed on two or more lines, but not to start a
new paragraph, you should use a
 tag. For an example:

Introducing Telerik RadEditor for ASP.NET AJAX.
Improved user experience.
Enhanced cross-
browser support.

is displayed in the browser as:

Introducing Telerik RadEditor for ASP.NET AJAX.
Improved user experience.
Enhanced cross-browser support.

If you want to start a new paragraph, you should use the <p> (paragraph) tag. In HTML, this means
automatically adding an extra blank line before and after a paragraph. e.g.:

<p>Introducing Telerik RadEditor for ASP.NET AJAX.</p><p>Improved user experience.</p><p>Enhanced
cross-browser support.</p>

is displayed as:

Introducing Telerik RadEditor for ASP.NET AJAX.

20.5 Using the NewLineMode Property

Note

Note that the
 tag is an empty tag and has no closing tag.

UI for ASP.NET AJAX

562 UI for ASP.NET AJAX

Improved user experience.

Enhanced cross-browser support.

Telerik RadEditor's NewLineMode property specifies whether the editor should insert a new line (
 tag), a
new paragraph (<p> tag) or a div (<div> tag) when the Enter key is pressed. The default value is "Br" (

tag) in order to closely reflect the behavior of desktop word-processors. In this case you can insert paragraph
tags by pressing Ctrl+M or the New Paragraph button.

If you set the NewLineMode property to P, a paragraph tag will be entered on every carriage return (pressing
Enter). Here, pressing Shift+Enter will insert a
 tag.

The last available option of the NewLineMode property is Div which will insert a div (<div> tag) when pressing
Enter. In order to insert a
 tag in this mode press Shift+Enter .

ContentAreaMode="IFRAME" mode:

The Rich Text content area of RadEditor is an editable IFRAME element, which is a separate document that has
its own CSS styles applied through the embedded in the Telerik.Web.UI.dll skin. This default content
appearance in the content area can be easily overridden by setting the editor's ContentAreaCssFile property to
point to your own CSS file. For example create a file named EditorContentAreaStyles.css and put a global body
tag with the desired font and color settings in it, e.g.

body
{
 font-family: Verdana !important;
 font-size: 18px !important;
 color: white !important;
 background-color: #555 !important;
 text-align: left !important;
 word-wrap: break-word !important;
}

Since the css file is loaded first on purpose, it is possible for another global class on the page to override its
settings. To prevent the overriding of the properties defined in the EditorContentAreaStyles.css file just set
the !important rule after the properties values (or use the editor's CssFiles property to load the css file).

Save the css file and set the ContentAreaCssFile property to point to it:

<telerik:RadEditor
 ContentAreaCssFile="~/EditorContentAreaStyles.css"
 id="RadEditor1"
 runat="server">
</telerik:RadEditor>

To style other HTML elements in the content area you need to define global css classes for them, e.g. p, div,
span, table, td, td, ol, ul, li, img etc

Caution

In a nutshell, if you want to end a line, but don't want to start a new paragraph, use
 tag. If you wish to
start a new paragraph - you use the <p> tag.

20.6 Customizing Content Area

UI for ASP.NET AJAX

563 UI for ASP.NET AJAX

form
{
 background-color:#efefef !important;
 border:1px dashed #555555 !important;
}
table
{
 BORDER-RIGHT: #999999 1px dashed !important;
 BORDER-BOTTOM: #999999 1px dashed !important;
}
table td
{
 font-size: 12px !important;
 PADDING: 1px !important;
 BORDER-TOP: #999999 1px dashed !important;
 BORDER-LEFT: #999999 1px dashed !important;
}
div
{
 background-color: Green !important;
 color: Yellow !important;
 font-weight: bold !important;
}
img
{
 margin: 1px 1px 1px 1px !important;
 border: solid 1px blue !important;
}

More information on the subject is available in the following help articles:
Setting Content Area Defaults (http://www.telerik.com/help/aspnet-ajax/editor-setting-content-area-
defaults.html),
Default Font for Editable Content (http://www.telerik.com/help/aspnet-
ajax/defaultfontforeditablecontent.html),
Setting Editor Background And Color (http://www.telerik.com/help/aspnet-
ajax/settingeditorbackgroundandcolor.html),
Content Area Appearance Problems (http://www.telerik.com/help/aspnet-ajax/editor-content-area-
appearance-problems.html).

If the editor is placed in non-editable mode (Enabled="false"), then its content is outputted in a DIV element
on the page. This DIV element will inherit the page styles or the styles of its parent elements, but not the styles
of the EditorContentAreaStyles.css file and therefore the content might look different in edit and non-editable
modes.

ContentAreaMode="DIV" mode:

The DIV element is part of the current page and the page CSS styles will be directly imported and applied to the
content area and the contents in it. In order to customize the content area appearance of the RadEditor in Div
mode, register the CSS selectors manually on the page with the appropriate cascading (.reContentArea <global
selector: P, FORM, IMG, TABLE, TR, TD, H1-H6, etc>), e.g.

.reContentArea /*this selector corresponds to the body selector when RadEditor is in Iframe mode*/
{
 font-family: Verdana !important;
 font-size: 12px !important;

UI for ASP.NET AJAX

564 UI for ASP.NET AJAX

 color: white;
 background-color: #555 !important;
 text-align: left !important;
 word-wrap: break-word !important;
 padding: 3px 15px 3px 15px !important;
}

.reContentArea P
{
 margin: 0;
 border: 1px solid #666;
 color: #666;
 font-size: 12px;
 padding: 10px;
}

.reContentArea H1
{
 margin: 0;
 border: 1px solid #666;
 color: #000;
 padding: 20px;
}

.reContentArea OL
{
 margin-top: 20px;
 list-style-type: lower-roman;
 border: 1px solid #666;
 color: #555;
 padding: 10px 10px 10px 55px;
}

.reContentArea table
{
 BORDER-RIGHT: #99ff99 1px dashed;
 BORDER-BOTTOM: #99ff99 1px dashed;
 width:100%;
 margin-top: 20px;
}

.reContentArea table td
{
 font-size: 12px !important;
 color: #555;
 PADDING: 1px;
 BORDER-TOP: #99ff99 1px dashed;
 BORDER-LEFT: #99ff99 1px dashed;
 text-align: center;
}

.reContentArea img
{
 margin: 1px 1px 1px 1px;
 border: solid 1px blue;
}

UI for ASP.NET AJAX

565 UI for ASP.NET AJAX

When the ContentAreaMode="DIV" is used the ContentAreaCssFile is not functional and the classes above
should be registered manually using <link> and / or <style> tags.

You can configure all of your tool bars and modules at one time using an XML file with this basic structure:

This next walk-through will show you how to setup the tools file and give you a few ideas on how you might use
it. You can find the full reference for the possible toolsfile entries at Using the ToolsFile.xml
(http://www.telerik.com/help/aspnet-ajax/usintthetoolsfile.html). This next example will add several sets of
toolbars with separators, a context menu that responds to <a> and <p> tags and a module that displays
statistics.

1. In a new ASP.NET Web Application, drag a RadEditor to the default page.

2. In the Smart tag select the following links:

 Enable RadEditor Dialogs

 Enable Spell Check for RadEditor

3. Locate the RadControls installation directory \App_Data folder and copy the contents to your project's
\App_Data folder.

4. From the Solution Explorer, right-click the project and select Add Item from the context menu. Select the
XML type and name the file "MyTools.xml".

5. Add the following to MyTools.xml:

20.7 Configuring the ToolsFile

[XML] ToolsFile Structure Sample

<root>
 <modules>
 <module />
 <module />
 </modules>
 <tools>
 <tool />
 <tool />
 ...
 </tools>
 <tools>
 <tool />
 ...
 </tools>
 ...
 <links>
 <link />
 <link />
 </links>
 <colors>
 <color />
 <color />
 </colors>
</root>

[XML] Defining the ToolsFile

<root>
 <tools name="MainToolbar" enabled="true">

UI for ASP.NET AJAX

566 UI for ASP.NET AJAX

6. Press Ctl-F5 to run the application. Try adding a <p> or <a> tag to the HTML mode and right-click to get
the custom context menu.

 <tool name="Undo" />
 <tool name="Redo" />
 <tool separator="true"/>
 <tool name="Cut" />
 <tool name="Copy" />
 <tool name="Paste" shortcut="CTRL+!"/>
 </tools>
 <tools name="Formatting" enabled="true">
 <tool name="Bold" />
 <tool name="Italic" />
 <tool name="Underline" />
 <tool separator="true"/>
 <tool name="FontName"/>
 <tool name="RealFontSize"/>
 </tools>
 <contextMenus>
 <contextMenu forElement="A" enabled="false">
 </contextMenu>
 <contextMenu forElement="P">
 <tool name="JustifyLeft" />
 <tool name="JustifyCenter" />
 <tool name="JustifyRight" />
 <tool name="JustifyFull" />
 </contextMenu>
 </contextMenus>
 <modules>
 <module name="RadEditorStatistics" visible="true" />
 </modules>
</root>

You can find the complete source for this project at:
\VS Projects\Editor\ToolsFile

UI for ASP.NET AJAX

567 UI for ASP.NET AJAX

The RibbonBar member of the ToolBarMode enumeration property configures RadEditor to use a RadRibbonBar
control as a container for its tools.

There are some RebbonBar related properties which are added for the tools and tool xml elements in the
editor's ToolsFile file (Section 20.7):

 For the tools elements the "name" property sets the RibbonBarGroup control, in which the tool is loaded
and the "tab" property sets the RibbonBarTab control, in which the group is loaded.

 For the tool elements the "size" property sets the size of the buttons.

You can review the tools.xml file below for more information:

20.8 RibbonBar and Editor

tools.xml configuration file

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <modules>
 <module name="RadEditorStatistics" dockingZone="Bottom"/>
 <module name="RadEditorDomInspector" />
 <module name="RadEditorNodeInspector" />
 <module name="RadEditorHtmlInspector" visible="false" />
 </modules>
 <tools name="Clipboard" tab="Home">

UI for ASP.NET AJAX

568 UI for ASP.NET AJAX

 <tool name="PasteStrip" size="large"/>
 <tool name="Cut" size="medium"/>
 <tool name="Copy" size="medium" shortcut="CTRL+C"/>
 <tool name="Print" size="medium" shortcut="CTRL+P"/>
 </tools>
 <tools name="Font" tab="Home">
 <tool name="FontName" shortcut="CTRL+SHIFT+F"/>
 <tool name="RealFontSize" shortcut="CTRL+SHIFT+P" width="80px"/>
 <tool name="ConvertToLower" strip="FontDropDowns" />
 <tool name="ConvertToUpper" strip="FontDropDowns" />
 <tool name="Bold" strip="FontBasicTools" shortcut="CTRL+B"/>
 <tool name="Italic" strip="FontBasicTools" shortcut="CTRL+I"/>
 <tool name="Underline" strip="FontBasicTools" shortcut="CTRL+U"/>
 <tool name="StrikeThrough" strip="FontBasicTools1"/>
 <tool name="Superscript" strip="FontBasicTools1"/>
 <tool name="Subscript" strip="FontBasicTools1"/>
 <tool name="FormatStripper" strip="FontDropDowns" />
 <tool name="ForeColor"/>
 <tool name="BackColor"/>
 </tools>
 <tools name="Paragraph" tab="Home">
 <tool name="InsertUnorderedList" strip="ListsAndIndention"/>
 <tool name="InsertOrderedList" strip="ListsAndIndention"/>
 <tool name="Indent" strip="ListsAndIndention"/>
 <tool name="Outdent" strip="ListsAndIndention"/>
 <tool name="InsertParagraph" strip="ListsAndIndention"/>
 <tool name="JustifyLeft" strip="Align"/>
 <tool name="JustifyCenter" strip="Align"/>
 <tool name="JustifyRight" strip="Align"/>
 <tool name="JustifyFull" strip="Align"/>
 <tool name="JustifyNone" strip="Align"/>
 </tools>
 <tools name="Styles" tab="Home">
 <tool name="ApplyClass" />
 <tool name="FormatBlock" />
 </tools>
 <tools name="Editing" tab="Home">
 <tool name="Undo" shortcut="CTRL+Z"/>
 <tool name="FindAndReplace" shortcut="CTRL+F"/>
 <tool name="SelectAll" shortcut="CTRL+A"/>
 <tool name="Redo" shortcut="CTRL+Y"/>
 </tools>
 <tools name="Tables" tab="Insert">
 <tool name="InsertTableLight" size="large"/>
 <tool name="InsertTable" />
 </tools>
 <tools name="Media" tab="Insert">
 <tool name="ImageManager" size="large" shortcut="CTRL+G"/>
 <tool name="MediaManager" size="medium" />
 <tool name="FlashManager" size="medium"/>
 <tool name="SilverlightManager" size="medium"/>
 </tools>
 <tools name="Links" tab="Insert">
 <tool name="LinkManager" size="large" shortcut="CTRL+K"/>
 <tool name="Unlink" strip="LinksStrip" shortcut="CTRL+SHIFT+K"/>

UI for ASP.NET AJAX

569 UI for ASP.NET AJAX

From the server you can set editor content or work with any of the editor collections, such as modules, tools,
fonts, snippets, etc. For example you could add a link in the content when the page first loads, add some
edit/insert tools and add a text "snippet" for the "InsertSnippet" tool.

 <tool name="DocumentManager" strip="LinksStrip"/>
 <tool name="ImageMapDialog" strip="LinksStrip"/>
 <tool name="InsertCustomLink" shortcut="CTRL+ALT+K"/>
 </tools>
 <tools name="Content" tab="Insert">
 <tool name="InsertSymbol"/>
 <tool name="InsertFormElement" />
 <tool name="InsertSnippet"/>
 <tool name="TemplateManager" />
 <tool name="FormatCodeBlock" />
 <tool name="InsertGroupbox" />
 <tool name="InsertHorizontalRule" />
 <tool name="InsertDate" />
 <tool name="InsertTime" />
 <tool name="FindAndReplace" shortcut="CTRL+F"/>
 </tools>
 <tools name="Zoom" tab="View">
 <tool name="Zoom"/>
 </tools>
 <tools name="Preferences" tab="View">
 <tool name="ToggleTableBorder" size="medium"/>
 <tool name="ToggleScreenMode" size="medium" shortcut="F11"/>
 <tool name="ModuleManager"/>
 </tools>
 <tools name="Proofing" tab="Review">
 <tool name="AjaxSpellCheck" size="large"/>
 <tool name="XhtmlValidator" size="large"/>
 </tools>
 <tools name="Help" tab="Help">
 <tool name="Help" size="medium"/>
 <tool name="AboutDialog" size="medium"/>
 </tools>
</root>

20.9 Server-Side Programming

[VB] Working with Content and Collections

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 ' Set the content visible in the editor when the editor first displays:
 RadEditor1.Content = "<a href='http://www.telerik.com' title='Telerik home
page'>Telerik"
 ' Add the Node Inspector module
 Dim [module] As New EditorModule()
 [module].Name = "RadEditorNodeInspector"
 RadEditor1.Modules.Add([module])
 ' Add Tool groups
 Dim editGroup As New EditorToolGroup()
 editGroup.Tools.Add(New EditorTool("Cut"))
 editGroup.Tools.Add(New EditorTool("Copy"))

UI for ASP.NET AJAX

570 UI for ASP.NET AJAX

After loading the page, the editor will look something like the screenshot below:

 editGroup.Tools.Add(New EditorTool("Paste"))
 editGroup.Tools.Add(New EditorSeparator())
 editGroup.Tools.Add(New EditorTool("Undo"))
 editGroup.Tools.Add(New EditorTool("Redo"))
 RadEditor1.Tools.Add(editGroup)
 Dim insertGroup As New EditorToolGroup()
 insertGroup.Tools.Add(New EditorSeparator())
 insertGroup.Tools.Add(New EditorTool("InsertSnippet"))
 RadEditor1.Tools.Add(insertGroup)
 Dim dialogGroup As New EditorToolGroup()
 dialogGroup.Tools.Add(New EditorTool("DocumentManager"))
 RadEditor1.Tools.Add(dialogGroup)
 ' Add a Snippet
 RadEditor1.Snippets.Add(New EditorSnippet("Regards", "
-Regards from Telerik"))
 End If
End Sub

[C#] Working with Content and Collections

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Set the content visible in the editor when the editor first displays:
 RadEditor1.Content =
 "<a href='http://www.telerik.com (http://www.telerik.com/)' title='Telerik home
page'>Telerik";
 // Add the Node Inspector module
 EditorModule module = new EditorModule();
 module.Name = "RadEditorNodeInspector";
 RadEditor1.Modules.Add(module);
 // Add Tool groups
 EditorToolGroup editGroup = new EditorToolGroup();
 editGroup.Tools.Add(new EditorTool("Cut"));
 editGroup.Tools.Add(new EditorTool("Copy"));
 editGroup.Tools.Add(new EditorTool("Paste"));
 editGroup.Tools.Add(new EditorSeparator());
 editGroup.Tools.Add(new EditorTool("Undo"));
 editGroup.Tools.Add(new EditorTool("Redo"));
 RadEditor1.Tools.Add(editGroup);
 EditorToolGroup insertGroup = new EditorToolGroup();
 insertGroup.Tools.Add(new EditorSeparator());
 insertGroup.Tools.Add(new EditorTool("InsertSnippet"));
 RadEditor1.Tools.Add(insertGroup);
 EditorToolGroup dialogGroup = new EditorToolGroup();
 dialogGroup.Tools.Add(new EditorTool("DocumentManager"));
 RadEditor1.Tools.Add(dialogGroup);
 // Add a Snippet
 RadEditor1.Snippets.Add(new EditorSnippet("Regards", "
-Regards from Telerik"));
 }
}

UI for ASP.NET AJAX

571 UI for ASP.NET AJAX

Events

FileDelete and FileUpload

If you have one of the file browser dialog managers configured so that files can be viewed, uploaded or
deleted, the FileDelete and FileUpload events can fire. You can cancel the delete or uploaded based on the
parameters passed to the event. "Sender" is the dialog object instance and can be used to know which dialog
initiated the event, for example:

if (sender is Telerik.Web.UI.Editor.DialogControls.DocumentManagerDialog) { ... }

The "fileName" is the path of the file as it will used by the editor. In the example below "MyDocuments" is a
directory within the web application project, not the local drive being uploaded from.

If the user is uploading or deleting within a "Document Manager" dialog, then we process some special logic.
The FileUpload event handler allows the upload only if the file doesn't already exist. The FileDelete event
handler allows the file to be deleted only if the path ends with a ".sav" extension. If this is dialog other than the
"Document Manager", always perform the upload or delete operation.

UI for ASP.NET AJAX

572 UI for ASP.NET AJAX

Getting Client Object References
As with all the RadControls, you can get a client reference to the editor using the $find() method:

var editor = $find("<%=RadEditor1.ClientID%>");

From there you can use get_document() get references to the editor document:

var document = editor.get_document();

Use the document object to execute browser commands. execCommand() has three parameters:

 The command name.

 An optional property that if true, displays a user interface (if the command supports one).

 An optional property for passing a value.

In the example below we call the "Bold" command with no user interface or values being passed. Any selected
text will be bolded

20.10 Client-Side Programming

[JavaScript] Using execCommand()

function ApplyBold() {
 // return a reference to RadEditor
 var editor = $find("<%=RadEditor1.ClientID%>");
 // get a reference to the editor's document
 var document = editor.get_document();
 // execute a document command
 document.execCommand("Bold", false, null);
}

UI for ASP.NET AJAX

573 UI for ASP.NET AJAX

You can also get a reference to a selection. Use the selection object to get the selected text or HTML. You can
also get the document element (an object that represents the HTML tag that contains the selection). The
example below gets a reference to the selection, then gets a reference to the tag that the selection is
contained within. If the tag is a link, the tag's font size is changed. If the tag is an image it is decorated with a
grooved border.

Responding to Client Events
You can respond to the OnClientInit event when the editor is first initialized but hasn't been loaded. For
example, the material within the Content tag will not be available here and won't show up until the
OnClientLoad event that fires later. In the example below an event listener is hooked up to detect when the
edit mode changes.

OnClientInit may be too early to access some properties and methods. For example, calling attachEventHandler
() during OnClientInit will fail. Instead use the OnClientLoad event to access all the client properties and
methods. All the content and other markup will be available at this point. In this next example an "onkeydown"
event is hooked up to display each key press in the editor as it occurs.

Earlier you saw how the selection object could be accessed on the client. The OnClientSelectionChange event
lets you know when the user has selected an item, de-selected or moved the cursor.

You can also respond to commands before and after they are executed. OnClientCommandExecuting provides
argument methods to get the command name, the tool that initiated the command and a value if the user
selected something in a drop down list. The example below retrieves all three bits of information but only uses
the command name.

The "args" passed in also make a set_cancel() method available so you can prevent the command from running.
In the example below a confirmation dialog asks the user if they want to execute a particular command and
prevents execution if the user cancels.

Because these are actually browser commands surfaced by the RadEditor control, you can find
information for execCommand syntax (http://msdn.microsoft.com/en-us/library/ms536419.aspx) and
Command Identifiers (http://msdn.microsoft.com/en-us/library/ms533049.aspx) on MSDN and also see
Rich Text Editing in Mozilla (http://developer.mozilla.org/en/Rich-Text_Editing_in_Mozilla) for other
browsers.

You can find the complete source for this project at:
\VS Projects\Editor\ClientSide

[JavaScript] Responding to the OnClientInit Event

function ClientInit(sender, args) {
 sender.add_modeChange(modeChange);
}
function modeChange(sender, args) {
 alert('Mode Changed');
}

[JavaScript] Responding to the OnClientLoad Event

function ClientLoad(sender, args) {
 sender.attachEventHandler("onkeydown", function(e) {
 alert("Content area key down " + e.keyCode);
 });
}

[JavaScript] Responding to the OnClientCommandExecuting Event

function ClientCommandExecuting(sender, args) {
 // The command name

UI for ASP.NET AJAX

574 UI for ASP.NET AJAX

The OnClientCommandExecuted event fires next after OnClientCommandExecuting if the command isn't
canceled.

Implementing Custom Buttons and Drop Downs

Implementing Custom Buttons

If the built-in tools don't serve your particular purposes you can add your own. Buttons and drop downs can be
added in the same way that built-in tools are added, i.e. through the Tools file, declaratively or in server-side
code.

Implementing a custom button is a three step process:

1. Define the custom button in the tools file, in the markup or programmatically.

2. Define a style that assigns an image to the button.

3. Add script that defines the command functionality.

Try this walk-through that demonstrates creating a custom button that adds a horizontal rule element.

1. Create a new web application, add a RadEditor, a ScriptManager and configure it (see "Getting Started" if
you are unsure how to configure RadEditor).

2. Copy the image file "arrow.png" from \VS Projects\images to your project.

3. In the Properties window for the RadEditor, locate the Tools property and click the ellipses.

4. In the EditorToolGroup Collection Editor, click the Add button.

5. Locate the Tools property for the new EditorToolGroup and click the ellipses. This will open the EditorTool
Collection Editor.

6. Click the Add button to create a new tool. Set the Name property of the new tool to "MyCustomTool".

 var commandName = args.get_commandName();
 // The tool that initiated the command
 var tool = args.get_tool();
 // The selected value [if command is coming from a dropdown]
 var value = args.get_value();
 // Perform some action
 var answer =
 confirm("OnClientCommandExecuting \nExecute command " + commandName + "?");
 // Cancel the command execution by calling args.set_cancel(true);
 args.set_cancel(!answer);
}

You can find the complete source for this project at:
\VS Projects\Editor\ClientSide

UI for ASP.NET AJAX

575 UI for ASP.NET AJAX

7. Click OK twice to close both collection editors.

8. In the ASP.NET markup for the page, add the style below inside the <head> tag.

9. Add the script below.

This bit of script actually assigns the function to the editor's CommandList but does not run it. The
MyCustomTool command runs when the button is clicked. The command executes a pasteHtml() method
that in turn drops in a horizontal rule tag.

[ASP.NET] Adding the Custom Tool Button Image

<style type="text/css">
 .rade_toolbar.Default .MyCustomTool
 {
 background-image: url("arrow.png");
 }
</style>

Gotcha! Be careful to keep the space between ".rade_toolbar.Default" and ".MyCustomTool".
They are two different CSS selectors, not one long string.

[JavaScript] Define the Button Command Functionality

<script type="text/javascript">
 Telerik.Web.UI.Editor.CommandList["MyCustomTool"] = function(commandName, editor, args) {
 editor.pasteHtml("<hr>");
 };
</script>

UI for ASP.NET AJAX

576 UI for ASP.NET AJAX

10. Press Ctl-F5 to run the application.

Implementing Custom Drop Downs

You can also add custom drop down lists. These can be defined in your tools file, the markup or you can create
them programmatically. Programmatically works particularly well if you need to populate the list from a
database.

Instead of defining a CommandList item as in the button example, you can also hook into the
OnClientCommandExecuting event, do whatever logic you want and then cancel the command. You cancel the
command because the command will not actually be defined.

Try extending the Custom Button example above:

1. Add a OnClientCommandExecuting function to be defined later. Also define a new "Salutations" tool within
the Tools collection. You can do this directly in the ASP.NET markup or in the Tools collection editor. The
"Salutations" drop down should have a ItemsPerRow attribute of "3" so that the three items "Mr.", "Mrs." and
"Ms." all appear on one row.

2. Add the following JavaScript inside the <body> tag.

[ASP.NET]

<telerik:RadEditor ID="RadEditor1" runat="server"
 OnClientCommandExecuting="ClientCommandExecuting">
 <Tools>
 <telerik:EditorToolGroup>
 <telerik:EditorTool Name="MyCustomTool" />
 <telerik:EditorSeparator />
 <telerik:EditorDropDown Name="Salutations" PopupHeight="30" ItemsPerRow="3">
 <telerik:EditorDropDownItem Name="Mr" Value="Mr." />
 <telerik:EditorDropDownItem Name="Mrs" Value="Mrs." />
 <telerik:EditorDropDownItem Name="Ms" Value="Ms." />
 </telerik:EditorDropDown>
 </telerik:EditorToolGroup>
 </Tools>
 <Content>
 </Content>
</telerik:RadEditor>

[JavaScript] Responding to the Custom Drop Down

<script type="text/javascript">
 function ClientCommandExecuting(sender, args) {
 var name = args.get_name();
 var value = args.get_value();
 if (name == "Salutations") {
 sender.pasteHtml("Dear " + value + " ");
 //Cancel the further execution of the command --
 // does not exist in the editor command list

UI for ASP.NET AJAX

577 UI for ASP.NET AJAX

3. Press Ctl-F5 to run the application.

Optimization for Multiple RadEditors
Starting in version 2008.1.619, RadEditor has substantial tools loading performance improvements. The big
benefit comes when you have multiple RadEdit controls on the page. In the past there would be markup defined
for each toolbar so that the more edit controls on the page, the longer it would take to load from the server
and render in the browser. Now, thanks to a new property ToolsProviderID, the toolbar is defined for one
editor and the other editors use only that toolbar. Use ToolsProviderID together with the ToolBarMode
ShowOnFocus or PageTop to get even more performance improvement.

This next example should give you a gut feel for how these properties work together by toggling them and
resubmitting the page. When using the default Toolbar Mode and not supplying a ToolsProviderID, notice how
even after the editors are loaded on the page, the toolbars still take extra time to finish loading.

 args.set_cancel(true);
 }
 }
</script>

20.11 How To

UI for ASP.NET AJAX

578 UI for ASP.NET AJAX

1. Create a ASP.NET Web Application.

2. Add the following markup to define the checkboxes and submit button.

3. Add five RadEditor controls below the submit button.

4. In the code-behind, add a Form_Load event handler:

[ASP.NET] Adding Checkboxes and Submit Button

<ul style="padding: 0; margin: 0; list-style: none;">

 <asp:CheckBox ID="UseToolProvider" runat="server" Checked="false"
 Text="Use Tool Provider" Title="Use Tool Provider" />

 <asp:CheckBox ID="UseShowOnFocusToolbarMode" Checked="false"
 Text="Use ShowOnFocus Toolbar Mode" runat="server"
 Title="Use ShowOnFocus Toolbar Mode" />

<p>
<asp:Button ID="SubmitButton" runat="server" Text="Apply Settings"
title="Apply Settings" />

[VB] Configuring the Editor Controls

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' track the first editor
 Dim firstEditor As RadEditor = Nothing

UI for ASP.NET AJAX

579 UI for ASP.NET AJAX

 ' iterate the form looking for editors
 For Each control As Control In Me.Form.Controls
 If TypeOf control Is RadEditor Then
 Dim editor As RadEditor = TryCast(control, RadEditor)
 ' if we're using ToolProviderID, either
 ' save the first editor found
 ' or assign the first editor's ID to the
 ' ToolProviderID.
 If Me.UseToolProvider.Checked Then
 If [Object].Equals(firstEditor, Nothing) Then
 firstEditor = editor
 Else
 editor.ToolProviderID = firstEditor.ID
 End If
 Else
 editor.ToolProviderID = [String].Empty
 End If
 ' Use the ShowOnFocus toolbar mode if the checkbox is selected.
 editor.ToolbarMode = IIf
(Me.UseShowOnFocusToolbarMode.Checked,EditorToolbarMode.ShowOnFocus,EditorToolbarMode.
[Default])
 End If
 Next
End Sub

[C#] Configuring the Editor Controls

protected void Page_Load(object sender, EventArgs e)
{
 // track the first editor
 RadEditor firstEditor = null;
 // iterate the form looking for editors
 foreach (Control control in this.Form.Controls)
 {
 if (control is RadEditor)
 {
 RadEditor editor = control as RadEditor;
 // if we're using ToolProviderID, either
 // save the first editor found
 // or assign the first editor's ID to the
 // ToolProviderID.
 if (this.UseToolProvider.Checked)
 {
 if (Object.Equals(firstEditor, null))
 {
 firstEditor = editor;
 }
 else
 {
 editor.ToolProviderID = firstEditor.ID;
 }
 }
 else
 editor.ToolProviderID = String.Empty;
 // Use the ShowOnFocus toolbar mode if the checkbox is selected.
 editor.ToolbarMode = this.UseShowOnFocusToolbarMode.Checked ?

UI for ASP.NET AJAX

580 UI for ASP.NET AJAX

5. Press Ctl-F5 to run the application. Try all combinations of these two settings. Look at the HTML source
and find "rade_toolbarWrapper", a style that occurs just before the toolbars are defined. With
ToolProviderID, the toolbar is defined just once, with the ToolProviderID blank, the toolbar is defined
multiple times.

Localization
All the language for the editor user interface can be automatically translated to either a built-in language or a
translation you provide. Localization not only takes care of the text for each UI element, but also supplies a
translated tool tip. Localization can be specified...

 Using resource files that come with the installation found in "\RadControls for ASPNET AJAX
<version>\App_GlobalResources" or using your own resource files. The "built-in" resource files are
translations for English, French and German that come with the RadControls installation.

 Using the Localization property to set specific strings for Dialogs, Main, Modules and Tools
programmatically. Localization settings override the resource file settings.

 If you have a tools file defined, you can also call the RadEditor FindTool() method and set the text for a
specific tool.

Here's an example of the editor localized to French:

 EditorToolbarMode.ShowOnFocus : EditorToolbarMode.Default;
 }
 }
}

You can find the complete source for this project at:
\VS Projects\Editor\ToolProviderID

You can also find this project with additional JavaScript code that provides specific timings at the
ToolProviderID demo
(http://demos.telerik.com/ASPNET/Prometheus/Editor/Examples/ToolProvider/DefaultCS.aspx).

The order of precedence for localization is generally that Text assigned at runtime (in the Page_Load for

UI for ASP.NET AJAX

581 UI for ASP.NET AJAX

Localizing Using Resource Files
1. Create a new web application.

2. Add a RadEditor to the default page.

3. From the Smart Tag select Add ScriptManager.

4. Drag the \RadSpell directory from the \App_Data folder in your RadControls installation directory to the
\App_Data folder in the Solution Explorer.

5. In the Solution Explorer, right-click the project and from the context menu select Add | Add ASP.NET
Folder | App_GlobalResources.

6. From the RadControls installation directory, drag the contents of the \App_GlobalResources directory to
the \App_GlobalResources directory in your selection.

Your project structure should look something like the example Solution Explorer screenshot shown below:

7. Set the RadEditor Language property to "Fr-fr"

8. Press Ctl-F5 to run the application. Notice that both the text and tool tips display in French.

example) is considered first, then in-line declaration and lastly the resource file strings are the default.

You can find the complete source for this project at:
\VS Projects\Localization\Localization

UI for ASP.NET AJAX

582 UI for ASP.NET AJAX

Creating New Translations
To create a new set of resource files, copy the default resource files to your App_GlobalResources directory
and rename with a language code for the specific culture:

 RadEditor.Dialogs.<Your_Language>.resx

 RadEditor.Main.<Your_Language>.resx

 RadEditor.Modules.<Your_Language>.resx

 RadEditor.Tools.<Your_Language>.resx

So, for Italian, the resource files will be named:

 RadEditor.Dialogs.it-IT.resx

 RadEditor.Main.it-IT.resx

 RadEditor.Modules.it-IT.resx

 RadEditor.Tools.it-IT.resx

All resx file contain two columns Name and Value as shown in the screenshot below. Leave the Name as-is and
change the Value for each of these to the target language.

Creating a Custom Module
To build a custom module you need to define a JavaScript "class" that inherits from
Telerik.Web.UI.Editor.Modules.ModuleBase. That class needs to define a method and hook the method up to
one of the editors events, usually the SelectionChange event. We can create a minimal custom module by first
doing the setup work, i.e. create a new web application with a RadEditor, adding the HTTP handlers, the
ScriptManager and the finally adding the dictionary files to the App_data folder. Then...

1. In the Properties window for the RadEditor, click the Modules property ellipses and add two modules. In
the first module enter the Name property as "MyModule". For the second Name property, select
RadEditorStatistics (or any other predefined module) from the drop down list.

The culture name has to follow the RFC 1766 standard in the format [Language Code]-[County/Region Code].
In our example, it-IT stands for Italian - Italy.

UI for ASP.NET AJAX

583 UI for ASP.NET AJAX

2. Add a JavaScript class with the same name as the custom module right below the RadEditor markup.

The constructor takes a single parameter "element". Within the constructor, call the ModuleBase
initializeBase() method passing a reference to the module and the element. In the prototype, add two
methods. The first, initialize(), extends an inherited method from ModuleBase. In this initialize() method,
call the inherited method, then hook up the SelectionChange event of the editor to a method to be defined
next called doSomething(). Also call doSomething() once explicitly to cause the module to display
immediately.

In the doSomething() method, create a SPAN element and load it with the contents of the RadEditor's html.
Using the span getElementsByTagName() method, get a count of all the break "
" tags in the html.
Finally display and format an informational method within the modules element that shows the number of
breaks encountered so far.

Gotcha!

You must add at least one of the built-in modules when you create a custom module. Due to
optimization, the editor will not register the custom modules javascript code if a built-in module
is not declared. When the JavaScript tries to register your custom class it will fail with an error
that ModuleBase was null.

[JavaScript] Adding the Custom Module Script

<script type="text/javascript">

UI for ASP.NET AJAX

584 UI for ASP.NET AJAX

3. Press Ctl-F5 to run the application. Notice that the custom module appears right away in the lower right of
the editor. Try typing some text and hitting the enter key. Notice that the SelectionChange event fires
when you begin typing on the next line, click away from what you're currently typing or otherwise move
the selection.

 // Create a new class with the same name as the custom module
 MyModule = function(element) {
 // call the inherited initializeBase() method
 MyModule.initializeBase(this, [element]);
 }
 MyModule.prototype =
 {
 // override the initialize() method
 initialize: function() {
 // call the inherited method
 MyModule.callBaseMethod(this, 'initialize');
 var selfPointer = this;
 // hook up to the SelectionChanged event to
 // call doSomething()
 this.get_editor().add_selectionChange(
 function() { selfPointer.doSomething(); });
 // call doSomething once explicitly
 this.doSomething();
 },
 doSomething: function() {
 // create a new "SPAN" element so we have access to its
 // getElementsByTagName() method.
 var span = document.createElement("SPAN");
 // get whatever html is available in the editor
 // when this is called.
 span.innerHTML = this.get_editor().get_html();
 // get a count of all the break tags
 var BrCount = span.getElementsByTagName("BR").length;
 // get the element for this module. Place the
 // information about the breaks there and format it
 var element = this.get_element();
 element.innerHTML = "My Custom Module - Break Tags: " + BrCount;
 element.style.border = "1px solid blue";
 element.style.color = "black";
 }
 };
 // register the class as being inherited from ModuleBase
 MyModule.registerClass('MyModule', Telerik.Web.UI.Editor.Modules.ModuleBase);
</script>

UI for ASP.NET AJAX

585 UI for ASP.NET AJAX

Creating a Custom Content Filter
You can create your own custom content filter in a manner similar to creating the custom module. That is, you
create a JavaScript object that inherits from a base type and implement certain expected methods. In this case
the base type is Telerik.Web.UI.Editor.Filter and the methods are getHtmlContent() and getDesignContent().
Hookup the filter during the RadEditor OnClientLoad event handler:

[JavaScript] Implementing a Content Filter.

<telerik:RadEditor runat="server" ID="RadEditor2" OnClientLoad="OnClientLoad"
 Skin="Telerik">
 <Content>
 </Content>
</telerik:RadEditor>
<script type="text/javascript">
 // when the editor finishes loading,
 // hook up the new custom filter
 function OnClientLoad(editor, args) {
 editor.get_filtersManager().add(new MyFilter());
 }
 // in the constructor, set the
 // properties of the filter
 MyFilter = function() {
 MyFilter.initializeBase(this);
 this.set_isDom(false);
 this.set_enabled(true);
 this.set_name("RadEditor filter");
 this.set_description("RadEditor filter description");
 }
 // You must implement getHtmlContent and
 // getDesignContent.
 MyFilter.prototype =
 {
 getHtmlContent: function(content) {
 var newContent = content;
 newContent = newContent.toUpperCase();

UI for ASP.NET AJAX

586 UI for ASP.NET AJAX

In the running application, all text content is uppercased when the editing mode changes as this screenshot
shows:

In this chapter we explored the RadEditor's rich feature set, learned how to configure RadEditor for the runtime
environment and looked at the editor's design-time interface. You also configured the Toolsfile to create a
custom tool layout. You learned how to manipulate RadEditor using client-side code including how to reference
the editor, the document and the current selection, as well as responding to editor client events. Finally, you
learned some of the editor's customization possibilities, how to optimize RadEditor for multiple instances and
how to localize RadEditor for a specific language.

 return newContent;
 },
 getDesignContent: function(content) {
 var newContent = content;
 newContent = newContent.toUpperCase();
 return newContent;
 }
 }
 MyFilter.registerClass('MyFilter', Telerik.Web.UI.Editor.Filter);
</script>

If filtering were initiated during Design mode, then entering or pasting large content would be in danger of
slowing down or crashing the browser. For best typing, formatting and editing performance, the editor's
content filters act only when switching to Html mode or when submitting the content.

You can find the complete source for this project at:
\VS Projects\Editor\ContentFilter

20.12 Summary

UI for ASP.NET AJAX

587 UI for ASP.NET AJAX

 Explore features of the RadBarcode control.

 Explore the most important properties of RadBarcode.

 Specifying RadBarcode types and their characteristics.

The RadBarcode control can be used for automatic Barcode generation directly from a numeric or character
data. It supports several standards that can be used when creating the image.

Properties
After a barcode is added on the page, it is necessary to adjust the basic properties of the barcode, and to
specify its type, text and appearance.

 Type - Specifies the type of the standard used for encoding the text.

 Text - Text that will be encoded with Barcode and rendered in SVG file.

 Width - Use for specifying the width of the SVG file and the HTML Span element in which it is wrapped.

 Height - Use for specifying the height of the SVG file and the HTML Span element in which it is wrapped.

 RenderChecksum - Specifies if the checksum will be rendered in the barcode.

 ShowChecksum - Specifies if the checksum should be written under the barcode.

 ShowText - Specifies if the text will be shown under the barcode.

 ShortLinesLengthPercentage - Specifies the ration between long and short lines in the rendered barcode
and adjust the Height and Width of the bars in percentage of the barcode's wrapper. Expects value varies
from 0.00 to 100.00 (90 by default).

 Codabar - is a discrete, self-checking symbology that may encode 16 different characters, plus an
additional 4 start/stop characters.

 Code11 - is a barcode symbology which is discrete and is able to encode the numbers 0 through to 9, the
dash symbol (-), and start/stop characters

 Code128 - is a barcode symbology which encodes alphanumeric characters into a series of bars. It is of
variable length, and accepts numbers, upper and lower case characters. It also includes an obligatory MOD
103 checksum. Code128 is divided into three subsets A, B, and C.

 Code 25 Interleaved - Interleaved 2 of 5 is a higher-density numeric symbology based upon the Standard 2
of 5 symbology. Interleaved 2 of 5 encodes any even number of numeric characters in the widths of the
bars and spaces of the bar code. Unlike Standard 2 of 5, which only encodes information in the width of the
bars,Interleaved 2 of 5 encodes data in the width of both the bars and spaces. This allows Interleaved 2 of
5 to achieve a somewhat higher density. The symbology is called "interleaved" because the first numeric
data is encoded in the first 5 bars while the second numeric data is encoded in the first 5 spaces that
separate the first 5 bars. Thus the first 5 bars and spaces actually encode two characters. This is also why
the bar code can only encode an even number of data elements.

21 RadBarcode

21.1 Objectives

21.2 Introduction

If the value in the Text property is invalid for the selected type, the Barcode will not be visible.

21.3 Barcode types

UI for ASP.NET AJAX

588 UI for ASP.NET AJAX

 Code 25 Standard - Stanadard 2 of 5 is a low-density numeric symbology. The spaces in the barcode exist
only to separate the bars themselves. Additionally, a bar may either be wide or narrow, a wide bar
generally being 3 times as wide as a narrow bar. The exact size of the spaces is not critical, but is generally
the same width as a narrow bar.

 Code39 - is a barcode symbology which encodes alphanumeric characters into a series of bars. It is of
variable length and accepts uppercase letters, as well as numbers. It includes an optional Mod 43
checksum. Code39Extended is an extended version of code 39, which includes a bigger character set. If
there is a requirement to use the Code39 barcode with characters other than numbers and uppercase
alphabets, then this is the recommended barcode.

 Code93 - was designed to complement and improve upon Code 39. Code 93 is similar in that it, like Code
39, can represent the full ASCII character set by using combinations of 2 characters. It differs in that Code
93 is a continuous symbology and produces denser code. It also encodes 47 characters compared to Code
39's 43 characters. Code93Extended is an exteded version of code 93, which includes a bigger character
set. Code93Extended can encode full 128 character ASCII using the four additional characters: ($) (%) (/)
(+).

 EAN13 - is a barcode symbology which encodes numbers into a series of bars. It is of fixed length, of 13
digit (12 data and 1 check), and accepts numbers. First digit is always placed outside the symbol;
additionally a right quiet zone indicator (>) is used to indicate Quiet Zones that are necessary for barcode
scanners to work properly. It includes a checksum.

 EAN8 - is a barcode symbology which encodes numbers into a series of bars. It is of fixed length, of 7
digits, and accepts numbers only. It includes a checksum.

 MSI(also known as Modified Plessey) - is a barcode symbology is a continuous, non-self-checking symbology.
It is used primarily for inventory control, marking storage containers and shelves in warehouse
environments. The length of this barcode type is variable.

 Postnet(Postal Numeric Encoding Technique) - is a barcode symbology which encodes numbers into a series
of bars. It is of variable length and accepts numbers only. It includes a checksum.

 UPCA - is a barcode symbology, which consists of 12 digits, one of which is a checksum. This barcode
identifies the manufacturer and specific product, so point-of- sale cash register systems can automatically
look up the price.

 UPCE - is a variation of the UPCA symbol that is used for number system 0. By suppressing zeroes, UPCE
codes can be printed in a very small space and are used for labeling small items.

 UPC Supplement 2 - A two digit UPC supplementary code. This barcode should only be used with
magazines, newspapers and other such periodicals.

 UPC Supplement 5 - A five digit UPC supplementary code. This barcode is used on books to indicate a
suggested retail price.

UI for ASP.NET AJAX

589 UI for ASP.NET AJAX

 Explore features of the RadButton control.

 Getting Started.

 Use RadButton with external or embedded icons.

 RadButton as an Image Button.

 RadButton as a toggle button. Learn how to implement radios, checkboxes and a three state checkbox.

 Explore the most important properties of RadButton.

 Creating a single click button.

 Creating bigger icons and buttons.

 Confirm postback with RadButton.

 Specifying the content of a RadButton.

The RadButton control provides access to the features of the ASP.NET Button, ImageButton, LinkButton,
RadionButton, and CheckBox controls. The control can be easily styled by changing the Skin property, and
alternatively setting properties that change the look of the control. This will eliminate the need to use the
RadFormDecorator just to style a single button. Developers can easily migrate their applications from using the
standard ASP.NET (button) controls to the new RadButton control, because most of their functionality is
provided by our control and is controlled by the same or similar(intuitive) properties.

RadButton can be also configured to behave as a toggle button and rendered as a check box, a radio button or
a completely customized toggle button with multiple states. You can make the control even more intuitive by
placing an Icon right next to the text by choosing from the predefined icons or specifying your own.

22 RadButton

22.1 Objectives

22.2 Introduction

UI for ASP.NET AJAX

590 UI for ASP.NET AJAX

The following tutorial demonstrates how to set up a page with a RadButton control and attach its OnClick
server event:

1. In the default page of a new ASP.NET AJAX-enabled Web Application add a RadButton control:

22.3 Getting Started

RadButtons' declarations

<telerik:RadButton ID="RadButton1" runat="server" Text="My Button"></telerik:RadButton>

UI for ASP.NET AJAX

591 UI for ASP.NET AJAX

The Text property specifies the text displayed in the RadButton control.

2. To hook to the OnClick server-side event of RadButton switch to Design view of Visual Studio and double
click on the button. This operation will insert the following function in the codebehind file:

as well as add onclick="RadButton1_Click" to the RadButton's declaration.

In the Click event handler add code that you want to be executed when the RadButton controls is clicked.

Here is more information about the different RadButton types and specific properties:

RadButton offers a special ButtonType property, which controls how the button is rendered on the client as a:
StandardButton (default), LinkButton or ToggleButton.

1. StandardButton:
The control is rendered as <input/> of type="submit" or type="button". The UseSubmitBehavior
(default value "true") property determines whether the <input/> type will be "submit" (when set to
true) or "button" (when set to false). The user can disable the built-in styles and CSS of the button, and
let the client browser apply its default styling for <input type="submit|button" /> elements, by setting
the EnableBrowserButtonStyle property to true.

StandardButton specific properties:

1. UseSubmitBehavior - gets or sets a bool value indicating whether the RadButton control uses the
client browser's submit mechanism or the ASP.NET postback mechanism.

2. EnableBrowserButtonStyle

2. LinkButton:
The control is rendered as <a/> (anchor) element with child element used to specify the text.
The purpose of this button type is to provide a "LinkButton" look of the control, and enable the user to
specify URL to navigate to without requiring a page post back to the server. Target window or frame
can be specified, in which the Web page content will be displayed, when the control is clicked, using
the Target property.

LinkButton specific properties:

1. NavigateUrl

2. Target

3. ToggleButton
The control is rendered in the same way as the LinkButton; the difference is in the styles applied. The
ToggleButton looks like a check box or radio button, depending on the value specified for the

C# Click Event Handler Function

protected void RadButton1_Click(object sender, EventArgs e)
{
}

VB.NET Click Event Handler Function

Protected Sub RadButton1_Click(sender As Object, e As EventArgs)
End Sub

UI for ASP.NET AJAX

592 UI for ASP.NET AJAX

ToggleType property. It can also look like a simple text (label) button [clickable text], if
ToggleType="None" or "CustomToggle" is used.

This button type should be used in scenarios when richly styled check boxes or radio buttons are
needed.

More information about the important properties of RadButton can be found in the Important
Properties (Section 22.7) article.

You can make your button more intuitive by showing an icon or two on the left or right side of the control. All
the Icon-related properties are controlled through the RadButton.Icon inner property. To display an icon on the
button, the user needs to set either the Icon.PrimaryIconCssClass (SecondaryIconCssClass) property, or the
Icon.PrimaryIconUrl (SecondaryIconUrl) property.

RadButton provides an easy way to show different icon when the mouse is hovering over the control or the
button is pressed. This is achieved through the Icon.PrimaryHoveredIconUrl(SecondaryHoveredIconUrl) and
Icon.PrimaryPressedIconUrl(SecondaryPressedIconUrl).

At first the Icons might not be positioned the way we want, but this can be easily fixed by directly setting the
properties that control the top, bottom, left or right edge of the respective icon. These are:

 PrimaryIconTop (SecondaryIconTop)

 PrimaryIconBottom (SecondaryIconBottom)

 PrimaryIconLeft (SecondaryIconLeft)

 PrimaryIconRight (SecondaryIconRight)

Additionally, a CSS class can be set to the icon, and the position configured using CSS.

1. Properties:
<telerik:RadButton ID="RadButton2" runat="server" Text="Shopping Cart">
 <Icon PrimaryIconUrl="~/img/Cart.png" PrimaryIconTop="4px" PrimaryIconLeft="5px"
SecondaryIconUrl="~/img/Add.png" SecondaryIconTop="4px" SecondaryIconRight="5px">
</telerik:RadButton>

22.4 Specifying RadButton Icons

RadButtons with Icons

<telerik:RadButton ID="RadButton1" runat="server" Text="Shopping Cart">
 <Icon PrimaryIconUrl="~/img/Cart.png" PrimaryIconCssClass="classCart" />
</telerik:RadButton>
<telerik:RadButton ID="RadButton2" runat="server" Text="Standard Button With Two Icons">
<Icon PrimaryIconUrl="~/img/right_arrow.png" PrimaryIconTop="5px" PrimaryIconLeft="7px"
 SecondaryIconUrl="~/img/left_arrow.png" SecondaryIconTop="5px" SecondaryIconRight="7px"
 />
</telerik:RadButton>

UI for ASP.NET AJAX

593 UI for ASP.NET AJAX

2. Or the same configuration using CSS classes:

<style type="text/css">
.classCart
{
 top: 4px !important;
 left: 5px !important;
}
.classAdd
{
 top: 4px !important;
 right: 5px !important;
}
</style>

<telerik:RadButton ID="RadButton3" runat="server" Text="Shopping Cart">
 <Icon PrimaryIconUrl="~/img/Cart.png" PrimaryIconCssClass="classCart"
SecondaryIconUrl="~/img/Add.png" SecondaryIconCssClass="classAdd">
</telerik:RadButton>

To make the control even easier to use we offer a predefined set of built-in RadButton Icons. The developer
needs to set the PrimaryIconCssClass or SecondaryIconCssClass property to the predefined CSS class, and the
respective icon will be shown on the control. Some of the CSS classes include the following:

 rbOk

 rbCancel

 rbAdd

 rbRemove

 rbAttach

The full list of the classes can be found on our online demos (http://demos.telerik.com/aspnet-
ajax/button/examples/embeddedicons/defaultcs.aspx) site:
Note: The CssClass are composed in the following way: [r]ad[b]utton[Iconname] == rbAdd

22.5 RadButton as an Image Button

UI for ASP.NET AJAX

594 UI for ASP.NET AJAX

RadButton provides an easy way to show a custom image on the control. The image can be used as a
background, or can represent the button itself (Image Button). When using the RadButton control as Image
Button, the user must set Width and Height, because we don't use an actual tag, but the image is set as
background to the Button's wrapper element (<a/>). All the Image-related properties are controlled through the
RadButton.Image property.

RadButton used as ImageButton (the image represents the button)

RadButton with background image, icons and text.

There are two ways to display an image on the control:

1. The first and the easiest way is to set the Image.ImageUrl property to the location of the image used.
Setting the IsBackgroundImage to true enables the developer to use the image as background, and set text
and icons to his/her button.

2. The second way to set the image using RadButton's CssClass property. Basically we set the background-
image in the CssClass, and enable the image button functionality by setting
Image.EnableImageButton=true.

This approach is preferred when you want to use an image sprite for the button (see sample below). You set the
background-image and background-position in the CssClass, and then in the HoveredCssClass and
PressedCssClass, only the background-position of the hovered and pressed image.
If the user wants she/he can display a different image when the mouse is hovering over the control, or the
button is pressed using the HoveredImageUrl and PressedImageUrl properties respectively.

Sample for p.2 (RadButton and Image Sprites):

ASPX

<telerik:RadButton ID="ImageButton1" runat="server" Width="37px" Height="36px"
Text="Download">
 <Image ImageUrl="~/img/cb_download.png" />
</telerik:RadButton>

UI for ASP.NET AJAX

595 UI for ASP.NET AJAX

The RadButton control can be easily configured to behave as a toggle button. Simply set the ToggleType
property to a value different than ButtonToggleType.None, and the button is transformed into a check box, a
radio button or a completely customized toggle button. Since the ButtonType property controls how the
component looks, the user can have his/her buttons look like standard buttons or even <input
type="submit|button" /> elements, and behave like check boxes or radio buttons. Here are some code samples
showing how this is achieved:

CheckBoxes:

CSS

 <style type="text/css">
 .classImage
 {
 background: url(img/rbPredefinedIcons.png);
 background-position: 0 0;
 width: 16px;
 height: 16px;
 }
 .classHoveredImage
 {
 background-position: -24px 0;
 }
 .classPressedImage
 {
 background-position: -48px 0;
 }
 </style>

ASPX

<telerik:RadButton ID="ImageButton2" runat="server" Text="Image Button"
CssClass="classImage"
 HoveredCssClass="classHoveredImage" PressedCssClass="classPressedImage">
 <Image EnableImageButton="true" />
</telerik:RadButton>

Note: It is always good to set the Text property, no matter if the control is used solely as image button (no
text and icons shown), because this way the accessibility of the control is improved.

22.6 RadButton as a Toggle Button

ASPX

<telerik:RadButton ID="btnToggle1" runat="server" Text="Checkbox 1" ToggleType="CheckBox"
ButtonType="StandardButton"></telerik:RadButton>
<telerik:RadButton ID="btnToggle2" runat="server" Text="Checkbox 2" ToggleType="CheckBox"

UI for ASP.NET AJAX

596 UI for ASP.NET AJAX

Checked state:

Radios:

Checked state:

If a Radio ToggleType mode is chosen, the developer could also set the GroupName property, which specifies
the name of the group that the radio button belongs to. Use this property to specify a grouping of radio buttons
to create a mutually exclusive set of controls.

CustomToggle buttons:

ButtonType="LinkButton"></telerik:RadButton>
<telerik:RadButton ID="btnToggle3" runat="server" Text="Checkbox 3" ToggleType="CheckBox"
ButtonType="ToggleButton"></telerik:RadButton>

ASPX

<telerik:RadButton ID="btnToggle4" runat="server" Text="Radio Button 1" ToggleType="Radio"
ButtonType="StandardButton"></telerik:RadButton>
<telerik:RadButton ID="btnToggle5" runat="server" Text="Radio Button 2" ToggleType="Radio"
ButtonType="LinkButton"></telerik:RadButton>
<telerik:RadButton ID="btnToggle6" runat="server" Text="Radio BUtton 3" ToggleType="Radio"
ButtonType="ToggleButton"></telerik:RadButton>

UI for ASP.NET AJAX

597 UI for ASP.NET AJAX

Filled State:

Checked State:

ASPX

<telerik:RadButton ID="btnToggle7" runat="server" ToggleType="CustomToggle"
ButtonType="StandardButton">
<ToggleStates>
 <telerik:RadButtonToggleState Text="UnChecked" PrimaryIconCssClass="rbToggleCheckbox" />
 <telerik:RadButtonToggleState Text="Filled" PrimaryIconCssClass="rbToggleCheckboxFilled" />
 <telerik:RadButtonToggleState Text="Checked"
PrimaryIconCssClass="rbToggleCheckboxChecked" />
</ToggleStates>
</telerik:RadButton>
<telerik:RadButton ID="btnToggle8" runat="server" ToggleType="CustomToggle"
ButtonType="LinkButton">
<ToggleStates>
 <telerik:RadButtonToggleState Text="UnChecked" PrimaryIconCssClass="rbToggleCheckbox" />
 <telerik:RadButtonToggleState Text="Filled" PrimaryIconCssClass="rbToggleCheckboxFilled" />
 <telerik:RadButtonToggleState Text="Checked"
PrimaryIconCssClass="rbToggleCheckboxChecked" />
</ToggleStates>
</telerik:RadButton>
<telerik:RadButton ID="btnToggle9" runat="server" ToggleType="CustomToggle"
ButtonType="ToggleButton">
<ToggleStates>
 <telerik:RadButtonToggleState Text="UnChecked" PrimaryIconCssClass="rbToggleCheckbox" />
 <telerik:RadButtonToggleState Text="Filled" PrimaryIconCssClass="rbToggleCheckboxFilled" />
 <telerik:RadButtonToggleState Text="Checked"
PrimaryIconCssClass="rbToggleCheckboxChecked" />
</ToggleStates>
</telerik:RadButton>

UI for ASP.NET AJAX

598 UI for ASP.NET AJAX

The user is free to specify as many toggle states as needed, and can completely change the look of the control
using the different RadButtonToggleState properties. In the code above, the PrimaryIconCssClass property is
used to specify a three-state (3-state) checkbox and the Text property to have different text depending on the
currently selected state.

To take a closer look at RadButton's "toggle button" functionality please visit our online demos
(http://demos.telerik.com/aspnet-ajax/button/examples/togglebutton/defaultcs.aspx).

The most important properties of the RadButton control are presented below:

Common properties:

 Text - specifies the text displayed in the RadButton control.

 AutoPostBack - specifies a bool value indicating whether the control will automatically post the page back
to the server.

 CausesValidation - specifies a bool value indicating whether validation is performed when the RadButton is
clicked.

 ButtonType - specifies the type of the button. The following types exist:

 StandardButton (default)

 LinkButton

 ToggleButton
Each ButtonType provides certain functionality that is unique. More information on the features of
different button types can be found in each button category.

 CommandName - specifies the group of controls for which the RadButton control causes validation when it
posts back to the server.

Inner <Icon> tag specific properties:

 PrimaryIconUrl - specifies the URL to the image used as Primary Icon.

 PrimaryIconCssClass - specifies the CSS class applied to the Primary icon.

 SecondaryIconUrl - specifies the URL to the image used as Secondary Icon.

 SecondaryIconCssClass - specifies the CSS class applied to the Secondary icon.

Inner <Image> tag specific properties:

 IsBackgroundImage - specifies a bool value indicating how the image is used - i.e. as a background image

22.7 Important Properties

UI for ASP.NET AJAX

599 UI for ASP.NET AJAX

or as an Image Button.

 ImageUrl - specifies the URL to the image used as button.

 HoveredImageUrl - specifies the URL to the image showed when the RadButton is hovered.

 PressedImageUrl - specifies the URL to the image showed when the RadButton is pressed.

 EnableImageButton - specifies a bool value indicating whether the RadButton is rendered as Image
Button.

SplitButton specific properties:

 EnableSplitButton - specifies a bool value that indicates whether the SplitButton functionality will be
enabled
SplitButtonPosition - specifies the position where the SplitButton will appear relative to the main button
(Left or Right). Position:

 Right (default)

 Left

 SplitButtonCssClass - specifies the CSS class applied to the SplitButton

Type:Button specific properties:

 UseSubmitBehavior - gets or sets a bool value indicating whether the RadButton control uses the client
browser's submit mechanism or the ASP.NET postback mechanism.

Type:LinkButton specific properties:

 NavigateUrl - specifies the URL of the page to navigate to, without posting the page back to the server.
When this property is sets, the button is rendered as an <a/> (anchor) element.

 Target - specifies the target window or frame in which to display the Web page content linked to when the
RadButton control is clicked.

Type: ToggleButton specific properties:

 ToggleType - specifies the type of the Toggle Button. There are three toggle types:

 None (default)

 Radio

 CheckBox

 CustomToggle

 GroupName - Valid when ToggleType: Radio. Gets or sets the name of the group that the radio button
belongs to.

 Checked - specifies a bool value indicating whether the RadButton control is checked. When the
ToggleButton has more than two states, the control is not checked if the current state of the RadButton is
the First state. Otherwise, it is Checked.
Direction - specifies the direction in which the states will be switched, when more than two ToggleStates
are specified. Directions:

 Standard (default)

 Reversed

UI for ASP.NET AJAX

600 UI for ASP.NET AJAX

 SelectedToggleState - specifies the current state of the RadButton.

 SelectedToggleStateIndex - specifies the index of the currently selected ToggleState of the RadButton
control, when used as a custom toggle button.

 ToggleStates - Collection of RadButtonToggleState. The different states are controlled through a
collection of states. The collection can contain maximum of four states. The order of switching the states
is determined by the 0-based position index at which the state occurs in the collection. So, the first item in
the ToggleStates is the first state, the second item is the second state, and so on. When the ToggleType is
Radio or CheckBox, the first item (state) of the ToggleStates is used as the alternate state of the
RadButton.

RadButtonToggleState specific properties:

 Text - specifies the text displayed in the RadButton control.

 Height - Selected- Gets or sets a bool value indicating whether the ToggleState is selected or not.
CssClass-

The single click button is used to avoid multiple postbacks/callbacks to the server. This feature is useful in
database and/or e-mail send scenarios when the developer should prevent submitting of identical content
multiple times to the server

The example below demonstrates how to disable RadButton when clicked and change the button's text:

22.8 Creating a single click button

Default.aspx

<script type="text/javascript">
function OnClientClicked(sender, eventArgs) {
 //disable the button
 sender.set_enabled(false);
 //update the button text
 if (sender.get_text() == "Submit") sender.set_text("Submitting...");
}
function pageLoad(sender, eventArgs) {
 //Set the initial button's text and enable it
 var btnStandard = $find("<%=btnStandard.ClientID%>");
 btnStandard.set_text("Submit");
 btnStandard.set_enabled(true);
}
</script>
<telerik:RadButton ID="btnStandard" runat="server" Text="Submit" OnClick="btnStandard_Click"
UseSubmitBehavior="false" OnClientClicked="OnClientClicked" Style="clear: both;
float: left; margin: 10px 0;">
</telerik:RadButton>
<asp:Label ID="lblText" runat="server"></asp:Label>

RadButton Click Server-side handler C#

protected void btnStandard_Click(object sender, EventArgs e)
{
lblText.Text = System.DateTime.Now.ToString();
if (Page.IsPostBack) System.Threading.Thread.Sleep(3000);

UI for ASP.NET AJAX

601 UI for ASP.NET AJAX

Note: The disabled="disabled" attribute is applied to the control's HTML element, when it is disabled. This
causes the client browser to not submit the page correctly (i.e. the values of the input fields are not
submitted), and as a result RadButton's server-side events are not fired. In some browsers (IE6,7 and 8) the
page is not submitted at all. That's why the ASP.NET postback mechanism should be used to submit the page.
This is achieved by setting UseSubmitBehavior="false" [UseSubmitBehavior - Gets or sets a value indicating
whether the RadButton control uses the client browser's submit mechanism or the ASP.NET postback
mechanism].

The StandardButton (RadButton with ButtonType="StandardButton") has a fixed height which by default is
22px.

In Q1, 2011 we introduced a way to have a StandardButton with a height of 65px. This allows you to use bigger
icons (24x24 pixels), and to place the content (icons and text) horizontally or vertically, e.g

The predefined icons set for RadButton also offer a bigger icon for every existing one
(http://demos.telerik.com/aspnet-ajax/button/examples/embeddedicons/defaultcs.aspx). The following
code will render the "Add" icon with greater dimensions:

Sometimes it is also necessary to create button with a Custom height. The following help article provides
guidance how to implement buttons with custom height:
RadButton Custom Height Tutorial (http://www.telerik.com/help/aspnet-ajax/button-custom-height.html)

This example shows different ways to confirm the submission of the page to the server when using RadButton
control:

}

RadButton Click Server-side handler VB.NET

Protected Sub btnStandard_Click(sender As Object, e As EventArgs)
 lblText.Text = System.DateTime.Now.ToString()
 If Page.IsPostBack Then
 System.Threading.Thread.Sleep(3000)
 End If
End Sub

22.9 Bigger Icons and Buttons

Setting Bigger Height

<telerik:RadButton ID="RadButton1" runat="server" Text="Standard
Button" Height="65px"></telerik:RadButton>

Setting Bigger Icon and Button Height

<telerik:RadButton ID="RadButton3" runat="server" Text="Add" Height="65px"
AutoPostBack="false"
 Font-Size="18px">
 <Icon PrimaryIconCssClass="rbAdd24" PrimaryIconLeft="8" PrimaryIconTop="20" />
</telerik:RadButton>

22.10 Confirm postback with RadButton

UI for ASP.NET AJAX

602 UI for ASP.NET AJAX

RadButton with browser's window.confirm:

RadButton with radconfirm (requires RadWindowManager on the page):

RadButton with RadWindow. Using RadWindow as the confirmation window gives the developer the ability to
fully customize the look and feel of the dialog.

Browser's window.confirm

<script type="text/javascript">
 function StandardConfirm(sender, args)
 {
 args.set_cancel(!window.confirm("Are you sure you want to submit the page?"));
 }
</script>
<telerik:RadButton ID="btnStandardConfirm" runat="server" Text="Standard window.confirm"
OnClientClicking="StandardConfirm">
</telerik:RadButton>

RadButton with radconfirm

<script type="text/javascript">
function RadConfirm(sender, args)
{
 var callBackFunction = Function.createDelegate(sender, function (shouldSubmit)
 {
 if (shouldSubmit)
 {
 this.click();
 }
 });

 var text = "Are you sure you want to submit the page?";
 radconfirm(text, callBackFunction, 300, 100, null, "RadConfirm");
 args.set_cancel(true);
}
</script>
<telerik:RadButton ID="btnRadConfirm" runat="server" Text="RadConfirm"
OnClientClicking="RadConfirm">
</telerik:RadButton>
<telerik:RadWindowManager ID="windowManager1" runat="server">
</telerik:RadWindowManager>

RadButton with RadWindow

<script type="text/javascript">
function CustomRadWindowConfirm(sender, args)
{
 $find("<%=confirmWindow.ClientID %>").show();
 $find("<%=btnYes.ClientID %>").focus();
 args.set_cancel(true);
}
function YesOrNoClicked(sender, args)

UI for ASP.NET AJAX

603 UI for ASP.NET AJAX

It is now possible to define the appearance of a RadButton control by adding ASP.NET controls and HTML
elements in its content. There are a few ways to achieve this:

 Set the ContentTemplate property:

 In the markup of your page you can add controls to the ContentTemplate inner property as shown
below:

 In code-behind you can set the ContentTemplate property with an instance of a class that implements
the ITemplate interface:

{
 var oWnd = $find("<%=confirmWindow.ClientID %>");
 oWnd.close();
 if (sender.get_text() == "Yes")
 {
 $find("<%=btnCustomRadWindowConfirm.ClientID %>").click();
 }
}
</script>
<telerik:RadButton ID="btnCustomRadWindowConfirm" runat="server" Text="Confirm"
 OnClientClicking="CustomRadWindowConfirm">
</telerik:RadButton>
<telerik:RadWindow ID="confirmWindow" runat="server" VisibleTitlebar="false"
VisibleStatusbar="false"
 Modal="true" Behaviors="None" Height="150px" Width="300px">
<ContentTemplate>
<asp:Label ID="lblConfirm" Text="Are you sure you want to submit the page?"
runat="server" />

 <telerik:RadButton ID="btnYes" runat="server" Text="Yes" AutoPostBack="false"
OnClientClicked="YesOrNoClicked">
 <Icon PrimaryIconCssClass="rbOk" />
 </telerik:RadButton>
 <telerik:RadButton ID="btnNo" runat="server" Text="No" AutoPostBack="false"
OnClientClicked="YesOrNoClicked">
 <Icon PrimaryIconCssClass="rbCancel" />
 </telerik:RadButton>
 </ContentTemplate>
</telerik:RadWindow>

22.11 Specifying the content of a RadButton

ASPX

<telerik:RadButton runat="server" ID="RadButton1" Width="90"
 Height="90">
 <ContentTemplate>
 RadButton Content
 </ContentTemplate>
</telerik:RadButton>

C#

protected void Page_Load(object sender, EventArgs e)

UI for ASP.NET AJAX

604 UI for ASP.NET AJAX

 Add controls to the Controls collection from the code-behind:

Note that the RadButton is rendered as an anchor HTML element, wrapping the inserted content, so you should
add in the template only inline elements in order to maintain XHTML compliance.

{
 CustomRadButton.ContentTemplate = new ButtonContentTemplate();
}
public class ButtonContentTemplate : ITemplate
{
 void ITemplate.InstantiateIn(Control container)
 {
 Label contentLabel = new Label();
 contentLabel.ID = "contentLabel";
 contentLabel.Text = "Label";
 container.Controls.Add(contentLabel);
 }
}

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs)
 CustomRadButton.ContentTemplate = New ButtonContentTemplate()
End Sub
Public Class ButtonContentTemplate
 Implements ITemplate
 Sub InstantiateIn(container As Control) Implements ITemplate.InstantiateIn
 Dim contentLabel As New Label()
 contentLabel.ID = "contentLabel"
 contentLabel.Text = "Label"
 container.Controls.Add(contentLabel)
 End Sub
End Class

C#

Label contentLabel = new Label();
contentLabel.ID = "contentLabel";
contentLabel.Text = "Label";
CustomRadButton.Controls.Add(contentLabel);

VB.NET

Dim contentLabel As New Literal()
contentLabel.ID = "contentLabel"
contentLabel.Text = "Label"
CustomRadButton.Controls.Add(contentLabel)

UI for ASP.NET AJAX

605 UI for ASP.NET AJAX

• Learn what Binary Image is.
• Where it can be used and how to bound data to it.
• Review which are the most important properties of the RadBinaryImage control.

The Binary Image control is used for showing an image stored as binary data in a database. The control can be
used in any data bound control (RadGrid, Repeater, DataList, GridView, etc.). The control uses an internal http
handler which streams the image from the binary source to the page in which it has to be visualized.

The storage of the binary stream when transferred between the control itself and the handler is the
HttpContext.Current.Cache object and the image is cached in the browser. Its default expiration time is 2 hours
(unless the control in which the RadBinaryImage is nested is rebound or recreated). In case the browser cache is
disabled, the image will be persisted for 2 minutes on the server before it is streamed to the page from the
data source.

You need to register the http handler of the RadBinaryImage control either using its Smart Tag or manually in
the web.config file to ensure that it will be served as expected when the page is rendered.

The most important properties of the RadBinaryImage control are presented below:

 DataValue: Property which specifies the source field from which the data will be passed as a byte array.

 Height: Specifies the height of the binary image.

 Width: Specifies the width of the binary image.

 AlternateText: The text that will replace the image when it is not available/cannot be streamed.

 ToolTip: The text that will be displayed in a browser tooltip when you hover the image.

 AutoAdjustImageControlSize: Scales the image based on explicitly set width/height dimensions to avoid
stretch or blur effect when its original dimensions do not fit. The default value is true.

 HttpHandlerUrl: Can be used to specify the location of a custom http handler which extends the default

23 RadBinaryImage

23.1 Objectives

23.2 Introduction

[Web.config] Classic mode

<httpHandlers>
 <remove path="*.asmx" verb="*" />
 ...
 <add path="Telerik.Web.UI.WebResource.axd" type="Telerik.Web.UI.WebResource" verb="*"
validate="false" />
</httpHandlers>

[Web.config] Integrated mode

<system.webServer>
 ...
 <handlers>
 <add name="Telerik_Web_UI_WebResource_axd" verb="*" preCondition="integratedMode"
path="Telerik.Web.UI.WebResource.axd" type="Telerik.Web.UI.WebResource" />
 </handlers>
</system.webServer>

UI for ASP.NET AJAX

606 UI for ASP.NET AJAX

RadBinaryImage http handler. When not set, RadBinaryImage has its own handler which is invoked through
the common Telerik.WebResource.axd handler.

 ImageUrl: Applicable when no DataValue is specified to gracefully degrade to regular ASP.NET Image mode.
When null value is returned from the source, the ImageUrl property can be used to specify default image
for RadBinaryImage.

 ImageAlign: Specifies the image alignment inside its container.

 ResizeMode: Specifies whether the image should be sized automatically if width and height of the image
are set in pixels. Possible values are:

 Crop (the image will be trimmed)

 Fit (the image will be sized to fit the given dimensions)

 None (default)

 SavedImageName: Sets image’s filename which will appear inside SaveAs browser dialog if image is saved.

RadBinaryImage - Thinking Inside the Box
Let's start with a simple RadBinaryImage demonstration used in RadGrid TemplateColumn.

1. Create a new web application and add a ScriptManager component to the page

2. Add a RadGrid control to the page.

3. Configure the datasource to connect to the Telerik database. .

4. In the Configure the Select Statement step in the RadGrid SmartTag, select the "Specify a custom SQL
statement" option and click Next. In the SELECT statement tab, enter the following query:

 5. Add GridTemplateColumn with RadBinaryImage in it.

 6. Set the RadBinaryImage main properties: ID, AlternateText, DataValue, Height, Width, ResizeMode,
ToolTip.

23.3 Getting Started

You can find the complete source for this project at:
\VS Projects\RadBinaryImage\RadBinaryImageSample

[SQL] Image select statement

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:TelerikConnectionString %>"
SelectCommand="SELECT * FROM [Images]" >
</asp:SqlDataSource>

Adding BinaryImage to GridTemplateColumn

<telerik:RadGrid runat="server" ID="RadGrid1" AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False" Width="97%" DataSourceID="SqlDataSource1"
GridLines="None"
 PageSize="3>
 <MasterTableView Width="100%" DataKeyNames="ID" DataSourceID="SqlDataSource1">
 <Columns>

UI for ASP.NET AJAX

607 UI for ASP.NET AJAX

 <telerik:GridTemplateColumn HeaderText="Image Name"
UniqueName="ImageName" SortExpression="Name">
 <ItemTemplate>
 <telerik:RadBinaryImage ID="RadBinaryImage1" runat="server"
AlternateText='<%# "Image of " + Eval("Description") %>' DataValue='<%# Eval("Data") %>'
Height="80px" Width="80px" ResizeMode="Fit" ToolTip='<%# "Image of " + Eval("Description") %
>' />
 </ItemTemplate>
 <HeaderStyle Width="30%" />
 </Columns>
 </MasterTableView>
</telerik:RadGrid>

UI for ASP.NET AJAX

608 UI for ASP.NET AJAX

 Explore the features of RadFilter control

 Learn how to define filter expressions manually

 Learn how to use RadFilter in conjunction with RadGrid and RadListView

 Explore the client-side and server-side events

The purpose of RadFilter control is to allow the developer to supply an interface for constructing strongly
typed filter expressions. These expressions can be used to:
- query data from a data source control
- supply filter expressions to controls that support such expressions, for example RadListView and RadGrid

Most of the RadFilter control functionalities require that the ViewState is enabled - both for the control, and
any container controls, in order for the operations to be handled properly and the filter expressions persisted.

Using RadFilter with RadGrid and RadListView
One of the most common uses of RadFilter is to be paired with other controls that support filter expressions.
This enables the users to construct complex expressions that can not be created using the built-in filter
controls.

Coupling the RadFilter and RadGrid (or RadListView) is really simple - the FilterContainerID property should
point to the relevant target control ID.

Constructing filter expressions
It is possible to manually construct filter expressions and add them to RadFilter afterwards. This is
demonstrated in the code-snippet below:

24 RadFilter

24.1 Objectives

24.2 Introduction

24.3 Getting Started

[ASP.NET]

<telerik:RadFilter ID="RadFilter1" runat="server" FilterContainerID="RadGrid1" />
<telerik:RadGrid ID="RadGrid1" runat="server" AllowFilteringByColumn="true"
DataSourceID="SqlDataSource1">
</telerik:RadGrid>

[C#]

if (!IsPostBack)
{

UI for ASP.NET AJAX

609 UI for ASP.NET AJAX

Note that when RadFilter is paired to other control and this control is bound to datasource control you should
add the expression of the PreRender event of the relevant control. Furthermore, if you want this expression to
take immediate effect you have to invoke the FireApplyCommand method.

Server-side events
OnApplyExpressions - this event is raised when the user presses the "Apply" button or when the
FireApplyCommand method has been invoked. Essentially, this is the moment when the actual filter expression
is constructed. Note that pressing the "Apply" button does not trigger the OnItemCommand event handler.

OnItemCommand - This event is raised when a command is issued by the control - for example, when the end
user adds a new filtering group

OnLoad - Occurs when the control loads

OnPreRender - This event is raised when the control is about to be rendered on the page

OnFilterEditorCreating - fires only for custom editors that inherit the built-in RadFilter editors. One could
handle this event to replace or modify the editor instance that should be created and added into the relevant
collection.

OnFilterEditorCreated - fires when RadFilter is paired with container control or when used to filter datasource
control. This event can be used to change the DisplayName of RadFilter editor programmatically.

Client-side events
OnFilterCreated - fires when the filter control is created

OnFilterCreating - RadFilter rises this event when the control is being created but the process is not yet
completed

OnFilterDestroying - this event fires when the filter control is being destroyed on the client

So far we have discussed the most important features of RadFilter. We learned how to use the control in
conjunction with RadGrid and RadListView. This topic also covered the custom expressions as well
as the events (both client-side and server-side). You can examine the RadControls for ASP.NET AJAX section
on our website for more information (and demos) about the control.

 RadFilterEqualToFilterExpression<string> expression = new
RadFilterEqualToFilterExpression<string>("CategoryName");
 RadFilter1.RootGroup.AddExpression(expression);
 expression.Value = "Beverages";
}

[VB.NET]

If Not IsPostBack Then
 Dim expression As New RadFilterEqualToFilterExpression(Of String)("CategoryName")
 RadFilter1.RootGroup.AddExpression(expression)
 expression.Value = "Beverages"
End If

24.4 Events

24.5 Summary

UI for ASP.NET AJAX

610 UI for ASP.NET AJAX

 Getting familiar with RadImageEditor control and its features

 Explore the design time interface - Smart Tag and Properties Window

 Learn how to utilize the RadImageEditor’s rich client-side API

 Learn how to use a ToolsFile or the Tools inner tag to configure the toolbar

 Learn how to use the server-side events to manipulate images from alternative source (database)

RadImageEditor is a powerful and flexible graphics editing component that allows the users to modify their
images directly in the browser, without installing any third party plugins. The actions on the image are
performed on the client or, through a light callback, on the server, giving you the ability to perform the editing
quickly and see the changes on the fly. The control is fully customizable, intuitive to work with and provides
many features. Here are some of the key ones:

 Rich Client-side functionality - RadImageEditor exposes many of the methods used to perform the
operations on the image, so that the image can be easily modified programmatically.

 Customizable Tools - The developer has full control over the ImageEditor's set of tools. The ToolsFile
property or the Tools collection can be used to specify the desired buttons that will appear in the ToolBar.

 Intuitive Dialogs - RadImageEditor provides a set of built-in dialog controls that are easy to use and offer
the user a quick and intuitive way of modifying the images in the desired fashion.

 Integrated RadControls - We have embedded some of our ASP.NET Ajax RadControls into the ImageEditor
to benefit from their rich functionality. This not only makes the new component feature rich, but a perfect
example of how the RadControls work together in complex scenarios. The integrated controls are loaded on
demand thus ensuring optimal loading speed and scalability.

 Undo/Redo Actions - RadImageEditor saves all the operations, so each change performed on the image can
be reverted or re-applied again. The operations stack is cleared on postbacks, because we assume the user
won't initiate a postback unless she is finished with the editing.

 Image Operations - A variety of operations can be performed on a given image. This includes rotation,
resizing, changing the transparency, cropping and many more.

 RadImageEditor offers rich functionality in its design-time Smart Tag. You can display it by right clicking on
the control and choosing "Show Smart Tag", or clicking the small rightward-pointing arrow located in the upper
right corner of the control. You can also use it to:

 add the Telerik WebResource handler - if it is not present in the web.config you are presented with an
option to add it

 add the needed AJAX resources to the web application - ScriptManager or RadScriptManager,
RadAjaxManager, RadStyleSheetManager

 change the Skin of the control via the dedicated dropdown

 quickly get help via our online learning center – online help, examples, knowledge base and code library,
web search and our support center

25 RadImageEditor

25.1 Objectives

25.2 Introduction

25.3 Smart Tag

UI for ASP.NET AJAX

611 UI for ASP.NET AJAX

Below is an example how the smart tag will look if you do not have the Telerik Http Handler in the web.config.
Notice the first option:

 This tutorial demonstrates how to add a RadImageEditor in a page, load an image in it so that you can start
modifying it:

1. Create a new ASP.NET AJAX - enabled web site

2. Add a RadScriptManager or the standard ASP ScriptManager to the page - this step is mandatory if you are
using ASP.NET AJAX controls

3. Drag a RadImageEditor from your VS Toolbox and drop it on the page

4. Right-click on the inserted RadImageEditor control and select properties

5. Set the ImageUrl property from the Properties tab to point to an image to be loaded. Please note that the
image must be located in a folder accessible from the application

6. If you are not creating a RadControls WebSite you should add the RadImageEditor HttpHandler from the
smart tag

7. You can further modify the control by setting these properties:

1. ImageCacheStorageLocation – where the control should store its cache

2. StatusBarMode – controls the position of the status bar

3. Width – sets explicit width for the control in pixels

4. Height – sets explicit height for the control, also in pixels

8. Save the page and run it in the browser.

The resulting markup should look similar to this if no additional properties are set:

25.4 Getting Started

UI for ASP.NET AJAX

612 UI for ASP.NET AJAX

If you do not set explicit dimensions the resulting ImageEditor will revert to the default values and will look
similar to this:

The RadImageEditor comes with a predefined toolbar, containing the default set of tools. This, however, may
be a bit too many options for some scenarios, or you would like the order of the buttons to be different, or the
tooltips, etc. This is the reason why we offer two ways do modify the toolbar – via the Tools inner tag and via
the ToolsFile property.

The ToolsFile property can take the path to an xml file containing the custom toolbar definition. This allows for
a single template in the entire application – i.e. an easy way of providing a custom, yet consistent
functionality. Here follows an example declaration:

RadImageEditor declaration

<telerik:RadImageEditor runat="server" ID="RadImageEditor1"
 ImageUrl="image1.png"></telerik:RadImageEditor>

25.5 Configuring the Toolbar

UI for ASP.NET AJAX

613 UI for ASP.NET AJAX

This will result in the following toolbar:

The Tools inner tag allows you to set the tools you wish to use in the markup of the control. This is more
difficult to maintain than an xml source, yet allows for a nice exception of the common feel if you need one:

This declaration will give the following:

Setting the ToolsFile property

<telerik:RadImageEditor ID="RadImageEditor1" runat="server"
ImageUrl="logo.png" ToolsFile="ToolsFile.xml" />

ToolsFile.xml

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <tools name="MainToolbar">
 <tool name="Print" togglebutton="true" />
 <tool name="Save" togglebutton="true" />
 <tool separator="true"/>
 <tool name="Undo" toolstrip="true" />
 <tool name="Redo" toolstrip="true" />
 <tool name="Reset" />
 <tool separator="true"/>
 <tool name="Crop" togglebutton="true" />
 <tool name="Resize" togglebutton="true" />
 <tool name="Zoom" togglebutton="true" />
 <tool name="Opacity" togglebutton="true" />
 <tool name="Rotate" togglebutton="true" />
 <tool name="Flip" togglebutton="true" />
 <tool name="AddText" togglebutton="true" />
 </tools>
</root>

Setting the inner Tools tag

 <telerik:RadImageEditor ID="RadImageEditor1" runat="server" ImageUrl=”">
 <Tools>
 <telerik:ImageEditorToolGroup>
 <telerik:ImageEditorTool CommandName="Save" />
 <telerik:ImageEditorToolSeparator />
 <telerik:ImageEditorToolStrip CommandName="Undo" Text="Undo" />
 <telerik:ImageEditorToolStrip CommandName="Redo" Text="Redo" />
 <telerik:ImageEditorToolSeparator />
 <telerik:ImageEditorTool CommandName="Crop" />
 <telerik:ImageEditorTool CommandName="Opacity" />
 </telerik:ImageEditorToolGroup>
 </Tools>
 </telerik:RadImageEditor>

UI for ASP.NET AJAX

614 UI for ASP.NET AJAX

If either one of these options is used the default toolbar is overridden by the new declaration. If both are used –
i.e. you declare Tools in the markup and point the ToolsFile property to a valid source you will get both
toolbars in the rendered RadImageEditor – first the ones from the xml, then the ones from the markup:

 RadImageEditor is fully localized by using Global resources. The control comes with three built-in language
packs, English, German, and French, and you can easily switch by setting the Language property of the control
or setting UICulture property to the @Page. The Language property is with higher priority than the global
UICulture setting. There are two options to localize the RadImageEditor – by using resource files and by using
the Localization property of the control.

You can use *.resx files to localize (or customize) the control’s localization strings with minimum efforts. The
RadControls’ installation wizard copies the built-in resource files in the App_GlobalResources folder in your
local installation. You can either create your own language pack or use an existing one (if available for your
language).

The following steps demonstrate how to create a new language pack for RadImageEditor.

1. Add App_GlobalResources folder to the application folder (if it does not already exist)

2. Copy RadImageEditor.Main.resx and RadImageEditor.Dialogs.resx files to App_GlobalResources folder

3. Create new copies of the above files and name them according to the new language’s culture.
RadImageEditor.Main.[your_language].resx and RadImageEditorDialogs.[your_language].resx. Please
note that you need to keep the original files in the folder as well

4. Open the newly copied language specific resource file and modify the keys’ values, but you should not
modify/remove the ReservedResource key

5. Set the RadImageEditor’s Language property to the corresponding language

6. When you run the application, the new resources will be recognized and the corresponding hints or other UI
elements will display in the new language

The Localization property can be set in the code-behind and allows for easy minor adjustments on a small
scale, for example:

25.6 Localization

Localization Property C#

RadImageEditor1.Localization.Main.AddText = "Добавитекст;
RadImageEditor1.Localization.Main.Opacity = "Прозрачност;

Localization Property VB.NET

RadImageEditor1.Localization.Main.AddText = "Добави текст"

UI for ASP.NET AJAX

615 UI for ASP.NET AJAX

If the Localization property is set it will override any other settings defined in the selected language’s resource
file, for example setting the Language property to de-DE and using the above localization strings will result in
the following tooltips:

While the other ones will be in German:

 The RadImageEditor exposes many methods and properties on the client, giving you the ability to perform any
action on the image programmatically. You could easily change the transparency, decrease the dimensions and
save the changes of the image by calling the correct method. This enables you to create your own custom tools
if you need some functionality you cannot find built-in the control. Here follows an example of a custom
command that applies a predefined string in the bottom right corner of the image:

RadImageEditor1.Localization.Main.Opacity = "Прозрачност"

25.7 Creating a Custom Tool

Creating a custom tool

<telerik:RadImageEditor ID="RadImageEditor1" runat="server" ImageUrl="~/images/11.jpg">
 <Tools>
 <telerik:ImageEditorToolGroup>
 <telerik:ImageEditorTool Text="Custom Text" CommandName="CustomText" />
 </telerik:ImageEditorToolGroup>
 </Tools>
 </telerik:RadImageEditor>
 <script type="text/javascript">
 //define new custom command CustomText
 Telerik.Web.UI.ImageEditor.CommandList["CustomText"] = function (imageEditor,
commandName, args)
 {
 var editedImage = imageEditor.getImage();
 var imageBounds =
 {
 "width": editedImage.clientWidth,
 "height": editedImage.clientHeight
 };
 var textObj = createTextObject("Telerik", "Verdana", "18pt",
"#33ff00");//Telerik.Web.UI.ImageEditor.ImageText

 var textSize = getTextBounds(textObj);//this function precalculates the size

UI for ASP.NET AJAX

616 UI for ASP.NET AJAX

RadImageEditor offers a variety of server-side methods and events that enable you to manipulate an image on
the server, not just on the client. You can use the OnImageSaving event to perform additional processing on
the image before it is saved and the OnImageLoading event to change the image that will be loaded according
to some custom logic. The example below saves a thumbnail of the edited image (in the thumbs folder) along
with the image the user works with in the OnImageSaving event. The Cancel property must be set to true if
custom actions are performed so that the default ones are cancelled. This is done in when a new image is
loaded, but we do not do it in this case when saving the thumbnail, as we also want the original to be saved.

The RadFileExplorer control is used to allow the user to navigate through the available images and when one is
selected it is populated in the RadImageEditor. Upon saving of the image a new copy is created that is 90 by 90
pixels large. Also, after the image is saved, the FileExplorer is refreshed.

of the text that will be drawn
 //calculate text starting position
 var x = imageBounds.width - textSize.width;
 var y = imageBounds.height - textSize.height;
 imageEditor.addTextToImage(x, y, textObj);
 }
 //create a DIV element, with the predefined styling and text as a content to
calculate the size of the text that will be drawn
 function getTextBounds(textObj)
 {
 var tempDiv = document.createElement("DIV");
 tempDiv.style.cssText = "position:absolute;top:-9999;left:-9999;padding-
right:5pt;font-family:" + textObj.get_fontFamily() + ";font-size:" + textObj.get_fontSize()
+ "pt;";
 tempDiv.innerHTML = textObj.get_text();
 document.body.appendChild(tempDiv);
 var elementSize =
 {
 "width": tempDiv.clientWidth,
 "height": tempDiv.clientHeight
 }
 document.body.removeChild(tempDiv);
 return elementSize;
 }
 //Telerik.Web.UI.ImageEditor.ImageText
 function createTextObject(text, fontFamily, fontSize, color)
 {
 var textObject = new Telerik.Web.UI.ImageEditor.ImageText();
 textObject.set_fontFamily(fontFamily);
 textObject.set_fontSize(parseInt(fontSize));
 textObject.set_color(color);
 textObject.set_text(text);
 return textObject;
 }
 </script>

25.8 Save a Thumbnail

Save a Thumbnail demo

UI for ASP.NET AJAX

617 UI for ASP.NET AJAX

 <asp:ScriptManager runat="server" ID="ScriptManager1"></asp:ScriptManager>
 <telerik:RadAjaxManager ID="RadAjaxManager1" runat="server"
OnAjaxRequest="RadAjaxManager1_AjaxRequest"
 RequestQueueSize="3">
 <AjaxSettings>
 <telerik:AjaxSetting AjaxControlID="RadAjaxManager1">
 <UpdatedControls>
 <telerik:AjaxUpdatedControl ControlID="RadImageEditor1"
LoadingPanelID="RadAjaxLoadingPanel1" />
 </UpdatedControls>
 </telerik:AjaxSetting>
 </AjaxSettings>
 </telerik:RadAjaxManager>
 <telerik:RadAjaxLoadingPanel ID="RadAjaxLoadingPanel1" runat="server">
 </telerik:RadAjaxLoadingPanel>
 <div style="width: 980px;">
 <telerik:RadFileExplorer ID="RadFileExplorer1" runat="server"
DisplayUpFolderItem="true"
 Width="260px" Height="442px" Style="float: left;"
VisibleControls="Grid,Toolbar,AddressBox"
 EnableCreateNewFolder="false"
OnClientItemSelected="FileExplorer_OnClientItemSelected"
 OnClientLoad="FileExplorer_OnClientLoad">
 </telerik:RadFileExplorer>
 <div style="width: 700px; float: left;">
 <telerik:RadImageEditor ID="RadImageEditor1" runat="server" Width="700px"
Height="430px"
 OnClientSaved="ImageEditor_OnClientSaved" ToolsLoadPanelType="XmlHttpPanel"
EnableResize="false"
 OnImageSaving="RadImageEditor1_ImageSaving"
OnImageLoading="RadImageEditor1_ImageLoading">
 </telerik:RadImageEditor>
 </div>
 <br style="clear: both;" />
 </div>
 <telerik:RadCodeBlock ID="RadCodeBlock1" runat="server">
 <script type="text/javascript">
 var ajaxFlag = false;
 function FileExplorer_OnClientLoad(sender, args)
 {
 ajaxFlag = true;
 }
 function FileExplorer_OnClientItemSelected(explorer, args)
 {
 var item = args.get_item();
 if (!item.isDirectory() && ajaxFlag)
 {
 var ajaxManager = $find("<%= RadAjaxManager1.ClientID %>");
 ajaxManager.ajaxRequest(item.get_path());
 }
 }
 function ImageEditor_OnClientSaved(imgEditor, args)
 {
 var fileExplorer = $find("<%=RadFileExplorer1.ClientID %>");
 fileExplorer.refresh();

UI for ASP.NET AJAX

618 UI for ASP.NET AJAX

 }
 </script>
 </telerik:RadCodeBlock>

C#

private string pathToImage = "~/Files/Images/logo.png";
 private string pathToThumbs = "~/Files/thumbs/";
 protected void Page_Load(object sender, EventArgs args)
 {
 if (!IsPostBack)
 {
 string[] paths = new string[] { "~/Files/Images" };
 RadFileExplorer1.Configuration.ViewPaths = paths;
 RadFileExplorer1.Configuration.DeletePaths = paths;
 RadFileExplorer1.Configuration.UploadPaths = paths;
 RadFileExplorer1.Configuration.MaxUploadFileSize = 4 * 1024 * 1024;
 RadFileExplorer1.Configuration.SearchPatterns = new string[] { "*.jpg",
"*.jpeg", "*.gif", "*.png", "*.bmp" };
 RadFileExplorer1.EnableOpenFile = false;
 string initialPath = Page.ResolveUrl(pathToImage);
 RadFileExplorer1.InitialPath = initialPath;
 RadImageEditor1.ImageUrl = initialPath;
 foreach (RadToolBarButton item in RadFileExplorer1.ToolBar.Items)
 {
 if (item.Value != "Upload" && item.Value != "Delete")
 item.Visible = false;
 }
 }
 }
 protected void RadImageEditor1_ImageSaving(object sender, ImageEditorSavingEventArgs
args)
 {
 var thumbImage = args.Image.Clone();
 thumbImage.Resize(90, 90);
 var ms = new MemoryStream();
 thumbImage.Image.Save(ms, thumbImage.RawFormat);
 File.WriteAllBytes(String.Format("{0}{1}.{2}", MapPath(pathToThumbs),
args.FileName, thumbImage.Format), (byte[])ms.ToArray());
 }
 protected void RadImageEditor1_ImageLoading(object sender,
ImageEditorLoadingEventArgs args)
 {
 args.Image = new EditableImage(MapPathSecure(pathToImage));
 args.Cancel = true;
 }
 protected void RadAjaxManager1_AjaxRequest(object sender, AjaxRequestEventArgs e)
 {
 pathToImage = e.Argument;
 RadImageEditor1.ImageUrl = pathToImage;
 }

VB.NET

UI for ASP.NET AJAX

619 UI for ASP.NET AJAX

 Private pathToImage As String = "~/Files/Images/logo.png"
 Private pathToThumbs As String = "~/Files/thumbs/"
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load
 If Not IsPostBack Then
 Dim paths As String() = New String() {"~/Files/Images"}
 RadFileExplorer1.Configuration.ViewPaths = paths
 RadFileExplorer1.Configuration.DeletePaths = paths
 RadFileExplorer1.Configuration.UploadPaths = paths
 RadFileExplorer1.Configuration.MaxUploadFileSize = 4 * 1024 * 1024
 RadFileExplorer1.Configuration.SearchPatterns = New String() {"*.jpg", "*.jpeg",
"*.gif", "*.png", "*.bmp"}
 RadFileExplorer1.EnableOpenFile = False
 Dim initialPath As String = Page.ResolveUrl(pathToImage)
 RadFileExplorer1.InitialPath = initialPath
 RadImageEditor1.ImageUrl = initialPath
 For Each item As RadToolBarButton In RadFileExplorer1.ToolBar.Items
 If item.Value <> "Upload" AndAlso item.Value <> "Delete" Then
 item.Visible = False
 End If
 Next
 End If
 End Sub
 Private Sub RadImageEditor1_ImageLoading(ByVal sender As Object, ByVal args As
Telerik.Web.UI.ImageEditorLoadingEventArgs) Handles RadImageEditor1.ImageLoading
 args.Image = New EditableImage(MapPathSecure(pathToImage))
 args.Cancel = True
 End Sub
 Private Sub RadImageEditor1_ImageSaving(ByVal sender As Object, ByVal args As
Telerik.Web.UI.ImageEditorSavingEventArgs) Handles RadImageEditor1.ImageSaving
 Dim thumbImage = args.Image.Clone()
 thumbImage.Resize(90, 90)
 Dim ms = New MemoryStream()
 thumbImage.Image.Save(ms, thumbImage.RawFormat)
 File.WriteAllBytes([String].Format("{0}{1}.{2}", MapPath(pathToThumbs),
args.FileName, thumbImage.Format), DirectCast(ms.ToArray(), Byte()))
 End Sub
 Private Sub RadAjaxManager1_AjaxRequest(ByVal sender As Object, ByVal e As
Telerik.Web.UI.AjaxRequestEventArgs) Handles RadAjaxManager1.AjaxRequest
 pathToImage = e.Argument
 RadImageEditor1.ImageUrl = pathToImage
 End Sub

UI for ASP.NET AJAX

620 UI for ASP.NET AJAX

 Explore the features of the RadListView control.

 Explore the RadListView design time interface, including Smart Tag and Properties View.

 Create simple application for binding data using the RadListView predefined layouts and the most common
features.

 Learn how to perform manual CRUD (create, read, update and delete) operations through the RadListView
server-side API.

 Explore the RadDataPager control and see how you can use it for paging navigation.

RadListView is data-bound control and you can use it in any web application where you want to display data in
a custom manner with a unique look and feel.
RadListView:

 Provided the following templates: LayoutTemplate, ItemTemplate, AlternatingItemTemplate,
EditItemTemplate, InsertItemTemplate, EmptyDataTemplate, ItemSeparatorTemplate,
SelectedItemTemplate, GroupTemplate, GroupSeparatorTemplate, EmptyItemTemplate for customizing
the RadListView layout.

 Supports paging navigation either using built-in commands or RadDataPager/DataPager control.

 Has rich server-side API for filtering items.

 Supports sorting and items selection.

 ListView-like grouping can be achieved with RadListView. For that purpose the GroupTemplate,
GroupSeparatorTemplate and EmptyItemTemplate should be defined.

 RadListView offers the Items Drag & Drop capability, allowing you to easily implement scenarios that
require dragging and moving data items on the page.

Here we will describe the main features of the RadListView and the properties/methods you should know to
enable them.

RadListView Templates

26 RadListView

26.1 Objectives

26.2 Introduction

26.3 Getting Started

UI for ASP.NET AJAX

621 UI for ASP.NET AJAX

 LayoutTemplate - It helps you define the overall appearance of the control, the outer wrapper that will be
used for the listview rendering as well as the holder of its content. Note that you have to specify
ItemPlaceholderID property value for RadListView that matches the id of an ASP.NET server control (with
id and runat="server" properties set) which will be used as a holder of the actual listview data content.

 ItemTemplate and AlternatingItemTemplate - These templates mark out how the data that is bound to
the listview will be visualized in its odd/even items respectively. Since those are templates, you are free
to customize their layout according to your custom conventions.

 EmptyDataTemplate - The content of the EmptyDataTemplate is displayed when no data is available in the
RadListView data source.

 ItemSeparatorTemplate - Define the ItemSeparatorTemplate by adding there the html content which
would display between the different items in the RadListView control.

 EditItemTemplate - Determines how and what controls will be rendered when an item is in edit mode.

 InsertItemTemplate - As the above one, determines how and what controls will be rendered in the
RadListView insert form.

 SelectedItemTemplate - Defines here the contents that represents the selected item in a RadListView.

 GroupTemplate - Create the group structure and look by defining the GroupTemplate.

 GroupSeparatorTemplate - Define this template to separate the different groups in a RadListView.

 EmptyItemTemplate - The EmptyItemTemplate content is displayed in place of the missing items for a
group. For instance if the a group should contain 8 items but only 7 are available in database, the
EmptyItemTemplate will be used for the eighth item of the group.

Paging
RadListView has native paging support. To enable paging, set the AllowPaging property to true.

If you choose to use the integrated paging, you can add command controls (Button, LinkButton, ImageButton)
with a CommandName value of Page. In this case you also need to set the CommandArgument property of the
command buttons. The possible values for it are: Next, Prev, First and Last. Thus your pager buttons would
allow the user to navigate to the next, previous, first and last page.

Another page command you might want to use is the ChangePageSize command. It is should be set as
CommandName of a button which will change the page of the RadListView. Here the CommandArgument of the
button should be the new page size value.

A simple pager might look as below:

ASPX

<telerik:RadListView ID="RadListView1" runat="server" ItemPlaceholderID="itemPlaceholder">
 <LayoutTemplate>
 <fieldset>
 <legend>Items</legend>
 <asp:PlaceHolder ID="itemPlaceholder" runat="server" />
 </fieldset>
 </LayoutTemplate>
</telerik:RadListView>

ASPX

<telerik:RadListView ID="RadListView1" runat="server" ItemPlaceholderID="itemPlaceholder"
AllowPaging="true">
 <LayoutTemplate>
 <fieldset>
 <legend>Items</legend>
 <asp:PlaceHolder ID="itemPlaceholder" runat="server" />

UI for ASP.NET AJAX

622 UI for ASP.NET AJAX

Additionally, you can choose to add a RadDataPager control for paging navigation which provided all the
desired functionalities in one. We will dive into it later in this chapter.

Sorting
Implementing sorting is quite easy with RadListView. All you need to do is to add SortExpression to its
SortExpressions collection. You can do it either declaratively, so the RadListView data is sorted all the time, or
do it dynamically on particular user action. Let's say we have a sort button which, after clicked, will sort the
listview by a field descending. Then the Click event handler of the button would look like this:

 <div>
 <div style="float: left; margin-left: 30%;">
 <asp:Button runat="server" ID="btnFirst" CommandName="Page"
CommandArgument="First"
 Text="First" Enabled="<%#Container.CurrentPageIndex > 0 %>" />
 <asp:Button runat="server" ID="btnPrev" CommandName="Page"
CommandArgument="Prev"
 Text="Prev" Enabled="<%#Container.CurrentPageIndex > 0 %>" />
 Page
 <%#Container.CurrentPageIndex + 1 %> of <%#Container.PageCount %
>
 <asp:Button runat="server" ID="btnNext" CommandName="Page"
CommandArgument="Next"
 Text="Next" Enabled="<%#Container.CurrentPageIndex + 1 <
Container.PageCount %>" />
 <asp:Button runat="server" ID="btnLast" CommandName="Page"
CommandArgument="Last"
 Text="Last" Enabled="<%#Container.CurrentPageIndex + 1 <
Container.PageCount %>" />
 </div>
 <div>
 <span style="vertical-align: middle; font-weight: bold; padding-left:
5px;">Change Page Size to 20:
 <asp:Button runat="server" ID="btnPrev" CommandName="ChangePageSize"
CommandArgument="20"
 Text="Go" />
 </div>
 </div>
 </fieldset>
 </LayoutTemplate>
</telerik:RadListView>

C#

protected void SortButton_Click(object sender, EventArgs e)
{
 RadListViewSortExpression expression = new RadListViewSortExpression();
 RadListView1.SortExpressions.Clear();
 expression.FieldName = "myFieldName";
 expression.SortOrder = RadListViewSortOrder.Descending;
 RadListView1.SortExpressions.AddSortExpression(expression);
 RadListView1.Rebind();
}

VB.NET

Protected Sub SortButton_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim expression As New RadListViewSortExpression()

UI for ASP.NET AJAX

623 UI for ASP.NET AJAX

Furthermore, if you want to implement sorting in a custom manner, you can do it by setting the
AllowCustomSorting property to true. Then add a command button to the RadListView LayoutTemplate with a
CommandName value of Sort and the desired CommandArgument. Thus the Sorting event of the RadListView
will fire for you to handle the custom sorting and for provide sorted data to the RadListView directly. In this
case you need to rebind the RadListView control so sorting is applied.

Filtering
RadListView provided rich server-side API for creating and applying filter expressions. It gives you the ability to
filter the data displayed in a RadListView control without creating complex database queries. For more
information on how to operate with it, you can refer to the documentation of the RadListView for ASP.NET
AJAX control.

Grouping
RadListView supports ListView-like grouping for its items. You can easily achieve displaying of data in groups
with RadListView by setting the properties: GroupItemCount, GroupPlaceHolderID, ItemPlaceHolderID. In
addition you need to define the following Templates: LayoutTemplate, GroupTemplate,
GroupSeparatorTemplate, EmptyItemTemplate. Thus the skeleton for a RadListView which displays its data in
groups will be:

 RadListView1.SortExpressions.Clear()
 expression.FieldName = "myFieldName"
 expression.SortOrder = RadListViewSortOrder.Descending
 RadListView1.SortExpressions.AddSortExpression(expression)
 RadListView1.Rebind()
End Sub

ASPX

<telerik:RadListView ID="RadListView1" runat="server" ItemPlaceholderID="itemPlaceholder"
GroupPlaceholderID="groupsPlaceholder"
 GroupItemCount="4">
<LayoutTemplate>
 <asp:PlaceHolder ID="groupsPlaceholder" runat="server" />
</LayoutTemplate>
<GroupTemplate>
 <fieldset style="float: left; width: 330px;">
 <legend>Items group</legend>
 <table>
 <tr>
 <td>
 <asp:PlaceHolder ID="itemPlaceholder" runat="server" />
 </td>
 </tr>
 </table>
 </fieldset>
</GroupTemplate>
<GroupSeparatorTemplate>
 <hr />
</GroupSeparatorTemplate>
<EmptyItemTemplate>
 <div style="float: left; width: 160px; height: 120px">
 <img src="Img/EmtpyItemImage.jpg" width="120px" height="150px" alt="No Employee to
display"
 title="No Employee to display" />
 </div>
</EmptyItemTemplate>

UI for ASP.NET AJAX

624 UI for ASP.NET AJAX

Selecting
The selected items are accessible through the SelectedItems collection that consist of RadListViewDataItem
objects. By default you can select only one item at a time. Multiple selection is possible if enabled via the
AllowMultiItemSelection property. There are several ways to select/deselect an item in RadListView:

 use the Selected property of RadListViewDataItem

 fire Select/Deselect command

 add/remove item's index to the SelectedIndexes collection

The selected items can be cleared using the ClearSelectedItems method.

For detailed information on RadListView items selection feature, see the control documentation and online
demos.

Items Drag & Drop
RadListView Items Drag & Drop capability is useful and is easy to implement for scenarios that require dragging
and moving data items on the page. To enable Items Drag & Drop in RadListView first set
the RadListView.ClientSettings.AllowItemsDragDrop property to true. You also need to add a
RadListViewItemDragHandle control to your ItemTemplate / AlternatingItemTemplate and add a CSS marker
on a data item container element (.rlvI for ItemTemplate, .rlvA for AlternatingItemTemplate). When item is
dropped RadListView fires the ItemDrop event on the server for you to handle the items drop.

Smart Tag
The Smart Tag for RadListView allows to configure the control's layout with ease. Even if you don't have any
knowledge, the integrated Layout editor will help you choose predefined layout in codeless manner. There you
can choose the Data Source for the control:

<ItemTemplate>
...
</ItemTemplate>
</telerik:RadListView>

26.4 Using the design Time Interface

UI for ASP.NET AJAX

625 UI for ASP.NET AJAX

It also provides useful links that allow you to easily Ajaxify the control and optimize the web page that the grid
appears on.

Layout Editor
Once you have selected Data Source for the RadListView the Open Layout Editor link appears in the Smart Tag.

UI for ASP.NET AJAX

626 UI for ASP.NET AJAX

Use to build the RadListView by choosing any of the predefined layouts, select Skin for the control or enable
the most commonly used features.

Properties Window
Use the Properties window to manipulate the RadListView properties or to auto-generate server-side event

UI for ASP.NET AJAX

627 UI for ASP.NET AJAX

handlers:

UI for ASP.NET AJAX

628 UI for ASP.NET AJAX

RadListView - Manual CRUD Operations sample
Here we will illustrate how you can configure RadListView and use its server-side API to preform manual CRUD
(create, read, update delete) operations. For that purpose:

1. Create new project in Visual Studio and add a RadScriptManager on top of the form. You can also add
RadSkinManager and set its Skin property, and a RadFormDecorator control for page styling.

2. Then add the RadListView control itself using the below code for it:

26.5 Server Side Code

ASPX

<telerik:RadListView ID="RadListView1" runat="server"
OnNeedDataSource="RadListView1_NeedDataSource"
 ItemPlaceholderID="ProductItemContainer" DataKeyNames="ProductID" AllowPaging="true"
 OnItemCommand="RadListView1_ItemCommand">
 <LayoutTemplate>
 <fieldset style="width: 760px;" id="FieldSet1">
 <legend>Products</legend>
 <table cellpadding="0" cellspacing="0">
 <tr>
 <td>
 <asp:Button ID="Button1" runat="server" Text="Add new product"
CommandName="InitInsert"
 Visible="<%#Container.InsertItemPosition ==
RadListViewInsertItemPosition.None %>"
 CausesValidation="false" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:Panel ID="ProductItemContainer" runat="server" />
 </td>
 </tr>
 <tr>
 <td>
 <telerik:RadDataPager ID="RadDataPager1" runat="server"
PagedControlID="RadListView1"
 PageSize="6">
 <Fields>
 <telerik:RadDataPagerButtonField FieldType="FirstPrev" />
 <telerik:RadDataPagerButtonField FieldType="Numeric" />
 <telerik:RadDataPagerButtonField FieldType="NextLast" />
 </Fields>
 </telerik:RadDataPager>
 </td>
 </tr>
 </table>
 </fieldset>
 </LayoutTemplate>
 <ItemTemplate>
 <fieldset style="float: left; width: 223px; height: 160px;">
 <table cellpadding="2" cellspacing="0" style="height: 100%;">
 <tr>
 <td style="width: 20%;">
 Name:

UI for ASP.NET AJAX

629 UI for ASP.NET AJAX

 </td>
 <td style="width: 80%; padding-left: 5px;">
 <%# Eval("ProductName") %>
 </td>
 </tr>
 <tr>
 <td>
 Quantity:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <%# Eval("QuantityPerUnit") %>
 </td>
 </tr>
 <tr>
 <td>
 Price:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <%# DataBinder.Eval(Container.DataItem, "UnitPrice", "{0:C}") %>
 </td>
 </tr>
 <tr>
 <td>
 Units:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <%# Eval("UnitsInStock") %>
 </td>
 </tr>
 <tr>
 <td>
 Discontinued:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:CheckBox ID="CheckBox1" runat="server" Checked='<%# Eval
("Discontinued") %>'
 Enabled="false" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="Button1" runat="server" CommandName="Edit"
Text="Edit" CausesValidation="false" />

 <asp:Button ID="Button2" runat="server" CommandName="Delete"
OnClientClick="ConfirmDelete(this);
 return false;" Text="Delete" />
 </td>
 </tr>
 </table>
 </fieldset>
 </ItemTemplate>
 <EditItemTemplate>
 <fieldset style="float: left; width: 223px; height: 160px;">
 <table cellpadding="0" cellspacing="2" style="height: 100%">

UI for ASP.NET AJAX

630 UI for ASP.NET AJAX

 <tr>
 <td style="width: 20%;">
 Name:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind
("ProductName") %>' Width="120px">
 </asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidator1"
runat="server" ErrorMessage="*"
 ControlToValidate="TextBox1"></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 Quantity:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox2" runat="server" Text='<%# Bind
("QuantityPerUnit") %>' Width="120px">
 </asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 Price:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox3" runat="server" Text='<%# Bind("UnitPrice")
%>' Width="65px"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 Units:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox4" runat="server" Text='<%# Bind
("UnitsInStock") %>' Width="65px">
 </asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 Discontinued:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:CheckBox ID="CheckBox1" runat="server" Checked='<%# Bind
("Discontinued") %>' />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="Button1" runat="server" CommandName="Update"
Text="Update" />

UI for ASP.NET AJAX

631 UI for ASP.NET AJAX

 <asp:Button ID="Button2" runat="server" CommandName="Cancel"
Text="Cancel" CausesValidation="false" />
 </td>
 </tr>
 </table>
 </fieldset>
 </EditItemTemplate>
 <InsertItemTemplate>
 <fieldset style="float: left; width: 223px; height: 160px;">
 <table cellpadding="0" cellspacing="2" style="height: 100%">
 <tr>
 <td style="width: 20%;">
 Name:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox1" runat="server" Width="120px" Text='<%#
Bind("ProductName") %>'>
 </asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidator1"
runat="server" ErrorMessage="*"
 ControlToValidate="TextBox1"></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 Quantity:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox2" runat="server" Width="120px" Text='<%#
Bind("QuantityPerUnit") %>'>
 </asp:TextBox>
 </td>
 </tr>
 <tr>

 <td>
 Price:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox3" runat="server" Width="65px" Text='<%# Bind
("UnitPrice") %>'></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 Units:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:TextBox ID="TextBox4" runat="server" Width="65px" Text='<%# Bind
("UnitsInStock") %>'>
 </asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>

UI for ASP.NET AJAX

632 UI for ASP.NET AJAX

3. Wrap the RadListView into RadAjaxPanel to omit the page flickering when RadListView items are changing
their modes.

4. Add RadWindowManager controls at the button of the page. We will use it to show RadConfirm when
deleting an item.

5. To bind the grid we will handle the NeedDataSource event of the RadListView:

 Discontinued:
 </td>
 <td style="width: 80%; padding-left: 5px;">
 <asp:CheckBox ID="CheckBox1" runat="server" Checked='<%# Bind
("Discontinued") %>' />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="Button1" runat="server" CommandName="PerformInsert"
Text="Insert" />
 <asp:Button ID="Button2" runat="server" CommandName="Cancel"
Text="Cancel" CausesValidation="false" />
 </td>
 </tr>
 </table>
 </fieldset>
 </InsertItemTemplate>
</telerik:RadListView>

C#

protected void RadListView1_NeedDataSource(object sender, RadListViewNeedDataSourceEventArgs
e)
{
 DataTable listViewDataSource;
 using (SqlConnection sqlConnection1 = new SqlConnection
(ConfigurationManager.ConnectionStrings["NorthwindConnectionString"].ConnectionString))
 {
 listViewDataSource = new DataTable();
 //Select Query to populate the RadGrid with data from table Customers.
 const string selectQuery = "SELECT * FROM [Products]";
 using (SqlDataAdapter sqlDataAdapter = new SqlDataAdapter())
 {
 sqlDataAdapter.SelectCommand = new SqlCommand(selectQuery, sqlConnection1);
 sqlDataAdapter.Fill(listViewDataSource);
 }
 }
 RadListView1.DataSource = listViewDataSource;
}

VB.NET

Protected Sub RadListView1_NeedDataSource(ByVal sender As Object, ByVal e As
RadListViewNeedDataSourceEventArgs)
 Dim listViewDataSource As DataTable
 Using sqlConnection1 As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 listViewDataSource = New DataTable()
 'Select Query to populate the RadGrid with data from table Customers.

UI for ASP.NET AJAX

633 UI for ASP.NET AJAX

6. And to perform the database operations, we will implement the ItemCommand event handler:

 Const selectQuery As String = "SELECT * FROM [Products]"
 Using sqlDataAdapter As New SqlDataAdapter()
 sqlDataAdapter.SelectCommand = New SqlCommand(selectQuery, sqlConnection1)
 sqlDataAdapter.Fill(listViewDataSource)
 End Using
 End Using
 RadListView1.DataSource = listViewDataSource
End Sub

C#

protected void RadListView1_ItemCommand(object sender, RadListViewCommandEventArgs e)
{
 if (e.CommandName == RadListView.UpdateCommandName)
 {
 RadListViewDataItem editedItem = e.ListViewItem as RadListViewDataItem;
 string productID = editedItem.GetDataKeyValue("ProductID").ToString();
 Hashtable newValues = new Hashtable();
 editedItem.ExtractValues(newValues);
 SqlConnection sqlConnection1 = new SqlConnection
(ConfigurationManager.ConnectionStrings["NorthwindConnectionString"].ConnectionString);
 try
 {
 const string updateQuery = "UPDATE [Products] SET [ProductName] = @ProductName,
[QuantityPerUnit] = @QuantityPerUnit"
 + ",[UnitPrice] = @UnitPrice, [UnitsInStock] = @UnitsInStock, [Discontinued]
= @Discontinued WHERE [ProductID]=@ProductID";
 SqlCommand updateCommand = new SqlCommand(updateQuery, sqlConnection1);
 updateCommand.Parameters.AddWithValue("ProductID", productID);
 updateCommand.Parameters.AddWithValue("ProductName", newValues["ProductName"]);
 updateCommand.Parameters.AddWithValue("QuantityPerUnit", newValues
["QuantityPerUnit"]);
 updateCommand.Parameters.AddWithValue("UnitPrice", newValues["UnitPrice"]);
 updateCommand.Parameters.AddWithValue("UnitsInStock", newValues["UnitsInStock"
 updateCommand.Parameters.AddWithValue("Discontinued", newValues["Discontinued"
 sqlConnection1.Open();
 updateCommand.ExecuteNonQuery();
 }
 catch
 {
 e.Canceled = true;
 }
 finally
 {
 sqlConnection1.Close();
 }
 }
 if (e.CommandName == RadListView.PerformInsertCommandName)
 {
 RadListViewEditableItem insertedItem = (RadListViewEditableItem)e.ListViewItem;
 Hashtable newValues = new Hashtable();
 insertedItem.ExtractValues(newValues);
 SqlConnection sqlConnection1 = new SqlConnection
(ConfigurationManager.ConnectionStrings["NorthwindConnectionString"].ConnectionString);
 try

UI for ASP.NET AJAX

634 UI for ASP.NET AJAX

 {
 const string insertQuery = "INSERT INTO [Products] ([ProductName],
[QuantityPerUnit], [UnitPrice], [UnitsInStock], [Discontinued])"
 + "VALUES (@ProductName, @QuantityPerUnit, @UnitPrice, @UnitsInStock,
@Discontinued)";
 SqlCommand insertCommand = new SqlCommand(insertQuery, sqlConnection1);
 insertCommand.Parameters.AddWithValue("ProductName", newValues["ProductName"]);
 insertCommand.Parameters.AddWithValue("QuantityPerUnit", newValues
["QuantityPerUnit"]);
 insertCommand.Parameters.AddWithValue("UnitPrice", newValues["UnitPrice"]);
 insertCommand.Parameters.AddWithValue("UnitsInStock", newValues["UnitsInStock"
 insertCommand.Parameters.AddWithValue("Discontinued", newValues["Discontinued"
 sqlConnection1.Open();
 insertCommand.ExecuteNonQuery();
 RadListView1.InsertItemPosition = RadListViewInsertItemPosition.None;
 }
 catch
 {
 e.Canceled = true;
 }
 finally
 {
 sqlConnection1.Close();
 }
 }
 if (e.CommandName == RadListView.DeleteCommandName)
 {
 RadListViewDataItem item = e.ListViewItem as RadListViewDataItem;
 string productID = item.GetDataKeyValue("ProductID").ToString();
 SqlConnection sqlConnection1 = new SqlConnection
(ConfigurationManager.ConnectionStrings["NorthwindConnectionString"].ConnectionString);
 try
 {
 const string deleteQuery = "DELETE FROM [Products] WHERE [ProductID]=@ProductID"
 SqlCommand deleteCommand = new SqlCommand(deleteQuery, sqlConnection1);
 deleteCommand.Parameters.AddWithValue("ProductID", productID);
 sqlConnection1.Open();
 deleteCommand.ExecuteNonQuery();
 sqlConnection1.Close();
 }
 finally
 {
 sqlConnection1.Close();
 }
 }
}

VB.NET

Protected Sub RadListView1_ItemCommand(ByVal sender As Object, ByVal e As
RadListViewCommandEventArgs)
 If e.CommandName = RadListView.UpdateCommandName Then
 Dim editedItem As RadListViewDataItem = TryCast(e.ListViewItem, RadListViewDataItem)
 Dim productID As String = editedItem.GetDataKeyValue("ProductID").ToString()
 Dim newValues As New Hashtable()

UI for ASP.NET AJAX

635 UI for ASP.NET AJAX

 editedItem.ExtractValues(newValues)
 Dim sqlConnection1 As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 Try
 Const updateQuery As String = "UPDATE [Products] SET [ProductName] =
@ProductName, [QuantityPerUnit] = @QuantityPerUnit" + ",[UnitPrice] = @UnitPrice,
[UnitsInStock] = @UnitsInStock, [Discontinued] = @Discontinued WHERE [ProductID]=@ProductID"
 Dim updateCommand As New SqlCommand(updateQuery, sqlConnection1)
 updateCommand.Parameters.AddWithValue("ProductID", productID)
 updateCommand.Parameters.AddWithValue("ProductName", newValues("ProductName"))
 updateCommand.Parameters.AddWithValue("QuantityPerUnit", newValues
("QuantityPerUnit"))
 updateCommand.Parameters.AddWithValue("UnitPrice", newValues("UnitPrice"))
 updateCommand.Parameters.AddWithValue("UnitsInStock", newValues("UnitsInStock"
 updateCommand.Parameters.AddWithValue("Discontinued", newValues("Discontinued"
 sqlConnection1.Open()
 updateCommand.ExecuteNonQuery()
 Catch
 e.Canceled = True
 Finally
 sqlConnection1.Close()
 End Try
 End If
 If e.CommandName = RadListView.PerformInsertCommandName Then
 Dim insertedItem As RadListViewEditableItem = DirectCast(e.ListViewItem,
RadListViewEditableItem)
 Dim newValues As New Hashtable()
 insertedItem.ExtractValues(newValues)
 Dim sqlConnection1 As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)
 Try
 Const insertQuery As String = "INSERT INTO [Products] ([ProductName],
[QuantityPerUnit], [UnitPrice], [UnitsInStock], [Discontinued])" + "VALUES (@ProductName,
@QuantityPerUnit, @UnitPrice, @UnitsInStock, @Discontinued)"
 Dim insertCommand As New SqlCommand(insertQuery, sqlConnection1)
 insertCommand.Parameters.AddWithValue("ProductName", newValues("ProductName"))
 insertCommand.Parameters.AddWithValue("QuantityPerUnit", newValues
("QuantityPerUnit"))
 insertCommand.Parameters.AddWithValue("UnitPrice", newValues("UnitPrice"))
 insertCommand.Parameters.AddWithValue("UnitsInStock", newValues("UnitsInStock"
 insertCommand.Parameters.AddWithValue("Discontinued", newValues("Discontinued"
 sqlConnection1.Open()
 insertCommand.ExecuteNonQuery()
 RadListView1.InsertItemPosition = RadListViewInsertItemPosition.None
 Catch
 e.Canceled = True
 Finally
 sqlConnection1.Close()
 End Try
 End If
 If e.CommandName = RadListView.DeleteCommandName Then
 Dim item As RadListViewDataItem = TryCast(e.ListViewItem, RadListViewDataItem)
 Dim productID As String = item.GetDataKeyValue("ProductID").ToString()
 Dim sqlConnection1 As New SqlConnection(ConfigurationManager.ConnectionStrings
("NorthwindConnectionString").ConnectionString)

UI for ASP.NET AJAX

636 UI for ASP.NET AJAX

Use RadDataPager to display paging navigation controls for other data-bound controls that implement the
IPageableItemContainer or IRadPageableItemContainer interface (like the RadListView and MS ListView). You
can easily add the RadDataPager control to a Web Form within Visual Studio. The paging interface appears
wherever you place the RadDataPager control on the page. You may place it before or after the RadListView
control, as well as within its LayoutTemplate element.

To use the RadDataPager control in its default state you can refer to the following properties:

 PagedControlID is the ID of the control that implements one of the following interfaces -
IPageableItemContainer or IRadPageableItemContainer. This is the control that will be paged by
RadDataPager control. If RadDataPager is placed in Controls collection of IPageableItemContainer /
IRadPageableItemContainer setting this property is optional. In case PagedControlID is not set
RadDataPager will attempt to find its container automatically.

 PageSize is the number of items and rows to display on each page.

 StartRowIndex gets the index of the first record that is displayed on a page of data.

 TotalRowCount gets the total number of records that are displayed in the underlying data source.

 MaximumRows gets the maximum number of records that are displayed for each page of data.

The RadDataPager fields lets you choose the controls that will appear in the pager field to help users navigate
through the pages. To specify the pager fields, list the desired field elements between the opening and closing
<Fields> tag inside the RadDataPager control.

The RadDataPager built-in fields are: RadDataPagerButtonField, RadDataPagerPageSizeField,
RadDataPagerSliderField, RadDataPagerGoToPageField and RadDataPagerTemplatePageField. You can use one
or more pager field objects in a single RadDataPager control.

For example when RadDataPager contains a RadDataPagerButtonField you have the ability to add arrow buttons
for navigation to Next/Previous/First/Last page, link buttons with page numbers or both.

 Try
 Const deleteQuery As String = "DELETE FROM [Products] WHERE [ProductID]
=@ProductID"
 Dim deleteCommand As New SqlCommand(deleteQuery, sqlConnection1)
 deleteCommand.Parameters.AddWithValue("ProductID", productID)
 sqlConnection1.Open()
 deleteCommand.ExecuteNonQuery()
 sqlConnection1.Close()
 Finally
 sqlConnection1.Close()
 End Try
 End If
End Sub

You can find the complete source for this project at:
\VS Projects\ListView\ManualCRUDOperations

26.6 RadDataPager

ASPX

<telerik:RadDataPager ID="RadDataPager1" PagedControlID="RadListView1" PageSize="2"

UI for ASP.NET AJAX

637 UI for ASP.NET AJAX

You can also create custom paging UI by using the RadDataPagerTemplatePageField object.You can use it to
display custom navigation controls and show information about the underlying data source, such as total
number of records and the current page number. The RadDataPagerTemplatePageField has no built-in layout.
Therefore, you must explicitly create the layout in its PagerTemplate. You can format the content by using
cascading style sheets (CSS) classes or inline style elements. You can reference the RadDataPager control that
contains the RadDataPagerTemplatePageField object by using the Container.Owner property.

The following example shows how to add a RadDataPagerTemplatePageField, which contains RadComboBox and
custom button for changing the current page size in a RadDataPager control.

runat="server">
 <Fields>
 <telerik:RadDataPagerButtonField FieldType="FirstPrev" FirstButtonText="First"
PrevButtonText="Prev" />
 <telerik:RadDataPagerButtonField FieldType="Numeric" PageButtonCount="5" />
 <telerik:RadDataPagerButtonField FieldType="NextLast" NextButtonText="Next"
LastButtonText="Last" />
 </Fields>
</telerik:RadDataPager>

ASPX

<telerik:RadDataPager runat="server" ID="RadDataPager1" PagedControlID="ListView1">
 <Fields>
 <telerik:RadDataPagerTemplatePageField>
 <PagerTemplate>
 <asp:Button runat="server" ID="CustomButton" Text="My custom button"
CommandName="Custom Command Name" />
 <telerik:RadComboBox runat="server" ID="RadComboBox1" AutoPostBack="true"
 SelectedValue='<%#Container.Owner.PageSize %>'
 OnSelectedIndexChanged="RadComboBox1_SelectedIndexChanged">
 <Items>
 <telerik:RadComboBoxItem Text="15" Value="15" />
 <telerik:RadComboBoxItem Text="30" Value="30" />
 <telerik:RadComboBoxItem Text="60" Value="60"/>
 </Items>
 </telerik:RadComboBox>
 </PagerTemplate>
 </telerik:RadDataPagerTemplatePageField>
 </Fields>
</telerik:RadDataPager>

C#

protected void RadComboBox1_SelectedIndexChanged(object o,
RadComboBoxSelectedIndexChangedEventArgs e)
{
 var combo = o as RadComboBox;
 (combo.NamingContainer as RadDataPagerFieldItem).Owner.PageSize = int.Parse(e.Value);
}

VB.NET

Protected Sub RadComboBox1_SelectedIndexChanged(o As Object, e As
RadComboBoxSelectedIndexChangedEventArgs)
 Dim combo As var = TryCast(o, RadComboBox)
 (TryCast(combo.NamingContainer, RadDataPagerFieldItem)).Owner.PageSize = Integer.Parse
(e.Value)
End Sub

UI for ASP.NET AJAX

638 UI for ASP.NET AJAX

In addition, you can use SEO paging of the RadDataPager control. To use this pager functionality you need to set
AllowSEOPaging property to True. When it is False, the RadDataPager does not use SEO paging. To specify the
query page key for the grid that is used as part of the page query you can set the SEOPagingQueryPageKey
property. This is useful when the data pager resides in several containers and its id becomes too long and not
very readable. Using SEOPagingQueryPageKey property you get many more search engine optimized links to the
other pages.

In this chapter we looked at the RadListView control and explored its most commonly used features like paging,
sorting, filtering, grouping, items selection and drag and drop.

Learned how to use RadListView in Design Time and build its layout with ease.

You saw how to implement a sample project on how to manipulate the data with RadListView.

Finally, we described the RadDataPager control and how to use it for paging navigation in data-bound controls.

26.7 Summary

UI for ASP.NET AJAX

639 UI for ASP.NET AJAX

 Explore the main features of the RadNotification control

 Getting started by running a simple example

 Review the most important properties and how they are used together to control the RadNotification’s
behavior

 Review the basic ways to populate content in the notification

 Examine the extra built-in functionality – context menus and icons

 See the use of a lightweight callback to update the content

 Examine a real-life scenario where the user is updated about a server-side event occurring

The RadNotification is a very light control which can be used to display a notification message from both the
server and the client. The notification is completely customizable, can be loaded on demand through a callback
or WebService, can be automatically displayed and/or updated at specific intervals and supports different
animation effects and at different positions.

Its most notable features are:

 Semantic rendering - no HTML tables used

 Load on Demand through callback or WebService

 Built-in, fully customizable context menu

 Can contain simple text, HTML content and ASP.NET controls

 Automatically calculates position relative to the screen

 Automatic updates at a specified interval

 Automatic show at a specified interval

 Keep on mouse over

 AutoClose Delay

 Animation effects

 Content scrolling

 Advanced Skinning

The following tutorial demonstrates how to add a RadNotification to the page and have it show once the page
is loaded:

1. In a new AJAX-Enabled Web Application drop a RadNotification from the ToolBox to the default web page.

2. Use either the Properties pane or by writing directly in the markup to set the following properties:

1. Set the VisibleOnPageLoad property to true.

27 RadNotification

27.1 Objectives

27.2 Introduction

27.3 Getting Started

UI for ASP.NET AJAX

640 UI for ASP.NET AJAX

2. Set the Position property to Center.

3. Set the Text property to Sample notification text.

4. Set the Width property to 250px.

5. Set the Height property to 100px.

3. Optionally you may also:

1. Set the Title property to Title.

2. Set the EnableRoundedCorners property to true.
c. Set the EnableShadow property to true.

4. Press F5 to run the application. You will see a simple popup in the center of the browser.

Your markup should look similar to this:

Please note that the EnableRoundedCorners and EnableShadow properties use CSS3 to create these effects,
thus if you are using an old browser (most notably IE versions prior to IE9) these properties will have no effect.

On your screen you should see a message box similar to the following image flash when the page is opened:

The RadNotification’s visual appearance is defined by several elements:

 TitleBar: This is the title of the notification.

 TitleIcon: The small image (16x16 pixels) shown in the titlebar.

 Menu Icon: The button used to show the title menu. It appears only if the ShowTitleMenu property is set to
true.

 Close Button: The button used to close the notification. It appears only if the ShowCloseButton property is
set to true.

 ContentIcon: The image (32x32 pixels) shown in the content area of the notification.

 Content or Text: This is the main part of the control. It can be customized using Text property or by
declaring content between the RadNotification's ContentTemplate tags in ASP.NET.

RadNotification's declaration

 <telerik:RadNotification runat="server" ID="RadNotification1" VisibleOnPageLoad="true"
Position="Center" Text="Sample notification text"
 Width="250px" Height="100px" Title="Title" EnableShadow="true"
EnableRoundedCorners="true">
 </telerik:RadNotification>

UI for ASP.NET AJAX

641 UI for ASP.NET AJAX

You can use the RadNotification’s SmartTag to add the needed AJAX resources to the web application
(ScriptManager or RadScriptManager, RadAjaxManager, RadStyleSheetManager) or edit the content template of
the RadNotification in the Design-time mode of the Visual Studio:

RadNotification offers a built-in context menu which can be used to extend the control and to attach some
custom functionality. You can use it like the regular RadContextMenu - it supports multiple targets, fully
customizable layout, many client-side events and more - essentially the full functionality of the
RadContextMenu is employed in RadNotification.

 If the ShowTitleMenu property is set to true the menu icon will appear next to the close button in the titlebar.
You can use both the left and the right mouse buttons to invoke this menu.

27.4 Notification Menu

UI for ASP.NET AJAX

642 UI for ASP.NET AJAX

 To activate the Notification Menu you need to declare some items in it and also a target if you are not going to
use the ShowTitleMenu property. In this case the ShowTitleMenu property is used:

This small example shows how to extend the functionality of the RadNotification by adding options to the menu
and executing different actions according to the item that has been clicked.

The RadNotification control provides two icons in its UI to help convey the message - the TitleIcon and
ContentIcon. The TitleIcon's size is 16 by 16 pixels and the ContentIcon's size is 32 by 32 pixels. You can set
these properties to an URL that points to the icon that is to be shown in the respective place. It also has a
number of built-in icons that are accessed by typing a simple word instead of an URL.
By default the info icon is used if nothing else is specified. If you do not want to use any icons set these
properties to an empty string. The built-in icons are designed to match the skin of the control and are therefore
different for different skins. The following list shows the available built-in icons:

 Info

 Delete

 Deny

 Edit

 Ok

 Warning

 None

Adding options to the context menu of RadNotification

<telerik:RadNotification runat="server" ID="RadNotification1" VisibleOnPageLoad="true"
Position="Center" Width="300px" Height="120px"
 ShowTitleMenu="true" Text="Sample notification text. Use the menu for more options"
AutoCloseDelay="0" ShowCloseButton="false">
 <NotificationMenu OnClientItemClicked="OnClientItemClicked">
 <Items>
 <telerik:RadMenuItem Text="Close the notification" Value="1">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem Text="Get more information" value="2">
 </telerik:RadMenuItem>
 </Items>
 </NotificationMenu>
</telerik:RadNotification>
 <script type="text/javascript">
 function OnClientItemClicked(sender, args)
 {
 var itemValue = args.get_item().get_value();
 switch (itemValue)
 {
 case "1": $find("RadNotification1").hide(); break;
 case "2": window.open("http://google.com (http://google.com/)/"); break;
 default: break;
 }
 }
 </script>

27.5 Embedded Icons

UI for ASP.NET AJAX

643 UI for ASP.NET AJAX

The RadNotification provides both a server-side and a client-side method show() that can be used to make it
pop up for the user. This is designed to allow it to cover more scenarios, including ones that determine if it
should be shown on the server, as well as on the client. The client-side show() method will force the
notification regardless of the ShowInterval property and the server-side Show() method can be invoked even
from inside an AJAX request that does not update the notification control.

The following simple example uses JavaScript to show the notification on a click of a button:

This example simulates some server-side logic that will determine if a notification should be shown, and if yes,
calls its Show() method:

27.6 Different Ways to Show A Notification

ASPX/ASCX

<telerik:RadNotification runat="server" ID="RadNotification1" Text="You just clicked the
button." Width="250px" Height="110px"
 Position="Center">
</telerik:RadNotification>
<asp:Button ID="Button1" Text="show a notification" runat="server"
OnClientClick="showNotification(); return false;" />
<script type="text/javascript">
 function showNotification()
 {
 $find("RadNotification1").show();
 }
</script>

ASPX/ASCX

<telerik:RadNotification runat="server" ID="RadNotification1" Text="You just clicked the
button." Width="250px" Height="110px"
 Position="Center">
</telerik:RadNotification>
<asp:Button ID="Button1" Text="show a notification" runat="server"
OnClick="Button1_Click" />

[C# codebehind]

 protected void Button1_Click(object sender, EventArgs e)
 {
 bool toShowNotification = true;
 if(toShowNotification)
 {
 RadNotification1.Show();
 }
 }

[VB.NET codebehind]

 Protected Sub Button1_Click(sender As Object, e As System.EventArgs) Handles
Button1.Click
 Dim toShowNotification As Boolean = True

UI for ASP.NET AJAX

644 UI for ASP.NET AJAX

 There are several ways to set content in the RadNotification control. The easiest of them is by using its Title
and Text properties. You can also use the ContentIcon and TitleIcon (Section 27.5) properties to add a visual
emphasis to the message.
You can also add rich content (i.e. server controls for example) in its ContentTemplate – both declaratively in
the markup and dynamically in the code-behind.

When the Title property is set the string is placed in the TitleBar of the RadNotification and is always visible if
the TitleBar is visible. If some content is set in the ContentTemplate (or added in the code-behind) it has
greater priority than the Text and therefore the text is not shown. If rich content is added in the
RadNotification the ContentIcon is not shown as well.

The below example shows the effect of these properties:

In this example there will be text, title and two icons in the notification. It also shows that you can set them
dynamically in the code-behind:

The following example shows how to add more complex content in the RadNotification:

 If toShowNotification Then
 RadNotification1.Show()
 End If
 End Sub

27.7 Populating Plain Text And Rich Content

ASPX/ASCX

 <telerik:RadNotification runat="server" ID="RadNotification1" Width="250px"
Height="110px" VisibleOnPageLoad="true">
 </telerik:RadNotification>

[C# codebehind]

 protected void Page_Load(object sender, EventArgs e)
 {
 RadNotification1.Text = "Sample Notification text";
 RadNotification1.TitleIcon = "info";
 RadNotification1.ContentIcon = "info";
 }

[VB.NET codebehind]

 Protected Sub Page_Load(sender As Object, e As System.EventArgs) Handles Me.Load
 RadNotification1.Text = "Sample Notification text"
 RadNotification1.TitleIcon = "info"
 RadNotification1.ContentIcon = "info"
 End Sub

ASPX/ASCX

UI for ASP.NET AJAX

645 UI for ASP.NET AJAX

You can do this in the code-behind as well, but then you would need to have an empty ContentTemplate
declared in the markup, so that the control may know that this template will be needed in order to create it.
This example also shows that rich content hides the ContentIcon:

This last example shows that the Text property is overridden by the other content:

<telerik:RadNotification runat="server" ID="RadNotification2" VisibleOnPageLoad="true"
 TitleIcon="info" ContentIcon="info" Width="250px" Height="100px">
 <ContentTemplate>
 Rich content:

 <asp:Button ID="Button1" Text="Button in a notification" runat="server" />
 </ContentTemplate>
</telerik:RadNotification>

ASPX/ASCX

<telerik:RadNotification runat="server" ID="RadNotification1" VisibleOnPageLoad="true"
 Width="250px" Height="100px">
 <ContentTemplate>
 </ContentTemplate>
</telerik:RadNotification>

[C# codebehind]

 protected void Page_Load(object sender, EventArgs e)
 {
 RadNotification1.ContentContainer.Controls.Add(new LiteralControl("Rich
content:
"));
 Button button = new Button();
 button.ID = "Button1";
 button.Text = "Button in a notification";
 RadNotification1.ContentContainer.Controls.Add(button);
 RadNotification1.TitleIcon = "info";
 RadNotification1.ContentIcon = "info";
 }

[VB.NET codebehind]

 Protected Sub Page_Load(sender As Object, e As System.EventArgs) Handles Me.Load
 RadNotification1.ContentContainer.Controls.Add(New LiteralControl("Rich
content:
"))
 Dim button As New Button()
 button.ID = "Button1"
 button.Text = "Button in a notification"
 RadNotification1.ContentContainer.Controls.Add(button)
 RadNotification1.TitleIcon = "info"
 RadNotification1.ContentIcon = "info"
 End Sub

ASPX/ASCX

UI for ASP.NET AJAX

646 UI for ASP.NET AJAX

 You can use the built-in OnCallbackUpdate event of the RadNotification to load its content from the server
via a callback. It is especially useful in combination with the LoadContentOn property set to EveryShow. The
key advantage of using a callback is that the server Page does not go through its whole lifecycle, but only a
small part of it. The client state is not updated, and it is not sent back to the client-side.

You can use this callback to set the notification's Value property, because it will be passed to the client. You
can use it, for example, as a flag or some small piece of necessary data in your application's logic. In the
following example the Value property is used as a flag to determine if the notification should be shown,
according to the current time:

<telerik:RadNotification runat="server" ID="RadNotification1" VisibleOnPageLoad="true"
 TitleIcon="info" ContentIcon="info" Width="250px" Height="100px" Text="Sample
notification text">
 <ContentTemplate>
 Rich content:

 <asp:Button ID="Button1" Text="Button in a notification" runat="server" />
 </ContentTemplate>
</telerik:RadNotification>

27.8 Callback Support

ASPX/ASCX

<telerik:RadNotification runat="server" ID="RadNotification1" LoadContentOn="TimeInterval"
UpdateInterval="5400"
 AutoCloseDelay="2400" Position="BottomRight" Width="250px" Height="120px"
 OnCallbackUpdate="OnCallbackUpdate" OnClientUpdated="OnClientUpdated">
</telerik:RadNotification>
<script type="text/javascript">
 function OnClientUpdated(sender, args)
 {
 var theValue = sender.get_value();
 if (theValue != "0")
 {
 sender.show();
 }
 }
</script>

[C# codebehind]

 Random rnd = new Random();
 protected void OnCallbackUpdate(object sender, RadNotificationEventArgs e)
 {
 int newMsgs = rnd.Next(0, 11);
 if (newMsgs == 5 || newMsgs == 7 || newMsgs == 8 || newMsgs == 9)
 {
 newMsgs = 0;
 }
 RadNotification1.Value = newMsgs.ToString();
 RadNotification1.Text = "You have " + newMsgs + " new messages!";
 }

UI for ASP.NET AJAX

647 UI for ASP.NET AJAX

The following sets of properties are best used together to configure some aspects of the RadNotification’s
appearance and behavior:

 Use the Position, OffetX, OffsetY properties to control the position in which the notification is shown

 Use the Animation, AnimationDuration properties to control the way in which the notification is initially
shown

 Use the ContentScrolling property to customize the availability of scrollbars. Possible values are Auto,
None X, Y and Both. This requires the content to have explicit dimensions set in pixels to work correctly

 Use the ShowCloseButton, ShowTitleMenu, VisibleTitlebar, TitleIcon properties to control the behavior
of the titlebar

 Use the AutoCloseDelay, KeepOnMouseOver, ShowInterval properties to control the time, after which the
notification will automatically show/hide

 Use the LoadContentOn, UpdateInterval, ShowInterval properties to control when new content is loaded.
They are most often used in a more advanced scenario when a CallBack is used to fetch the content

 Use the Text, Title, ContentIcon, WebMethodName, WebMethodpath, OnCallbackUpdate properties to
control how the content is loaded. For more information refer to the Populating Plain Text and Rich
Content (Section 27.7) section

 You can declare a custom menu between the NotificationMenu tags

 You can change the overall look and feel of the notification by changing its skin via the Skin,
EnableShadow, EnableRoundedCorners properties.

The Position property gets/sets the top/left position of the notification relative to the browser. Its value is an
enumerator with the following options: TopLeft, TopCenter, TopRight, MiddleLeft, Center, MiddleRight,
BottomLeft, BottomCenter, BottomRight. The default is BottomRight.

OffetX and OffsetY are used for fine-tuning the horizontal and vertical offset from the designated Position.
Their values are set in pixels.

The Animation property is used to get/set the animation effect of the notification. It is also an enumerator
with the following options: None, Resize, Fade, Slide, FlyIn. The default is None.

The TitleIcon and ContentIcon are used to set the icons that are shown in the notification. Set them to an
empty string to disable the icon. For more information see the Embedded Icons (Section 27.5) article.

The NotificationMenu and the ContentTemplate inner tags are used to declare the built in context menu and
rich content respectively. For more information see the Notification Menu (Section 27.4) and Populating Plain

[VB.NET codebehind]

Dim rnd As New Random()
 Protected Sub RadNotification1_CallbackUpdate(sender As Object, e As
Telerik.Web.UI.RadNotificationEventArgs) Handles RadNotification1.CallbackUpdate
 Dim newMsgs As Integer = rnd.[Next](0, 11)
 If newMsgs = 5 OrElse newMsgs = 7 OrElse newMsgs = 8 OrElse newMsgs = 9 Then
 newMsgs = 0
 End If
 RadNotification1.Value = newMsgs.ToString()
 RadNotification1.Text = "You have " & newMsgs & " new messages!"
End Sub

27.9 How To Combine Properties

UI for ASP.NET AJAX

648 UI for ASP.NET AJAX

Text and Rich Content (Section 27.7) sections.

The EnableRoundedCorners and EnableShadow properties are quite self-explanatory, yet it should be noted
that they use CSS3 to create these effects; if you are using an old browser (most notably IE versions prior to
IE9) these properties will have no effect.

AutoCloseDelay, KeepOnMouseOver, ShowInterval are used to control how long the notification stays opened
on the screen (the AutoCloseDelay property) and how long it takes before it is shown again (the ShowInterval
property). The KeepOnMouseOver is set to true by default and it stops the AutoClose timer while the mouse is
over the notification. The ShowInterval should be longer than the time it takes for the notification to show and
hide again, including the animation’s duration.

 This example shows a real-life scenario in which we notify the user of an event that has happened on the
server. Here we are going to save the content of a RadEditor every 20 seconds automatically and show a
RadNotification to the user when this happens. The OnClientLoad event of the RadEditor is used to stop the
autosaving when the user is performing a spell check.

27.10 Auto Save RadEditor’s content and notify the user

ASPX/ASCX

<telerik:RadNotification runat="server" ID="RadNotification1" Width="250px" Height="120px"
Text="The RadEditor's content has been saved"
 KeepOnMouseOver="false" Position="BottomCenter"></telerik:RadNotification>
 <telerik:RadEditor runat="server" ID="RadEditor1" OnClientLoad="OnClientLoad">
 <Content>
 Some example content that you can modify.
 </Content>
 </telerik:RadEditor>
 <asp:Timer ID="Timer1" runat="server" Interval="20000" OnTick="Timer1_Tick"></asp:Timer>
 <asp:UpdatePanel ID="UpdatePanel1" UpdateMode="Conditional" runat="server">
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Timer1" />
 </Triggers>
 <ContentTemplate>
 The
Saved content will be displayed below:
 <div style="border: solid 3px #d6eefd; padding:5px; ">
 <div style="border: solid 1px black; line-height: 22px; padding: 0
4px">
 <asp:Label runat="server" ID="lbl1"/>
 </div>
 </div>
 </ContentTemplate>
 </asp:UpdatePanel>
 <script type="text/javascript">
 function OnClientLoad(sender, args)
 {
 var timer = $find("<%=Timer1.ClientID %>");
 //Attach to the spellCheckLoaded event as the spell itself is loaded with AJAX
 sender.add_spellCheckLoaded(function()
 {
 var spell = sender.get_ajaxSpellCheck();
 spell.add_spellCheckStart(function(sender, args)

UI for ASP.NET AJAX

649 UI for ASP.NET AJAX

 {
 //stop the timer while the spell check is in progress
 timer._stopTimer();
 });

 spell.add_spellCheckEnd(function(sender, args)
 {
 //Restart the timer;
 timer._startTimer();
 });
 }
);
 }
 </script>

[C# codebehind]

protected void Timer1_Tick(object sender, EventArgs e)
{
 lbl1.Text = RadEditor1.Content;
 RadNotification1.Show();
}

[VB.NET codebehind]

Protected Sub Timer1_Tick(sender As Object, e As EventArgs)
 lbl1.Text = RadEditor1.Content
 RadNotification1.Show()
End Sub

UI for ASP.NET AJAX

650 UI for ASP.NET AJAX

 Learn about the benefits of RadCompression

 Learn how to configure the RadCompression module

RadCompression is a HttpModule that is designed to automatically compress your AJAX and Web Service
responses. It will intercept the bits that your server is sending back to a browser (or Silverlight-client, for that
matter) and compress them. Once the compressed response reaches the browser, standard browser technology
takes over and decompresses the response. The compression process is completely transparent to your client-
side (JavaScript or Silverlight) and server-side code. It simply reduces the number of bits that must be
sent from your server to your client and thus it improves your page performance.

RadCompression is not designed to be a complete replacement for the other HTTP compression tools, such as
the built-in HTTP Compression in IIS 7. Instead, it is designed to work with those existing tools to cover
scenarios they usually miss - namely the compression of the responses of AJAX requests. If you have HTTP
Compression enabled in IIS7, you'll discover that it does not compress your AJAX and Web Service responses; it
only compresses the initial bits sent to the browser when the page is requested. By adding RadCompression to
your project, you cover those gaps and start compressing your XHR (XmlHttpRequest).

So, if RadCompression does not cover all HTTP traffic, what does it cover? RadCompression will automatically
detect and compress requests that expect these content response types (as found in the HTTP request's
"ContentType" header or "AcceptsTypes" header):

 application/x-www-form-urlencoded

 application/json

 application/xml

 application/atom+xml

 text/xml

Enabling RadCompression
In order to enable RadCompression you need to register it as HttpModule in your web.config.

28 RadCompression

28.1 Objectives

28.2 Introduction

28.3 Using RadCompression

[web.config]

<httpModules>
...
<add name="RadCompression" type="Telerik.Web.UI.RadCompression" />
</httpModules>
<!-- If you're using IIS7, then add this, too-->
<system.webServer>
 <modules>
 ...
 <add name="RadCompression" type="Telerik.Web.UI.RadCompression" />
 </modules>
...

UI for ASP.NET AJAX

651 UI for ASP.NET AJAX

ViewState compression
In addition to the default compression mechanism of RadCompression, you can specify whether you would like
to compress the page ViewState and store it either in a hidden field or in the Session (to pass and retrieve it
from there on form submits). For this purpose you can use additional page adapters which override the default
page adapter for ViewState storage.

To enable ViewState compression you can register these control adapters in the BrowserFile.browser file under
the App_Browsers folder in your web site/project.

 Postback compression
You can enable the postback compression by setting the enablePostbackCompression property of the
RadCompression module to true (the default value is false). This can be done at application level in the
following manner:

[BrowserFile.browser] Storing the compressed ViewState in a hidden field

<browsers>
 <browser refID="Default">
 <controlAdapters>
 <adapter controlType="System.Web.UI.Page"
adapterType="Telerik.Web.UI.RadHiddenFieldPageStateCompression" />
 </controlAdapters>
 </browser>
</browsers>

[BrowserFile.browser] Storing the compressed ViewState in the Session

<browsers>
 <browser refID="Default">
 <controlAdapters>
 <adapter controlType="System.Web.UI.Page"
adapterType="Telerik.Web.UI.RadSessionPageStateCompression" />
 </controlAdapters>
 </browser>
</browsers>

[web.config]

<configSections>
 ...
 <sectionGroup name="telerik.web.ui">
 <section name="radCompression"
type="Telerik.Web.UI.RadCompressionConfigurationSection, Telerik.Web.UI,
PublicKeyToken=121fae78165ba3d4" allowDefinition="MachineToApplication"
requirePermission="false"/>
 </sectionGroup>
 ...
</configSections>
<telerik.web.ui>
 <radCompression enablePostbackCompression="true"/>
</telerik.web.ui>

28.4 Summary

UI for ASP.NET AJAX

652 UI for ASP.NET AJAX

The impact that RadCompression has on your site depends on where your users are located. If you have a site
that is deployed over the web, where latency and connection speeds are unpredictable, reducing the bytes you
send over the wire is an easy way to improve your site's performance. And since RadCompression can literally
be implemented with a single change to your config file, you really don't have much to lose.

UI for ASP.NET AJAX

653 UI for ASP.NET AJAX

 Explore features of the RadCaptcha control.

 Learn how to configure RadCaptcha for the runtime environment.

 Explore the RadCaptcha design time interface including the Smart Tag and major property groups.

 Learn how to configuring RadCaptcha for maximum security.

 Configure RadCaptcha audio.

Telerik RadCaptcha is UI control that provides two major strategies for protection against automated form
submissions:

 Image with Modified Symbols (Captcha Image) - They are displayed in a form, and the user is required to
input the symbols in a textbox. The Image is generated with an HttpHandler.

 Automatic Robots Discovery - this strategy uses predefined rules which decide whether the input comes
from a robot or not. At this point, there are two implemented rules that could be applied either separately
or simultaneously.

 Minimum form submission time - the presumption is that a human cannot input the fields in a form
correctly for a time less than 3 seconds (this is set by default, and could be modified). If the
submission is executed faster than the predefined value, it is assumed that the executor is a robot.

 Invisible textbox in the form (the so-called "honeypot") - this rule requires the insertion of a textbox
which is not visible when the form is styled. Still, it will be detected by a robot, and therefore if any
data is entered, the executor is considered to be a robot.

Key features:

 Three Modes for Protection - you can easily define which strategies to be used for spam protection. These

29 RadCaptcha

29.1 Objectives

29.2 Introduction

UI for ASP.NET AJAX

654 UI for ASP.NET AJAX

are: Captcha, InvisibleTextBox and MinimumTimeout.

 Set Custom Error Message - the error message that is displayed when the condition being validated fails.
Simply set the ErrorMessage property of the RadCaptcha and the value will be displayed if the page is not
valid.

 Background and Line Noise Level of the Captcha Image - you can easily control the background and the
line noise of the Image by setting the respective value (None, Low, Medium, High or Extreme). The default
value of the background and line noise level is Low.

 Font Family and Font Warp of the Captcha Image - you can easily choose which font family to be used for
the Image text. Courier New is used as a default value for the font family. Furthermore, the amount of
random font warping to apply to the rendered text can be changed by setting the FontWarp property of the
CaptchaImage. The default amount of font warping is Low.

 Text Length and Possible Characters of the Captcha Image - the default length of the text is 5
characters, and the characters could be either letters or either numeric characters. Alternatively, you can
choose what kind of characters to be used (only letters or only numeric characters), and change the length
of the text.

 Maximum Time Interval of the Captcha Image - the maximum number of minutes the Captcha Image will
be cached and valid.

 Minimum Timeout - minimum number of seconds the form must be displayed before it is valid. If you're
too fast, you must be a robot. This is set when “Minimum form submission time” mode is used for Spam
Protection.

The following tutorial demonstrates using RadCaptcha to validate page submission. The walk-through will also
show how to display the Error Message in a ValidationSummary.

1. In the default page of a new ASP.NET AJAX-enabled Web Application add a RadCaptcha control, a Button
control that causes post back on a click and a ValidationSummary control.

2. Open the RadCaptcha Smart Tag and select the Enable RadCaptcha httpHandler link. Click OK to close the
confirmation dialog for the RadCaptcha handler.

29.3 Getting Started

UI for ASP.NET AJAX

655 UI for ASP.NET AJAX

The httpHandler can be also enabled by placing the following lines in the web.config file:

3. In the Properties Window for the RadCaptcha control set the following properties:

4. ErrorMessage = You have entered an invalid code.

5. ValidationGroup = SubmitGroup

6. In the Properties Window for the ValidationSummary control set the ValidationGroup property to the same
value as in RadCaptcha (ValidationGroup="SubmitGroup").
Do the same for the Button control.

Here is how the controls' declarations look after setting the above mentioned properties:

Press F5 to run the Application. RadCaptcha validates the input on a post back.

web.config

<httpHandlers>
 <add path="Telerik.Web.UI.WebResource.axd" type="Telerik.Web.UI.WebResource" verb="*"
validate="false" />
</httpHandlers>

<handlers>
 <add name="Telerik_Web_UI_WebResource_axd" verb="*" preCondition="integratedMode"
path="Telerik.Web.UI.WebResource.axd" type="Telerik.Web.UI.WebResource" />
</handlers>

Setting Properties

<telerik:RadCaptcha ID="RadCaptcha1" runat="server" ErrorMessage="You have entered an
invalid code" ValidationGroup="SubmitGroup"></telerik:RadCaptcha>
<asp:Button ID="Button1" runat="server" Text="Button" ValidationGroup="SubmitGroup" />
<asp:ValidationSummary ID="ValidationSummary1" ValidationGroup="SubmitGroup"
runat="server" />

UI for ASP.NET AJAX

656 UI for ASP.NET AJAX

The most important properties of the RadCaptcha control are presented below:

Common properties:

 ErrorMessage - The error message text generated when the condition being validated fails.

 Display - Gets or sets display behavior of error message. The available modes are:

 None (Validator content never displayed inline)

 Static (Validator content physically part of the page layout)

 Dynamic (Validator content dynamically added to the page when validation fails)

 ValidatedTextBoxID - Gets or sets the ID of the textbox to be validated, when only the RadCaptcha image
is rendered on the page. To render only the CaptchaImage and use Custom TextBox for user input, the
CaptchaImage-RenderImageOnly property has to be set to true. See the description of
the RenderImageOnly property below.

 ValidatedTextBox - Read-only. Gets the TextBox that is being validated by the RadCaptcha

 ValidationGroup - specifies which group of controls is validated on validation

Inner <CaptchaImage> tag specific:

 EnableCaptchaAudio - Gets or sets the bool value indicating whether the CaptchaAudio will be enabled.
When set to true a LinkButton is rendered that, when clicked, retrieves the audio code. Use
the '.rcCaptchaAudioLink' selector to apply custom skinning to the LinkButton.

 UseAudioFiles - Gets or sets a bool value indicating whether the audio code will be generated by
concatenation of the audio files from a given folder.

 AudioFilesPath - Gets or sets the path to the directory where the audio (.wav) files are located. The
default path is ~/App_Data/RadCaptcha where tilde (~) represents the root of the web application.

 RenderImageOnly - Gets or sets bool value that indicates whether the RadCaptcha image will only be
rendered on the page (without the CaptchaTextBox and Label). When set to true only the image is

29.4 Important Properties

UI for ASP.NET AJAX

657 UI for ASP.NET AJAX

rendered on the page. By setting the “ValidatedTextBoxID” property of the RadCaptcha, the user can
choose a custom TextBox where the Captcha code will be entered and validated.

 ImageStorageLocation - Gets or sets the storage location for the CaptchaImage (see note below):

 Cache

 Session

AutoBot Discovery specific Properties

 InvisibleTextBoxLabel - Gets or sets the hidden textbox strategy label text.

 MinTimeout - Gets or sets the minimum number of seconds form must be displayed before it is valid. If
you're too fast, you must be a robot.

Here is a sample declaration for RadCaptcha using some of the properties above:

There are some easy takeaways for configuring RadCaptcha for maximum bot blocking:

1. Don't rely on visual CAPTCHA protection only
Bots often give away their identity by trying to submit forms too quickly or by trying to submit a form too
many times. Take advantage of RadCaptcha’s non-visual protections (http://demos.telerik.com/aspnet-
ajax/captcha/examples/default/defaultcs.aspx) to maximize bot prevention.

2. Maximize Line Noise Level, Eliminate Background Noise Level
Research says background noise is first thing a CAPTCHA bot throws-out, so it offers little value to your
image. Instead, maximize your CAPTCHA image line noise and font warp factor to make segmentation hard
for bots. Set properly, RadCaptcha can produce very secure CAPTCHA images like this:

3. Use a Custom Character Set
Many bots rely on encountering a predictable set of characters or words to accurately parse a website’s
CAPTCHA image. By using a custom character set (http://demos.telerik.com/aspnet-
ajax/captcha/examples/characterset/defaultcs.aspx) with RadCaptcha that includes non-alphanumeric
characters (like @, !, #, $), you can increase your odds of beating the bots.

No visual CAPTCHA image is perfect, and with the modern trend of employing humans to beat CAPTCHAs
(http://www.theregister.co.uk/2008/04/10/web_mail_throttled/), a CAPTCHA is a road bump at best. Still,
they prevent the casual spam bot from infiltrating your site and protect your forms from the script kiddies.

Telerik will continue to add improved security features to RadCaptcha in future releases, but by following these
simple guidelines, you can confidently get the most value out of a CAPTCHA today that a CAPTCHA can provide.

RadCaptcha declaration

<telerik:RadCaptcha ID="RadCaptcha1" runat="server" ErrorMessage="You have entered an
invalid code" ValidationGroup="SubmitGroup">
 <CaptchaImage EnableCaptchaAudio="true" UseAudioFiles="true" />
</telerik:RadCaptcha>

29.5 Optimize for Maximum Security

UI for ASP.NET AJAX

658 UI for ASP.NET AJAX

In order for RadCaptcha to be accessible by visually impaired users, the control can generate an audio code. To
enable this functionality you need to simply set the CaptchaImage-EnableCaptchaAudio property to true. This
will cause a link button, that retrieves the audio code, to be rendered below the CaptchaImage. To control the
visual appearance of the link button, the user should use the .rcCaptchaAudioLink CSS class.

Tutorial - How to configure RadCaptcha to generate audio code?
The following tutorial demonstrates how to configure RadCaptcha to generate audio code.

1. Follow the steps from the "Getting Started (Section 29.3)" tutorial to create a web-site with RadCaptcha
control.

2. In the Solution Explorer, right-click the project and select Add | Add ASP.NET Folder | App_Data.

3. Locate the App_Data folders in your RadControls installation.

4. Copy the App_Data\RadCaptcha to the project's \App_Data folder.

5. The project structure should now look like the screenshot below.

6. Enable the CaptchaAudio feature by setting the EnableCaptchaAudio property of the inner
<CaptchaImage> tag to true, e.g.

Press F5 to run the Application. RadCaptcha validates the input on a post back.

29.6 Configure RadCaptcha audio

Enable RadCaptcha Audio

<telerik:RadCaptcha ID="RadCaptcha1" runat="server" ErrorMessage="Page not valid. The code
you entered is not valid."
 ValidationGroup="SubmitGroup" >
 <CaptchaImage EnableCaptchaAudio="true" BackgroundColor="#609f0a" TextColor="White"
BackgroundNoise="None" />
</telerik:RadCaptcha>

UI for ASP.NET AJAX

659 UI for ASP.NET AJAX

UI for ASP.NET AJAX

660 UI for ASP.NET AJAX

 Learn about the Callback and WebService update mechanisms and how to configure RadXmlHttpPanel.

 Supported Scenarios: Learn when and how to use RadXmlHttpPanel.

 Known issues with RadScriptManager and RadStyleSheetManager.

Telerik RadXmlHttpPanel is a panel that can load content on demand. Unlike UpdatePanel, or RadAjaxPanel, it
is not universal, and cannot be used in all scenarios. However, in scenarios where it is possible to use it, it will
deliver much better performance compared to its AJAX counterparts. This is due to the fact that the
XmlHttpPanel uses callbacks, web services and WCF services to update its content.

During partial page updates with AJAX, the page goes through its full lifecycle. The whole control tree is
created, all event handlers are executed, the ViewState is processed and updated, and sent back to the client.
The callbacks, web services, and WCF services, on the other hand, carry a much smaller (or even no additional)
overhead, and this results in increased performance and responsiveness of the page.

There are two ways for loading data on the RadXmlHttpPanel - by using the ASP.NET Callback mechanisms and
WebService and a WCF Service Ajax call.

 Callback - When a client callback is used, the server Page does not go through its whole lifecycle, but only
a small part of it. The client state is not updated, and it is not sent back to the client-side. When Callbacks
are used, a POST request is made from the client to the server, and the values of all FORM fields, such as
hidden fields (including the view state field) are sent to the server. When the view state is large, this could
mean increased overhead. On the other hand, no extra files are needed to use this mode (unlike when
using a WebService).

 WebService - can be used to handle the data request of the RadXmlHttpPanel. The WebMethodPath and
the WebMethodName properties should be set and the RadXmlHttpPanel automatically retrieves and loads
the data. Similarly as in the Client Callback the client state is not affected. A web service requires a couple
of extra files to set up, but it is the most efficient approach, as no data, other than the Value string is sent
over from the client to the server.

 WCF Service - can be used to handle the data request of the RadXmlHttpPanel. The WcfRequestMethod,
WcfMethodPath and the WcfMethodName properties should be set and the RadXmlHttpPanel automatically
retrieves and loads the data. Similarly as in the Client Callback the client state is not affected. A WCF
Service requires a couple of extra files to set up, but it is an efficient approach, as no data, other than the
Value string, is sent over from the client to the server.

How does the XmlHttpPanel work?

Imagine you have a <div/> element, and you want to paste some HTML content within, using JavaScript. One
would use either div.innerHTML or div.appendChild for this purpose.
Well that's the underlying principle of the XmlHttpPanel. It pastes the HTML content received from the web
service or the callback, within the panel's HTML element (or <div/>). The HTML content can be created

30 RadXmlHttpPanel

30.1 Objectives

30.2 Introduction and Overview

30.3 Supported Scenarios

UI for ASP.NET AJAX

661 UI for ASP.NET AJAX

by adding controls to the panel during the callback, or returning an HTML string by the web method (of the web
service). You will find more information on how to configure the control, to use both update mechanisms, in
the Configuring the XmlHttpPanel article.

Supported scenarios

Since the page does not go through its standard lifecycle during ASP.NET callbacks and web services, any
changes that are made to the content within the XmlHttpPanel will be lost if a postback (or AJAX call that
affects the content) occurs. This poses a limitation on the controls residing in the panel to not perform any
postbacks and to not execute server-side events.

This being said, the XmlHttpPanel is primarily intended to be used for loading presentation data. If any
modifications or updates are to be performed on the content they should be done on the client-side or by the
panel itself.

How to initiate a partial page update

Partial updates are initiated from the client-side, using RadXmlHttpPanel's set_value("string_value") client-
side method. Values can be passed to the server by providing a single parameter when calling the method.

Callback configuration:

1. Add RadXmlHttpPanel ASP.NET AJAX to the page

2. Set the EnableClientScriptEvaluation property to true, to enable the evaluation of scripts loaded by the
controls within the XmlHttpPanel

3. Place a Label control inside the RadXmlHttpPanel

4. Handle the ServiceRequest server-side event of RadXmlHttpPanel

5. In the handler method add the following code:

 protected void RadXmlHttpPanel1_ServiceRequest(object sender,
Telerik.Web.UI.RadXmlHttpPanelEventArgs e)
 {
 Label1.Text = "Label updated by XmlHttpPanel callback at: " + DateTime.Now.ToString();
 }

6. Create an <input/> of type button that will call the set_value client method of the XmlHttpPanel on a
button click.
You can also access the callback value from the client on the server using the e.Value property in the
ServiceRequest event.

Here is how the page and its codebehind should look after completing the steps above:

30.4 Configuring the XmlHttpPanel

Default.aspx

<asp:ScriptManager ID="ScriptManager1" runat="server" />
<telerik:RadXmlHttpPanel runat="server" ID="RadXmlHttpPanel1"
 EnableClientScriptEvaluation="true"
 onservicerequest="RadXmlHttpPanel1_ServiceRequest">
 <asp:Label ID="Label1" runat="server"></asp:Label>
</telerik:RadXmlHttpPanel>

<input type="button" value="Set Value" onclick="SetValue();return false;" />

UI for ASP.NET AJAX

662 UI for ASP.NET AJAX

WebService Configuration:

1. Add XmlHttpPanel and set EnableClientScriptEvaluation to true.

2. Right click on the WebSite to Add New Item and in the window opened choose "Web Service". Make sure
the check-box "Place code in separate file" is checked. If you work in a Web Application scenario a
WebService codebehind file will be created.

3. Open the newly created "Web Service" class in the App_Code folder of your application.

4. Uncomment the [System.Web.Script.Services.ScriptService] just above the class to enable the
Web Service to be called from the XmlHttpPanel.

5. Create a method that returns a string and accepts a single parameter of type object. Mark the method as
[WebMethod] i.e.

 [WebMethod]
 public string GetHTML(object context)
 {
 return "Content updated by XmlHttpPanel using WebService at: " +
DateTime.Now.ToString();
 }
The string returned from this method is the actual HTML content that will be pasted within the
XmlHttpPanel.

<script type="text/javascript">
 function SetValue() {
 var panel = $find("<%=RadXmlHttpPanel1.ClientID %>");
 panel.set_value("string_value");
 }
</script>

Default.aspx.cs

 protected void RadXmlHttpPanel1_ServiceRequest(object sender,
Telerik.Web.UI.RadXmlHttpPanelEventArgs e)
 {
 Label1.Text = "Label updated by XmlHttpPanel callback at: " + DateTime.Now.ToString
();
 //access the callback value from the client on the server using the e.Value property
 Label1.Text += "
 The returned value fron the client's set_value() function is:
" + e.Value + "";
 }

Default.aspx.vb

Protected Sub RadXmlHttpPanel1_ServiceRequest(sender As Object, e As
Telerik.Web.UI.RadXmlHttpPanelEventArgs)
 Label1.Text = "Label updated by XmlHttpPanel callback at: " + DateTime.Now.ToString()
 'access the callback value from the client on the server using the e.Value property
 Label1.Text += "
 The returned value fron the client's set_value() function is:
" + e.Value + ""
End Sub

UI for ASP.NET AJAX

663 UI for ASP.NET AJAX

6. Set the WebMethodPath property to the “Web Service” (usually the .asmx file), and the WebMethodName
to the method that will be called by the XmlHttpPanel (i.e. GetHTML).

7. Create an <input/> that will call set_value() method of the XmlHttpPanel

Here is how the page with the XMLHttpPanel and the WebService codebehind file should look when
accomplishing the steps above:

Default.aspx

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>
<telerik:RadXmlHttpPanel runat="server" ID="RadXmlHttpPanel1"
 EnableClientScriptEvaluation="true"
 WebMethodPath="WebService1.asmx"
 WebMethodName="GetHTML">
</telerik:RadXmlHttpPanel>

<input type="button" value="Set Value" onclick="SetValue();return false;" />
<script type="text/javascript">
 function SetValue() {
 var panel = $find("<%=RadXmlHttpPanel1.ClientID %>");
 var array = [];
 array[0] = "string0";
 array[1] = "string1";
 //you can pass any kind of object to the GetHTML method
 //right now we will pass an array
 panel.set_value(array);
 }
</script>

App_Code\WebService.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

/// <summary>
/// Summary description for WebService
/// </summary>
[WebService(Namespace = "http://tempuri.org (http://tempuri.org/)/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
// To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the
following line.
[System.Web.Script.Services.ScriptService]
public class WebService : System.Web.Services.WebService {

 public WebService () {
 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod]
 public string GetHTML(object context)

UI for ASP.NET AJAX

664 UI for ASP.NET AJAX

WCF Service configuration:

1. In the properties pane for the RadXmlHttpPanel component, set the WcfRequestMethod, WcfMethodPath
and the WcfMethodName properties to identify the Web service:

 WcfRequestMethod - Gets or sets the request method for WCF Service used to populate content GET,
POST, PUT, DELETE

 WcfServicePath - Gets or sets a string value that indicates the virtual path of the WCF Service used by
the RadXmlHttpPanel

 WcfServiceMethod - Gets or sets a string value that indicates the WCF Service method used by the
RadXmlHttpPanel.

2. Setting the Value property of the panel depends on the WcfRequestMethod property. In both cases country
is the name of the parameter in the WcfRequestMethod method:
• If WcfRequestMethod = "POST" the Value property should be set to "{"country": "value"}" or
'{"country":"value"}'.
• If WcfRequestMethod = "GET" the Value property should be set to "country=value".

3. Define the Contracts of the WCF Service in an interface:

 {
 Dictionary<string, object> dictiionary = context as Dictionary<string, object>;

 //The value passed to the XmlHttpPanel can be of type object
 object value = dictiionary["Value"];
 string value1 = ((object[])(value))[0].ToString();
 string value2 = ((object[])(value))[1].ToString();
 return "Content updated by XmlHttpPanel using WebService at: "
 + DateTime.Now.ToString()
 + "
These are the passed values to the XmlHttpPanel: " + value1 +
 and " + value2 + " ";
 }

}

Inline declaration

<telerik:RadXmlHttpPanel runat=server" ID="XmlHttpPanelWCF"
 Value="{"country":"Argentina"}"
 WcfServicePath="XmlHttpPanelWcfService.svc"
 WcfServiceMethod="GetCustomersByCountry"
 WcfRequestMethod="POST">
</telerik:RadXmlHttpPanel>

C#

[ServiceContract]
public interface IXmlHttpPanelWcfService
{
 [OperationContract]
 [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Wrapped, ResponseFormat =
WebMessageFormat.Json)]
 string GetCustomersByCountry(string country);
}

UI for ASP.NET AJAX

665 UI for ASP.NET AJAX

4. Implement the contract in the WCF Service class:

5. Define the configuration in web.config:

VB.NET

<ServiceContract()> _
Public Interface IXmlHttpPanelWcfService
 <OperationContract()> _
 <WebInvoke(Method:="POST", BodyStyle:=WebMessageBodyStyle.Wrapped,
ResponseFormat:=WebMessageFormat.Json)> _
 Function GetCustomersByCountry(ByVal country As String) As String
End Interface

C#

[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class XmlHttpPanelWcfService : IXmlHttpPanelWcfService
{
 public string GetCustomersByCountry(string country)
 {
 return "The content of XmlHttpPanel";
 }
}

VB.NET

<AspNetCompatibilityRequirements
(RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class XmlHttpPanelWcfService
 Implements IXmlHttpPanelWcfService
 Public Function GetCustomersByCountry(ByVal country As String) As String
 Return "The content of XmlHttpPanel"
 End Function
End Class

web.config

<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="XmlHttpPanelWcfBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="true" />
 </behavior>
 </serviceBehaviors>
 <endpointBehaviors>
 <behavior name="XmlHttpPanelWcfBehavior">
 <webHttp />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service behaviorConfiguration="XmlHttpPanelWcfBehavior"
name="XmlHttpPanelWcfService">

UI for ASP.NET AJAX

666 UI for ASP.NET AJAX

6. Optionally, set the OnClientResponseEnding property to a client-side event handler that handles the
response of the WCF Service.

7. Optionally, set the OnClientResponseEnded and OnClientResponseError properties to client-side event
handlers that respond when the WVF Service has successfully updated the panel’s content or when the WCF
Service has generated an error while trying to service the item request, respectively.

Use the ASP.NET AJAX's native $find() method to get a reference to the RadXmlHttpPanel control:

The following table lists the most important methods of the client-side RadXmlHttpPanel object:

 <endpoint address="" binding="webHttpBinding"
contract="IXmlHttpPanelWcfService" behaviorConfiguration="XmlHttpPanelWcfBehavior"/>
 </service>
 </services>
 </system.serviceModel>
</configuration>

ASPX

function OnClientResponseEnding (sender, args)
{
 //The actual result data is in the [WcfServiceMethod]Result property of the content
object.
 var data = args.get_content().GetCustomersByCountryResult,
 args.set_cancel(true);
}

ASPX

function OnClientResponseEnded (sender, args)
{
 //...
}

//Fired when the request for the items fails.
function OnClientResponseError (sender, args)
{
 // Disable the notifing error alert.
 args.set_cancelErrorAlert(true);
 //...
}

30.5 Client-Side Programming

JavaScript

var panel = $find("<%=RadXmlHttpPanel.ClientID %>");

Method Description
get_value() Returns the value that is passed to the RadXmlHttpPanel

set_value(value) passes a value to the RadXmlHttpPanel depending on which content is loaded inside
the RadXmlHttpPanel and initiates a partial page request.

get_element() returns the DOM element for this control
set_html(content) sets a custom HTML content to the RadXmlHttpPanel.

UI for ASP.NET AJAX

667 UI for ASP.NET AJAX

Client - side events

OnClientResponseEnded
The OnClientResponseEnded occurs immediately after the data (content) is pasted into the RadXmlHttpPanel.
This client-side event is subsequent to the OnClientResponseEnding event.
The event handler receives a single parameter: the instance of the RadXmlHttpPanel control firing the event.

OnClientResponseEnding
The OnClientResponseEnding client-side event replaces the existing OnClientResponseEnd client-side event.
Please note that although the OnClientResponseEnding should be used from now on, the
OnClientResponseEnd is still present in the control’s API so that any existing applications are not broken after
an upgrade to a newer version of the control.

The OnClientResponseEnding occurs before the data (content) is pasted into the RadXmlHttpPanel, after a
partial update request has been initiated by the RadXmlHttpPanel set_value method.

The event handler receives two parameters:

 The instance of the RadXmlHttpPanel control firing the event.

 An eventArgs parameter containing the following properties and methods:

 - set_cancel lets you prevent from loading the content inside the RadXmlHttpPanel and raising the
OnClientResponseEnded client-side event.

 - get_cancel returns a boolean value indicating whether the RadXmlHttpPanel’s content update was
canceled.

 - get_content() gets the HTML content rendered inside the RadXmlHttpPanel.

The following example demonstrates how the user can cancel the loading of the content inside the
RadXmlHttpPanel. An event handler should be provided for the OnClientResponseEnding client-side event
where the action can be canceled by using the cancel property of the eventArgs passed to the handler.

ASPX

<script type="text/javascript">
 function SetValue()
 {

 var panel = $find("<%= RadXmlHttpPanel1.ClientID %>");

 var value = "some_value";
 panel.set_value(value);
 }
 function OnClientResponseEnding(panel, args)
 {
 var result = confirm("Do not load the content in the XmlPanel?");
 args.set_cancel(result);
 }
</script>
<input type="button" value="Refresh RadXmlHttpPanel1" onclick="SetValue()" />
<telerik:RadXmlHttpPanel ID="RadXmlHttpPanel1" runat="server" OnServiceRequest="
RadXmlHttpPanel1_ServiceRequest"
 OnClientResponseEnding="OnClientResponseEnding">
 <telerik:RadGrid RegisterWithScriptManager="false" ID="RadGridTeamPlayer"

UI for ASP.NET AJAX

668 UI for ASP.NET AJAX

OnClientResponseError
The OnClientResponseError occurs in the cases when an error (WebService or Callback error) occurs when
the RadXmlHttpPanel tries to load certain content.

The event handler receives two parameters:

1. The instance of the RadXmlHttpPanel control in which the error occured.

2. An eventArgs parameter containing the following properties and methods:

runat="server"
 AllowSorting="False" AutoGenerateColumns="True" GridLines="Both"
Height="100%"
 ShowFooter="false" Style="border: solid 1px black; outline: 0">
 <MasterTableView>
 <Columns>
 <telerik:GridBoundColumn DataField="username" HeaderText="Player"
SortExpression="username">
 <ItemStyle HorizontalAlign="center" />
 <HeaderStyle HorizontalAlign="center" />
 </telerik:GridBoundColumn>
 </Columns>
 </MasterTableView>
 </telerik:RadGrid>
</telerik:RadXmlHttpPanel>

C#

protected void RadXmlHttpPanel1_ServiceRequest(object sender,
Telerik.Web.UI.RadXmlHttpPanelEventArgs e)
{
string val = e.Value;
BindGrid(val);
}
void BindGrid(string parametervalue)
{
RadGrid1.DataSource = new string[] { "1", "2", DateTime.Now.ToLongTimeString() };
RadGrid1.DataBind();
}

VB.NET

Protected Sub RadXmlHttpPanel1_ServiceRequest(sender As Object, e As
Telerik.Web.UI.RadXmlHttpPanelEventArgs)
 Dim val As String = e.Value
 BindGrid(val)
End Sub
Sub BindGrid(parametervalue As String)
 RadGrid1.DataSource = New String() {"1", "2", DateTime.Now.ToLongTimeString()}
 RadGrid1.DataBind()
End Sub

UI for ASP.NET AJAX

669 UI for ASP.NET AJAX

 - set_cancelErrorAlert lets you prevent from displaying the built-in error alert that notifies the user
that an error has occurred, and gives the possibility to display a custom error message.

 - get_cancelErrorAlert returns a boolean value indicating whether the RadXmlHttpPanel’s displaying
of the built-in error alert has been canceled.

The following example demonstrates how the user can display: a custom content inside the
RadXmlHttpPanel or a custom error message (alert), if an error has occurred while loading content inside
the panel. The panel tries to load RadCalendar control, but an error will occur because the control’s
RegisterWithScriptManager property has not been set to false.

ASPX

<script type="text/javascript">
function LoadCalendar()
 {
 var panel = $find("RadXmlHttpPanel1");
 panel.set_value(value);
 }

function OnClientResponseError(panel, args)
 {
 alert("OnClientResponseError fired because an error occured");
 args.set_cancelErrorAlert(true);
 var content = "<label style='color: Red;'>The Control could not be loaded because of
an callback error!</label>";
 panel.set_html(content);
 }
</script>
<input type="button" value="LoadRadCalendar" onclick="LoadCalendar()" />
<telerik:RadXmlHttpPanel ID="RadXmlHttpPanel1" runat="server"
OnServiceRequest="RadXmlHttpPanel1_ServiceRequest"
OnClientResponseError="OnClientResponseError">
</telerik:RadXmlHttpPanel>

C#

protected void RadXmlHttpPanel1_ServiceRequest(object sender, RadXmlHttpPanelEventArgs e)
{
RadCalendar calendar = new RadCalendar();
calendar.ID = "RadCalendar1";
//calendar.RegisterWithScriptManager = false
RadXmlHttpPanel1.Controls.Add(calendar);
}

VB.NET

Protected Sub RadXmlHttpPanel1_ServiceRequest(ByVal sender As Object, ByVal e As
RadXmlHttpPanelEventArgs)
 Dim calendar As New RadCalendar()
 calendar.ID = "RadCalendar1"
 'calendar.RegisterWithScriptManager = false
 RadXmlHttpPanel2.Controls.Add(calendar)

UI for ASP.NET AJAX

670 UI for ASP.NET AJAX

RadXmlHttpPanel provides the following server-side properties:

Compatibility issues with RadScriptManager and RadStyleSheetManager
The RadXmlHttpPanel has known compatibility issues with RadScriptManager and RadStyleSheetManager.
Both managers combine all the requests (RadScriptManager combines the requests to the javascript assembly
resource files and RadStyleSheetManager combines the ones to stylesheet resource files of all RadControls
present on the page), into a single request.

Because the page does not go through its normal life cycle, after the RadControls have been updated by the
RadXmlHttpPanel, the controls’ scripts and stylesheets need to be evaluated and applied, respectively. This
however, cannot be done if the scripts (and the stylesheets) are combined into a single file - the
RadXmlHttpPanel cannot find the right scripts and styles for the respective RadControl. That is why there
might be client-script errors and the styles will not be applied correctly if the RadXmlHttpPanel is used
together with the RadStyleSheetManager and the RadScriptManager.

There are 2 ways to solve this problem:

1. use the Microsoft AJAX ScriptManager control
OR

2. set EnableScriptCombine="false" for RadScriptManager and EnableStyleSheetCombine="false" to
RadStyleSheetManager.

End Sub

30.6 Server-Side Programming

Property Description

LoadingPanelID Gets or sets the ID of the RadAjaxLoadingPanel control that will be displayed over
the control during the partial page update.

Value Gets or sets a string value depending on which a certain content is loaded in the
RadXmlHttpPanel.

WebMethodPath Gets or sets a string value that indicates the virtual path of the WebService used
by the RadXmlHttpPanel.

WebMethodName Gets or sets a string value that indicates the WebService method used by the
RadXmlHttpPanel.

EnableClientScriptEvaluationGets or sets a boolean value indicating whether or not the client scripts loaded by
the RadControls hosted inside the RadXmlHttpPanel should be executed.

30.7 Known Issues

UI for ASP.NET AJAX

671 UI for ASP.NET AJAX

 Introduction

 Getting Started

 Learn how to bind RadTagCloud to DataSource

 Configuring RadTagClound items

 Generating TagCloud from External Sources

Telerik RadTagCloud is a flexible UI component for categorization and weighted visualization of user-generated
tags or related keywords. The user can easily customize the appearance of the control, choose the items that
will appear in the cloud, sort the tags alphabetically or by weight, in ascending or descending order, and use
various other configuration options.

Key Features:

 Distribution - specifies how the font size will be distributed among the items. When set to Linear the font
size is distributed linearly and in the case of Logarithmic the items are weighted logarithmically.Sorting -
specifies in what order the TagCloud items will be listed. By default they are not sorted. The user can
choose to sort them alphabetically or based on their weight, in ascending or descending order. Possible
values for this property are: NotSorted (default), AlphabeticAsc, AlphabeticDsc, WeightedAsc and
WeightedDsc.

 Filtering Of The Items - Three properties control the filtering of the items: MinimalWeightAllowed,
MaxNumberOfItems and TakeTopWeightedItems.

 MinimalWeightAllowed - specifies the lower bound for the item Weight. If the Weight of the item is
smaller than this bound, the tag will not appear in the cloud. The default value is 0.0, which means the
items will not be filtered.

 MaxNumberOfItems - specifies the maximal number of items that can (will) be shown in the cloud. If the
TakeTopWeightedItems property is set to true, the items with the highest weight will be taken. The
default value is 0, which means the items will not be filtered.

 MinFontSize and MaxFontSize - specify the range of the font size, the TagCloud items could have. The
defualt values are 10px and 20px, respectively. These properties accept values of type
System.Web.UI.WebControls.Unit and the font-size of the TagCloud items will have the same
System.Web.UI.WebControls.UnitType as the one of the properties. The value of MaxFontSize must be
greater or equal than the one of MinFontSize.

31 RadTagCloud

31.1 Objectives

31.2 Introduction

UI for ASP.NET AJAX

672 UI for ASP.NET AJAX

 The following tutorial demonstrates how to set up a page with RadTagCloud and manually populate the control
with keywords. The walk-through will also show how to sort the items alphabetically in ascending order.

1. In the default page of a new ASP.NET AJAX-enabled Web Application add a RadTagCloud control.

2. In the Source view of the .aspx page, find the definition of the TagCloud, and add the <Items></Items>
inner property.

3. Between the opening and the closing tag of the <Items> property add the following list of items. Every item
represents a country, with the Weight of the item equal representing the millions of people living there,
and the NavigateUrl pointing to the country's Wikipedia article.

4. In the Properties Window of RadTagCloud set the following properties

1. Width="400px"

2. MaxFontSize="50px"

31.3 Getting Started

Inner Items tags of RadTagCloud

<Items>
 <telerik:RadTagCloudItem Text="Russia" Weight="141.9"
NavigateUrl="http://en.wikipedia.org/wiki/Russia" />
 <telerik:RadTagCloudItem Text="Nigeria" Weight="154.7"
NavigateUrl="http://en.wikipedia.org/wiki/Nigeria" />
 <telerik:RadTagCloudItem Text="Saudi Arabia" Weight="28.6"
NavigateUrl="http://en.wikipedia.org/wiki/Saudi_Arabia" />
 <telerik:RadTagCloudItem Text="Canada" Weight="34.1"
NavigateUrl="http://en.wikipedia.org/wiki/Canada" />
 <telerik:RadTagCloudItem Text="USA" Weight="309.4"
NavigateUrl="http://en.wikipedia.org/wiki/USA" />
 <telerik:RadTagCloudItem Text="Sweden" Weight="9.3"
NavigateUrl="http://en.wikipedia.org/wiki/Sweden" />
 <telerik:RadTagCloudItem Text="Germany" Weight="81.7"
NavigateUrl="http://en.wikipedia.org/wiki/Germany" />
 <telerik:RadTagCloudItem Text="Turkey" Weight="72.5"
NavigateUrl="http://en.wikipedia.org/wiki/Turkey" />
 <telerik:RadTagCloudItem Text="Japan" Weight="127.3"
NavigateUrl="http://en.wikipedia.org/wiki/Japan" />
 <telerik:RadTagCloudItem Text="France" Weight="65.4"
NavigateUrl="http://en.wikipedia.org/wiki/France" />
</Items>

UI for ASP.NET AJAX

673 UI for ASP.NET AJAX

3. Sorting="AlphabeticAsc"

5. The definition of the TagCloud should look like the following:

6. Press F5 to run the Application. When a tag is clicked the browser navigates to the respective Wikipedia
article.

RadTagCloud properties:

 Distribution - type: enumerator - Gets or sets a value indicating how the font-size will be distributed
among the different words (items). Values:

 Linear - The font-size is linearly distributed among the different words based on their weight.

 Logarithmic - The font-size is logarithmically distributed among the different words based on their
weight.

 MinFontSize - type: Unit - Unit values - Gets or sets the font-size to the least important (frequent) item.

 MaxFontSize - type: Unit - Unit values - Gets or sets the font-size to the most important (frequent) item.

 MinimalWeightAllowed - type: Double - Gets or sets the minimal weight a TagCloud item could have. If the
weight of the item is less than this value, the keyword will not appear in the cloud. The default value is
0.0, which means the items will appear in the cloud regardless of their weight.

 MaxNumberOfItems - type: Integer - Gets or sets the maximal number items that can appear in the cloud.
The default value is 0, which means the items will appear in the cloud no matter their count.

 TakeTopWeightedItems - type: Boolean - Should be used with MaxNumberOfItems property. Gets or sets a
bool value indicating whether the [MaxNumberOfItems] visible items will be the ones with the biggest
weight, or the ones that occur first in the DataSource. The default value is false (i.e. the items are the first
that appear in the DataSource).

 RenderItemWeight - type: Boolean - Gets or sets a bool value indicating whether the item weight will be
rendered. It is rendered right next to the item's text.

 Sorting - type: enumerator - Gets or sets a value indicating how the TagCloud items will be sorted. Values:

RadTagCloud Declaration

<telerik:RadTagCloud ID="RadTagCloud1" runat="server" Width="400px" MaxFontSize="50px"
Sorting="AlphabeticAsc">
 <Items>
 <%-- TagCloud items --%>
 </Items>
</telerik:RadTagCloud>

31.4 Important Properties

UI for ASP.NET AJAX

674 UI for ASP.NET AJAX

 NotSorted - The TagCloud items are left as they appear in the Items collection (DataSource).

 AlphabeticAsc - The TagCloud items are sorted alphabetically in ascending order.

 AlphabeticDsc - The TagCloud items are sorted alphabetically in descending order.

 WeightedAsc - The TagCloud items are sorted based on their Weight in ascending order.

 WeightedDsc - The TagCloud items are sorted based on their Weight in descending order.

Server-Side Events:

 ItemDataBound - Adds or removes an event handler method from the ItemDataBound event. The event is
fried right after RadTagCloudItem is databound.

 ItemClick - Adds or removes an event handler method from the ItemClick event. The event is fired after
RadTagCloudItem is clicked.

RadTagCloudItem properties:

 DataItem - type: object - Gets or sets the data object (from the data source) associated with the TagCloud
item.

 NavigateUrl - type: string - Gets or sets the URL of the TagCloud item.

 Text - type: string - Gets or sets the text that is displayed in the TagCloud item.

 Weight - type: double - Gets or sets the weight, that determines how the TagCloud item (tag, keyword)
will be styled. Greater value means, the value of the font size will be closer to the one of the
RadTagCloud's MaxFontSize property.

 RadTagCloud supports binding to all ASP.NET DataSource components, including

 AccessDataSource

 SqlDataSource

 XmlDataSource

 ObjectDataSource

 SiteMapDataSource

 LinqDataSource

To bind to a DataSource component, you need to set the following properties:

1. DataSource - Set to an instance of your data source. This is mandatory when binding the RadTagCloud at
runtime.

2. DataSourceID - Set to the ID of your data source. This is mandatory when binding the RadTagCloud
declaratively.

3. DataMember - If the data source is a DataSet and DataMember is set, then the RadTagCloud is bound to the
DataTable with the respective name in the DataSet. If DataMember is not set, the TagCloud is bound to the
first DataTable in the DataSet.

4. DataTextField - This is the field name from the data source that populates each item's Text property
during binding.

31.5 Databinding

UI for ASP.NET AJAX

675 UI for ASP.NET AJAX

5. DataWeightField - This is the field name from the data source that populates each item's Weight property
during binding.

6. DataNavigateUrlField - This is the field name from the data source that populates each item's NavigateUrl
property during binding.

7. DataBind - Call this method after you have set the aforementioned properties when binding at runtime.
This method is mandatory for binding at runtime.

Here is an example that shows how to bind the tagCloud to an ObjectDataSource. In a similar way the control
can be bound to any of the above mentioned DataSource components.

Default.aspx

<div>
<telerik:RadTagCloud ID="RadTagCloud2" runat="server" Width="400px" MaxFontSize="50px"
 Sorting="AlphabeticAsc" DataSourceID="ObjectDataSource1" DataTextField="Text"
 DataWeightField="Weight" DataNavigateUrlField="NavigateUrl">
</telerik:RadTagCloud>
<asp:ObjectDataSource ID="ObjectDataSource1" runat="server" SelectMethod="GetSiteData"
 TypeName="TagCloudDataItem"></asp:ObjectDataSource>
</div>

TagCloudDataItem.cs

using System.Collections.Generic;
/// <summary>
/// This class is only for demonstration purposes. The class used in this example resides in
the App_Code folder
/// </summary>
public class TagCloudDataItem
{
private string _text;
private string _navigateUrl;
private double _weight;
public string Text
{
 get { return _text; }
 set { _text = value; }
}

public string NavigateUrl
{
 get { return _navigateUrl; }
 set { _navigateUrl = value; }
}
public double Weight
{
 get { return _weight; }
 set { _weight = value; }
}
public TagCloudDataItem(string text, string navigateUrl, double weight)
{
 _text = text;
 _navigateUrl = navigateUrl;
 _weight = weight;

UI for ASP.NET AJAX

676 UI for ASP.NET AJAX

}
public static List<TagCloudDataItem> GetSiteData()
{
 List<TagCloudDataItem> siteData = new List<TagCloudDataItem>();
 siteData.Add(new TagCloudDataItem("Russia", "http://en.wikipedia.org/wiki/Russia", 141.9));
 siteData.Add(new TagCloudDataItem("Nigeria", "http://en.wikipedia.org/wiki/Nigeria",
154.7));
 siteData.Add(new TagCloudDataItem("Saudi Arabia",
"http://en.wikipedia.org/wiki/Saudi_Arabia", 28.6));
 siteData.Add(new TagCloudDataItem("Canada", "http://en.wikipedia.org/wiki/Canada", 34.1));
 siteData.Add(new TagCloudDataItem("USA", "http://en.wikipedia.org/wiki/USA", 309.4));
 siteData.Add(new TagCloudDataItem("Sweden", "http://en.wikipedia.org/wiki/Sweden", 9.3));
 siteData.Add(new TagCloudDataItem("Germany", "http://en.wikipedia.org/wiki/Germany",
81.7));
 siteData.Add(new TagCloudDataItem("Turkey", "http://en.wikipedia.org/wiki/Turkey", 72.5));
 siteData.Add(new TagCloudDataItem("Japan", "http://en.wikipedia.org/wiki/Japan", 127.3));
 siteData.Add(new TagCloudDataItem("France", "http://en.wikipedia.org/wiki/France", 65.4));
 return siteData;
}
}

Example Title

Imports System.Collections.Generic
''' <summary>
''' This class is only for demonstration purposes. The class used in this example resides in
the App_Code folder
''' </summary>
Public Class TagCloudDataItem
 Private _text As String
 Private _navigateUrl As String
 Private _weight As Double
 Public Property Text() As String
 Get
 Return _text
 End Get
 Set
 _text = value
 End Set
 End Property

 Public Property NavigateUrl() As String
 Get
 Return _navigateUrl
 End Get
 Set
 _navigateUrl = value
 End Set
 End Property
 Public Property Weight() As Double
 Get
 Return _weight
 End Get
 Set
 _weight = value

UI for ASP.NET AJAX

677 UI for ASP.NET AJAX

RadTagCloud provides an easy way of organizing the tags, by setting a couple of properties. This way the user
can choose which tags and in what order they will appear in the cloud.

The sorting of the items is controlled by the Sorting property. By setting it to one of the possible values:

 NotSorted (default)

 AlphabeticAsc

 AlphabeticDsc

 WeightedAsc

 and WeightedDsc

the user can choose how the items will be listed in the cloud. The items can be sorted alphabetically or based
on their weight, in ascending or descending order.

Items can be filtered by setting either of the following properties:

 MinimalWeightAllowed- specifies the lower bound for the item Weight. If the Weight of the item is smaller
than this bound, the tag will not appear in the cloud. The default value is 0.0, which means the items will
not be filtered.

 MaxNumberOfItems - specifies the maximal number of items that can (will) be shown in the cloud. If the
TakeTopWeightedItems property is set to true, the items with the highest weight will be taken. The
default value is 0, which means the items will not be filtered.

Note: Please note that, neither the filtering, nor the sorting, modifies the Items collection of the TagCloud,

 End Set
 End Property
 Public Sub New(text As String, navigateUrl As String, weight As Double)
 _text = text
 _navigateUrl = navigateUrl
 _weight = weight
 End Sub
 Public Shared Function GetSiteData() As List(Of TagCloudDataItem)
 Dim siteData As New List(Of TagCloudDataItem)()
 siteData.Add(New TagCloudDataItem("Russia", "http://en.wikipedia.org/wiki/Russia", 141.9))
 siteData.Add(New TagCloudDataItem("Nigeria", "http://en.wikipedia.org/wiki/Nigeria",
154.7))
 siteData.Add(New TagCloudDataItem("Saudi Arabia",
"http://en.wikipedia.org/wiki/Saudi_Arabia", 28.6))
 siteData.Add(New TagCloudDataItem("Canada", "http://en.wikipedia.org/wiki/Canada", 34.1))
 siteData.Add(New TagCloudDataItem("USA", "http://en.wikipedia.org/wiki/USA", 309.4))
 siteData.Add(New TagCloudDataItem("Sweden", "http://en.wikipedia.org/wiki/Sweden", 9.3))
 siteData.Add(New TagCloudDataItem("Germany", "http://en.wikipedia.org/wiki/Germany",
81.7))
 siteData.Add(New TagCloudDataItem("Turkey", "http://en.wikipedia.org/wiki/Turkey", 72.5))
 siteData.Add(New TagCloudDataItem("Japan", "http://en.wikipedia.org/wiki/Japan", 127.3))
 siteData.Add(New TagCloudDataItem("France", "http://en.wikipedia.org/wiki/France", 65.4))
 Return siteData
 End Function
End Class

31.6 Filtering and Sorting of the TagCloud Items

UI for ASP.NET AJAX

678 UI for ASP.NET AJAX

but it only displays the items that satisfy the conditions and values, set by the respective (Sorting,
MinimalWeightAllowed, etc.) properties. This is because the user should be able to return to the previous state
of the Items collection.
To get the items that are filtered use the RadTagCloud.Items.Filter() method, and for the sorted use
RadTagCloud.Items.Sort() method. Both methods return a collection of TagCloud items.

 RadTagCloud provides an easy way to generate tags from external sources. By setting the corresponding
property, you can generate tags from text file, direct input (text) and from a web site. To configure
RadTagCloud to use external sources you need to set one or more of the following properties:

 Text - sets text value for direct input generation source

 TextFile - specifies the location of the file to be used as a generation source

 TextUrl - specifies the URL of the web site to be used as a generation source

If more than one of these properties are set RadTagCloud will combine the sources when generating the tags.

In the example below, you can generate tags from a web site by setting an absolute URL in the input field:

 You can load child items in a tag cloud dynamically through a Web service. The following steps describe how to

31.7 Generating TagCloud from External Sources

ASPX

Enter a valid URL and press the Update button
 to populate the Tag Cloud control
below:

<asp:TextBox ID="urlField" runat="server" TextMode="SingleLine" Width="285px" ToolTip="The
URL must start with http://"></asp:TextBox>
<asp:RegularExpressionValidator ID="urlValidator" runat="server" SetFocusOnError="true"
ErrorMessage="Valid URL should start with http://" ControlToValidate="urlField"
ValidationExpression="http(s)?://([\w-]+\.)+[\w-]+(/[\w- ./?%&=]
*)?"></asp:RegularExpressionValidator>

<asp:Button ID="urlButton" runat="server" Text="Generate" OnClick="urlButton_Click" />

<telerik:RadTagCloud Text="Tag Cloud" ID="RadTagCloud1" runat="server" MaxNumberOfItems="30"
TakeTopWeightedItems="true" PunctuationCharactersValid=".'#$£€ Width="200px">
</telerik:RadTagCloud>

C# Codebehind

protected void urlButton_Click(object sender, EventArgs e)
{
 RadTagCloud1.TextUrl = urlField.Text;
}

VB.NET Codebehind

Protected Sub urlButton_Click(sender As Object, e As EventArgs)
 RadTagCloud1.TextUrl = urlField.Text
End Sub

31.8 Client-Side Data Binding

UI for ASP.NET AJAX

679 UI for ASP.NET AJAX

configure RadTagCloud so that it can use a Web service to supply child items:

1. In the properties pane for the RadTagCloud component, set the WebServiceSettings property to identify
the Web service and service method:

1. Set the Path sub-property to the URL for the Web service.

2. Set the Method sub-property to the name of the method of the Web service that supplies child items.

3. Set the UseHttpGet sub-property to True to change the default HTTP method (POST).

2. When the WebServiceSettings property is set, an empty context request will be initiated automatically.
You can trigger requests to the service by calling the requestItems() client-side method. This method has a
single parameter, which is sent as an argument to the Web service method. Keep in mind that all current
items will be removed before the new ones are populated.
 JavaScript

3. Optionally, set the OnClientItemsRequesting property to a client-side event handler that passes context
information to the Web service. The Web service can use this context information to determine what child
items to return or what properties to set on those child items.

4. Optionally, set the OnClientItemsRequested and OnClientItemsRequestFailed properties to client-side
event handlers that respond when the Web service has successfully loaded child items or when the Web
service has generated an error while trying to service the item request, respectively.

ASPX

<telerik:RadTagCloud ID="RadTagCloud1" runat="server"
OnClientItemsRequesting="itemsRequesting"
 OnClientItemsRequested="itemsRequested"
 OnClientItemsRequestFailed="itemsRequestFailed">
 <WebServiceSettings Path="VehiclesWeightByRating.asmx" Method="GetRadTagCloudItems"
</telerik:RadTagCloud

JavaScript

function clientFunction()
{
 //...
 var context = "some value";
 tagCloud.requestItems(context);
 //...
}

JavaScript

//Fired before the request is sent to the Web Service
function itemsRequesting(sender, args)
{
 //If you want to cancel the request use
 //args.set_cancel(true);
 //The args.get_context()/args.set_context(value) methods get/set the parameter which will
be sent to the Web Service.
 var context = args.get_context();
}

JavaScript

//Fired when the items are successfully loaded.
function itemsRequested(sender, args)

UI for ASP.NET AJAX

680 UI for ASP.NET AJAX

5. To use the integrated WebService support of RadTagCloud, the WebService should have the following
signature:

{
 //...
}

//Fired when the request for the items fails.
function itemsRequestFailed(sender, args)
{
 // Disable the notifing error alert.
 args.set_cancelErrorAlert(true);
 //...
}

C#

[ScriptService]
public class WebServiceName : WebService
{
 [WebMethod]
 public TagCloudDataItem[] GetRadTagCloudItems(Object context)
 {
 List<TagCloudDataItem> result = new List<TagCloudDataItem>();
 //.......
 TagCloudDataItem item = new TagCloudDataItem();
 item.Text = "Item";
 item.Weight = 6.6;
 item.NavigateUrl = "NavigateUrl";
 item.AccessKey = "AccessKey";
 item.TabIndex = 5;
 item.ToolTip = "ToolTip";
 item.Value = "ToolTip";
 result.Add(item);
 //.......
 return result.ToArray();
 }
}

/// <summary>
/// This class is only for demonstration purposes.
/// The class used in this example resides in the App_Code/TagCloud folder
/// </summary>
public class TagCloudDataItem
{
 private string _text;
 private double _weight;
 private string _navigateUrl;
 private string _accessKey;
 private short _tabIndex;
 private string _toolTip;
 private string _value;
 public string Text
 {
 get { return _text; }
 set { _text = value; }

UI for ASP.NET AJAX

681 UI for ASP.NET AJAX

 }
 public double Weight
 {
 get { return _weight; }
 set { _weight = value; }
 }
 public string NavigateUrl
 {
 get { return _navigateUrl; }
 set { _navigateUrl = value; }
 }
 public string AccessKey
 {
 get { return _accessKey; }
 set { _accessKey = value; }
 }
 public short TabIndex
 {
 get { return _tabIndex; }
 set { _tabIndex = value; }
 }
 public string ToolTip
 {
 get { return _toolTip; }
 set { _toolTip = value; }
 }
 public string Value
 {
 get { return _value;}
 set { _value = value; }
 }
 public TagDataItem()
 {
 }
 public TagDataItem(string text, double weight)
 {
 _text = text;
 _weight = weight;
 }
 public TagDataItem(string text, string navigateUrl, double weight)
 {
 _text = text;
 _navigateUrl = navigateUrl;
 _weight = weight;
 }
}

VB.NET

<ScriptService()> _
Public Class WebServiceName
 Inherits WebService
 <WebMethod()> _
 Public Function GetRadTagCloudItems(ByVal context As [Object]) As TagCloudDataItem()

UI for ASP.NET AJAX

682 UI for ASP.NET AJAX

 Dim result As New List(Of TagCloudDataItem)()
 '.......
 Dim item As New TagCloudDataItem()
 item.Text = "Item"
 item.Weight = 6.6
 item.NavigateUrl = "NavigateUrl"
 item.AccessKey = "AccessKey"
 item.TabIndex = 5
 item.ToolTip = "ToolTip"
 item.Value = "ToolTip"
 result.Add(item)
 '.......
 Return result.ToArray()
 End Function
End Class

''' <summary>
''' This class is only for demonstration purposes.
''' The class used in this example resides in the App_Code/TagCloud folder
''' </summary>
Public Class TagCloudDataItem
 Private _text As String
 Private _weight As Double
 Private _navigateUrl As String
 Private _accessKey As String
 Private _tabIndex As Short
 Private _toolTip As String
 Private _value As String

 Public Property Text() As String
 Get
 Return _text
 End Get
 Set(ByVal value As String)
 _text = value
 End Set
 End Property
 Public Property Weight() As Double
 Get
 Return _weight
 End Get
 Set(ByVal value As Double)
 _weight = value
 End Set
 End Property
 Public Property NavigateUrl() As String
 Get
 Return _navigateUrl
 End Get
 Set(ByVal value As String)
 _navigateUrl = value
 End Set
 End Property
 Public Property AccessKey() As String
 Get

UI for ASP.NET AJAX

683 UI for ASP.NET AJAX

You can also use a WCF service to load the items in the RadTagCloud. The following steps describe how to
achieve this:

1. In the properties pane for the RadTagCloud component, set the WebServiceSettings property to identify
the WCF Web service and service method:

1. Set the Path sub-property to the URL for the Web service.

2. Set the Method sub-property to the name of the method of the WCF Web service that supplies child
items

 Return _accessKey
 End Get
 Set(ByVal value As String)
 _accessKey = value
 End Set
 End Property
 Public Property TabIndex() As Short
 Get
 Return _tabIndex
 End Get
 Set(ByVal value As Short)
 _tabIndex = value
 End Set
 End Property
 Public Property ToolTip() As String
 Get
 Return _toolTip
 End Get
 Set(ByVal value As String)
 _toolTip = value
 End Set
 End Property
 Public Property Value() As String
 Get
 Return _value
 End Get
 Set(ByVal value As String)
 _value = value
 End Set
 End Property
 Public Sub New()
 End Sub
 Public Sub New(ByVal text As String, ByVal weight As Double)
 _text = text
 _weight = weight
 End Sub
 Public Sub New(ByVal text As String, ByVal navigateUrl As String, ByVal weight As
Double)
 _text = text
 _navigateUrl = navigateUrl
 _weight = weight
 End Sub
End Class

UI for ASP.NET AJAX

684 UI for ASP.NET AJAX

where the WCF WebService must be in the website, e.g.:

2. When the WebServiceSettings property is set, an empty context request will be initiated automatically.
You can trigger requests to the service by calling the requestItems() client-side method. This method has a
single parameter, which is sent as an argument to the Web service method.

3. Optionally, set the OnClientItemsRequesting property to a client-side event handler that passes context
information to the Web service. The Web service can use this context information to determine what child
items to return or what properties to set on those child items. Note that setting the context requires an
object as shown above.

4. Optionally, set the OnClientItemsRequested and OnClientItemsRequestFailed properties to client-side
event handlers that respond when the Web service has successfully loaded child items or when the Web
service has generated an error while trying to service the item request, respectively.

ASPX

<telerik:RadTagCloud ID="RadTagCloud1" runat="server"
 OnClientItemsRequesting="itemsRequesting"
 OnClientItemsRequested="itemsRequested"
 OnClientItemsRequestFailed="itemsRequestFailed">
 <WebServiceSettings Path="TagCloudWcfService.svc" Method="GetRadTagCloudItems" />
</telerik:RadTagCloud>

ASPX

<%@ ServiceHost Language="C#" Debug="true" Service="TagCloudWcfService"
CodeBehind="~/App_Code/TagCloudWcfService.cs" %>

JavaScript

function clientFunction()
{
 //...
 var context = { minUnitPrice: "500" };
 tagCloud.requestItems(context);
 //...
}

JavaScript

//Fired before the request is sent to the Web Service
function itemsRequesting(sender, args)
{
 //If you want to cancel the request use
 //args.set_cancel(true);
 //The args.get_context()/args.set_context(value) methods get/set the parameter which will
be sent to the Web Service.
 var context = args.get_context();
}

JavaScript

//Fired when the items are successfully loaded.
function itemsRequested(sender, args)
{
 //...
}

UI for ASP.NET AJAX

685 UI for ASP.NET AJAX

5. To use the integrated WCF WebService support of RadTagCloud, the WCF WebService should have the
following signature:

//Fired when the request for the items fails.
function itemsRequestFailed(sender, args)
{
 // Disable the notifing error alert.
 args.set_cancelErrorAlert(true);
 //...
}

C#

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class TagCloudWcfService
{
 [OperationContract]
 public TagDataItem[] GetRadTagCloudItems(IDictionary context)
 {
 string argument = (string)context["minUnitPrice"];
 List<TagCloudDataItem> result = new List<TagCloudDataItem>();
 //.......
 TagCloudDataItem item = new TagCloudDataItem();
 item.Text = "Item";
 item.Weight = 6.6;
 item.NavigateUrl = "NavigateUrl";
 item.AccessKey = "AccessKey";
 item.TabIndex = 5;
 item.ToolTip = "ToolTip";
 item.Value = "ToolTip";
 result.Add(item);
 //.......
 return result.ToArray();
 }
}

VB.NET

<ServiceContract([Namespace] := "")> _
<AspNetCompatibilityRequirements
(RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class TagCloudWcfService
 <OperationContract()> _
 Public Function GetRadTagCloudItems(context As IDictionary) As TagDataItem()
 Dim argument As String = DirectCast(context("minUnitPrice"), String)
 Dim result As New List(Of TagCloudDataItem)()
 '.......
 Dim item As New TagCloudDataItem()
 item.Text = "Item"
 item.Weight = 6.6
 item.NavigateUrl = "NavigateUrl"
 item.AccessKey = "AccessKey"
 item.TabIndex = 5

UI for ASP.NET AJAX

686 UI for ASP.NET AJAX

 item.ToolTip = "ToolTip"
 item.Value = "ToolTip"
 result.Add(item)
 '.......
 Return result.ToArray()
 End Function
End Class

UI for ASP.NET AJAX

687 UI for ASP.NET AJAX

 Explore features of the RadRating control.

 Learn how to configure RadRating.

 Explore the RadRating design time interface including the Smart Tag and major property groups.

 Learn some advance customizations.

 Learn how to control RadRating using its client-side API.

Telerik RadRating is a flexible UI component that allows users to intuitively rate by selecting the number of
items [stars] from a predefined maximum number of items. The user can fully customize the control by
configuring its orientation, rating precision, direction etc.

Key features:

 Horizontal/Vertical Orientation - depending on your needs, RadRating can be displayed horizontally or
vertically on the page by setting the Orientation property.

 Direction - you can configure the RadRating control to reverse its standard direction using its
IsDirectionReversed property. The standard direction is from left to right (or from top to bottom if it has
vertical orientation).

 Maximum Number of Items - by setting a value to the ItemCount property you can easily choose the
maximum number of items the user can rate from.

 Selection Mode - it can be Single or Continuous. In Single mode a single item [star] is marked as selected
and in Continuous mode all items, starting from the first one, are marked as selected.

 Rating Precision- the RadRating control enables the users to select their rating value precisely. By setting
the Precision property to one of the following: Exact, Half, Item - you can rate by selecting: a precise part
of the star [Exact], half a star [Half] or the whole star [Item].

In this section you will become familiar with the RadRating control.

Setting up RadRating

Below are the basic steps needed to install and configure the RadRating control in Visual Studio:

1. Drag ASP ScriptManager or -RadScriptManager control from the VS Toolbox to the page.

2. Drag RadRating from VS Toolbox to the page

3. Set RadRating's common properties

4. Build and view the result in the browser

Designer Interface

Smart tags

The RadRating Smart Tag contains only the common elements of RadControls Smart Tags: the Ajax Resources,

32 RadRating

32.1 Objectives

32.2 Introduction

32.3 Getting Started

UI for ASP.NET AJAX

688 UI for ASP.NET AJAX

Skin selection, and Learning center:

Property window

Configuration

 You can specify the number of the rating items by setting value to ItemCount property

 Changing the voting direction from right to left is easily done by turning IsDirectionReversed property on

 If you want you can change the rating’s precision to Item, Half-item or Exact using the Precision property

 In order to disable the rating and use it to display its current value you need to turn on the ReadOnly
property

 Turning AutoPostBack property on will cause the RadRating control to trigger a postback when the user
rate

Appearance

This group of properties controls appearance on several levels:

 Individual property settings such as BorderColor, BorderWidth, ForeColor, etc. These properties will work
in limited scenarios where the styles or skins are not already at work and where you have a property that
already addresses the visual change you need to make.

 Skins: You can set the Skin to an predefined value to get a coordinated look-and-feel. You can also
customize an existing skin or build your own from scratch. Skins provide a generalized framework

Client-Side Events

We will explore these events in the upcoming section on Client-Side Programming. For now, just know the
events fire on the client when Rating is first loaded, and when the user rates.

Items Collection

From the server you can work with RadRating’s Items collection. It enables the user to individually customize
every single item. By setting RadRatingItem's properties you can easily give diverse look and functionality to
different the items:

 Value - the decimal value associated with the RadRatingItem.

32.4 Server-Side Programming

UI for ASP.NET AJAX

689 UI for ASP.NET AJAX

 ToolTip - the tooltip shown when the mouse pointer is hovered over the item.

 CssClass - the CSS class applied to the item.

 ImageUrl - the URL of the image displayed when item is not rated.

 SelectedImageUrl - the URL of the image displayed when the item is selected (rated).

 HoveredImageUrl - the URL of the image displayed when the item is not rated but the mouse pointer is
over the item.

 HoveredSelectedImageUrl - the URL of the image displayed when the item is selected (rated) and the
mouse pointer is over the item.

 ItemHeight(RadRating) - the height of every item. (The property is set to the RadRating control and not to
the Item.)

 ItemWidth (RadRating) - the width of every item. (The property is set to the RadRating control and not to
the Item.)

Server-side Events

RadRating offers one server-side event Rate. This event can be used in combination with AutoPostBack=true,
this way you can handle on the server when user has rated.

C# Declaring RadRating with custom Items server-side and assigning handler to the Rate event

protected void Page_Load(object sender, EventArgs e)
{
 RadRating RadRating1 = new RadRating();
 RadRating1.SelectionMode = RatingSelectionMode.Single;
 RadRating1.AutoPostBack = true;
 RadRating1.Rate += new EventHandler(RadRating1_Rate);
 RadRatingItem negativeVote = new RadRatingItem();
 negativeVote.Value = -1;
 negativeVote.ImageUrl = "Images/down.png";
 negativeVote.HoveredImageUrl = "Images/downh.png";
 negativeVote.HoveredSelectedImageUrl = "Images/downh.png";
 negativeVote.SelectedImageUrl = "Images/downh.png";
 negativeVote.ToolTip = "No";
 RadRating1.Items.Add(negativeVote);
 RadRatingItem emptyVote = new RadRatingItem();
 emptyVote.Value = 0;
 emptyVote.ImageUrl = "Images/0.png";
 emptyVote.HoveredImageUrl = "Images/0h.png";
 emptyVote.HoveredSelectedImageUrl = "Images/0h.png";
 emptyVote.SelectedImageUrl = "Images/0.png";
 emptyVote.ToolTip = "Reset Current Rating";
 RadRating1.Items.Add(emptyVote);
 RadRatingItem positiveVote = new RadRatingItem();
 positiveVote.Value = 1;

UI for ASP.NET AJAX

690 UI for ASP.NET AJAX

RadRating creates a client side object with ClientID of the menu. You can obtain the reference to this client-
side object like with all the RadControls using the $find() method:

Then you can use the client-side API of the control to achieve various scenarios. The following example

 positiveVote.ImageUrl = "Images/up.png";
 positiveVote.HoveredImageUrl = "Images/uph.png";
 positiveVote.HoveredSelectedImageUrl = "Images/uph.png";
 positiveVote.SelectedImageUrl = "Images/uph.png";
 positiveVote.ToolTip = "Yes";
 RadRating1.Items.Add(positiveVote);
 Page.Form.Controls.Add(RadRating1);
}

VB Declaring RadRating with custom Items server-side and assigning handler to the Rate event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 Dim RadRating1 As New RadRating()
 RadRating1.SelectionMode = RatingSelectionMode.[Single]
 RadRating1.AutoPostBack = True
 AddHandler RadRating1.Rate, AddressOf Me.RadRating1_Rate
 Dim negativeVote As New RadRatingItem()
 negativeVote.Value = -1
 negativeVote.ImageUrl = "Images/down.png"
 negativeVote.HoveredImageUrl = "Images/downh.png"
 negativeVote.HoveredSelectedImageUrl = "Images/downh.png"
 negativeVote.SelectedImageUrl = "Images/downh.png"
 negativeVote.ToolTip = "No"
 RadRating1.Items.Add(negativeVote)
 Dim emptyVote As New RadRatingItem()
 emptyVote.Value = 0
 emptyVote.ImageUrl = "Images/0.png"
 emptyVote.HoveredImageUrl = "Images/0h.png"
 emptyVote.HoveredSelectedImageUrl = "Images/0h.png"
 emptyVote.SelectedImageUrl = "Images/0.png"
 emptyVote.ToolTip = "Reset Current Rating"
 RadRating1.Items.Add(emptyVote)
 Dim positiveVote As New RadRatingItem()
 positiveVote.Value = 1
 positiveVote.ImageUrl = "Images/up.png"
 positiveVote.HoveredImageUrl = "Images/uph.png"
 positiveVote.HoveredSelectedImageUrl = "Images/uph.png"
 positiveVote.SelectedImageUrl = "Images/uph.png"
 positiveVote.ToolTip = "Yes"
 RadRating1.Items.Add(positiveVote)
 Page.Form.Controls.Add(RadRating1)
End Sub

32.5 Client-Side Programming

Getting Reference to the RadRating Client-Side Object

var rating = $find("<%= RadRating1.ClientID %>");

UI for ASP.NET AJAX

691 UI for ASP.NET AJAX

demonstrates how to toggle the RadRating’s readOnly mode from a button on the page:

You can use the Client-side API to attach multiple event handlers to the RadRating’s client-side events or by
providing an event handler to the specific event property.

In this chapter you looked at the RadRating control and saw some of the powerful features it provides. We
explored the client-side and server-side properties of the control. You also learned how to configure the control
server-side or using the Property window and saw how to use the server-side event Rate, as well as how to
configure the control to use custom items programmatically.

Toggle ReadOnly mode example

 <telerik:RadRating ID="RadRating1" runat="server">
 </telerik:RadRating>
 <asp:Button ID="ToggleReadOnly" runat="server" Text="Toggle ReadOnly mode"
OnClientClick="toggleReadOnly(); return false;" />
 <script type="text/javascript">
 function toggleReadOnly()
 {
 var rating = $find("<%= RadRating1.ClientID %>");
 rating.set_readOnly(!rating.get_readOnly());
 }
 </script>

Client-Side Events

 <telerik:RadRating ID="RadRating1" runat="server" OnClientLoad="OnClientLoad">
 </telerik:RadRating>
 <script type="text/javascript">
 function OnClientLoad(sender, args)
 {
 alert("RadRating client-side object is loaded");
 sender.add_rating(function ()
 {
 alert("This code will be executed before the rate");
 });
 var ratedHandler = function ()
 {
 alert("This code will be executed right after the rate");
 }
 sender.add_rated(ratedHandler);
 }
 </script>

32.6 Summary

UI for ASP.NET AJAX

692 UI for ASP.NET AJAX

 Explore the basic structure of the RadRibbonBar control and learn more about the different items that the
control holds.

 Learn how to create a simple RadRibbonBar control.

 Explore some of the client-side methods for working with the items collection and some of the client-side
events.

 Explore the server-side methods for working with the items collection and some server-side events.

 Learn how to use the ItemTemplate of the RadRibbonBar control.

 Explore RibbonBar’s Image Rendering Mode and learn how to add correctly images to Buttons.

The Telerik ASP.NET AJAX RibbonBar control allows you to easily organize the navigation of your application in
a simple, structured way. The control includes enhanced navigation capabilities by elegantly grouping menu
items in a RibbonBarMenu. The RibbonBarMenu along with the different types of buttons like SplitButtons and
ToggleButtons are put into nicely styled groups. Furthermore, the content of these groups can easily be
accessed simply by clicking on their tabs. The smartly designed layout allows each item to have various image
sizes. Thus you can set the different images accordingly depending on its size.

Here is a more detailed description of the RibbonBar items. First we will start with the
RibbonBarApplicationMenu.

In fact the Application Menu is specially designed to be used only within the RadRibbonBar control. With this
new addition, you can enrich the RibbonBar experiences of your pages by adding a list of 'application
commands' to the tab row of the control. These commands are contained in a drop down, which opens when
clicking on the “application menu button”, which resides right in-front of the first 'tab' of the RibbonBar. The
commands have Text, Value and ImageUrl properties.

33 RadRibbonBar

33.1 Objectives

33.2 Introduction

ASPX

<telerik:RadRibbonBar ID="RadRibbonBar1" runat="server" SelectedTabIndex="0">
 <ApplicationMenu ID="RibbonBarApplicationMenu1" runat="server" Text="File" >
 <Items>
 <telerik:RibbonBarApplicationMenuItem Text="New" ImageUrl="icons/file/New.gif" />
 <telerik:RibbonBarApplicationMenuItem Text="Open" ImageUrl="icons/file/Open.gif" />
 <telerik:RibbonBarApplicationMenuItem Text="Save" ImageUrl="icons/file/Save.gif" />
 <telerik:RibbonBarApplicationMenuItem Text="Save As"
ImageUrl="icons/file/SaveAs.gif" />
 <telerik:RibbonBarApplicationMenuItem Text="Close" ImageUrl="icons/file/Close.gif" />
 </Items>
 </ApplicationMenu>
 <Tabs>
 <telerik:RibbonBarTab Text="Tab1">
 <telerik:RibbonBarGroup Text="Group1" Value="1">
 <Items>
 <telerik:RibbonBarButton Text="New" />
 <telerik:RibbonBarButton Text="Edit" />
 </Items>
 </telerik:RibbonBarGroup>
 </telerik:RibbonBarTab>
 </Tabs>

UI for ASP.NET AJAX

693 UI for ASP.NET AJAX

The RibbonBarTab on its hand stays on the same level as the Application Menu with the slight difference that it
should be placed (in the markup) in the RadRibbonBar control.

RadRibbonBar's contextual tabs allows you to group a number of tabs based on some context. Contextual tabs
are contained in a contextual tab group, and, following Microsoft’s Ribbon specification, are always positioned
last (after the normal set of tabs). The contextual tab groups are inactive by default and in order to enable
them you will need to set their Active property to true.

The Quick Access Toolbar is also listed in the title bar of the control. It allows you to choose the most used
RadRibbonBar commands that are currently available and put their shortcuts in the title bar of the control. The
shortcuts function in the same way as the original commands - they fire both their client-side and server-side
events. All types of commands (Button, Split Button, Menu, Toggle Button) are supported.

</telerik:RadRibbonBar>

UI for ASP.NET AJAX

694 UI for ASP.NET AJAX

The items are separated in RibbonBarGroups, which nicely form collections of similar tools.

Here is a list of the items that can be placed in a RibbonBarGroup

 RibbonBarButton - The most used control in every toolbox;

 RibbonBarSplitButton - A combination between menu and button;

 RibbonBarToggleButton - A button with toggle state;

 RibbonBarToggleList - List of ToggleButtons with at most one selected item at any time (similar to
OptionButtonList);

 RibbonBarButtonStrip - A container for buttons with specific appearance;

 RibbonBarMenu - Light-weight menu designed specifically for the needs of RadRibbonBar;

 RibbonBarTemplateItem – For anything else that you would be missing in the rich, but still finite toolbox
of RadRibbonBar.

Using RadRibbonBar

The minimum steps to get the RadRibbonBar up and running in a browser are:

1. In a new ASP.NET Web Application, drag a RadRibbonBar to the default page.

2. Using the Smart tag you can add the RadScriptManager to the page.

33.3 Getting Started

UI for ASP.NET AJAX

695 UI for ASP.NET AJAX

3. Add a RibbonBarTab to the RadRibbonBar control.

4. Add a RibbonBarGroup inside the above mentioned RadRibbonTab.

5. Add any of the different buttons that you may need in the RibbonBarGroup.

Working with the Items collection

RadRibbonBar control supports a number of methods for locating items placed in the control. For example
here are some of them:

 FindButtonByValue – returns a reference to a button given the value of its Value property.

 FindControl – returns a reference to an item given the value of its ID.

 FindGroupByValue - returns a reference to a group given the value of its Value property.

 FindMenuItemByValue - returns a reference to a menu item given the value of its Value property.

 FindTabByValue - returns a reference to a tab given the value of its Value property.

 FindToggleButtonByValue - returns a reference to a toggle button given the value of its Value property.

ASPX

<telerik:RadRibbonBar ID="RadRibbonBar1" runat="server" SelectedTabIndex="0">
 <telerik:RibbonBarTab>
 <telerik:RibbonBarGroup Text="Group1" >
 <Items>
 <telerik:RibbonBarButton Text="New" />
 <telerik:RibbonBarButton Text="Edit"/>
 </Items>
 </telerik:RibbonBarGroup>
 </telerik:RibbonBarTab>
 </telerik:RadRibbonBar>

33.4 Server-Side Programming

UI for ASP.NET AJAX

696 UI for ASP.NET AJAX

Once you have located an item, you can use its properties to change its value, select it, disable it, delete it and
so on.

 ApplicationMenuItemClick - Occurs when an item of the Application Menu is clicked

 ButtonClick - Occurs when a Button is clicked

 ButtonToggle - Occurs when a Toggle Button is toggled

 LauncherClick - Occurs when a Group Launcher is clicked

 MenuItemClick - Occurs when a Menu Item is clicked

 SelectedTabChange - Occurs when a non-selected Tab is clicked

 SplitButtonClick - Occurs when a Split Button or a button inside it is clicked

 ToggleListToggle - Occurs when a Toggle Button in a Toggle List is toggled

Working with the Items collection

RadRibbonBar control supports a number of methods for locating items placed in the control. Here are some
that could be used on the client-side:

 findItemByText – returns the first found item containing the specified text.

 findTabByValue - returns a reference to a tab given the value of its Value property.

 findGroupByValue - returns a reference to a group given the value of its Value property.

 findButtonByValue – returns a reference to a button given the value of its Value property.

 findToggleButtonByValue - returns a reference to a toggle button given the value of its Value property.

 findMenuItemByValue - returns a reference to a menu item given the value of its Value property.

Once you have located an item, you can use its properties to change its value, text, select it, disable it, delete
it etc.

Besides the methods described above there are also various events that could be used for manipulating the
different items and buttons in the RadRibbonBar control. Currently the RadRibbonBar supports the following
events:

 OnClientApplicationMenuItemClicked

 OnClientApplicationMenuItemClicking

 OnClientButtonClicked

 OnClientButtonClicking

 OnClientButtonToggled

 OnClientButtonToggling

 OnClientLauncherClicked

 OnClientLauncherClicking

You can find the complete source for this project at:
\VS Projects\RibbonBar\FindItem

33.5 Client-Side Programming

You can find the complete source for this project at:
\VS Projects\RibbonBar\DisableItemClientSide

UI for ASP.NET AJAX

697 UI for ASP.NET AJAX

 OnClientLoad

 OnClientMenuItemClicked

 OnClientMenuItemClicking

 OnClientSelectedTabChanged

 OnClientSelectedTabChanging

 OnClientSplitButtonClicked

 OnClientSplitButtonClicking

 OnClientToggleListToggled

 OnClientToggleListToggling

Using a RadComboBox control in a Template

How to set width of the RibbonBarButtons?

RadRibbonBar doesn’t support for setting the width in pixels for the RibbonBarButtons or regular
RibbonBarItems, in general (exception is made only for RibbonBarTemplateItem). The approach that we adopt
here is to give the choice of preset Sizes (Small, Medium and Large).

Image Rendering

Since RadRibbonBar is a control that follows very tightly the Microsoft’s “Ribbons” specification and guide-lines
it enforces usage of images for almost all RibbonBarItems.

As there is a notion for Size (RibbonBarItemSize) as property of all items, the need for different images for all
sizes (3 sizes using all together 2 sizes for images – 16x16 for Small and Medium and 32x32 for Large) emerges.

In order to provide more, we have implemented the ability to set images for the disabled state of
RibbonBarItems (in all sizes) as well. Which means the images can be as many as 4 per item. This variety of
choices has its own problems. Setting all the images in properties one-by-one (and storing them in separate
files), proves to be hard. And in some cases even requires additional work to be done – some graphic libraries
are provided by vendors in as “clip” images (small and large image in a small sprite – in 1 file). Still having the
ability to change a single image, without the need of setting (creating) a new clip, proves to be more flexible,
therefore potentially very useful. In order to satisfy both the camps, we decided to implement Image Rendering
Mode, in order to switch between single-image model (called Dual) and clip-image (called Clip).

Image Rendering Mode is implemented on both control and item level. And in both places the property is called
the same ImageRenderingMode and has the same values (binded from the enumeration
RibbonBarImageRenderingModes). The values of the enumeration are as follows:

 Auto (ImageRenderingMode.Auto) - When no mode is explicitly selected (or Auto is), RadRibbonBar tries to
determine the appropriate rendering mode on per-item basis.
We strongly recommend to always explicitly set on of the other two modes – Clip and Dual. Simply because
there are items with very hard to determine mode scenarios. Perhaps the best example of such item is
RibbonBarSplitButton – it has a selected button, but at the same time it has the possibility of setting all
images directly on it. This makes the determining of the Rendering Mode far too complex and many
scenarios cannot be covered automatically. Otherwise the algorithm is basically working as following: if
there is a large image set (ImageUrlLarge or DisabledImageUrlLarge), the mode is Dual. If there are no

33.6 How -to

You can find the complete source for this project at:
\VS Projects\RibbonBar\FindControlInsideTemplate

UI for ASP.NET AJAX

698 UI for ASP.NET AJAX

large images set, but there is a small image set – the mode is Clip. If no images are set – the mode is Dual
again and default RibbonBar images are displayed.

 Clip (ImageRenderingMode.Clip) - In this mode the images are assigned through the ImageUrl and
DisabledImageUrl. ImageUrl image contains both small and large images for the enabled state of the item,
and the DisabledImageUrl contains the images for the disabled state. Images set in the ImageUrlLarge and
DisabledImageUrlLarge are disregarded.

 Dual (ImageRenderingMode.Dual) - When Dual is explicitly set (or resolved to, from Auto), small images are
set through ImageUrl and DisabledImageUrl and large images are set through ImageUrlLarge and
DisabledImageUrlLarge.

By default the selected value is Auto.

As previously mentioned, the ImageRenderingMode can be set on RadRibbonBar and on any RibbonBarItem. This
means that you can set a general rule on RibbonBar level and make exceptions on the level of item. In order to
fully show the power of this approach, you can find an example here:

In this chapter you explored the structure of the RadRibbonBar and saw some of the powerful features it
provides. You learned how to create a RadRibbonBar. Moreover, you’ve learned some of the server-side and
client-side properties and events of the control. You also learned how to manipulate different items of the
RadRibbonBar using both server-side and client-side code. Finally, you’ve learned how to use Templates in
RadRibbonBar. You have built a simple application that used templates and learned how to find controls in a
RadRibbonBar ItemTemplate with a nested control.

You can find the complete source for this project at:
\VS Projects\RibbonBar\ImageRendering

33.7 Summary

UI for ASP.NET AJAX

699 UI for ASP.NET AJAX

 Explore the most common features of our new control – RadOrgChart. Including what the control is
primarily designed for and how to use it.

 Create your first OrgChart using Simple Data Binding

 Learn what rendered fields are and how to use them.

 Get acquainted to templates and get to know how to apply them.

Telerik RadOrgChart for ASP.NET AJAX is a flexible organizational chart control for ASP.NET applications. It is
specially designed to represent a structure of an organization in terms of relationships among personnel and/or
departments. It is a powerful and at the same time easy-to-use control that represents data in the most
intuitive way so that the final user can understand the structure of an organization at a single glance.

RadOrgChart control supports drag-and-drop of Nodes and GroupItems. By setting EnableDragAndDrop
property to true the drag-and-drop functionality is enabled. To further customize this functionality of the
RadOrgchart control you can use the NodeDrop and GroupItemDrop server side events. When a node is dropped
the NodeDrop event is fired; when a GroupItem is dropped the GroupItemDrop event is fired. Note also that in
order to change the OrgChart hierarchy you need to handle the events and update the underlying data sources.
No automatic updates are available.

RadOrgChart supports Expand/Collapse of the RadOrgChart hierarchical tree. The functionality can be enabled
by setting the EnableCollapsing property to true. The controls also supports Expand/Collapse of a Group. To
enable the functionality you need to set the EnableGroupCollapsing property to true. The functionality,
however, is only available when a Node has more than one GroupItem.

RadOrgChart supports various bindings to different data sources which are relatively simple to setup. Here are
some of the supported ones for example:

 Declarative DataSources

 ObjectDataSource

 SQLDataSource

 Entity DataSource

 Linq DataSource

 IEnumerable (Programmatic DataBinding)

Not only does the RadOrgChart control support the above mentioned data bindings, but it also supports
exporting and importing to and from Xml. Its innovative rendering is represented by some clever features like
RenderedFields, Templates (on 3 different levels), Groups, Column Count (a property of OrgChartNode used
to specify the number of columns locally for the group) etc. More detailed description of some these features is
provided in the Control Specifics section below.

34 RadOrgChart

34.1 Objectives

34.2 Introduction

UI for ASP.NET AJAX

700 UI for ASP.NET AJAX

In general the RadOrgChart control is designed to be bound to a Data Source; however, you could also use the
markup to create a simple hierarchy with the RadOrgchart like the following one:

34.3 Getting Started

ASPX

<telerik:RadOrgChart runat="server" ID="RadOrgChart1" GroupColumnCount="3">
 <Nodes>
 <telerik:OrgChartNode>
 <GroupItems>
 <telerik:OrgChartGroupItem Text="John Bravo" />
 <telerik:OrgChartGroupItem Text="Nancy Davolio" />
 <telerik:OrgChartGroupItem Text="Andrew Fuller" />
 <telerik:OrgChartGroupItem Text="Margaret Peacock" />
 <telerik:OrgChartGroupItem Text="Michael Suyama" />
 <telerik:OrgChartGroupItem Text="Janet Leverling" />

UI for ASP.NET AJAX

701 UI for ASP.NET AJAX

Basic structure of the RadOrgChart
RadOrgChart consists of two main objects: items and nodes. Why did we decide to include both? Well, the
reason is very simple, for example: in a real world company it is very likely that a department of people is
represented by a single unit and therefore we needed to structure these units. Hence we decided to include
both nodes and items in order to avoid confusion and nesting of nodes. Below you can see how the actual
object model looks like:

RadOrgChart
 NodesCollection
 Node
 NodesCollection
 GrouItemsCollection
 GroupItem

Rendered Fields
The control offers an API that allows the user to include custom data fields in the default rendering of both
Nodes and Items and hence making the control extremely easy to use and customize. For instance, all of the
desired changes (that could be displaying additional data for each Group Item) could be achieved only by using
a single tag and its properties. Using RenderedFields you can add extra information about every Node or Item in
RadOrgChart. However, if you need to set custom fields on a Node while binding RadOrgChart’s data, you’ll
need to use Group-Enabled Binding.

RenderedFields for Nodes or Items can be set either from the mark up in section RenderedFields or in code
bind. Below are the properties that could be applied:

 DataField - this is the field name from the data source that populates each custom field's text property

 </GroupItems>
 <Nodes>
 <telerik:OrgChartNode ColumnCount="2">
 <GroupItems>
 <telerik:OrgChartGroupItem Text="Don Marko" />
 <telerik:OrgChartGroupItem Text="Sony Gustavo" />
 <telerik:OrgChartGroupItem Text="Boni Tailor" />
 <telerik:OrgChartGroupItem Text="Sara Darkman" />
 </GroupItems>
 <Nodes>
 <telerik:OrgChartNode>
 <GroupItems>
 <telerik:OrgChartGroupItem Text="Hun-ni Ho" />
 <telerik:OrgChartGroupItem Text="Lukas Brezina" />
 <telerik:OrgChartGroupItem Text="Viktor Varga" />
 <telerik:OrgChartGroupItem Text="Marianna Weissova" />
 <telerik:OrgChartGroupItem Text="David Maly" />
 <telerik:OrgChartGroupItem Text="Lin-Sheng Fen" />
 </GroupItems>
 </telerik:OrgChartNode>
 </Nodes>
 </telerik:OrgChartNode>
 </Nodes>
 </telerik:OrgChartNode>
 </Nodes>
 </telerik:RadOrgChart>

34.4 Control Specifics

UI for ASP.NET AJAX

702 UI for ASP.NET AJAX

during binding.

 Label - short description about custom field's text. It is optional.

Data Binding
The RadOrgChart control provides many different kinds of data bindings and at the same time ease and
simplicity in setting up the binding. In order to support a simple, straight-forward binding to a self-referenced
data, without complex relations such as groups, RadOrgChart supports 2 different kinds of binding: first of
which we called Simple Data Binding and Group-Enabled Binding.

RadOrgChart introduces several server-side events for customizing the behavior of the nodes. Here are several
that you may find useful:

 OnGroupItemDataBound - occurs when OrgChartGroupItem is created from a data source and added to its
parent-node's GroupItems Collection;

 OnNodeDataBound - occurs after OrgChartNode is created from a data source;

 GroupItemDrop - occurs when a GroupItemDrop is dragged and drooped on Node different than the Node
which contains the item;

 NodeDrop - occurs when a Node is dragged and dropped on non-child Node.

Add a Simple Template
RadOrgChart is a highly customizable control. Besides the built-in skins that you can apply, you can further
alter the appearance of the nodes by using templates. For example, if the default size of images does not apply
to an already collected number of employee profile pictures, a template can be created without the restraint
of 48x48 pixels (which is the default image size for RadOrgChart).

In order to facilitate that, we implemented a 3-level templating engine giving the power of applying templates
on:

1. OrgChart level (ItemTemplate) - for all items that doesn't have template nor does their node;

2. Node level (ItemTemplate) - for all items within the node which doesn't have template;

3. GroupItem level (simply Template) - for the item, with disregard of node or global
(OrgChart.ItemTemplate) template.

You can find the complete source for this project at:
\VS Projects\OrgChart\RenderedFields

You can find the complete source for this project at:
\VS Projects\OrgChart\SimpleDataBinding

34.5 Server-Side Programming

34.6 How-to

You can find the complete source for this project at:
\VS Projects\OrgChart\Templates

34.7 Summary

UI for ASP.NET AJAX

703 UI for ASP.NET AJAX

In this chapter you explored the purpose and application of the RadOrgChart control. Then you learned how to
build a simple RadOrgChart control using only its markup. A few of the control's details that you explored
included reviewing of the RenderedFields property, the different data bindings that the control supports, and
its basic structure: nodes and items.

UI for ASP.NET AJAX

704 UI for ASP.NET AJAX

 Explore the features of the RadPivotGrid control.

 Explore the RadPivotGrid design time interface, including Smart Tag and Editor.

 Create simple application for binding data using the RadPivotGrid and presents the most common features.

In Q2 2012 SP1 a CTP version of new RadPivotGrid control was released. RadPivotGrid is a data summarization
control where users can break down raw data in any manner they want. A pivot table can help quickly
summarize the reports and highlight the desired information. It displays data in formats such as spreadsheets or
business intelligence applications.

The key features of the RadPivotGrid control are:

 Various field types

 Codeless data-binding using the DataSourceControls in ASP.NET 3.5/4.0

 Data-Binding to various data sources which implement the IEnumerable, IList, IQueryable or
ICustomTypeDescriptor interfaces

 Integrated paging

 Integrated sorting

 Integrated scrolling

 Interoperability with RadAjax and loading indicators - dramatically improves the responsiveness of the
component, simulates Windows-application like behavior, and minimizes the traffic to the server

 Easily customizable skinning mechanism (setting single Skin property of the pivotgrid)

 The expanded state of the items is persisted while navigating through pages.

Here we will describe the main features of the RadPivotGrid and the properties/methods you should know to
enable them.

Paging
RadPivotGrid has built-in pager functionality which is available out of the box and is controlled with the
AllowPaging property. Paging functionality allows the user to fetch and display data by chunks. This behavior
provides better performance and ease of use for the user.

You can control how many items will be fetched and displayed by the PageSize property. This property is used
by RadPivotGrid to split the returned result set of the datasource. RadPivotGrid also supports different pager
styles that you can choose from. For more information you can see this article
(http://www.telerik.com/help/aspnet-ajax/pivotgrid-pager-item.html).

Sorting
To enable pivotgrid sorting functionality in RadPivotGrid you should set the AllowSorting property to True.
After that arrow buttons appear in row headers that are used to select a sort mode. The available options are:

 Ascending

 Descending

35 RadPivotGrid

35.1 Objectives

35.2 Introduction

35.3 Getting Started

UI for ASP.NET AJAX

705 UI for ASP.NET AJAX

RadPivotGrid can sort columns and rows. By default when sorting is enabled, the results are returned in
ascending order. The sorting operation is executed when you click on the field that you want to sort:

Scrolling
You can easily make RadPivotGrid scrollable by setting the ClientSettings -> Scrolling -> AllowVerticalScroll
property to True (By default its value is False.) The Horizontal scroll is enabled by default and will appear
when the total width of the columns exceeds the width of the pivotgrid.

The ClientSettings->Scrolling->ScrollHeight property specifies the height value beyond which scrolling is
turned on. The default value is 300px.

The ClientSettings->Scrolling->SaveScrollPosition property keep the scroll position during postbacks.

Caching
RadPivotGrid’s aggregate calculations and grouping are driven by a powerful data engine which produces a
special pivot view model. The latter feeds the aggregate values into the final output by the control. At times,
however, when the data to be aggregated is quite large, the creation of the pivot view model can get pretty
demanding in terms of CPU resources. In order to avoid the recalculation of large data that does not change
very often, RadPivotGrid allows the caching of the pivot view model into the session state.

Caching is enabled through the EnableCaching property of the control. For large sets of data, using it will
result in considerable speeding up of any operations that require the rebinding of the pivot grid.

However, there are trade-offs that should be carefully considered before opting for the employment of this
feature:

 Memory consumption is very likely to increase significantly if the web page that RadPivotGrid is placed on
experiences intense traffic.

 There is evidently no guarantee the data to be displayed will be up-to-date.

To optimize the RadPivotGrid loading time when scrolling is enabled, you may consider defining
ColumnHeaderCellStyle.Width and RowHeaderCellStyle.Height properties. Thus the pivotgrid will not
execute additional scripts for aligning.

35.4 RadPivotGrid Fields

UI for ASP.NET AJAX

706 UI for ASP.NET AJAX

Pivot Grid Fields represent data source fields and provide specific data to RadPivotGrid. The Fields headers are
used for presenting the different fields that can be moved between control areas using drag-and-drop.

Fields:
To presents specific data in the RadPivotGrid, fields should be created and placed in the appropriated areas.

Here are the available fileds in RadPivotGrid:

 DataFields - The PivotGrid calculates summaries against these fields. Visually they can be placed into the
Data Header Area.

UI for ASP.NET AJAX

707 UI for ASP.NET AJAX

 ColumnFields - The PivotGrid represents row headers from these fields. Visually they can be placed into
the Column Header Area. The ColumnFields control the PivotGrid Columns which can be nested.

UI for ASP.NET AJAX

708 UI for ASP.NET AJAX

 RowFields - The PivotGrid represents column header from these fields. Visually they can be placed into the
Row Header Area.

 Drag and Drop Fileds- different fields can be moved between control areas using drag-and-drop.This

UI for ASP.NET AJAX

709 UI for ASP.NET AJAX

functionality is used through the context menu of the desired field, as soon as you right click on the field.

To show a hidden field you need to use the Fields Window and drag the desired field to its new location:

In this chapter we looked at the RadPivotGrid control and explored its most commonly used features like
paging, sorting, scrolling, caching and drag drop fields.

You learned how to use RadPivotGrid in Design Time and build its layout with ease.

You saw how to implement a sample project on how to manipulate the RadPivotGrid appearance.

35.5 Summary

UI for ASP.NET AJAX

710 UI for ASP.NET AJAX

 Explore the features of the RadSocialShare control

 Understand the use of its properties

 Get familiar with the different types of buttons and the button collections

 Choose the buttons

 Configure the buttons

 Get a simple example running

 Learn how to control the URL and Title of the user’s post

 See the functionality of the third-party buttons

The RadSocialShare is a control that allows you to easily connect your site with popular social networks or let
the user send an e-mail with a link. It creates a centralized bar in which you can choose in which networks your
users will be able to share the content. You are also allowed to make only a handful of the buttons visible
initially and place the rest in a popup with a search box.

Key features:

 Allows sharing of current page or custom url on different social networks

 Allows the developer to preset the title of the post the user will share - you can override the page
title/URL

 Visual designer that allows you to quickly and easily configure all the buttons

 Compact popup with filter capabilities to save space

 Tell a friend dialog for sending e-mails

 Offers styled buttons as well as standard third party buttons

 Easy to configure both styled and standard third party buttons through simple properties

 Easy to customize the visual appearance of styled buttons

 XHTML compliant implementation of third party buttons

 Full multi-trackers Google Analytics support

 Buttons in the RadSocialShare are grouped in two inner tags: the MainButtons and the CompactButtons. In
the first group are the ones that are always visible on the page and the latter are the ones that can be shown in
a RadWindow popup which also provides a search box to filter the available buttons by their name (label). To
trigger the popup you need a CompactButton in the MainButtons collection. If the CompactButtons collection
is left empty, all the Styled Buttons that are not in the MainButtons collection will be automatically populated
in the popup.

The Styled Buttons are the ones that are built-in and provide a consistent look and feel. They utilize the public
API that the different social networks provide and their appearance can easily be customized by the developer.

36 RadSocialShare

36.1 Objectives

36.2 Introduction

36.3 Button Types And Button Collections

UI for ASP.NET AJAX

711 UI for ASP.NET AJAX

There are two specific Styled Buttons available, which send an e-mail either via the user’s machine, or with a
built-in mail form. The third special Styled Button is the Compact Button.

The Standard Buttons are created by external scripts from the respective social network and offer a larger set
of options. There are three sites that offer this functionality - Facebook, Twitter and Google. These buttons can
only be present in the MainButtons collection.

RadSocialShare is ready to be used once you add the buttons you desire. It is as simple as that. When none of
its properties are set explicitly they take their default values and the most important one – the UrlToShare is
taken from the current page’s URL.

Here follows a list with the most important properties and their effect:

 UrlToShare – presets the URL the end user shares in the social network. Uses the current page URL if left
empty

 TitleToShare – presets the title of the user’s post / subject of the mail

 Orientation – controls whether the RadSocialShare main bar will be vertical or horizontal

 Height and Width – control the dimensions of the RadSocialShare

 DialogHeight and DialogWidth – set the size of the popups in which the social network site opens. By
default this is 500px

 DialogLeft and DialogTop – set the position of the browser popup for the social network. By default it
opens centered on the screen

 The buttons also expose some of the main properties which override the global ones – UrlToShare,
TitleToShare, DialogHeight, DialogWidth, DialogLeft, DialogTop

Each Styled Button exposes several properties that allow the developer to customize their appearance:

 CustomIconUrl – an URL to the custom image that should be used

 CustomIconHeight and CustomIconWidth – the custom dimensions you wish the button to have

 LabelText – the text next to the button that can also be clicked

 ToolTip – the tooltip when the button or the label is hovered

The RadSocialShare control offers a visual configurator for the buttons. It is easy to use and with just a few
clicks you can setup the collections as you please. Its main features are outlined below:

36.4 Important Properties

36.5 Using The Configurator

UI for ASP.NET AJAX

712 UI for ASP.NET AJAX

The left column lets you choose which of the Button Collections (Section 36.3) you will modify. By default the
MainButtons collection is selected.

In the middle pane you see a list with the already added buttons and a name corresponding to the type of the
button - the SocialNetType property for the Styled Buttons (Section 36.3) and the name for the Standard
Buttons.

You can add a Styled Button by pressing the first button; the next three are, respectively, the Standard
Buttons (Section 36.3) for Facebook, Twitter and GooglePlusOne. The fifth button adds the RadCompactButton
and the sixth removes the selected RadSocialButton.
You can choose which network the button connects to by directly typing the Standard Buttons's name (or
SocialNetType property for the Styled Button) in the list, or you can select this from the dropdown in the right
pane where you can choose all other options.

If you type in a name that does not exist as a possible value for these properties the input will not be taken and
the button will be reset to its previous state. Note that the names are case-sensitive. By default the
GoogleBookmarks Styled Button is added as it is the first one in the alphabetical order.

UI for ASP.NET AJAX

713 UI for ASP.NET AJAX

If the button type is changed via the properties pane this change is automatically reflected in its name in the
list and vice versa.

You can reorder the buttons in the collection by using the two arrows on the right of the list - each click moves
the selected button one position up or down the list.

All other properties can be controlled via the right pane, which is the standard Properties pane of the Visual
Studio. By default only the SocialNetType and the ToolTip are set for each Styled Button and are rendered in
the markup. For the Facebook Standard Button only the ButtonType property is selected by default and the
Twitter and GooglePlusOne buttons do not need any additional properties initially. You can leave this as-is, or
modify the properties as needed.

When working with the CompactButtons collection you can only choose from the Styled Buttons, as they are
the only ones that are acceptable for it. Therefore, if a name for a Standard Button is entered it will not be
taken by the Configurator.

 The following tutorial demonstrates how a simple RadSocialShare control can be used to share an URL.

1. In a new AJAX-Enabled Web Application add a RadSocialShare control to the default web page (either by
dragging it from the ToolBox, or by simply typing in the markup):

<telerik:RadSocialShare runat="server" ID="RadSocialShare1"></telerik:RadSocialShare>

2. Add a ScriptManager to the beginning of the page. You can do this via the control’s SmartTag as well

3. Set the UrlToShare property to http://www.telerik.com/products/aspnet-ajax.aspx .

4. Set the TitleToShare property to ASP.NET AJAX Controls, .NET Web UI Components | Telerik

5. Add some buttons to the MainButtons collection. You can choose the social network which they target via
the SocialNetType property. For example add a Facebook share button, a Twitter tweet button and a
Blogger button. The last button is the RadCompactButton so that you can pop up a RadWindow with the
rest of the networks:

You can do this via the Configurator from the Smart Tag as well.

6. Press F5 to run the application. You will see a simple bar in the top left corner of the browser. If you click
the last button the popup with the rest shows up.

The end result will be similar to the following image once the CompactButtons are shown:

36.6 First Steps

RadSocialShare declaration

<telerik:RadSocialShare runat="server" ID="RadSocialShare1"
UrlToShare="http://www.telerik.com/products/aspnet-ajax.aspx"
 TitleToShare="ASP.NET AJAX Controls, .NET Web UI Components | Telerik">
 <MainButtons>
 <telerik:RadSocialButton SocialNetType="ShareOnTwitter" />
 <telerik:RadSocialButton SocialNetType="Blogger" />
 <telerik:RadSocialButton SocialNetType="ShareOnFacebook" />
 <telerik:RadCompactButton />
 </MainButtons>
 </telerik:RadSocialShare>

UI for ASP.NET AJAX

714 UI for ASP.NET AJAX

The main visual elements of the RadSocialShare control are:

 MainButtons - these are the buttons that are always visible on the page

 CompactButton - this is an extra button that is not used for sharing, but to show the other available
buttons

 CompactButtons list - these are the buttons that are not initially visible on the page, yet are easily
reachable in a movable popup

 SearchBox - you can start typing a social network's name and the CompactButtons will be filtered
accordingly

 CompactButtons popup - the RadWindow that holds the additional buttons

 Send E-mail button - a button that pops up a form in a RadWindow that allows you to send an e-mail via a
dedicated server

 Mailto button - a button that triggers the system's default mail client to send an e-mail via the user's
machine

 Label Text - the text associated with the button. It can be set explicitly via a property. The
CompactButtons have a predefined value which is used for the Search Box even if you do not set the label
explicitly.

UI for ASP.NET AJAX

715 UI for ASP.NET AJAX

The Smart Tag of RadSocialShare lets you easily select the available buttons, change the skin for your control
or quickly get help. You can display the Smart Tag by right clicking on a RadSocialShare control and choosing
"Show Smart Tag", or by clicking the small rightward-pointing arrow located in the upper right corner of the
control.

UI for ASP.NET AJAX

716 UI for ASP.NET AJAX

RadSocialShare allows you to preselect the URL and the title/mail subject of the user’s post. By default the
UrlToShare property takes the URL from the current page where the control resides, yet you can easily change
this if you wish the post to link to another article, site or section. Simply set the UrlToShare property to the
desired URL – full (i.e. starting with http:// and followed by the full address), or a relative server path (e.g.
~/Shared/PageToShare.aspx). You can also preselect the title of the user’s post for sites that support such a
feature and for the e-mail by setting the TitleToShare property to the desired string. Here follows the logic by
which these properties are determined:

1. UrlToShare is not set - the current page URL and title are used. If the page has no title the URL becomes
the title

2. UrlToShare is set:

1. TitleToShare is not set - the UrlToShare property is used as both URL and Title

2. TitleToShare is set: - the UrlToShare property is used as the URL and the TitleToShare is used as the
title

With the following simple markup you can have the RadSocial share point to an explicit site and predefine the
title (which can, of course, be changed by the end user):

36.7 Controlling the URL and the Title

Setting UrlToShare and TitleToShare properties

<telerik:RadSocialShare ID="RadSocialShare1" runat="server"
 UrlToShare="http://www.telerik.com/products/aspnet-ajax.aspx"
 TitleToShare="Check out the awesome UI components for ASP.NET AJAX from Telerik">
 <MainButtons>
 <telerik:RadSocialButton SocialNetType="Blogger" LabelText="Blogger"

UI for ASP.NET AJAX

717 UI for ASP.NET AJAX

These properties can also be set for each individual button and then they will override the global setting. This
allows you to tailor the posts for a specific network as desired.

 The RadSocialShare control also offers integration with the scripts offered by different social networks.
Instead of using their public API, which is sometimes limited, you can utilize the full functionality their scripts
provide. Currently there are three networks that offer such functionality – Facebook, Twitter and
GooglePlusOne. This may change in the future, however, and it is out of our control.

The buttons generated via these external scripts are called Standard Buttons and can only be present in the
Main Buttons collection, since their rendering is note done by the RadSocialShare.

Some of the functionalities these buttons provide are counters (for all three networks), information popups (for
the Facebook and GooglePlusOne buttons), and extended options to control the way content is posted (e.g.
Facebook offers share, recommend or like posts). Also, instead of a browser popup, these features are often
wrapped in a small tooltip-like popup.

The bonus RadSocialShare offers is that this functionality is wrapped in separate classes, so you can activate
different features by simply choosing the properties we expose from their API. This can be done with a single
line of code or even easier – via the visual Designer.

Here follows a list with some of the most important features and properties that are available:

1. Facebook's buttons – they are activated by adding a <telerik:RadFacebookButton /> tag. The options they
provide are:

1. ButtonType - determines the exact functionality the button will offer:

1. FacebookShare - creates a Share button

2. FacebookRecommend - creates a Recommend button

3. FacebookLike - creates a Like button

4. FacebookSend - creates a Send button. Note that if both a FacebookLike and FacebookSend
buttons are present Facebook automatically combines them in a new, bigger button even if they
are not adjacent.

2. ButtonLayout - determines the layout of the button (whether and where counters are shown, whether
text and and counters are available, etc.)

3. ShowFaces - specifies whether to display profile photos below the button (standard layout only). True
by default.

2. Google Plus One Button - To add this button you need the the <telerik:RadGoogleButton /> tag. Its options
are:

1. ButtonSize – the size of the button:

1. Small

2. Medium

ToolTip="Share on Blogger" />
 <telerik:RadSocialButton SocialNetType="GoogleBookmarks" LabelText="Google
Bookmarks"
 ToolTip="Add a Google Bookmark" />
 <telerik:RadSocialButton SocialNetType="MailTo" ToolTip="Tell a friend" />
 </MainButtons>
 </telerik:RadSocialShare>

36.8 Using Third Party Buttons

UI for ASP.NET AJAX

718 UI for ASP.NET AJAX

3. Standard

4. Tall

2. AnnotationType - the annotation to display next to the button:

1. None - no additional information

2. Bubble - displays only the number of people who have shared this

3. Inline - displays profile pictures and the count of the people who have +1-ed this

3. Twitter Button - to show this button add the <telerik:RadTwitterButton /> tag. Its only option is the

1. CounterMode

1. Horizontal

2. Vertical

3. None

Here follows some simple markup that will allow you to see this functionality in action:

ASPX

 <telerik:RadSocialShare ID="RadSocialShare1" runat="server"
UrlToShare="http://www.telerik.com (http://www.telerik.com/)"
 TitleToShare=".NET UI Controls, Reporting, Visual Studio Tools, Agile Project
Management, Automated Testing, ASP.NET Web CMS by Telerik"
 Width="300">
 <MainButtons>
 <telerik:RadFacebookButton ButtonType="FacebookLike" ButtonLayout="Standard"
Width="300"
 ShowFaces="true" />
 <telerik:RadFacebookButton ButtonType="FacebookSend" />
 <telerik:RadGoogleButton AnnotationType="Bubble" ButtonSize="Medium" />
 <telerik:RadTwitterButton CounterMode="Horizontal" />
 <telerik:RadFacebookButton ButtonType="FacebookShare"
ButtonLayout="ButtonCount" />
 </MainButtons>
 </telerik:RadSocialShare>

UI for ASP.NET AJAX

719 UI for ASP.NET AJAX

 Explore the features of the RadTreeList control.

 Explore the RadTreeList design time interface, including Smart Tag and Properties View.

 Create simple application for binding data using the RadTreeList

 Become familiar with the most common features of RadTreeList

Telerik RadTreeList is a hybrid control combining treeview and grid in one. It gives you the opportunity for
hierarchical representation of the underlying data, like in a treeview. In addition, it can have multiple columns
and provides you with the ability to perform advanced operations like paging, selecting items, etc.

The key features of the RadTreelist control are:

 Various column types

 Codeless data-binding using the DataSourceControls in ASP.NET 2.0/3.5

 Data-Binding to various data sources which implement the IEnumerable, IList or ICustomTypeDescriptor
interfaces

 Integrated paging

 Integrated sorting

 Easily customizable skinning mechanism (setting single Skin property of the treelist)

 The ShowOuterBorders, ShowTreeLines and GridLines properties allow you to quickly change the
appearance

 Interoperability with RadAjax and loading indicators - dramatically improves the responsiveness of the
component, simulates Windows-application like behavior, and minimizes the traffic to the server

 Single and Multi-Row Server-Side and Client-Side Selection

 The selected and the expanded state of the items is persisted while navigating through pages.

Here we will describe the main features of the RadTreeList and the properties/methods you should know to
enable them.

Paging

RadTreeList supports paging functionality which allows the users to view the data, separated in chunks.To
enable this functionality in RadTreeList, you should set the AllowPaging property to true.

The following methods and properties are exposed in the RadTreeList's server-side Pager API:

37 RadTreeList

37.1 Objectives

37.2 Introduction

37.3 Getting-Started

PageSize Determines the maximum items displayed on a single page
PagerStyle-FirstPageToolTipThe text that is displayed when hovering the FirstPage button
PagerStyle-NextPageToolTipThe text that is displayed when hovering the NextPage button
PagerStyle-PrevPageToolTipThe text that is displayed when hovering the PrevPage button
PagerStyle-LastPageToolTip The text that is displayed when hovering the LastPage button
PageButtonCount The number of numeric buttons in the pager

Determines the position of the Pager in RadTreeList

UI for ASP.NET AJAX

720 UI for ASP.NET AJAX

Sorting
RadTreeList offers sorting capabilities that allows the users to conveniently order the items in the desired
direction. To enable this functionality you just have to set AllowSorting property to true and the control will
handle the sorting operations automatically.

There are three sort modes:

- Ascending - orders the items in ascending order

- Descending - orders the items in descending order

- None - the items are ordered in the way they came from the datasource ("Natural" sort)

RadTreeList also supports sorting by multiple datafields - this is the so-called Multi-column sorting. To enable
this mode, set the AllowMultiColumnSorting to true.

Due to the self-referencing nature of the control, the sorting takes effect "per-level". Basically, this means that
each level of the hierarchical structure is sorted independently.

Sorting API:

RadTreeList exposes the following properties and methods:

Position
- Top
- Bottom
- TopAndBottom

Mode

This property sets the appearance of the Pager. The available modes are:

- NextPrev
- NumericPages
- NextPrevAndNumeric
- NextPrevNumericAndAdvanced
- Advanced
- Slider

AllowMultiColumnSortingDetermines whether the multi-column sorting functionality is enabled.

AllowNaturalSort Enables or disables the "natural" sort mode where the items are ordered in the way
they come from the datasource.

UI for ASP.NET AJAX

721 UI for ASP.NET AJAX

Selecting
Telerik RadTreeList has built-in mechanism for items selection. You can select items either on the client or on
the server as per your requirements.

1.Client-Side Selection:

To enable the RadTreeList client-side selection you need to set the
ClientSettings.Selecting.AllowItemSelection to true. This will allow you to select an item on mouse click. As a
result the OnItemClick, OnItemSelecting and OnItemSelected client-side events of the RadTreeList will be
fired so you can perform further actions and handle the item selection in a custom manner.

You can also use the below settings to enable additional modes of the client-side selection:

 ClientSettings.Selecting.AllowToggleSelection - When set to true (the default value is false) enables you
to deselect an item by clicking on one that is already selected.

 ClientSettings.Selecting.UseSelectColumnOnly - When set to true (the default value is false) prevents
users from selecting items on mouse click and forces them to use the TreeListSelectColumn for that
purpose.

With RadTreeList you might want to provide the ability for multi-item selection. This is done by setting its
AllowMultiItemSelection property to true (its default value is false). And to select a few items at a time, one
can use the [Ctrl] and [Shift] keys as in Windows Explorer. Or, in case the AllowToggleSelection property is
true, just click on the desired items to select them.

 2.Server-Side Selection:

There might be scenarios where you need to perform server-side selection for the RadTreeList items. For that
purpose, you can use one of the below approaches:

 Add a TreeListSelectColumn and provide the ability to the user to select the desired items through it

 Use server-side code to programmatically select the treelist items

In both cases, to enable multi-item selection, you need to set the RadTreeList AllowMultiItemSelection
property to true.

 2.1.Using the TreeListSelectColumn:

RadTreeList server-side selection is enabled for the users once you add the TreeListSelectColumn to the
RadTreeList Columns collection. You do not need to set any additional properties. Then checking the checkbox
rendered in the column marks the corresponding item as selected. As a result, postback is performed and the
ItemCommand event is fired with command name RadTreeList.SelectCommandName. To deselect an item,
one should uncheck the checkbox in the select column. Then again postback is performed and the
ItemCommand event is fired with command name RadTreeList.DeselectCommandName.

AllowSort Enables the sorting functionality in RadTreeList.
SortExpressions SortExpressions collection. Contains the expressions that are applied to the control.

Note that when client-side selection is enabled through the AllowItemSelection property, the
TreeListSelectColumn selects the items on the client. If the AllowItemSelection property is false, server-side
selection is performed.

ASPX

<telerik:RadTreeList ID="RadTreeList1" runat="server" DataKeyNames="EmployeeID"
 DataSourceID="SqlDataSource1" ParentDataKeyNames="ReportsTo"
AllowMultiItemSelection="True"
 OnItemCommand="RadTreeList1_ItemCommand">
 <Columns>
 <telerik:TreeListSelectColumn UniqueName="SelectColumn">

UI for ASP.NET AJAX

722 UI for ASP.NET AJAX

2.2.Programmatic items selection:

To select an item/items with server-side code, you can set the particular item/items Selected property to
true:

 </telerik:TreeListSelectColumn>
 </Columns>
</telerik:RadTreeList>
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<$ ConnectionStrings>"
 SelectCommand="SELECT [EmployeeID], [LastName], [FirstName], [Title], [TitleOfCourtesy],
[City], [ReportsTo] FROM [Employees]">
</asp:SqlDataSource>

C#

protected void RadTreeList1_ItemCommand(object sender,
Telerik.Web.UI.TreeListCommandEventArgs e)
{
 if (e.CommandName == RadTreeList.SelectCommandName)
 {
 //item is being selected
 }
 if (e.CommandName == RadTreeList.DeselectCommandName)
 {
 //item is being deselected
 }
}

VB

Protected Sub RadTreeList1_ItemCommand(sender As Object, e As
Telerik.Web.UI.TreeListCommandEventArgs)
 If e.CommandName = RadTreeList.SelectCommandName Then
 'item is being selected
 End If
 If e.CommandName = RadTreeList.DeselectCommandName Then
 'item is being deselected
 End If
End Sub

C#

protected void Page_PreRender(object sender, EventArgs e)
{
 TreeListDataItem item = RadTreeList1.Items[0];
 item.Selected = true;
}

VB

Protected Sub Page_PreRender(sender As Object, e As EventArgs) Handles Me.PreRender
 Dim item As TreeListDataItem = RadTreeList1.Items(0)
 item.Selected = True
End Sub

UI for ASP.NET AJAX

723 UI for ASP.NET AJAX

2.3.Deselecting items programmatically

To deselect an item/items programmatically, set its Selected property to false.

You can also call the ClearSelectedItems() method of the RadTreeList control to deselect all selected items
which are visible on the current page.

3.Recursive Selection

As part of its server-side selection RadTreeList gives you the ability to select items recursively. To enable the
RadTreeList recursive selection, set the AllowRecursiveSelection property to true.

To select an item/items, you can either use the TreeListSelectColumn or set the Selected property of the
item/items to true.

When recursive selection is enabled for the RadTreeList and you select an item, all its nested items are
selected, no matter on which nested level they are on (visible or not). Also, if selecting an item makes all items
on the same level selected, their parent item will be marked as selected as well. The opposite is true as well;
deselecting item from a nested level will invoke deselecting of its parent item in case it is previously selected.

However, for the recursive selection to work and all items' state to be updated properly, a postback is required.
Thus if client-side selection is enabled, it is automatically turned off. Also when items are selected/deselected,
an implicit rebind is invoked for the RadTreeList control.

To deselect all items, you can call the ClearSelectedItems() method of the RadTreeList. As a result all selected
items will be deselected, be they on the current page or not, visible or not.

 Exporting
Since Q3 2011 the Telerik RadTreeList can export your data to PDF after a call to its ExportToPdf() method.
Export to Excel functionality is added since Q1 2012. The corresponding method is ExportToExcel().

 Common properties:

In addition to the export format's specific properties, the ExportSettings group exposes several
common properties:

ExportOnlyData - this is an enumeration with four possible values described below:

 DefaultContent - the whole data and content of the RadTreeList are sent for export, without
removing or replacing anything;

 RemoveControls - removes all controls that implement the IButton, ITextBox, ICheckBox and
IScriptControl interfaces;

 ReplaceControls - tries to replace all controls that implement the IButton, ITextBox, ICheckBox
and IScriptControl interfaces with their text;

 RemoveAll - removes all non-text controls.

IgnorePaging - when you enable it, the RadTreeList will rebind before export in order to fetch all the
data from your datasource.

OpenInNewWindow - by default, the exported file will be handled by the program associated with the
appropriate file type. If you prefer to give the user the option to choose whether to save, open (inline)
or cancel, you can enable this property.

FileName - This is helpful when you want to give a predefined name for your file. Please note that the
file name cannot be longer than 256 symbols. Unicode names are not supported out-of-the-box for
Internet Explorer 6 and 7. Of course you can manually encode the file name and it will be shown

When AllowRecursiveSelection is set to true, this implicitly enables multi-item selection for the RadTreeList.

Note that, if you want to traverse the RadTreeList items in a foreach loop and change their selected state in
the loop while recursive selection is enabled, you need to rebind the RadTreeList first.

UI for ASP.NET AJAX

724 UI for ASP.NET AJAX

properly in the "Save" dialog (OpenInNewWindow="true"):

HttpUtility.UrlEncode("unicode string", System.Text.Encoding.UTF8);

 Pdf Export

 Basics

 Exporting HTML tables

There are a few rules that should be followed when exporting HTML tables to PDF:

Name Description

AllowAdd / AllowCopy / AllowModify / AllowPrinting

Boolean properties that
determines whether the
corresponding action is
allowed for the generated
PDF file

Author / Creator / Keywords / Producer / Subject /
Title

PDF document specific
information

DefaultFontFamily Specifies the default font

PageTitle Sets the page title (appears
on the top of the page)

PaperSize / PageWidth / PageHeight

These properties are related
to the size of the generated
page. You can either use the
PaperSize to supply a
predefined value (A4, Letter,
JIS B5, etc) or define the size
manually using
PageWidth/PageHeight.
Please note that the values
set to the
PageWidth/PageHeight
properties have a higher
priority than the PaperSize

PageBottomMargin / PageTopMargin / PageLeftMargin /
PageRightMargin / PageFooterMargin /
PageHeaderMargin

All the page margins could be
controlled via these settings

RotatePaper
You can switch the
orientation of the page
through this property

UserPassword
Used to set a password and
enable password protection
for the exported file

ASPX

<ExportSettings>
 <Pdf PageTitle="My Page" PaperSize="A4" RotatePaper="true" />
</ExportSettings>

UI for ASP.NET AJAX

725 UI for ASP.NET AJAX

 The table should define <colgroup> and <col> elements

 The number of col elements should be equal to the number of the columns in the table body

 Width in pixels (or another absolute units) should be set to the table

 Appearance and styling

RadTreeList does not export any external styles. This means that your skins will not appear in the
generated file. However, the control offers the following options for customizing the appearance
in the exported file:

 Styles set in the code-behind;

 Styles set in the Pdf category of the ExportSettings;

 Styles set to the TreeList.

The priority follows the above order.

 Setting styles in the code-behind

Different approaches for setting styles in the code-behind could be used depending whether
the RadTreeList will be rebound before export (when IgnorePaging is set to true or when you
rebind manually). The following code can be used in both cases:

XML

<table width="300px">
<colgroup>
 <col />
 <col />
</colgroup>
<tr>
 <td>
 Cell1
 </td>
 <td>
 Cell2
 </td>
</tr>
</table>

C#

bool isExport = false;
protected void Button1_Click(object sender, EventArgs e)
{
 isExport = true;
 RadTreeList1.ExportToPdf();
}

protected void RadTreeList1_ItemCreated(object sender, TreeListItemCreatedEventArgs e)
{
 if (e.Item is TreeListDataItem && isExport)
 e.Item.Style["background-color"] = "#888888";
}

Example Title

UI for ASP.NET AJAX

726 UI for ASP.NET AJAX

 Setting styles in the Pdf category

The TreeList offers the following built-in style descriptors for export to PDF:

 ItemStyle

 AlternatingItemStyle

 HeaderStyle

 ExpandCollapseCellStyle

The first three inherit the TableItemStyle (http://msdn.microsoft.com/en-
us/library/system.web.ui.webcontrols.tableitemstyle.aspx) and style the corresponding
treelist rows. The ExpandCollapseCellStyle styles only the Expand/Collapse cells in the
control. You should set either the expand/collapse text, or the expand/collapse images (not
both). The path for the expand/collapse images should be relative, otherwise they will not be
found and exported on the production server.

 Setting styles declaratively to the TreeList

Private isExport As Boolean = False
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)
 isExport = True
 RadTreeList1.ExportToPdf()
End Sub

Protected Sub RadTreeList1_ItemCreated(ByVal sender As Object, ByVal e As
TreeListItemCreatedEventArgs)
 If TypeOf e.Item Is TreeListDataItem AndAlso isExport Then
 e.Item.Style("background-color") = "#888888"
 End If
End Sub

ASPX

<ExportSettings>
 <Pdf>
 <ItemStyle BackColor="Green" ForeColor="DarkGreen" />
 <AlternatingItemStyle BackColor="WhiteSmoke" ForeColor="Black"
 <HeaderStyle Font-Size="Large" />
 <ExpandCollapseCellStyle ExpandText="(+)" CollapseText="(-)" />
 </Pdf>
</ExportSettings>

ASPX

<telerik:RadTreeList runat="server" ID="RadTreeList1" DataSourceID="SqlDataSource1"
 AllowPaging="true" PageSize="5" DataKeyNames="id" ParentDataKeyNames="parentId"
 AutoGenerateColumns="false">
 <HeaderStyle ForeColor="BlueViolet" />
 <AlternatingItemStyle Font-Size="Small" />
 <Columns>
 <telerik:TreeListBoundColumn DataField="id" UniqueName="id" HeaderText
ReadOnly="true" />
 <telerik:TreeListBoundColumn DataField="Text" UniqueName="Text"
HeaderText="Name">
 <ItemStyle Font-Italic="true" />
 <HeaderStyle BackColor="BlanchedAlmond" />
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="parentid" UniqueName="parentid"
HeaderText="Parent ID"

UI for ASP.NET AJAX

727 UI for ASP.NET AJAX

 Excel Export

 Appearance and styling

RadTreeList does not export any external styles. This means that your skins will not appear in the
generated file. However, the control offers the following options for customizing the appearance in
the exported file:

 Styles set in the Excel category of the ExportSettings;

 Styles set to the TreeList.

The priority follows the above order.

 Setting styles in the Excel category

The TreeList offers the following built-in style descriptors for export to Excel:

 ItemStyle

 AlternatingItemStyle

 HeaderStyle

 ExpandCollapseCellStyle

The first three inherit the TableItemStyle (http://msdn.microsoft.com/en-
us/library/system.web.ui.webcontrols.tableitemstyle.aspx) and style the corresponding treelist
rows. The ExpandCollapseCellStyle styles only the Expand/Collapse cells in the control. You should set
either the expand/collapse text, or the expand/collapse images (not both). The path for the
expand/collapse images should be relative, otherwise they will not be found and exported on the
production server.

 Setting styles

 Another option to export styled treelist is to specify the styles declaratively to the control:

 ReadOnly="true" />
 </Columns>
</telerik:RadTreeList>
<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:TelerikConnectionString %>"
 SelectCommand="SELECT * FROM [Links]"></asp:SqlDataSource>

ASPX

<ExportSettings>
 <Excel>
 <ItemStyle BackColor="Green" ForeColor="DarkGreen" />
 <AlternatingItemStyle BackColor="WhiteSmoke" ForeColor="Black" />
 <HeaderStyle Font-Size="Large" />
 <ExpandCollapseCellStyle ExpandText="(+)" CollapseText="(-)" />
 </Excel>
</ExportSettings>

ASPX

<telerik:RadTreeList runat="server" ID="RadTreeList1" DataSourceID="SqlDataSource1"
 AllowPaging="true" PageSize="5" DataKeyNames="id" ParentDataKeyNames="parentId"
 AutoGenerateColumns="false">

UI for ASP.NET AJAX

728 UI for ASP.NET AJAX

Smart Tag
The RadTreeList Smart Tag provides convenient access to the most common settings for the control. You can
display the Smart Tag by right clicking on the RadTreeList in the design window, and choosing the "Show Smart
Tag" option from its context menu.

 <HeaderStyle ForeColor="BlueViolet" />
 <AlternatingItemStyle Font-Size="Small" />
 <Columns>
 <telerik:TreeListBoundColumn DataField="id" UniqueName="id" HeaderText="ID"
ReadOnly="true" />
 <telerik:TreeListBoundColumn DataField="Text" UniqueName="Text" HeaderText="Name">
 <ItemStyle Font-Italic="true" />
 <HeaderStyle BackColor="BlanchedAlmond" />
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="parentid" UniqueName="parentid"
HeaderText="Parent ID"
 ReadOnly="true" />
 </Columns>
</telerik:RadTreeList>
<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:TelerikConnectionString %>"
 SelectCommand="SELECT * FROM [Links]"></asp:SqlDataSource>

37.4 Using the design-time interface

UI for ASP.NET AJAX

729 UI for ASP.NET AJAX

Configure Data Source
You can easily configure declarative data source by choosing Configure Data Source link from the Smart Tag of
the RadTreeList control:

Open Editor
 Open Editor link displays RadTreeList wizard with Functionality and Appearance sections which lets you
customize/configure the RadTreeList control.

UI for ASP.NET AJAX

730 UI for ASP.NET AJAX

Functionality

The Functionality section allows you to Enable paging and specify the PagerMode and PageSize properties of the
treelist. Also you have the ability to choose the server-side selection type.

UI for ASP.NET AJAX

731 UI for ASP.NET AJAX

Appearance

In this section you can set the appearance options for the RadTreeList.

UI for ASP.NET AJAX

732 UI for ASP.NET AJAX

Choose Columns
 The Choose Columns option allows you to set the way columns are generated and visualized.

UI for ASP.NET AJAX

733 UI for ASP.NET AJAX

RadTreeListColumn Collection Editor will let you display only specific data fields from a given database.
Moreover, you can define custom properties for the columns that present these fields.
You can use the Add button to create different columns in the treelist. The columns will appear in the "Selected
Columns" list. You can use the Up and Down buttons to re-order the columns and the Remove button to remove
a column from this list. From the "Members" list choose the columns, which you want to bind (display).

UI for ASP.NET AJAX

734 UI for ASP.NET AJAX

Ajax Resources
 Add RadAjaxManager... - adds a RadAjaxManager component to your Web page, and displays

the RadAjaxManager Property Builder where you can configure it.

 Replace ScriptManager with RadScriptManager - replaces the default ScriptManager component that is
added for AJAX-enabled Web sites with RadScriptManager.

 Add RadStyleSheetManager - adds a RadStyleSheetManager to your Web page.

Learning Center
Links navigate you directly to RadTreeList examples, help, or code library. You can also search the Telerik web
site for a given string.

One of the main features of RadTreeList are data editing operations, auto-generated and custom edit forms
support, as well as different edit modes. The RadTreeList control supports the below edit modes:

 InPlace - you need to set the EditMode property of your RadTreeList control to InPlace.

 EditForms - you need to set the EditMode property to EditForms.

 PopUp -you need to set the EditMode property to PopUp.

The default EditMode of the treelist is EditForms. To specify which edit mode will your control, you can set its
EditMode property to one of the above values.

The edit form types of the RadTreeList are:

37.5 Data Editing

UI for ASP.NET AJAX

735 UI for ASP.NET AJAX

 AutoGenerated

 Template

 WebUserControl

The default EditFormType of the treelist is AutoGenerated. To specify which edit form type will your control,
you can set its EditFormSettings-EditFormType property to one of the above values. When the EditFormType is
set to AutoGenerated (the default value), RadTreeList will generate the edit form for you.

Automatic data operations
RadTreeList provides an API for inserting new data, updating existing data and deleting data from the specified
data source. You can use these features while writing very little code. The only requirement is binding the
treelist to a declarative data source using the DataSourceID property of the control.

You also need to set the DataKeyNames and ParentDataKeyNames properties of the RadTreeList control so
that the insert, update, and delete operations perform as expected. A live example is available in this online
demo (http://demos.telerik.com/aspnet-
ajax/treelist/examples/dataediting/net2automaticdataediting/defaultcs.aspx).

Manual data editing
This demo (http://demos.telerik.com/aspnet-
ajax/treelist/examples/dataediting/manualdataediting/defaultcs.aspx) shows how to manually update/insert
items to the database. The new values are extracted from the current item using the ExtractValues method.
Note that, when inserting a child item to a parent data item, the foreign key values (the ReportsTo field in our
case, specified by the ParentDataKeyNames array in RadTreeList) are extracted into the Hashtable with
ExtractValues. We need to check if the foreign key is present in the Hashtable and add it to the insert
parameters. When inserting a root item, however, foreign keys are not populated and thus, DbNull should be
explicitly added as a foregn key.

Custom editors
RadTreeList provides a straightforward way to specify a non-default editor for an editable column. The
RadTreeList.CreateColumnEditor event fires whenever a column editor needs to be initialized. The event
argument object of type TreeListCreateColumnEditorEventArgs provides the following properties:

 Column - the TreeListEditableColumn instance for which a column editor will be initialized.

 DefaultEditor - the default ITreeListColumnEditor instance that the column provides.

 CustomEditorInitializer - a delegate that does not accept parameters and returns an instance of type
ITreeListColumnEditor.

You should provide a delegate function to e.CustomEditorInitializer that instantiates and returns an
ITreeListColumnEditor object. A column editor instance usually accepts the target editable column in its
constructor. With the attached sample code, we provide a custom column editor for the ""Notes" column in the
RadTreeList:

The predefined layouts of RadTreeList, which in turn have a predefined HTML rendering, enable you to use the

You can find the complete source for this project at:
\VS Projects\TreeList\RadTreeListCustomEditors

37.6 Appearance and Styling

UI for ASP.NET AJAX

736 UI for ASP.NET AJAX

control's embedded skins to achieve a consistent look of RadTreeList with the other RadControls on the page.

The control also provides properties for quickly changing the RadTreeList appearance:

 ShowOuterBorders

 ShowTreeLines

 GridLines

The difference from the other RadControls is that the radTreeList provides a DetailTemplate which gives you
the freedom to create and design one extra row for each treelist item. This additional detail row allows data-
binding the controls within it to the data fields of its parent. Thus, based on your custom preferences you can
model the look and feel of the detail item in a non-table-dependant format while at the same time filling it
with content related to the parent row.

The following sample illustrates one possible usage of the detail item feature and the other appearance
options of RadTreeList:

1. Create a new project in Visual Studio and add a RadScriptManager on top of the form. You can also add
RadSkinManager and set its Skin property, and a RadFormDecorator control for page styling.

2. Then add the RadTreeList control itself using the below code for it:

3. Wrap the RadTreeList into RadAjaxPanel to omit the page flickering when RadTreeList items are changing
their modes.

4. Set the ShowOuterBorders,ShowTreeLines and GridLines properties:

ASPX

<telerik:RadTreeList runat="server" ID="RadTreeList1" DataSourceID="SqlDataSource1"
 AutoGenerateColumns="false" AllowPaging="true" PageSize="5" DataKeyNames="EmployeeID"
 ParentDataKeyNames="ReportsTo">
<Columns>
 <telerik:TreeListBoundColumn DataField="EmployeeID" HeaderText="EmployeeID"
UniqueName="EmployeeID">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="LastName" HeaderText="Last Name"
UniqueName="LastName">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="FirstName" HeaderText="First Name"
UniqueName="FirstName">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="Title" HeaderText="Title" UniqueName="Title">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="ReportsTo" HeaderText="ReportsTo"
UniqueName="ReportsTo">
 </telerik:TreeListBoundColumn>
</Columns>
</telerik:RadTreeList>
<asp:SqlDataSource ID="SqlDataSource1" ConnectionString="<%$
ConnectionStrings:NorthwindConnectionString %>"
ProviderName="System.Data.SqlClient" SelectCommand="SELECT EmployeeID, LastName, FirstName,
Title, ReportsTo, Notes FROM Employees"
runat="server"></asp:SqlDataSource>

ASPX

<telerik:RadTreeList runat="server" ID="RadTreeList1" DataSourceID="SqlDataSource1"
 AutoGenerateColumns="false" AllowPaging="true" ShowOuterBorders="true"
ShowTreeLines="false" GridLines="None" PageSize="5" DataKeyNames="EmployeeID"
ParentDataKeyNames="ReportsTo">
<Columns>

UI for ASP.NET AJAX

737 UI for ASP.NET AJAX

5. Enable the DetailTemplate feature using the following code:

 <telerik:TreeListBoundColumn DataField="EmployeeID" HeaderText="EmployeeID"
UniqueName="EmployeeID">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="LastName" HeaderText="Last Name"
UniqueName="LastName">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="FirstName" HeaderText="First Name"
UniqueName="FirstName">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="Title" HeaderText="Title" UniqueName="Title">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="ReportsTo" HeaderText="ReportsTo"
UniqueName="ReportsTo">
 </telerik:TreeListBoundColumn>
</Columns>
</telerik:RadTreeList>
<asp:SqlDataSource ID="SqlDataSource1" ConnectionString="<%$
ConnectionStrings:NorthwindConnectionString %>"
ProviderName="System.Data.SqlClient" SelectCommand="SELECT EmployeeID, LastName, FirstName,
Title, ReportsTo, Notes FROM Employees"
runat="server"></asp:SqlDataSource>

ASPX

<telerik:RadTreeList runat="server" ID="RadTreeList1" DataSourceID="SqlDataSource1"
 AutoGenerateColumns="false" AllowPaging="true" ShowOuterBorders="true"
ShowTreeLines="false" GridLines="None" PageSize="5" DataKeyNames="EmployeeID"
ParentDataKeyNames="ReportsTo">
 <DetailTemplate>
 <table>
 <tr>
 <td>
 <img src='<%# Page.ResolveUrl("~/Img/") + Eval("EmployeeID") %>.jpg' alt='<%#
Eval("LastName") + " " + Eval("FirstName") %>' />
 </td>
 <td>
 <asp:Label ID="lblNotes" runat="server" Text='<%# Eval("Notes") %
>'></asp:Label>
 </td>
 </tr>
 </table>
 </DetailTemplate>
<Columns>
 <telerik:TreeListBoundColumn DataField="EmployeeID" HeaderText="EmployeeID"
UniqueName="EmployeeID">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="LastName" HeaderText="Last Name"
UniqueName="LastName">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="FirstName" HeaderText="First Name"
UniqueName="FirstName">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="Title" HeaderText="Title" UniqueName="Title">
 </telerik:TreeListBoundColumn>
 <telerik:TreeListBoundColumn DataField="ReportsTo" HeaderText="ReportsTo"

UI for ASP.NET AJAX

738 UI for ASP.NET AJAX

In this chapter we looked at the RadTreeList control and explored its most commonly used features like paging,
sorting and items selection.

You learned how to use RadTreeList in Design Time, and to build its layout with ease.

You saw how to implement a sample project on how to manipulate the RadTreeList appearance and create a
DetailTemplate.

Often, when constructing a Web page that contains a treelist, there are design limitations regarding the size of
the treelist. In such cases, you may need to enable client-side treelist scrolling so that the treelist can fit it in
the allowed space. You can enable scrolling by setting the ClientSettings.Scrolling.AllowScroll property to
True (By default its value is False).

Using static headers
The most common problem while scrolling is losing the context of the current column. This context is supplied
by the column header. RadTreeList lets you keep the header at the top even when scrolling the treelist. To
enable this feature, set the ClientSettings.Scrolling.UseStaticHeaders property to True (Its default value is
False).

When UseStaticHeaders is True, the header row is still visible, even when the treelist is scrolled:

UniqueName="ReportsTo">
 </telerik:TreeListBoundColumn>
</Columns>
</telerik:RadTreeList>
<asp:SqlDataSource ID="SqlDataSource1" ConnectionString="<%$
ConnectionStrings:NorthwindConnectionString %>"
ProviderName="System.Data.SqlClient" SelectCommand="SELECT EmployeeID, LastName, FirstName,
Title, ReportsTo, Notes FROM Employees"
runat="server"></asp:SqlDataSource>

37.7 Summary

37.8 Scrolling

When scrolling is enabled, the treelist columns should declare HeaderStyle.Width.

UI for ASP.NET AJAX

739 UI for ASP.NET AJAX

When UseStaticHeaders is False, the header scrolls along with the data rows:

Setting height to the scrollable RadTreeList
ClientSettings.Scrolling.ScrollHeight property determines the height of the control's scrollable area when
scrolling is enabled. Depending on whether static headers are enabled or not, the scrollable area includes
different portions of the RadTreeList control:

 If static headers are enabled, the scrollable container includes only the data and footer items. The header
and pager are "static" (not scrolled).

 If static headers are not enabled, the scrollable container includes everything.

Saving scroll position
ClientSettings.Scrolling.SaveScrollPosition property gets or sets a value indicating whether RadTreeList will
keep the scroll position during postbacks.

You can set the scrolling properties as below:

The rich drag and drop API facilitate the developers when implementing copy/move operations between
different RadTreeList and other controls. Among the standard server and client methods and properties you will
also find some useful options like:

 automatic items reorder when using SqlDataSource control.

ASPX

<telerik:RadTreeList ID="RadTreeList1" runat="server">
 <ClientSettings>
 <Scrolling AllowScroll="true" UseStaticHeaders="true" SaveScrollPosition="true"
ScrollHeight="350px" />
 </ClientSettings>
 </telerik:RadTreeList>

37.9 Items Drag and Drop

UI for ASP.NET AJAX

740 UI for ASP.NET AJAX

 option to display a special icon (drop clue) that can be changed (manually) depending on the hovered
container

Configuring RadTreeList for Drag and Drop
To enable this functionality in RadTreeList, you need to:

 set ClientSettings-AllowItemsDragDrop property to true

 enable client selection by setting the ClientSettings-Selecting-AllowItemSelection property to true

Item Reordering
RadTreeList supports automatic item reordering when SqlDataSource is used. In this case, the developer needs
to configure the datasource control to have valid update command (as for automatic operations). When binding
to another type of datasource, the reordering should be handled manually via the client/server API.

Server-Side API
 OnItemDrop - this event occurs when a RadListView item is dragged and dropped over HTML element (if

not cancelled via the client-side API)

 AllowItemsDragDrop - property which is used to enable dragged and dropped over HTML element (if not
cancelled via the client-side API)

Client-Side API
Below you can find a list of all client-side events that can be used when implementing drag and drop
operations. It is important to mention that OnItemDragging and OnItemDropping events can be cancelled by
setting the set_cancel property available in their event arguments.

A convenient feature of the client-side API is that the control automatically detects some of the invalid
reordering operations, such as trying to drag a parent item onto its child or trying to drop an item over itself. In
these cases, the get_canDrop property will return false when invoked in the OnItemDragging event.

 OnItemDragStarted - event is fired when a drag action is started.

 OnItemDragging - event is fired when a TreeListDataItem is being dragged.

 OnItemDropping - event is fired when a TreeListDataItem is being dropped.

 OnItemDropped - event is fired when a TreeListDataItem has been dropped.

Drag and Drop

<ClientSettings AllowItemsDragDrop="true">
 <Selecting AllowItemSelection="True" />

37.10 Load On Demand

UI for ASP.NET AJAX

741 UI for ASP.NET AJAX

Starting with the Q2 2011 release RadTreeList supports a new Load-on-Demand functionality. It allows child
nodes to be added on the fly as parent nodes are expanded. This mode is useful when you need to fill sub nodes
only, when the parent node is expanded or the data source contains thousands of records:

Load On Demand mechanism
To use the Load-On-Demand mechanism:

1. Set AllowLoadOnDemand property to true

2. Get the root items from the datasource and assign them to the RadTreeList.DataSource into
RadTreeList.NeedDataSource event handler:

 3. Handle the RadTreeList.ChildItemsDataBind event and select the subset of items related to the
expanded item. Assign them to the child items datasource property that is available through the second
argument passed to the event handler:

In addition, the RadTreeList control always shows ExpandCollapse button in front of each item. When the item
is expanded and there are no nested items, by default nothing will be displayed below the expanded item, but
the ExpandCollapse button will stay. If you want to hide the expand button in this case you can set
HideExpandCollapseButtonIfNoChildren property to true.

For a live example illustrating this approach you can see TreeList / Load on Demand
(http://demos.telerik.com/aspnet-ajax/treelist/examples/databinding/loadondemand/defaultcs.aspx) demo.

This article will introduce you to the main specifics of RadTreeList columns.

These are the different column types supported by the RadTreeList control which you can use in order to

C#

protected void RadTreeList1_NeedDataSource(object sender, TreeListNeedDataSourceEventArgs e)
{
 RadTreeList1.DataSource = GetDataTable("SELECT * FROM TestItems WHERE ParentID IS NULL",
null);
}

VB.NET

Protected Sub RadTreeList1_NeedDataSource(ByVal sender As Object, ByVal e As
TreeListNeedDataSourceEventArgs)
 RadTreeList1.DataSource = GetDataTable("SELECT * FROM TestItems WHERE ParentID IS NULL",
Nothing)
End Sub

C#

protected void RadTreeList1_ChildItemsDataBind(object sender,
TreeListChildItemsDataBindEventArgs e)
{
 int id = Convert.ToInt32(e.ParentDataKeyValues["ID"].ToString());
 e.ChildItemsDataSource = GetDataTable("SELECT * FROM TestItems WHERE ParentID = " + id);
}

VB.NET

Protected Sub RadTreeList1_ChildItemsDataBind(ByVal sender As Object, ByVal e As
TreeListChildItemsDataBindEventArgs)
 Dim id As Integer = Convert.ToInt32(e.ParentDataKeyValues("ID").ToString())
 e.ChildItemsDataSource = GetDataTable("SELECT * FROM TestItems WHERE ParentID = " & id)
End Sub

37.11 Columns

UI for ASP.NET AJAX

742 UI for ASP.NET AJAX

display your data:

 TreeListBoundColumn - this is a column bound to a field in the data source.

 TreeListButtonColumn - displays a button for each entry in the column.

 TreeListCalculatedColumn - displays a value that is calculated based on one or more fields and an
expression that indicates how to calculate the display value.

 TreeListCheckBoxColumn - it displays a checkbox used to represent a boolean value from the data source.

 TreeListDateTimeColumn - a column type used for displaying and editing DateTime values.

 TreeListEditCommandColumn - enables you to fire an Edit or InitInsert command.

 TreeListHyperLinkColumn - used to display a hyperlink in each cell.

 TreeListImageColumn - displays an image in each column cell.

 TreeListNumericColumn - this column is used for displaying and editing numeric values.

 TreeListSelectColumn - allows client-side or server-side row selection depending on the selecting settings
of the RadTreeList control.

 TreeListTemplateColumn - lets you specify an item template which determines how will each cell of the
column be displayed.

Also, there are different ways to create the RadTreeList columns - to auto-generate them, to declare them in
mark-up or add them dynamically to the Columns collection. More information about treelist column types is
available in this help article (http://www.telerik.com/help/aspnet-ajax/treelist-column-types.html) and
online example (http://demos.telerik.com/aspnet-
ajax/treelist/examples/columns/columntypes/defaultcs.aspx).

Column Resizing
If you want the columns in your treelist to be resizable, set the ClientSettings.Resizing.AllowColumnResize
property to True. When AllowColumnResize is True, users can resize columns by dragging the handle between
column headers. The default value for this property is false.

The resizing feature can be adjusted using the following properties:

 When resizing is enabled (AllowColumnResize is True), you can disable column resizing for individual
columns by setting the column"s Resizable property to False. Setting a column"s Resizable property has no
effect if AllowColumnResize is False.

 To specify whether columns are resized using real-time resizing, set the
ClientSettings.Resizing.EnableRealTimeResize property. The default value for this property is False.

 There are three modes of column resizing:

- NoScroll (this is the default value) - No changes in the width of the TreeList. The resized column changes
width, while the other columns are squeezed at the two ends.

- AllowScroll - Works only when scrolling is turned on. Does not change the width of the treelist, only the
width of its inner table and adds scroll. The resized column changes width while the other columns stay the
same.

- ResizeTreeList - The whole control changes width together with the resized column. Other columns stay
the same width.

 Treelist columns also support minimum / maximum width only for the currently resized column by setting
MinWidth /MaxWidth properties.

Column Reordering
You can allow users to set the order of the treelist columns by dragging and dropping them. Just set the
ClientSettings.Reordering.AllowColumnsReorder property to True. There are two possible modes for column
reordering: client and server-side. If you want to reorder columns on client, set the

UI for ASP.NET AJAX

743 UI for ASP.NET AJAX

ClientSettings.Reordering.ReorderColumnsOnClient property to True.

 When columns are reordered on the client, the ClientSettings.Reordering.ColumnsReorderMethod
property determines what happens when the user drops a column in a new position. When
ColumnsReorderMethod is "Swap" (the default) it switches places of two columns. Columns between them
do not change order. When ColumnsReorderMethod is "Reorder" it places the first (dragged) column at the
place of the second (dropped on) column. Columns between them also change order.

 When columns are reordered on the server, the treelist uses the "swap" method multiple times to re-order
columns.

You can see column resizing and reordering in action in the online demo available here
(http://demos.telerik.com/aspnet-ajax/treelist/examples/client/resizing/defaultcs.aspx).

Aggregates
RadTreeList provides the option to display column aggregates. The calculated total values are displayed in the
footer item at the end of each level. The Aggregate property can be set to any of the following values: "Avg",
"Count", "CountDistinct", "First", "Last", "Max", "Min", "Sum".

You can set the Aggregate property of a bound column to the function that you want to be used in calculating
the aggregated value. Then just set ShowFooter="true" in the RadTreeList declaration to start showing
aggregates. A footer will appear at the bottom of each level in the treelist showing the totals from the items in
this level.

The Column Aggregates feature is demonstrated in the online demo available here
(http://demos.telerik.com/aspnet-ajax/treelist/examples/columns/aggregates/defaultcs.aspx).

UI for ASP.NET AJAX

744 UI for ASP.NET AJAX

 Build a web user control that contains a RadComboBox with a RadTreeView inside. Reuse this control in
several locations.

 Use RadControls within a standard FormView control. Use Eval() and Bind() expressions.

 Build a single grid containing master and detail data with full CRUD functionality.

 Build two related grids, one containing master data and the other containing detail data, both with CRUD
functionality. Make use of template columns containing check boxes.

The material in this chapter may be somewhat heavy going, as you will be building user controls that represent
"pages" that display in response to the clicking on the tab strip. Each "page" handles full CRUD functionality for
Categories, Questions and Exam tables. You will be creating a control that displays all categories in a
RadTreeView that displays within a RadComboBox or on its own. This control will be reused in all three "pages".

We will use the new "CategoriesTree" control together with a standard ASP.NET FormView to add, edit and
delete categories. The screenshot below shows RadTextBox controls within the FormView. Each of the
FormView templates contains RadTextBox controls bound within the markup using Bind() and Eval() binding
expressions.

38 ActiveSkill: Database Maintenance

38.1 Objectives

38.2 Introduction

UI for ASP.NET AJAX

745 UI for ASP.NET AJAX

We will be using the grid heavily to access its powerful editing and viewing capabilities. For example, the
screenshot below shows exams in one grid and questions in another grid. The questions are filtered by the
CategoriesTree user control we will build beforehand. The check boxes in the "Include" column will be checked
if a "ExamQuestions" join table record exists for the exam and question combination. You will be using much of
the built-in "automatic" ability, but also using template columns to get very specific behaviors from your
RadGrid. In fact the "Include" checkboxes are standard checkboxes accessed within code to deliver custom
functionality.

UI for ASP.NET AJAX

746 UI for ASP.NET AJAX

We will need a tree view control bound to all the possible question categories for several of our maintenance
pages. The control will need to display as both a combo so the tree view can drop down and as a stand alone
tree view.

Prepare the Control Layout
1. In the \Controls folder of the ActiveSkillUI project, add a new user control and name the class file

"CategoriesTree.ascx".

2. In the design view for the user control, add a RadComboBox.

 Set the Text property to "Select a Category", DropDownWidth to "300px" and AllowCustomText to
true.

 Open up the CollapseAnimation and ExpandAnimation properties. Set the Type sub-property to be
"None".

 Using the RadComboBox Item Builder dialog (from the Smart Tag Build RadComboBox... option), add
a single item. Set the Text and Value item properties blank.

3. Add a RadTreeView just below the combo box.

 Set the ID property to "StandAloneTreeView".

 Set the DataFieldID property to "ID", DataFieldParentID to "ParentID", DataTextField to "Title"
and ValueField to "ID".

 Using the events () button of the Properties window, locate the NodeClick event. Type in
"CategoriesNodeClick" and hit Enter. This will create a server-side event handler that we will code
later.

 Using the events () button of the Properties window, locate the NodeDataBound event. Type in
"CategoriesNodeDataBound" and hit Enter. This will create a server-side event handler that we will
code later.

4. Select the RadTreeView, right-click and select Copy from the context menu.

38.3 Building the Categories Tree Control

You can find the complete source for this project at:
\VS Projects\ActiveSkill Database Maintenance\Categories Tree

UI for ASP.NET AJAX

747 UI for ASP.NET AJAX

5. From the RadComboBox Smart Tag, select Edit Templates.

6. Right-click in the open template area and add a Div component from the HTML tab of the Toolbox. Right-
click inside the div and select Paste from the context menu.

7. Set the ID property for the new treeview to "DropDownTreeView".

8. Set the OnClientNodeClicking event to "ClientNodeClicking". We will create a client-side event handler for
this in later steps.

9. Set the OnClientNodeClicked event to "ClientNodeClicked". We will create a client-side event handler for
this in later steps.

10. Select End Template Editing from the RadComboBox Smart Tag.

The markup so far should look like the example below:

[ASP.NET] Markup for Combo and Tree View Controls

<%--Drop down treeview--%>
<telerik:RadComboBox ID="cboxCategories" runat="server"
 Text="Select a Category"
 AllowCustomText="True"
 DropDownWidth="300px" Width="300px"
 >
 <Items>
 <telerik:RadComboBoxItem runat="server" />
 </Items>
 <ItemTemplate>

 <div id="divTreeView" >

 <telerik:RadTreeView ID="DropDownTreeView" runat="server" Height="300px"
 DataFieldID="ID"
 DataFieldParentID="ParentID"
 DataTextField="Title"
 DataValueField="ID"
 OnNodeClick="CategoriesNodeClick"
 OnNodeDataBound="CategoriesNodeDataBound"
 OnClientNodeClicked="ClientNodeClicked"
 OnClientNodeClicking="ClientNodeClicking"
 >
 </telerik:RadTreeView>

 </div>

 </ItemTemplate>
 <CollapseAnimation Type="None" />
 <ExpandAnimation Type="None" />

</telerik:RadComboBox>
<%--Stand alone treeview--%>
<telerik:RadTreeView ID="StandAloneTreeView" runat="server"
 DataFieldID="ID"
 DataFieldParentID="ParentID"
 DataTextField="Title"
 DataValueField="ID"
 OnNodeClick="CategoriesNodeClick"
 OnNodeDataBound="CategoriesNodeDataBound"

UI for ASP.NET AJAX

748 UI for ASP.NET AJAX

Add Server Properties
1. Add the Telerik.Web.UI and System.Data namespaces to the "Imports" (VB) or "uses" (C#) section of code.

2. Add properties to the CategoriesTreeView code behind.

These properties keep track of the "DisplayMode" which can be "DropDown" or "TreeView". "IsRootNode" is
a shortcut for consumers of the control to know if the top level node has been selected. "ID" and
"CategoryID" properties are shortcuts to values stored in the selected node and the parent node of the
selected node. These last two properties are used when binding to declarative data sources and in code-
behind.

 >
</telerik:RadTreeView>

[VB] CategoriesTree Properties

#region properties
' "DisplayMode" is used to signal which treeview we're
' showing, the one within the combo or the stand alone
' version.
Public Enum DisplayModes
 DropDown
 TreeViewOnly
End Enum
Const DisplayModeKey As String = "DisplayModeKey"
Public Property DisplayMode() As DisplayModes
 Get
 Return IIf(ViewState(DisplayModeKey) = Nothing,DisplayModes.TreeViewOnly,DirectCast
(ViewState(DisplayModeKey), DisplayModes))
 End Get
 Set
 ViewState(DisplayModeKey) = value
 End Set
End Property
' returns the visible treeview as controlled by
' the DisplayMode
Public ReadOnly Property TreeView() As RadTreeView
 Get
 Return IIf(Me.DisplayMode = DisplayModes.DropDown,TryCast(Me.cboxCategories.Items
(0).FindControl("DropDownTreeView"), RadTreeView),Me.StandAloneTreeView)
 End Get
End Property
' true if the root node of the tree is selected
Public ReadOnly Property IsRootSelected() As Boolean
 Get
 Return TreeView.SelectedValue = "-1"
 End Get
End Property
' Returns the category id stored in the selected
' node's value. Used by data source parameters.
Public Property CategoryID() As String
 Get
 Return TreeView.SelectedValue
 End Get
 Set
 TreeView.SelectedNode.Value = value

UI for ASP.NET AJAX

749 UI for ASP.NET AJAX

 End Set
End Property
' Returns the parent category id stored in the selected
' node's, parent node value. Used by data source parameters.
Public ReadOnly Property ParentCategoryID() As String
 Get
 Return TreeView.SelectedNode.ParentNode.Value
 End Get
End Property
#End Region properties

[C#] CategoriesTree Properties

#region properties
 // "DisplayMode" is used to signal which treeview we're
 // showing, the one within the combo or the stand alone
 // version.
 public enum DisplayModes { DropDown, TreeViewOnly };
 const string DisplayModeKey = "DisplayModeKey";
 public DisplayModes DisplayMode
 {
 get
 {
 return ViewState[DisplayModeKey] == null ?
 DisplayModes.TreeViewOnly : (DisplayModes)ViewState[DisplayModeKey];
 }
 set
 {
 ViewState[DisplayModeKey] = value;
 }
 }
 // returns the visible treeview as controlled by
 // the DisplayMode
 public RadTreeView TreeView
 {
 get
 {
 return this.DisplayMode == DisplayModes.DropDown ?
 this.cboxCategories.Items[0].FindControl("DropDownTreeView") as RadTreeView :
 this.StandAloneTreeView;
 }
 }
 // true if the root node of the tree is selected
 public bool IsRootSelected
 {
 get { return TreeView.SelectedValue == "-1"; }
 }
 // Returns the category id stored in the selected
 // node's value. Used by data source parameters.
 public string CategoryID
 {
 get { return TreeView.SelectedValue; }
 set { TreeView.SelectedNode.Value = value; }
 }
 // Returns the parent category id stored in the selected

UI for ASP.NET AJAX

750 UI for ASP.NET AJAX

 Add Public Methods
Add public methods to the CategoriesTree code-behind.

Consumers of the control will need to add, edit and delete nodes from the active tree view. Also, consumers
will need to load the treeview with data from a data source. Note that a dependency exists between the
columns in the data source fed to this control and the Data properties of the tree view, i.e. where
DataTextField = "Title", DataFieldID = "ID" and DataFieldParentID = "ParentID".

 // node's, parent node value. Used by data source parameters.
 public string ParentCategoryID
 {
 get { return TreeView.SelectedNode.ParentNode.Value; }
 }
#endregion properties

[VB] CategoriesTree Public Methods

#region public methods
' Allow consumers of this control to insert a node.
Public Sub InsertCategoryNode(ByVal title As String, ByVal description As String)
 ' create new node and move selection to new node before expanding parent node
 Dim node As New RadTreeNode(title)
 node.ToolTip = description
 TreeView.SelectedNode.Nodes.Add(node)
 node.Selected = True
 node.ParentNode.ExpandChildNodes()
End Sub
' Allow consumers of this control to delete a node
Public Sub DeleteCategoryNode()
 Dim parentNode As RadTreeNode = TreeView.SelectedNode.ParentNode
 TreeView.SelectedNode.Remove()
 If parentNode <> Nothing Then
 parentNode.Selected = True
 End If
End Sub
' Allow consumers of this control to update a node
Public Sub UpdateCategoryNode(ByVal title As String, ByVal description As String)
 TreeView.SelectedNode.Text = title
 TreeView.SelectedNode.ToolTip = description
End Sub
' Allow consumers of this control to initialize the
' control with data. Note: there is a dependency here
' that the data have column names corresponding to the
' treeview Data properties, i.e. DataTextField, etc.
Public Sub InitialLoad(ByVal dataSource As Object)
 TreeView.DataSource = dataSource
 TreeView.DataBind()
 TreeView.Nodes(0).Selected = True
End Sub
#End Region

[C#] CategoriesTree Public Methods

#region public methods

UI for ASP.NET AJAX

751 UI for ASP.NET AJAX

 Add Server Events
1. Add a single event type to CategoriesTree so that consumers of the control can respond to node clicks. This

event will be triggered in response to the tree view NodeClick event.

// Allow consumers of this control to insert a node.
public void InsertCategoryNode(string title, string description)
{
 // create new node and move selection to new node before expanding parent node
 RadTreeNode node = new RadTreeNode(title);
 node.ToolTip = description;
 TreeView.SelectedNode.Nodes.Add(node);
 node.Selected = true;
 node.ParentNode.ExpandChildNodes();
}
// Allow consumers of this control to delete a node
public void DeleteCategoryNode()
{
 RadTreeNode parentNode = TreeView.SelectedNode.ParentNode;
 TreeView.SelectedNode.Remove();
 if (parentNode != null)
 {
 parentNode.Selected = true;
 }
}
// Allow consumers of this control to update a node
public void UpdateCategoryNode(string title, string description)
{
 TreeView.SelectedNode.Text = title;
 TreeView.SelectedNode.ToolTip = description;
}
// Allow consumers of this control to initialize the
// control with data. Note: there is a dependency here
// that the data have column names corresponding to the
// treeview Data properties, i.e. DataTextField, etc.
public void InitialLoad(object dataSource)
{
 TreeView.DataSource = dataSource;
 TreeView.DataBind();
 TreeView.Nodes[0].Selected = true;
}
#endregion

[VB] Declaring the NodeClick Event

#region events
' Reuse the same event type as the tree view itself
Public Event NodeClick As RadTreeViewEventHandler
#End Region events

[C#] Declaring the NodeClick Event

#region events
 // Reuse the same event type as the tree view itself
 public event RadTreeViewEventHandler NodeClick;
#endregion events

UI for ASP.NET AJAX

752 UI for ASP.NET AJAX

Add Page Events
Add the following event handlers for page and control events.

In the Page_Load event, the appropriate treeview (based on DisplayMode setting) is made visible. The
CategoriesNodeClick event handler (which we earlier hooked up to the NodeClick event of both tree views)
simply fires the CategoriesTreeView Nodeclick even—if the control’s consumer has defined an event handler
for it. In the NodeDataBound event, the tree view ToolTip and Value properties are populated from the
database.

[VB] Handling Page and Control Events

#region page events
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' make the appropriate controls visible based on DisplayMode
 Me.cboxCategories.Visible = Me.DisplayMode = DisplayModes.DropDown
 Me.StandAloneTreeView.Visible = Me.DisplayMode = DisplayModes.TreeViewOnly
End Sub
' allow the consumer of this control to respond to tree view node clicks
Protected Sub CategoriesNodeClick(ByVal sender As Object, ByVal e As RadTreeNodeEventArgs)
 If NodeClick <> Nothing Then
 NodeClick(sender, e)
 End If
End Sub
' Save the category ID in the value of the node. Also store
' the category description in the tooltip.
Protected Sub tvCategories_NodeDataBound(ByVal sender As Object, ByVal e As
RadTreeNodeEventArgs)
 Dim drv As DataRowView = TryCast(e.Node.DataItem, DataRowView)
 e.Node.ToolTip = drv("Description").ToString()
 e.Node.Value = drv("ID").ToString()
 e.Node.Expanded = True
End Sub
#End Region

[C#] Handling Page and Control Events

#region page events
protected void Page_Load(object sender, EventArgs e)
{
 // make the appropriate controls visible based on DisplayMode
 this.cboxCategories.Visible = this.DisplayMode == DisplayModes.DropDown;
 this.StandAloneTreeView.Visible = this.DisplayMode == DisplayModes.TreeViewOnly;
}
// allow the consumer of this control to respond to tree view node clicks
protected void CategoriesNodeClick(object sender, RadTreeNodeEventArgs e)
{
 if (NodeClick != null)
 {
 NodeClick(sender, e);
 }
}
// Save the category ID in the value of the node. Also store
// the category description in the tooltip.
protected void tvCategories_NodeDataBound(object sender, RadTreeNodeEventArgs e)

UI for ASP.NET AJAX

753 UI for ASP.NET AJAX

Handle Client Events
As you may remember from the RadComboBox chapter, controls within the RadComboBox ItemTemplate that
are also AJAX-enabled can use a bit of special handling so that the combo box and the control it wraps work
smoothly as a unit.

1. Add an event handler "onclick="StopPropagation(event)" to "divTreeView". This div wraps the "drop down"
treeview inside the combo box template. The event handler will consume mouse clicks made just outside
the treeview but still inside the combo box drop down area. We will see how this plays out a little later
when we test the control.

2. Add three event handlers. Two are for the treeview client events ClientNodeClicking and
ClientNodeClicked. The last event handler StopPropogation() handles clicks in the combo box that are
outside the treeview area.

{
 DataRowView drv = e.Node.DataItem as DataRowView;
 e.Node.ToolTip = drv["Description"].ToString();
 e.Node.Value = drv["ID"].ToString();
 e.Node.Expanded = true;
}
#endregion

[ASP.NET] Adding the onclick Event Handler

<div id="divTreeView" onclick="StopPropagation(event)">

[JavaScript] Handling TreeView Events

<script type="text/javascript" language="javascript">
 function ClientNodeClicked(sender, args) {
 var combo = $find('<%=cboxCategories.ClientID%>');
 // if a node has been selected in the treeview,
 // get the text for the selected node and populate
 // the combo text with it. Close the drop down
 // and do not pass any more events to the combo
 if (sender.get_selectedNode() != null) {
 var text = sender.get_selectedNode().get_text();
 combo.set_text(text);
 combo.hideDropDown();
 // stop event propagation to the combo box.
 // if the combo had a OnClientSelectedIndexChanging defined
 // it will not run if stopPropatation() is called.
 args.get_domEvent().stopPropagation();
 }
 }
 function ClientNodeClicking(sender, args) {
 var combo = $find('<%=cboxCategories.ClientID%>');
 combo.attachDropDown();
 }
 function StopPropagation(e) {
 e.cancelBubble = true;
 if (e.stopPropagation) {
 e.stopPropagation();
 }
 }
</script>

UI for ASP.NET AJAX

754 UI for ASP.NET AJAX

Databind and Use the Control
To consume the CategoriesTree control we need to add it to the Categories.ascx "page" and bind it to data.

1. In the design view of the Categories.ascx "page", drop an SqlDataSource control from the Data tab of the
Toolbox to the design surface. Use the Properties window to set the following:

 Set the ID property to dsAllCategories.

 Set the ConnectionString property to "ActiveSkillConnectionString" from the drop down list.

 Click the ellipses on the SelectQuery property. This brings up the Command and Parameter Editor
dialog. Enter the select command:

 Click the OK button to close the dialog.

2. Below the data source, drop a CategoriesTree control from the Solution Explorer. Set the DisplayMode to
"TreeViewOnly".

3. In the "Categories.aspx" code behind add the code below to the FirstLoad() method implementation.

[T-SQL] Select All Categories

select ID, ParentID, Title, Description from Category

[VB] Coding the FirstLoad() Method

Public Sub FirstLoad(ByVal args As Dictionary(Of String, String))
 CategoriesTree1.InitialLoad(dsAllCtegories)
End Sub

[C#] Coding the FirstLoad() Method

UI for ASP.NET AJAX

755 UI for ASP.NET AJAX

4. Press Ctl-F5 to run the application. Hover the mouse over some of the treeview entries to see the tool tips
that were added during the data bind event.

5. Stop the application. The print for the treeview entries is a little dim, so let's make it slightly brighter. In
the Solution Explorer, navigate to the \skins\ActiveSkill\TreeView.ActiveSkill.css file and open it. At the top
of the file is a CSS selector for ".RadTreeView_ActiveSkill .rtEdit .rtIn input". Change the color for that
style from "color:#9F9F9F;" to "color:#CFCFCF;". This will brighten the text very slightly:

6. Set the CategoriesTree DisplayMode property to "DropDown" and re-run the application. Try selecting
different items and also click off to the side of the treeview but still within the combo drop down area.

public void FirstLoad(Dictionary<string, string> args)
{
 CategoriesTree1.InitialLoad(dsAllCtegories);
}

UI for ASP.NET AJAX

756 UI for ASP.NET AJAX

7. The downward pointing arrow for the combo box drop down is a little hard to see so we will replace the
graphic to make it a little brighter.

Copy the image "rcbArrowCell.gif" from the folder "\VS Projects\Images\ActiveSkill\Admin Database" to
"\Skins\ActiveSkill\ComboBox" in your ActiveSkillUI project. This will replace the file that already exists
there. Now the combo arrow will look something like this:

The image file that controls the appearance for this button is called rcbArrowCell.gif, and looks like the
image below when you open it in a graphics editing application (e.g. PhotoShop). This kind of image is
generically called a "CSS Sprite" where the image represents all of the states that a screen element can
be. Using CSS sprites enhances performance by allowing all the images for a screen element to be
downloaded at one time. The CSS styles determine which chunk of the image will be displayed. You can
edit these files using PhotoShop or any other image editing utility.

UI for ASP.NET AJAX

757 UI for ASP.NET AJAX

8. While you're testing out the drop-down functionality of this control, now is a good time to look at some of
the decisions made in configuring and coding this control, particularly regarding how the combo box and
tree view working together. Starting with the client-side code:

 In the ClientNodeClicked event we have a call to stopPropagation() for the combo box's DOM element.
This code stops the event from bubbling out from the treeview to the combo box and causing
unintended behaviors.

 In the ClientNodeClicking we call the combo's attachDropDown() method. Without this call, clicking on
the treeview will trigger a postback instead of a callback.

 The click event for the div surrounding the treeview makes a call to StopPropagation(). This ensures
that clicking just outside the treeview (but still inside the combo box) is ignored. You get some odd
behavior if you don't make this call where the concatenated contents of the tree view appear to be
displayed in the combo text:

Now that we have a working CategoriesTree user control we need to provide facilities for maintaining the
category table. We will include Add/Edit/Delete buttons using a RadToolBar and a standard ASP FormView
control to host the templates for adding and editing. Within the FormView templates will be RadTextBoxes for
category titles and descriptions.

When we are finished we should have a working page that furnishes add/edit/delete against the Category
table. The page will look something like the example below. The Add button will be available at all times while
the Edit and Delete buttons will only display when a category below the root is selected. Added categories are
always appended as a child below the selected node.

38.4 Implement Categories Control

UI for ASP.NET AJAX

758 UI for ASP.NET AJAX

Prepare Layout

RoadMap

Before we get going, here's a general road map that shows how the markup for Categories.aspx will be
structured. The screenshot below shows the major parts of the markup commented and with the elements
collapsed so that you can see all portions of the page at one time.

 Data Sources: You have already defined the "dsAllCategories" data source when testing the CategoriesTree
user control. You will add a second data source "dsCategory" to handle the add/update/delete jobs for a
single category record.

 Toolbar with add, edit and delete buttons: The tool bar buttons have values corresponding to constants
on the server for CRUD operations. The images for the button are actually retrieved from the Grid skin
images.

 Treeview with Categories: This is the CategoriesTree control you added and tested on this page.

 Fieldset containing FormView: The standard ASP.NET FormView control has Item, Edit and Insert
templates that can hold RadTextBoxes and allow binding to database values on the server using binding
expressions. The FormView is the area where the admin actually enters a category name, category
description and clicks the "Update" or "Cancel" buttons. The FormView also has an OnItemCreated event
that gives us a chance to retrieve a newly generated category ID to plug back into our treeview.

You can find the complete source for this project at:
\VS Projects\ActiveSkill Database Maintenance\Categories

UI for ASP.NET AJAX

759 UI for ASP.NET AJAX

Adding the DataSource

This set of steps configures the "dsCategory" data. The data source will be used for all CRUD operations on the
Category table. There are a set of stored procedures already defined when you ran the database scripts that
will now be hooked up to each of the CRUD operations for the data source.

1. Drop a new SqlDataSource control on the web page from the ToolBox Data tab and set the ID property to
"dsCategory".

2. Using the Smart Tag, select Configure Data Source...

3. In the "Choose your Data Connection" page of the Data Source Wizard select "ActiveSkillConnectionString
from the drop down list. Click the Next button.

4. In the "Configure the Select" statement page, select the "select a custom SQL statement or stored
procedure" radio button option. Click the Next button.

5. In the "Define Custom Statements or Stored Procedures" page:

 On the Select tab, select the "Stored Procedure" radio button. From the drop down list select
"Skill_Category_SelectWhere".

UI for ASP.NET AJAX

760 UI for ASP.NET AJAX

 On the Update tab, select the "Stored Procedure" radio button. From the drop down list select
"Skill_Category_Update".

 On the Insert tab, select the "Stored Procedure" radio button. From the drop down list select
"Skill_Category_Insert".

 On the Delete tab, select the "Stored Procedure" radio button. From the drop down list select
"Skill_Category_Delete".

 Click the Next button.

6. Click the Next button.

7. Click the Finish button to close the dialog.

8. In the Properties window for the SqlDataSource, click the DeleteQuery property ellipses. This will again
display the Command and Parameter editor for the delete query.

9. In the "Parameter source:" drop down list, select "Control".

 Set the ControlID property to "CategoriesTree1".

 Set the Name property to "ID".

 Set the PropertyName to "CategoryID"

 Set the Type to "Int32".

UI for ASP.NET AJAX

761 UI for ASP.NET AJAX

10. Click the OK button to close the dialog.

11. In the Properties window for the SqlDataSource, click the InsertQuery property ellipses. In this case you
will have to set properties for more than one parameter and these parameters will be populated from
code. Configure each parameter as follows:

 ID: Leave the "Parameter Source" as "None", Direction to "InputOutput", Name to "ID", Type to "Int32".

 ParentID: Leave the "Parameter Source" as "None", Direction to "Input", Name to "ParentID", Type to
"Int32".

 Title: Leave the "Parameter Source" as "None", Direction to "Input", Name to "Title", Type to "String".

 Description: Leave the "Parameter Source" as "None", Direction to "Input", Name to "Description",
Type to "String".

UI for ASP.NET AJAX

762 UI for ASP.NET AJAX

12. Click the OK button to close the dialog.

13. In the Properties window for the SqlDataSource, click the UpdateQuery property ellipses. Configure the
parameters as follows:

 ID: Set the "Parameter Source" as "Control", ControlID as "CategoriesTree1", Property Name as
"CategoryID", Direction to "Input", Name to "ID", Type to "Int32".

 ParentID:Set the "Parameter Source" as "Control", ControlID as "CategoriesTree1", Property Name as
"ParentCategoryID", Direction to "Input", Name to "ParentID", Type to "Int32".

 Title: Leave the "Parameter Source" as "None", Direction to "Input", Name to "Title", Type to "String".

 Description: Leave the "Parameter Source" as "None", Direction to "Input", Name to "Description",
Type to "String".

UI for ASP.NET AJAX

763 UI for ASP.NET AJAX

14. Click the OK button to close the dialog. At this point the markup for "dsCategory" is:

[ASP.NET] The Markup for dsCategory

<asp:SqlDataSource ID="dsCategory" runat="server" ConnectionString="<%$
ConnectionStrings:ActiveSkillConnectionString %>"
 DeleteCommand="Skill_Category_Delete" InsertCommand="Skill_Category_Insert"
UpdateCommand="Skill_Category_Update"
 DeleteCommandType="StoredProcedure" InsertCommandType="StoredProcedure"
UpdateCommandType="StoredProcedure"
 CancelSelectOnNullParameter="False" OnInserted="dsCategory_Inserted"
 SelectCommand="Skill_Category_SelectWhere" SelectCommandType="StoredProcedure">
 <SelectParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 </SelectParameters>
 <DeleteParameters>
 <asp:ControlParameter ControlID="CategoriesTree1" Name="ID" PropertyName="CategoryID"
 Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:ControlParameter ControlID="CategoriesTree1" Name="ID"
 PropertyName="CategoryID" Type="Int32" />
 <asp:ControlParameter ControlID="CategoriesTree1" Name="ParentID"
 PropertyName="ParentCategoryID" Type="Int32" />
 <asp:Parameter Name="Title" Type="String" />

UI for ASP.NET AJAX

764 UI for ASP.NET AJAX

Adding the RadToolBar

1. Add a RadToolBar to the page and set the ID to "tbarCategories". Using the Smart Tag Build RadToolBar...
option, add three tool bar buttons.

 Set the Text property to "Add Category", ImageUrl to "../Skins/ActiveSkill/Grid/AddRecord.gif" and
Enabled to false.

 Set the Text property to "EditCategory", ImageUrl to "../Skins/ActiveSkill/Grid/Update.gif" and
Enabled to false.

 Set the Text property to "Delete Category", ImageUrl to "../Skins/ActiveSkill/Grid/Delete.gif" and
Enabled to false.

2. You will need to finish the definition of the tool bar within the markup because it requires applying a style
and a few binding expressions. First add Style="float: none" to the RadToolBar element. Then add binding
expressions to the Value properties of all three buttons:

 Value='<%#INSERT_CATEGORY%>'

 Value='<%#EDIT_CATEGORY%>'

 Value='<%#DELETE_CATEGORY%>'

The finished tag should look like the markup below. Note that we will need to call Page.DataBind() for
the binding expressions to be evaluated:

 <asp:Parameter Name="Description" Type="String" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Direction="InputOutput" Name="ID" Type="Int32" />
 <asp:Parameter Name="ParentID" Type="Int32" />
 <asp:Parameter Name="Title" Type="String" />
 <asp:Parameter Name="Description" Type="String" />
 </InsertParameters>
</asp:SqlDataSource>

You can mix and match which parameters are set up declaratively and which are handled at runtime. For
example, the SelectQuery of this data source runs automatically before a CategoryID is available from the
tree so it was easier here to handle programmatically in the node click.

Issues with data source controls declared within updating areas via AJAX can be difficult to debug. If
necessary, you can get better control and more complete information by setting those parameters to "None"
and populating them in code. Make sure the DataSourceID property is empty and instead set the DataSource
property in code. Just before you call DataBind() you can review the parameters in the debugger and get a
good idea of what is going on.

When in doubt, handle it yourself in code.

[ASP.NET] Defining the RadToolBar

<%--toolbar with add, edit, delete buttons--%>
<telerik:RadToolBar ID="tbarCategories" runat="server"
 OnButtonClick="tbarCategories_ButtonClick"
 Style="float: none" >
 <items>
 <telerik:RadToolBarButton runat="server" Text="Add Category"
 Value='<%#INSERT_CATEGORY%>'
 ImageUrl="../Skins/ActiveSkill/Grid/AddRecord.gif" Enabled="False">
 </telerik:RadToolBarButton>
 <telerik:RadToolBarButton runat="server" Text="Edit Category"

UI for ASP.NET AJAX

765 UI for ASP.NET AJAX

The CategoriesTree

After the RadToolBar should come the CategoriesTree control you added when testing the control. Verify that
the DisplayMode is set to TreeViewOnly. Surround the CategoriesTree control with a div. The div ID should be
"CategoriesTreeDiv" and have a style of "float: left". The style keeps the FormView (which comes next) from
being bumped off onto the next line.

Defining the FormView

1. After the CategoriesTree, add a <fieldset> from the HTML tab of the toolbox. Double-click on the legend
area in the upper left of the fieldset and type "Category".

2. Inside the fieldset add a FormView from the Data tab of the ToolBox and set the ID to "fvCategories".

3. From the FormView Smart Tag set the Choose Data Source drop down to "dsCategory".

4. Also from the Smart Tag click the Edit Templates... link.

5. In the ItemTemplate add two RadTextBox controls and name them "tbTitle" and "tbDescription". Also set
their Label properties to "Title:" and "Description" respectively. Select both of these text boxes (you can
select one and then with the control key held down, select the second), and from Visual Studio Edit menu
select Copy.

6. In the EditItemTemplate, use the Visual Studio Edit menu to paste the text boxes.

7. Add a Div control from the HTML tab of the ToolBox just below the two text boxes.

8. Within the Div add two ImageButton controls from the Standard tab of the ToolBox. Set their ID properties
to "btnEditCancel" and "btnEditSave" respectively.

 Set their ImageUrl properties to "../Images/cancel_btn_2.png" and "../Images/update_btn_2.png"
respectively.

 Double-click both the cancel and update buttons to create OnClick event handlers for each.

 Copy the two text boxes and the div holding the two buttons onto the clipboard.

9. Using the FormView Smart Tag, navigate to the InsertItemTemplate and paste the contents of the
clipboard, i.e. the two text boxes, the div and the two buttons.

10. Navigate back to the ItemTemplate and set the two RadTextBox ReadOnly properties to true and the
Enabled properties to false.

11. Go to the source for the page to work with the FormView markup and add binding expressions.

 Value='<%#EDIT_CATEGORY%>'
 ImageUrl="../Skins/ActiveSkill/Grid/Update.gif" Enabled="False">
 </telerik:RadToolBarButton>
 <telerik:RadToolBarButton runat="server" Text="Delete Category"
 Value='<%#DELETE_CATEGORY%>'
 ImageUrl="../Skins/ActiveSkill/Grid/Delete.gif" Enabled="False">
 </telerik:RadToolBarButton>
 </items>
</telerik:RadToolBar>

[ASP.NET] The CategoriesTree

<%--treeview with categories--%>
<div id="CategoriesTreeDiv" style="float: left;">
 <uc1:CategoriesTree ID="CategoriesTree1" runat="server"
 DisplayMode="TreeViewOnly" />
</div>

You can skip past the steps explaining how to work in the FormView here if you just want to paste the
completed ASP.NET markup title "Defining the Formview" below.

UI for ASP.NET AJAX

766 UI for ASP.NET AJAX

 In the ItemTemplate, set the Text properties for the two RadTextBox controls to '<%# Eval("Title") %
>' and '<%# Eval("Description") %>' respectively. This will display the Category table Title and
Description columns when the FormView is in ReadOnly mode.

 In the EditItemTemplate set the Text properties for the two RadTextBox controls to '<%# Bind("Title")
%>' and '<%# Bind("Description") %>' respectively. This will allow editing of the Category table Title
and Description columns when the FormView is in Edit mode.

 Repeat the step above and add binding expressions for the InsertItemTemplate.

The completed markup should look like the example below:

[ASP.NET] Defining the FormView

UI for ASP.NET AJAX

767 UI for ASP.NET AJAX

<%--fieldset containing formview with editable area and buttons--%>
<fieldset>
 <legend>Category</legend>
 <asp:FormView ID="fvCategories" runat="server"
 DataSourceID="dsCategory"
 OnItemCreated="fvCategories_ItemCreated">
 <ItemTemplate>
 <div>
 <telerik:RadTextBox ID="tbTitle" runat="server"
 Label="Title:"
 ReadOnly="true"
 Text='<%# Eval("Title") %>'
 Enabled="False">
 </telerik:RadTextBox>
 </div>
 <div>
 <telerik:RadTextBox ID="tbDescription" runat="server"
 Label="Description:"
 ReadOnly="true"
 Text='<%# Eval("Description") %>'
 Enabled="False">
 </telerik:RadTextBox>
 </div>
 </ItemTemplate>
 <EditItemTemplate>
 <div>
 <telerik:RadTextBox ID="tbTitle" runat="server"
 Label="Title:"
 Text='<%# Bind("Title") %>'>
 </telerik:RadTextBox>
 </div>
 <div>
 <telerik:RadTextBox ID="tbDescription" runat="server"
 Label="Description:"
 Text='<%# Bind("Description") %>'>
 </telerik:RadTextBox>
 </div>
 <div id="divButtons">
 <asp:ImageButton ID="btnEditCancel" runat="server"
 ImageUrl="../Images/cancel_btn_2.png"
 OnClick="btnCancel_Click" />
 <asp:ImageButton ID="btnEditSave" runat="server"
 ImageUrl="../Images/update_btn_2.png"
 OnClick="btnSaveEdit_Click" Height="23px" Width="91px" />
 </div>
 </EditItemTemplate>
 <InsertItemTemplate>
 <div>
 <telerik:RadTextBox ID="tbTitle" runat="server"
 Label="Title:"
 Text='<%# Bind("Title") %>'>
 </telerik:RadTextBox>
 </div>
 <div>
 <telerik:RadTextBox ID="tbDescription" runat="server"
 Label="Description:"

UI for ASP.NET AJAX

768 UI for ASP.NET AJAX

Declare Constants and Properties
In the code-behind for Categories.ascx add the constants and properties shown below:

The constants are used in binding expressions in the markup for the RadToolBar and the matching constants
are used to evaluate which tool bar button was clicked. The CategoryTitle and CategoryDescription properties
are shortcuts to finding the corresponding RadTextBox controls within the FormView.

 Label="Description:"
 Text='<%# Bind("Description") %>'>
 </telerik:RadTextBox>
 </div>
 <div id="divButtons">
 <asp:ImageButton ID="btnInsertCancel" runat="server"
 ImageUrl="../Images/cancel_btn_2.png"
 OnClick="btnCancel_Click" />
 <asp:ImageButton ID="btnInsertSave" runat="server"
 ImageUrl="../Images/update_btn_2.png"
 OnClick="btnSaveInsert_Click" />
 </div>
 </InsertItemTemplate>
 </asp:FormView>
</fieldset>

[VB] Defining Constants and Properties

#region constants
Public Const INSERT_CATEGORY As String = "INSERT_CATEGORY"
Public Const EDIT_CATEGORY As String = "EDIT_CATEGORY"
Public Const DELETE_CATEGORY As String = "DELETE_CATEGORY"
#End Region
#region properties
Private ReadOnly Property CategoryTitle() As RadTextBox
 Get
 Return TryCast(fvCategories.FindControl("tbTitle"), RadTextBox)
 End Get
End Property
Private ReadOnly Property CategoryDescription() As RadTextBox
 Get
 Return TryCast(fvCategories.FindControl("tbDescription"), RadTextBox)
 End Get
End Property
#End Region properties

[C#] Defining Constants and Properties

#region constants
public const string INSERT_CATEGORY = "INSERT_CATEGORY";
public const string EDIT_CATEGORY = "EDIT_CATEGORY";
public const string DELETE_CATEGORY = "DELETE_CATEGORY";
#endregion
#region properties
private RadTextBox CategoryTitle
{
 get { return fvCategories.FindControl("tbTitle") as RadTextBox; }
}
private RadTextBox CategoryDescription
{

UI for ASP.NET AJAX

769 UI for ASP.NET AJAX

Add Private Methods
Add a private method to set the toolbar button state based on the selected node.

Usability for the toolbar works like this: Insert and Delete are always allowed if some node is selected. Edit is
allowed if a node is selected and it's not the root node. The root node acts simply as a heading "Categories",
much like the "MailBox" node in Outlook. You can add and delete nodes under "MailBox" but not the "MailBox"
node itself.

Handle DataSource CRUD Operations
The CategoriesTree is bound to data when it first loads but does not do a full refresh after that. Instead, we
maintain the database records and the node properties in parallel. The database operations are handled
through the data source methods Delete(), Insert() and Update(). Add the two methods below that wrap the
Update and Insert operations:

Most of the parameters are handled declaratively. The controls within the FormView are a little harder to get
at so we load them here just before making the Update() or Insert() method calls explicitly.

 get { return fvCategories.FindControl("tbDescription") as RadTextBox; }
}
#endregion properties

[VB] Private Methods

#region private methods
' Determine if there is a selected node and if
' the node is the root node. Enable the tool bar
' buttons accordingly.
Private Sub UpdateButtonState()
 Dim nodeIsSelected As Boolean = CategoriesTree1.TreeView.SelectedNode <> Nothing
 tbarCategories.Items.FindItemByValue(INSERT_CATEGORY).Enabled = nodeIsSelected
 tbarCategories.Items.FindItemByValue(DELETE_CATEGORY).Enabled = nodeIsSelected And Not
CategoriesTree1.IsRootSelected
 tbarCategories.Items.FindItemByValue(EDIT_CATEGORY).Enabled = nodeIsSelected And Not
CategoriesTree1.IsRootSelected
End Sub
#End Region

[VB] Private Methods

#region private methods
// Determine if there is a selected node and if
// the node is the root node. Enable the tool bar
// buttons accordingly.
private void UpdateButtonState()
{
 bool nodeIsSelected = CategoriesTree1.TreeView.SelectedNode != null;
 tbarCategories.Items.FindItemByValue(INSERT_CATEGORY).Enabled =
 nodeIsSelected;
 tbarCategories.Items.FindItemByValue(DELETE_CATEGORY).Enabled =
 nodeIsSelected & !CategoriesTree1.IsRootSelected;
 tbarCategories.Items.FindItemByValue(EDIT_CATEGORY).Enabled =
 nodeIsSelected & !CategoriesTree1.IsRootSelected;
}
#endregion

[VB] DataSource CRUD Methods

#region Datasource CRUD operations

UI for ASP.NET AJAX

770 UI for ASP.NET AJAX

Handle Page Events
 Add the page event handlers below to the code-behind:

 Page_Load: The NodeClick handler for the CategoriesTree needs to be re-added on every postback.

 Cancel and Update Click Events: These events occur in response to the admin clicking on cancel or update
buttons within the FormView. Canceling works the same for both Insert and Edits. The FormView mode is
changed back to ReadOnly and the toolbar button state is refreshed to reflect this. The save of an insert
causes a new node to be created using the Title and Description entry from the FormView. The record is
inserted and the FormView is returned to a read-only state. Saving an edit is quite similar to insert except
the corresponding update methods of the CategoriesTree and DataSource are called instead.

 Inserted Event Handler: When the category is inserted to the database we need to find out what the new
generated ID is and get that back to the tree node Value property. You can retrieve the generated value of
an InputOutput parameter using the SqlDataSource OnInserted event. OnInserted has
a SqlDataSourceStatusEventArgs argument that lets you access the parameters of the stored procedure
responsible for inserting the category.

 ToolBar Button Click Event Handler: When a button on the toolbar is clicked, this event handler retrieves
the Value property that contains the operation to perform. The Value property is populated by a binding
expression that uses the same three constants used in this event handler. If Insert or Edit buttons were
clicked, the FormView mode is changed so that the admin can enter values. If the Delete button is clicked,
the delete happens immediately.

 FormView OnItemCreated Event Handler: As items in the FormView are created, this event handler
attaches attributes so that the image buttons can respond to onmouseover and onmouseout client events.
When the user hovers over a button, the button responds visually.

Private Sub UpdateDB()
 dsCategory.UpdateParameters("Title").DefaultValue = Me.CategoryTitle.Text
 dsCategory.UpdateParameters("Description").DefaultValue = Me.CategoryDescription.Text
 dsCategory.Update()
End Sub
Private Sub InsertDB()
 dsCategory.InsertParameters("ParentID").DefaultValue = CategoriesTree1.ParentCategoryID
 dsCategory.InsertParameters("Title").DefaultValue = Me.CategoryTitle.Text
 dsCategory.InsertParameters("Description").DefaultValue = Me.CategoryDescription.Text
 dsCategory.Insert()
End Sub
#End Region CRUD operations

[VB] DataSource CRUD Methods

#region Datasource CRUD operations
private void UpdateDB()
{
 dsCategory.UpdateParameters["Title"].DefaultValue = this.CategoryTitle.Text;
 dsCategory.UpdateParameters["Description"].DefaultValue = this.CategoryDescription.Text;
 dsCategory.Update();
}
private void InsertDB()
{
 dsCategory.InsertParameters["ParentID"].DefaultValue = CategoriesTree1.ParentCategoryID;
 dsCategory.InsertParameters["Title"].DefaultValue = this.CategoryTitle.Text;
 dsCategory.InsertParameters["Description"].DefaultValue = this.CategoryDescription.Text;
 dsCategory.Insert();
}
#endregion CRUD operations

UI for ASP.NET AJAX

771 UI for ASP.NET AJAX

[VB] Handling Page Events

#region page events
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' Add this event handler every time the page loads
 AddHandler CategoriesTree1.NodeClick, AddressOf CategoriesTree1_NodeClick
End Sub
' An insert or edit has been canceled so
' change the form view mode to read-only
' and update the tool bar buttons to reflect this
Public Sub btnCancel_Click(ByVal sender As Object, ByVal e As
System.Web.UI.ImageClickEventArgs)
 fvCategories.ChangeMode(FormViewMode.[ReadOnly])
 UpdateButtonState()
End Sub
' An edit is being saved so copy the title and description
' to the node text and tooltip, then update the database.
' change the form view mode back to read-only
' and update the tool bar buttons to reflect this
Public Sub btnSaveEdit_Click(ByVal sender As Object, ByVal e As
System.Web.UI.ImageClickEventArgs)
 CategoriesTree1.UpdateCategoryNode(Me.CategoryTitle.Text, Me.CategoryDescription.Text)
 Me.UpdateDB()
 fvCategories.ChangeMode(FormViewMode.[ReadOnly])
 UpdateButtonState()
End Sub
' An insert is being saved so copy the title and description
' to the node text and tooltip, then insert to the database.
' change the form view mode back to read-only
' and update the tool bar buttons to reflect this
Public Sub btnSaveInsert_Click(ByVal sender As Object, ByVal e As
System.Web.UI.ImageClickEventArgs)
 CategoriesTree1.InsertCategoryNode(Me.CategoryTitle.Text, Me.CategoryDescription.Text)
 Me.InsertDB()
 fvCategories.ChangeMode(FormViewMode.[ReadOnly])
 UpdateButtonState()
End Sub
' A category has just been inserted to the database
' and the newly generated ID is being returned in this event
' as an argument. We do this to keep the new database record
' for the category in sync with the CategoryID in the CategoriesTree
' control
Protected Sub dsCategory_Inserted(ByVal sender As Object, ByVal e As
SqlDataSourceStatusEventArgs)
 CategoriesTree1.CategoryID = e.Command.Parameters("@ID").Value.ToString()
End Sub
' In response to clicking the tool bar, get the
' tool bar button Value (which has these same
' three constants injected using binding expressions)
' and perform the appropriate operation.
' Insert and Edit simply change the FormView mode
' so the user can enter values while Delete
' happens immediately.
Protected Sub tbarCategories_ButtonClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadToolBarEventArgs)
 Select Case e.Item.Value

UI for ASP.NET AJAX

772 UI for ASP.NET AJAX

 Case INSERT_CATEGORY
 fvCategories.ChangeMode(FormViewMode.Insert)
 Exit Select
 Case EDIT_CATEGORY
 fvCategories.ChangeMode(FormViewMode.Edit)
 Exit Select
 Case DELETE_CATEGORY
 ' delete from the db first (the datasource
 ' depends on treeview values), then delete node
 dsCategory.Delete()
 CategoriesTree1.DeleteCategoryNode()
 fvCategories.ChangeMode(FormViewMode.[ReadOnly])
 UpdateButtonState()
 Exit Select
 End Select
End Sub
' As FormView items are created, attach attributes for
' onmouseover and onmouseout client events so that the
' buttons respond visually.
Protected Sub fvCategories_ItemCreated(ByVal sender As Object, ByVal e As EventArgs)
 If fvCategories.CurrentMode = FormViewMode.Edit Then
 Dim btnEditCancel As ImageButton = TryCast(fvCategories.FindControl("btnEditCancel"),
ImageButton)
 Dim btnEditSave As ImageButton = TryCast(fvCategories.FindControl("btnEditSave"),
ImageButton)
 btnEditCancel.Attributes.Add("onmouseover", "this.src='../Images/cancel_btn_1.png'")
 btnEditCancel.Attributes.Add("onmouseout", "this.src='../Images/cancel_btn_2.png'")
 btnEditSave.Attributes.Add("onmouseover", "this.src='../Images/update_btn_1.png'")
 btnEditSave.Attributes.Add("onmouseout", "this.src='../Images/update_btn_2.png'")
 End If
 If fvCategories.CurrentMode = FormViewMode.Insert Then
 Dim btnInsertCancel As ImageButton = TryCast(fvCategories.FindControl("btnInsertCancel"),
ImageButton)
 Dim btnInsertSave As ImageButton = TryCast(fvCategories.FindControl("btnInsertSave"),
ImageButton)
 btnInsertCancel.Attributes.Add("onmouseover", "this.src='../Images/cancel_btn_1.png'")
 btnInsertCancel.Attributes.Add("onmouseout", "this.src='../Images/cancel_btn_2.png'")
 btnInsertSave.Attributes.Add("onmouseover", "this.src='../Images/update_btn_1.png'")
 btnInsertSave.Attributes.Add("onmouseout", "this.src='../Images/update_btn_2.png'")
 End If
End Sub
#End Region

[C#] Handling Page Events

#region page events
protected void Page_Load(object sender, EventArgs e)
{
 // Add this event handler every time the page loads
 CategoriesTree1.NodeClick +=
 new RadTreeViewEventHandler(CategoriesTree1_NodeClick);
}
// An insert or edit has been canceled so
// change the form view mode to read-only
// and update the tool bar buttons to reflect this

UI for ASP.NET AJAX

773 UI for ASP.NET AJAX

public void btnCancel_Click(object sender, System.Web.UI.ImageClickEventArgs e)
{
 fvCategories.ChangeMode(FormViewMode.ReadOnly);
 UpdateButtonState();
}
// An edit is being saved so copy the title and description
// to the node text and tooltip, then update the database.
// change the form view mode back to read-only
// and update the tool bar buttons to reflect this
public void btnSaveEdit_Click(object sender, System.Web.UI.ImageClickEventArgs e)
{
 CategoriesTree1.UpdateCategoryNode(this.CategoryTitle.Text,
 this.CategoryDescription.Text);
 this.UpdateDB();
 fvCategories.ChangeMode(FormViewMode.ReadOnly);
 UpdateButtonState();
}
// An insert is being saved so copy the title and description
// to the node text and tooltip, then insert to the database.
// change the form view mode back to read-only
// and update the tool bar buttons to reflect this
public void btnSaveInsert_Click(object sender, System.Web.UI.ImageClickEventArgs e)
{
 CategoriesTree1.InsertCategoryNode(this.CategoryTitle.Text,
 this.CategoryDescription.Text);
 this.InsertDB();
 fvCategories.ChangeMode(FormViewMode.ReadOnly);
 UpdateButtonState();
}
// A category has just been inserted to the database
// and the newly generated ID is being returned in this event
// as an argument. We do this to keep the new database record
// for the category in sync with the CategoryID in the CategoriesTree
// control
protected void dsCategory_Inserted(object sender,
 SqlDataSourceStatusEventArgs e)
{
 CategoriesTree1.CategoryID =
 e.Command.Parameters["@ID"].Value.ToString();
}
// In response to clicking the tool bar, get the
// tool bar button Value (which has these same
// three constants injected using binding expressions)
// and perform the appropriate operation.
// Insert and Edit simply change the FormView mode
// so the user can enter values while Delete
// happens immediately.
protected void tbarCategories_ButtonClick(object sender,
 Telerik.Web.UI.RadToolBarEventArgs e)
{
 switch (e.Item.Value)
 {
 case INSERT_CATEGORY:
 fvCategories.ChangeMode(FormViewMode.Insert);
 break;

UI for ASP.NET AJAX

774 UI for ASP.NET AJAX

Handle CategoriesTreeView NodeClick Event
Add the CategoriesTree NodeClick event handler.

First load up the data source select parameter so that as the admin clicks on nodes, the FormView re-bind has
the correct CategoryID to work with. If the user is already editing a category and clicks on another node, the
edit is abandoned and the FormView is returned to ReadOnly mode. The FormView is rebound to the new
category and the tool bar button state is refreshed.

 case EDIT_CATEGORY:
 fvCategories.ChangeMode(FormViewMode.Edit);
 break;
 case DELETE_CATEGORY:
 // delete from the db first (the datasource
 // depends on treeview values), then delete node
 dsCategory.Delete();
 CategoriesTree1.DeleteCategoryNode();
 fvCategories.ChangeMode(FormViewMode.ReadOnly);
 UpdateButtonState();
 break;
 }
}
// As FormView items are created, attach attributes for
// onmouseover and onmouseout client events so that the
// buttons respond visually.
protected void fvCategories_ItemCreated(object sender, EventArgs e)
{
 if (fvCategories.CurrentMode == FormViewMode.Edit)
 {
 ImageButton btnEditCancel = fvCategories.FindControl("btnEditCancel") as ImageButton;
 ImageButton btnEditSave = fvCategories.FindControl("btnEditSave") as ImageButton;
 btnEditCancel.Attributes.Add("onmouseover", "this.src='../Images/cancel_btn_1.png'");
 btnEditCancel.Attributes.Add("onmouseout", "this.src='../Images/cancel_btn_2.png'");
 btnEditSave.Attributes.Add("onmouseover", "this.src='../Images/update_btn_1.png'");
 btnEditSave.Attributes.Add("onmouseout", "this.src='../Images/update_btn_2.png'");
 }
 if (fvCategories.CurrentMode == FormViewMode.Insert)
 {
 ImageButton btnInsertCancel = fvCategories.FindControl("btnInsertCancel") as ImageButton;
 ImageButton btnInsertSave = fvCategories.FindControl("btnInsertSave") as ImageButton;
 btnInsertCancel.Attributes.Add("onmouseover", "this.src='../Images/cancel_btn_1.png'");
 btnInsertCancel.Attributes.Add("onmouseout", "this.src='../Images/cancel_btn_2.png'");
 btnInsertSave.Attributes.Add("onmouseover", "this.src='../Images/update_btn_1.png'");
 btnInsertSave.Attributes.Add("onmouseout", "this.src='../Images/update_btn_2.png'");
 }
}
#endregion

[VB] Handling the CategoriesTree NodeClick

Sub CategoriesTree1_NodeClick(ByVal sender As Object, ByVal e As RadTreeNodeEventArgs)
 ' setup the select using the currently selected node value
 dsCategory.SelectParameters("ID").DefaultValue = CategoriesTree1.CategoryID
 ' If the user is in the middle of the edit,
 ' cancel the edit by changing to readonly
 fvCategories.ChangeMode(FormViewMode.[ReadOnly])
 fvCategories.DataBind()

UI for ASP.NET AJAX

775 UI for ASP.NET AJAX

Finish Implementing FirstLoad()
When you first tested the CategoriesTree, you simply called the CategoriesTree InitialLoad() method and passed
the "dsAllCategories" data source. You'll keep that code but add:

 this.DataBind() to bind the page. This will allow the binding expression in the RadToolBar to occur.

 Perform the Initial bind of the FormView.

 Update the button state to agree with the editing mode.

Update your FirstLoad() implementation with the code below:

We can re-use our CategoryTree control when filtering questions for a particular category. The Questions.ascx

 UpdateButtonState()
End Sub

[C#] Handling the CategoriesTree NodeClick

void CategoriesTree1_NodeClick(object sender, RadTreeNodeEventArgs e)
{
 // setup the select using the currently selected node value
 dsCategory.SelectParameters["ID"].DefaultValue = CategoriesTree1.CategoryID;
 // If the user is in the middle of the edit,
 // cancel the edit by changing to readonly
 fvCategories.ChangeMode(FormViewMode.ReadOnly);
 fvCategories.DataBind();
 UpdateButtonState();
}

[VB] Implementing FirstLoad()

#region IASControl Members
Public Sub FirstLoad(ByVal args As System.Collections.Generic.Dictionary(Of String, String))
 ' bind the page to emit binding expressions into the markup
 ' bind here instead of page_load because categoriestreeview is counting on
 ' the values already being populated by the call to InitialLoad()
 Me.DataBind()
 CategoriesTree1.InitialLoad(dsAllCategories)
 fvCategories.DataBind()
 UpdateButtonState()
End Sub
#End Region

[C#] Implementing FirstLoad()

#region IASControl Members
public void FirstLoad(System.Collections.Generic.Dictionary<string, string> args)
{
 // bind the page to emit binding expressions into the markup
 // bind here instead of page_load because categoriestreeview is counting on
 // the values already being populated by the call to InitialLoad()
 this.DataBind();
 CategoriesTree1.InitialLoad(dsAllCategories);
 fvCategories.DataBind();
 UpdateButtonState();
}
#endregion

38.5 Implement Questions Control

UI for ASP.NET AJAX

776 UI for ASP.NET AJAX

control will display the list of categories as a drop down list at the top of the screen and a master-detail grid
below it containing questions and responses.

Prepare Layout

Roadmap

The overall layout of the markup for this user control looks something like the condensed view shown in the
screenshot below. The user control has three data sources: the "all categories" data source that supplies the
CategoriesTree, dsCategoryQuestions that feeds the MasterTableView of the grid and dsResponse that feeds the
detail table of the grid.

You can find the complete source for this project at:
\VS Projects\ActiveSkill Database Maintenance\Questions

UI for ASP.NET AJAX

777 UI for ASP.NET AJAX

Add Data Sources

Add data source controls for the Categories tree, the questions grid and the responses detail portion of the
grid. You have already walked through how to configure a SqlDataSource by hand so you can add this directly
into the markup.

 dsAllCategories: supplies all categories to the CategoriesTree control.

 dsCategoryQuestions: supplies questions for the category selected in the CategoriesTree to a RadGrid. The
questions are displayed in the MasterTableView. The data source provides add, update and delete
functionality for the grid. The category ID is supplied by the CategoryTree and the other parameters are
assigned programmatically.

 dsResponse: This data source returns a list of responses for a given question and can add, update and
delete responses.

[ASP.NET] Adding the DataSource Controls

<%--Data Sources--%>
<asp:SqlDataSource ID="dsAllCategories" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="SELECT [ID], [ParentID], [Title], [Description] FROM [Category]">
</asp:SqlDataSource>
<asp:SqlDataSource ID="dsCategoryQuestions" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="Skill_QuestionsByCategory_Select"
 SelectCommandType="StoredProcedure" DeleteCommand="Skill_Question_Delete"
 DeleteCommandType="StoredProcedure" InsertCommand="Skill_Question_Insert"
 InsertCommandType="StoredProcedure" UpdateCommand="Skill_Question_Update"
 UpdateCommandType="StoredProcedure">
 <SelectParameters>
 <asp:Parameter Name="CategoryID" Type="Int32" />
 </SelectParameters>
 <DeleteParameters>
 <asp:ControlParameter ControlID="CategoriesTree1" Name="ID"
 PropertyName="CategoryID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="HTML" Type="String" />
 <asp:Parameter Name="Enabled" Type="Boolean" />
 <asp:ControlParameter ControlID="CategoriesTree1" Name="CategoryID"
 PropertyName="CategoryID" Type="Int32" />
 <asp:Parameter Name="ID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Direction="InputOutput" Name="ID" Type="Int32" />
 <asp:ControlParameter ControlID="CategoriesTree1" Name="CategoryID"
 PropertyName="CategoryID" Type="Int32" />
 <asp:Parameter Name="HTML" Type="String" />
 <asp:Parameter Name="Enabled" Type="Boolean" />
 </InsertParameters>
</asp:SqlDataSource>

<asp:SqlDataSource ID="dsResponse" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 DeleteCommand="Skill_Response_Delete" DeleteCommandType="StoredProcedure"
 InsertCommand="Skill_Response_Insert" InsertCommandType="StoredProcedure"

UI for ASP.NET AJAX

778 UI for ASP.NET AJAX

Add Categories Tree

Add a CategoriesTree user control from the Solution Explorer to the web page. Set the DisplayMode to
"DropDown".

Add and Configure RadGrid

1. Below the CategoriesTree add a RadGrid control. In the Properties window set these properties for the
grid:

 ID: "gridQuestions".

 AllowAutomaticDeletes: true.

 AutoGenerateColumns: false.

 GridLines: None.

 Skin: leave this blank.

2. Open up the MasterTableView property and set the following sub properties:

 CommandItemDisplay: Top

 DataKeyNames: "ID"

 EditMode: InPlace

 Name: "Question" (note: this will be used to identify the table view in some of the command events)

 NoMasterRecordsText: "No questions to display for this category"

3. Also in MasterTableView, open up the DetailTables sub-property, add a detail table and set the following
properties to the new detail table:

 CommandItemDisplay: Top

 DataKeyNames: "ID"

 EditMode: InPlace

 GridLines: None

 SelectCommand="Skill_ResponsesByQuestion_SelectWhere"
 SelectCommandType="StoredProcedure" UpdateCommand="Skill_Response_Update"
 UpdateCommandType="StoredProcedure">
 <SelectParameters>
 <asp:Parameter Name="QuestionID" Type="Int32" />
 </SelectParameters>
 <DeleteParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 <asp:Parameter Name="QuestionID" Type="Int32" />
 <asp:Parameter Name="Correct" Type="Boolean" />
 <asp:Parameter Name="HTML" Type="String" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Direction="Output" Name="ID" Type="Int32" />
 <asp:Parameter Name="QuestionID" Type="Int32" />
 <asp:Parameter Name="Correct" Type="Boolean" />
 <asp:Parameter Name="HTML" Type="String" />
 </InsertParameters>
</asp:SqlDataSource>

UI for ASP.NET AJAX

779 UI for ASP.NET AJAX

 Name: "Response"

 NoDetailRecordsText: "No answers to display."

4. In the markup, add the columns below to the MasterTableView <Columns>. The markup can be added just
inside the closing </MasterTableView> tag.

You can also build the column list from the Property Builder or Columns collection editor. At the time of
this writing, the GridHTMLEditorColumn type was not available from these two options, so it will be more
straightforward to define all columns at once here.

There are a few things to notice about the columns defined below. The Visible property for key
column "ID" is false. The "HTML" column uses a GridHTMLEditorColumn type. The columns that have images
have image URLs that point to \Skins\ActiveSkill\Grid directory.

The GridHTMLEditorColumn is designed with a limited number of tools due to performance reasons so
that instances rendered for each edited row are loaded faster. In most cases you don't need the entire
set of RadEditor tools when using it as column editor in RadGrid. If you do require a larger toolset,
embed a RadEditor using a template column. See this article for more on using a RadEditor in a
template column (http://www.telerik.com/support/kb/article/b454K-tae-b454T-cbb-b454c-
cbb.aspx).

[ASP.NET] Adding Columns

<Columns>
 <telerik:GridBoundColumn DataField="ID" DataType="System.Int32"
 HeaderText="ID" SortExpression="ID" UniqueName="ID"
 Visible="False">
 </telerik:GridBoundColumn>

UI for ASP.NET AJAX

780 UI for ASP.NET AJAX

5. Add the detail columns for the question responses inside the tag <telerik:GridTableView
Name="Response"...:

6. Using the Properties window Events button (), add handlers for the following events:

 DeleteCommand

 InsertCommand

 UpdateCommand

 <telerik:GridCheckBoxColumn DataField="Enabled" DataType="System.Boolean"
 HeaderText="Enabled" SortExpression="Enabled" UniqueName="Enabled">
 </telerik:GridCheckBoxColumn>
 <telerik:GridHTMLEditorColumn DataField="HTML" HeaderText="Question"
 SortExpression="HTML" UniqueName="HTML">
 </telerik:GridHTMLEditorColumn>
 <telerik:GridEditCommandColumn ButtonType="ImageButton"
 EditImageUrl="../Skins/ActiveSkill/Grid/Edit.gif"
 InsertImageUrl="../Skins/ActiveSkill/Grid/Update.gif"
 UpdateImageUrl="../Skins/ActiveSkill/Grid/Update.gif"
 CancelImageUrl="../Skins/ActiveSkill/Grid/Cancel.gif"
 >
 </telerik:GridEditCommandColumn>
 <telerik:GridButtonColumn ButtonType="ImageButton"
 CommandName="Delete" ImageUrl="../Skins/ActiveSkill/Grid/Delete.gif"
 Text="Delete" UniqueName="column">
 </telerik:GridButtonColumn>
</Columns>

[ASP.NET] Add the Detail Columns

<Columns>
 <telerik:GridBoundColumn DataField="ID" UniqueName="ResponseID"
 Visible="False">
 </telerik:GridBoundColumn>
 <telerik:GridBoundColumn DataField="QuestionID" UniqueName="QuestionID"
 Visible="False">
 </telerik:GridBoundColumn>
 <telerik:GridCheckBoxColumn DataField="Correct" UniqueName="Correct"
 DataType="System.Boolean" HeaderText="Correct">
 </telerik:GridCheckBoxColumn>
 <telerik:GridHTMLEditorColumn DataField="HTML" HeaderText="Answer"
 SortExpression="HTML" UniqueName="Answer">
 </telerik:GridHTMLEditorColumn>
 <telerik:GridEditCommandColumn ButtonType="ImageButton"
 EditImageUrl="../Skins/ActiveSkill/Grid/Edit.gif"
 InsertImageUrl="../Skins/ActiveSkill/Grid/Update.gif"
 UpdateImageUrl="../Skins/ActiveSkill/Grid/Update.gif"
 CancelImageUrl="../Skins/ActiveSkill/Grid/Cancel.gif"
 >
 </telerik:GridEditCommandColumn>
 <telerik:GridButtonColumn ButtonType="ImageButton"
 CommandName="Delete" ImageUrl="../Skins/ActiveSkill/Grid/Delete.gif"
 Text="Delete" UniqueName="column">
 </telerik:GridButtonColumn>
</Columns>

UI for ASP.NET AJAX

781 UI for ASP.NET AJAX

 DetailTableDataBind

 ItemCreated

 NeedDataSource

In the later sections we will implement these event handlers.

Handle Page Events
Add the code below to the Page_Load event handler. Attach the CategoriesTree NodeClick every time the page
loads.

Handle Grid Events
Add the code below to the grid event handlers.

gridQuestions_NeedDataSource: Using the IsFromDetailTable property of the args passed in, assign just the
master table view data source.

gridQuestions_DetailTableDataBind: This event fires when the user expands one of the questions to reveal
the responses. Take this opportunity to retrieve the primary key ("QuestionID") from the parent item passed in
("e.DetailTableView.ParentItem"), assign it to the data source for "responses" and finally assign the data source
to detail table view.

gridQuestions_ItemCreated: The "Enabled" checkbox for each question should be checked by default. Do this
by verifying that the ItemCreated event is firing for a "Questions" row, locate the checkbox in the passed in
"e.item" and set the Checked value to true.

[VB] Handling the Page_Load Event

#region page events
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' reattach the click event handler every page load
 AddHandler CategoriesTree1.NodeClick, AddressOf CategoriesTree1_NodeClick
End Sub
#End Region

[C#] Handling the Page_Load Event

#region page events
protected void Page_Load(object sender, EventArgs e)
{
 // reattach the click event handler every page load
 CategoriesTree1.NodeClick +=
 new RadTreeViewEventHandler(CategoriesTree1_NodeClick);
}
#endregion

[VB] Handling Grid Events

#region grid events
Protected Sub gridQuestions_NeedDataSource(ByVal source As Object, ByVal e As
GridNeedDataSourceEventArgs)
 ' assign the data source for the master table only
 If Not e.IsFromDetailTable Then
 (TryCast(source, RadGrid)).MasterTableView.DataSource = dsCategoryQuestions
 End If
End Sub
Protected Sub gridQuestions_DetailTableDataBind(ByVal source As Object, ByVal e As
GridDetailTableDataBindEventArgs)
 ' Get the parent item primary key value,

UI for ASP.NET AJAX

782 UI for ASP.NET AJAX

 ' set to the detail data source select parameter
 ' and assign the detail data source.
 e.DetailTableView.DataSource = dsResponse
 Dim parentItem As GridDataItem = TryCast(e.DetailTableView.ParentItem, GridDataItem)
 dsResponse.SelectParameters("QuestionID").DefaultValue = parentItem.GetDataKeyValue
("ID").ToString()
End Sub
Protected Sub gridQuestions_ItemCreated(ByVal sender As Object, ByVal e As
GridItemEventArgs)
 ' Gotcha! Once you add detail tables, you need to distinguish
 ' which level in the hierarchy initiated the event.
 ' Check OwnerTableView.DataSourceID.
 ' You can also use the table Name property
 If e.Item.OwnerTableView.Name = "Question" Then
 ' initialize "enabled" checkbox
 If TypeOf e.Item Is GridDataItem Then
 Dim cbEnabled As CheckBox = (TryCast((TryCast(e.Item, GridDataItem))("Enabled").Controls
(0), CheckBox))
 cbEnabled.Checked = True
 End If
 End If
End Sub
#End Region

[C#] Handling Grid Events

#region grid events
protected void gridQuestions_NeedDataSource(object source,
 GridNeedDataSourceEventArgs e)
{
 // assign the data source for the master table only
 if (!e.IsFromDetailTable)
 {
 (source as RadGrid).MasterTableView.DataSource =
 dsCategoryQuestions;
 }
}
protected void gridQuestions_DetailTableDataBind(object source,
 GridDetailTableDataBindEventArgs e)
{
 // This fires when the user expands a question to reveal the
 // responses.
 // Get the parent item primary key value,
 // set to the detail data source select parameter
 // and assign the detail data source.
 e.DetailTableView.DataSource = dsResponse;
 GridDataItem parentItem = e.DetailTableView.ParentItem as GridDataItem;
 dsResponse.SelectParameters["QuestionID"].DefaultValue =
 parentItem.GetDataKeyValue("ID").ToString();
}
protected void gridQuestions_ItemCreated(object sender, GridItemEventArgs e)
{
 // Gotcha! Once you add detail tables, you need to distinguish
 // which level in the hierarchy initiated the event.
 // Check OwnerTableView.DataSourceID.
 // You can also use the table Name property

UI for ASP.NET AJAX

783 UI for ASP.NET AJAX

Handle Grid CRUD Commands
Add code to the event handlers that express the CRUD commands Insert, Update and Delete. Be on the lookout
for these details:

 Each event handler has it's own unique Item object. Looking at the insert and update commands, they use
GridDataInsertItem and GridEditableItem respectively. The item's ExtractValues() method is used to fill a
HashTable with key/value pairs. You can see how the HashTable is used to extract column data using the
column name to index the HashTable.

 To know which table is to be updated or inserted to you can get the OwnerTableView.Name from the
e.Item parameter passed in. When you prepared the layout for this grid, the Name for the
MasterTableView and the detail table view was assigned at that time.

 When inserting to the detail table you need to know the foreign key to the master table "QuestionID". You
can get that key value by traversing up from the OwnerTableView to the ParentItem and then extracting
from the DataKeyValue property. See the InsertCommand handler in the 'Case "Response" for example of
this technique. The UpdateCommand handler does not need to do this because "QuestionID" is already
populated in the row for the response.

 The DeleteCommand only needs the key value for the record being deleted. Here you can first extract the
OwnerTableView DataKeyValues array. Index into the array using the current row (e.Item.ItemIndex) and
the key column using the column name ("ID").

 if (e.Item.OwnerTableView.Name == "Question")
 {
 // initialize "enabled" checkbox
 if (e.Item is GridDataItem)
 {
 CheckBox cbEnabled =
 ((e.Item as GridDataItem)["Enabled"].Controls[0] as CheckBox);
 cbEnabled.Checked = true;
 }
 }
}
#endregion

[VB] Handling the Grid CRUD Commands

#region grid crud commands
Protected Sub gridQuestions_InsertCommand(ByVal source As Object, ByVal e As
GridCommandEventArgs)
 ' Get the item that appears when grid is in Insert Mode.
 ' Use the item object ExtractValues()method
 ' to fill a HashTable with values for the current row.
 Dim insertItem As GridDataInsertItem = DirectCast((e.Item.OwnerTableView.GetInsertItem()),
GridDataInsertItem)
 Dim ht As New Hashtable()
 insertItem.ExtractValues(ht)
 ' Navigate to the OwnerTableView for the Name property.
 ' In this case the Name will be "Question", the master table view,
 ' or "Response", the detail table view.
 ' Load up the appropriate data source parameters from the hash table
 ' and call Insert() method.
 Select Case e.Item.OwnerTableView.Name
 Case "Question"
 dsCategoryQuestions.InsertParameters("HTML").DefaultValue = ht("HTML").ToString()
 dsCategoryQuestions.InsertParameters("Enabled").DefaultValue = ht("Enabled").ToString()
 dsCategoryQuestions.Insert()

UI for ASP.NET AJAX

784 UI for ASP.NET AJAX

 Exit Select
 Case "Response"
 ' In the detail table you get at the QuestionID but
 ' traversing up from the OwnerTableView to the ParentItem and
 ' then extracting the DataKeyValue.
 Dim parentItem As GridDataItem = TryCast(e.Item.OwnerTableView.ParentItem, GridDataItem)
 dsResponse.InsertParameters("QuestionID").DefaultValue = parentItem.GetDataKeyValue
("ID").ToString()
 dsResponse.InsertParameters("Correct").DefaultValue = ht("Correct").ToString()
 dsResponse.InsertParameters("HTML").DefaultValue = ht("HTML").ToString()
 dsResponse.Insert()
 Exit Select
 End Select
 ' The underlying data has now changed so rebind
 e.Item.OwnerTableView.Rebind()
End Sub
Protected Sub gridQuestions_UpdateCommand(ByVal source As Object, ByVal e As
GridCommandEventArgs)
 ' Get the item that appears when grid is in Update Mode.
 ' Use the item object ExtractValues()method
 ' to fill a HashTable with values for the current row.
 Dim item As GridEditableItem = TryCast(e.Item, GridEditableItem)
 Dim ht As New Hashtable()
 item.ExtractValues(ht)

 ' Navigate to the OwnerTableView for the Name property.
 ' In this case the Name will be "Question", the master table view,
 ' or "Response", the detail table view.
 ' Load up the appropriate data source parameters from the hash table
 ' and call Update() method.
 Select Case e.Item.OwnerTableView.Name
 Case "Question"
 dsCategoryQuestions.UpdateParameters("ID").DefaultValue = ht("ID").ToString()
 dsCategoryQuestions.UpdateParameters("HTML").DefaultValue = ht("HTML").ToString()
 dsCategoryQuestions.UpdateParameters("Enabled").DefaultValue = ht("Enabled").ToString()
 dsCategoryQuestions.Update()
 Exit Select
 Case "Response"
 ' When updating, we already have the question ID and don't need to
 ' traverse back up to the master table.
 dsResponse.UpdateParameters("ID").DefaultValue = ht("ID").ToString()
 dsResponse.UpdateParameters("QuestionID").DefaultValue = ht("QuestionID").ToString()
 dsResponse.UpdateParameters("Correct").DefaultValue = ht("Correct").ToString()
 dsResponse.UpdateParameters("HTML").DefaultValue = ht("HTML").ToString()
 dsResponse.Update()
 Exit Select
 End Select
 e.Item.OwnerTableView.Rebind()
End Sub
Protected Sub gridQuestions_DeleteCommand(ByVal source As Object, ByVal e As
GridCommandEventArgs)
 Dim dataKeys As GridDataKeyArray = e.Item.OwnerTableView.DataKeyValues
 Select Case e.Item.OwnerTableView.Name
 Case "Question"
 Dim customerID As String = dataKeys(e.Item.ItemIndex)("ID").ToString()

UI for ASP.NET AJAX

785 UI for ASP.NET AJAX

 dsCategoryQuestions.DeleteParameters("ID").DefaultValue = customerID
 Exit Select
 Case "Response"
 Dim responseID As String = dataKeys(e.Item.ItemIndex)("ID").ToString()
 dsResponse.DeleteParameters("ID").DefaultValue = responseID
 Exit Select
 End Select
 e.Item.OwnerTableView.Rebind()
End Sub
#End Region

[C#] Handling the Grid CRUD Commands

#region grid crud commands
protected void gridQuestions_InsertCommand(object source, GridCommandEventArgs e)
{
 // Get the item that appears when grid is in Insert Mode.
 // Use the item object ExtractValues()method
 // to fill a HashTable with values for the current row.
 GridDataInsertItem insertItem =
 (GridDataInsertItem)(e.Item.OwnerTableView.GetInsertItem());
 Hashtable ht = new Hashtable();
 insertItem.ExtractValues(ht);
 // Navigate to the OwnerTableView for the Name property.
 // In this case the Name will be "Question", the master table view,
 // or "Response", the detail table view.
 // Load up the appropriate data source parameters from the hash table
 // and call Insert() method.
 switch (e.Item.OwnerTableView.Name)
 {
 case "Question":
 dsCategoryQuestions.InsertParameters["HTML"].DefaultValue =
 ht["HTML"].ToString();
 dsCategoryQuestions.InsertParameters["Enabled"].DefaultValue =
 ht["Enabled"].ToString();
 dsCategoryQuestions.Insert();
 break;
 // In the detail table you get at the QuestionID but
 // traversing up from the OwnerTableView to the ParentItem and
 // then extracting the DataKeyValue.
 case "Response":
 GridDataItem parentItem =
 e.Item.OwnerTableView.ParentItem as GridDataItem;
 dsResponse.InsertParameters["QuestionID"].DefaultValue =
 parentItem.GetDataKeyValue("ID").ToString();
 dsResponse.InsertParameters["Correct"].DefaultValue =
 ht["Correct"].ToString();
 dsResponse.InsertParameters["HTML"].DefaultValue =
 ht["HTML"].ToString();
 dsResponse.Insert();
 break;
 }
 // The underlying data has now changed so rebind
 e.Item.OwnerTableView.Rebind();
}
protected void gridQuestions_UpdateCommand(object source, GridCommandEventArgs e)

UI for ASP.NET AJAX

786 UI for ASP.NET AJAX

{
 // Get the item that appears when grid is in Update Mode.
 // Use the item object ExtractValues()method
 // to fill a HashTable with values for the current row.
 GridEditableItem item = e.Item as GridEditableItem;
 Hashtable ht = new Hashtable();
 item.ExtractValues(ht);

 // Navigate to the OwnerTableView for the Name property.
 // In this case the Name will be "Question", the master table view,
 // or "Response", the detail table view.
 // Load up the appropriate data source parameters from the hash table
 // and call Update() method.
 switch (e.Item.OwnerTableView.Name)
 {
 case "Question":
 dsCategoryQuestions.UpdateParameters["ID"].DefaultValue =
 ht["ID"].ToString();
 dsCategoryQuestions.UpdateParameters["HTML"].DefaultValue =
 ht["HTML"].ToString();
 dsCategoryQuestions.UpdateParameters["Enabled"].DefaultValue =
 ht["Enabled"].ToString();
 dsCategoryQuestions.Update();
 break;
 // When updating, we already have the question ID and don't need to
 // traverse back up to the master table.
 case "Response":
 dsResponse.UpdateParameters["ID"].DefaultValue =
 ht["ID"].ToString();
 dsResponse.UpdateParameters["QuestionID"].DefaultValue =
 ht["QuestionID"].ToString();
 dsResponse.UpdateParameters["Correct"].DefaultValue =
 ht["Correct"].ToString();
 dsResponse.UpdateParameters["HTML"].DefaultValue =
 ht["HTML"].ToString();
 dsResponse.Update();
 break;
 }
 e.Item.OwnerTableView.Rebind();
}
protected void gridQuestions_DeleteCommand(object source, GridCommandEventArgs e)
{
 GridDataKeyArray dataKeys = e.Item.OwnerTableView.DataKeyValues;
 switch (e.Item.OwnerTableView.Name)
 {
 case "Question":
 string customerID = dataKeys[e.Item.ItemIndex]["ID"].ToString();
 dsCategoryQuestions.DeleteParameters["ID"].DefaultValue =
 customerID;
 break;
 case "Response":
 string responseID = dataKeys[e.Item.ItemIndex]["ID"].ToString();
 dsResponse.DeleteParameters["ID"].DefaultValue =
 responseID;
 break;

UI for ASP.NET AJAX

787 UI for ASP.NET AJAX

Implement the CategoryTree InitialLoad Method
Add the code below to the CategoriesTree NodeClick event handler.

The data source select query CategoryID parameter will be loaded using the value from the currently selected
CategoriesTree node value, the grid will be re-bound and the grid will be disabled if the selected node is the
root node. Note that the call to Rebind() will also trigger a call to the grid's NeedDataSource event.

Styling the Grid
Again, the skin can be tweaked slightly to suit our purposes. Locate the Grid.ActiveSkill.css in the
\skins\ActiveSkill directory of the ActiveSkillUI project. Find the .RadGrid_ActiveSkill element that defines the
background and font color. Set the color "color:#CFCFCF;"

Locate the GridHeader style selector that handles font color. Change color to "color:#598FD3;

 }
 e.Item.OwnerTableView.Rebind();
}
#endregion

[VB] Handling the NodeClick Event

#region CategoriesTree events
Sub CategoriesTree1_NodeClick(ByVal sender As Object, ByVal e As RadTreeNodeEventArgs)
 ' load the select query parameters with the currently selected
 ' category node's ID, rebind the grid and set the grid to be
 ' enabled if the treeview node is not the root node.
 dsCategoryQuestions.SelectParameters("CategoryID").DefaultValue =
CategoriesTree1.CategoryID
 gridQuestions.Rebind()
 gridQuestions.Enabled = Not CategoriesTree1.IsRootSelected
End Sub
#End Region

[C#] Handling the NodeClick Event

#region CategoriesTree events
void CategoriesTree1_NodeClick(object sender, RadTreeNodeEventArgs e)
{
 // load the select query parameters with the currently selected
 // category node's ID, rebind the grid and set the grid to be
 // enabled if the treeview node is not the root node.
 dsCategoryQuestions.SelectParameters["CategoryID"].DefaultValue =
 CategoriesTree1.CategoryID;
 gridQuestions.Rebind();
 gridQuestions.Enabled = !CategoriesTree1.IsRootSelected;
}
#endregion

[CSS] Changing Grid Font Color

.RadGrid_ActiveSkill
{
background:#313131;
color:#CFCFCF;
}

[CSS] Changing Grid Header Font Color

.GridHeader_ActiveSkill,

UI for ASP.NET AJAX

788 UI for ASP.NET AJAX

When you run the application, the question and response text will be more visible but still keeping with the
overall look-and-feel for the skin. Also, the heading font will be slightly brighter to match the titling on the
"Admin Tools" panel.

Test the Application
Run the application and work with both the CategoriesTree selection and the grid functions. Add, edit and
delete questions. Notice when adding or editing that the record display is "in-line" due to the EditMode setting.

This next control that implements the "page" for creating exams uses two RadGrids. The two grids are related,
but not nested, as in the "Questions" control. The top grid lists all the available exams and allows the user to
add, edit and delete exam records.

Below that, a CategoriesTree is used to filter the second grid that shows questions that apply to a given
exam. All questions for a given category are shown and checkboxes in a grid template column indicate if they
are included in the selected exam.

.GridHeader_ActiveSkill a
{
color:#598FD3;
text-decoration:none;
}

38.6 Implement CreateExams Control

UI for ASP.NET AJAX

789 UI for ASP.NET AJAX

The edit mode for Insert and Edit will show in a pop-up dialog as shown in the screen shot below:

Prepare Page Layout

You can find the complete source for this project at:
\VS Projects\ActiveSkill Database Maintenance\Create Exams

UI for ASP.NET AJAX

790 UI for ASP.NET AJAX

RoadMap

The overall layout of this user control includes a grid to list all of the exams and a <fieldset> element to
contain a CategoriesTree that filters a second grid of questions only for that category. The data sources feed
the CategoriesTree, the exams grid and the exam questions grid respectively.

Add Data Sources

Add data source controls for the Categories tree, Exam and Questions Grid using the markup below.

 dsAllCategories: Supplies all categories to the CategoriesTree control.

 dsExams: Supplies all available exams. Handles add/update/delete operations.

 dsExamQuestions: Returns a list of questions for the selected exam and category. Handles add and delete
operations.

[ASP.NET] Adding the DataSource Controls

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="CreateExams.ascx.cs"
 Inherits="Telerik.ActiveSkill.UI.Admin.CreateExams" %>
<%@ Register Src="../Controls/CategoriesTree.ascx"
 TagName="CategoriesTree" TagPrefix="uc1" %>
<%@ Register Assembly="Telerik.Web.UI, Version=2008.2.723.35, Culture=neutral,
PublicKeyToken=121fae78165ba3d4"
 Namespace="Telerik.Web.UI" TagPrefix="telerik" %>

<%--Data Sources--%>
<asp:SqlDataSource ID="dsAllCategories" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="SELECT [ID], [ParentID], [Title], [Description] FROM [Category]">
</asp:SqlDataSource>
<asp:SqlDataSource ID="dsExams" runat="server"
 ConnectionString="<%$ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="SELECT [ID], [Title], [Description], [PassPercent], [ModifyDate] FROM

UI for ASP.NET AJAX

791 UI for ASP.NET AJAX

Add the "Exams" Grid

1. Add a RadGrid control. In the Properties window set these properties for the grid:

 ID: "gridExams".

 AllowAutomaticDeletes: true.

 AutoGenerateColumns: false.

 GridLines: None.

2. Open up the MasterTableView property and set the following sub properties:

 CommandItemDisplay: Top

 DataKeyNames: "ID"

 EditMode: Popup

[Exam]"
 DeleteCommand="Skill_Exam_Delete" DeleteCommandType="StoredProcedure"
 InsertCommand="Skill_Exam_Insert" InsertCommandType="StoredProcedure"
 UpdateCommand="Skill_Exam_Update" UpdateCommandType="StoredProcedure">
 <DeleteParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 <asp:Parameter Name="Title" Type="String" />
 <asp:Parameter Name="Description" Type="String" />
 <asp:Parameter Name="PassPercent" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Direction="InputOutput" Name="ID" Type="Int32" />
 <asp:Parameter Name="Title" Type="String" />
 <asp:Parameter Name="Description" Type="String" />
 <asp:Parameter Name="PassPercent" Type="Int32" />
 </InsertParameters>
</asp:SqlDataSource>
<asp:SqlDataSource ID="dsExamQuestions" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="Skill_Exam_Question_SelectWhere" SelectCommandType="StoredProcedure"
 DeleteCommand="Skill_Exam_Question_Delete" DeleteCommandType="StoredProcedure"
 InsertCommand="Skill_Exam_Question_Insert" InsertCommandType="StoredProcedure">
 <SelectParameters>
 <asp:Parameter Name="CategoryID" Type="Int32" />
 <asp:Parameter Name="ExamID" Type="Int32" />
 </SelectParameters>
 <DeleteParameters>
 <asp:ControlParameter ControlID="gridExams" Name="ExamID"
 PropertyName="SelectedValue" Type="Int32" />
 <asp:Parameter Name="QuestionID" Type="Int32" />
 </DeleteParameters>
 <InsertParameters>
 <asp:ControlParameter ControlID="gridExams" Name="ExamID"
 PropertyName="SelectedValue" Type="Int32" />
 <asp:Parameter Name="QuestionID" Type="Int32" />
 </InsertParameters>
</asp:SqlDataSource>

UI for ASP.NET AJAX

792 UI for ASP.NET AJAX

 Name: "Exam"

 NoMasterRecordsText: "No exams to display"

3. Using the Properties window Events button (), add handlers for the following events:

 OnInsertCommand

 OnNeedDataSource

 OnDeleteCommand

 OnUpdateCommand

 OnSelectedIndexChanged

 OnDataBound

In the later sections we will implement these event handlers as well as add the columns.

Setup up the Exam Questions Area

In the markup, add a FieldSet HTML element below the exams grid. Set the legend to bind to a property of the
page "this.ExamTitle". Below that, add a CategoriesTree and set the DisplayMode property to "DropDown".

Add the "Exam Questions" Grid

1. Back in the designer, add a RadGrid control below the CategoriesTree within the FieldSet. In the Properties
window set these properties for the grid:

 ID: "gridExamQuestions".

 AutoGenerateColumns: false.

 AllowPaging: true.

 GridLines: None.

2. Open up the MasterTableView property and set the following sub properties:

 CommandItemDisplay: Top

 DataKeyNames: "ID"

 EditMode: InPlace

 Name: "Question"

 NoMasterRecordsText: "No questions to display"

3. Using the Properties window Events button (), add handlers for the following events:

 OnNeedDataSource

 OnItemDataBound

[ASP.NET] Adding the FieldSet and CategoriesTree

<fieldset>
 <legend id="legendTitle" runat="server">Questions for
 exam "<%=this.ExamTitle %>"</legend>

 <uc1:CategoriesTree ID="CategoriesTree1" runat="server"
 DisplayMode="DropDown" />
 <!-- exam questions grid goes here -->
</fieldset>

UI for ASP.NET AJAX

793 UI for ASP.NET AJAX

In the later sections we will implement these event handlers.

Adding Columns

Add columns to the exam grid:

Add columns to the exam questions grid:

[ASP.NET] Adding Columns to gridExams

<Columns>
 <telerik:GridButtonColumn CommandName="Select" Text="Select"
 UniqueName="column1" HeaderText="Select"
 ImageUrl="../Skins/ActiveSkill/Grid/Update.gif"
 ButtonType="ImageButton">
 </telerik:GridButtonColumn>
 <telerik:GridBoundColumn DataField="Title" HeaderText="Title"
 UniqueName="Title">
 </telerik:GridBoundColumn>
 <telerik:GridBoundColumn DataField="Description" HeaderText="Description"
 UniqueName="Description">
 </telerik:GridBoundColumn>
 <telerik:GridBoundColumn DataField="PassPercent" DataType="System.Int32"
 HeaderText="Pass Percent" UniqueName="PassPercent">
 </telerik:GridBoundColumn>
 <telerik:GridEditCommandColumn ButtonType="ImageButton"
 CancelImageUrl="../Skins/ActiveSkill/Grid/Cancel.gif"
 EditImageUrl="../Skins/ActiveSkill/Grid/Edit.gif"
 InsertImageUrl="../Skins/ActiveSkill/Grid/Update.gif"
 UpdateImageUrl="../Skins/ActiveSkill/Grid/Update.gif">
 </telerik:GridEditCommandColumn>
 <telerik:GridButtonColumn UniqueName="ExamsDeleteColumn"
 ButtonType="ImageButton" CommandName="Delete"
 ImageUrl="../Skins/ActiveSkill/Grid/Delete.gif"
 Text="Delete">
 </telerik:GridButtonColumn>
</Columns>

[ASP.NET] Adding Columns to gridExamQuestions

<Columns>
 <telerik:GridBoundColumn UniqueName="ID" DataField="ID"
 DataType="System.Int32" Display="False" Visible="False"
 FilterImageUrl="../Skins/ActiveSkill/Grid/Filter.gif"
 SortAscImageUrl="../Skins/ActiveSkill/Grid/SortAsc.gif"
 SortDescImageUrl="../Skins/ActiveSkill/Grid/SortDesc.gif">
 </telerik:GridBoundColumn>
 <telerik:GridBoundColumn UniqueName="IsInExam" DataField="IsInExam"
 DataType="System.boolean" Display="False">
 </telerik:GridBoundColumn>
 <telerik:GridTemplateColumn UniqueName="IsInExamColumn"
 HeaderText="Include">
 <ItemTemplate>
 <asp:CheckBox ID="cbIsInExam" runat="server" AutoPostBack="true"
 OnCheckedChanged="IsInExamCheckChanged"></asp:CheckBox>
 </ItemTemplate>
 </telerik:GridTemplateColumn>
 <telerik:GridHTMLEditorColumn DataField="HTML" HeaderText="Question"

UI for ASP.NET AJAX

794 UI for ASP.NET AJAX

 Review the layout

Take a look at a few critical pieces of the layout before moving on to coding:

 The EditMode property of the MasterTableView is set to "PopUp".

 The EditFormSettings tag of the Exam grid has a CaptionDataField property set to "Title". The exam "Title"
column will display in the grid pop-up caption area. Note that you can also use CaptionFormatString along
with CaptionDataField, e.g. "The title of the exam is {0}".

 The NoMasterRecordsText property of the Exam grid MasterTableView lets you set custom text to display
when there are no records, rather than the generic default message.

 The "cbIsInExam" check box is found within a GridTemplateColumn of the questions grid. You will be
accessing this check box in code later to implement custom behavior, so take a quick look at it now.

 The AllowAutomaticDeletes property is enabled for the exam grid. This allows us to leave out the data
source Delete() method call. Note that you still have to set up the data source delete parameters and
rebind the grid afterward.

 In the GridEditCommandColumn that displays the edit, insert or cancel buttons has a ButtonType of
"ImageButton" and that the image URLs reuse grid images found in the \skins directory.

 The field set surrounding the exam questions has a legend element that is bound to the ExamTitle property
of the "page".

Add Properties
This page uses the property ExamTitle in a binding expression within the legend. The property is refreshed
whenever a new row is selected in the exam grid.

 SortExpression="HTML" UniqueName="HTML" ReadOnly="true"
 FilterImageUrl="../Skins/ActiveSkill/Grid/Filter.gif"
 SortAscImageUrl="../Skins/ActiveSkill/Grid/SortAsc.gif"
 SortDescImageUrl="../Skins/ActiveSkill/Grid/SortDesc.gif">
 </telerik:GridHTMLEditorColumn>
</Columns>

[C#] Defining Properties

#region properties
Private Const ExamTitleKey As String = "ExamTitleKey"
Public Property ExamTitle() As String
 Get
 Return IIf(ViewState(ExamTitleKey) = Nothing,"",ViewState(ExamTitleKey).ToString())
 End Get
 Set
 ViewState(ExamTitleKey) = value
 End Set
End Property
#End Region properties

[C#] Defining Properties

#region properties
private const string ExamTitleKey = "ExamTitleKey";
public string ExamTitle
{
 get
 {
 return ViewState[ExamTitleKey] == null ? "" :
 ViewState[ExamTitleKey].ToString();

UI for ASP.NET AJAX

795 UI for ASP.NET AJAX

Add Private Methods
Add the ExamQuestionsRefresh() method shown below.

This method ties together the exams grid, the legend and the exams-questions grid. The method first checks
that something is selected in the grid. Then the selected item is cast to GridDataItem to access the "Title"
column. "Title" is assigned to the ExamTitle property and bound so that it shows up in the legend (by way of a
binding expression). You can find "ExamTitle" being used in a binding expression within "CreateExams.ascx".

The data source for the "detail" grid displaying questions relies on both the currently selected category ID and
the exam ID selected in the grid. Here, you assign those two values to the data source SelectParameters and
rebind the grid to display the questions for that exam/category combination.

 }
 set
 {
 ViewState[ExamTitleKey] = value;
 }
}
#endregion properties

[VB] Handling Private Events

#region private methods
' Handles common logic to refresh the grid for ExamQuestions
Private Sub ExamQuestionsRefresh()
 ' if an item is selected in the exams grid,
 ' save the ExamTitle for use the legend binding expression
 ' the legend), set the parameters for gridExamQuestions and rebind
 If gridExams.SelectedItems.Count > 0 Then
 Dim item As GridDataItem = TryCast(gridExams.SelectedItems(0), GridDataItem)
 Me.ExamTitle = item("Title").Text
 legendTitle.DataBind()
 dsExamQuestions.SelectParameters("CategoryID").DefaultValue = CategoriesTree1.CategoryID
 dsExamQuestions.SelectParameters("ExamID").DefaultValue = gridExams.SelectedValue.ToString
()
 gridExamQuestions.Rebind()
 End If
End Sub
#End Region

[C#] Handling Private Events

#region private methods
// Handles common logic to refresh the grid for ExamQuestions
private void ExamQuestionsRefresh()
{
 // if an item is selected in the exams grid,
 // save the ExamTitle for use the legend binding expression
 // the legend), set the parameters for gridExamQuestions and rebind
 if (gridExams.SelectedItems.Count > 0)
 {
 GridDataItem item = gridExams.SelectedItems[0] as GridDataItem;
 this.ExamTitle = item["Title"].Text;
 legendTitle.DataBind();
 dsExamQuestions.SelectParameters["CategoryID"].DefaultValue = CategoriesTree1.CategoryID;
 dsExamQuestions.SelectParameters["ExamID"].DefaultValue =
gridExams.SelectedValue.ToString();
 gridExamQuestions.Rebind();

UI for ASP.NET AJAX

796 UI for ASP.NET AJAX

Handle Page Events
 Add the code below to the Page_Load event handler. Attach the CategoriesTree NodeClick every time the

page loads.

 Add the code for "IsInExamCheckChanged" to handle the OnCheckChanged event for the "cbIsInExam"
checkbox.

This check box is contained in a questions grid template column. To get at data for the row associated
with the checkbox, snag the sender parameter and cast it to be CheckBox. Then step up to the checkbox
NamingContainer and cast that to be a GridDataItem. You can use the GridDataItem.GetDataKeyValue() to
extract the "QuestionID" for the row. If the check box is being checked, a record is added to the
ExamQuestions join table, otherwise the record is deleted.

 }
}
#endregion

How do you get the data associated with the checkbox? There is no CheckBox.Tag or Value. Instead, use
the naming container that contains the checkbox, which happens to be a GridDataItem.

[VB] Handling Page Events

#region page events
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' add the node click event handler every page load
 AddHandler CategoriesTree1.NodeClick, AddressOf CategoriesTree1_NodeClick
End Sub
' OnCheckChanged event handler
Public Sub IsInExamCheckChanged(ByVal sender As Object, ByVal e As EventArgs)
 ' Toggle the "IsInExam" checkbox and either insert or
 ' delete the corresponding record
 Dim cb As CheckBox = (TryCast(sender, CheckBox))
 ' How do you get the data associated with the checkbox?
 ' There is no CheckBox.Tag or Value.
 ' Use the naming container that holds the checkbox,
 ' which happens to be a GridDataItem.
 Dim item As GridDataItem = DirectCast(cb.NamingContainer, GridDataItem)
 Dim id As String = item.GetDataKeyValue("ID").ToString()
 If cb.Checked Then
 dsExamQuestions.InsertParameters("QuestionID").DefaultValue = id
 dsExamQuestions.Insert()
 Else
 dsExamQuestions.DeleteParameters("QuestionID").DefaultValue = id
 dsExamQuestions.Delete()
 End If
End Sub
#End Region

[C#] Handling Page Events

#region page events
protected void Page_Load(object sender, EventArgs e)
{
 // add the node click event handler every page load
 CategoriesTree1.NodeClick +=
 new RadTreeViewEventHandler(CategoriesTree1_NodeClick);
}

UI for ASP.NET AJAX

797 UI for ASP.NET AJAX

Handle Categories Tree Node Click
Add the code below to handle the categories tree NodeClick event. The event handler will only call the
ExamQuestionsRefresh() method to sync the legend and grid to the first row of the exam grid.

Handle Exam Grid Events
 Add the code below to handle the Exam grid events.

 The CRUD command events are essentially the same structure as used in the Questions maintenance. For
InsertCommand and UpdateCommand, the operation-appropriate item object is retrieved, its
ExtractValues() method called to fill a hash table and the hash table is used to fill data source parameters
before calling Insert() or Update(). DeleteCommand is also the same pattern from Questions
maintenance. Here the OwnerTableView DataKeyValues array is used to extract the primary key value,
and that value is used to populate data source parameters. Because the AllowAutomaticDeletes property

// OnCheckChanged event handler
public void IsInExamCheckChanged(object sender, EventArgs e)
{
 // Toggle the "IsInExam" checkbox and either insert or
 // delete the corresponding record
 CheckBox cb = (sender as CheckBox);
 // How do you get the data associated with the checkbox?
 // There is no CheckBox.Tag or Value.
 // Use the naming container that holds the checkbox,
 // which happens to be a GridDataItem.
 GridDataItem item = (GridDataItem)cb.NamingContainer;
 string id = item.GetDataKeyValue("ID").ToString();
 if (cb.Checked)
 {
 dsExamQuestions.InsertParameters["QuestionID"].DefaultValue = id;
 dsExamQuestions.Insert();
 }
 else
 {
 dsExamQuestions.DeleteParameters["QuestionID"].DefaultValue = id;
 dsExamQuestions.Delete();
 }
}
#endregion

[C#] Handling the Categories Tree Node Click

#region categories tree events
Sub CategoriesTree1_NodeClick(ByVal sender As Object, ByVal e As RadTreeNodeEventArgs)
 ' category has changed so run common logic
 ExamQuestionsRefresh()
End Sub
#End Region

[C#] Handling the Categories Tree Node Click

#region categories tree events
void CategoriesTree1_NodeClick(object sender, RadTreeNodeEventArgs e)
{
 // category has changed so run common logic
 ExamQuestionsRefresh();
}
#endregion

UI for ASP.NET AJAX

798 UI for ASP.NET AJAX

was set to true, the data source Delete() method is not called explicitly.

 gridExams_NeedDataSource simply assigns the exam grid data source.

 gridExams_SelectedIndexChanged calls the private method ExamQuestionsRefresh() to resync the legend
and the questions grid with the current selected row of the exam grid.

 Once the exam grid is bound, gridExams_DataBound selects the first exam row if nothing else has been
selected.

[VB] Handling Exam Grid Events

#region exams grid events
Protected Sub gridExams_InsertCommand(ByVal source As Object, ByVal e As
Telerik.Web.UI.GridCommandEventArgs)
 ' Get the item that appears when grid is in Insert Mode.
 ' Use the item object ExtractValues()method
 ' to fill a HashTable with values for the current row.
 Dim insertItem As GridEditFormInsertItem = DirectCast((e.Item.OwnerTableView.GetInsertItem
()), GridEditFormInsertItem)
 Dim ht As New Hashtable()
 insertItem.ExtractValues(ht)
 ' Load data source parameters from the hash table and insert the record.
 dsExams.InsertParameters("Title").DefaultValue = ht("Title").ToString()
 dsExams.InsertParameters("Description").DefaultValue = ht("Description").ToString()
 dsExams.InsertParameters("PassPercent").DefaultValue = ht("PassPercent").ToString()
 dsExams.Insert()
 ' The underlying data has now changed so rebind
 e.Item.OwnerTableView.Rebind()
End Sub
Protected Sub gridExams_UpdateCommand(ByVal source As Object, ByVal e As
GridCommandEventArgs)
 ' Get the item that appears when grid is in Update Mode.
 ' Use the item object ExtractValues()method
 ' to fill a HashTable with values for the current row.
 Dim item As GridEditableItem = TryCast(e.Item, GridEditableItem)
 Dim ht As New Hashtable()
 item.ExtractValues(ht)
 ' Load data source parameters from the hash table and update the record.
 Dim dataKeys As GridDataKeyArray = e.Item.OwnerTableView.DataKeyValues
 Dim id As String = dataKeys(e.Item.ItemIndex)("ID").ToString()
 dsExams.UpdateParameters("ID").DefaultValue = id
 dsExams.UpdateParameters("Title").DefaultValue = ht("Title").ToString()
 dsExams.UpdateParameters("Description").DefaultValue = ht("Description").ToString()
 dsExams.UpdateParameters("PassPercent").DefaultValue = ht("PassPercent").ToString()
 dsExams.Update()
 ' The underlying data has now changed so rebind
 e.Item.OwnerTableView.Rebind()
End Sub

Protected Sub gridExams_DeleteCommand(ByVal source As Object, ByVal e As
GridCommandEventArgs)
 ' Extract the OwnerTableView DataKeyValues array.
 ' Index into the array using the current row (e.Item.ItemIndex)
 ' and the key column of the primary key("ID").
 Dim dataKeys As GridDataKeyArray = e.Item.OwnerTableView.DataKeyValues
 Dim id As String = dataKeys(e.Item.ItemIndex)("ID").ToString()
 ' You don't need to call the data source Delete() here

UI for ASP.NET AJAX

799 UI for ASP.NET AJAX

 ' because you already set AllowAutomaticDeletes to true.
 e.Item.OwnerTableView.Rebind()
End Sub

Protected Sub gridExams_NeedDataSource(ByVal source As Object, ByVal e As
Telerik.Web.UI.GridNeedDataSourceEventArgs)
 gridExams.DataSource = dsExams
End Sub
Protected Sub gridExams_SelectedIndexChanged(ByVal sender As Object, ByVal e As EventArgs)
 ' the row in the exams grid has changed,
 ' so resync the other parts of the page.
 ExamQuestionsRefresh()
End Sub
Protected Sub gridExams_DataBound(ByVal sender As Object, ByVal e As EventArgs)
 ' There are items, but none selected yet. Select the first row as a default
 If (gridExams.Items.Count > 0) And (gridExams.SelectedIndexes.Count = 0) Then
 gridExams.Items(0).Selected = True
 ExamQuestionsRefresh()
 End If
End Sub
#End Region

[C#] Handling Exam Grid Events

#region exams grid events
protected void gridExams_InsertCommand(object source, Telerik.Web.UI.GridCommandEventArgs e)
{
 // Get the item that appears when grid is in Insert Mode.
 // Use the item object ExtractValues()method
 // to fill a HashTable with values for the current row.
 GridEditFormInsertItem insertItem =
 (GridEditFormInsertItem)(e.Item.OwnerTableView.GetInsertItem());
 Hashtable ht = new Hashtable();
 insertItem.ExtractValues(ht);
 // Load data source parameters from the hash table and insert the record.
 dsExams.InsertParameters["Title"].DefaultValue = ht["Title"].ToString();
 dsExams.InsertParameters["Description"].DefaultValue = ht["Description"].ToString();
 dsExams.InsertParameters["PassPercent"].DefaultValue = ht["PassPercent"].ToString();
 dsExams.Insert();
 // The underlying data has now changed so rebind
 e.Item.OwnerTableView.Rebind();
}
protected void gridExams_UpdateCommand(object source, GridCommandEventArgs e)
{
 // Get the item that appears when grid is in Update Mode.
 // Use the item object ExtractValues()method
 // to fill a HashTable with values for the current row.
 GridEditableItem item = e.Item as GridEditableItem;
 Hashtable ht = new Hashtable();
 item.ExtractValues(ht);
 // Load data source parameters from the hash table and update the record.
 GridDataKeyArray dataKeys = e.Item.OwnerTableView.DataKeyValues;
 string id = dataKeys[e.Item.ItemIndex]["ID"].ToString();
 dsExams.UpdateParameters["ID"].DefaultValue = id;
 dsExams.UpdateParameters["Title"].DefaultValue = ht["Title"].ToString();
 dsExams.UpdateParameters["Description"].DefaultValue = ht["Description"].ToString();

UI for ASP.NET AJAX

800 UI for ASP.NET AJAX

Handle Questions Grid Events
Add the event handling code below to populate the questions grid.

The NeedDataSource event simply assigns the appropriate data source. ItemDataBound fires for each row and
allows the current "IsInExam" value to be reflected in the checkbox found in a template column with the
UniqueName property "IsInExamColumn".

 dsExams.UpdateParameters["PassPercent"].DefaultValue = ht["PassPercent"].ToString();
 dsExams.Update();
 // The underlying data has now changed so rebind
 e.Item.OwnerTableView.Rebind();
}

protected void gridExams_DeleteCommand(object source, GridCommandEventArgs e)
{
 // Extract the OwnerTableView DataKeyValues array.
 // Index into the array using the current row (e.Item.ItemIndex)
 // and the key column of the primary key("ID").
 GridDataKeyArray dataKeys = e.Item.OwnerTableView.DataKeyValues;
 string id = dataKeys[e.Item.ItemIndex]["ID"].ToString();
 // You don't need to call the data source Delete() here
 // because you already set AllowAutomaticDeletes to true.
 e.Item.OwnerTableView.Rebind();
}

protected void gridExams_NeedDataSource(object source,
Telerik.Web.UI.GridNeedDataSourceEventArgs e)
{
 gridExams.DataSource = dsExams;
}
protected void gridExams_SelectedIndexChanged(object sender, EventArgs e)
{
 // the row in the exams grid has changed,
 // so resync the other parts of the page.
 ExamQuestionsRefresh();
}
protected void gridExams_DataBound(object sender, EventArgs e)
{
 // There are items, but none selected yet. Select the first row as a default
 if ((gridExams.Items.Count > 0) & (gridExams.SelectedIndexes.Count == 0))
 {
 gridExams.Items[0].Selected = true;
 ExamQuestionsRefresh();
 }
}
#endregion

Use UniqueName to identify columns in a grid. Each column in a RadGrid has an UniqueName property. This
property is assigned automatically by the designer (or the first time you want to access the columns if built
dynamically).

[VB] Handling Questions Grid Events

#region questions grid events
Protected Sub gridQuestions_NeedDataSource(ByVal source As Object, ByVal e As
GridNeedDataSourceEventArgs)
 gridExamQuestions.DataSource = dsExamQuestions

UI for ASP.NET AJAX

801 UI for ASP.NET AJAX

Implement the FirstLoad Method
As in the previous maintenance user controls, add the code below to call the categories tree InitialLoad()
method within the FirstLoad() implementation.

End Sub
Protected Sub gridQuestions_ItemDataBound(ByVal sender As Object, ByVal e As
GridItemEventArgs)
 If TypeOf e.Item Is GridDataItem Then
 Dim item As GridDataItem = TryCast(e.Item, GridDataItem)
 ' Extract "IsInExam" boolean value
 Dim ht As New Hashtable()
 item.ExtractValues(ht)
 Dim isInExam As Boolean = IIf(ht("IsInExam") = Nothing,False,Convert.ToBoolean(ht
("IsInExam")))
 ' get checkbox control and set checked according to extracted "IsInExam" value.
 Dim cbIsInExam As CheckBox = TryCast(item("IsInExamColumn").FindControl("cbIsInExam"),
CheckBox)
 cbIsInExam.Checked = isInExam
 End If
End Sub
#End Region

[C#] Handling Questions Grid Events

#region questions grid events
protected void gridQuestions_NeedDataSource(object source, GridNeedDataSourceEventArgs e)
{
 gridExamQuestions.DataSource = dsExamQuestions;
}
protected void gridQuestions_ItemDataBound(object sender, GridItemEventArgs e)
{
 if (e.Item is GridDataItem)
 {
 GridDataItem item = e.Item as GridDataItem;
 // Extract "IsInExam" boolean value
 Hashtable ht = new Hashtable();
 item.ExtractValues(ht);
 bool isInExam = ht["IsInExam"] == null ? false : Convert.ToBoolean(ht["IsInExam"]);
 // get checkbox control and set checked according to extracted "IsInExam" value.
 CheckBox cbIsInExam = item["IsInExamColumn"].FindControl("cbIsInExam") as CheckBox;
 cbIsInExam.Checked = isInExam;
 }
}
#endregion

[VB] Implementing the FirstLoad() Method

#region IASControl Members
Public Sub FirstLoad(ByVal args As System.Collections.Generic.Dictionary(Of String, String))
 CategoriesTree1.InitialLoad(dsAllCategories)
End Sub
#End Region

[C#] Implementing the FirstLoad() Method

#region IASControl Members
public void FirstLoad(System.Collections.Generic.Dictionary<string, string> args)
{

UI for ASP.NET AJAX

802 UI for ASP.NET AJAX

Make the Selected Row More Visible
The skin as it exists now already highlights the selected row slightly. To make the currently selected row more
visible you can change the skin by...

 Altering the graphic elements of the row background.

 Changing the font of the selected text within the CSS.

In this case we're going to take the easier and shorter way out by just changing the font to a brighter color. The
general pattern for changing the graphic was touched on when we first built the CategoryTree control in
"Databind and Use the Control" where we changed the default drop down arrow.

1. Locate Grid.ActiveSkill.CSS in the \skins folder and open it.

2. Find the first instance of ".SelectedRow_ActiveSkill" in the file.

3. Change the color to "color:#FFF".

The new style should make the font for the selected row pop out a little more like the example below.

Test the Control
Run the application and test the "page":

 Add, edit and delete exams. Notice that the record displays in a pop-up due to the EditMode property
setting.

 Filter questions using the CategoriesTree control.

 Check mark some of the questions to include them in an exam.

 Switch selection between exams to see the effect on the checkboxes. If you are on "Exam A" and check
"Question 1", move to "Exam B" and back to "Exam A", the check mark should persist.

 CategoriesTree1.InitialLoad(dsAllCategories);
}
#endregion

If you want to alter the selected row graphic in PhotoShop or some other graphics utility, look in the
\ActiveSkillUI\Skins\Grid folder for the file called "Sprite.gif".

[CSS] Changing the Selected Row Style

.SelectedRow_ActiveSkill
{
background:url('Grid/sprite.gif') 0 -300px repeat-x #343434;
/* RadControls Step by Step Tutorial */
color:#FFF;
}

UI for ASP.NET AJAX

803 UI for ASP.NET AJAX

In this chapter you built complete maintenance functionality for categories, questions and exam related tables.
You used the RadGrid heavily to leverage its powerful CRUD handling abilities, creating both master-detail in a
single grid and in two related grids. You used RadControls within a standard ASP.NET FormView along with Eval
() and Bind() binding expressions. You also built a user control that combined the RadComboBox with the
RadTreeView and reused your control throughout the application.

38.7 Summary

UI for ASP.NET AJAX

804 UI for ASP.NET AJAX

 Build the exam taking functionality.

 Use JavaScript objects to wrap client code. This will include using MS AJAX Library functionality including
registering of namespaces, classes, inheritance and events.

 Bind RadGrid data on the client.

 Consume web services on the client.

 Use LINQ to SQL to retrieve the exam data.

The user portion of ActiveSkill is made up of two main functions: Exam taking and scheduling. The exam
functionality actually consists of three pages. A listing of exam summaries showing title, description and pass
percent, a page for displaying and taking input for each question of the exam and finally a "finish" page that
summaries the exam results and displays the score by category in a RadChart. The general steps for this stage
of the application will be:

 Add the user controls for each "page". Implement the IASControl interface as we did in the Admin page.

 Define the user home page markup and code behind. This step will be similar to the Admin page, but we
will trigger the page change from a client event that triggers an AjaxRequest event. Using the client
event/AjaxRequest combination will let us change user controls from just about any user interface trigger,
including from the RadGrid row click, the RadTabStrip tab click and from standard HTML buttons firing
JavaScript. We will wrap the JavaScript required for this mechanism neatly in a JavaScript object.

 Add the code-behind for the user home page. This again will be quite similar to the Admin home page, but
the server TabClick event will be replaced with a AjaxRequest server event. We will also add the ability to
pass arguments that travel from the client, through the AjaxRequest event and passed along to the
IASControl FirstLoad() method. For example, when the user clicks the row of the grid containing an exam,
the exam ID is picked up and passed to the AjaxRequest to the "question" page FirstLoad() where the exam
ID is retrieved and used to populate a data structure with the data for the entire exam.

Add User Controls
Add four User Controls to the \User directory of the ActiveSkillUI project. These will represent the four "pages"
of user functionality.

1. Add the first control, naming it "TakeExamChoose.ascx". In the code-behind, implement the IASControl
interface as we did in the Admin Page chapter. Add "Telerik.ActiveSkill.Common" to the "Imports" (VB) or
"uses" (C#) section of the code. The code should look like the example below:

39 ActiveSkill: User Functionality

39.1 Objectives

39.2 Build the User Home Page

You can find the complete source for this project at:
\VS Projects\ActiveSkill Adding User Functionality\CS\001

[VB] Implementing IASControl

Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls

UI for ASP.NET AJAX

805 UI for ASP.NET AJAX

2. Repeat this step for the following controls: TakeExamQuestion.ascx, TakeExamFinish.ascx,
ScheduleExams.ascx.

 Trigger Page Changes Client Side
The dynamic changing of user control "pages" will be handled by a JavaScript object we will call
"DynamicControl".

1. Add a new JScript item to the ActiveSkillUI project \Scripts directory. Name it "DynamicControl.js".

2. Add the code below to the DynamicControl.js file. Notice that we're using the Microsoft AJAX Library Type
object to register a "ActiveSkill" namespace. By pre-pending all of our objects with "ActiveSkill." we make
the object distinct from others that might appear in a large project. The constructor simply saves a
reference to the RadAjaxManager for use later. The built-in "prototype" object is used to tack on
properties and methods of our DynamicControl object. We add only a single method "load()" that formats
the arguments and triggers the ajax request. When all is said and done, we call notifyScriptLoaded() to
notify the ScriptManager that the JavaScript is loaded.

Imports Telerik.ActiveSkill.Common
Namespace Telerik.ActiveSkill.UI.User
 Public Partial Class TakeExamChoose
 Inherits System.Web.UI.UserControl
 Implements IASControl
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 End Sub
 #region IASControl Members
 Public Sub FirstLoad(ByVal args As Dictionary(Of String, String))
 End Sub
#End Region
 End Class
End Namespace

[C#] Implementing IASControl

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Telerik.ActiveSkill.Common;
namespace Telerik.ActiveSkill.UI.User
{
 public partial class TakeExamChoose : System.Web.UI.UserControl, IASControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 #region IASControl Members
 public void FirstLoad(Dictionary<string, string> args)
 {
 }
 #endregion
 }
}

[JavaScript]

UI for ASP.NET AJAX

806 UI for ASP.NET AJAX

3. For JavaScript handled through the ScriptManager, we must add a reference to the script. You can do this
using the ScriptManager Scripts collection or add it to the markup:

Later we will replace our client methods with a call to this object with code similar to the example below:

Define User Home Page Markup
1. Copy the markup from "AdminHome.aspx" to "UserHome.aspx".

2. Change the RadSlidingZone "MasterSlidingPane" DockText property to "My Skills".

3. Modify the RadTabStrip "tsMain".

Type.registerNamespace("ActiveSkill");
// DynamicControl wraps the ChangeControl() JavaScript
// method used in the Admin page.
/* -- DynamicControl constructor -- */
ActiveSkill.DynamicControl = function(ajaxManager)
{
 // save a reference to the AjaxManager
 this._ajaxManager = ajaxManager;
}
ActiveSkill.DynamicControl.prototype = {
// the load() method passes a path to a user control
// and any arguments specified.
 load: function(path, args)
 {
 var ajaxArgs = "&ControlName=" + path + args;
 this._ajaxManager.ajaxRequest(ajaxArgs);
 }
}

// notify script manager that this js is loaded
if (typeof (Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

[ASP.NET] Adding the Script Reference

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/scripts/DynamicControl.js" />
 </Scripts>
</asp:ScriptManager>

Gotcha! Do not include a standard JavaScript tag to include your js file. It will interfere with the
ScriptManager loading your JavaScript and prevent Microsoft AJAX Library functions from being
loaded. For example, the "Type" object would not be recognized. Load your js file once only,
using a ScriptManager reference.

[JavaScript] DynamicControl Usage Example

function pageLoad() {
 if (window.DynamicControl == null) {
 window.DynamicControl = new ActiveSkill.DynamicControl(
 $find("<%= RadAjaxManager1.ClientID %>"));
 }
}
function MyFunction(myArgs) {
 window.DynamicControl.load('MyUserControlPath.ascx', myArgs);
}

UI for ASP.NET AJAX

807 UI for ASP.NET AJAX

 Change the RadTabStrip "tsMain" tabs collection to point at our new user controls "TakeExamChoose"
and "ScheduleExams".

 The tsMain ClickSelectedTab property should be set to true. Setting ClickSelectedTab to true will
allow us to click the tab and have the click events execute even when the clicked tab is already
selected. This is the behavior we want if we're in the middle of an exam and want to choose a new
exam.

 Add a OnClientTabSelected event handler and name it "ClientTabSelected". Eliminate the server
TabClick event. The markup for tsMain should look like the example below.

4. Add this block of JavaScript code just inside the <body> tag. pageLoad() is an event that fires courtesy of
having the ScriptManager on the page. This provides an opportunity to create an instance of our
DynamicControl object that can be used everywhere in the exam pages. The OnClientTabSelected event
handler fires when the user clicks a tab, which in turns causes DynamicControl to load a new user control.

5. Add references to the ScriptManager. This can be done either in the Properties window using the Services
and Scripts collections or within the markup. Later, the TakeExamQuestion.ascx control will be consuming
a web service and several JavaScript files. The web service path is the same path that can be used directly
in a browser to display the methods available for the server and to test that the web service is working.

[ASP.NET] Changing the TabStrip

<telerik:RadTabStrip ID="tsMain" runat="server" Orientation="VerticalRight"
ClickSelectedTab="true"
 SelectedIndex="0" OnClientTabSelected="ClientTabSelected">
 <Tabs>
 <telerik:RadTab runat="server" Text="Take Exam" Value="TakeExamChoose.ascx"
 ImageUrl="~/images/Exams.png">
 </telerik:RadTab>
 <telerik:RadTab runat="server" Text="Schedule" Value="ScheduleExams.ascx"
 ImageUrl="~/images/Schedule.png">
 </telerik:RadTab>
 </Tabs>
</telerik:RadTabStrip>

[JavaScript] Handling the PageLoad and the OnClientTabSelected Events

<telerik:RadScriptBlock ID="RadScriptBlock1" runat="server">
 <script type="text/javascript">
 /* -- Client event handlers -- */
 function pageLoad() {
 // if there isn't a global instance of DynamicControl,
 // create it and pass a reference to the RadAjaxManager client
 // object.
 if (window.DynamicControl == null) {
 window.DynamicControl = new ActiveSkill.DynamicControl(
 $find("<%= RadAjaxManager1.ClientID %>"));
 }
 }
 function ClientTabSelected(sender, args) {
 // use the DynamicControl load() method to swap user controls.
 window.DynamicControl.load(args.get_tab().get_value(), '');
 }
 </script>
</telerik:RadScriptBlock>

UI for ASP.NET AJAX

808 UI for ASP.NET AJAX

Add User Home Code-Behind
Copy over the logic from AdminHome.aspx. This logic will remain the same except for the following:

1. Replace the LoadUserControl() method with a new version that passes a dictionary of arguments:

[ASP.NET] Adding ScriptManager References

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="http://localhost/ActiveSkillWS/service1.asmx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Path="~/scripts/DynamicControl.js" />
 <asp:ScriptReference Path="~/scripts/ExamManager.js" />
 <asp:ScriptReference Path="~/scripts/UIManager.js" />
 </Scripts>
</asp:ScriptManager>

[VB] Loading the User Control

' The same LoadUserControl method as defined previously, but passes
' a dictionary object. You must also include a reference to System.Collections.Generic.
' When FirstLoad() is called, the dictionary is passed to the user control.
Public Function LoadUserControl(ByVal parentControl As Control, ByVal newControlPath As
String, ByVal isFirstLoad As Boolean, ByVal args As Dictionary(Of String, String)) As
Control
 Dim control As Control = Page.LoadControl(newControlPath)
 control.ID = newControlPath
 If isFirstLoad Then
 control.EnableViewState = False
 End If
 parentControl.Controls.Clear()
 parentControl.Controls.Add(control)
 If isFirstLoad Then
 control.EnableViewState = True
 (TryCast(control, IASControl)).FirstLoad(args)
 End If
 Return control
End Function

[C#] Loading the User Control

// The same LoadUserControl method as defined previously, but passes
// a dictionary object. You must also include a reference to System.Collections.Generic.
// When FirstLoad() is called, the dictionary is passed to the user control.
public Control LoadUserControl(Control parentControl, string newControlPath, bool
isFirstLoad,
Dictionary<string, string> args)
{
 Control control = Page.LoadControl(newControlPath);
 control.ID = newControlPath;
 if (isFirstLoad)
 {
 control.EnableViewState = false;
 }

UI for ASP.NET AJAX

809 UI for ASP.NET AJAX

2. Be sure that System.Collections.Generic is added to the "Imports" (VB) or "uses" (C#) section of the code.
This will support the Dictionary object.

3. Remove the old TabClick event handler and replace it with a AjaxRequest event handler. Also add a new
utility method "UnpackArgs()" to convert a string of "&" delimited name/value pairs to a Dictionary object.
Again, the logic is similar to the AdminPage version except that its triggered through the AjaxRequest
event which passes an Argument property. The client packages up the args to look something like
"&ControlName=TakeExamQuestion.ascx&id=123". This string is broken apart and repackaged as a
dictionary and passed to FirstLoad() where it can be addressed using the name of each element, e.g. "args
["id"];"

 parentControl.Controls.Clear();
 parentControl.Controls.Add(control);
 if (isFirstLoad)
 {
 control.EnableViewState = true;
 (control as IASControl).FirstLoad(args);
 }
 return control;
}

[VB] Handling the AjaxRequest

' Convert a string passed from the client to a Dictionary
' and call LoadUserControl with the dictionary of arguments
Protected Sub RadAjaxManager1_AjaxRequest(ByVal sender As Object, ByVal e As
Telerik.Web.UI.AjaxRequestEventArgs)
 Dim args As Dictionary(Of String, String) = UnpackArgs(e.Argument)
 CurrentControl = args("ControlName")
 LoadUserControl(PlaceHolder1, CurrentControl, True, args)
End Sub
' Take a string formatted somewhat like a query string,
' i.e. delimited with "&", break it up into an array
' parse and load a Dictionary object with key and value
' pairs.
Public Function UnpackArgs(ByVal arguments As String) As Dictionary(Of String, String)
 Dim result As New Dictionary(Of String, String)()
 Dim split As String() = arguments.Split("&"C)
 For Each str As String In split
 Dim pair As String() = str.Split("="C)
 If pair.Length = 2 Then
 If result.ContainsKey(pair(0)) Then
 result(pair(0)) = pair(1)
 Else
 result.Add(pair(0), pair(1))
 End If
 End If
 Next
 Return result
End Function

[C#] Handling the AjaxRequest

// Convert a string passed from the client to a Dictionary
// and call LoadUserControl with the dictionary of arguments
protected void RadAjaxManager1_AjaxRequest(object sender,
 Telerik.Web.UI.AjaxRequestEventArgs e)
{

UI for ASP.NET AJAX

810 UI for ASP.NET AJAX

Test the Navigation and Parameters
 Test the application so far. You will want to be sure that navigation is working and that parameters are being
passed:

1. Add the following button element to the "TakeExamChoose.ascx" markup that will navigate and pass
parameters to the TakeExamQuestion page.

2. Add a literal and a TextBox to the TakeExamQuestion control:

3. Add code to the FirstLoad() method that populates the textbox with parameters sent from
TakeExamQuestions.ascx.

 Dictionary<string, string> args = UnpackArgs(e.Argument);
 CurrentControl = args["ControlName"];
 LoadUserControl(PlaceHolder1, CurrentControl, true, args);
}
// Take a string formatted somewhat like a query string,
// i.e. delimited with "&", break it up into an array
// parse and load a Dictionary object with key and value
// pairs.
public Dictionary<string, string> UnpackArgs(string arguments)
{
 Dictionary<string, string> result = new Dictionary<string, string>();
 string[] split = arguments.Split('&');
 foreach (string str in split)
 {
 string[] pair = str.Split('=');
 if (pair.Length == 2)
 {
 if (result.ContainsKey(pair[0]))
 result[pair[0]] = pair[1];
 else
 result.Add(pair[0], pair[1]);
 }
 }
 return result;
}

[ASP.NET] Adding Stub Client

<input id="Button1" type="button" value="button"
onclick="window.DynamicControl.load(
'TakeExamQuestion.ascx',
'&ControlName=TakeExamQuestion.ascx&id=123');" />

[ASP.NET] Adding a TextBox

question
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

[VB] Passing Args

Public Sub FirstLoad(ByVal args As Dictionary(Of String, String))
 TextBox1.Text = args("id")
End Sub

UI for ASP.NET AJAX

811 UI for ASP.NET AJAX

4. In the Solution Explorer, right-click the ActiveSkillUI project and select Set as Startup Project from the
context menu. Right-click UserHome.aspx and select Set as Start Page from the context menu. Press Ctl-
F5 to run the application.

Now we can fill out the Choose Exam control using a RadGrid and a template. Each row only has a single
column, but the template allows us to arrange bound controls any way we like. The finished control will display
exam information to appear like the example screenshot below. Youl'll notice that the row with the mouse over
it is slightly highlighted.

[C#] Passing Args

public void FirstLoad(Dictionary<string, string> args)
{
 TextBox1.Text = args["id"];
}

39.3 Build the Choose Exam Control

UI for ASP.NET AJAX

812 UI for ASP.NET AJAX

1. Add a SqlDataSource to the control. Set the ID property to be "dsExam". Point the ConnectionString
property at the ActiveSkillConnectionString we've been using thus far. Set the SelectCommand property to
"Skill_Exam_Select" and SelectCommandType to "StoredProcedure". You can configure the data source in
the designer or in the markup. The markup should look something like the example below when you're
finished.

2. Add a RadGrid to the control. Set the ID property of the grid to "gridExam". Set the other RadGrid
properties:

 AllowPaging: true.

 AutoGenerateColumns: false.

 GridLines: None.

 PageSize: 3.

3. In the MasterTableView property for the grid:

 ClientDataKeyNames: "id"

 DataKeyNames: "ID"

You can find the complete source for this project at:
VS Projects\ActiveSkill Adding User Functionality\CS\002

[ASP.NET] Defining the SqlDataSource

<%--Data sources --%>
<asp:SqlDataSource ID="dsExam" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="Skill_Exam_Select" SelectCommandType="StoredProcedure">
</asp:SqlDataSource>

UI for ASP.NET AJAX

813 UI for ASP.NET AJAX

4. In the Properties window, click the MasterTableView Columns property ellipses. Add two columns:

 A GridBoundColumn with DataField property "ID" and Visible property "false".

 A GridTemplateColumn with UniqueName "TemplateColumn" and HeaderText "Select an Exam".

5. In the ClientSettings property of the grid:

 EnableRowHoverStyle: true.

 ClientEvents.OnRowSelected: "RowSelected".

 Selecting.AllowRowSelect: true.

6. From the Smart Tag select Edit Templates. Using the Smart Tag menu, navigate to the ItemTemplate.

7. Drop a standard ASP.NET Label control on the ItemTemplate. Set the ID property to "lblTitle" and CssClass
property to "skillTitle". From the label's Smart Tag select Edit Bindings... Provide a custom data binding
'Eval("Title")' to the Text property of the label:

EnableRowHoverStyle when true highlights the row that the mouse is currently over. If
Selecting.AllowRowSelect is true, you can still select rows on the client side, but there's no visual
feedback as the mouse passes over. Finally, you need to respond to the
ClientEvents.OnRowSelected event. You can use the args passed to the event to get at the key
value for the row (specified by ClientDataKeyNames):

mykeyvalue = args.getDataKeyValue("id");

UI for ASP.NET AJAX

814 UI for ASP.NET AJAX

8. Use the enter key to add a hard break (
) after this label.

9. Drop five more Labels in the template and set the properties as follows:

 ID: "lblDescription", CssClass: "skillNormal", Text binding expression: '<%# Eval("Description") %>'. Use
the enter key to add a hard break (
) after this label.

 CssClass: "skillNormal", Text: 'Number of questions:'.

 ID: "lblNumberOfQuestions", CssClass: "skillBlue", Text binding expression: '<%# Eval
("NumberOfQuestions") %>'. Use the enter key to add a hard break (
) after this label.

 CssClass: "skillNormal", Text: "Percentage required to pass: %'.

 ID: "lblPercent", CssClass: "skillNormal", Text binding expression: '<%# Eval("PassPercent") %>'. Use the
enter key to add a hard break (
) after this label.

10. Add a RadSlider after the last label. Set the ID property to "sldPassPercent", Enabled to "false",
MaximumValue to "100" and MinimumValue to "0". Set properties ShowDecreaseHandle, ShowDraghandle
and ShowIncreaseHandle all to "false". Bind the Value property to the PassPercent. You can use the Edit
Bindings... dialog in the same way you did with the previous Label controls, but in this case, check the
"Show all Properties" checkbox, locate Value in the Bindable Properties list, then set the custom binding to
'<%# 'Eval("PassPercent") %>'. You can also populate the bindings directly in the markup.

The markup for the grid should look like the example below.

[ASP.NET] The RadGrid Definition

<%--Grid--%>
<telerik:RadGrid ID="gridExam" runat="server" AutoGenerateColumns="False"
 GridLines="None" OnNeedDataSource="gridExam_NeedDataSource"
 PageSize="3" AllowPaging="True">
 <PagerStyle FirstPageImageUrl="../Skins/ActiveSkill/Grid/PagingFirst.gif"
 LastPageImageUrl="../Skins/ActiveSkill/Grid/PagingLast.gif"
 NextPageImageUrl="../Skins/ActiveSkill/Grid/PagingNext.gif"
 PrevPageImageUrl="../Skins/ActiveSkill/Grid/PagingPrev.gif" />
 <MasterTableView ClientDataKeyNames="id" DataKeyNames="ID">
 <Columns>

UI for ASP.NET AJAX

815 UI for ASP.NET AJAX

11. In the code-behind for TakeExamChoose.ascx, add a NeedDataSource event handler. This will simply assign
the "dsExam" data source to pull in all of the Exam table records.

12. Press Ctl-F5 to run the example. You should be able to select an exam by clicking one of the rows. The
TakeExamQuestion.ascx control should display and be populated with the ID for the selected exam.

 <telerik:GridBoundColumn DataField="ID" UniqueName="column1" Visible="False">
 </telerik:GridBoundColumn>
 <telerik:GridTemplateColumn UniqueName="TemplateColumn" HeaderText="Select an Exam">
 <ItemTemplate>

 <asp:Label ID="lblTitle" runat="server" CssClass="skillTitle"
 Text='<%# Eval("Title") %>'></asp:Label>

 <asp:Label ID="lblDescription" runat="server" CssClass="skillNormal"
 Text='<%# Eval("Description") %>'></asp:Label>

 <asp:Label ID="Label1" runat="server" CssClass="skillNormal"
 Text="Number of questions:"></asp:Label>
 <asp:Label ID="lblNumberOfQuestions" runat="server"
 CssClass="skillBlue" Text='<%# Eval("NumberOfQuestions") %>'></asp:Label>

 <asp:Label ID="lblPassPercent" runat="server" CssClass="skillNormal"
 Text="Percentage required to pass: %"></asp:Label>
 <asp:Label ID="lblPercent" runat="server" CssClass="skillBlue"
 Text='<%# Eval("PassPercent") %>'></asp:Label>
 <telerik:RadSlider ID="sldPassPercent" runat="server"
 Enabled="False" MaximumValue="100" MinimumValue="0"
 ShowDecreaseHandle="False" ShowDragHandle="False"
 ShowIncreaseHandle="False" Value='<%# Eval("PassPercent") %>'
 />

 </ItemTemplate>
 </telerik:GridTemplateColumn>
 </Columns>
 </MasterTableView>
 <ClientSettings EnableRowHoverStyle="True">
 <ClientEvents OnRowSelected="RowSelected" />
 <Selecting AllowRowSelect="True" />
 </ClientSettings>
</telerik:RadGrid>

[VB] Handling the Grid NeedDataSource Event

Protected Sub gridExam_NeedDataSource(ByVal source As Object, ByVal e As
Telerik.Web.UI.GridNeedDataSourceEventArgs)
 (TryCast(source, RadGrid)).DataSource = dsExam
End Sub

[C#] Handling the Grid NeedDataSource Event

protected void gridExam_NeedDataSource(object source,
 Telerik.Web.UI.GridNeedDataSourceEventArgs e)
{
 (source as RadGrid).DataSource = dsExam;
}

39.4 Build the Exam Question Control

UI for ASP.NET AJAX

816 UI for ASP.NET AJAX

Part of the purpose for the exam taking controls is to demonstrate how we can work entirely on the client side
without coming up for air. When the Exam Question control first loads, the only thing that happens on the
server is to take the exam id from the Dictionary arguments passed in and stuff it in a hidden field on the page.
From there on, it's all client side. Even binding the data to the grid. When the exam question page loads on the
client, a web service is called that returns the exam record, all of the questions and all of the responses for
each question. In addition, we tack on a response column to store the user's choices as they take the exam.

We're also going to use the MS AJAX Library heavily in this example to wrap the functionality surrounding the
exam. Not just the exam itself, but where we are in the exam, navigating forward and back through the
questions and returning results when we complete. We also use a JavaScript object to wrap the UI elements of
the page in one convenient spot.

The user interface for the question "page" will display a FieldSet with the title of the exam in the legend, the
question text, a series of responses and back/next buttons.

The general steps to build this page are:

 Build and test the web service.

 Define the markup for the exam question control.

 Create the ExamManager client object.

 Create the UIManager client object.

 Add client code to the exam question control that will consume the new client objects.

 Code the FirstLoad() method in the code behind.

 Test taking an exam all the way through to navigation on to the "finish" control.

Build and Test the Web Service.
The web service will be minimal and have only a single method that returns all the data for a single exam. The
MS AJAX Library provides infrastructure so that properly configured web services serialize results into JSON,
which in turn is immediately usable in client code. We will use a LINQ to SQL item that will automatically
generate the classes we need to easily retrieve the data with a few lines of code.

When we first set up the ActiveSkill solution, we created an ActiveSkillWS project that we will use as a starting
point.

1. In the ActiveSkillWS web.config file, add the ActiveSkill connection string. If the connectionStrings element
already exists be sure to replace it.

UI for ASP.NET AJAX

817 UI for ASP.NET AJAX

2. Right-click the ActiveSkillWS project and select Add | New Item from the context menu. In the Add New
Item dialog that displays, choose "LINQ to SQL Classes" and name the item "Exam.dbml".

3. A design surface will display to allow the new item to be configured. From the View menu in Visual Studio,
select Server Explorer. Right-click the Data Connections node and select Add Connection. In the Add
Connection dialog that displays, click the Change button to display the Change Data Source dialog, select
"SQL Server" and click OK to close the dialog. Back in the Add Connection dialog, enter the name of the
server where the ActiveSkill database resides. For example, this might be "(local)" for your local SQL server
or "(local)\SQLEXPRESS" if you have only SQLEXPRESS installed. Click OK to close the Add Connection dialog.

[XML] Adding the Connection String

<connectionStrings>
 <add name="ActiveSkillConnectionString"
 connectionString="Data Source=localhost;Initial Catalog=ActiveSkill;Integrated
Security=True"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

UI for ASP.NET AJAX

818 UI for ASP.NET AJAX

4. Now you should be able to open the list of tables that will include the ActiveSkill tables for Exam,
Exam_Question, Question and Response.

UI for ASP.NET AJAX

819 UI for ASP.NET AJAX

5. Drag each of the tables from the server explorer to the design surface: Exam, Exam_Questions, Question
and Response. Notice that the relationships are already defined between these tables and denoted by the
arrows pointing between tables.

UI for ASP.NET AJAX

820 UI for ASP.NET AJAX

6. Click on the relationship arrow between the Exam and Exam_Questions. In the properties window set the
Parent Property Access to "Internal"

The relationships between tables allow much more interaction on the server than when they are
serialized. When serialized the rules become stricter and the possibility of "Circular reference" errors are
more likely.

UI for ASP.NET AJAX

821 UI for ASP.NET AJAX

7. Click the Exam_Question to Question relationship arrow. Set the Child Property to "False".

8. Click the Question to Response relationship arrow. Set the Parent Property Access to "Internal".

9. Open Service1.asmx (added by default when we first created the web service project) and add the code
below. Notice the "ScriptService" attribute. ScriptService lets the web service be consumed by a client
script. This happens automatically, just by adding the attribute. We will see in a moment how a
JavaScript proxy class is generated for us. Also notice how the LINQ code in the GetExam() method is brief
and to the point. Older versions of this same code without LINQ were quite wordy in comparison. We end
up with an Exam object that was defined for us when we created the Exam.DBML.

We will be looking at the data output by these entities in XML form as we test the web service. You may
want to play with these relationships and see how they affect data.

[VB] Defining the Web Service

[C#] Defining the Web Service

using System.Configuration;
using System.Data.Linq;
using System.Linq;
using System.Web.Services;
using System.Web.UI.WebControls;
namespace ActiveSkillWS
{
 [WebService(Namespace = "http://www.telerik.com (http://www.telerik.com/)/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]
 [System.Web.Script.Services.ScriptService]
 public class Service1 : System.Web.Services.WebService
 {
 private string connectionString =
 ConfigurationManager.ConnectionStrings["ActiveSkillConnectionString"].ConnectionString;
 [WebMethod]

UI for ASP.NET AJAX

822 UI for ASP.NET AJAX

10. In the Solution Explorer, right-click the web service and set it to be the startup project. Press F5 to run the
service in the browser. This will display a default page listing our service methods, where we have only the
one, "GetExam()".

11. Click GetExam() to display a page that allows us to test the service manually. Enter a "3" (a sample exam
that should be available in the database) and click the Invoke button.

 public Exam GetExam(int id)
 {
 // Create an instance of the DataContext class automatically
 // produced by defining Exam.dbml. Pass the ActiveSkill connection
 // string in the constructor.
 ExamDataContext examContext =
 new ExamDataContext(connectionString);
 // retrieve all exams
 Table<Exam> exams = examContext.Exams;
 // retrieve just the exam that matches the ID passed in.
 return exams.Single(e => e.ID == id) as Exam;
 }
 }
}

UI for ASP.NET AJAX

823 UI for ASP.NET AJAX

If our web service is working properly, the data should display as an XML/SOAP response where we can see
the Exam information, followed by Exam_Questions that in turn contain Responses. All of this information
will be available to us on the client.

The JavaScript Proxy

UI for ASP.NET AJAX

824 UI for ASP.NET AJAX

Before leaving the web service, look at the JavaScript proxy that's created automatically by the ScriptManager.
You can see the file by using a special path to the web service. Add \js to the web service, or \jsdebug to return
a commented version of the same code.

If the JavaScript is not displayed in the browser, save it locally for viewing. The commented version will look
something like the code sample below. You can see that it registers a "ActiveSkillWS" namespace used to qualify
the name of its one object "Service1". Service1 has some inherited behavior for defining the succeeded and
failed callback functions, as well as path, timeout and user context properties. The GetExam() function is
defined for us so that we simply need to call it from our JavaScript. Also be aware that if you don't manually
include the JavaScript file in your application, ScriptManager will retrieve the file behind the scenes.

[JavaScript] /jsdebug Output from the Web Service

Type.registerNamespace('ActiveSkillWS');
ActiveSkillWS.Service1=function() {
ActiveSkillWS.Service1.initializeBase(this);
this._timeout = 0;
this._userContext = null;
this._succeeded = null;
this._failed = null;
}
ActiveSkillWS.Service1.prototype={
_get_path:function() {
var p = this.get_path();
if (p) return p;
else return ActiveSkillWS.Service1._staticInstance.get_path();},
GetExam:function(id,succeededCallback, failedCallback, userContext) {
/// <param name="id" type="Number">System.Int32</param>
/// <param name="succeededCallback" type="Function" optional="true"
mayBeNull="true"></param>
/// <param name="failedCallback" type="Function" optional="true" mayBeNull="true"></param>
/// <param name="userContext" optional="true" mayBeNull="true"></param>

UI for ASP.NET AJAX

825 UI for ASP.NET AJAX

Define Exam Question Control Markup.
The TakeExamQuestion.ascx control will consist of a FieldSet with the exam title in the Legend. Within the
FieldSet will be a Label showing the text for the current question. Below that a RadGrid will display the
possible responses to the question. At the bottom of the FieldSet will be two standard HTML buttons that
navigate forward and back through the exam. When the user is on the last question and clicks "Next", the user
navigates to the "TakeExamFinish.ascx" control.

1. Back in the \User folder of the ActiveSkillUI project, locate the TakeExamQuestion.ascx file and open the
markup source for editing.

2. At the top of the file, add two hidden fields with id's "examIDField" and "examIDFieldSave". We will use
these two fields to detect when the user has changed exams.

return this._invoke(this._get_path(), 'GetExam',false,
{id:id},succeededCallback,failedCallback,userContext); }}
ActiveSkillWS.Service1.registerClass('ActiveSkillWS.Service1',Sys.Net.WebServiceProxy);
ActiveSkillWS.Service1._staticInstance = new ActiveSkillWS.Service1();
ActiveSkillWS.Service1.set_path = function(value) {
ActiveSkillWS.Service1._staticInstance.set_path(value); }
ActiveSkillWS.Service1.get_path = function() {
/// <value type="String" mayBeNull="true">The service url.</value>
return ActiveSkillWS.Service1._staticInstance.get_path();}
ActiveSkillWS.Service1.set_timeout = function(value) {
ActiveSkillWS.Service1._staticInstance.set_timeout(value); }
ActiveSkillWS.Service1.get_timeout = function() {
/// <value type="Number">The service timeout.</value>
return ActiveSkillWS.Service1._staticInstance.get_timeout(); }
ActiveSkillWS.Service1.set_defaultUserContext = function(value) {
ActiveSkillWS.Service1._staticInstance.set_defaultUserContext(value); }
ActiveSkillWS.Service1.get_defaultUserContext = function() {
/// <value mayBeNull="true">The service default user context.</value>
return ActiveSkillWS.Service1._staticInstance.get_defaultUserContext(); }
ActiveSkillWS.Service1.set_defaultSucceededCallback = function(value) {
ActiveSkillWS.Service1._staticInstance.set_defaultSucceededCallback(value); }
ActiveSkillWS.Service1.get_defaultSucceededCallback = function() {
/// <value type="Function" mayBeNull="true">The service default succeeded callback.</value>
return ActiveSkillWS.Service1._staticInstance.get_defaultSucceededCallback(); }
ActiveSkillWS.Service1.set_defaultFailedCallback = function(value) {
ActiveSkillWS.Service1._staticInstance.set_defaultFailedCallback(value); }
ActiveSkillWS.Service1.get_defaultFailedCallback = function() {
/// <value type="Function" mayBeNull="true">The service default failed callback.</value>
return ActiveSkillWS.Service1._staticInstance.get_defaultFailedCallback(); }
ActiveSkillWS.Service1.set_path("/ActiveSkillWS/Service1.asmx");
ActiveSkillWS.Service1.GetExam= function(id,onSuccess,onFailed,userContext) {
/// <param name="id" type="Number">System.Int32</param>
/// <param name="succeededCallback" type="Function" optional="true"
mayBeNull="true"></param>
/// <param name="failedCallback" type="Function" optional="true" mayBeNull="true"></param>
/// <param name="userContext" optional="true" mayBeNull="true"></param>
ActiveSkillWS.Service1._staticInstance.GetExam(id,onSuccess,onFailed,userContext); }
var gtc = Sys.Net.WebServiceProxy._generateTypedConstructor;
if (typeof(ActiveSkillWS.Exam) === 'undefined') {
ActiveSkillWS.Exam=gtc("ActiveSkillWS.Exam");
ActiveSkillWS.Exam.registerClass('ActiveSkillWS.Exam');
}

UI for ASP.NET AJAX

826 UI for ASP.NET AJAX

3. Add the FieldSet and Legend definition below to the markup. Notice that the FieldSet has some styling for
positioning its contents. The legend has some temporary text "Exam title" that will be replaced with the
actual exam title using data from the web service.

4. In the designer, add a RadGrid inside the FieldSet tag with ID property "gridQuestion",
AutoGenerateColumns set to "false", EnableViewState set to "false"and GridLines set to "None".

5. Set the MasterTableView properties NoMasterRecordsText to "", TableLayout to "Fixed" and ShowHeader
to "false".

6. Add the following columns using the Columns collection editor or directly in the markup:

 A GridBoundColumn with DataField "ID" and Visible equal to "false".

 A GridCheckBoxColumn with DataField "Correct" and Visible equal to "false".

 A GridTemplateColumn with DataField "UserChoice" and UniqueName "UserChoice". In the
ItemTemplate for the column add a single standard ASP.NET Checkbox control with ID "cbUserChoice".
Set the columns HeaderStyle.Width to "60px".

 A GridBoundColumn with DataField "HTML".

7. Set the ClientSettings.ClientEvents to JavaScript functions to be defined later:

 OnCommand to "ClientCommand".

 OnRowDataBound to "RowDataBound".

[ASP.NET] Adding the Hidden Fields

<%--hidden fields--%>
<input id="examIDField" type="hidden" runat="server"
 value="0" />
<input id="examIDFieldSave" type="hidden" runat="server"
 value="0" />

[ASP.NET] Adding the FieldSet

<fieldset id="Fieldset1" style="border-color: #444; margin-right: 10px;
 margin-bottom: 10px; padding: 5px" runat="server">
 <legend id="questionLegend" cssclass="skillTitle" runat="server">
 Exam title</legend>

<%-- Grid will go here --%>

</fieldset>

[ASP.NET] Markup for the Grid

<telerik:RadGrid ID="gridQuestion" runat="server" AutoGenerateColumns="False"
 EnableViewState="False" GridLines="None">
 <MasterTableView NoMasterRecordsText="" ShowHeader="false"
 TableLayout="Fixed">
 <Columns>
 <telerik:GridBoundColumn DataField="ID" UniqueName="ID"
 Visible="False">
 </telerik:GridBoundColumn>
 <telerik:GridCheckBoxColumn DataField="Correct" UniqueName="Correct"
 Visible="False">
 </telerik:GridCheckBoxColumn>
 <telerik:GridTemplateColumn DataField="UserChoice"
 UniqueName="UserChoice">

UI for ASP.NET AJAX

827 UI for ASP.NET AJAX

8. Below the grid, add two HTML buttons. Notice that the buttons are contained with divs that are styled to
position the buttons. The onclick event points to functions we will code later, goNext() and goBack(). The
onmouseover and onmouseout events change the source image of the buttons when the mouse passes over.

Create the ExamManager Client Object.
The exam question control will need client code to navigate through the exam data and to keep track of the
current question within the exam. The client code should also store the user responses to the questions and
when the exam completes, summarize the results. Rather than scatter this code directly in procedure
JavaScript code within the markup, this step creates an ExamManager JavaScript object that wraps all this
functionality and is consumed by client code in the markup.

1. In the ActiveSkillUI project \Scripts directory, add a new JScript item "ExamManager.js".

2. Add the code below to define the ExamManager object.

Inside the code for ExamManager are a few details to take notice of:

 The constructor passes in the examID. The exam id originates from the TakeExamChoose.ascx control,
was passed to the FirstLoad of the TakeExamQuestion.ascx control and placed to the "examIDField"
hidden field. The hidden field value is retrieved just before ExamManager is constructed.

 The constructor also passes functions to handle the OnLoaded and OnFinish events of this object.
OnLoaded fires just after the web service returns with its data. OnFinish fires when we run out of
questions and the user tries to navigate to the next question.

 This object descends from "Sys.Component" (see the registerClass() method at the end of this code
sample) and so has access to the event dispatching mechanism we use here to handle OnLoaded and
OnFinish events. Once the call to initilizeBase() in the constructor is performed, the Sys.Component
functionality is available.

 In the constructor fires the web service method "ActiveSkillWS.Service1.GetExam()", passing functions

 <ItemTemplate>
 <asp:CheckBox ID="cbUserChoice" runat="server" />
 </ItemTemplate>
 <HeaderStyle Width="60px" />
 </telerik:GridTemplateColumn>
 <telerik:GridBoundColumn DataField="HTML" UniqueName="HTML">
 </telerik:GridBoundColumn>
 </Columns>
 </MasterTableView>
 <ClientSettings>
 <ClientEvents OnCommand="ClientCommand" OnRowDataBound="RowDataBound" />
 </ClientSettings>
</telerik:RadGrid>

[ASP.NET] Adding Next and Back Buttons

<div style="float: right; padding-right: 10px; padding-bottom: 5x">
 <img runat="server" id="btnNext" src="../Images/next_btn_2.png"
 onclick="javascript:goNext();" onmouseover="this.src='../Images/next_btn_1.png'"
 onmouseout="this.src='../Images/next_btn_2.png'" />
</div>
<div style="float: right; padding-right: 10px; padding-bottom: 5px">
 <img runat="server" id="btnBack" src="../Images/back_btn_2.png"
 onclick="javascript:goBack();" onmouseover="this.src='../Images/back_btn_1.png'"
 onmouseout="this.src='../Images/back_btn_2.png'" />
</div>

UI for ASP.NET AJAX

828 UI for ASP.NET AJAX

that will run if the web service succeeds or fails. GetExam() also passes a context object "this", i.e.
the ExamManager itself.

 The prototype where methods and properties are defined for ExamManager has some simple
properties for tracking the exam itself, the current question within the exam, the number of
questions in the exam, and if we are currently on the last question.

 Navigation methods in the prototype, next() and back(), increment and decrement the current
question index and check for the upper and lower bounds of the number of questions in the exam.
The next() method has the additional responsibility of firing the OnFinish event if we're trying to
navigate past the last question.

 The prototype finish() method iterates the questions and tallies the total and incorrect responses.
This method also uses a ExamResults object (to be defined next) to store the results by question
category. The finish() method serializes the results and builds a string of arguments that are
ultimately sent to the TakeExamFinish.ascx control for display.

[JavaScript] Defining the ExamManager

Type.registerNamespace("ActiveSkill");
/* -- Exam Manager -- */
ActiveSkill.ExamManager = function(examID, onLoadedHandler, onFinishHandler)
{
 // Sys.Component supports event dispatching mechanism
 ActiveSkill.ExamManager.initializeBase(this);
 this._exam;
 this._index = 0;
 this._onLoadedHandler = onLoadedHandler;
 this._onFinishHandler = onFinishHandler;
 ActiveSkillWS.Service1.GetExam(examID, this.serviceSuccess, this.serviceFail, this);
}
ActiveSkill.ExamManager.prototype = {
 /* properties */
 get_exam: function()
 {
 return this._exam;
 },
 get_index: function()
 {
 return this._index;
 },
 get_question: function()
 {
 return this._exam.Exam_Questions[this._index].Question;
 },
 get_count: function()
 {
 return this._exam.Exam_Questions.length;
 },
 get_isLastQuestion: function()
 {
 return this._index == this.get_count() - 1;
 },
 /* navigation methods */
 next: function()
 {
 if (this.get_isLastQuestion())
 {

UI for ASP.NET AJAX

829 UI for ASP.NET AJAX

 this.finish();
 }
 else
 {
 this._index++;
 }
 },
 back: function() {
 if (this._index > 0) {
 this._index--;
 }
 },
 // Iterate the exam results, comparing the user responses
 // with the responses marked as "correct".
 // Tally the total and incorrect responses, keeping
 // track of the responses by category.
 finish: function()
 {
 // create an instance of
 var results = new ExamResults();
 // iterate the questions
 for (var q in this._exam.Exam_Questions)
 {
 // get the category for the current question and add it to
 // a list of categories if not already present
 var categoryID = this._exam.Exam_Questions[q].Question.CategoryID;
 var category = results.find(categoryID);
 if (typeof (category) == 'undefined')
 {
 category = results.add(categoryID);
 }
 // Add to the total responses for this category
 category.Total++;
 // Iterate the responses and add to incorrect responses
 // tally for this category.
 for (var r in this._exam.Exam_Questions[q].Question.Responses)
 {
 var response = this._exam.Exam_Questions[q].Question.Responses[r];
 if (response.UserChoice != response.Correct)
 {
 category.Incorrect++;
 break;
 }
 }
 }

 // convert the ExamResults object instance to a string
 var resultsString = Sys.Serialization.JavaScriptSerializer.serialize(results);
 // format an arguments string
 var args = "&passPercent=" + this._exam.PassPercent;
 args += "&title=" + this._exam.Title;
 args += "&examResults=" + resultsString;
 // add a OnFinish event and fire the event
 this.add_examFinish(this._onFinishHandler);
 var handler = this.get_events().getHandler("examFinish");

UI for ASP.NET AJAX

830 UI for ASP.NET AJAX

3. In the same file, add JavaScript objects that encapsulate categories and the exam results. The ExamResults
object contains an array of Category objects where each Category tracks its own category ID, the total
questions for the category and the total incorrect questions. ExamResults has a find() method to locate

 if (handler != null) handler(this, args);
 },
 /* web service callbacks */
 serviceSuccess: function(exam, sender)
 {
 // retrieve the exam object passed from
 // the web service. Iterate all the responses
 // and add a "UserChoice" column.
 sender._exam = exam;

 for (var q in exam.Exam_Questions)
 {
 for (var r in exam.Exam_Questions[q].Question.Responses)
 {
 var response = exam.Exam_Questions[q].Question.Responses[r];
 response.UserChoice = false;
 }
 }
 // notify the client that the web service
 // callback has finished, so data should be available
 sender.add_examLoaded(sender._onLoadedHandler);
 sender.raise_examLoaded("examLoaded");
 },
 serviceFail: function(error)
 {
 alert("Web service failed with error: " +
 error.get_message() + " " +
 error.get_stackTrace());
 },
 /* examLoaded event */
 add_examLoaded: function(handler)
 {
 this.get_events().addHandler("examLoaded", handler);
 },
 raise_examLoaded: function()
 {
 var handler = this.get_events().getHandler("examLoaded");
 if (handler != null) handler(this, Sys.EventArgs.Empty);
 },
 /* examFinish event */
 add_examFinish: function(handler)
 {
 this.get_events().addHandler("examFinish", handler);
 },
 raise_examFinish: function(args)
 {
 var handler = this.get_events().getHandler("examFinish");
 if (handler != null) handler(this, args);
 }
}
ActiveSkill.ExamManager.registerClass("ActiveSkill.ExamManager", Sys.Component);

UI for ASP.NET AJAX

831 UI for ASP.NET AJAX

categories that already exist in the array and an add() method to include new categories to the array.

4. At the end of the ExamManager.js file, add a call that notifies the ScriptManager that the JavaScript is
loaded.

Create the UIManager Client Object.
A second object stores the UI elements of the page and handles updating the page with ExamManager data and
saving ExamManager data from the page elements.

1. Add a new UIManager.js file to the \scripts folder of the ActiveSkillUI project.

2. Add the code below to define the UIManager JavaScript object.

 The parameters passed to the constructor are simply references to page elements, e.g. "$get("<%=
btnNext.ClientID %>")".

 Most of the action happens in two methods, refresh() and save(). refresh() updates the legend, label
displaying the question and grid containing questions. Notice that we are binding the grid on the
client side to our Exam object that was retrieved from the web service. The binding only takes three
lines of code: retrieving the MasterTableView client object, setting the MasterTableView dataSource
property and calling the MasterTableView dataBind() method. Sweet!

[JavaScript] Defining the Category and ExamResults JavaScript Objects

// category object template
function Category(categoryID)
{
 this.CategoryID = categoryID;
 this.Total = 0;
 this.Incorrect = 0;
}
// examResults
function ExamResults()
{
 this.Categories = new Array();
 this.find = find;
 this.add = add;
 function find(id)
 {
 for (c in this.Categories)
 {
 if (this.Categories[c].CategoryID == id)
 {
 return this.Categories[c];
 }
 }
 }
 function add(categoryID)
 {
 var newCategory = new Category(categoryID, 0);
 this.Categories.push(newCategory);
 return newCategory;
 }
}

[JavaScript] Notify the ScriptManager

// notify script manager that this js is loaded
if (typeof (Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

UI for ASP.NET AJAX

832 UI for ASP.NET AJAX

 The save() method reverses the process described for refresh(). The tricky part here is that we need
to get the template column check box that stores the user choices for each response. The key pieces
to getting the value from a templated control are to first get the MasterTableView data items, get
the data item for a given row, get the table cell that contains our check box element by calling
MasterTableView getCellByColumnUniqueName(), and finally setting properties in our data source to
match the check box element checked property. Remember that for the call to
getCellByColumnUniqueName to work, it must match the UniqueName property for the grid
column. Also note the call to getElementsByTagName() that retrieves the check box element is a
safer approach than assuming the check box will be present in a particular position. As it turns out,
browsers will present these elements differently so checkboxCell[0] may contain the check box or it
may be in checkboxCell[1].

[JavaScript] Defining the UIManager JavaScript Object

Type.registerNamespace("ActiveSkill");
/* -- UI Manager -- */
// The constructor accepts and stores references to each page
// element.
ActiveSkill.UIManager = function(nextButton, backButton, questionLegend, questionLabel,
grid)
{
 ActiveSkill.UIManager.initializeBase(this);
 this._nextButton = nextButton;
 this._backButton = backButton;
 this._questionLegend = questionLegend;
 this._questionLabel = questionLabel;
 this._grid = grid;
}
ActiveSkill.UIManager.prototype = {
 /* -- properties -- */
 get_nextButton: function()
 {
 return this._nextButton;
 },
 get_backButton: function()
 {
 return this._backButton;
 },
 get_questionLegend: function()
 {
 return this._questionLegend;
 },
 get_questionLabel: function()
 {
 return this._questionLabel;
 },
 get_grid: function()
 {
 return this._grid;
 },
 /* -- methods -- */
 // update page elements using the
 // data stored in the ExamManager object.
 refresh: function(examManager)
 {
 this.get_questionLegend().innerHTML = examManager.get_exam().Title;

UI for ASP.NET AJAX

833 UI for ASP.NET AJAX

Add Client Code to Consume New Client Objects.
Now that all of the markup is in place and the client JavaScript objects have been defined, we need to use the
objects to handle navigation through the exam and to sync the user interface with the state of the data.

1. Add a block of JavaScript just above the FieldSet element.

2. Add a pageLoad event handler inside the <script> tag. This event will fire when the
TakeExamQuestion.ascx control first loads on the client. Here we create a UIManager for use throughout
this page. The UIManager constructor passes references to each page element using $get() or $find().

pageLoad() also retrieves references for the hidden fields that store the exam ID. examIDField gets the

 this.get_questionLabel().innerHTML = examManager.get_question().HTML;
 // bind the exam responses for the current question to the grid
 var tableView = this.get_grid().get_masterTableView();
 tableView.set_dataSource(examManager.get_question().Responses);
 tableView.dataBind();
 },
 // retrieve the user choices from the grid.
 save: function(examManager)
 {
 var masterTableView = this.get_grid().get_masterTableView();
 var dataItems = masterTableView.get_dataItems();
 var responses = examManager.get_question().Responses;

 // iterate the grid rows
 for (var i = 0; i < responses.length; i++)
 {
 var dataItem = dataItems[i];
 // find the table cell that holds our UserChoice checkbox
 var checkBoxCell = masterTableView.getCellByColumnUniqueName(dataItem, "UserChoice"
 if (checkBoxCell != null)
 {
 // retrieve the checkbox element
 var cbUserChoice = checkBoxCell.getElementsByTagName("INPUT")[0];
 // set the datasource response object UserChoice according to the checkbox
 responses[i].UserChoice = cbUserChoice.checked;
 }
 }
 }
}
ActiveSkill.UIManager.registerClass("ActiveSkill.UIManager", Sys.Component);
// notify script manager that this js is loaded
if (typeof (Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

[JavaScript] Adding JavaScript

<telerik:RadScriptBlock ID="RadScriptBlock1" runat="server">
 <script type="text/javascript">
 /* -- Client Event Handlers go here-- */

 </script>
</telerik:RadScriptBlock>

Gotcha! Make sure you use $find when you access a control (vs a simple HTML element). $get
will get you the control as an HTML element but it will be missing control functionality. If
you're debugging client code and are looking for expected methods that don't show up, go back
and check if you used $get instead of $find to retrieve the control reference.

UI for ASP.NET AJAX

834 UI for ASP.NET AJAX

current value placed there by the control's FirstLoad() server call (FirstLoad() will be handled in the next
section of this chapter).

pageLoad() initializes an instance of ExamManager if this is the first time we have loaded the
TakeExamQuestion.ascx control or if the user has selected a different exam. We derive a boolean
variable "needReload" that is true if the ExamManager hasn't been created or if the exam ID is different
from the saved exam ID. If needReload is true, the ExamManager instance is created, passing the current
exam ID and functions that will handle the OnExamLoaded and OnExamFinish events. Finally, pageLoad()
saves the exam id hidden field value to the second hidden field for later comparison.

3. Add two handlers for the ExamManager OnExamLoaded and OnExamFinish events.

These consume the JavaScript objects we previously defined.

The OnExamLoaded sender is the ExamManager instance. When the exam data is loaded from the web
service, its safe to load the data to the user interface. The UIManager refresh() method handles updating
the legend, question label and populating the grid, all using the ExamManager data. "args" for
OnExamLoaded are empty.

The OnExamFinish event fires automatically when a call to ExamManager next() attempts to navigate past
the last question. Here we use the DynamicControl object to load the TakeExamFinish.ascx control. "args"
in this event handler are the serialized exam results passed from the ExamManager finish() method. The
"args" string is passed onto the TakeExamFinish.ascx control where the FirstLoad will convert the
argument to a Dictionary and use the results to display the user exam status and score.

[JavaScript] Handling the pageLoad() Client Event

function pageLoad()
{
 window.uiManager = new ActiveSkill.UIManager(
 $get("<%= btnNext.ClientID %>"),
 $get("<%= btnBack.ClientID %>"),
 $get("<%= questionLegend.ClientID %>"),
 $get("<%= questionLabel.ClientID %>"),
 $find("<%= gridQuestion.ClientID %>"));
 var examIDField = $get("<%= examIDField.ClientID %>");
 var examIDFieldSave = $get("<%= examIDFieldSave.ClientID %>");
 if (examIDField != null)
 {
 var examID = examIDField.value;
 var examIDSave = examIDFieldSave.value;
 var needReload = typeof (window.examManager) == "undefined" ||
 examID != examIDSave;
 if (needReload)
 {
 window.examManager =
 new ActiveSkill.ExamManager(examID, onExamLoaded, onExamFinish);
 }
 examIDFieldSave.value = examID;
 }
}

[JavaScript] Handling the OnExamLoaded and OnExamFinish Events

function onExamLoaded(sender, args)
{
 window.uiManager.refresh(sender);

UI for ASP.NET AJAX

835 UI for ASP.NET AJAX

4. Add functions to handle grid events defined earlier in the markup.

For each row in the grid, the RowDataBound event sets the "UserChoice" checkbox check based on the
"UserChoice" value in the response.

5. Add client functions to handle the next and back button clicks.

Both functions have essentially the same structure where the UIManager save() function is called to
retrieve the current user choices, the ExamManager next() or back() methods are called to perform the
navigation through the exam and the UIManager refresh() method is called to bind to the new question
data.

Code the FirstLoad() Method
Add the assignment of the examIDFIeld Value property to the FirstLoad() method.

}
function onExamFinish(sender, args)
{
 window.DynamicControl.load("TakeExamFinish.ascx", args);
}

Gotcha! As of this writing, when binding on the client side only, the grid ClientCommand expects
a handler (even if empty) to avoid a "null object" error.

[JavaScript] Handling Grid Client Events

function ClientCommand(sender, args) {
 // must assign this empty event handler to avoid "null object" error
}
function RowDataBound(sender, args) {
 // get the "UserChoice" checkbox
 var checkBoxCell = args.get_item().get_cell("UserChoice");
 var cbUserChoice = checkBoxCell.getElementsByTagName("INPUT")[0];
 // Set the checked property for the checkbox to
 // the underlying data value.
 if (cbUserChoice != null) {
 cbUserChoice.checked = args.get_dataItem()["UserChoice"];
 }
}

[JavaScript] Responding to Next and Back Button Clicks

function goNext() {
 window.uiManager.save(window.examManager);
 window.examManager.next();
 window.uiManager.refresh(window.examManager);
}
function goBack() {
 window.uiManager.save(window.examManager);
 window.examManager.back();
 window.uiManager.refresh(window.examManager);
}

UI for ASP.NET AJAX

836 UI for ASP.NET AJAX

The FirstLoad() method of TakeExamQuestion.ascx retrieves the id value passed in from the
TakeExamChoose.ascx client code and populates the examIDField hidden field. Later, when the
TakeExamQuestion control loads on the client, examIDField will be retrieved and used to populate the
ExamManager client object.

Test Taking an Exam
1. If necessary, set the startup project to be ActiveSkillUI and the startup page to be UserHome.aspx. Press F5

to run the application.

2. Select an exam, respond to the questions and navigate through to the end.

3. Also test that when you check next to a response that the response is persisted. Navigate forward and back
through the exam.

4. Put a break point on the FirstLoad() method and check the contents of "args". It should contain the control
name "TakeExamFinish.ascx", the "passPercent", the exam title, and a JSON string that expresses the
ExamResults client object. In the upcoming chapter that implements the Finish page, we will deserialize
the JSON string on the server side.

[VB] Loading the Hidden Field

Imports System.Collections.Generic
Imports Telerik.ActiveSkill.Common
Namespace Telerik.ActiveSkill.UI.User
 Public Partial Class TakeExamQuestion
 Inherits System.Web.UI.UserControl
 Implements IASControl
 #region IASControl Members
 Public Sub FirstLoad(ByVal args As Dictionary(Of String, String))
 examIDField.Value = args("id")
 End Sub
#End Region
 End Class
End Namespace

[C#] Loading the Hidden Field

using System.Collections.Generic;
using Telerik.ActiveSkill.Common;
namespace Telerik.ActiveSkill.UI.User
{
 public partial class TakeExamQuestion : System.Web.UI.UserControl, IASControl
 {
 #region IASControl Members
 public void FirstLoad(Dictionary<string, string> args)
 {
 examIDField.Value = args["id"];
 }
 #endregion
 }
}

UI for ASP.NET AJAX

837 UI for ASP.NET AJAX

In this chapter you built functionality for the central purpose of the application: the taking of exams. The work
was heavily weighted to the client where you consumed a web service to bring back the exam data, used your
own JavaScript objects to encapsulate the exam, navigation through the exam and to summarize the exam
results. You bound exam responses directly to the RadGrid using client code only. You also used LINQ to SQL
within the web service to consume the Exam database data.

Gotcha!

If there are errors indicating the web service is not found, first verify that you can access the
web service manually using the browser. Then verify this same path is used in a ScriptManager
Reference element. The ScriptManager is kept on the UserHome.aspx page and will look
something like this:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="http://localhost/ActiveSkillWS/service1.asmx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Path="~/scripts/DynamicControl.js" />
 <asp:ScriptReference Path="~/scripts/ExamManager.js" />
 <asp:ScriptReference Path="~/scripts/UIManager.js" />
 </Scripts>
</asp:ScriptManager>

39.5 Summary

UI for ASP.NET AJAX

838 UI for ASP.NET AJAX

 Become familiar with RadChart by building a simple chart with static items and another basic chart using
bound data.

 Take a tour of the basic elements of each RadChart and the available types of charts.

 Learn how designer interface tools help organize RadChart capabilities.

 Learn about some of the latest RadChart features.

 Create chart series and chart series items programmatically.

 Learn the specifics of data binding in RadChart.

 Learn how to handle RadChart server-side events.

 Learn how zooming and scrolling is performed in RadChart. Also learn how to perform zooming and scrolling
in client-side code.

 Learn how image maps are created in RadChart and how an image map can be used to create a drill-down
chart.

RadChart is a powerful business data presentation tool that can show your data off with striking impact.
RadChart comes with many customizable chart types and skins to tailor the behavior and look of each chart.

You can choose fine-tune control over all aspects of your chart or use the automatic layout, automatic text
wrapping and intelligent labeling functions to handle the details. At design time you get quick access to critical
properties with the Smart Tag, convenient groups of important properties in the RadChart wizard, or control all
RadChart settings from the Properties Window.

The focus of this chapter will be in organizing the many capabilities and properties of this rich control so that
you can get maximum use out of it from the outset.

Create a Chart with Static Data
In this walk-through you will get up and running with a working RadChart application. You will create a chart
populated with static data and modify several properties that affect chart appearance.

Prepare the Project
1. Create an ASP.NET AJAX Web Application.

2. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

3. From the Toolbox drag a RadChart component to the default web page.

4. Click the Smart Tag Add RadChart HTTP Handler to Web.Config link. This adds a handler to the
<configuration><system.web><httpHandlers> section of the web.config file.

40 RadChart

40.1 Objectives

40.2 Introduction

40.3 Getting Started

You can find the complete source for this project at:
\VS Projects\Chart\GettingStarted1

UI for ASP.NET AJAX

839 UI for ASP.NET AJAX

Populate Chart Data
1. Open the RadChart Smart Tag. From the Smart Tag "Data" section, click the ellipses for the Chart Series

Collection.

2. Click "Series 1" in the members list on the left, then locate the Name property in the property window.

3. Change the Name property to "Sales" and the DefaultLabelValue to "#ITEM". Name will be the series name
that shows up in the legend. DefaultLabelValue will display the name of each item in the series instead of
the item value.

4. Locate the Items property in the property window.

Gotcha!

Gotcha! At the time of this writing, if you are using IIS7 Integrated Mode, you need to add a
handler manually to the <system.webserver> "handlers" element of the web.config file:

If you are using the internal web server, there shouldn't be a problem.

<system.webServer>
 <handlers>
 <add name="ChartHandler" path="ChartImage.axd" verb="*"
type="Telerik.Web.UI.ChartHttpHandler, Telerik.Web.UI" />
...

UI for ASP.NET AJAX

840 UI for ASP.NET AJAX

5. Click the ellipses button of the Items property to open the ChartSeriesItem Collection Editor.

6. Click the Add button to add a new Item.

7. In the property window for the new item, change the Name property to "Beverages".

8. Change the YValue property to "10000".

9. Repeat the Add Item steps to add 3 new items. Replace the properties for the three new items as follows:

 Label: Produce, YValue: 7500

 Label: Poultry, YValue: 9000

 Label: Grains, YValue: 11200

UI for ASP.NET AJAX

841 UI for ASP.NET AJAX

10. Click OK to close the ChartSeriesItem Collection Editor.

11. Click "Series 2" in the ChartSeries Collection Editor.

12. Click the Remove button to remove Series 2.

13. Click the OK button to close the ChartSeries Collection Editor.

14. The chart will display the new data using the default formatting.

Format the Chart Using the SmartTag
1. Click the RadChart's Smart Tag

2. Change the Layout section Width to "500px" and Height to "400px".

UI for ASP.NET AJAX

842 UI for ASP.NET AJAX

3. In the Appearance section, change the Title Text entry to "Category Sales" and the Skin to "Wood".

4. In the Properties window, set the AutoLayout property to "true".

5. Press Ctl-F5 to run the application. Notice that the AutoLayout feature of RadChart has positioned the
labels on the Y axis (along the left side) and the legend ("Sales", on the right side of the chart). The chart
title "Category Sales" should appear at the top of the chart.

Create a Chart with Bound Data

UI for ASP.NET AJAX

843 UI for ASP.NET AJAX

In this walk-through you will create a chart that consumes bound data. We will display the top ten product sales
by category in a horizontal bar chart.

Prepare the Project
1. Create an ASP.NET AJAX Web Application

2. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page

3. From the Toolbox drag a RadChart component to the default web page.

4. Click the Smart Tag Add RadChart HTTP Handler to Web.Config link.

5. Locate the "Northwind.mdf" file in the "Live Demos\App_Data" folder under the folder where you installed
RadControls for ASPNET AJAX. Drag this file into the "App_Data" folder of your project.

6. Open the "Web.config" file of your project. Add the standard Northwind connection string to your project
by replacing the line
 <connectionStrings />
with
 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 </connectionStrings>

Configure the RadChart Using the Wizard
1. From the Smart Tag select the Chart Wizard link from the Setting section.

2. In the Type tab of the wizard, select the Horizontal orientation and the Bar chart type.

You can find the complete source for this project at:
\VS Projects\Chart\GettingStarted2

UI for ASP.NET AJAX

844 UI for ASP.NET AJAX

3. In the Data tab of the wizard, select "<New Data Source...>" from the Choose Data Source drop down list.
In the Data Source Configuration dialog:

 In the Choose a Data Source Type page, choose "Database". Click the Next button to continue.

 In the Choose Your Data Connection page select the NorthwindConnectionString from the drop down
list. Click the Next button to continue.

 In the Configure the Select Statement page, choose the "Specify a custom SQL Statement or stored
procedure" radio button. Click the Next button to continue.

 In the Define Custom Statements or Stored Procedures page, enter the following SQL to the SELECT
tab and click Next to continue.

 Test the query if you wish, and then click Finish.

4. Still in the Data tab of the wizard, set the Y values drop down list to "ProductSales" and the X-Axis to
"CategoryName". In a horizontal bar chart, the X-Axis will list the category names from top to bottom on
the left hand side of the chart.

5. On the Skin tab of the wizard, select the DeepGreen skin.

[T-SQL] Defining the Select

SELECT TOP (10) ProductName, ProductSales, CategoryName FROM [Sales by Category] order by
ProductSales desc

UI for ASP.NET AJAX

845 UI for ASP.NET AJAX

6. In the Labels, Legend & Title tab, set the Series Labels to "ProductSales" from the drop down list, de-
select the Legend Visible check box. Set the Title Text to "Top 10 Product Categories".

7. Click the OK button to close the wizard.

8. In the Properties window set the AutoLayout property to "true".

9. Press Ctl-F5 to run the application. Notice that the labels on the X-axis are arranged from top to bottom on
the left hand side in this horizontal layout. If the layout were vertical, the labels would be listed along the

UI for ASP.NET AJAX

846 UI for ASP.NET AJAX

bottom.

RadChart Basics
Charts are composed of a hierarchy of elements. Many of the elements are common across all chart types. Take
a look at the figure below to see some of the main chart elements, particularly the Plot Area, Chart Series,
Chart Series Items and Axis.

UI for ASP.NET AJAX

847 UI for ASP.NET AJAX

Chart Background
The background of the chart is the outermost rectangle that encloses all other elements of the chart. It
stretches for the whole width and length of the output image of the chart.

Title, Legend and Labeling
These three chart elements let you apply meaningful labels to the chart, the data and to groupings of the data.
The actual property you would be looking at for title is ChartTitle. The legend property is Legend. For axis
labeling, you look for the axis properties within the PlotArea property: PlotArea.XAxis.AxisLabel,
PlotArea.YAxis.AxisLabel and PlotArea.YAxis2.AxisLabel.

We will spend a little extra time on common sub-properties of the title, legend and label properties because

UI for ASP.NET AJAX

848 UI for ASP.NET AJAX

they show up in many aspects of the chart.

 ActiveRegion: contains properties for HTML Attributes, Tooltip and URL. The ActiveRegion property is
found throughout the chart control and can be used to create links that can be clicked to navigate the page
to web sites. The properties set as below would let the user click the chart title and navigate to the
Wikipedia web site. Hovering the mouse over the title would display the tool tip.

 Appearance: This is an extensive property, also found attached to other properties throughout the chart.
The exact makeup of Appearance changes depending on the context you find it in. Appearance lets you
customize all the visual aspects of the chart element you're working with, such as layout, dimensioning,
positioning, fill, background images, font colors and borders. The appearance properties for the ChartTitle
are shown below. Here we're setting the RotationAngle to -20.

You can see the effect where the title is rotated 20 degrees to the left:

 Marker: Controls a small graphic for whatever area is being described, e.g. title, legend, etc. By default
the marker is not visible. Notice that the Marker property has it's own ActiveRegion and
Appearance properties nested within. In the example below we've set the Figure property to "Star3" and
the Visible property to true.

UI for ASP.NET AJAX

849 UI for ASP.NET AJAX

These property settings place a small rightward-pointing graphic to the left of the title.

 TextBlock: lets you fine-tune the appearance of the text, the visibility of the text and the text string
itself. In the example below we add a border set to the AliceBlue color.

The TextBlock.Appearance.Border property setting was applied to the ChartTitle to get this appearance:

UI for ASP.NET AJAX

850 UI for ASP.NET AJAX

Axis
X and Y axes are included in all chart types except the Pie chart. Typically the YAxis displays values and the
XAxis displays categories. For example, the YAxis might show "items sold" or "revenue", while the XAxis might
show "Months" or "Products". The second Y axis lets you scale data on two criteria at once.

Plot Area
The plot area is the working rectangular area between X and Y axes where data is displayed. This property is a
major jumping off point for configuring the axis of the chart.

The size of the plot depends on the chart background size and the chart margins, which define the distance
between the border of the plot area and the border of the chart background.

UI for ASP.NET AJAX

851 UI for ASP.NET AJAX

The PlotArea DataTable displays a spreadsheet style table of the data in the chart, typically just below the
chart itself. You can see in the this screenshot that the data for both series is displayed in the table at the
bottom of the chart.

The PlotArea EmptySeriesMessage is a predefined message that displays in the PlotArea when there is no series
data defined for the chart.

MarkedZones are areas in the background of the chart that can be defined, labeled and filled. MarkedZones are
used to highlight or group areas on the chart and by default display behind the chart series. You can create any
number of members for the MarkedZones collection and each marked zone is defined by starting and ending X
and Y value pairs. There are two marked zones displayed in the screenshot below that delineate extreme high
and low temperatures.

UI for ASP.NET AJAX

852 UI for ASP.NET AJAX

Chart Series
Series contains a set of data points to be drawn on the chart. This set of points contains related data. Each
series can be represented by a chart type. Pie charts use only a single series. For other chart types there is no
limitation to the number of series or items within each series. The screenshot below shows two series named
"Internet" and "WholeSale" defined within the ChartSeries Collection Editor.

The DefaultLabelValue holds label formatting options for the series:

 Use "#Y" or "#X" to display numbers from the X or Y axis respectively

 Use "#%" for a percentage of the total sum (of all items).

 Use "#SUM" to display the total of all items.

 "#STSUM" displays the sum of a stacked series.

UI for ASP.NET AJAX

853 UI for ASP.NET AJAX

 "#SERIES" displays the series name.

 "#ITEM" displays the item name.

 You can also use standard numeric format strings. Use curly brackets to contain the formats. For example,
you can display Y values as currency by setting DefaultLabelValue to "#Y{C}".

Series Items
Each chart series item encapsulates a single data point within a chart series. For simple charts along a single
axis, you can populate the YValue property only. Use the XValue property to add a second data dimension. For
example, the Y values could represent "Sales Volume" and the X values might show time periods or geographic
regions. The meaning of the XValue2 and YValue2 properties vary depending on the type of chart. For
example XValue2 and YValue2 are used by Gantt type to indicate a period of time and the Bubble chart type to
show amplitude of data.

Tour of Chart Types
Here is a quick 1000 foot view of the available chart types and a few ideas on how you might use them.

Bar

Bar charts graphically display values in vertical and horizontal bars across
categories. Bar charts are useful for comparing multiple series of data (i.e.
providing snapshots of data at particular points in time).

Stacked Bar

Stacked Bar charts are used to compare contributions of values to a total across
categories. Use the Stacked Bar chart when you need visibility to the combined
values for each category.

UI for ASP.NET AJAX

854 UI for ASP.NET AJAX

Stacked Bar 100%

Stacked Bar 100% shows the combined contribution of values as percentages where
the combined total for each category is 100 percent. Use when the relationship
between values in a category is more significant than the amounts.

Area

The Area chart consists of a series of data points joined by a line and where the
area below the line is filled. Area charts are appropriate for visualizing data that
fluctuates over a period of time and can be useful for emphasizing trends.

Stacked Area
The Stacked Area chart is a variation of the Area chart that display trends of the
contribution of each value over time (or across categories). The areas are stacked
so that each series adjoins but does not overlap the preceding series. Area charts
are appropriate for visualizing data that fluctuates over a period of time and where
the entire area for all series data must be visible at one time.

Stacked Area 100%

Stacked Areas 100% charts are a variation of Stacked Area charts that present values
for trends as percentages, totaling to 100% for each category. Use this chart type to
visualize data that fluctuates over a period of time and where the relationship
between values in a category is more significant than the amounts.

Pie

The Pie chart shows slices representing fractional parts of a whole.

Gantt

Gantt charts, also known as Time charts, display separate events as bars along a
time scale. These charts are often used for project/time planning, where data can
be plotted using a date-time scale or other numeric scale.

Bezier

The Bezier chart displays a series of points on a curved line. Two "control points"
determine the position and amount of curvature in the line between end points.
The Bezier chart is often used for data modelling by taking a limited number of data
points and interpolating or estimating the intervening values.

UI for ASP.NET AJAX

855 UI for ASP.NET AJAX

Spline
Spline charts allow you to take a limited set of known data points and approximate
intervening values. The Spline chart, like the Bezier, is often used for data
modelling by taking a limited number of data points and interpolating or estimating
the intervening values.

Bubble

The Bubble chart is an extension of the Point chart but each point can be a circle or
oval of any size or dimension. The bubble size may be used to convey larger
values. The Bubble chart is often used for scientific data modeling or financial data.

Spline Area

The Spline Area chart type defines one or more spline curves and fills in the area
defined by the spline. This chart type can also can be used for data modelling in
that it takes a limited number of data points and interpolates the intervening
values.

Stacked Spline Area
The Stacked Spline Area chart is a variation of the Spline Area chart. The areas are
stacked so that each series adjoins but does not overlap the preceding series. Also
can be used for data modelling in that it takes a limited number of data points and
interpolates the intervening values. This chart type allows the entire surface area
for all sequences to be displayed at one time.

Stacked Spline Area 100% The Stacked Spline Area 100% chart is a variation of the Spline Area chart. The
areas are stacked so that each series adjoins but does not overlap the preceding
series and where the combined total for each category is 100 percent. The Stacked
Spline Area 100% chart can also can be used for data modelling in that it takes a
limited number of data points and interpolates the intervening values. This chart
type allows the entire surface area for all sequences to be displayed at one time.
Use this chart type when the relationship between values in a category is more
significant than the amounts.

Point

Point or "Scatter" charts are used to show correlations between two sets of values.
 The Point chart is often used for scientific data modeling or financial data. The
Point chart is typically not used used with time dependent data where a Line chart
is more suited.

UI for ASP.NET AJAX

856 UI for ASP.NET AJAX

Smart Tag
The RadChart Smart Tag contains control-specific areas in addition to the standard Ajax Resources, Skin
selection, and Learning center sections.

Line

The Line chart type displays a set of data points connected by a line. A common use
for the line chart is to show trends over a period of time.

CandleStick
The CandleStick chart combines bar and line chart styles to show a range of value
movement over time. Dark colored bars show downward trends, light colored bars
show upward trends and the line through the center (the "wick") shows the extreme
high and low values. Use this chart type to visualize price or currency fluctuations.
Typically this chart is used to analyze stock prices or currency changes.

Stacked Line

The Stacked Line chart allows multiple series of Y values to be compared.

Stacked Spline

The Stacked Spline chart, like the Stacked Line, lets you have multiple series of Y
values. It can take a limited number of data points and interpolate the intervening
values.

40.4 Designer Interface

UI for ASP.NET AJAX

857 UI for ASP.NET AJAX

Layout

At the top of the Smart Tag in the Layout section, you can set the Width and Height of the chart as a whole.

Appearance

Below the Layout area, you can use the Appearance section to quickly set the

 Title Text

 Chart Series Orientation to Horizontal or Vertical from the drop down list.

 Default Chart Type to one of the chart types in the drop down list, i.e. Bar, Pie, Line or any of the types
we reviewed in the Getting Started section.

 Skin can be set from the drop down list to quickly style the entire look of the chart.

Data

You can bring up the Chart Series collection editor from the ellipses if you want to statically define series and
items directly at design time. If you want to bind data, select a data source from the drop down list. If no data
sources exist in the project yet, select "<New Data Source...>" from the drop down list. Once a data source is
configured and selected, two additional links are displayed in this area, "Configure Data Source" and "Refresh

UI for ASP.NET AJAX

858 UI for ASP.NET AJAX

Schema".

Setting

From the Setting section you can choose a Chart Image Format from the drop down list. Most popular formats
are supported including MemoryBmp, Bmp, Emf, Gif, Jpeg, Png, Tiff, Exif and Icon.

A link to the Chart Wizard lets you execute the wizard dialog for settings that are more detailed than the Smart
Tag, but much smaller than the total number of properties available from the Properties window.

Chart Wizard
The RadChart Wizard helps you traverse the many properties of RadChart by providing the most commonly used
properties in an intuitive way. The wizard can help you quickly set up the basic structure of your chart. The
Wizard functions are arranged in tabs:

Type Tab
The Type tab lets you quickly choose the chart type by providing visual cues to what each type looks like. Here
you can also choose the chart orientation.

Data Tab
The Data tab brings together the Series, Series Item, Axis labels and data binding to a single screen. Here you
can add data points to your chart manually or by binding to data sources.

UI for ASP.NET AJAX

859 UI for ASP.NET AJAX

Choose Data Source

Choose Data Source appears on the upper left hand portion of the screen. Select from an existing data source
or select "new data source" from the drop down list. If you have an existing data source selected, click the Edit
button to reconfigure the data source in the Configure Data Source Wizard.

Group Column

The Group Column appears on the upper right side. Select a column name from a bound data source to group by
that column data.

Series

Use the Series area of the tab to add, delete and reorder chart series elements using the list box provided. Use
the plus and minus buttons to add or delete a series element. Use the up and down arrows to move a series
element up or down in the list. For each selected series element in the list box you can provide a name and
select from the list of chart types.

If you bind to a data source the Databind Series Elements portion will be enabled and allow you to choose
column names for your labels and values from the drop down lists provided. When you bind to a data source the
Series list box will be populated automatically with a series for each numeric column in the data source. If you
need to fine tune the behavior or appearance of a series in more depth than the Data tab provides, use the
RadChart Series property in the property window.

Series Items

For each series you select in the Series area list, you can add, edit, delete and reorder entries. Use the plus and
minus buttons to add and delete series items. Use the up and down arrows to move series items up or down in
the list. For each item you can set the Name, Label and X and Y Values. X2 and Y2 values are enabled for Gantt

UI for ASP.NET AJAX

860 UI for ASP.NET AJAX

and Bubble chart types.

Axis Labels

This section lets you choose between binding to a column in the data source and using the column data to
populate the labels along an Axis. Click the Add Labels Manually link to navigate to the Axis tab.

Skin Tab
The RadChart Skin property lets you apply a coordinated set of style changes to all the chart visual aspects at
one time. The Skin tab lets you visually inspect how a chart might look with a given skin. The skins displayed
reflect the current chart type.

Labels, Legend and Title Tab
Use this tab to tailor the principal labeling characteristics of the chart all at one time.

UI for ASP.NET AJAX

861 UI for ASP.NET AJAX

Series Labels

This section lets you set label properties for a series name selected in the Series drop down list. Uncheck the
Visible box to hide series labels. Enter a value between 0 and 360 to the Rotation entry to rotate all series
labels at one time. Positive Rotation values rotate the labels clockwise, negative values rotate the labels
counter-clockwise. Positive Distance values move the labels away from the chart series items.

Legend

Un-select the Visible check box to hide the legend. Use the Marker drop down to select from a predefined list
of shapes, e.g. Cross, Diamond, Ellipse, Rectangle, etc. Use the Alignment drop down to move the legend
position between None, Left, Top, Bottom, Center, TopRight, TopLeft, BottomRight and BottomLeft.

Title

The Title section lets you set the text and toggle visibility of the chart title. Use the Alignment drop down to
move the title position between None, Left, Top, Bottom, Center, TopRight, TopLeft, BottomRight and
BottomLeft.

Axis Tab
From this tab you can select an axis from the drop down list at the top of the page. Properties you modify will
be retained for the selected axis. Use the Copy Settings From button to replicate settings from another axis.

UI for ASP.NET AJAX

862 UI for ASP.NET AJAX

Visual Properties

The Visual Properties section of the page controls properties for the axis as a whole. Uncheck the Visible
checkbox to hide the entire axis (including labels and tick marks). The Axis Title text populates a single label
that appears for the axis as a whole. Use the Alignment property to place the axis label in a predefined
position, e.g. Left, Right, Top, Bottom, Center, TopRight, TopLeft, BottomRight, BottomLeft. Un-check Show
Ticks to hide the axis tick marks. Un-check Show Labels to hide the axis labels (but not the Axis Title). The
Value Format drop down list automatically formats axis labels as various kinds of dates, times, percentages,
numbers and currency. Visible Values can be All, Positive or Negative values. Rotation is used to rotate the
axis label text. Positive numbers spin the labels clockwise, negative numbers counter-clockwise.

Axis Labels

Turn off Auto Scale if you want to provide custom axis labels instead of the default numeric values. Turning off
Auto Scale also lets you use the Min, Max and Step values. Enter Min and Max values to control the number of
series items to be displayed along that axis. Enter a Step value to control the interval between axis labels. If
Auto Scale is off you can use the provided list box to add, delete and reorder axis label items manually. By
selecting any one of the axis label values in the listbox you can assign a text label.
Click the Bind Axis Labels to Database link to navigate back to the Data tab.

Values Data Table Tab
The Values Data Table tab controls the general look and positioning of the chart data table.

UI for ASP.NET AJAX

863 UI for ASP.NET AJAX

Visual Properties

Check Visible to display the chart data table. By default this is unchecked. Select Draw Type from the drop
down list to control the general size and positioning of the chart:

 Select AutoSize to have each cell size to the data inside of it.

 PlotAreaRelative places each cell just below the chart series item it represents.

 CellFixedSize and TableFixedSize fix the size of the cells or table irrespective of the data it contains.

Alignment

Use the Align drop down list to place the chart data table in a predefined position (e.g. Top, Bottom,
BottomRight, etc.) To place the data table at exact coordinates, un-check Auto and enter values for X and Y.

Properties Window
At design time, you can use the Properties Window to configure almost every aspect of the chart. You will need
to build a mental map of how the critical properties are arranged. At the top level the critical properties are
ChartTitle, DataSourceID, Legend, PlotArea and the Series collection. Within the Series collection are Items
collections that define the individual data points in the series. Other helpful properties:

IntelligentLabelsEnabled: For charts that have many data points or data points with values close to one
another, labels tend to collide making readability a problem. The Intelligent Labels feature of RadChart
automatically re-aligns labels making each labeled value stand out clearly.

UseSession and TempImagesFolder: If UseSession is true (default value), the chart is being streamed through
the session. If UseSession is false, the images can be streamed to the path specified in TempImagesFolder
("~/Temp" by default).

Gotcha!

If you are using the chart in a web farm, make sure that the session state is either StateServer or
SQLServer. If this is not so, the chart image can be generated on one server and the image request

UI for ASP.NET AJAX

864 UI for ASP.NET AJAX

AutoTextWrap when true causes text to be wrapped for all text blocks within the chart control.

SeriesOrientation can be Horizontal or Vertical.

Skin sets the color scheme for the entire chart. SeriesPalette lets you use a color scheme for the series and
series items that is different from the chart Skin. SkinsOverrideStyles when true (false by default) use the Skin
only and ignore SeriesPalette and Appearance property settings.

RadChart has some unique features that we haven't run into yet that you should be aware of:

Empty Values

RadChart automatically approximates missing values between known data points, simply by setting the Empty
property true on any chart series item. This works for bar, line and area based chart types. You also have
complete control over the visual style of empty values. The empty value style can be articulated separately
from the style for the main values.

Scale Breaks

The ScaleBreaks feature allows you to "break off" large chunks of the axis so that graphs with large amplitude
are easier to read. ScaleBreaks are available for both YAxis and YAxis2 properties of the PlotArea. You can
tailor the maximum number of breaks, the minimum interval between data points before a break can occur, the
visual size of the breaks and the visual style of the breaks.

served by another. If the Session is not common for all servers, the chart image will be lost.

40.5 Control Specifics

UI for ASP.NET AJAX

865 UI for ASP.NET AJAX

Multi-Line Labels

Labels in RadChart can appear on multiple lines. For example, the property editor for TextBlock.Text
properties allows you to hit the enter key to start a new line. Press control-enter to accept the text and close
the property editor.

Strict Mode

UI for ASP.NET AJAX

866 UI for ASP.NET AJAX

"Strict mode" is not a property or setting, but a behavior of bar chart series where X values are respected and
bars are positioned according to their XValues. If there are no series items with XValues then RadChart resumes
standard sequential ordering of each item.

The screen shot below was produced using the X and Y values from this table:

Logarithmic Y-Axis

RadChart's Y-Axis now supports logarithmic mode. This is convenient when you would like to display rapidly
increasing values. Set the YAxis or YAxis2 IsLogarithmic property (false by default) to true to enable this
behavior. The LogarithmBase property (10 by default) can be increased to further compress the presentation of
values.

Series 1 (Blue)
YValue XValue
3 0
3 1
4 3
3 3
5 4
Series 2 (Orange)
YValue XValue
1 5
2 4

UI for ASP.NET AJAX

867 UI for ASP.NET AJAX

Create a RadChart Series Programmatically
You can create and configure all aspects of the chart programmatically, from the chart itself, right down to the
smallest data point or tick mark. A typical task would be to create series and series items at runtime. To create
the series object use one of the many constructor overloads. The example below passes in the chart series
name and chart type. You will need to add a Telerik.Charting reference to your "Imports" (VB) or "uses" (C#)
clause to support the ChartSeriesType used here.

To add items to the new series, call the ChartSeries AddItem() method. AddItem() also has several overloads.
Two versions of the method are shown below. The first is a quick way of getting started with adding data by
simply defining a Y value. The second creates a ChartSeriesItem and passes a boolean value. The boolean value
overload is interpreted as an empty value item if true.

Let's put both of these together in a quick example that plots a series of Y data points along a single series. This
example assumes the RadChart has already been added to the page, the HTTP Handler has been added to the
web.config.

40.6 Server-Side Programming

[VB] Adding a Chart Series

Dim chartSeries As New ChartSeries("Average Temperatures", ChartSeriesType.Bar)
RadChart1.Series.Add(chartSeries)

[C#] Adding a Chart Series

ChartSeries chartSeries =
 new ChartSeries("Average Temperatures", ChartSeriesType.Bar);
RadChart1.Series.Add(chartSeries);

[VB] Adding a Chart Series Item

' add an item with a Y value
chartSeries.AddItem(5)
' add an empty item
Dim isEmpty As Boolean = True
Dim item As New ChartSeriesItem(isEmpty)
chartSeries.AddItem(item)

[C#] Adding a Chart Series Item

// add an item with a Y value
chartSeries.AddItem(5);
// add an empty item
bool isEmpty = true;
ChartSeriesItem item = new ChartSeriesItem(isEmpty);
chartSeries.AddItem(item);

You can find the complete source for this project at:
\VS Projects\Chart\ServerSide2

UI for ASP.NET AJAX

868 UI for ASP.NET AJAX

[VB] Adding a Chart Series and Items

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 RadChart1.AutoLayout = True
 ' Create the series and assign the ChartSeriesType
 RadChart1.Series.Clear()
 Dim chartSeries As New ChartSeries("Average Temperatures", ChartSeriesType.Bar)
 ' Define the items in the series
 chartSeries.AddItem(5)
 chartSeries.AddItem(1)
 chartSeries.AddItem(-1)
 chartSeries.AddItem(-5)
 chartSeries.AddItem(-7)
 ' add an empty item
 Dim isEmpty As Boolean = True
 Dim item As New ChartSeriesItem(isEmpty)
 chartSeries.AddItem(item)
 chartSeries.AddItem(-3)
 ' Add the series to the chart, chart to page.
 RadChart1.Series.Add(chartSeries)
End Sub

[C#] Adding a Chart Series and Items

protected void Page_Load(object sender, EventArgs e)
{
 RadChart1.AutoLayout = true;
 // Create the series and assign the ChartSeriesType
 RadChart1.Series.Clear();
 ChartSeries chartSeries =
 new ChartSeries("Average Temperatures", ChartSeriesType.Bar);
 // Define the items in the series
 chartSeries.AddItem(5);
 chartSeries.AddItem(1);
 chartSeries.AddItem(-1);
 chartSeries.AddItem(-5);
 chartSeries.AddItem(-7);

UI for ASP.NET AJAX

869 UI for ASP.NET AJAX

Let's extend our example that creates a chart series and items, to include three different series and chart
types. Let's also configure the chart title, legend and axis labels.

One frequently asked question about RadChart is "how do I explicitly label one of the axis?". You do that by
turning off the AutoScale property and adding your own axis array members. In this example we will add the
short day names along the bottom of the chart.

A second question is "how do I stop all the values from scrunching up too high on the chart?". The remedy here
is to set the YXis AxisMode to "Extended" for a little more headroom.

1. Create an ASP.NET AJAX Web Application.

2. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page.

3. From the Toolbox drag a RadChart component to the default web page.

4. Click the Smart Tag Add RadChart HTTP Handler to Web.Config link.

5. Begin coding the Page_Load handler by setting up the label and chart title.

For the legend, you need to shut off the Appearance.Position.Auto so that you can explicitly position the
legend exactly where you want it. You could also have used one of the predefined positions, hidden the
legend or set the Appearance fill to a transparent color so you could see through to the data points

 // add an empty item
 bool isEmpty = true;
 ChartSeriesItem item = new ChartSeriesItem(isEmpty);
 chartSeries.AddItem(item);

 chartSeries.AddItem(-3);
 // Add the series to the chart, chart to page.
 RadChart1.Series.Add(chartSeries);
}

You can find the complete source for this project at:
\VS Projects\Chart\ServerSide1

UI for ASP.NET AJAX

870 UI for ASP.NET AJAX

beneath.

The ChartTitle is positioned to the upper left and the Text is "Weekly Forecast".

6. Next, add code to the Page_Load event handler below the Legend and ChartTitle configuration code.
Reduce the right margin of the PlotArea to 10%. Set the main fill color to white and the secondary fill color
to LightSkyBlue:

7. Configure the XAxis. Here we want to replace the default X Axis labeling that appears along the bottom of
the chart with our own custom labels. To do this, set the AutoScale property to "false". If "true", you would
see the numbers 1..7 along the bottom of the chart. Call the XAxis AddRange() method, passing the
minimum value (1), maximum value (7) and the step (1). Now go back and manually populate the text for
each XAxis element in the collection with the short names of the days. The image below shows the effect

[VB] Defining the Chart Legend and Title

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' Configure the Legend and Chart Title labeling
 RadChart1.Legend.Appearance.Position.Auto = False
 RadChart1.Legend.Appearance.Position.X = 220
 RadChart1.Legend.Appearance.Position.Y = 50
 RadChart1.ChartTitle.Appearance.Position.AlignedPosition =
Telerik.Charting.Styles.AlignedPositions.TopLeft
 RadChart1.ChartTitle.TextBlock.Text = "Weekly Forecast"
 '...
End Sub

[C#] Defining the Chart Legend and Title

protected void Page_Load(object sender, EventArgs e)
{
 // Configure the Legend and Chart Title labeling
 RadChart1.Legend.Appearance.Position.Auto = false;
 RadChart1.Legend.Appearance.Position.X = 220;
 RadChart1.Legend.Appearance.Position.Y = 50;
 RadChart1.ChartTitle.Appearance.Position.AlignedPosition =
 Telerik.Charting.Styles.AlignedPositions.TopLeft;
 RadChart1.ChartTitle.TextBlock.Text = "Weekly Forecast";

 //...
}

[VB] Configure the PlotArea

' Configure the PlotArea
RadChart1.PlotArea.Appearance.Dimensions.Margins.Right =
Telerik.Charting.Styles.Unit.Percentage(10)
RadChart1.PlotArea.Appearance.FillStyle.MainColor = System.Drawing.Color.White
RadChart1.PlotArea.Appearance.FillStyle.SecondColor = System.Drawing.Color.LightSkyBlue

[C#] Configure the PlotArea

// Configure the PlotArea
RadChart1.PlotArea.Appearance.Dimensions.Margins.Right =
 Telerik.Charting.Styles.Unit.Percentage(10);
RadChart1.PlotArea.Appearance.FillStyle.MainColor =
 System.Drawing.Color.White;
RadChart1.PlotArea.Appearance.FillStyle.SecondColor =
 System.Drawing.Color.LightSkyBlue;

UI for ASP.NET AJAX

871 UI for ASP.NET AJAX

on the XAxis labels.

8.

9. Configure the YXis AxisMode to Extended so that there is a little more room at the top of the chart. Set the
Text for the AxisLabel.TextBlock to "Temperature C" and the Appearance.Width to "3".

10. Clear the chart Series collection to remove the default two series that show up at design time when you
add the chart to the page. Create a new ChartSeries with name "Average Temperatures" and type "Bar".
Set the main color for the series Appearance FillStyle to "HoneyDew" and the secondary color to "Green".

[VB] Configuring the XAxis

' Configure the XAxis
RadChart1.PlotArea.XAxis.AutoScale = False
RadChart1.PlotArea.XAxis.AddRange(1, 7, 1)
RadChart1.PlotArea.XAxis(0).TextBlock.Text = "Mon"
RadChart1.PlotArea.XAxis(1).TextBlock.Text = "Tue"
RadChart1.PlotArea.XAxis(2).TextBlock.Text = "Wed"
RadChart1.PlotArea.XAxis(3).TextBlock.Text = "Thu"
RadChart1.PlotArea.XAxis(4).TextBlock.Text = "Fri"
RadChart1.PlotArea.XAxis(5).TextBlock.Text = "Sat"
RadChart1.PlotArea.XAxis(6).TextBlock.Text = "Sun"

[C#] Configuring the XAxis

// Configure the XAxis
RadChart1.PlotArea.XAxis.AutoScale = false;
RadChart1.PlotArea.XAxis.AddRange(1, 7, 1);
RadChart1.PlotArea.XAxis[0].TextBlock.Text = "Mon";
RadChart1.PlotArea.XAxis[1].TextBlock.Text = "Tue";
RadChart1.PlotArea.XAxis[2].TextBlock.Text = "Wed";
RadChart1.PlotArea.XAxis[3].TextBlock.Text = "Thu";
RadChart1.PlotArea.XAxis[4].TextBlock.Text = "Fri";
RadChart1.PlotArea.XAxis[5].TextBlock.Text = "Sat";
RadChart1.PlotArea.XAxis[6].TextBlock.Text = "Sun";

[VB] Configure the YAxis

' Configure the YAxis
RadChart1.PlotArea.YAxis.AxisMode = ChartYAxisMode.Extended
RadChart1.PlotArea.YAxis.AxisLabel.TextBlock.Text = "Temperature C"

[C#] Configure the YAxis

// Configure the YAxis
RadChart1.PlotArea.YAxis.AxisMode = ChartYAxisMode.Extended;
RadChart1.PlotArea.YAxis.AxisLabel.TextBlock.Text = "Temperature C";

[VB] Add the Chart Series

' Create the series and assign the ChartSeriesType
RadChart1.Series.Clear()
Dim chartSeries As New ChartSeries("Average Temperatures", ChartSeriesType.Bar)
chartSeries.Appearance.FillStyle.MainColor = System.Drawing.Color.Honeydew
chartSeries.Appearance.FillStyle.SecondColor = System.Drawing.Color.Green

[C#] Add the Chart Series

UI for ASP.NET AJAX

872 UI for ASP.NET AJAX

11. Add the code below to the end of the Page_Load event handler: Add the data points to the first series by
using the AddItem() method of the chart series and passing Y values.

The chart should now look something like the screenshot below:

12. Add the code below to the end of the Page_Load event handler: Add a second series with name "Maximum
Temperatures" and type "Line". Hide the labels by setting the series Appearance.LabelAppearance.Visible

// Create the series and assign the ChartSeriesType
RadChart1.Series.Clear();
ChartSeries chartSeries =
 new ChartSeries("Average Temperatures", ChartSeriesType.Bar);
chartSeries.Appearance.FillStyle.MainColor =
System.Drawing.Color.Honeydew;
chartSeries.Appearance.FillStyle.SecondColor =
System.Drawing.Color.Green;

[C#] Adding Chart Series Items

' Define the items in the series
chartSeries.AddItem(5)
chartSeries.AddItem(1)
chartSeries.AddItem(-1)
chartSeries.AddItem(-5)
chartSeries.AddItem(-7)
chartSeries.AddItem(-3)
chartSeries.AddItem(-1)

[C#] Adding Chart Series Items

// Define the items in the series
chartSeries.AddItem(5);
chartSeries.AddItem(1);
chartSeries.AddItem(-1);
chartSeries.AddItem(-5);
chartSeries.AddItem(-7);
chartSeries.AddItem(-3);
chartSeries.AddItem(-1);

UI for ASP.NET AJAX

873 UI for ASP.NET AJAX

to "false". Set the LineSeriesAppearance Color to "Red".

13. Add the code below to the end of the Page_Load event handler. Again, chart series items are added to the
second series by calling AddItem() with Y values as parameters.

14. Add the code below to the end of the Page_Load event handler. Instead of displaying a red line only to
represent "Maximum Temperatures", turn on the series Appearance.PointMark to make a black 5 x 5 pixel
mark at each data point. You can see the before-and-after effect in the image below.

[C#] Create and Configure Line Series

' Create a second series and assign the ChartSeriesType
Dim chartSeries2 As New ChartSeries("Maximum Temperatures", ChartSeriesType.Line)
chartSeries2.Appearance.LabelAppearance.Visible = False
chartSeries2.Appearance.LineSeriesAppearance.Color = System.Drawing.Color.Red

[C#] Create and Configure Line Series

// Create a second series and assign the ChartSeriesType
ChartSeries chartSeries2 =
 new ChartSeries("Maximum Temperatures", ChartSeriesType.Line);
chartSeries2.Appearance.LabelAppearance.Visible = false;
chartSeries2.Appearance.LineSeriesAppearance.Color =
 System.Drawing.Color.Red;

[VB] Add Items to the Second Series

' Define the items in the series
chartSeries2.AddItem(11)
chartSeries2.AddItem(4)
chartSeries2.AddItem(0)
chartSeries2.AddItem(-4)
chartSeries2.AddItem(-7)
chartSeries2.AddItem(0)
chartSeries2.AddItem(5)

[VB] Add Items to the Second Series

// Define the items in the series
chartSeries2.AddItem(11);
chartSeries2.AddItem(4);
chartSeries2.AddItem(0);
chartSeries2.AddItem(-4);
chartSeries2.AddItem(-7);
chartSeries2.AddItem(0);
chartSeries2.AddItem(5);

[VB] Enhance the "Maximum Temperature" Data Points

' visually enhance the data points
chartSeries2.Appearance.PointMark.Dimensions.Width = 5
chartSeries2.Appearance.PointMark.Dimensions.Height = 5

UI for ASP.NET AJAX

874 UI for ASP.NET AJAX

15. Add a third "Minimum Temperatures" series, add items and set the PointMark appearance for the series.
This code is very similar to the code for the second "Maximum Temperatures" series except that the colors
and Y values are different.

chartSeries2.Appearance.PointMark.FillStyle.MainColor = System.Drawing.Color.Black
chartSeries2.Appearance.PointMark.Visible = True

[C#] Enhance the "Maximum Temperature" Data Points

// visually enhance the data points
chartSeries2.Appearance.PointMark.Dimensions.Width = 5;
chartSeries2.Appearance.PointMark.Dimensions.Height = 5;
chartSeries2.Appearance.PointMark.FillStyle.MainColor =
 System.Drawing.Color.Black;
chartSeries2.Appearance.PointMark.Visible = true;

[VB] Add the "Minimum Temperatures" Series

' Create a third series and assign the ChartSeriesType
Dim chartSeries3 As New ChartSeries("Minimum Temperatures", ChartSeriesType.Bubble)
chartSeries3.Appearance.LabelAppearance.Visible = False
chartSeries3.Appearance.FillStyle.MainColor = System.Drawing.Color.Blue
chartSeries3.Appearance.FillStyle.SecondColor = System.Drawing.Color.Aqua
' Define the items in the series
chartSeries3.AddItem(1)
chartSeries3.AddItem(0)
chartSeries3.AddItem(-5)
chartSeries3.AddItem(-7)
chartSeries3.AddItem(-11)
chartSeries3.AddItem(-8)
chartSeries3.AddItem(-6)
' visually enhance the data points
chartSeries3.Appearance.PointMark.Dimensions.Width = 5
chartSeries3.Appearance.PointMark.Dimensions.Height = 5
chartSeries3.Appearance.PointMark.FillStyle.MainColor = System.Drawing.Color.Black
chartSeries3.Appearance.PointMark.Visible = True

[C#] Add the "Minimum Temperatures" Series

// Create a third series and assign the ChartSeriesType
ChartSeries chartSeries3 =
 new ChartSeries("Minimum Temperatures", ChartSeriesType.Bubble);
chartSeries3.Appearance.LabelAppearance.Visible = false;
chartSeries3.Appearance.FillStyle.MainColor =
 System.Drawing.Color.Blue;
chartSeries3.Appearance.FillStyle.SecondColor =
 System.Drawing.Color.Aqua;
// Define the items in the series
chartSeries3.AddItem(1);
chartSeries3.AddItem(0);
chartSeries3.AddItem(-5);
chartSeries3.AddItem(-7);
chartSeries3.AddItem(-11);
chartSeries3.AddItem(-8);
chartSeries3.AddItem(-6);
// visually enhance the data points
chartSeries3.Appearance.PointMark.Dimensions.Width = 5;
chartSeries3.Appearance.PointMark.Dimensions.Height = 5;
chartSeries3.Appearance.PointMark.FillStyle.MainColor =

UI for ASP.NET AJAX

875 UI for ASP.NET AJAX

16. Add all three series to the RadChart Series collection.

17. Press Ctl-F5 to run the application.

Data Binding
RadChart data binding works similarly to other RadControls in that you can bind the same basic types, consume
the same data source controls and can assign either DataSourceID declaratively or DataSource (and call
DataBind()) at runtime. The control-specific differences are in the properties used to specify what columns are
bound to particular displays and behaviors in the chart.

Data Binding Properties
ChartSeries comes with properties for DataXColumn, DataXColumn2, DataYColumn and DataYColumn2. At
minimum you need to bind the ChartSeries DataYColumn to populate any chart type.

The Pie chart type only pays attention to the DataYColumn, but most other chart types also can bind to the
DataXColumn. For example, the Point chart type can plot individual point marks where X and Y values
intersect. The Bubble chart is an extension of the Point chart but each point can be a circle or oval of any size
or dimension. Instead of using just the XValue and YValue, the Bubble chart uses XValue/XValue2, and
YValue/YValue2 pairs to define the dimensions of each bubble.

There are two other ChartSeries properties DataYColumn3 and DataYColumn4. The CandleStick chart type uses
all four Y column value properties where thier meaning is:

 YValue = Open

 YValue2 = Close

 YValue 3 = Max

 YValue 4 = Min

The ChartSeries has a DataLabelsColumn property to define a column that will supply the text that displays
next to each X Axis item. The XAxis also has this DataLabelsColumn property.

Data Binding Events
RadChart has a OnItemDataBound event that you can use to individually tailor ChartSeriesItems based on what's
happening in the data item. The event handler takes a ChartItemDataBoundEventArgs parameter that brings
DataItem, ChartSeries and SeriesItem properties along for the ride. You can use any of the columns in the data
source for a particular data point (i.e. row) to make very specific changes to your SeriesItem.

Here's an example where we declaratively bind to the Telerik.mdf file (found in the Telerik RadControls
installation directory under Live Demos\App_Data) and queries from the Products table:

SELECT SalesRepresentative, SUM(Quantity) AS TotalQuantity, SUM(Quantity * Price) AS ExtendedPrice
FROM Products GROUP BY SalesRepresentative

 System.Drawing.Color.Black;
chartSeries3.Appearance.PointMark.Visible = true;

[VB] Add to the RadChart Series Collection

' Add the series to the chart.
RadChart1.Series.Add(chartSeries)
RadChart1.Series.Add(chartSeries2)
RadChart1.Series.Add(chartSeries3)

[C#] Add to the RadChart Series Collection

// Add the series to the chart.
RadChart1.Series.Add(chartSeries);
RadChart1.Series.Add(chartSeries2);
RadChart1.Series.Add(chartSeries3);

UI for ASP.NET AJAX

876 UI for ASP.NET AJAX

This point chart plots each point where the "ExtendedPrice" appears along the X axis and the "TotalQuantity"
along the Y axis.

The resulting chart looks something like the example below:

As the items are bound, the labels are formatted based on the ranges of values the data points fall within.

[C#] Handling the ItemDataBound Event

Protected Sub RadChart1_ItemDataBound(ByVal sender As Object, ByVal e As
Telerik.Charting.ChartItemDataBoundEventArgs)

UI for ASP.NET AJAX

877 UI for ASP.NET AJAX

 Dim qty As Integer = Convert.ToInt32((TryCast(e.DataItem, DataRowView))("TotalQuantity"))
 Dim quantityLabel As String = [String].Empty
 Select Case qty
 Case 1, 2
 quantityLabel = "Few"
 Exit Select
 Case 3
 quantityLabel = "Some"
 Exit Select
 Case 4, 5
 quantityLabel = "Lots!"
 Exit Select
 End Select
 Dim price As Double = Convert.ToDouble((TryCast(e.DataItem, DataRowView))("ExtendedPrice"))
 Dim priceLabel As String = [String].Empty
 If price < 1000 Then
 priceLabel = "cheap"
ElseIf price < 7500 Then
 priceLabel = "reasonable"
 Else
 priceLabel = "expensive"
 End If
 e.SeriesItem.Label.TextBlock.Appearance.TextProperties.Font = New System.Drawing.Font
("Ariel", 12, System.Drawing.FontStyle.Bold)
 e.SeriesItem.Label.TextBlock.Text = quantityLabel + ", " + priceLabel
End Sub

[C#] Handling the ItemDataBound Event

protected void RadChart1_ItemDataBound(object sender,
Telerik.Charting.ChartItemDataBoundEventArgs e)
{
 int qty = Convert.ToInt32((e.DataItem as DataRowView)["TotalQuantity"]);
 string quantityLabel = String.Empty;
 switch (qty)
 {
 case 1:
 case 2:
 quantityLabel = "Few";
 break;
 case 3:
 quantityLabel = "Some";
 break;
 case 4:
 case 5:
 quantityLabel = "Lots!";
 break;
 }
 double price = Convert.ToDouble((e.DataItem as DataRowView)["ExtendedPrice"]);
 string priceLabel = String.Empty;
 if (price < 1000)
 {
 priceLabel = "cheap";
 }
 else if (price < 7500)
 {

UI for ASP.NET AJAX

878 UI for ASP.NET AJAX

Grouping Data Bound Items
You can group your data automatically by defining a column that

The DataGroupColumn property defines the column name in the datasource that is the criteria for grouping the
chart series items. There will be as many series as the number of distinct values in this column. If we have
these settings:

 Data with columns "Year", "Quarter" and "Value"

 "Year" contains multiple rows for "2007" and "2008".

 The DataGroupColumn property is "Year".

...then there will be two series, one for "2007" and the second for "2008".

A second RadChart property, GroupNameFormat, defines a format for the legend item. The format can have
free text and can include two special words:

 #NAME: denotes the group column name.

 #VALUE: denotes the group column value (it is the same for all the records shown in the same series).

The SQL below gets a sampling of Invoice data and brings back the CustomerID, ExtendedPrice and Quantity.

The screenshot below shows the DataGroupColumn set to "CustomerID". No series is set and the DataYColumn
property of the series is not set. The actual values that shown in the bar are derived from the last numeric
column in the datasource. In the figure below the "Quantity" data shows in the chart.

 priceLabel = "reasonable";
 }
 else
 {
 priceLabel = "expensive";
 }
 e.SeriesItem.Label.TextBlock.Appearance.TextProperties.Font =
 new System.Drawing.Font("Ariel", 12, System.Drawing.FontStyle.Bold);
 e.SeriesItem.Label.TextBlock.Text = quantityLabel + ", " + priceLabel;
}

Did you see the lines going from the labels to some of the data points? The problem came about because
IntelligentLabelsEnabled was set to true. This moved the labels too far away from their respective data
points, making the chart harder to interpret. Setting the ChartSeries Appearance.ShowLabelConnectors
property to true displays the lines between the labels and the data points.

You can find the complete source for this project at:
\VS Projects\Chart\Databinding

[T-SQL] Selecting Invoice Data

SELECT TOP (25) CustomerID, ExtendedPrice, Quantity FROM Invoices ORDER BY CustomerID

The "ORDER BY" clause counts for group queries. If the data in the example above was unordered, you would
get a group for the first few records of customer "ALFKI", then a few records for "ANATR", then perhaps
another bar for the next few "ALFKI" customer again. In typical cases adding the ORDER BY clause will give
you the results you expect.

UI for ASP.NET AJAX

879 UI for ASP.NET AJAX

Using the Year/Quarter/Value data mentioned above and if we set the GroupNameFormat to "#NAME: #VALUE",
the legend will be "Year: 2007" and "Year: 2008". We can build this example by first creating a class to contain
the Year/Quarter/Value, populating a generic list of these objects, setting the group properties and finally
binding to the grid.

1. Create an ASP.NET AJAX Web Application

2. Create a new ASP.NET Web Application and drag a ScriptManager from the Tool Box onto the Web page

3. From the Toolbox drag a RadChart component to the default web page

4. Click the Smart Tag Add RadChart HTTP Handler to Web.Config link.

5. In the Page_Load, populate a generic List of Sales objects:

Gotcha! Don't define the series DataYColumn as it will take precedence over the group property
settings.

You can find the complete source for this project at:
\VS Projects\Chart\Grouping

UI for ASP.NET AJAX

880 UI for ASP.NET AJAX

[VB] Populate and Group Chart Data

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' Populate the generic list of Sales
 Dim sales As New List(Of Sales)()
 sales.Add(New Sales(2007, 1, 5))
 sales.Add(New Sales(2007, 2, 2))
 sales.Add(New Sales(2007, 3, 3))
 sales.Add(New Sales(2007, 4, 1))
 sales.Add(New Sales(2008, 1, 4))
 sales.Add(New Sales(2008, 2, 3))
 sales.Add(New Sales(2008, 3, 8))
 sales.Add(New Sales(2008, 4, 2))
 ' Setup the chart appearance and title
 RadChart1.Skin = "DeepBlue"
 RadChart1.ChartTitle.TextBlock.Text = "Sales Grouped by Quarter"
 ' Remove the default series
 RadChart1.Series.Clear()
 ' Create and add a new Bar series type
 Dim chartSeries As New ChartSeries("Sales", ChartSeriesType.Bar)
 RadChart1.Series.Add(chartSeries)
 ' Set the grouping properties
 RadChart1.DataGroupColumn = "Year"
 RadChart1.Legend.Appearance.GroupNameFormat = "#NAME: #VALUE"
 ' bind the chart last to include the preceding property
 ' settings.
 RadChart1.DataSource = sales
 RadChart1.DataBind()
End Sub

[C#] Populate and Group Chart Data

protected void Page_Load(object sender, EventArgs e)
{
 // Populate the generic list of Sales
 List<Sales> sales = new List<Sales>();
 sales.Add(new Sales(2007, 1, 5));
 sales.Add(new Sales(2007, 2, 2));
 sales.Add(new Sales(2007, 3, 3));
 sales.Add(new Sales(2007, 4, 1));
 sales.Add(new Sales(2008, 1, 4));
 sales.Add(new Sales(2008, 2, 3));
 sales.Add(new Sales(2008, 3, 8));
 sales.Add(new Sales(2008, 4, 2));
 // Setup the chart appearance and title
 RadChart1.Skin = "DeepBlue";
 RadChart1.ChartTitle.TextBlock.Text =
 "Sales Grouped by Quarter";
 // Remove the default series
 RadChart1.Series.Clear();
 // Create and add a new Bar series type
 ChartSeries chartSeries =
 new ChartSeries("Sales", ChartSeriesType.Bar);
 RadChart1.Series.Add(chartSeries);
 // Set the grouping properties
 RadChart1.DataGroupColumn = "Year";
 RadChart1.Legend.Appearance.GroupNameFormat = "#NAME: #VALUE";

UI for ASP.NET AJAX

881 UI for ASP.NET AJAX

6. Press Ctl-F5 to run the application. Notice the two series, one for each year defined by the
DataGroupColumn. Each year has four data points:

Server Events
Use the RadChart OnClick event to handle server postbacks caused by clicking on areas of the chart. The event
handler returns "sender", i.e. the RadChart itself and ChartClickEventArgs. ChartClickEventArgs contains
Element, that is, the chart element that was clicked. For instance, you can test if Element is
Telerik.Charting.ChartTitle to see if the ChartTitle was clicked. You can also use the Element's ActiveRegion
property to access the ToolTip and Url properties if you want to navigate based off the click.

Zooming and Scrolling Basics
The zooming and scrolling feature enables the user to zoom into an area of the chart so the data is shown in
greater detail. For performance reasons, the visible image chunk is requested from the server-side. The user
can scroll into view other parts of the chart data and the requested image chunks are automatically loaded via
callback requests on the fly.

Manual Zooming and Scrolling

Manual zoom is performed by dragging a rectangle area over the chart with the mouse. This rectangle is exactly
the area that will be shown in the Plot Area. Zooming, by default, performs regular postbacks but also works
seamlessly using AJAX calls. In the screenshots below the area around "1407.6" is selected by the user. The
second image shows the zoomed-in state of the chart and displays vertical and horizontal scroll bars for
scrolling.

 // bind the chart last to include the preceding property
 // settings.
 RadChart1.DataSource = sales;
 RadChart1.DataBind();
}

Use the axis DataLabelColumn property to add meaningful labels to the data across the bottom of this
chart. If we had a property/column "QuarterDescription" with values "Qtr 1", "Qtr 2"..., these could be
used in place of the number 1, 2...

40.7 Client-Side Programming

UI for ASP.NET AJAX

882 UI for ASP.NET AJAX

ClientSettings

RadChart has a ClientSettings property with sub properties that control zooming and scrolling. Zooming and
Scrolling are disabled by default. Enable zooming and scrolling by setting the ScrollMode property to a value
other than None. The available ScrollMode values are None, XOnly, YOnly and Both.

The image below shows the zoom rectangle and the axis markers that help the user know what area is to be
zoomed.

UI for ASP.NET AJAX

883 UI for ASP.NET AJAX

You can customize the zoom rectangle using the ZoomRectangleColor and ZoomRectangleOpacity properties.
The screenshot above sets the ZoomRectangleColor property to "Red" and the ZoomRectangleOpacity to .3
(making it slightly more opaque than the default .2). You can set ZoomRectangleOpacity from 0 (transparent)
to 1 (completely opaque).

The axis markers are controlled by AxisMarkersColor, set to "Purple" in the screenshot above, and
AxisMarkersSize that controls the length of the axis marker line in pixels. You can hide axis markers by setting
EnableAxisMarkers to "false".

Scroll Only

You can also use scrolling alone by explicitly disabling manual client-side zooming
(RadChart.ClientSettings.EnableZoom = False). You can still provide XScale and YScale values on the server-
side. For example, the markup below allows the user to see a chart that is scaled by 4, can scroll along the X
Axis, but cannot zoom.

Client-Side API
Zooming and scrolling can be controlled completely on the client side so you can make your chart interact with
other elements on your web page. After getting a reference to the RadChart client object you can call the
following methods:

 scroll(): programmatically scroll along both axis at one time or only along X or Y axis. Use the
get_xScrollOffset() or get_yScrollOffset() methods to preserve the status quo. In the example code below,
get_xScrollOffset() is used to preserve the current X offset so that the scroll only occurs along the Y axis.

[JavaScript] Using the scroll() method

var chart = $find("<%= RadChart1.ClientID %>");
chart.scroll(0.2, 0.3);
// scroll to top-left corner
chart.scroll(0, 0);
// scroll to bottom-right corner
chart.scroll(1, 1);
// scroll only by XAxis
chart.scroll(0.4);

UI for ASP.NET AJAX

884 UI for ASP.NET AJAX

 zoom(): Zooming can be done along X and Y axis combined or only along X or Y axis. Similar to the scrolling
example above, use the get_xScale() and get_yScale() methods to preserve the existing offsets. You can
also pass additional parameters to zoom() so that after zooming you can scroll at the same time.

 zoomOut(): RadChart keeps a history of zooming actions. This method zooms out the current chart view to
the previous scaling step and also restores the scrolled position.

 resetZoom(): Resets the scaling factors so that no zoom is applied.

Client API Example

This example shows a RadToolBar executing RadChart zoom and scroll methods, all on the client. The Scroll
button scrolls to the lower right of the chart. The Zoom button zooms to a factor entered in a
RadNumericTextbox. Reset Zoom restores the original view of the chart. The chart is bound to a relatively
long series of data that can't be easily viewed in detail at one time.

// scroll only by YAxis
chart.scroll(chart.get_xScrollOffset(), 0.4);

[JavaScript] Using the zoom() method

var chart = $find("<%= RadChart1.ClientID %>");
//scale XAxis by factor 3
chart.zoom(3);
//scale XAxis by factor 3 and YAXis by factor 2
chart.zoom(3, 2);
//scale only YAxis by factor 2
chart.zoom(chart.get_xScale(), 2);
//scale XAxis by factor 3 and YAXis by factor 2
//scroll to bottom-right corner of the plotArea
chart.zoom(3, 2, 1, 1);

UI for ASP.NET AJAX

885 UI for ASP.NET AJAX

The RadToolBar has a single OnClientButtonClicked event handler that interprets which button was clicked and
executes RadChart client API methods in response.

Creating Image Maps and Drill-Down

Image Maps

Image maps are visual areas within the chart that display tool tips. Clicking these areas automatically navigates
the user to a URL. Image maps are implemented with the help of the ActiveRegion property that contains URL
and ToolTip properties. You can assign the ActiveRegion URL property directly or use the ActiveRegion Click
event and respond in server code.

The ActiveRegion resolves to a standard HTML "<map>" tag that defines the area within the chart image that
will respond to the mouse:

You can find the complete source for this project at:
\VS Projects\Chart\ClientSide

[JavaScript] Using scroll() and zoom() methods

function buttonClicked(sender, args) {
 // get the clicked button value
 var item = args.get_item();
 var toolBarValue = item.get_value();
 // get the chart client reference
 var chart = $find("<%= RadChart1.ClientID %>");
 // get the textbox value
 var zoomValue = $find("<%= tbZoom.ClientID %>").get_value();
 // based on the clicked button, scroll, zoom or reset.
 switch (toolBarValue) {
 case 'scroll':
 {
 chart.scroll(1, 1);
 break
 }
 case 'zoom':
 {
 chart.zoom(zoomValue);
 break
 }
 case 'reset':
 {
 chart.resetZoom();
 break
 }
 }
}

40.8 How To

[HTML] An HTML Fragment from the Rendered Chart

<map id='imRadChart1' name='imRadChart1'>
 <area
 shape="poly"
 href="http://www.telerik.com (http://www.telerik.com/)"
 coords="176,168,247,167,248,199,227,226,198,236"
 alt="Sales"

UI for ASP.NET AJAX

886 UI for ASP.NET AJAX

Drill Down Interfaces

Using an image map we can implement a "Drill Down" interface where the user clicks on an element of the
chart, e.g. one of the pie slices in a pie chart, and navigates or displays a more detailed view of that slice.

In this example we start with a pie chart of sales categories slices "Retail", "Wholesale" and "Internet". For each
slice we set the ActiveRegion property to point to a "Details.aspx" page with a query string that defines the
"SalesType".

The default page is setup where the chart Type is "Pie". The DefaultLabelValue property is "#ITEM" so that each
slice is labeled with its name.

 title="Sales"
 />
</map>

UI for ASP.NET AJAX

887 UI for ASP.NET AJAX

Inside the Items collection for this series are three ChartSeriesItems, each with the ActiveRegion configured in
a similar way. The Tooltip reads "Click for more info" and the Url is "Details.aspx?SalesType=Wholesale". The
SalesType query string is specific to each chart series item.

The second page in the project (other than default.aspx) is Details.aspx. This page contains the usual
ScriptManager and RadChart. In the Page_Load event hander, the query string is received and used to build the
chart title. Some dummy items are created, but you can adapt this code to use the passed in query string in a
"WHERE" clause that filters a data source.

[VB] Configuring the Details RadChart

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 ' Get the sales type passed from the default page

UI for ASP.NET AJAX

888 UI for ASP.NET AJAX

Extend the Displayable Area
By default, the data along the YAxis fills the available space. You may want some additional room to make the
data easier to see. Use the YAxis AxisMode property in the case and set it to "Extended" to get a bit more
headroom.

 ' and set the chart title to reflect this
 Dim salesType As String = Request.QueryString("SalesType")
 RadChart1.ChartTitle.TextBlock.Text = "Sales Details for " + salesType
 ' Prepare some sample numbers
 Dim random As New Random()
 ' Clear and populate the series with 5 dummy orders
 RadChart1.Series.Clear()
 Dim series As New ChartSeries("Orders")
 RadChart1.Series.Add(series)
 Dim i As Integer = 0
 While i < 5
 series.AddItem(random.[Next](1, 100))
 System.Math.Max(System.Threading.Interlocked.Increment(i),i - 1)
 End While
 End If
End Sub

[C#] Configuring the Details RadChart

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Get the sales type passed from the default page
 // and set the chart title to reflect this
 string salesType = Request.QueryString["SalesType"];
 RadChart1.ChartTitle.TextBlock.Text = "Sales Details for " + salesType;

 // Prepare some sample numbers
 Random random = new Random();
 // Clear and populate the series with 5 dummy orders
 RadChart1.Series.Clear();
 ChartSeries series = new ChartSeries("Orders");
 RadChart1.Series.Add(series);
 for (int i = 0; i < 5; i++)
 {
 series.AddItem(random.Next(1, 100));
 }
 }
}

You can find the complete source for this project at:
\VS Projects\chart\DrillDown

UI for ASP.NET AJAX

889 UI for ASP.NET AJAX

In this chapter you built a simple chart with static items and also learned how to bind data to the chart. You
took a tour of the basic RadChart elements as well as the types of charts that are available. You learned how to
use the tools in the designer to help navigate the many RadChart capabilities. You learned some of the latest
RadChart features, including zooming and scrolling. You created and configured many of the chart elements
programmatically, including the chart series, items, legend and chart title. You learned how to bind to
database data and respond to events on the server side.

40.9 Summary

UI for ASP.NET AJAX

890 UI for ASP.NET AJAX

 Explore the main features of the RadHtmlChart control

 Getting started by running a simple example

 Get familiar with the control’s visual and code structure

 See the available types of charts

 Review the basic ways to databind the RadHtmlChart

 See the use of a lightweight callback to load the data

 The RadHtmlChart was added to the RadControls for ASP.NET AJAX suite in Q2 2012. It provides powerful
charting mechanism based on SVG when shown in modern browsers and VML in older browsers. The main
features the control boasts are:

 pure client-side rendering through JavaScript which reduces the amount of work the server has to do - only
serialized data is sent to the client instead of rendering the entire image and sending markup

 the ability to load its data after the rest of the page has loaded to allow a faster initial load when large
amounts of data need to be serialized. This happens with a very light callback (not even an AJAX request)

 a variety of different charts:

 BarChart

 ColumnChart

 LineChart

 PieChart

 ScatterChart

 ScatterLineChart

 Stacked BarCharts and ColumnCharts

 support for various server datasources

 animation effects when it is being rendered

 intuitive markup structure to make configuration easier

 The following tutorial demonstrates how to add a RadHtmlChart to a page:
In a new AJAX-Enabled Web Site drop a RadHtmlChart from the ToolBox to the default web page:

1. Add at least one series in the Series collection of the PlotArea inner tag. For this example these can be
ColumnSeries

2. Add items to the Items collection of the Series. They only need their YValue property set so that they can
be placed according to the Y-axis

3. Add items to the Items collection of the XAxis tag that is also a child of the PlotArea tag. Their number
must match the number of items declared for the series as they will be shown on the X-axis below each
column

4. Optionally you may also set other properties for the control by using the inner tags most of its elements

41 RadHtmlChart

41.1 Objectives

41.2 Introduction

41.3 Getting Started

UI for ASP.NET AJAX

891 UI for ASP.NET AJAX

provide:

1. Set the Title property of the entire chart and/or for each axis.

2. Customize the tooltips and/or labels for the series via the TooltipsAppearance and
LabelsAppearance inner tags.

3. Customize the y-axis by changing the minimum and maximum values, grid lines, and/or labels.

5. Press F5 to run the page. You will see the RadHtmlChart.

Below is some example markup that can be created with the steps above:

ASPX

<telerik:RadHtmlChart runat="server" ID="ColumnChart1" Width="600px" Height="400px">
 <PlotArea>
 <Series>
 <telerik:ColumnSeries Name="Product 1">
 <Items>
 <telerik:SeriesItem YValue="15000" />
 <telerik:SeriesItem YValue="23000" />
 <telerik:SeriesItem YValue="10000" />
 <telerik:SeriesItem YValue="16000" />
 </Items>
 <LabelsAppearance Position="OutsideEnd" />
 <TooltipsAppearance Visible="false" />
 </telerik:ColumnSeries>
 <telerik:ColumnSeries Name="Product 3">
 <Items>
 <telerik:SeriesItem YValue="35000" />
 <telerik:SeriesItem YValue="10000" />
 <telerik:SeriesItem YValue="20000" />
 <telerik:SeriesItem YValue="17000" />
 </Items>
 <LabelsAppearance Position="OutsideEnd" />
 <TooltipsAppearance Visible="false" />
 </telerik:ColumnSeries>
 </Series>
 <XAxis>
 <Items>
 <telerik:AxisItem LabelText="1" />
 <telerik:AxisItem LabelText="2" />
 <telerik:AxisItem LabelText="3" />
 <telerik:AxisItem LabelText="4" />
 </Items>
 <LabelsAppearance DataFormatString="Q{0}" RotationAngle="0" />
 </XAxis>
 <YAxis>
 <LabelsAppearance DataFormatString="{0} sales" RotationAngle="0" />
 <TitleAppearance Position="Center" RotationAngle="0" Text="Sales" />
 </YAxis>
 </PlotArea>
 <ChartTitle Text="Product sales for 2011">
 </ChartTitle>
</telerik:RadHtmlChart>

UI for ASP.NET AJAX

892 UI for ASP.NET AJAX

This will result in the following chart:

The RadHtmlChart has a complex structure that consists of many elements that are outlined in the image
below:

UI for ASP.NET AJAX

893 UI for ASP.NET AJAX

 The main parts of the chart that can be controlled outside of the specific series are:

 Chart area - the main wrapper of the chart. This is the background on which everything else is placed,
including the PlotArea with the series and axes, chart title and legend. It is controlled via the Appearance
inner tag from the main tag of the control. Currently the background color of the entire chart can be set
there.

 Chart title - this is the global title of the chart. It is configured by the ChartTitle inner tag. There the
string that will be shown is set and it also provides the Appearance inner tag where the position (bottom or
top), alignment (left, right or centered), background color and visibility can be set.

 Legend - this is the list with series names or item names in the case of a PieChart along with a symbol that
indicates their color in the actual chart. Its appearance can be customized via the Appearance tag inside
the Legend tag that is a direct child of the main tag. The available properties control background color,
position (bottom, left, right or top) and visibility.

 Plot Area - this is the part where the actual chart is rendered. It includes the series with their labels, the
axes along with their labels and titles. PlotArea is also the name of the inner tag of the main chart tag
where the axes and series are defined.

The series are added to the Series tag inside the PlotArea tag. Their inner tags contain further properties that
can be used to control their appearance and databinding. Regardless of their configuration all series have the

UI for ASP.NET AJAX

894 UI for ASP.NET AJAX

same common set of elements:

 Series itself - this is the shape that is defined by the type of the series. In the above image this is a line
that connects the points defined as items for the series. For bar and column charts the series consists of
several rectangles that correspond to the series items, for the scatter chart it is the points themselves,
etc.

 Series item - this is the unit of data that is passed to the series. It defines the value of the chart at the
given point/for the given x-axis item. For line type charts these points define the spots through which the
line passes.

 Series item label - this is the text next to each item that shows the value it holds. It can be modified with
a format string to show a pattern related to this value.

 Series item tooltip - this is a tooltip that is shown only when the mouse hovers over a series item, which is
why it is not present in the above diagram. It consists of a rectangle with the series' color (or the color
predefined by the developer) and the item's value (plus format string) inside.

The axes are two perpendicular lines that define the scale of the chart and also show the reference
values/items. They can be translated to form grid lines inside the chart to aid the visual estimation of the
series' values. The axes are direct children of the plot area and this is also the place where they are defined in
the markup of the control via their own inner tags.

 Axis - the actual axis of the chart - it is a single line whose color and width can be changed if the default
values do not match the needs of the developer.

 Ticks - small marks on the axis that define axis values (or items) and are also starting points for the grid
lines.

 Grid lines - lines that are parallel to the axes to aid readability of the values. There are two types of grid
lines - major (usually thicker and spaced further off from each other) and minor (usually thinner and with
lighter color and closer together).

 Axis item label - text that corresponds to each item on an x-axis that requires items. It shows a string
defined in the code. In the case of a numerical axis the values either calculated by the chart or set by the
developer and can take a format string to show a template.

 Axis label - this is the title of the entire axis. It is usually used to show what the axis corresponds to or the
unit of measurement.

Each of them corresponds to a certain tag/class in the control’s code so that they can easily be found and
configured:

UI for ASP.NET AJAX

895 UI for ASP.NET AJAX

 The RadHtmlChart offers a number of chart types to fit different scenarios and data. The type of each series is
controlled via its tag name: BarSeries, ColumnSeries, LineSeries, PieSeries, ScatterSeries and ScatterLineSeries.

The BarSeries, ColumnSeries and LineSeries have a numerical Y-axis where the values of their items (their
YValue property) are distributed while each bar column or line point lies above a given item from the X-axis
(the Items collection of the XAxis).

The ScatterSeries and ScatterLineSeries have numerical X-axes as well and thus their items have one more
property – XValue to determine their position according to this axis as well and thus they do not require items
for the x-axis.

Series with the same type of axes can be combined in the same chart. The PieSeries is an exception, because it
does not have axes at all and only one can be present in the chart. In this sense it shows the names of its items
in the legend instead of the names of the series.

Below follow examples that show how each type of charts looks like:

BarSeries

41.4 Chart Types

UI for ASP.NET AJAX

896 UI for ASP.NET AJAX

The Y-axis is rotated 90 degrees clockwise and is horizontal, yet this is where the YValues are located. This is
done so that the series have a common way of setting their values.

ColumnSeries

The main difference between the Column and BarSeries is that the latter is horizontal while the former is
vertical.

UI for ASP.NET AJAX

897 UI for ASP.NET AJAX

LineSeries

This is a line connecting the items declared for the series. In case a value is missing the RadHtmlChart can
interpolate it or leave it blank.

PieSeries

UI for ASP.NET AJAX

898 UI for ASP.NET AJAX

A pie can have a number of sectors with a specified color and some of them can be separated from the rest to
emphasize their importance. This is done via the item’s Exploded property.

ScatterSeries

UI for ASP.NET AJAX

899 UI for ASP.NET AJAX

This series type is just a set of points in the plane and is useful for showing experimental data.

ScatterLineSeries

This is very similar to the LineSeries in the sense that it shows a trend over time by connecting the items with
lines, but the main difference is that the X-axis is numerical.

 The RadHtmlChart can be bound to various server datasources, regardless of its client-side rendering, which
makes it suitable for the regular scenarios while keeping the performance benefit of the client-side rendering.

To make things even better the data is only serialized to be sent to the client to take as little volume as
possible. To make things better the data itself can even be loaded through a callback after the page has loaded
or on demand when the developer needs it. This is controlled via the InvokeLoadData property of the chart. In
case it is configured to FromCode a call to the JavaScript loadData() method will quickly get the serialized
datasource from the server.

Other than that setting a datasource is quite easy – an SqlDataSource, an EntityDataSource, a
LinqDataSource, XmlDataSource, or even simple DataTables, arrays or lists can be used. You only need to
configure the datasource to return the needed data and feed it to the RadHtmlChart’s DataSource (for
programmatic data, then call DataBind()) or DataSourceID (for declarative sources) property like with any
other databound control. The essential properties needed to pass the data to the series and axes are:

 DataField – set for the series to point it to the desired column of the datatable

 DataLabelsField – set for the x-axis labels to populate the items for the axis (it can also be applied to the
y-axis)

Here follows a simple example:

41.5 Databinding

UI for ASP.NET AJAX

900 UI for ASP.NET AJAX

And the datasource itself, which, of course, may need some tweaking to match your own database:

That yields the following chart:

ASPX

<telerik:RadHtmlChart runat="server" Width="800px" Height="500px" ID="RadHtmlChart1"
 DataSourceID="SqlDataSource1">
 <PlotArea>
 <Series>
 <telerik:ColumnSeries DataField="Value" Name="Electricity Consumption">
 </telerik:ColumnSeries>
 </Series>
 <XAxis DataLabelsField="Year">
 <LabelsAppearance RotationAngle="75" />
 <TitleAppearance Text="Year" />
 </XAxis>
 <YAxis>
 <TitleAppearance Text="MWh" />
 </YAxis>
 </PlotArea>
 <Legend>
 <Appearance Visible="false" />
 </Legend>
 <ChartTitle Text="Electricity Consumption">
 </ChartTitle>
</telerik:RadHtmlChart>

ASPX

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:TelerikConnectionString %>"
 SelectCommand="SELECT [Year], [Value] FROM [Data] WHERE ([Subcategory_Id] = 1)">
</asp:SqlDataSource>

UI for ASP.NET AJAX

901 UI for ASP.NET AJAX

UI for ASP.NET AJAX

902 UI for ASP.NET AJAX

 Build the TakeExamFinish.ascx User Control.

 Deserialize a JSON string into a server-side object.

 Configure a RadChart control and bind it to a generic List object.

In this chapter we will add the full functionality for the TakeExamFinish.ascx control. The "page" will work off
of the ExamResults serialized and sent from the client, deserialize this object and work with it in server code.
The "page" will display exam results and also bind results-by-category data to a RadChart.

Add DataSource
Add a SqlDataSource to the control with ID "dsCategory', use the ActiveSkillConnectionString for the
ConnectionString property, set SelectCommand to "Skill_Category_SelectWhere" and SelectCommandType to
"StoredProcedure". In the SelectParameters collection add a single parameter with Name "ID" and Type "Int32".
The markup should look like the example below.

Add Exam Summary Markup
1. Add a span with two images that show a happy/sad face based on the exam results. The style for the span

tag positions the images on the page.

2. Add two more span tags that contain a pass/fail message and an appropriately labeled button to return
back to the TakeExamChoose.ascx control. The onclick event handlers use the DynamicControl JavaScript
object load() method to navigate.

42 ActiveSkill: Building the Exam Finish Control

42.1 Objectives

42.2 Building the Exam Finish Page

You can find the complete source for this project at:
\VS Projects\ActiveSkill Add Finish Page

[ASP.NET] Adding the DataSource

<%--Data sources--%>
<asp:SqlDataSource ID="dsCategory" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="Skill_Category_SelectWhere"
 SelectCommandType="StoredProcedure">
 <SelectParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 </SelectParameters>
</asp:SqlDataSource>

[ASP.NET] Adding the Pass/Fail Images

<span id="divImg" runat="server" style="position: absolute;
 left: 200px; top: 100px">

[ASP.NET] Add Results and Buttons

UI for ASP.NET AJAX

903 UI for ASP.NET AJAX

3. Add a third span tag that contains labels that contain some literal text and the title and score information.
These labels will be populated in the TakeExamFinish.ascx FirstLoad() method.

4. Add a div to contain a RadChart to be added later.

Add and Configure RadChart
1. Add a RadChart to the TakeExamFinish.ascx control.

2. In the RadChart Smart Tag, click the Add RadChart HTTP Handler to Web.config link.

<span id="divPass" runat="server" style="position: absolute;
 left: 300px; top: 110px; line-height: 30px">
 <div class="skillHighlight" style="">
 YOU PASSED!</div>
 <img src="../images/Continue_btn.png" onclick="window.DynamicControl.load
('TakeExamChoose.ascx', '');"
 style="position: relative; left: -20px" />

<span id="divfailed" runat="server" style="position: absolute;
 left: 300px; top: 110px; line-height: 30px">
 <div class="skillRed">
 YOU FAILED!</div>
 <img src="../images/tryagain_btn.png" onclick="window.DynamicControl.load
('TakeExamChoose.ascx', '');"
 style="position: relative; left: -20px" />

[ASP.NET] Add the Exam Summary Information

<span id="divSummary" runat="server" style="position: absolute;
 left: 500px; top: 120px; line-height: 20px">

 <div id="divScore" runat="Server" class="skillHighlight">
 Your results for exam
 <asp:Label ID="lblTitle" runat="server" CssClass="skillGreen"></asp:Label>
 </div>

 <asp:Label ID="lblSummary" runat="server" CssClass="skillSummary"
 Text="You scored "></asp:Label>
 <asp:Label ID="lblScore" runat="server" CssClass="skillGreen"></asp:Label>
 <asp:Label ID="lblSummary2" runat="server" CssClass="skillSummary"
 Text=" with "></asp:Label>
 <asp:Label ID="lblTotal" runat="server" CssClass="skillGreen"></asp:Label>
 <asp:Label ID="Label1" runat="server" CssClass="skillSummary"
 Text=" required to pass"></asp:Label>

[ASP.NET]

<div id="chartDiv" style="position: absolute; left: 200px; top: 190px">

<%-- RadChart goes here--%>

</div>

UI for ASP.NET AJAX

904 UI for ASP.NET AJAX

3. Also in the Smart Tag, enter these settings:

 Width: 652

 Height: 491

 Title Text: Answers by category

 Chart Series Orientation: Vertical

 Default chart type: Stacked Bar

 Skin: DeepGray

4. In the Properties Window set the IntelligentLabelsEnabled property to "true".

5. In the Series collection editor, set the name of the first series to "Correct Answers" and the second series
to "Incorrect Answers".

The completed markup should look something like this example:

Gotcha!

At the time of this writing, if you are using IIS7 Integrated Mode, you need to add a handler
manually to the <system.webserver> "handlers" element of the web.config file:

<system.webServer>
 <handlers>
 <add name="ChartHandler" path="ChartImage.axd" verb="*"
type="Telerik.Web.UI.ChartHttpHandler, Telerik.Web.UI" />
...

UI for ASP.NET AJAX

905 UI for ASP.NET AJAX

6. Check the ActiveSkillUI references and verify that Telerik.Charting is in the list. If not, add it now.

Add ExamResults Server-Side Object
We can move objects back and forth between server and client. The MS AJAX Library includes functions to
serialize objects, e.g.

Sys.Serialization.JavaScriptSerializer.serialize(myJsonObject);

...and we can also serialize and deserialize objects on the server using the JavaScriptSerializer object from
the System.Web.Script.Serialization namespace. We will need a server side version of the Category and
ExamResults objects to deserialize into when we receive the results argument in the TakeExamFinish.ascx
FirstLoad() method.

1. Add a new class file "ExamResults.cs" to the ActiveSkillBO project.

2. Add the Category and ExamResults code to the file.

[ASP.NET] RadChart Definition

<telerik:RadChart ID="RadChart1" runat="server" DefaultType="StackedBar" Height="491px"
 Skin="DeepGray" Width="652px" IntelligentLabelsEnabled="true">
 <Series>
 <telerik:ChartSeries Name="Correct Answers" Type="StackedBar" DataLabelsColumn>
 </telerik:ChartSeries>
 <telerik:ChartSeries Name="Incorrect Answers" Type="StackedBar">
 </telerik:ChartSeries>
 </Series>
 <PlotArea>
 <XAxis></XAxis>
 <YAxis AxisMode="Extended"></YAxis>
 </PlotArea>
</telerik:RadChart>

[VB] Defining the Server-Side Category and ExamResults Objects

Imports System.Collections.Generic
Namespace Telerik.ActiveSkill.Common
 #region Category
 ' Category stores a tally of total and incorrect responses
 ' for a single category.
 Public Class Category
 Private _categoryID As Integer
 Private _total As Integer
 Private _incorrect As Integer
 Private _title As String
 Public Property CategoryID() As Integer
 Get
 Return _categoryID
 End Get
 Set
 _categoryID = value
 End Set
 End Property
 Public Property Title() As String
 Get
 Return _title
 End Get
 Set
 _title = value

UI for ASP.NET AJAX

906 UI for ASP.NET AJAX

 End Set
 End Property
 Public Property Total() As Integer
 Get
 Return _total
 End Get
 Set
 _total = value
 End Set
 End Property
 Public Property Incorrect() As Integer
 Get
 Return _incorrect
 End Get
 Set
 _incorrect = value
 End Set
 End Property
 Public ReadOnly Property Correct() As Integer
 Get
 Return _total - _incorrect
 End Get
 End Property
 Public ReadOnly Property Score() As Double
 Get
 Dim total As Double = Me.Total
 Dim incorrect As Double = Me.Incorrect
 Return ((total - incorrect) / total) * 100
 End Get
 End Property
 End Class
#End Region Category
 #region ExamResults
 ' ExamResults summarizes the scores for all categories
 Public Class ExamResults
 Private _categories As New List(Of Category)()
 Public Property Categories() As List(Of Category)
 Get
 Return _categories
 End Get
 Set
 _categories = value
 End Set
 End Property
 ' Returns the total of all questions for all categories.
 Public ReadOnly Property Total() As Integer
 Get
 Dim result As Integer = 0
 For Each category As Category In _categories
 result += category.Total
 Next
 Return result
 End Get
 End Property
 ' Returns the total of incorrect questions for all categories

UI for ASP.NET AJAX

907 UI for ASP.NET AJAX

 Public ReadOnly Property Incorrect() As Integer
 Get
 Dim result As Integer = 0
 For Each category As Category In _categories
 result += category.Incorrect
 Next
 Return result
 End Get
 End Property
 ' Returns the total score accross all categories
 Public ReadOnly Property Score() As Double
 Get
 Dim total As Double = Me.Total
 Dim incorrect As Double = Me.Incorrect
 Return ((total - incorrect) / total) * 100
 End Get
 End Property
 End Class
#End Region ExamResults
End Namespace

[C#] Defining the Server-Side Category and ExamResults Objects

using System.Collections.Generic;
namespace Telerik.ActiveSkill.Common
{
 #region Category
 // Category stores a tally of total and incorrect responses
 // for a single category.
 public class Category
 {
 private int _categoryID;
 private int _total;
 private int _incorrect;
 private string _title;
 public int CategoryID
 {
 get { return _categoryID; }
 set { _categoryID = value; }
 }
 public string Title
 {
 get { return _title; }
 set { _title = value; }
 }
 public int Total
 {
 get { return _total; }
 set { _total = value; }
 }
 public int Incorrect
 {
 get { return _incorrect; }
 set { _incorrect = value; }
 }

UI for ASP.NET AJAX

908 UI for ASP.NET AJAX

 public int Correct
 {
 get { return _total - _incorrect; }
 }
 public double Score
 {
 get
 {
 double total = this.Total;
 double incorrect = this.Incorrect;
 return ((total - incorrect) / total) * 100;
 }
 }
 }
 #endregion Category
 #region ExamResults

 // ExamResults summarizes the scores for all categories
 public class ExamResults
 {
 private List<Category> _categories = new List<Category>();
 public List<Category> Categories
 {
 get { return _categories; }
 set { _categories = value; }
 }
 // Returns the total of all questions for all categories.
 public int Total
 {
 get
 {
 int result = 0;
 foreach (Category category in _categories)
 {
 result += category.Total;
 }
 return result;
 }
 }
 // Returns the total of incorrect questions for all categories
 public int Incorrect
 {
 get
 {
 int result = 0;
 foreach (Category category in _categories)
 {
 result += category.Incorrect;
 }
 return result;
 }
 }
 // Returns the total score accross all categories
 public double Score
 {

UI for ASP.NET AJAX

909 UI for ASP.NET AJAX

Implement the FirstLoad() IASControl Method
The FirstLoad() method of the TakeExamFinish.ascx control gets the collection of scores by category and
summarizes them.

1. The TakeExamFinish.ascx page code-behind should have the following references to the "Imports" (VB) or
"uses" (C#) clauses:

 System

 System.Collections.Generic

 System.Data

 System.Web.Script.Serialization

 System.Web.UI

 Telerik.ActiveSkill.Common

2. In the FirstLoad() method add code to store the the incoming arguments. The passPercent and title
arguments are simple assignments to the "passPercent" numeric variable and the "title" string
variable. The examResults is a serialized JSON string that must be Deserialized into object form before we
can use it. The JavaScriptSerializer Deserialize() method takes care of this by converting the JSON string
into a server-side ExamResults object.

 get
 {
 double total = this.Total;
 double incorrect = this.Incorrect;
 return ((total - incorrect) / total) * 100;
 }
 }
 }
 #endregion ExamResults
}

[VB] Storing Incoming Arguments

Public Sub FirstLoad(ByVal args As Dictionary(Of String, String))
 ' Store args information
 Dim passPercent As Double = Convert.ToDouble(args("passPercent"))
 Dim title As String = args("title")
 ' Retrieve the serialized JSON ExamResults client object and
 ' Deserialize into the server ExamResults object.
 Dim jss As New JavaScriptSerializer()
 Dim examResults As ExamResults = jss.Deserialize(Of ExamResults)(args("examResults"))
 '. . .
End Sub

[C#] Storing Incoming Arguments

public void FirstLoad(Dictionary<string, string> args)
{
 // Store args information
 double passPercent = Convert.ToDouble(args["passPercent"]);
 string title = args["title"];
 // Retrieve the serialized JSON ExamResults client object and
 // Deserialize into the server ExamResults object.
 JavaScriptSerializer jss = new JavaScriptSerializer();
 ExamResults examResults = jss.Deserialize<ExamResults>(args["examResults"]);

UI for ASP.NET AJAX

910 UI for ASP.NET AJAX

3. Below the arguments assignment, add code to determine if the user passed or failed by comparing the
ExamResults Score property against the "passPercent" variable. The code assigns the properties for the
title, score and total. Finally, the boolean "pass" is used to show or hide parts of the UI.

4. Next add code to retrieve the title for each category and store it in our ExamResults array of categories.

 //. . .
}

[VB] Calculate the Pass/Fail Status and Update the UI

' Calculate if the user passed the exam.
Dim pass As Boolean = examResults.Score >= passPercent
' Set the page element properties: set the title,
' Score and percentage needed to pass.
lblTitle.Text = title
lblScore.Text = [String].Format("{0:0}%", examResults.Score)
lblTotal.Text = [String].Format("{0:0}%", passPercent)
' Hide and show areas of the page according to the
' pass/fail status
divPass.Visible = pass
divfailed.Visible = Not pass
imgPass.Visible = pass
imgFail.Visible = Not pass

[C#] Calculate the Pass/Fail Status and Update the UI

// Calculate if the user passed the exam.
bool pass = examResults.Score >= passPercent;
// Set the page element properties: set the title,
// Score and percentage needed to pass.
lblTitle.Text = title;
lblScore.Text = String.Format("{0:0}%", examResults.Score);
lblTotal.Text = String.Format("{0:0}%", passPercent);
// Hide and show areas of the page according to the
// pass/fail status
divPass.Visible = pass;
divfailed.Visible = !pass;
imgPass.Visible = pass;
imgFail.Visible = !pass;

[VB] Load Category Titles

' Retrieve the category title for each category and add it
' to each server Category object.
For Each category As Category In examResults.Categories
 dsCategory.SelectParameters("ID").DefaultValue = category.CategoryID.ToString()
 Dim dvCategory As DataView = DirectCast(dsCategory.[Select]
(DataSourceSelectArguments.Empty), DataView)
 For Each row As DataRow In dvCategory.Table.Rows
 category.Title = row("Title").ToString()
 Next
Next

[C#] Load Category Titles

// Retrieve the category title for each category and add it
// to each server Category object.
foreach (Category category in examResults.Categories)
{
 dsCategory.SelectParameters["ID"].DefaultValue = category.CategoryID.ToString();

UI for ASP.NET AJAX

911 UI for ASP.NET AJAX

5. Finally, bind the chart to the generic list of Categories in the ExamResults object. Set the first series of
data to the "Correct" column and the second series to the "Incorrect" column. Set the labels to use the
category titles.

Test Exam
Press Ctl-F5 to run the application. Take a short exam multiple times to verify the output on the final page
when the score is passing and failing. Check that the "Continue" or "Try Again" button navigates back to the
TakeExamChoose.ascx control.

 DataView dvCategory = (DataView)dsCategory.Select(DataSourceSelectArguments.Empty);
 foreach (DataRow row in dvCategory.Table.Rows)
 {
 category.Title = row["Title"].ToString();
 }
}

[VB] Binding the Chart

' Bind the RadChart to our server ExamResults.Categories array.
' Set the first series to use the Correct property and the
' second series to use the Incorrect property of the Category object.
RadChart1.DataSource = examResults.Categories
RadChart1.Series(0).DataYColumn = "Correct"
RadChart1.Series(0).DefaultLabelValue = "Correct:#Y"
RadChart1.Series(1).DataYColumn = "Incorrect"
RadChart1.Series(1).DefaultLabelValue = "Incorrect:#Y"
RadChart1.PlotArea.XAxis.DataLabelsColumn = "Title"
RadChart1.DataBind()

[C#] Binding the Chart

// Bind the RadChart to our server ExamResults.Categories array.
// Set the first series to use the Correct property and the
// second series to use the Incorrect property of the Category object.
RadChart1.DataSource = examResults.Categories;
RadChart1.Series[0].DataYColumn = "Correct";
RadChart1.Series[0].DefaultLabelValue = "Correct:#Y";
RadChart1.Series[1].DataYColumn = "Incorrect";
RadChart1.Series[1].DefaultLabelValue = "Incorrect:#Y";
RadChart1.PlotArea.XAxis.DataLabelsColumn = "Title";
RadChart1.DataBind();

UI for ASP.NET AJAX

912 UI for ASP.NET AJAX

In this chapter you implemented the TakeExamFinish.ascx control. You deserialized a JSON string passed from
the client into a server ExamResults object. You added HTML controls to display exam results and also added
and configured a RadChart. You bound the RadChart to a generic List of objects and displayed the data in a
stacked bar format with two series of data.

42.3 Summary

UI for ASP.NET AJAX

913 UI for ASP.NET AJAX

UI for ASP.NET AJAX

914 UI for ASP.NET AJAX

 Explore the features of the date, time, calendar and scheduler controls.

 Create simple applications to get familiar with the basic controls.

 Explore the design time interfaces, including the Smart Tag, Properties Window and Template Design
surface.

 Explore principal properties and groups of properties where most of the functionality is found.

 Learn server-side coding techniques including the major server side objects, setting calendar special days,
adding scheduler appointments, adding scheduler resources, scheduling recurrence and handling server-
side events.

 Explore some of the client-side methods of the date, time, calendar client-side objects. Includes drilling
down to the objects that make up the picker controls, controlling popups, and selected dates.

 Learn how to validate date and time entry.

 Learn to use scheduler templates.

This walk-through will use the RadDatePicker, RadDateTimePicker and the RadCalendar.

1. Open the web.config file and add the following application setting to set the Skin for all RadControls in the
application to "Sunset".

2. In a new web application add a RadFormDecorator to the default page.

3. Open the Smart Tag and select Add ScriptManager from the context menu.

43 Date, Time, Calendar and Scheduling

43.1 Objectives

43.2 Date-Time and Calendar Controls Getting Started

[ASP.NET] Add the Telerik Skin Setting

<appSettings>
 <!-- Sets the skin for all RadControls -->
 <add key="Telerik.Skin" value="Sunset"/>
</appSettings>

Be sure to not set the Skin properties for any of the controls. That includes making sure that tags like
Skin="" and Skin="Default" do not exist in the markup. If the "Sunset" skin does not appear for one of the
controls, check the markup for any instances of "Skin=xxx" and remove them.

UI for ASP.NET AJAX

915 UI for ASP.NET AJAX

4. Add a RadTabStrip to the page and configure it:

 Open the Smart Tag and select Build RadTabStrip...

 Add three items to the tab strip with Text properties set to "Flights", "Cars" and "Search Results".

5. Drop a RadMultiPage control below the tab strip and configure the multi page:

 Open the Smart Tag and click the Add PageView link two times for a total of three pages (there should
be a default page there when the RadMultiPage is first added).

 Click on the page views and set their ID properties in the Properties window to "pvFlights", "pvCars"
and "pvSearchResults".

6. Go back to the RadTabStrip and set the MultiPageID property to the RadMultiPage control's ID.

7. Add controls to the "pvFlights" page view:

 Add a standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the Text to
"Departing:". Note: We're hijacking "radInput_Sunset" which is a CSS style that exists in the Sunset skin
and suits our purposes.

 Add a RadDatePicker and set the ID property to "dpDepart".

 Add another standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the Text
to "Arriving:".

 Add a second RadDatePicker and set the ID property to "dpArrive".

 Add a standard ASP Button control and set the ID property to "btnFlights". Note: functionality for the
buttons will be implemented in the upcoming section on server-side code.

8. Add controls to the "pvCars" page view:

 Add a standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the Text to
"Pickup:".

 Add a RadDateTimePicker and set the ID property to "dtpPicker".

 Add another standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the Text
to "Drop Off:".

 Add a second RadDateTimePicker and set the ID property to "dtpDropoff".

 Add a standard ASP Button control and set the ID property to "btnCars".

9. Add controls to the "pvSearchResults" page view:

 Add a standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the Text to
"Results".

 From the HTML tab of the Toolbox add a Div tag. Set the Style property to "float: left; margin:5px"".

 In the Div tag add a standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the
Text to "Start:".

 Add a RadCalendar and set its ID property to "calStart" and the Enabled property to false. Also set the

UI for ASP.NET AJAX

916 UI for ASP.NET AJAX

PresentationType property to "Preview". Open the SelectedDayStyle property and set BorderColor to
"LightBlue" and BorderStyle to "Dotted".

 Add a standard ASP Label control and set the ID property to "lblStart". Set the CssClass property to
"radInput_Sunset" and the Text to "".

 From the HTML tab of the Toolbox add a Div tag. Set the Style property to "float: left; margin:5px"".

 In the Div tag add a standard ASP Label control. Set the CssClass property to "radInput_Sunset" and the
Text to "End:".

 Add a RadCalendar and set its ID property to "calEnd" and the Enabled property to false. Also set the
PresentationType property to "Preview". Open the SelectedDayStyle property to set BorderColor to
"LightBlue" and BorderStyle to "Dotted".

 Add a standard ASP Label control and set the ID property to "lblEnd". Set the CssClass property to
"radInput_Sunset" and the Text to "".

 From the HTML tab of the Toolbox add a Div tag. Set the Style property to "clear: both".

 In the Div tag, add a standard ASP Button control with ID property set to "btnContinue" and Text as
"Continue".

10. In the code-behind for the page add the code below to the Page_Load event handler. This code sets the
minimum and maximum dates for both the departure and arrival RadDatePicker controls.

The "clear:both" style setting lets us move the elements that come later to the following line.
Failing to clear will display the next elements to the right of the calendars, rather than below the
calendars.

[VB] Setting the Min and Max Dates

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 ' set both start and end date limits
 dpDepart.MinDate = DateTime.Today
 dpArrive.MinDate = DateTime.Today
 dpDepart.MaxDate = DateTime.Today.AddDays(21)
 dpArrive.MaxDate = DateTime.Today.AddDays(21)
 End If
End Sub

[C#] Setting the Min and Max Dates

UI for ASP.NET AJAX

917 UI for ASP.NET AJAX

11. Press Ctl-F5 to run the application. Notice that difference in how the calendars are handled where the
"Flights" RadDatePicker controls are limited to 21 days from the current date. Notice that you not only can't
select a date out of that range, but you can't navigate to a month past the month that contains the last
valid day. Also notice that the "Sunset" skin set in the web configuration file is propagated throughout the
web page and also that the use of the "radInput_Sunset" style makes the labels conform to the other
elements on the page.

You can get an idea of the layout for RadDatePicker and RadTimePicker by looking at the RadDateTimePicker.
The Input Area lets the user directly enter date and time values as text. The Calendar Popup Button displays a
RadCalendar popup where the user can select a date to populate the Input Area. The Time Popup Button
displays a Time View as a popup where the user can select a time value from a list. You can use the built-in
calendar and time view controls or specify a shared control.

RadCalendar has a set of navigation controls and titling along the top. Row and column headers are displayed
along the left side and top, with a View Selector button showing at the apex of row and column headers. The
View Selector lets the user select all days in the view at once.

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // set both start and end date limits
 dpDepart.MinDate = DateTime.Today;
 dpArrive.MinDate = DateTime.Today;
 dpDepart.MaxDate = DateTime.Today.AddDays(21);
 dpArrive.MaxDate = DateTime.Today.AddDays(21);
 }
}

43.3 Tour of Date-Time and Calendar Controls

UI for ASP.NET AJAX

918 UI for ASP.NET AJAX

The user can also click the Title and Navigation Popup area to display the "Fast Navigation" popup.

In the Visual Studio designer, you can configure the date and time controls using the Smart Tag or the
Properties Window. In addition, you can add templates using the Template Design surface for time and calendar
controls.

Smart Tag
The RadTimePicker, RadDateTimePicker, RadDatePicker and MonthYearPicker have similar Smart Tags with
some small differences. All have the standard Ajax Resources, Skin selection, and Learning center sections.

43.4 Date-Time and Calendar Controls Designer Interface

UI for ASP.NET AJAX

919 UI for ASP.NET AJAX

All contain the ability to enable AutoPostBack, but RadDateTimePicker allows you to choose which controls
trigger the post back:

UI for ASP.NET AJAX

920 UI for ASP.NET AJAX

The RadDateTimePicker and RadTimePicker controls also let you Edit Templates to control the exact look and
feel of each cell that displays the time, an alternating template so you can visually differentiate closely packed
times for a clearer user interface, header and footer templates.

The RadCalendar Smart Tag lets you toggle the AutoPostBack and the ability to MultiSelect days on the
calendar. The Configure Special Days link jumps you to the RadCalendarDay Collection Editor dialog. The Edit
Templates link lets you create customized headers and footers for the calendar.

Properties Window For Date and Time Picker Controls
At design time, you can use the Properties Window to configure almost every aspect of the date, time and

UI for ASP.NET AJAX

921 UI for ASP.NET AJAX

calendar controls. (A notable exception is the creation of templates.) As with the other controls we have seen,
we'll take a look at the most significant properties.

Date and Time Picker Behavior

RadDatePicker, RadTimePicker and RadDateTimePicker controls are all made up of sub-components such as the
calendar, date and time input controls, date and time popup buttons and time views. Go to the Behavior group
of properties to find these controls. You can configure these controls by opening their sub-properties.

You can also share controls to be used by multiple pickers by setting the SharedCalendarID and
SharedTimeViewID properties. The SharedCalendarID points to the ID of a RadCalendar control which may also
be used stand-alone, but the SharedTimeViewID points to a special RadTimeView control available on the
ToolBox that cannot be used stand-alone.

Controlling the Date Selection

Within the calendar portion of a picker control you can set the FocusedDate and the SelectedDate. The
component uses FocusedDate to focus the calendar on a given month when the input is empty, but doesn't show
the FocusedDate as selected. The screenshot below was taken after the FocusedDate was set to 8/1/2008 and
the SelectedDate was left blank.

You can limit the user selection within a range of dates by setting the MinDate and MaxDate properties. These

UI for ASP.NET AJAX

922 UI for ASP.NET AJAX

are all DateTime types so you can populate them using the usual .NET DateTime methods and properties, e.g.
Today, AddDays(), AddMonths(), etc.

Properties Window for RadCalendar

Controlling Calendar Appearance

The Appearance group of calendar properties controls layout, styling and has properties to enumerate and
control "Special days".

The Appearance group of properties include:

UI for ASP.NET AJAX

923 UI for ASP.NET AJAX

 Layout, e.g. DefaultCellPadding, DefaultCellSpacing

 Specific appearance properties for the calendar as a whole, e.g. BackColor, BorderStyle, etc., as well as a
CssClass property to allow the calendar to be styled.

 Properties suffixed with "Style" (e.g. CalendarTableStyle, FastNavigationStyle, etc). Each of these "Style"
properties has sub-properties that define specific appearance (i..e. BackColor, BorderStyle, etc) or let you
define a CssClass.

 The Skin and skin related properties.

How do these appearance properties for the calendar as a whole, "Style" properties and Skins work together? To
get an idea, take a look at the screenshot below where the calendar Skin is set to "Sunset", the BackColor to
"Red", CalendarTableStyle BackColor to "Orange" and the DayStyle BackColor to "Yellow". You can see that the
calendar heading retains the "Sunset" skin, but the other visual aspects of the calendar have been overridden by
the more specific appearance properties.

You may have noticed the PresentationType property in the Appearance group. Setting the PresentationType
property from "Interactive" to "Preview" determines how the Calendar will handle layout and user interaction.
Using the "Preview" setting prevents the user from selecting a date, but the user can still navigate in the
calendar. In the past you might have set Enabled to false, but this prevents the user from navigating.

The SpecialDays property is a collection of RadCalendarDay objects that can be styled separately from the
other calendar days. In fact, each special day can be styled individually by using the ItemStyle property to set
BackColor, CssClass etc., or can use its TemplateID to point at a template.

UI for ASP.NET AJAX

924 UI for ASP.NET AJAX

Templates for special days are contained in the CalendarDayTemplates collection property. You can populate
these templates directly within the markup.

Calendar Behavior

Behavior properties include an Orientation property that can be RenderInRows (the default) or
RenderInColumns. You should also note the EnableMultiSelect that defaults to true. The screenshot below was
taken after Orientation was set to RenderInColumns and EnableMultiSelect was left at its default of true.

Managing Dates

This group of properties controls the layout of days, what dates are visible, the valid dates that can be selected
and the actual dates that are selected.

UI for ASP.NET AJAX

925 UI for ASP.NET AJAX

FirstDayOfWeek is an enumeration of Sunday through Saturday that controls the layout of days in the calendar.
FocusedDate makes the specified date visible in the calendar when SelectedDate has not been set. Note that
FocusedDate does not actually select the date or make any appearance changes to the date.

At the time of this writing, FocusedDateColumn and FocusedDateRow are marked to be obsolete in future
versions.

RangeMinDate and RangeMaxDate set the lower and upper boundaries of dates that may be selected. Dates
outside this range will be disabled and the user will not even be able to navigate outside views in the range.

View Settings

The calendar is presented as a "single view" by default where only a single month shows. Instead you can create
a "multiple view" showing multiple months. The General View Settings and MonthView Specific Settings control
the layout and appearance for these views.

To get multiple months shown within the calendar, either set the MonthLayout property to any of a number of
pre-defined dimensions (e.g. 7 columns x 6 rows, 14 x 3, 21 x 2, 7 x 6...) or you can specify your own by setting
the MultiViewColumns and MultiViewRows properties to values larger than the default of "1". The screenshot
below shows a whole year of months where MultiViewColumns is set to "4" and MultiViewRows to "3".

UI for ASP.NET AJAX

926 UI for ASP.NET AJAX

Likewise you can control the dimensions of a single month view using the SingleViewColumns and
SingleViewRows properties. In the screenshot below, SingleViewColumns is set to "14". Notice that only the
January days are highlighted even though the days extend into February and March.

EnableNavigationAnimation is false by default but when enabled produces a very cool effect that "slides"
between months when the navigation buttons are clicked.

In the Monthview Specific Settings you can use a standard format character in the CellDayFormat property. By
default this value is "%d", i.e. it outputs an integer number with no leading zeros. The screenshot below uses
the format string "dd" to include a leading zero:

UI for ASP.NET AJAX

927 UI for ASP.NET AJAX

ShowOtherMonthDays when set to false hides any days that are not part of the month being viewed.
UseColumnHeadersAsSelectors and UseRowHeadersAsSelectors are both true by default and let your user
select entire columns or rows with a single click.

Navigation

The Navigation properties control the behavior, visiblity, layout and text for the navigation buttons along the
top of the calendar.

Titling

Titling properties handle the formatting and layout of the title area at the top center of the calendar.

43.5 Date-Time and Calendar Controls Server-Side Programming

UI for ASP.NET AJAX

928 UI for ASP.NET AJAX

Date-Time Picker Controls Server Objects

You can of course directly access the RadDatePicker, RadTimePicker, RadDateTimePicker and
RadMonthYearPicker controls, but you can also access the objects that make up each control:

 RadDateInput is the class for the input area of RadDatePicker, RadTimePicker, and RadDateTimePicker. It
handles the formatting and parsing of date and time strings, and has a number of its own properties,
methods, and events. RadDateInput is one of the standard RadInput controls.

 CalendarPopupButton and TimePopupButton are the classes for the popup buttons that display the
calendar on RadDatePicker and RadDateTimePicker and the time view popup in RadTimePicker and
RadDateTimePicker.

 RadMonthYearPopUpButton is the class for the button that displays the MonthYearView popup in the
MonthYearPicker control.

 RadTimeView is the class for the popup time view used by RadTimePicker and RadDateTimePicker.
RadTimeView is also available in the toolbox so that a single instance can be shared among multiple
RadTimePicker and RadDateTimePicker controls.

 MonthYearView is the class for the popup monthyear view used by the RadMonthyearPicker.

 DataListItem is the standard System.Web.UI.WebControls.DataListItem class. The RadTimeView control
uses this class for each of the items it displays. It can be accessed through the DataList property, and is
also available as the Item property of the eventArgs of the ItemCreated and ItemDataBound events.
DataListItem descends from WebControl.

Calendar Server Objects

In addition to the RadCalendar class,

 RadCalendarDay maps a date value to its corresponding visual settings and a number of boolean properties
that represent its status (weekend date, disabled, selected, and so on). This class is used in the Day
property of the eventArgs of the DayRender event, and for elements in the SpecialDays collection.

 CalendarView represents the current view of the calendar. It can include links to child views if the
calendar is in multi-view mode. This class is also used in the OldView and NewView properties of the
eventArgs of the DefaultViewChanged event.

 MonthView is a descendant of CalendarView that represents the view information for a single month. The
View property of the eventArgs in the DayRender event is of MonthView type. It is also the type for the
CalendarView property when the calendar is in single-view mode.

 TableCell is the control class for a cell in the day matrix. The Cell property within the DayRender event
args is of this type.

 RadDate is a wrapper for System.DateTime. It is used for persisting DateTime values in collections such as
the SelectedDates property.

 DayTemplate is the type for each element of the CalendarDayTemplates property. DayTemplate
implements the ITemplate interface.

Date-Time Picker Controls Server Events

Events of special interest to date-time picker controls are:

 SelectedDateChanged: RadDatePicker and RadDateTimePicker surface a SelectedDateChanged event that
occurs when the user changes the value of the control, either when the input area loses focus after the
user has typed a new value, or when the user selects a new value in the popup calendar or time view
control. The event passes SelectedDateChangedEventArgs as a parameter that contains two DateTime
properties NewDate and OldDate. Don't forget that this event will not fire unless there's a postback, so
you'll need to set the AutoPostBack, AutoPostbackControl (when using RadDateTimePicker) or trigger a
postback through some other means.

 ItemCreated and ItemDataBound: Controls that use a RadTimeView, i.e. RadTImePicker and

UI for ASP.NET AJAX

929 UI for ASP.NET AJAX

RadDateTimePicker also surface ItemCreated and ItemDataBound events. These two events pass
TimePickerEventArgs which has a single property of interest, Item, which is of type DataListItem. The
example below catches the ItemCreated event and sets the Item CssClass based on the ItemType.

[CSS] Alternating Row Styles

<style type="text/css">
 .FirstRowCss
 {
 background-color: LightGreen;
 }
 .FirstAlternatingRowCss
 {
 background-color: Lime;
 }
</style>

[VB] Handling the ItemCreated Event

Protected Sub RadDateTimePicker1_ItemCreated(ByVal sender As Object, ByVal e As
Telerik.Web.UI.Calendar.TimePickerEventArgs)
 If e.Item.ItemType = ListItemType.Item Then
 e.Item.CssClass = "FirstRowCss"
 End If
 If e.Item.ItemType = ListItemType.AlternatingItem Then
 e.Item.CssClass = "FirstAlternatingRowCss"
 End If
End Sub

[C#] Handling the ItemCreated Event

protected void RadDateTimePicker1_ItemCreated(object sender,
 Telerik.Web.UI.Calendar.TimePickerEventArgs e)
{
 if (e.Item.ItemType == ListItemType.Item)
 {
 e.Item.CssClass = "FirstRowCss";
 }
 if (e.Item.ItemType == ListItemType.AlternatingItem)

UI for ASP.NET AJAX

930 UI for ASP.NET AJAX

 ChildrenCreated occurs when the child controls (the input area, popup buttons, and embedded calendar or
time view controls) are created. The example below shows how to add a link right next to the calendar
popup button of a RadDatePicker. When the button is clicked the picker's clear() client method is called.

Calendar Server Events

 DayRender occurs immediately before the calendar renders the cell for a single day in the day matrix.

 HeaderCellRender occurs immediately before the calendar renders a cell in the column or row headers (or
the view selector). The HeaderCellRenderEventArgs passed in as a parameter has two properties: Cell and
HeaderType. You can use the Cell property to configure the appearance of the cell and the HeaderType to
determine where a given cell will be placed. This next example sets the Cell BackColor based on the
HeaderType. Note that the "View" HeaderType denotes the View Selector button in the upper left hand
corner of the calendar. Also be aware that you should set EnableViewSelector to true for this example.

 {
 e.Item.CssClass = "FirstAlternatingRowCss";
 }
}

[VB] Handling the ChildrenCreated Event

Protected Sub RadDatePicker1_ChildrenCreated(ByVal sender As Object, ByVal e As EventArgs)
 Dim picker As RadDatePicker = DirectCast(sender, RadDatePicker)
 Dim clearLink As New HyperLink()
 clearLink.NavigateUrl = String.Format("javascript:$find('{0}').clear()", picker.ClientID)
 clearLink.Text = "Clear"
 clearLink.ToolTip = "Clear the date picker"
 picker.Controls.Add(clearLink)
End Sub

[C#] Handling the ChildrenCreated Event

protected void RadDatePicker1_ChildrenCreated(object sender, EventArgs e)
{
 RadDatePicker picker = (RadDatePicker)sender;
 HyperLink clearLink = new HyperLink();
 clearLink.NavigateUrl =
 string.Format("javascript:$find('{0}').clear()", picker.ClientID);
 clearLink.Text = "Clear";
 clearLink.ToolTip = "Clear the date picker";
 picker.Controls.Add(clearLink);
}

UI for ASP.NET AJAX

931 UI for ASP.NET AJAX

 SelectionChanged occurs when the user changes the current selection in the calendar. This event does not
fire unless the AutoPostBack property is True. This event passes a SelectedDatesEventArgs that has a
single property SelectedDates. SelectedDates is a DateTimeCollection.

 DefaultViewChanged occurs when the user changes the current view using the navigation controls in the
title bar. This event does not fire unless the AutoPostBack property is True. This event
passes DefaultViewChangedEventArgs as a parameter. This object has two properties, OldView and
NewView. Both are CalendarView objects that contain extensive properties describing the view before and

[VB] Handling the HeaderCellRender Event

Protected Sub RadCalendar1_HeaderCellRender(ByVal sender As Object, ByVal e As
Telerik.Web.UI.Calendar.HeaderCellRenderEventArgs)
 Select Case e.HeaderType
 Case Telerik.Web.UI.Calendar.HeaderType.Column
 e.Cell.BackColor = System.Drawing.Color.AliceBlue
 Exit Select
 Case Telerik.Web.UI.Calendar.HeaderType.Row
 e.Cell.BackColor = System.Drawing.Color.PaleGreen
 Exit Select
 Case Telerik.Web.UI.Calendar.HeaderType.View
 e.Cell.BackColor = System.Drawing.Color.PaleTurquoise
 Exit Select
 End Select
End Sub

[C#] Handling the HeaderCellRender Event

protected void RadCalendar1_HeaderCellRender(object sender,
 Telerik.Web.UI.Calendar.HeaderCellRenderEventArgs e)
{
 switch (e.HeaderType)
 {
 case Telerik.Web.UI.Calendar.HeaderType.Column:
 e.Cell.BackColor = System.Drawing.Color.AliceBlue;
 break;
 case Telerik.Web.UI.Calendar.HeaderType.Row:
 e.Cell.BackColor = System.Drawing.Color.PaleGreen;
 break;
 case Telerik.Web.UI.Calendar.HeaderType.View:
 e.Cell.BackColor = System.Drawing.Color.PaleTurquoise;
 break;
 }
}

UI for ASP.NET AJAX

932 UI for ASP.NET AJAX

after navigation.

Starting with the "Getting Started Project" or a copy of it, this walk-through will add functionality to move date
and time information between the controls.

1. Remove the RadTabStrip MultiPageID value so that property is left blank. We will navigate the tab strip
and multi-page in code from now on.

2. Open the RadTabStrip Tabs collection in the Property window, select the last tab "Search Results" and set
its Visible property to true.

3. In the code-behind, add a helper method GetSpecialDays() that returns an array of RadCalendarDay
populated with days that fall on a specific day of the week and that fall between two given dates.

[VB] Handling the DefaultViewChanged Event

Protected Sub RadCalendar1_DefaultViewChanged(ByVal sender As Object, ByVal e As
Telerik.Web.UI.Calendar.DefaultViewChangedEventArgs)
 If e.OldView.ViewStartDate < e.NewView.ViewStartDate Then
 Label1.Text = e.OldView.TitleContent + " -> " + e.NewView.TitleContent
 Else
 Label1.Text = e.NewView.TitleContent + " <- " + e.OldView.TitleContent
 End If
End Sub

[C#] Handling the DefaultViewChanged Event

protected void RadCalendar1_DefaultViewChanged(object sender,
 Telerik.Web.UI.Calendar.DefaultViewChangedEventArgs e)
{
 if (e.OldView.ViewStartDate < e.NewView.ViewStartDate)
 Label1.Text = e.OldView.TitleContent + " -> " + e.NewView.TitleContent;
 else
 Label1.Text = e.NewView.TitleContent + " <- " + e.OldView.TitleContent;
}

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\DateTimeServerSide

43.6 Date-Time and Calendar Controls Server-Side Walk-through

[VB] Get Special Days

Private Function GetSpecialDays(ByVal startDate As DateTime, ByVal endDate As DateTime,
ByVal dayOfWeek As DayOfWeek) As RadCalendarDay()
 Dim specialDays As New List(Of RadCalendarDay)()
 Dim endMonth As Integer = endDate.Month
 ' set up a temporary DateTime variable "date" with the first day
 ' from the startDate passed in.
 Dim [date] As DateTime = startDate
 ' walk through the date range, one day at a time
 While [date].Month <= endMonth
 ' when we encounter the passed in "dayOfWeek", create a
 ' new RadCalendarDay object and populate it with the
 ' date, style the day, make it read-only and add it
 ' to the collection.
 If [date].DayOfWeek = dayOfWeek Then

UI for ASP.NET AJAX

933 UI for ASP.NET AJAX

4. In the designer, double-click the "btnFlights" search button in the pvFlights page to create a Click event
handler. This event handler moves the dates from the picker controls to the corresponding calendars.

 Dim specialDay As New RadCalendarDay()
 specialDay.[Date] = [date]
 specialDay.ItemStyle.BackColor = Color.LightGray
 specialDay.ToolTip = "Not Available"
 specialDays.Add(specialDay)
 End If
 [date] = [date].AddDays(1)
 End While
 Return specialDays.ToArray()
End Function

[C#] Get Special Days

private RadCalendarDay[] GetSpecialDays(
 DateTime startDate, DateTime endDate, DayOfWeek dayOfWeek)
{
 List<RadCalendarDay> specialDays = new List<RadCalendarDay>();
 int endMonth = endDate.Month;
 // set up a temporary DateTime variable "date" with the first day
 // from the startDate passed in.
 DateTime date = startDate;
 // walk through the date range, one day at a time
 while (date.Month <= endMonth)
 {
 // when we encounter the passed in "dayOfWeek", create a
 // new RadCalendarDay object and populate it with the
 // date, style the day, make it read-only and add it
 // to the collection.
 if (date.DayOfWeek == dayOfWeek)
 {
 RadCalendarDay specialDay = new RadCalendarDay();
 specialDay.Date = date;
 specialDay.ItemStyle.BackColor = Color.LightGray;
 specialDay.ToolTip = "Not Available";
 specialDays.Add(specialDay);
 }
 date = date.AddDays(1);
 }
 return specialDays.ToArray();
}

Gotcha! When you assign from the RadDatePicker SelectedDate property to the RadCalendar
SelectedDate, be sure to cast to a DateTime type. If both types are DateTime, why the cast? The
RadDatePicker SelectedDate is a nullable type where the type is denoted by "DateTime?", not
"DateTime".

[VB] Handling the Flight Search Button Click

Protected Sub btnFlights_Click(ByVal sender As Object, ByVal e As EventArgs)
 lblTitle.Text = "Flight Departure and Arrival"
 ' move the date picker dates over to the corresponding calendar dates.
 ' Note: be sure to cast this to DateTime because the date picker SelectedDate
 ' is a nullable type, i.e. "DateTime?".

UI for ASP.NET AJAX

934 UI for ASP.NET AJAX

5. Create another button click event handler for "btnCars" and add the code below. The logic parallels the
"btnFlights" version.

 calStart.SelectedDate = DirectCast(dpDepart.SelectedDate, DateTime)
 calEnd.SelectedDate = DirectCast(dpArrive.SelectedDate, DateTime)
 ' Add informational message
 lblStart.Text = [String].Format("Depart on {0:d}", dpDepart.SelectedDate)
 lblEnd.Text = [String].Format("Arrive on {0:d}", dpArrive.SelectedDate)
 ' Navigate to the "results page" and hide tab strip
 RadMultiPage1.SelectedIndex = RadMultiPage1.PageViews.Count - 1
 RadTabStrip1.Visible = False
End Sub

[C#] Handling the Flight Search Button Click

protected void btnFlights_Click(object sender, EventArgs e)
{
 lblTitle.Text = "Flight Departure and Arrival";
 // move the date picker dates over to the corresponding calendar dates.
 // Note: be sure to cast this to DateTime because the date picker SelectedDate
 // is a nullable type, i.e. "DateTime?".
 calStart.SelectedDate = (DateTime)dpDepart.SelectedDate;
 calEnd.SelectedDate = (DateTime)dpArrive.SelectedDate;
 // Add informational message
 lblStart.Text = String.Format("Depart on {0:d}", dpDepart.SelectedDate);
 lblEnd.Text = String.Format("Arrive on {0:d}", dpArrive.SelectedDate);
 // Navigate to the "results page" and hide tab strip
 RadMultiPage1.SelectedIndex = RadMultiPage1.PageViews.Count - 1;
 RadTabStrip1.Visible = false;
}

[VB] Handling the Car Search Button Click

Protected Sub btnCars_Click(ByVal sender As Object, ByVal e As EventArgs)
 lblTitle.Text = "Car Rental Pickup and Dropoff"
 ' move the date picker dates over to the corresponding calendar dates.
 calStart.SelectedDate = DirectCast(dtpPickup.SelectedDate, DateTime)
 calEnd.SelectedDate = DirectCast(dtpDropoff.SelectedDate, DateTime)
 ' Add informational message
 lblStart.Text = [String].Format("Pickup at {0:t}", dtpPickup.SelectedDate)
 lblEnd.Text = [String].Format("Drop off at {0:t}", dtpDropoff.SelectedDate)
 ' Navigate to the "results page" and hide tab strip
 RadMultiPage1.SelectedIndex = RadMultiPage1.PageViews.Count - 1
 RadTabStrip1.Visible = False
End Sub

[C#] Handling the Car Search Button Click

protected void btnCars_Click(object sender, EventArgs e)
{
 lblTitle.Text = "Car Rental Pickup and Dropoff";
 // move the date picker dates over to the corresponding calendar dates.
 calStart.SelectedDate = (DateTime)dtpPickup.SelectedDate;
 calEnd.SelectedDate = (DateTime)dtpDropoff.SelectedDate;
 // Add informational message
 lblStart.Text = String.Format("Pickup at {0:t}", dtpPickup.SelectedDate);
 lblEnd.Text = String.Format("Drop off at {0:t}", dtpDropoff.SelectedDate);
 // Navigate to the "results page" and hide tab strip

UI for ASP.NET AJAX

935 UI for ASP.NET AJAX

6. Add the code below to the "Continue" button. This event handler simply makes the tab strip visible again
and navigates back to the first tab.

7. Press Ctl-F5 to run the application. Experiment with setting dates and times, then navigating to and from
the "search results" page. Notice that there is no checking for blank dates (will cause an error) or start
dates that occur after ending dates. These checks will be added next.

Starting with the previous server-side walk-through we will add standard validation controls to verify that the
date and time values exist and that starting dates do not exceed ending dates.

1. Set the RadTabStrip CausesValidation property to false.

2. Just after the dpDepart date picker add a ASP.NET RequiredFieldValidator with the following properties:

 ErrorMessage: "Departure date required"

 ControlToValidate: "dpDepart"

 ValidationGroup: "FlightsGroup"

 Text: "*"

 RadMultiPage1.SelectedIndex = RadMultiPage1.PageViews.Count - 1;
 RadTabStrip1.Visible = false;
}

[VB] Handling the Continue Button Click

Protected Sub btnContinue_Click(ByVal sender As Object, ByVal e As EventArgs)
 ' Navigate back to the "flights" page view and show the tabstrip
 RadMultiPage1.SelectedIndex = 0
 RadTabStrip1.SelectedIndex = 0
 RadTabStrip1.Visible = True
End Sub

[C#] Handling the Continue Button Click

protected void btnContinue_Click(object sender, EventArgs e)
{
 // Navigate back to the "flights" page view and show the tabstrip
 RadMultiPage1.SelectedIndex = 0;
 RadTabStrip1.SelectedIndex = 0;
 RadTabStrip1.Visible = true;
}

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\DateTime_ServerSide2

43.7 Date-Time Picker Validation

UI for ASP.NET AJAX

936 UI for ASP.NET AJAX

3. Just after the dpArrive date picker add a ASP.NET RequiredFieldValidator with the following properties:

 ErrorMessage: "Arrival date required"

 ControlToValidate: "dpArrive"

 ValidationGroup: "FlightsGroup"

 Text: "*"

4. Add a CompareValidator with these properties:

 ErrorMessage: "The arrival date must be after the departure date"

 ControlToValidate: "dpArrive"

 ControlToCompare: "dpDepart"

 ValidationGroup: "FlightsGroup"

 Text: "*"

 Operator: "GreaterThan"

 Type: "Date"

5. Set the btnFlights ValidationGroup property to "FlightsGroup". Now when you click btnFlights the
validation will fire for both date inputs.

6. Just after the dtpPickup date picker add a ASP.NET RequiredFieldValidator with the following properties:

 ErrorMessage: "Pick-up date required"

 ControlToValidate: "dtpPickup"

 ValidationGroup: "CarsGroup"

 Text: "*"

7. Just after the dtpDropoff date picker add a ASP.NET RequiredFieldValidator with the following properties:

 ErrorMessage: "Drop-off date required"

 ControlToValidate: "dtpDropoff"

 ValidationGroup: "CarsGroup"

 Text: "*"

8. Add a CustomValidator:

 ClientValidationFunction: "CompareCarsDates"

 ErrorMessage: "Pick-up must be less than drop-off date and time".

 ValidationGroup: "CarsGroup"

9. Set the btnCars ValidationGroup property to "CarsGroup".

10. Inside the <form> tag add the JavaScript below.

The JavaScript method must match the ClientValidationFunction property value in the
CustomValidator. The method takes a sender and event args. The "args" parameter contains an IsValid
property that is set depending on the functions custom criteria. In this case the criteria is that the pick-up
is less than the drop-off date and time.

F[JavaScript] CustomValidator Compare Function

<script type="text/javascript">
 function CompareCarsDates(sender, args) {
 var dtpPickup = $find("<%= dtpPickup.ClientID %>");

UI for ASP.NET AJAX

937 UI for ASP.NET AJAX

11. Underneath the multi-page add two ValidationSummary controls, the first with ValidationGroup property
"FlightsGroup" and the second with ValidationGroup "CarsGroup".

12. Press Ctl-F5 to run the application.

Date and Time Picker Client API

You can access the date-time picker controls and calendar using the usual $find() method against the
control's ClientID property. As with the date and time picker server-side API, you can also access child controls:

To get the DOM element for any of the picker controls and the RadCalendar use the get_element() method.

You can drill down to the DOM elements for the major parts that make up the picker controls. To get the
calendar or time popup buttons, use get_popupButton() or get_timePopupButton(). To get DOM elements for
the popups use get_popupContainer() and get_timePopupContainer(). To get the textbox portion of the
picker control use the get_textBox() method.

The example below displays the calendar or time view popup by clicking a button that in turn fires a
PopupAbove() method. PopupAbove() gets a reference to the div DOM element for the calendar or time view
and a reference to the textbox. The method then gets the position of the text box and calculates the offset
where the popup will be displayed at. The popup is displayed using the showPopup() method of the picker. You
can call showPopup() without parameters to display the popup just below the text box. If you have screen real
estate issues you can pass the x and y pixel coordinates to showPopup(). Another option is to use
Telerik.Web.RadDatePickerPopupDirection enumeration as shown in the example below where the popup is
displayed just above the text box.

 var dtpDropoff = $find("<%= dtpDropoff.ClientID %>")
 args.IsValid = dtpPickup.get_selectedDate() < dtpDropoff.get_selectedDate();
 }
</script>

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\DateTime_Validation

Gotcha! If clicking the button doesn't perform the validation, check that the ValidationGroup
property of both the button that initiates the validaiton, the controls to be validated and the
validation controls themselves. These must all be present and match.

43.8 Date-Time and Calendar Controls Client-Side Programming

[JavaScript] Getting References to Date and Time Picker Objects and Child Elements

var datepicker = $find("<%= RadDatePicker1.ClientID %>");
var timepicker = $find("<%= RadTimePicker1.ClientID %>");
var datetimepicker = $find("<%= RadDateTimePicker1.ClientID %>");
var input = RadDateTimePicker1.get_dateInput();
var calendar = RadDateTimePicker1.get_calendar();
var timeview = RadDateTimePicker1.get_timeView();

UI for ASP.NET AJAX

938 UI for ASP.NET AJAX

[ASP.NET] Using Picker DOM Elements

function popupAbove(showCalendar) {
 logTitle("PopupAbove() begin ");
 // get a client side reference to the date time picker
 var picker = $find("<%= RadDateTimePicker1.ClientID %>");
 // get a reference to the input textbox within the picker
 var textBox = picker.get_textBox();
 // get a reference to the div DOM element for the calendar
 // or time view. Get the position of the text box, the
 // dimensions for the poup, and display the popup
 // at Y coordinate at the position of the textbox subtracting
 // the height of the popup.
 if (showCalendar) {
 var popupElement = picker.get_popupContainer();
 var dimensions = picker.getElementDimensions(popupElement);
 var position = picker.getElementPosition(textBox);
 picker.set_popupDirection(Telerik.Web.RadDatePickerPopupDirection.TopLeft);
 picker.showPopup();
 }
 else {
 var popupElement = picker.get_timePopupContainer();
 var dimensions = picker.getElementDimensions(popupElement);
 var position = picker.getElementPosition(textBox);
 picker.set_popupDirection(Telerik.Web.RadDatePickerPopupDirection.TopLeft);
 picker.showTimePopup();
 }
 logTitle("PopupAbove() end ");
 log("x = " + position.x +
 ", y = " + position.y +
 ", dimensions.height = " + dimensions.height, 2);
}
//...
<telerik:RadDateTimePicker ID="RadDateTimePicker1"

UI for ASP.NET AJAX

939 UI for ASP.NET AJAX

Date and Time Picker Events

The date and time picker controls let you respond to events:

 PopupOpening and PopupClosing provide an opportunity to call args.set_cancel() to prevent the popup
from displaying or closing. Get a reference to the time view or calendar client object using
args.get_popupControl(). In the PopupOpening event you can use
args.set_cancelCalendarSynchronization() to prevent the popup control from synchronizing its value to
the value in the input area.

 DateSelected is called immediately after the value of the control's selection has changed. You have access
to the old and new dates as both Date objects and strings using get_oldDate(), get_newDate(),
get_oldValue() and get_newValue().

You can also get a reference to one of the child elements of the picker and attach events. For example, in the
pageLoad event (available automatically whenever you have a ScriptManager on the page) you could get a
reference to a picker's date input client object and attach a ValueChanging event:

 runat="server" Culture="(Default)">
 <TimeView Culture="(Default)" runat="server">
 </TimeView>
 <Calendar runat="server">
 </Calendar>
</telerik:RadDateTimePicker>
<button onclick="javascript: popupAbove(true);return false;" style="width: 150px;">
 Popup Calendar above</button>
<button onclick="javascript: popupAbove(false);return false;" style="width: 150px;">
 Popup TimeView above</button>

[JavaScript] Assigning Events to Child Elements

function pageLoad(sender, args) {
 // get a reference to the date time picker's
 // internal date input control and assign the ValueChanging client event
 var RadDateTimePicker1 = $find("<%=RadDateTimePicker1.ClientID%>");
 var input = RadDateTimePicker1.get_dateInput();
 input.add_valueChanging(valueChanging);
}

UI for ASP.NET AJAX

940 UI for ASP.NET AJAX

Calendar Client API

The RadCalendar client object represents dates as triplets. Each triplet is an array of three integer values,
which specify the year, month, and day of a date, in that order. To select a date, construct one of these
triplets. You can popuplate the array using a Date object's getFullYear(), getMonth() and getDate() methods.
The selectDate() method takes the triplet array as a parameter. The second parameter to selectDate() if true,
navigates to the view containing the newly selected date.

To select multiple days, construct an array that contains triplet arrays. The next example creates two triplet
arrays, then folds both of these into yet another array. The selectDates() method takes this last array as a
parameter.

[JavaScript] Selecting a Single Day

function SelectToday()
{
var todaysDate = new Date();
var todayTriplet =
 [todaysDate.getFullYear(), todaysDate.getMonth()+1, todaysDate.getDate()];
var calendar = $find("<%=RadCalendar1.ClientID%>");
calendar.selectDate(todayTriplet, true);
}

You can also navigate the view to a given date using the navigateToDate() method:

function GoToSummerOfLove()
{
 var triplet = [1968, 6, 1];
 var calendar = $find("<%=RadCalendar1.ClientID%>");
 calendar.set_rangeMinDate([1960, 1, 1]);
 calendar.navigateToDate(triplet);
}

[JavaScript] Selecting Multiple Days

function selectTodayAndTomorrow() {
 var todaysDate = new Date();
 var todayTriplet =

UI for ASP.NET AJAX

941 UI for ASP.NET AJAX

To get the selected date or dates on a RadCalendar control, use the get_selectedDates() method. This methods
returns an array. If no date is selected, the array has length 0. If the calendar does not support multi-select
mode, then the array has at most one element.

Here's an example that fires on the picker's client DateSelected event and de-selects any selections made in
prior years to "today". The get_selectedDates() function gets an array of dates that are iterated and each date
is decomposed to their year/month/day triplets and compared against the current year. The RadCalendar
unselectDate() method takes a Date object as a parameter and removes the selection for that date.

Calendar Events

There are three events that fire when a date is clicked and fire in this order, OnDateClick, OnDateSelecting
and OnDateSelected. Both OnDateClick and OnDateSelecting can be cancelled using the the set_cancel()
method.

 [todaysDate.getFullYear(), todaysDate.getMonth() + 1, todaysDate.getDate()];
 var tomorrowTriplet =
 [todaysDate.getFullYear(), todaysDate.getMonth() + 1, todaysDate.getDate() + 1];
 var selectedDates = [todayTriplet, tomorrowTriplet];
 var calendar = $find("<%=RadCalendar1.ClientID%>");
 calendar.selectDates(selectedDates, true);
}

[JavaScript] Getting Selected Dates

function dateSelected(sender, args) {
 var calendar = $find("<%= RadCalendar1.ClientID %>");
 var dates = calendar.get_selectedDates();
 var today = new Date();
 for (var i = 0; i < dates.length; i++) {
 var date = dates[i];
 var year = date[0];
 var month = date[1];
 var day = date[2];
 if (year < today.getYear())
 calendar.unselectDate(date);
 }
}

You can also unselect a number of dates at one time using the unselectDates() method. Here's a snippet that
unselects all the dates in the calendar:

calendar.unselectDates(calendar.get_selectedDates());

UI for ASP.NET AJAX

942 UI for ASP.NET AJAX

 OnDateClick occurs when the user clicks on a date in the calendar (regardless of whether the date can be
selected). The arguments surface the set_cancel() just mentioned, but also a get_domEvent() method that
provides access to a lot of mouse information like the clientX and clientY coordinates:

OnDateClick arguments also include the get_renderDay() method returns the client that represents the
clicked day. Here's an example that pops up a confirmation dialog when the date is clicked. Notice the
DateTimeFormatInfo object being used here to format the date into its readable form:

[JavaScript] Handling the DateClick Event

function dateClick(sender, args) {
 logEvent("DateClick", args);
 var day = args.get_renderDay();
 if (day.get_isSelectable()) {
 var date = day.get_date();
 var dfi = sender.DateTimeFormatInfo;
 var formattedDate = dfi.FormatDate(day.get_date(), dfi.ShortDatePattern);
 var confirmClick = confirm("Are you sure you want to " +

UI for ASP.NET AJAX

943 UI for ASP.NET AJAX

 OnDateSelecting fires immediately before the selected dates collection is updated to reflect the selection
or de-selection of a date. This event has arguments that include set_cancel(), get_renderDay() and one
new method get_isSelecting() which is true if the day is in the process of being selected and false if the
day is being de-selected.

 OnDateSelected fires immediately after the value of the control's selection has been changed. The
arguments for this event only surface get_renderDay().

There are a few calendar methods that respond to selector, row and column clicks: OnViewSelectorClick,
OnRowHeaderClick and OnColumnHeaderClick. All three events can be canceled with the args.set_Cancel().
All three events also surface the get_domElement(). OnRowHeaderClick and OnColumnHeaderClick have an
additional method, get_index() that returns the 1-based index of the row or column clicked.

This next example shows an OnRowHeaderClick event handler implementation that displays a confirmation
dialog:

For RadScheduler to do its work, it must be bound to data. At a minimum, the data for the scheduler must
include an ID, a subject, a start time, and an end time. Optionally, you can include fields for handling
appointment recurrence. You can also include fields for custom resources and attributes. If you include custom
resources, there must also be additional data binding to supply the scheduler with the possible values for each

 (day.get_isSelected() ? "unselect " : "select ") + formattedDate + "?");
 args.set_cancel(!confirmClick);
 }
}

[JavaScript] Handling the OnRowHeaderClick Event

function rowHeaderClick(sender, args) {
 var msg = "Do you want to change the selection for row " + args.get_index();
 var title = args.get_domElement().title;
 if (title != "")
 msg = msg + " (" + title + ")";
 msg = msg + "?";
 args.set_cancel(!confirm(msg));
}

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\Calendar_ClientSide

43.9 Getting Started with RadScheduler

UI for ASP.NET AJAX

944 UI for ASP.NET AJAX

custom resource type.

This walk-through will set up the scheduler with the minimum configuration to handle appointments. Later we
will build on this to add resources and custom attributes.

1. In a new web application add a RadScheduler to the default page.

2. Open the Smart Tag and select Add ScriptManager from the context menu.

3. Also from the Smart Tag select Choose Data Source...

This step will display the Data Source Configuration Wizard dialog.

4. Drop down the Select a datasource and select <New data source...> from the list.

5. In the "Choose a Data Source Type" page of the wizard, select the Database icon. Click the OK button to
continue.

UI for ASP.NET AJAX

945 UI for ASP.NET AJAX

This step will display the Configure Data Source dialog.

6. In the "Choose Your Data Connection" page of the wizard, click the New Connection... button.

This step will display the "Add Connection" dialog

7. In the Add Connection dialog, click the Data Source Change... button.

This step will display the Change Data Source dialog.

8. In the Change Data Source dialog, select the "Microsoft SQL Server Database File" data source option and
click OK to close the dialog.

This step will return you to the Add Connection dialog.

9. Configure the connection:

 Click the Browse... button next to the "Database file name" entry.

 Navigate to the RadControls installation directory and select "SchedulerData.mdb" from the \Live
Demos\App_Data directory. In a typical installation the path will be \Program Files\Telerik\RadControls
for ASPNET AJAX<version>\Live Demos\App_Data. This step should return you to the Add Connection

UI for ASP.NET AJAX

946 UI for ASP.NET AJAX

dialog. The dialog should look something like the example screenshot below.

 You can click the Test Connection button to verify that your connection string will be good.

 Click OK to close the Add Connection dialog.

10. Back in the Configure Data Source dialog you should see the Telerik.mdf connection. The dialog should look
something like the screenshot below. Click the Next button to continue.

UI for ASP.NET AJAX

947 UI for ASP.NET AJAX

11. In the "Save the Connection String to the Application Configuration File" page of the wizard, click the Next
button to continue.

12. In the "Configure the Select Statement" page of the wizard:

 The "Appointments" table should already be selected (if it's not, please do so now).

 Click the checkbox to select all columns of the Appointments table.

 Click the Advanced button, select the "Generate INSERT, UPDATE and DELETE" statements checkbox
and click OK.

 Click the Next button to continue.

Gotcha! If you forget this last step where the CRUD (create-read-update-delete)
statements are created, the SqlDataSource will not have SQL to handle any of the database
operations other than simple selection. You would still see the data displayed, you could
still double-click a day cell in the scheduler to insert a new appointment, but nothing would
be saved.

UI for ASP.NET AJAX

948 UI for ASP.NET AJAX

13. Click the Test Query button and check out the data we will be hooking up to the scheduler.

UI for ASP.NET AJAX

949 UI for ASP.NET AJAX

14. Click the Finish button to close the wizard.

This last step brings you back to the Data Source Configuration Wizard.

15. In the Data Source Configuration Wizard, use the drop down lists to match up data fields to the columns in
the Appointments table. The key field should be set to the "ID" column. The remaining columns should be
set to:

 Start

 End

 Subject

 Description (optional)

 Reminder (optional)

 RecurrenceRule (optional)

 RecurrenceParentID (optional)

UI for ASP.NET AJAX

950 UI for ASP.NET AJAX

16. Click the OK button to close the Data Source Configuration Wizard.

17. Check the Properties Window for the scheduler. Notice the Data category properties that have been
populated by the wizard.

UI for ASP.NET AJAX

951 UI for ASP.NET AJAX

18. That's all there is to hooking up the basic properties of RadScheduler. We will take an extra step to position
the scheduler to some data we know is already in the table. Set the SelectedDate property to "3/1/2007"
and the SelectedView property to MonthView.

19. Press Ctl-F5 to run the application.

20. Experiment with the scheduler usability:

 Double-click a day cell to add a new appointment. Go to "Options" and then add the appointment.

UI for ASP.NET AJAX

952 UI for ASP.NET AJAX

 Double-click an existing appointment to update the appointment:

UI for ASP.NET AJAX

953 UI for ASP.NET AJAX

 Try clicking the red "X" to delete an existing appointment.

UI for ASP.NET AJAX

954 UI for ASP.NET AJAX

 Notice that you can drag existing appointments to any visible day.

Multiple arbitrary resources can be assigned to any appointment. For example, resources might be people,
rooms, equipment or any random items you want to associate with an appointment. To make this work you
need an ID for the resource in the appointment table (e.g. "UserID") and a separate master table with columns
for an ID and a text value to describe the resource.

In this database diagram you can see the Appointments table from the Telerik.mdf demo file.

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\GettingStarted_Scheduler

43.10 Scheduler Resources

UI for ASP.NET AJAX

955 UI for ASP.NET AJAX

We can extend the scheduler "getting started" example by adding the users and rooms resources.

1. Add a SqlDataSource to the default page. Configure the data source to use the Users table:

 Set the ID to "dsUsers".

 Use the Smart Tag to configure the data source. In the Configure Data Source Wizard, re-use the
SchedulerDataConnectionString.

 Select both columns.

 Test the query if you like and finish the wizard.

2. Add another SqlDataSource to the default page. Configure the data source to use the Rooms table:

 Set the ID to "dsRooms".

 In the Configure Data Source Wizard, re-use the SchedulerDataConnectionString.

 Select both columns.

 Test the query if you like and finish the wizard.

3. Using the RadScheduler Smart Tag, click the Resource Types ellipses.

UI for ASP.NET AJAX

956 UI for ASP.NET AJAX

4. Click the Add button to create a new resource. Set the properties:

 Name: "Users"

 DataSourceID: "dsUsers"

 ForeignKeyField: "UserID"

 KeyField: "ID"

 TextField: "UserName"

5. Click the Add button to create a second resource. Set the properties:

 Name: "Rooms"

 DataSourceID: "dsRooms"

 ForeignKeyField: "RoomID"

 KeyField: "ID"

 TextField: "RoomName"

UI for ASP.NET AJAX

957 UI for ASP.NET AJAX

6. Press Ctl-F5 to run the application. Try creating a new appointment and clicking the "more" link or double-
click an existing appointment. The "More details" section of the update dialog now displays drop down lists
for each resource.

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\Scheduler_Resources

UI for ASP.NET AJAX

958 UI for ASP.NET AJAX

You can attach custom data from one or more columns in your appointment table. To do this add to the column
names to the CustomAttributeNames collection property. Also set the EnableCustomAttributeEditing property
to true. The Appointments table in the SchedulerData.mdb demonstration data file contains a "Annotation"
column. The custom attributes get added to the "More details" section of edit and insert forms as shown in the
screenshot below.

1. Start with the Scheduler_Resources project.

2. In the Properties Window for the scheduler, click the CustomAttributeNames property ellipses. Add the
attribute "Annotations" to the string collection editor and click OK.

3. Set the EnableCustomAttributeEditing property to "true".

4. Press Ctl-F5 to run the application. Insert an appointment an click the "more" link or edit an existing
appointment. Notice that the custom attribute "Annotation" in the "Details" portion of the edit form. Verify
that you can save and re-display the value.

In the Visual Studio designer, you can configure the RadScheduler using the Smart Tag or the Properties
Window.

Smart Tag

43.11 Custom Attributes

43.12 Scheduler Designer Interface

UI for ASP.NET AJAX

959 UI for ASP.NET AJAX

The RadScheduler Smart Tag contains a few control-specific entries in addition to the standard Ajax Resources,
Skin selection, and Learning center sections. The Choose Data Source... lets you define the data source and
map the appointment table columns to the scheduler. After the data source is assigned the Resource Types
collection editor becomes available.

Properties
Position the initial date shown in the scheduler by setting the SelectedDate property. Likewise you can set the
scheduler view; that is, have the scheduler display the day, week, month or a timeline view using the
SelectedView property. You can also set the visible range of days and times using the properties
FirstDayOfWeek, LastDayOfWeek, DayStartTime, DayEndTime, WorkDayStartTime and WorkDayEndTime.

Control how the scheduler fits into the page real-estate by setting the OverFlowBehavior property to Expand
or Scroll (default).

Toggle visibility for major user interface elements using ShowAllDayRow, ShowDateHeaders, ShowFooter,
ShowFullTime, ShowHeader, ShowHoursColumn, ShowMonthlyColumnHeader, ShowNavigationPane,
ShowResourceHeaders, ShowViewTabs, and ShowWeeklyColumnHeader.

By default you can add, edit and delete appointments but you can turn this ability off using the AllowInsert,
AllowEdit and AllowDelete properties.

Data

As we saw earlier in the "Getting Started" section of this chapter, the Data properties let you define the data
source and map all the appointment table columns to scheduler-specific data properties.

UI for ASP.NET AJAX

960 UI for ASP.NET AJAX

Layout

You will find "View" properties in the Layout group of properties. Each view has common sub-properties.

We have used all of these properties so far except the ProviderName. By default ProviderName is
"Integrated", but you can use one of the providers supplied in the Telerik.Web.UI assembly, or you can
implement your own.

See the online help for examples of creating custom providers (http://www.telerik.com/help/aspnet-
ajax/schedule_databindingusingadataprovider.html) and a reference implementation of an exchange
provider (http://www.telerik.com/help/aspnet-ajax/data-binding-exchange-provider.html) to handle
Outlook integration.

To bind RadScheduler to a provider, set its Provider or ProviderName property. Use the ProviderName
property when binding declaratively in the designer, and the Provider property when binding to a provider
instance at runtime. Because providers supply information about appointments using the
Telerik.Web.UI.Appointment type, you do not need to set the scheduler's DataKeyField, DataSubjectField,
DataStartField, DataEndField, DataRecurrenceField, DataRecurrenceParentKeyField or ResourceTypes
properties.

If you need to assign multiple resources of the same type to an appointment you must use a provider.

UI for ASP.NET AJAX

961 UI for ASP.NET AJAX

Set the GroupBy property to the name of a resource type and GroupingDirection to either Horizontal or
Vertical. This screenshot shows the TimelineView GroupBy set to "Rooms" and the GroupingDirection as
Horizontal.

ShowResourceHeaders can be disabled to hide the column titling "Meeting room 101", "Meeting room 201" but
typically you would want to leave this at the default of "true". UserSelectable toggles the visibility of each
view in the view selector located at the upper right of the scheduler.

There are also view-specific sub-properties that handle start and end times, the number of units of whatever
time is being shown (days, hours, etc), heading formats and that toggle visibility of specific UI elements for
each view.

UI for ASP.NET AJAX

962 UI for ASP.NET AJAX

Localization Properties

Localization works in a similar manner to RadEditor in that you can define a resource file with the
naming convention RadScheduler.Main.<Culture Identifier>.resx". Typically you would copy the existing
resource file from the RadControls installation directory (usually on this path: "\Program
Files\Telerik\RadControls for ASPNET AJAX<version>\Live Demos\App_GlobalResources") to your project. After
making changes to the resource file you set the Culture property to the same culture identifier you used in
naming the resource file, e.g. "fr-FR".

You can also use the Localization property. The Localization property has sub-properties that define the strings
displayed in each UI element of the scheduler.

To add an appointment programmatically, you can create an Appointment object with one of several
overloaded constructors available. Then add the appointment object using the RadScheduler
InsertAppointment() method.

Making the appointment recurring is only slightly more complex. You will need to populate the appointment
object's RecurrenceRule property with a RecurrenceRule descendent, namely HourlyRecurrenceRule,
DailyRecurrenceRule, MonthlyRecurrenceRule or YearlyRecurrenceRule.

In the example below the HourlyRecurrenceRule constructor requires an integer "interval" value and a
RecurrenceRange object instance. In this example the RecurrenceRange Start value is set to match the
appointment start and the EventDuration is set to the difference between the appointment end and start
times. Note: You can also use the RecurrenceRange MaxOccurrences property to control the end point of the
range.

Adding Appointments Walk-Through
1. Set up a web application with the RadScheduler in the same manner as the "Resources" example.

2. Add a standard ASP.NET button, a standard checkbox and a RadTextBox below the scheduler. Set the
control ID's to "btnAdd", "cbRecur" and "tbSubject", respectively.

3. Set the Text of the button to "Add Appointment".

4. Set the Text for the checkbox to "Repeat every hour?".

5. If you like, set the Skin properties of the RadControls to a common skin. You can also add a FormDecorator
to style the checkbox and button to match. The example project uses the "WebBlue" skin.

6. Double-click the button and add the following code to the Click event handler (and the declaration to the
"_id" member).

43.13 Scheduler Server-Side Programming

Notice that the DateTime is converted to universal time before being stored by the Scheduler.
RadScheduler has two helper methods, DisplayToUtc() and and UtcToDisplay() for easily converting
between the two formats.

[VB] Inserting New Appointments

UI for ASP.NET AJAX

963 UI for ASP.NET AJAX

7. Press Ctl-F5 to run the application. Add a subject line and click the "Add Appointment" button. Also try it
with the "Repeat" checkbox selected.

' stores the current appointment id
Private _id As Integer = 1
Protected Sub btnAdd_Click(ByVal sender As Object, ByVal e As EventArgs)
 ' get a DateTime with the year day and hour only
 Dim now As DateTime = DateTime.Now
 Dim nextHour As DateTime
 nextHour = New DateTime(now.Year, now.Month, now.Day, now.Hour, 0, 0).ToUniversalTime()
 ' create a new appointment that starts an hour from now and lasts 10 minutes,
 ' use the subject entered by the user to a text box
 Dim appointment As New Appointment(_id, nextHour, nextHour.AddMinutes(10), tbSubject.Text)
 System.Math.Max(System.Threading.Interlocked.Increment(_id),_id - 1)
 ' If a checkbox is checked, make this a reccurring appointment that
 ' starts an hour from now and recurs every hour
 If cbRecur.Checked Then
 Dim range As New RecurrenceRange()
 range.Start = appointment.Start
 range.EventDuration = appointment.[End] - appointment.Start
 appointment.RecurrenceRule = New HourlyRecurrenceRule(1, range).ToString()
 End If
 ' Insert the appointment into the schedulers list of appointments.
 RadScheduler1.InsertAppointment(appointment)
End Sub

[C#] Inserting New Appointments

// stores the current appointment id
private int _id = 1;
protected void btnAdd_Click(object sender, EventArgs e)
{
 // get a DateTime with the year day and hour only
 DateTime now = DateTime.Now;
 DateTime nextHour = new DateTime(now.Year, now.Month, now.Day, now.Hour, 0,
0).ToUniversalTime();
 // create a new appointment that starts an hour from now and lasts 10 minutes,
 // use the subject entered by the user to a text box
 Appointment appointment =
 new Appointment(_id, nextHour, nextHour.AddMinutes(10), tbSubject.Text);
 _id++;
 // If a checkbox is checked, make this a reccurring appointment that
 // starts an hour from now and recurs every hour
 if (cbRecur.Checked)
 {
 RecurrenceRange range = new RecurrenceRange();
 range.Start = appointment.Start;
 range.EventDuration = appointment.End - appointment.Start;
 appointment.RecurrenceRule = new HourlyRecurrenceRule(1, range).ToString();
 }
 // Insert the appointment into the schedulers list of appointments.
 RadScheduler1.InsertAppointment(appointment);
}

UI for ASP.NET AJAX

964 UI for ASP.NET AJAX

Adding Resources Programmatically
You can expand the previous example to create and assign resources on-the-fly. First you need to add a
ResourceType object when the page first loads. You can assign the ResourceType Name property in the
constructor. Assign the other properties with the same values as when you created a ResourceType at design
time. Finally, add the ResourceType object to the RadScheduler ResourceTypes collection.

You can find the complete source for this project at:
\VS Projects\DateTimeScheduler\Scheduler_Appointments

Recurrence Rules
When a user elects to make an appointment recurring, a record is set up in the database with a string
representation of the recurrence data. The screenshot of the data below shows two records. The first is the
master data for the recurring appointment. When the user first creates a recurring appointment, this is the
record that is created. You can see the string representation of the recurrence including the start and end
dates and the rule that defines when the appointment should recur. When the user decides to edit a single
instance of the recurrence, an exception record is created with the RecurrenceRule set to NULL and the
RecurrenceParentID pointing to the ID of the master record.

The RecurrenceRule also has two methods: ToString() to convert the rule to readable text as it will be stored
in a database and TryParse() that reconstitutes the string back to a RecurrenceRule object.

[VB] Add a Resource Type

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then

UI for ASP.NET AJAX

965 UI for ASP.NET AJAX

Then create and add a Resource object to the Appointment Resources collection before you insert the
appointment. The Resource constructor takes the name of the ResourceType, a resource key and resource text.

On the server-side, RadScheduler comes with a full set of events for responding to appointment changes,
creation of advanced forms and time slots. Here are some of the significant groups of events surfaced by
RadScheduler:

Responding to Appointment Events

If you need a simple click event to get started, use AppointmentClick. The SchedulerEventArgs passed to the
handler include an Appointment object.

When the scheduler first displays, the AppointmentDataBound events fire for each appointment, then the
TimeSlotCreated events, once for each time slot. The number of times a time slot is created varies on the view

 Dim resourceType As New ResourceType("Rooms")
 resourceType.DataSource = dsRooms
 resourceType.ForeignKeyField = "RoomID"
 resourceType.KeyField = "ID"
 resourceType.TextField = "RoomName"
 RadScheduler1.ResourceTypes.Add(resourceType)
 End If
End Sub

[C#] Add a Resource Type

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 ResourceType resourceType = new ResourceType("Rooms");
 resourceType.DataSource = dsRooms;
 resourceType.ForeignKeyField = "RoomID";
 resourceType.KeyField = "ID";
 resourceType.TextField = "RoomName";
 RadScheduler1.ResourceTypes.Add(resourceType);
 }
}

[VB] Adding a Resource

appointment.Resources.Add(New Resource("Rooms", 1, "Resource text"))

[C#] Adding a Resource

appointment.Resources.Add(new Resource("Rooms", 1, "Resource text"));

43.14 Scheduler Server-Side Events

[VB] Handling the AppointmentClick Event

Protected Sub RadScheduler1_AppointmentClick(ByVal sender As Object, ByVal e As
Telerik.Web.UI.SchedulerEventArgs)
 RadAjaxManager1.Alert("You clicked: " + e.Appointment.Subject)
End Sub

[C#] Handling the AppointmentClick Event

protected void RadScheduler1_AppointmentClick(object
 sender, Telerik.Web.UI.SchedulerEventArgs e)
{
 RadAjaxManager1.Alert("You clicked: " + e.Appointment.Subject);
}

UI for ASP.NET AJAX

966 UI for ASP.NET AJAX

you have selected. For example, if you're looking at the Timeline view and it has only three cells, the
TimeSlotCreated event only fires three times.

In the example below the AppointmentDataBound event uses a RoundToNearestHour() method (not shown here,
but available in the demo Scheduler_Events project) that removes minutes and seconds from the appointment
DateTime.

The TimeSlotCreated event handler looks for time slots with no appointments and changes the style for the
time slot.

You can handle your own appointment Insert, Update and Delete scheduler events. All three handlers have
argument properties for the Appointment and Cancel. The AppointmentUpdate event handler arguments also
has a ModifiedAppointment object so you get the "before" and "after" picture for the appointment. The
example below puts some arbitrary limits on when these operations can occur and use the RadAjaxManager
Alert() method to report to the user.

[VB] Handling the AppointmentDataBound and TimeSlotCreated Events

Protected Sub RadScheduler1_AppointmentDataBound(ByVal sender As Object, ByVal e As
SchedulerEventArgs)
 Log("AppointmentDataBound")
 e.Appointment.Start = RoundToNearestHour(e.Appointment.Start)
End Sub
Protected Sub RadScheduler1_TimeSlotCreated(ByVal sender As Object, ByVal e As
TimeSlotCreatedEventArgs)
 Log("TimeSlotCreated")
 If e.TimeSlot.Appointments.Count = 0 Then
 e.TimeSlot.CssClass = "OpenTimeSlots"
 End If
End Sub

[C#] Handling the AppointmentDataBound and TimeSlotCreated Events

protected void RadScheduler1_AppointmentDataBound(object sender,
 SchedulerEventArgs e)
{
 Log("AppointmentDataBound");
 e.Appointment.Start = RoundToNearestHour(e.Appointment.Start);
}
protected void RadScheduler1_TimeSlotCreated(object sender, TimeSlotCreatedEventArgs e)
{
 Log("TimeSlotCreated");
 if (e.TimeSlot.Appointments.Count == 0)
 {
 e.TimeSlot.CssClass = "OpenTimeSlots";
 }
}

[VB] Handling the AppointmentInsert, AppointmentUpdate and AppointmentDelete Events

Protected Sub RadScheduler1_AppointmentDelete(ByVal sender As Object, ByVal e As
SchedulerCancelEventArgs)
 ' do not allow deleting past appointments
 e.Cancel = e.Appointment.Start < DateTime.Today
 If e.Cancel Then
 RadAjaxManager1.Alert("Cannot delete past appointments")
 End If
End Sub
Protected Sub RadScheduler1_AppointmentInsert(ByVal sender As Object, ByVal e As
SchedulerCancelEventArgs)

UI for ASP.NET AJAX

967 UI for ASP.NET AJAX

Responding to Form Events

When one of the advanced forms is created to handle inserts and updates, two events fire. First the
FormCreating event lets you cancel showing the advanced form and then FormCreated lets you make other

 ' don't insert appointments with empty subjects
 e.Cancel = e.Appointment.Subject = ""
 If e.Cancel Then
 RadAjaxManager1.Alert("Cannot insert appointments with no subject")
 End If
End Sub
Protected Sub RadScheduler1_AppointmentUpdate(ByVal sender As Object, ByVal e As
AppointmentUpdateEventArgs)
 ' don't allow an appointment with a start date in the future to be
 ' moved to the past
 e.Cancel = (e.Appointment.Start >= DateTime.Today) AndAlso (e.ModifiedAppointment.Start <
DateTime.Today)
 If e.Cancel Then
 RadAjaxManager1.Alert("Cannot move an appointment to the past")
 End If
End Sub

[C#] Handling the AppointmentInsert, AppointmentUpdate and AppointmentDelete Events

protected void RadScheduler1_AppointmentDelete(object sender,
 SchedulerCancelEventArgs e)
{
 // do not allow deleting past appointments
 e.Cancel = e.Appointment.Start < DateTime.Today;
 if (e.Cancel)
 {
 RadAjaxManager1.Alert("Cannot delete past appointments");
 }
}
protected void RadScheduler1_AppointmentInsert(object sender,
 SchedulerCancelEventArgs e)
{
 // don't insert appointments with empty subjects
 e.Cancel = e.Appointment.Subject == "";
 if (e.Cancel)
 {
 RadAjaxManager1.Alert("Cannot insert appointments with no subject");
 }
}
protected void RadScheduler1_AppointmentUpdate(object sender,
 AppointmentUpdateEventArgs e)
{
 // don't allow an appointment with a start date in the future to be
 // moved to the past
 e.Cancel =
 (e.Appointment.Start >= DateTime.Today) &&
 (e.ModifiedAppointment.Start < DateTime.Today);
 if (e.Cancel)
 {
 RadAjaxManager1.Alert("Cannot move an appointment to the past");
 }
}

UI for ASP.NET AJAX

968 UI for ASP.NET AJAX

changes to the form and its controls.

In the example below the FormCreating event handler disallows advanced form editing for appointments with a
start date less than today (i.e. past appointments). The FormCreatingEventArgs passed to FormCreating has
properties for Mode, Cancel and Appointment. Mode is a SchedulerFormMode enumeration that lets you know
if this is an Edit or Insert form that displays in-line within the scheduler or one of the advanced forms
AdvancedEdit or AdvancedInsert.

The FormCreated event handler locates the "more" button on the "Insert" advanced form and alters the button
appearance. The FormCreatedEventArgs has properties for Appointment and Container. Container represents
the form. You can get at the controls using the FindControl() method.

[VB] Handling the FormCreating and FormCreated Events

Protected Sub RadScheduler1_FormCreating(ByVal sender As Object, ByVal e As
SchedulerFormCreatingEventArgs)
 ' disallow advanced form editing for past appointments
 Dim preventEdit As Boolean = e.Mode = SchedulerFormMode.AdvancedEdit AndAlso
e.Appointment.Start < DateTime.Today
 e.Cancel = preventEdit
 If preventEdit Then
 RadAjaxManager1.Alert("Advanced editing for past appointments not allowed")
 End If
End Sub
Protected Sub RadScheduler1_FormCreated(ByVal sender As Object, ByVal e As
SchedulerFormCreatedEventArgs)
 ' When creating the insert form, locate and change the "more" button appearance.
 If e.Container.Mode = SchedulerFormMode.Insert Then
 Dim more As LinkButton = TryCast(e.Container.Controls(1).FindControl("more"), LinkButton)
 more.BorderStyle = BorderStyle.Ridge
 more.BorderWidth = 1
 End If
End Sub

[C#] Handling the FormCreating and FormCreated Events

protected void RadScheduler1_FormCreating(object sender,
SchedulerFormCreatingEventArgs e)
{
 // disallow advanced form editing for past appointments
 bool preventEdit =
 e.Mode == SchedulerFormMode.AdvancedEdit
 && e.Appointment.Start < DateTime.Today;
 e.Cancel = preventEdit;
 if (preventEdit)
 {
 RadAjaxManager1.Alert("Advanced editing for past appointments not allowed");
 }
}
protected void RadScheduler1_FormCreated(object sender,
 SchedulerFormCreatedEventArgs e)
{
 // When creating the insert form, locate and change the "more" button appearance.
 if (e.Container.Mode == SchedulerFormMode.Insert)
 {
 LinkButton more = e.Container.Controls[1].FindControl("more") as LinkButton;
 more.BorderStyle = BorderStyle.Ridge;
 more.BorderWidth = 1;
 }

UI for ASP.NET AJAX

969 UI for ASP.NET AJAX

Responding to TimeSlot Events

Each time a time slot is created you get an opportunity to change the TimeSlot CssClass to style the slot. At the
time of this writing, abilities are being added to this event to allow access to the controls within the time slot
as well.

Responding to Navigation Events

When you use any of the navigation buttons along the top of the scheduler to move between dates and within
views, the NavigationCommand and NavigationComplete events fire. The NavigationCommand event lets you
prevent navigation by setting the Cancel property to true. You also have access to the Command and the
SelectedDay.

The NavigationComplete event fires after navigation has already occurred and lets you know the Command that
got you to your current destination within the scheduler.

}

[VB] Handling the TimeSlotCreated Event

Protected Sub RadScheduler1_TimeSlotCreated(ByVal sender As Object, ByVal e As
TimeSlotCreatedEventArgs)
 Log("TimeSlotCreated")
 If e.TimeSlot.Appointments.Count = 0 Then
 e.TimeSlot.CssClass = "OpenTimeSlots"
 End If
End Sub

[C#] Handling the TimeSlotCreated Event

protected void RadScheduler1_TimeSlotCreated(object sender, TimeSlotCreatedEventArgs e)
{
 Log("TimeSlotCreated");
 if (e.TimeSlot.Appointments.Count == 0)
 {
 e.TimeSlot.CssClass = "OpenTimeSlots";
 }
}

[VB] Handling the NavigationCommand and NavigationComplete Events

Protected Sub RadScheduler1_NavigationCommand(ByVal sender As Object, ByVal e As
SchedulerNavigationCommandEventArgs)
 ' disables the "today" button, when in "day" view
 e.Cancel = e.Command = SchedulerNavigationCommand.SwitchToSelectedDay AndAlso
RadScheduler1.SelectedView = SchedulerViewType.DayView
End Sub
Protected Sub RadScheduler1_NavigationComplete(ByVal sender As Object, ByVal e As
SchedulerNavigationCompleteEventArgs)
 ' display the current command
 RadAjaxManager1.Alert("Command: " + e.Command.ToString())
End Sub

[C#] Handling the NavigationCommand and NavigationComplete Events

protected void RadScheduler1_NavigationCommand(object sender,
 SchedulerNavigationCommandEventArgs e)
{
 // disables the "today" button, when in "day" view
 e.Cancel =
 e.Command == SchedulerNavigationCommand.SwitchToSelectedDay &&

UI for ASP.NET AJAX

970 UI for ASP.NET AJAX

Custom Commands

If you want to add a button within a template that should fire some custom action, handle the
AppointmentCommand. Just set the CommandName property of a button to the string you will look for in the
AppointmentCommand arguments CommandName property. The screenshot below shows an ImageButton with
an "Outlook" icon (you can find Outlook.gif in the \VS Projects\Images directory). The ImageButton
CommandName property is set to "Export".

The example below exports an Outlook calendar file. The RadScheduler ExportToICalendar() method takes an
Appointment object and returns a string.

The private WriteCalendar() method takes the appointment string and writes it out to the Response stream.

 RadScheduler1.SelectedView == SchedulerViewType.DayView;
}
protected void RadScheduler1_NavigationComplete(object sender,
 SchedulerNavigationCompleteEventArgs e)
{
 // display the current command
 RadAjaxManager1.Alert("Command: " + e.Command.ToString());
}

[VB] Handling the AppointmentCommand

Protected Sub RadScheduler1_AppointmentCommand(ByVal sender As Object, ByVal e As
Telerik.Web.UI.AppointmentCommandEventArgs)
 If e.CommandName.Equals("Export") Then
 WriteCalendar(RadScheduler.ExportToICalendar(e.Container.Appointment))
 End If
End Sub

[C#] Handling the AppointmentCommand

protected void RadScheduler1_AppointmentCommand(object sender,
 Telerik.Web.UI.AppointmentCommandEventArgs e)
{
 if (e.CommandName.Equals("Export"))
 {
 WriteCalendar(RadScheduler.ExportToICalendar(e.Container.Appointment));
 }
}

[VB] Writing the Appointment String to the Response

Private Sub WriteCalendar(ByVal data As String)
 Dim response As HttpResponse = Page.Response
 response.Clear()
 response.Buffer = True

UI for ASP.NET AJAX

971 UI for ASP.NET AJAX

RadScheduler has a rich set of methods and events to do what can be done server-side, with some additional
capabilities available only on the client. As with all the RadControls, use the $find() method to get an object
instance.

From there you can get collections from the scheduler for appointments and resources:

 response.ContentType = "text/calendar"
 response.ContentEncoding = System.Text.Encoding.UTF8
 response.Charset = "utf-8"
 response.AddHeader("Content-Disposition", "attachment;filename=""RadSchedulerExport.ics""")
 response.Write(data)
 response.[End]()
End Sub

[C#] Writing the Appointment String to the Response

private void WriteCalendar(string data)
{
 HttpResponse response = Page.Response;
 response.Clear();
 response.Buffer = true;
 response.ContentType = "text/calendar";
 response.ContentEncoding = System.Text.Encoding.UTF8;
 response.Charset = "utf-8";
 response.AddHeader("Content-Disposition",
 "attachment;filename=\"RadSchedulerExport.ics\"");
 response.Write(data);
 response.End();
}

You can find the complete source for this project at:

\VS Projects\DateTimeScheduler\Scheduler_Events

You will need to verify that the SchedulerDataConnectionString in the web.config points to the correct
path to RadControls on your system.

43.15 Scheduler Client-Side Programming

[JavaScript] Get Scheduler Client Reference

var scheduler = $find("<%= RadScheduler1.ClientID %>");

[JavaScript] Getting a Collection of Appointments and Resources

// display list of appointment subjects
var message = "";
var appointments = scheduler.get_appointments();
for (var index = 0; index < appointments.get_count(); index++) {
 var app = appointments.getAppointment(index);
 message += app.get_subject() + "\n";
}
alert(message);
//...
// display list of appointment resources
var message = "";
var resources = scheduler.get_resources();
for (var index = 0; index < resources.get_count(); index++) {
 var resource = resources.getResource(index);
 message += resource.get_type() + ": " + resource.get_text() + "\n";

UI for ASP.NET AJAX

972 UI for ASP.NET AJAX

}
alert(message);

UI for ASP.NET AJAX

973 UI for ASP.NET AJAX

You can also trigger the default Insert/Edit/Delete scheduler operations, much in the same way as if the user
had initiated the action. For example, you could hook up to OnClientAppointmentContextMenu client event to
grab the right-clicked appointment and display a context menu that will allow the user to edit or delete an
appointment.

UI for ASP.NET AJAX

974 UI for ASP.NET AJAX

The RadContextMenu OnClientItemClicked event handler uses the saved appointment reference and calls the
scheduler editAppointment() or deleteAppointment() methods. Both methods take a reference to the
appointment as a parameter.

[JavaScript] Editing and Deleting Appointments

// holds the appointment reference
var selectedAppointment = null;
// Scheduler event responds to right-click of existing
// appointment. This event handler saves off the
// appointment that was right clicked as "selectedAppointment".
// selectedAppointment is used later in the context menu
// ClientItemClicked event handler.
function ClientAppointmentContextMenu(sender, args) {
 selectedAppointment = args.get_appointment();
 var menu = $find("<%= RadContextMenu1.ClientID %>");
 menu.show(args.get_domEvent());
}
function ClientItemClicked(sender, args) {
 var scheduler = $find("<%= RadScheduler1.ClientID %>");
 var item = args.get_item();
 switch (item.get_value()) {
 // display the advanced update form for editing
 case "edit":
 {
 scheduler.editAppointment(selectedAppointment);
 break;
 }

UI for ASP.NET AJAX

975 UI for ASP.NET AJAX

You can insert an appointment by displaying the inline insert form using the scheduler showInsertFormAt
(targetSlot) method. A good place to call this is from the OnClientTimeSlotClick event which surfaces
a get_targetSlot() method that can be used to feed the showInsertFormAt() method.

A second route is to call the scheduler insertAppointment() method. The example below creates an
appointment automatically when the user clicks a time slot.

The ClientTimeSlotClick event handler creates a new appointment object, populates the start and end times
using the target slot's start time as a starting point and inserts the appointment.

Toggle the ability to insert/edit/delete using the corresponding set of RadScheduler client properties. Here's an
example that sets these properties based off a standard ASP CheckBoxList control.

 // delete the appointment
 case "delete":
 {
 scheduler.deleteAppointment(selectedAppointment);
 break;
 }
 }
}

[JavaScript] Calling showInsertFormAt()

function ClientTimeSlotClick(sender, args) {
 var targetSlot = args.get_targetSlot();
 sender.showInsertFormAt(targetSlot);
}

[JavaScript] Calling insertAppointment()

// A single left click to a time slot creates a new appointment with a
// default duration of 45 minutes..
function ClientTimeSlotClick(sender, args) {
 // create a new appointment client object
 var appointment = new Telerik.Web.UI.SchedulerAppointment();
 // get the time slot object for the cell that was clicked on
 var targetSlot = args.get_targetSlot();
 // get the start and end times for the target slot
 // and add 45 minutes to the end time
 var startTime = targetSlot.get_startTime();
 var endTime = new Date(startTime);
 endTime.setMinutes(endTime.getMinutes() + 45);
 // set the start time, end time and subject
 appointment.set_start(startTime);
 appointment.set_end(endTime);
 appointment.set_subject("Manually Inserted Appointment");
 // insert the appointment. This will trigger events on the
 // server side.
 sender.insertAppointment(appointment);
}

UI for ASP.NET AJAX

976 UI for ASP.NET AJAX

The setAllowSettings() method in the example below does most of the work and is called when a checkbox is
clicked or when the page first loads. The CheckBoxList check boxes are extracted by way of the
getElementsByTagName("input") call. You can then index into the array of elements and use the "checked"
property in your calls to set_allowInsert(), set_allowEdit() and set_allowDelete(). Also notice that you can
suppress the delete confirmation using the set_displayDeleteConfirmation() method.

The last part of the setAllowSettings() method shows another client-side technique of controlling how the
RadScheduler events are handled. Here the OnClientTimeSlotClick event is removed or added based on a
checkbox value. Like the other RadControls, RadScheduler comes with a set of method pairs that add and
remove event handlers. Also remember that multiple event handlers can be added to a single event.

[JavaScript] Setting the Allow Insert/Edit/Delete Properties

/* CheckBoxList Events */
function CheckItem(sender) {
 setAllowSettings(sender);
}
/* general MS AJAX Library Events */
function pageLoad() {
 setAllowSettings($get("<%= cbScheduler.ClientID %>"));
}
// toggles scheduler functionality based on checkbox selections
function setAllowSettings(checkBoxList) {
 var checkBoxes = checkBoxList.getElementsByTagName("input");
 var scheduler = $find("<%= RadScheduler1.ClientID %>");
 // toggle the add/edit/delete built-in functionality
 scheduler.set_allowInsert(checkBoxes[0].checked);

UI for ASP.NET AJAX

977 UI for ASP.NET AJAX

To extensively customize appearance and content use one of several templates that cover the scheduler user
interface. The display of an appointment in any of the views can accept arbitrary HTML using the
AppointmentTemplate. You can enter a template directly within the RadScheduler tag in the markup.
Intellisense will give you a hand by showing the available templates. Just place your cursor inside the
AppointmentTemplate tag, enter a less-than bracket ("<") and click ctrl-spacebar to initiate Intellisense.

 scheduler.set_allowEdit(checkBoxes[1].checked);
 scheduler.set_allowDelete(checkBoxes[2].checked);
 // always disable the delete confirmation dialog
 scheduler.set_displayDeleteConfirmation(false);
 // based on checkbox value, turn on handling for
 // the OnClientTimeSlotClick event
 if (checkBoxes[3].checked) {
 scheduler.add_timeSlotClick(ClientTimeSlotClick);
 }
 else {
 scheduler.remove_timeSlotClick(ClientTimeSlotClick);
 }
}

You can also disable or change the appearance of the scheduler using styles. The styles below hide the
delete and resize buttons respectively. Notice the "!important" that follows the visibility property setting
and that the semi-colon follows. You can use these same styles if you want to replace the default buttons.

[CSS] Hiding the Delete and Resize Buttons

<style type="text/css">
 .RadScheduler_Hay .rsAptDelete
 {
 visibility: hidden !important;
 }
 .rsAptWrap .rsAptResize
 {
 visibility: hidden !important;
 }
</style>

You can find the complete source for this project at:
\VS Projects\DateTimeSchedule\Scheduler_ClientSide

43.16 Using Scheduler Templates

UI for ASP.NET AJAX

978 UI for ASP.NET AJAX

Within the AppointmentTemplate tag you can add HTML markup and binding expressions. In the example below
we add in an image tag that points to "Calendar.gif" in the project (you can find this gif file in the \VS
Projects\Images directory). Then the <%# %> binding expression using Eval can be used to display any of the
data fields bound to the scheduler like "Subject", "Start", "End" or even custom attributes you have defined in
the Appointments table.

The result when you bring up the scheduler shows the icon, the subject in a slightly larger font, the formatted
start and end times, and the custom attribute "Annotations" field is output as "Notes".

[ASP.NET] Adding the AppointmentTemplate

<telerik:RadScheduler ID="RadScheduler1" runat="server"
 DataEndField="End" DataKeyField="ID" DataRecurrenceField="RecurrenceRule"
 DataRecurrenceParentKeyField="RecurrenceParentID"
 DataSourceID="SqlDataSource1" DataStartField="Start"
 DataSubjectField="Subject" Skin="Sunset" CustomAttributeNames="Annotations"
 EnableCustomAttributeEditing="True">
 <AppointmentTemplate>

 <%# Eval("Subject") %>

 Starts on: <%# Eval("Start")%>
 Ends on: <%# Eval("End") %>
 Notes: <i><%# Eval("Annotations") %></i>
 </AppointmentTemplate>
</telerik:RadScheduler>

UI for ASP.NET AJAX

979 UI for ASP.NET AJAX

If we take this a step farther and add another template, the InlineInsertTemplate to completely customize
adding a new appointment. Here we use the Bind() method to get the two way data binding to work.

[ASP.NET] Adding the InlineInsertTemplate

<InlineInsertTemplate>
 <%--Calendar image--%>

 <%--Subject--%>
 <telerik:RadTextBox ID="RadTextBox1" runat="server"
 Skin="Sunset" Text='<%# Bind("Subject") %>'>
 </telerik:RadTextBox>

 <%--Start and End times--%>
 Starts on:
 <telerik:RadDateTimePicker ID="RadDateTimePicker1"
 Skin="Sunset" runat="server" SelectedDate='<%# Bind("Start")%>'>
 </telerik:RadDateTimePicker>
 Ends on:
 <telerik:RadDateTimePicker ID="RadDateTimePicker2"
 Skin="Sunset" runat="server" SelectedDate='<%# Bind("End")%>'>
 </telerik:RadDateTimePicker>

 <%--Custom attributes "Annotations", i.e. "Notes" --%>
 <telerik:RadTextBox ID="RadTextBox2" runat="server"

UI for ASP.NET AJAX

980 UI for ASP.NET AJAX

The result is shown in the screenshot below.

In this chapter we explored the features of the date and time picker, calendar and scheduler controls. You
created some simple applications to become familiar with the controls. We explored the design time interfaces
of each of the controls. We worked with the server-side API to explore the major objects that make up each

 TextMode="MultiLine" Width="100%" Label="Notes" Skin="Sunset"
 Text='<%# Bind("Annotations") %>'>
 </telerik:RadTextBox>

 <%--Ok and cancel buttons floated right--%>

 <asp:LinkButton ID="InsertButton" runat="server" CommandName="Insert">
 <asp:Image runat="server" ID="insertImage" ImageUrl="Images/ok.gif"
 AlternateText="insert" />
 </asp:LinkButton>
 <asp:LinkButton ID="InsertCancelButton" runat="server"
 CausesValidation="False" CommandName="Cancel">
 <asp:Image runat="server" ID="Image2" ImageUrl="Images/cancel.gif"
 AlternateText="cancel" />
 </asp:LinkButton>

</InlineInsertTemplate>

Be sure to name the CommandName for the two buttons "Insert" and "Cancel". The control is expecting these
two command names specifically and will not act correctly otherwise. Be aware that these commands are
case sensitive.

43.17 Summary

UI for ASP.NET AJAX

981 UI for ASP.NET AJAX

control. In particular, we set calendar special days, added scheduler appointments, add scheduler resources,
scheduler recurrence and handled client-side events. You learned how to validate date and time picker control
entry. You also learned how to use scheduler templates.

UI for ASP.NET AJAX

982 UI for ASP.NET AJAX

 Build the ExamScheduler user control.

 Configure the RadTreeView and RadScheduler for drag and drop.

 Learn how to handle the scheduler events to create new appointments as tree nodes are dropped on the
scheduler and "reserve" existing appointments when a button in the appointment template is clicked. Also
learn to format appointments as they are created based on the logged in user role and attribute data of
the appointment.

 Integrate the ExamScheduler to both the user and admin ScheduleExams.ascx controls.

The exam scheduler user control displays a treeview with a flat list of available exams on the left and a
scheduler control on the right. Exams from the treeview are dragged onto the scheduler and added to the
scheduler.

The scheduler knows nothing about dragging and dropping. Even though the list of exams is a flat list, we use
RadTreeView because it has the drag and drop capability already built-in.

This user control will display slightly differently depending on the ASP.NET Membership role of the logged-in
user. The admin will see the scheduler and the list of exams, will be able to drag exams to the scheduler and
be able to delete exams (if the exam hasn't already been reserved).

A "User" role login displays the scheduler only, and displays a calendar button and text so that the user can click
to reserve an available appointment. Once the appointment is reserved, the user id and exam are recorded
with the appointment and the appointment can no longer be deleted or reserved by any one else.

44 ActiveSkill: Exam Scheduling

44.1 Objectives

44.2 Defining the Markup

You can find the complete source for this project at:
\VS Projects\ActiveSkill_Scheduling

UI for ASP.NET AJAX

983 UI for ASP.NET AJAX

1. In the \ActiveSkillUI\Controls directory add a new Web User Control item and name it
"ExamScheduler.ascx".

2. In the markup for the user control, add a SqlDataSource. This data source will supply a RadTreeView with
a list of available exams.

3. Add a second SqlDataSource for the scheduler:

[ASP.NET] Defining the Exams Data Source

<asp:SqlDataSource ID="dsExams" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="SELECT [ID], [Title] FROM [Exam]">
</asp:SqlDataSource>

[ASP.NET] Defining the Scheduler Data Source

<asp:SqlDataSource ID="dsScheduler" runat="server"
 ConnectionString="<%$ ConnectionStrings:ActiveSkillConnectionString %>"
 SelectCommand="SELECT [ID], [ExamID], [UserID], [Subject], [StartTime], [EndTime],
[Recurrence], [RecurParentID] FROM [Appointment_Data]"
 DeleteCommand="DELETE FROM [Appointment_Data] WHERE [ID] = @ID"
 InsertCommand="INSERT INTO [Appointment_Data] ([ExamID], [UserID], [Subject], [StartTime],
[EndTime], [Recurrence], [RecurParentID]) VALUES (@ExamID, @UserID, @Subject, @StartTime,
@EndTime, @Recurrence, @RecurParentID)"
 UpdateCommand="UPDATE [Appointment_Data] SET [ExamID] = @ExamID, [UserID] = @UserID,
[Subject] = @Subject, [StartTime] = @StartTime, [EndTime] = @EndTime, [Recurrence] =
@Recurrence, [RecurParentID] = @RecurParentID WHERE [ID] = @ID">
 <DeleteParameters>
 <asp:Parameter Name="ID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="ExamID" Type="Int32" />
 <asp:Parameter Name="UserID" />
 <asp:Parameter Name="Subject" Type="String" />
 <asp:Parameter Name="StartTime" Type="DateTime" />
 <asp:Parameter Name="EndTime" Type="DateTime" />

UI for ASP.NET AJAX

984 UI for ASP.NET AJAX

4. Add a hidden field to the markup with ID "TargetSlotHiddenField". This hidden field will be populated later
from client code and will contain the index of the timeslot that the user is dropping onto.

5. Add an "Exams" title and RadTreeView to the markup. The treeview must have its EnableDragAndDrop
property set to true. The OnClientNodeDropping event starts off the process by notifying us of when the
scheduler has a node dropped on it. The client event handler also triggers the postback so the server-side
OnNodeDrop event can fire.

6. Add the markup for the scheduler. Notice the following about this markup:

 AllowInsert and AllowEdit are set to false. We only want to allow adding appointments through
dragging or deleting by clicking the delete button in the appointment.

 ShowViewTabs is set to False. We just want to drag appointments to the default day view only.

 EnableAdvancedForm and StartEditingAdvancedForm are set to false. We only want to see the inline
form.

 In the AppointmentTemplate there are two divs that will be toggled so that one will be visible for
reserved appointments and the other invisible.

 Also in the AppointmentTemplate is a LinkButton control with the CommandName set to "Reserve". We
will re-visit the Reserve command later when we add the server-side code.

 <asp:Parameter Name="Recurrence" Type="String" />
 <asp:Parameter Name="RecurParentID" Type="Int32" />
 <asp:Parameter Name="ID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="ExamID" Type="Int32" />
 <asp:Parameter Name="UserID" />
 <asp:Parameter Name="Subject" Type="String" />
 <asp:Parameter Name="StartTime" Type="DateTime" />
 <asp:Parameter Name="EndTime" Type="DateTime" />
 <asp:Parameter Name="Recurrence" Type="String" />
 <asp:Parameter Name="RecurParentID" Type="Int32" />
 </InsertParameters>
</asp:SqlDataSource>

Gotcha! Notice the insert and update parameters named "UserID". If you build the parameters
using the DataSource Configuration Wizard, the Type parameter will be "Object" automatically.
The UserID in the table is actually a UNIQUEIDENTIFIER (GUID) which "Object" doesn't handle very
well. You can get around this by deleting the Type from the markup by hand.

[ASP.NET] Adding the TargetSlotHiddenField

<input type="hidden" id="TargetSlotHiddenField" runat="server" value="0" />

[ASP.NET] Adding the TreeView and TreeViewTitle

<div id="divSkillTreeTitle" runat="server" class="skillTreeTitle">
 Exams
</div>
<div id="leftPane" runat="server" class="skillTree">
 <telerik:RadTreeView ID="RadTreeView1" runat="server"
 DataSourceID="dsExams" DataFieldID="ID" DataTextField="Title"
 DataValueField="ID" EnableDragAndDrop="True" OnClientNodeDropping="nodeDropping"
 OnNodeDrop="RadTreeView1_NodeDrop">
 </telerik:RadTreeView>
</div>

UI for ASP.NET AJAX

985 UI for ASP.NET AJAX

1. Add the script block below to the hidden field tag "TargetSlotHiddenField":

2. Add a helper method to the script block "isPartOfSchedulerAppointmentArea". This function will determine
if a given html element is part of the scheduler appointment area.

[ASP.NET] Adding the RadScheduler

<div id="schedulerPane" runat="server" class="schedulerPane">
 <telerik:RadScheduler ID="RadScheduler1" runat="server"
 OverflowBehavior="Scroll" DataSourceID="dsScheduler"
 DataEndField="EndTime" DataKeyField="ID" DataRecurrenceField="Recurrence"
 DataRecurrenceParentKeyField="RecurParentID" DataStartField="StartTime"
 DataSubjectField="Subject" ShowViewTabs="False" CustomAttributeNames="UserID,ExamID"
 EnableAdvancedForm="False" StartEditingInAdvancedForm="False"
 OnAppointmentCommand="RadScheduler1_AppointmentCommand"
 OnAppointmentCreated="RadScheduler1_AppointmentCreated"
 AllowInsert="False" AllowEdit="false">
 <AppointmentTemplate>
 <%# Eval("Subject") %>

 <div id="appointmentDiv" runat="server">
 Click to reserve:
 <asp:LinkButton ID="InsertButton" runat="server" CommandName="Reserve">
 <asp:Image runat="server" ID="insertImage"
ImageUrl="..\skins\ActiveSkill\calendar\datePickerPopup.gif"
 AlternateText="Reserve" />
 </asp:LinkButton>
 </div>
 <div id="reservedDiv" runat="server" style="font-size: small;
 font-weight: bold; text-align: center">
 Reserved
 </div>
 </AppointmentTemplate>
 </telerik:RadScheduler>
</div>

44.3 Handling the Drag and Drop Client-Side

[JavaScript] Adding the Script Block

<telerik:RadScriptBlock ID="RadScriptBlock1" runat="server">
 <script type="text/javascript">

 </script>
</telerik:RadScriptBlock>

[JavaScript] Add Helper Method

function isPartOfSchedulerAppointmentArea(htmlElement) {
 // Determines if an html element is part of the scheduler appointment area
 // This can be either the rsContent or the rsAllDay div (in day and week view)
 var scheduler = $find('<%= RadScheduler1.ClientID %>');
 var allDayDiv = $telerik.getChildByClassName(scheduler.get_element(), "rsAllDay");
 var contentDiv = $telerik.getChildByClassName(scheduler.get_element(), "rsContent");
 return $telerik.isDescendant(contentDiv, htmlElement) || $telerik.isDescendant(allDayDiv,

UI for ASP.NET AJAX

986 UI for ASP.NET AJAX

3. Add the nodeDropping() event handler that responds to nodes being dropped from the treeview. The event
args passed to this handler have a get_htmlElement() method that can be used in the scheduler's "active
model" getTimeSlotFromDomElement() method which produces the timeSlot that was dropped onto. The
time slot's index is stored into the hidden field for use within the server-side code.

1. You need to add the following assemblies to your "Imports" (VB) or "uses" (C#) portion of the code:

 System

 System.Drawing

 System.Web.Security

 System.Web.UI.HtmlControls

 Telerik.ActiveSkill.Common

 Telerik.Web.UI

 Telerik.Web.UI.Scheduler.Views

2. In the Page_Load event add this assignment by

htmlElement);
}

[JavaScript] Add nodeDropping Client Event Handler

function nodeDropping(sender, eventArgs) {
 // Fired when the user drops a TreeView node
 var node = eventArgs.get_sourceNode();
 var text = node.get_text();
 var htmlElement = eventArgs.get_htmlElement();
 var scheduler = $find('<%= RadScheduler1.ClientID %>');
 if (isPartOfSchedulerAppointmentArea(htmlElement)) {
 // The node was dropped over the scheduler appointment area
 // Find the exact time slot and save its unique index in the hidden field
 var timeSlot = scheduler.get_activeModel().getTimeSlotFromDomElement(htmlElement);
 // Gotcha! Use the ClientID, not "TargetSlotHiddenField" directly or will
 // come back null. Thats because this is in nested user controls, not directly
 // on a web page.
 var targetSlotHiddenField = $get("<%= TargetSlotHiddenField.ClientID %>");
 targetSlotHiddenField.value = timeSlot.get_index();
 // The HTML needs to be set in order for the postback to execute normally
 eventArgs.set_htmlElement(targetSlotHiddenField);
 }
 else {
 // The node was dropped elsewhere on the document
 eventArgs.set_cancel(true);
 }
}

44.4 Handle Server-Side Events

[VB] Setting the Tree View Visibility

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Me.RadTreeView1.Visible = Roles.IsUserInRole("Admin")
End Sub

[C#] Setting the Tree View Visibility

UI for ASP.NET AJAX

987 UI for ASP.NET AJAX

3. Handle the NodeDrop Event. First retrieve the slot index from the hidden field. Also get the exam id and
title. Setup a duration object based on the starting time of the slot. The duration will be set to either 1
hour or an entire day in length. Create a new appointment and assign the duration, exam id and exam
title. The exam id gets assigned to the appointment as an attribute. Insert the new appointment and clear
the hidden field for the next use.

protected void Page_Load(object sender, EventArgs e)
{
 this.RadTreeView1.Visible = Roles.IsUserInRole("Admin");
}

[VB] Handling the NodeDrop Event

Protected Sub RadTreeView1_NodeDrop(ByVal sender As Object, ByVal e As
Telerik.Web.UI.RadTreeNodeDragDropEventArgs)
 ' retrieve the hidden field value
 Dim targetSlotIndex As String = TargetSlotHiddenField.Value
 If targetSlotIndex <> String.Empty Then
 ' get the dropped node id and subject
 Dim id As Integer = Int32.Parse(e.SourceDragNode.Value)
 Dim subject As String = e.SourceDragNode.Text
 RadScheduler1.Rebind()
 ' setup a duratin based on the starting time of the slot and either
 ' 1 hour or an entire day in length.
 Dim slot As ISchedulerTimeSlot = RadScheduler1.GetTimeSlotFromIndex(targetSlotIndex)
 Dim duration As TimeSpan = TimeSpan.FromHours(1)
 If slot.Duration = TimeSpan.FromDays(1) Then
 duration = slot.Duration
 End If
 ' create a new appointment, assign subject and duration.
 Dim appointment As New Appointment(0, slot.Start, slot.Start.Add(duration), subject)
 ' Add the exam id (derived from the dropped node) as an attribute
 appointment.Attributes.Add("ExamID", id.ToString())
 ' insert the appointment and clear the hidden field
 RadScheduler1.InsertAppointment(appointment)
 TargetSlotHiddenField.Value = String.Empty
 End If
End Sub

[C#] Handling the NodeDrop Event

protected void RadTreeView1_NodeDrop(object sender,
Telerik.Web.UI.RadTreeNodeDragDropEventArgs e)
{
 // retrieve the hidden field value
 string targetSlotIndex = TargetSlotHiddenField.Value;
 if (targetSlotIndex != string.Empty)
 {
 // get the dropped node id and subject
 int id = Int32.Parse(e.SourceDragNode.Value);
 string subject = e.SourceDragNode.Text;
 RadScheduler1.Rebind();
 // setup a duratin based on the starting time of the slot and either
 // 1 hour or an entire day in length.
 ISchedulerTimeSlot slot = RadScheduler1.GetTimeSlotFromIndex(targetSlotIndex);
 TimeSpan duration = TimeSpan.FromHours(1);

UI for ASP.NET AJAX

988 UI for ASP.NET AJAX

4. Handle the AppointmentCommand Event. When the user clicks the calendar button, the
AppointmentCommand event fires, the event arguments CommandName is compared to the expected
command name of "Reserve", the UserID GUID is stored in the appointment's attributes and the
appointment is updated.

5. Handle the AppointmentCreated event. When the appointment is first created we want to set the
appearance and behavior for the appointment based on the user's role and if the appointment has been
"reserved". The role can be derived by using the ASP.NET Membership Roles object and checking if the user
is in the role "Admin". We can find out if the appointment is "reserved" or not by reading the event
arguments Appointment attributes and seeing if the "UserID" attribute is populated.

Using this information we set the appointment back color to a slightly darker color if reserved. We also set
the visibility of the div that contains "Click to reserve" and the calendar icon, as well as the "reserved" div.
The first displays only when a user (not an admin) is logged in and the appointment is not reserved. The
"reserved" div is visible when anyone is logged in and the appointment is reserved. The AllowDelete
property for the appointment only (not the AllowDelete property for the entire scheduler) is allowed when
the admin is logged in and the appointment is not reserved.

 if (slot.Duration == TimeSpan.FromDays(1))
 {
 duration = slot.Duration;
 }
 // create a new appointment, assign subject and duration.
 Appointment appointment = new Appointment(0, slot.Start, slot.Start.Add(duration),
subject);
 // Add the exam id (derived from the dropped node) as an attribute
 appointment.Attributes.Add("ExamID", id.ToString());
 // insert the appointment and clear the hidden field
 RadScheduler1.InsertAppointment(appointment);
 TargetSlotHiddenField.Value = string.Empty;
 }
}

[VB] Handling the AppointmentCommand Event

Protected Sub RadScheduler1_AppointmentCommand(ByVal sender As Object, ByVal e As
AppointmentCommandEventArgs)
 If e.CommandName.Equals("Reserve") Then
 e.Container.Appointment.Attributes("UserID") = SessionManager.User.UserID.ToString()
 RadScheduler1.UpdateAppointment(e.Container.Appointment)
 End If
End Sub

[C#] Handling the AppointmentCommand Event

protected void RadScheduler1_AppointmentCommand(object sender, AppointmentCommandEventArgs
e)
{
 if (e.CommandName.Equals("Reserve"))
 {
 e.Container.Appointment.Attributes["UserID"] = SessionManager.User.UserID.ToString();
 RadScheduler1.UpdateAppointment(e.Container.Appointment);
 }
}

[VB] Handle the AppointmentCreated Event

UI for ASP.NET AJAX

989 UI for ASP.NET AJAX

6. Override the OnPreRender event to set the images for the scheduler's datepicker calendar. If you miss this
step, the images for the calendar will not show up.

Protected Sub RadScheduler1_AppointmentCreated(ByVal sender As Object, ByVal e As
AppointmentCreatedEventArgs)
 Dim isAdmin As Boolean = Roles.IsUserInRole("Admin")
 Dim isReserved As Boolean = Not e.Appointment.Attributes("UserID").Equals([String].Empty)
 e.Appointment.BackColor = IIf(isReserved,Color.FromArgb(40, 40, 40),Color.FromArgb(52, 52,
52))
 Dim appointmentDiv As HtmlGenericControl = TryCast(e.Container.FindControl
("appointmentDiv"), HtmlGenericControl)
 appointmentDiv.Visible = Not isAdmin And Not isReserved
 Dim reservedDiv As HtmlGenericControl = TryCast(e.Container.FindControl("reservedDiv"),
HtmlGenericControl)
 reservedDiv.Visible = isReserved
 ' Only the admin can delete appointments, but not reserved appointments
 e.Appointment.AllowDelete = isAdmin And Not isReserved
End Sub

[C#] Handle the AppointmentCreated Event

protected void RadScheduler1_AppointmentCreated(object sender, AppointmentCreatedEventArgs
e)
{
 bool isAdmin = Roles.IsUserInRole("Admin");
 bool isReserved = !e.Appointment.Attributes["UserID"].Equals(String.Empty);
 e.Appointment.BackColor = isReserved ? Color.FromArgb(40, 40, 40) : Color.FromArgb(52, 52,
52);
 HtmlGenericControl appointmentDiv = e.Container.FindControl("appointmentDiv") as
HtmlGenericControl;
 appointmentDiv.Visible = !isAdmin & !isReserved;
 HtmlGenericControl reservedDiv = e.Container.FindControl("reservedDiv") as
HtmlGenericControl;
 reservedDiv.Visible = isReserved;
 // Only the admin can delete appointments, but not reserved appointments
 e.Appointment.AllowDelete = isAdmin & !isReserved;
}

[VB] Override the OnPreRender Event

Protected Overloads Overrides Sub OnPreRender(ByVal e As EventArgs)
 MyBase.OnPreRender(e)
 Dim datePicker As RadDatePicker = TryCast(RadScheduler1.FindControl("SelectedDatePicker"
RadDatePicker)
 If datePicker <> Nothing Then
 datePicker.Calendar.ImagesPath = "~/Skins/ActiveSkill/Calendar"
 End If
End Sub

[C#] Override the OnPreRender Event

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);
 RadDatePicker datePicker = RadScheduler1.FindControl("SelectedDatePicker") as
RadDatePicker;
 if (datePicker != null)
 {
 datePicker.Calendar.ImagesPath = "~/Skins/ActiveSkill/Calendar";

UI for ASP.NET AJAX

990 UI for ASP.NET AJAX

1. In the Login.aspx.cs code-behind, add the code below to the LoggedIn event handler. This information is
needed when we "reserve" an appointment by assigning user ID to the appointment UserID attribute.

2. Add the markup below to the ScheduleExams.ascx in both the \Admin and \User folders. This will include
the ExamScheduler user control to both pages.

In this chapter you implemented the ExamScheduler.ascx control. You configured a RadTreeView and
RadScheduler for drag and drop. You learned how to handle scheduler events to create new appointments and
modify the attributes of existing appointments based on commands set within the appointment template. You
also learned how to format appointments as they are created based on the logged in user role and appointment
attribute data. Finally, you integrated the ExamScheduler for use within ScheduleExams.ascx controls located
within the \user and \admin directories.

 }
}

44.5 Integrate the Exam Scheduler

[VB] Persisting the ASP.NET Membership User

SessionManager.User = New ASUser(UserNameTextBox.Text)

[C#] Persisting the ASP.NET Membership User

SessionManager.User = new ASUser(UserNameTextBox.Text);

[ASP.NET] Adding the ExamScheduler

<%@ Register Src="../Controls/ExamScheduler.ascx" TagName="ExamScheduler"
 TagPrefix="uc1" %>
<div id="schedulerPane" runat="server">
 <uc1:ExamScheduler ID="ExamScheduler1" runat="server" />
</div>

44.6 Summary

UI for ASP.NET AJAX

991 UI for ASP.NET AJAX

Important Properties, 712

Introduction, 611

$find, 80-82, 82-83

$find(), 360-361

$get, 80-82

a, 136-141

AccessDataSource, 297-298

ActiveRegion, 867-882

Add PageView, 915-918

Add ScriptManager, 915-918

Add Utility Classes, 216-224

add_itemClicked, 86-91

AddAjaxSetting(), 145-148

AJAX, 246-256, 390-402

AJAX callback, 110-113

AjaxRequest, 805-812

ajaxRequest(), 148-162

AjaxRequestEventArgs, 148-162

AjaxSettings, 141-145, 145-148

AjaxUpdate, 105-110, 110-113

Alert(), 29-37

AllowCustomText, 386-390, 390-402, 414-427

AllowDelete, 987-991

AllowDrag, 432-437, 437-447

AllowDrop, 432-437, 437-447

AllowEdit, 432-437, 983-986

AllowInsert, 983-986

AllowNodeEditing, 432-437, 447-458

AllowPaging, 812-816

AllowRowSelect, 812-816, 812-816, 812-816

Animation, 14-17, 100-105

Appearance and Styling, 736-739

AppendDataBoundItems, 22-29

Appointment, 966-972

AppointmentClick, 966-972

AppointmentCommand, 966-972, 987-991

AppointmentCreated, 987-991

Index

UI for ASP.NET AJAX

992 UI for ASP.NET AJAX

AppointmentDataBound, 966-972

AppointmentTemplate, 978-981, 983-986

args, 86-91

arguments, 265-280

ASP.NET Membership, 181-188, 987-991

attachDropDown, 390-402

Attributes, 14-17, 148-162

Auto Save RadEditor’s content and notify the user, 649-650

AutoCompleteType, 49-57

AutoGenerateColumns, 812-816

AutoPostBack, 57-60, 165-174, 919-928

AxisMode, 886-890

Barcode types, 588-589

Before You Begin..., 13

Bigger Icons and Buttons , 602

Bind(), 346-350, 745-747, 978-981

Binding Expressions, 340-346

Binding Hierarchical Data, 309-315

Binding to Business Objects, 322-330

Binding to Linq, 330-337

Block, 141-145

Build the Admin Page, 362-368

Build the Choose Exam Control, 812-816

Build the Exam Question Control, 816-838

Build the User Home Page, 805-812

Building the Categories Tree Control, 747-758

Building the Exam Finish Page, 903-913

Button Types And Button Collections, 711-712

Calendar, 918-919

CalendarDayTemplates, 919-928

CalendarPopupButton, 928-933

CalendarTableStyle, 919-928

CalendarView, 928-933

callback functions, 256-265

Callback Support, 647-648

callbacks, 265-280

Carousel mode , 132-134

CausesValidation, 64-69, 936-938

CellDayFormat, 919-928

UI for ASP.NET AJAX

993 UI for ASP.NET AJAX

Chart Types, 896-900

ChartClickEventArgs, 867-882

Checkable, 430-432, 432-437

CheckAllNodes, 437-447

CheckBoxes, 432-437, 437-447

CheckChildNodes, 437-447

CheckListBox, 174-176

ChildrenCreated, 928-933

Choose Data Source, 22-29, 309-315

clear(), 928-933

ClickedCssClass, 22-29

Client Events Walk Through, 91-95

Client Side Code, 525-537

Client Side Programming, 113-117

ClientChanges, 408-414

ClientDataKeyNames, 812-816

ClientEvents, 812-816

ClientID, 80-82

ClientSettings, 812-816

client-side API, 14-17

Client-Side Data Binding, 679-687

client-side events, 256-265, 458-463

Client-Side Items Management, 127-128

Client-Side Programming, 60-64, 126-127, 148-162, 256-265, 360-361, 381-382, 408-414, 458-463, 478-
479, 573-578, 667-671, 691-692, 697-698, 882-886

ClientValidationFunction, 936-938

CollapseAnimation, 384-386, 386-390

Collection Editors, 236-242

CollectionBase, 297-298

Columns, 497-503, 812-816

Command event, 246-256

CommandName, 966-972, 983-986

commitChanges, 408-414, 437-447

Common Features, 44-46, 49-57

Configure Ajax Manager, 136-141, 141-145, 148-162, 165-174

Configure Data Source..., 322-330

Configure RadCaptcha audio, 658-660

Configure Special Days, 919-928

Configure the Data Source, 22-29

UI for ASP.NET AJAX

994 UI for ASP.NET AJAX

Configure the Profile, 224-225

Configuring the Toolbar, 613-615

Configuring the ToolsFile, 566-567

Configuring the XmlHttpPanel, 662-667

Confirm postback with RadButton, 602-604

ConnectionString, 812-816

Container, 346-350, 966-972

Container.DataItem, 124-126

Content, 551-562

ContentAreaCssFile, 551-562

ContentContainer, 246-256, 265-280

ContentFilters, 551-562

ContentProviderTypeName, 551-562

ContentTemplate, 231-236, 246-256

ContentUrl, 231-236

ContextMenuID, 437-447

ContextMenuItemClick, 437-447

ContextMenus, 432-437, 437-447

Control Specifics, 37-42, 128-129, 242-246, 390-402, 437-447, 702-703, 865-867

Controlling the URL and the Title, 717-718

Controls collection, 463-465

ControlToCompare, 936-938

ControlToValidate, 936-938

Coverflow mode, 129-132

Create ActiveSkill Skin, 372-374

Create Registration Page, 192-201

Create the ActiveSkill Login Page, 188-192

Create the Billing Control Code-Behind, 210-214

Create the BillingControl User Control, 214-216

Create User Controls, 368-372

Creating a Custom Skin, 292-296

Creating a Custom Tool, 616-617

Creating a single click button, 601-602

CRUD, 297-298

CssClass, 340-346, 812-816

Custom Attributes, 390-402

custom commands, 246-256, 256-265

custom skin, 14-17

custom sort, 414-427

UI for ASP.NET AJAX

995 UI for ASP.NET AJAX

CustomAttributeNames, 959

Customizing Content Area, 563-566

CustomValidator, 936-938

Data Editing, 735-736

data entry, 113-117

DataBind, 390-402

DataBind(), 346-350

DataBinder, 346-350

DataBinder.Eval, 124-126

DataBinder.Eval(), 346-350

Databinding, 675-678, 900-902

DataBindings, 309-315, 432-437

data-bound items, 384-386, 386-390

data-bound tree view, 430-432

DataField, 812-816

DataFieldID, 22-29, 309-315, 430-432, 432-437

DataFieldParentID, 22-29, 309-315, 430-432, 432-437

DataItem, 346-350

DataKeyNames, 812-816

DataListItem, 928-933

DataMember, 22-29

DataNavigateUrlField, 22-29, 309-315

DataRowView, 346-350

DataSet, 297-298

DataSource, 22-29, 330-337, 346-350

DataSourceControl, 297-298

DataSourceID, 22-29, 298-309, 330-337, 432-437

DataTable, 297-298

DataTextField, 22-29, 309-315, 330-337, 340-346, 430-432, 432-437

DataTextFormatString, 22-29

DataValueField, 22-29, 309-315, 330-337, 340-346

DataView, 297-298

Date Format Dialog, 46-49, 49-57

Date-Time and Calendar Controls Client-Side Programming, 938-944

Date-Time and Calendar Controls Designer Interface, 919-928

Date-Time and Calendar Controls Getting Started, 915-918

Date-Time and Calendar Controls Server-Side Programming, 928-933

Date-Time and Calendar Controls Server-Side Walk-through, 933-936

Date-Time Picker Validation, 936-938

UI for ASP.NET AJAX

996 UI for ASP.NET AJAX

DateTimeFormatInfo, 938-944

DayEndTime, 959-963

DayRender, 928-933

DayStartTime, 959-963

DayTemplate, 928-933

DecoratedControls, 105-110

DecorationZoneID, 105-110

DefaultCellPadding, 919-928

DefaultCellSpacing, 919-928

DefaultLoadingPanelID, 141-145

DefaultViewChanged, 928-933

DefaultViewChangedEventArgs, 928-933, 928-933

Defining the Markup, 983-986

deleteAppointment(), 972-978

DeleteParameters, 322-330

DeletePaths, 551-562

Designer Interface, 22-29, 49-57, 105-110, 124-126, 141-145, 236-242, 350-353, 386-390, 432-437, 486-
491, 551-562, 857-865

Different Ways to Show A Notification, 643-645

DisabledCssClass, 22-29

DisabledImageUrl, 22-29

disableEvents, 86-91

disabling, 60-64

display mode, 44-46

DisplayToUtc, 963-966

DockCommand Collection Editor, 236-242

DockMode, 231-236, 246-256, 265-280

DockState, 246-256, 265-280, 265-280, 265-280, 265-280

Dynamic User Controls for Ajax-Enabling Entire Page, 165-174

Edit Bindings..., 812-816

Edit Databindings...., 340-346

edit mode, 44-46

Edit Templates, 350-353

editAppointment(), 972-978

EditorTool, 551-562

EditorToolGroup, 551-562

Embedded Icons, 643

Empty Message, 49-57

Empty Values, 865-867

UI for ASP.NET AJAX

997 UI for ASP.NET AJAX

Enable AJAX, 141-145

Enable AJAX history, 141-145

Enable RadEditor Dialogs, 548-551

Enable Spell Check for RadEditor, 548-551

Enable update of Page <head> element, 141-145

EnableAdvancedForm, 983-986

EnableContextMenu, 432-437, 437-447

EnableCustomAttributeEditing, 959

EnableDragAndDrop, 432-437, 437-447, 983-986

EnableDragAndDropBetweenNodes, 437-447

EnableEmbeddedSkins, 372-374

enableEvents, 86-91

EnableItemCaching, 390-402

EnableLoadOnDemand, 390-402

EnableMultiSelect, 919-928

EnableNavigationAnimation, 919-928

EnableResize, 551-562

EnableRowHoverStyle, 812-816

EnableViewState, 265-280

EnableVirtualScrolling, 390-402

enabling, 60-64

End Template Editing, 350-353

EndOfItems, 390-402

ErrorMessage, 936-938

Eval(, 745-747

event bubbling, 414-427

EventDuration, 963-966

Events, 610

expand, 458-463, 959-963

ExpandAnimation, 384-386, 386-390

ExpandedCssClass, 22-29

ExpandedImageUrl, 22-29

ExpandMode, 465-469

ExportToICalendar(), 966-972

external content, 236-242, 265-280

Failed to load viewstate, 165-174

FastNavigationStyle, 919-928

Field binding, 340-346

FileBrowser, 551-562

UI for ASP.NET AJAX

998 UI for ASP.NET AJAX

FileDelete, 570-573

FileSystemContentProvider, 551-562

FileUpload, 570-573

Filter, 386-390

Filtering and Sorting of the TagCloud Items, 678-679

FindControl(), 353-360

findItemByText, 82-83, 402-408

FindItemByValue, 353-360, 402-408

FindItemByValue(), 353-360

findItemsByText, 408-414

findItemsByValue, 408-414

findNodeByAttribute, 458-463

findNodeByText, 458-463

FireFox, 340-346

First Steps, 714-717

FirstDayOfWeek, 919-928, 919-928, 959-963

FitDocks, 231-236, 236-242

Floating, 551-562

focus, 408-414

FocusedCssClass, 22-29

FocusedDate, 919-928

FocusedDateColumn, 919-928

FocusedDateRow, 919-928

FooterTemplate, 390-402

ForeignKeyField, 955-959

FormatString, 309-315

FormCreated, 966-972

FormCreatedEventArgs, 966-972

FormCreating, 966-972

FormCreatingEventArgs, 966-972, 966-972

FormView, 745-747, 758-776

FrameDuration, 128-129

frameset, 340-346

Generating TagCloud from External Sources, 679

get_ajaxSettings(), 148-162

get_allNodes, 458-463

get_count, 82-83

get_domEvent(, 938-944

get_element, 458-463

UI for ASP.NET AJAX

999 UI for ASP.NET AJAX

get_element(), 938-944

get_enableAJAX(), 148-162

get_htmlElement(), 986-987

get_isSelecting(), 938-944

get_item, 86-91

get_items, 82-83, 408-414

get_level, 86-91

get_newDate(), 938-944

get_newValue(), 938-944

get_nodes, 458-463

get_oldDate(), 938-944

get_oldValue(), 938-944

get_parent, 458-463

get_popupButton(), 938-944

get_popupContainer(), 938-944

get_renderDay(), 938-944

get_selectedDates(), 938-944

get_targetSlot(), 972-978

get_text, 82-83, 86-91

get_timePopupButton(), 938-944

get_timePopupContainer(), 938-944

get_value, 86-91

getDate(), 938-944, 938-944

getFullYear(), 938-944

getItem, 82-83

getMonth(), 938-944

GetRadWindow, 265-280

GetRegisteredDocksState, 246-256, 265-280

getTimeSLotFromDomElement(), 986-987

Getting Started, 17-22, 46-49, 100-105, 120-124, 136-141, 231-236, 282-283, 298-309, 340-346, 376-
379, 384-386, 430-432, 471-474, 484-486, 497-503, 548-551, 591-593, 607-608, 609-610, 612-613, 621-
625, 640-642, 655-657, 672-674, 688-689, 695-696, 701-702, 705-706, 839-857, 891-896

Getting Started with RadScheduler, 944-955

Getting-Started, 720-729

global RadTreeNode template, 432-437

GridBoundColumn, 496-497, 497-503

GridButtonColumn, 496-497, 497-503

GridCheckBoxColumn, 496-497, 497-503

GridClientSelectColumn, 496-497

GridColumnCollection, 497-503

UI for ASP.NET AJAX

1000 UI for ASP.NET AJAX

GridDateTimeColumn, 496-497

GridDropDownColumn, 496-497, 497-503

GridEditCommandColumn, 496-497, 497-503

GridHTMLEditorColumn, 496-497

GridHyperLinkColumn, 496-497, 497-503

GridLines, 812-816

GridMaskedColumn, 496-497

GridNumericColumn, 496-497

GridTemplateColumn, 497-503

GridTemplateColumns, 496-497

GroupBy, 959-963

GroupingDirection, 959-963

GUID, 983-986

Handle Server-Side Events, 987-991

Handling the Drag and Drop Client-Side, 986-987

HeaderCellRender, 928-933

HeaderTemplate, 390-402

HeaderText, 497-503, 812-816

hierarchical relationships, 432-437

Horizontal, 959-963

HoverdImageUrl, 22-29

How This Courseware Is Organized, 2-6

How To, 64-69, 117-119, 265-280, 414-427, 463-465, 479-482, 492-495, 578-587, 886-890

How -to, 698-699

How To Combine Properties, 648-649

How-to, 703

IBindingList, 297-298

ICollection, 297-298

IComparer, 414-427

ID, 80-82

IDynamicControl, 165-174

IEnumerable, 297-298, 322-330, 322-330, 330-337

IList, 297-298

IListSource, 297-298, 297-298

Image, 340-346

ImageManager, 551-562

ImageMap, 117-119

ImageUrl, 22-29, 309-315, 384-386, 430-432

Implement Categories Control, 758-776

UI for ASP.NET AJAX

1001 UI for ASP.NET AJAX

Implement CreateExams Control, 789-803

Implement Questions Control, 776-789

Implement the Registration Page, 201-202

Important Information, 1

Important Properties, 379, 599-601, 657-658, 674-675

individual item templates, 432-437

Initial delay time, 141-145

InitialItemIndex, 124-126

Inline, 141-145

InlineInsertTemplate, 978-981

Input Mask Dialog, 46-49, 49-57

InsertAppointment, 963-966

InsertSnippet, 570-573

Integrate the Exam Scheduler, 991

IntelliSense, 29-37, 80-82, 86-91

internationalize, 14-17

Introducing RadControls, 6-13

Introduction, 14-17, 44-46, 80, 99-100, 120, 135-136, 177, 226-231, 281-282, 297-298, 338-
340, 362, 375-376, 383-384, 429-430, 471, 483-484, 496-497, 547-548, 588, 590-591, 606-
607, 609, 621, 640, 651, 654-655, 672, 688, 693-695, 700-701, 705, 711, 720, 745-747, 839, 891

Introduction and Overview, 661

Is Sticky, 141-145

IsAjaxRequest, 145-148

IsCallback, 390-402

IsLogarithmic, 865-867, 865-867

IsPostBack, 390-402

IsSeparator, 22-29, 384-386

Item Builder, 22-29

ItemClick, 322-330

ItemCreated, 928-933

ItemDataBound, 309-315, 928-933

ItemHeight, 124-126

Items, 22-29

Items Drag and Drop, 740-741

Items property, 128-129

ItemsRequested, 390-402, 408-414

ItemTemplate, 128-129, 390-402, 414-427, 812-816

ItemWidth, 124-126

JavaScript, 29-37, 360-361

JavaScript Intellisense, 83-85

UI for ASP.NET AJAX

1002 UI for ASP.NET AJAX

JSON, 903, 913

JSON: Fat-Free Data Interchange, 95-98

Known Issues, 671

Language Integrated Query, 330-337

LastDayOfWeek, 959-963

Level, 447-458

like, 496

LinkButton, 983-986

LINQ, 330-337

LINQ to SQL Classes, 330-337

LinqDataSource, 297-298, 330-337

Load On Demand, 741-742

LoadDockLayout, 246-256, 265-280

LoadingMessage, 390-402

LoadingPanelID, 136-141

Load-on-demand, 390-402, 408-414, 414-427, 465-469

LoadUserControl(), 165-174

LoadViewState(), 163-165

Localization, 615-616, 959-963

LogarithmBase, 865-867

Logarithmic Y-Axis, 865-867, 865-867

look-and-feel, 49-57, 105-110

MarkFirstMatch, 384-386, 386-390

Mask, 49-57

MaskPart Collection Editor, 49-57

MasterPage, 162-163

MasterPage/Content Page, 174-176

MasterTableView, 350-353, 497-503, 812-816

MaxBindDepth, 309-315

MaxDataBindDepth, 22-29

MaxDate, 919-928

MaxOccurrences, 963-966

MaxUploadFileSize, 551-562

medium, 141-145

Min display time, 141-145

MinDate, 919-928

minimize zones, 242-246

Modal, 113-117

modal dialogs, 265-280

UI for ASP.NET AJAX

1003 UI for ASP.NET AJAX

ModifiedAppointment, 966-972

Modules, 551-562

MonthView, 928-933, 944-955

MS AJAX Library, 98

multi-column combo box, 390-402

Multi-Line Labels, 865-867

MultiPageID, 915-918, 933-936

MultiSelect, 919-928

MultiViewColumns, 919-928

MultiViewRows, 919-928

Naming Conventions, 85-86

navigateToDate(, 938-944

NavigateUrl, 22-29, 29-37, 86-91, 236-242, 256-265

NavigationCommand, 966-972

NavigationComplete, 966-972

NewDate, 928-933

NewLineBr, 551-562

NodeCheck event, 437-447

NodeClick event, 447-458

NodeDrop, 987-991

NodeDrop event, 437-447

NodeEdit event, 447-458

NodeExpand event, 465-469

Nodes, 432-437, 447-458

Northwind.mdf, 309-315, 309-315, 309-315, 309-315

Notification Menu, 642-643

NumberOfItems, 390-402

Numeric Type, 49-57

ObjectDataSource, 297-298, 322-330, 330-337

Objectives,
14, 44, 80, 99, 120, 135, 177, 226, 281, 297, 338, 362, 375, 383, 429, 471, 483, 496, 547, 588, 590, 606,

Office, 14-17

OldDate, 928-933

OnAjaxRequest, 148-162

OnClick, 867-882

OnClientAppointmentContextMenu, 972-978

OnClientCommand, 256-265

OnClientContextMenuItemClicking, 437-447

OnClientDockPositionChanged, 256-265

UI for ASP.NET AJAX

1004 UI for ASP.NET AJAX

OnClientDropDownClosed, 408-414

OnClientDropDownOpened, 408-414

OnClientDropDownOpening, 414-427

OnClientFocus, 408-414

OnClientItemClicked, 86-91

OnClientItemClicking, 86-91

OnClientItemsRequested, 408-414

OnClientItemsRequestFailed, 408-414

OnClientItemsRequesting, 408-414

OnClientMouseOut, 91-95

OnClientMouseOver, 91-95

OnClientNodeChecked, 458-463

OnClientNodeDropping, 437-447, 983-986

OnClientSelectedIndexChanged, 390-402, 408-414

OnClientShowing, 86-91

OnClientTimeSlotClick, 972-978

OnColumnHeaderClick, 938-944

OnDateClick, 938-944

OnDateSelected, 938-944

OnDateSelecting, 938-944

OnError, 60-64

onfocus, 458-463

OnNodeDrop, 983-986

OnPreRender, 987-991

OnResponseEnd, 148-162

OnRowHeaderClick, 938-944

OnRowSelected, 812-816

OnValueChanged, 60-64

OnValueChanging, 60-64

OnViewSelectorClick, 938-944

Optimize for Maximum Security, 658

Orientation, 236-242, 919-928

OverFlowBehavior, 959-963

Page Lifecycle, 163-165

Page vs MasterPage vs UserControl, 162-163

Page_Init, 265-280

Page_Load, 165-174

PageSize, 812-816

PageTop, 551-562

UI for ASP.NET AJAX

1005 UI for ASP.NET AJAX

panes, 226-231

Parameter Collection Editor, 322-330

ParentNode, 447-458

pause(), 126-127

Performance, 465-469

PlaceHolder, 165-174

PlotArea, 865-867

Populating Plain Text And Rich Content, 645-647

pop-up window, 226-231

pop-up windows, 242-246, 256-265

PopupClosing, 938-944

PopupOpening, 938-944

portal page, 265-280

portal sites, 226-231

PresentationType, 915-918, 919-928

printing, 256-265

Property Builder, 22-29

ProviderName, 959-963

RadAjaxLoadingPanel, 135-136

RadAjaxManager, 22-29, 135-136, 136-141, 141-145, 145-148, 148-162, 174-176

RadAjaxManagerProxy, 135-136, 141-145, 174-176

RadAjaxPanel, 135-136, 136-141, 141-145

radalert(), 256-265

RadButton as a Toggle Button, 596-599

RadButton as an Image Button, 594-596

RadCalendar, 136-141, 174-176, 915-918, 918-919, 933-936

RadCalendarDay, 928-933

RadChart, 297-298, 903, 903, 903, 913

RadComboBox, 297-298, 330-337, 350-353, 383-384, 384-386, 745-747

RadComboBox Item Builder, 386-390

RadComboBoxContext, 414-427

RadComboBoxData, 414-427

RadComboBoxItemData, 414-427

radconfirm(), 256-265

RadContextMenu, 429-430

RadDataPager, 637-639

RadDate, 928-933

RadDateInput, 44-46, 46-49, 928-933

RadDatePicker, 915-918, 918-919, 919-928, 933-936

UI for ASP.NET AJAX

1006 UI for ASP.NET AJAX

RadDateTimePicker, 915-918, 918-919, 919-928

RadDock, 14-17, 226-231, 231-236, 236-242, 236-242, 246-256, 256-265, 265-280

RadDock Collection Editor, 236-242

RadDockLayout, 236-242, 246-256, 265-280

RadDockZone, 226-231, 231-236, 236-242, 246-256

RadFormDecorator, 99-100, 100-105, 105-110, 174-176, 915-918

RadGrid, 297-298, 322-330, 338-340, 350-353, 745-747, 812-816

RadInputManager, 69-79

radio button pattern, 458-463

RadMaskedTextBox, 44-46, 46-49

RadMenu, 82-83

RadMenuItem, 29-37

RadMultiPage, 915-918

RadNumericTextBox, 44-46, 46-49, 353-360

RadPageView, 350-353

RadPane, 231-236, 236-242, 256-265

RadPanelBar, 322-330, 322-330, 338-340, 340-346, 340-346, 346-350

RadPivotGrid Fields, 706-710

radprompt(), 256-265

RadRotator, 120-124, 124-126, 350-353

RadScheduler, 297-298, 959-963

RadScriptManager, 22-29, 80-82

RadSlidingPane, 242-246

RadSlidingZone, 226-231, 242-246

RadSpell, 64-69

RadSplitBar, 231-236, 236-242

RadSplitter, 226-231, 231-236, 236-242, 265-280

RadStyleSheetManager, 22-29

RadTabStrip, 91-95, 165-174, 330-337, 915-918

RadTextBox, 44-46, 46-49, 340-346, 745-747, 758-776

RadTimePicker, 918-919, 919-928

RadTimeView, 928-933

RadToolBar, 22-29, 297-298, 350-353, 758-776

RadToolBar Item Builder, 22-29

RadToolBarButton, 22-29

RadToolBarDropDown, 22-29

RadToolBarSplitButton, 22-29

RadToolTip, 99-100, 100-105, 105-110, 110-113, 113-117, 117-119

RadToolTipManager, 99-100, 100-105, 105-110, 110-113

UI for ASP.NET AJAX

1007 UI for ASP.NET AJAX

RadTreeNode, 458-463

RadTreeView, 309-315, 350-353, 429-430, 430-432, 432-437, 437-447, 447-458, 463-465, 465-469, 745-
747

RadTreeView Item Builder, 432-437

RadTreeViewContextMenu Collection Editor, 432-437

RadWindow, 226-231, 231-236, 236-242, 242-246, 256-265, 265-280

RadWindow Collection Editor, 236-242

RadWindowManager, 226-231, 231-236, 236-242, 256-265

RangeMaxDate, 919-928

RangeMinDate, 919-928

RecurrenceRule, 963-966

Referencing RadControl Client Objects, 80-82

Refresh Schema, 22-29

Registering and Assigning Skins, 283-288

related tables, 447-458

Remove(), 29-37

RemoveAt(), 29-37

RenderInColumns, 919-928

RenderInRows, 919-928

requestItems, 414-427

RequestQueueSize, 141-145

RequiredFieldValidator, 936-938

Resource Types, 959-963

ResourceType, 963-966

Response.Write(), 360-361

ResponseScripts, 145-148

RestoreOriginalRenderDelegate, 141-145

Ribbon Bar, 14-17

RibbonBar and Editor, 567-570

Right-to-left, 14-17

RotatorType, 124-126, 126-127

RoundToNearestHour(), 966-972

Rows, 545-546

Save a Thumbnail, 617-620

SaveDockLayout, 246-256, 265-280

Scale Breaks, 865-867

ScaleBreaks, 865-867

Scheduler Client-Side Programming, 972-978

Scheduler Designer Interface, 959-963

UI for ASP.NET AJAX

1008 UI for ASP.NET AJAX

Scheduler Resources, 955-959

Scheduler Server-Side Events, 966-972

Scheduler Server-Side Programming, 963-966

SchedulerFormMode, 966-972

ScriptManager, 22-29, 80-82, 91-95, 165-174, 346-350

Scroll, 959-963

Scrolling, 739-740

scrollIntoView, 458-463

SearchPatterns, 551-562

select, 458-463

SelectCommand, 812-816

SelectCommandType, 812-816

selectDate(), 938-944

selectDates(), 938-944

Selected property, 402-408

SelectedDate, 919-928, 933-936, 944-955, 959-963

SelectedDateChanged, 928-933

SelectedDateChangedEventArgs, 928-933

SelectedDates, 928-933

SelectedDatesEventArgs, 928-933

SelectedDay, 966-972

SelectedDayStyle, 915-918

SelectedImageUrl, 22-29

SelectedIndex, 402-408

SelectedIndexChanged, 402-408

SelectedView, 944-955, 959-963

Selecting, 812-816

SelectionChanged, 928-933

semantic rendering, 14-17

sender, 86-91

Server Side Code, 514-525, 628-637

Server Side Programming, 447-458, 491-492

Server Tags, 29-37

server-side events, 447-458

Server-Side Programming, 29-37, 57-60, 110-113, 145-148, 246-256, 315-322, 353-360, 380-381, 402-
408, 475-478, 570-573, 671, 689-691, 696-697, 703, 867-882

set_allowDelete(), 972-978

set_allowEdit(), 972-978

set_allowInsert(), 972-978

UI for ASP.NET AJAX

1009 UI for ASP.NET AJAX

set_cancel, 86-91

set_cancelCalendarSynchronization(), 938-944

set_displayDeleteConfirmation(), 972-978

set_enableAJAX(), 148-162

Setting Up the Database, 178-181

Setup ActiveSkill Project Structure, 177-178

Show More Results box, 390-402

show(), 256-265

ShowColumnHeaders, 174-176

ShowEvent, 105-110

showInsertFormAt(targetSlot), 972-978

ShowMoreResultsBox, 390-402

ShowOnFocus, 551-562

ShowOtherMonthDays, 174-176, 919-928

showPopup(), 938-944

ShowResourceHeaders, 959-963

ShowRowHeaders, 174-176

ShowStatusBar, 497-503

ShowViewTabs, 983-986

SingleExpandPath, 430-432, 432-437

SingleViewColumns, 919-928

SingleViewRows, 919-928

Skin, 174-176, 236-242, 256-265, 372-374

skins, 14-17

sliding panes, 226-231, 242-246

sliding zone, 226-231

sliding zones, 242-246

Smart Tag, 22-29, 49-57, 236-242, 386-390, 432-437

Sort method, 414-427

sorting items, 402-408

SortItems, 402-408, 414-427

SpecialDays, 919-928

Specifying RadButton Icons, 593-594

Specifying the content of a RadButton , 604-605

Spell checking, 64-69

splitter, 226-231, 265-280

SqlDataSource, 297-298, 346-350, 812-816, 983-986

startAutoPlay(), 126-127

StartEditingAdvancedForm, 983-986

UI for ASP.NET AJAX

1010 UI for ASP.NET AJAX

StateBags, 163-165

statically declared items, 384-386, 386-390, 390-402

statically declared nodes, 430-432

Sticky, 105-110

StoredProcedure, 812-816

Strict Mode, 865-867

StripFormattingOptions, 551-562

style sheets, 256-265

substring, 86-91

Summary, 42-43, 79, 98, 119, 134, 176, 225, 280, 296, 337, 361, 374, 382, 427-428, 469-
470, 482, 495, 537-538, 587, 610, 639, 652-653, 692, 699, 703-704, 710, 739, 803-
804, 838, 890, 913, 981-982, 991

Supported Scenarios, 661-662

System.Random, 148-162

System.Web.UI.HtmlControls, 148-162

TabClick, 165-174

TableCell, 928-933

Tabs, 22-29, 933-936

Tag, 265-280

Target, 22-29, 29-37

target attribute, 256-265

target element, 105-110

TargetControls, 110-113

Telerik.mdf, 309-315

Telerik.Web.UI.Scheduler.Views, 987-991

template, 120-124

template design surface, 124-126, 432-437

templates, 14-17, 390-402

TextBlock, 865-867

TextChanged, 57-60, 165-174, 402-408, 570-573

The CreateUserWizardWrapper Code-Behind, 202-204

The CreateUserWizardWrapperUI, 204-210

Thumbnails Mode, 474-475

TimePickerEventArgs, 928-933

TimePopupButton, 928-933

TimeSlotCreated, 966-972

tool window, 265-280

ToolBarMode, 551-562

ToolProviderID, 551-562

Tools, 551-562

UI for ASP.NET AJAX

1011 UI for ASP.NET AJAX

ToolsFile, 551-562

ToolTip, 309-315, 346-350, 384-386, 430-432

ToolTipTargetControl Collection Editor, 105-110

ToolTipZoneID, 100-105

Tour of Date-Time and Calendar Controls, 918-919

trackChanges, 408-414

trackChanges(), 437-447

TrackViewState(), 163-165

Transparency, 141-145

traversing the node hierarchy, 447-458, 458-463

TriStateCheckBoxes, 437-447

Understanding the Skin CSS File, 288-292

UNIQUEIDENTIFIER, 983-986

UniqueName, 265-280, 812-816

unselectDate(), 938-944

unselectDates(), 938-944

UpdatePanel, 110-113

UpdatePanelsRenderMode, 141-145

Upload Modules, 379-380

UploadPaths, 551-562

UseColumnHeadersAsSelectors, 919-928

UserControls, 162-163

UseRowHeadersAsSelectors, 919-928

UserSelectable, 959-963

Using Client Events, 86-91

Using RadAjaxManagerProxy, 174-176

Using RadCompression, 651-652

Using RadControl Client Properties and Methods, 82-83

Using Scheduler Templates, 978-981

Using The Configurator, 712-714

Using the Design Time Interface, 503-514, 625-628

Using the design-time interface, 729-735

Using the NewLineMode Property, 562-563

Using Third Party Buttons, 718-719

UtcToDisplay, 963-966

validation, 64-69

ValidationGroup, 64-69, 936-938

ValidationSummary, 936-938

validators, 64-69

UI for ASP.NET AJAX

1012 UI for ASP.NET AJAX

Value, 49-57

ValueChanging, 938-944

Vertical, 959-963

ViewPaths, 551-562

ViewState, 163-165

Virtual Scrolling, 390-402, 414-427

Visible, 812-816

Visual Studio 2008, 86-91

Web service, 414-427, 465-469

Web User Control, 165-174

WebServiceSettings, 414-427

WebUserControl, 174-176

What Do You Need To Have Before You Read This Courseware?, 1

What Do You Need To Know Before Reading This Courseware?, 1-2

Who Should Read This Courseware, 1

WorkDayEndTime, 959-963

WorkDayStartTime, 959-963

WrapFrames, 124-126

wrapping text, 463-465

XmlDataSource, 297-298

XPath, 124-126

YAxis, 865-867

YAxis2, 865-867

UI for ASP.NET AJAX

1013 UI for ASP.NET AJAX

	Introduction
	Important Information
	Who Should Read This Courseware
	What Do You Need To Have Before You Read This Courseware?
	What Do You Need To Know Before Reading This Courseware?
	How This Courseware Is Organized
	Introducing RadControls
	Before You Begin...

	Navigation Controls
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Server-Side Programming
	Control Specifics
	Summary

	Input Controls
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Server-Side Programming
	Client-Side Programming
	How To
	RadInputManager
	Summary

	Client-Side API
	Objectives
	Introduction
	Referencing RadControl Client Objects
	Using RadControl Client Properties and Methods
	JavaScript Intellisense
	Naming Conventions
	Using Client Events
	Client Events Walk Through
	JSON: Fat-Free Data Interchange
	MS AJAX Library
	Summary

	User Interface and Information Controls
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Server-Side Programming
	Client Side Programming
	How To
	Summary

	RadRotator
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Client-Side Programming
	Client-Side Items Management
	Control Specifics
	Coverflow mode
	Carousel mode
	Summary

	Ajax
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Server-Side Programming
	Client-Side Programming
	Page vs MasterPage vs UserControl
	Page Lifecycle
	Dynamic User Controls for Ajax-Enabling Entire Page
	Using RadAjaxManagerProxy
	Summary

	ActiveSkill: Getting Started
	Objectives
	Introduction
	Setup ActiveSkill Project Structure
	Setting Up the Database
	ASP.NET Membership
	Create the ActiveSkill Login Page
	Create Registration Page
	Implement the Registration Page
	The CreateUserWizardWrapper Code-Behind
	The CreateUserWizardWrapperUI
	Create the Billing Control Code-Behind
	Create the BillingControl User Control
	Add Utility Classes
	Configure the Profile
	Summary

	Screen "Real Estate" Management
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Control Specifics
	Server-Side Programming
	Client-Side Programming
	How To
	Summary

	Skinning
	Objectives
	Introduction
	Getting Started
	Registering and Assigning Skins
	Understanding the Skin CSS File
	Creating a Custom Skin
	Summary

	Databinding
	Objectives
	Introduction
	Getting Started
	Binding Hierarchical Data
	Server-Side Programming
	Binding to Business Objects
	Binding to Linq
	Summary

	Templates
	Objectives
	Introduction
	Getting Started
	Binding Expressions
	Designer Interface
	Server-Side Programming
	Client-Side Programming
	Summary

	ActiveSkill: Admin Page
	Objectives
	Introduction
	Build the Admin Page
	Create User Controls
	Create ActiveSkill Skin
	Summary

	RadAsyncUpload
	Objectives
	Introduction
	Getting Started
	Important Properties
	Upload Modules
	Server-Side Programming
	Client-Side Programming
	Summary

	RadComboBox
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Control Specifics
	Server-Side Programming
	Client-Side Programming
	How To
	Summary

	RadTreeView
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Control Specifics
	Server Side Programming
	Client-Side Programming
	How To
	Performance
	Summary

	RadFileExplorer
	Objectives
	Introduction
	Getting Started
	Thumbnails Mode
	Server-Side Programming
	Client-Side Programming
	How To
	Summary

	RadSiteMap
	Objectives
	Introduction
	Getting started
	Designer Interface
	Server Side Programming
	How To
	Summary

	RadGrid
	Objectives
	Introduction
	Getting Started
	Using the Design Time Interface
	Server Side Code
	Client Side Code
	Summary
	Columns
	Rows

	RadEditor
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Using the NewLineMode Property
	Customizing Content Area
	Configuring the ToolsFile
	RibbonBar and Editor
	Server-Side Programming
	Client-Side Programming
	How To
	Summary

	RadBarcode
	Objectives
	Introduction
	Barcode types

	RadButton
	Objectives
	Introduction
	Getting Started
	Specifying RadButton Icons
	RadButton as an Image Button
	RadButton as a Toggle Button
	Important Properties
	Creating a single click button
	Bigger Icons and Buttons
	Confirm postback with RadButton
	Specifying the content of a RadButton

	RadBinaryImage
	Objectives
	Introduction
	Getting Started

	RadFilter
	Objectives
	Introduction
	Getting Started
	Events
	Summary

	RadImageEditor
	Objectives
	 Introduction
	Smart Tag
	Getting Started
	Configuring the Toolbar
	Localization
	Creating a Custom Tool
	Save a Thumbnail

	RadListView
	Objectives
	Introduction
	Getting Started
	Using the design Time Interface
	Server Side Code
	RadDataPager
	Summary

	RadNotification
	Objectives
	Introduction
	Getting Started
	Notification Menu
	Embedded Icons
	Different Ways to Show A Notification
	Populating Plain Text And Rich Content
	Callback Support
	How To Combine Properties
	Auto Save RadEditor’s content and notify the user

	RadCompression
	Objectives
	Introduction
	Using RadCompression
	Summary

	RadCaptcha
	Objectives
	Introduction
	Getting Started
	Important Properties
	Optimize for Maximum Security
	Configure RadCaptcha audio

	RadXmlHttpPanel
	Objectives
	Introduction and Overview
	Supported Scenarios
	Configuring the XmlHttpPanel
	Client-Side Programming
	Server-Side Programming
	Known Issues

	RadTagCloud
	Objectives
	Introduction
	Getting Started
	Important Properties
	Databinding
	Filtering and Sorting of the TagCloud Items
	Generating TagCloud from External Sources
	Client-Side Data Binding

	RadRating
	Objectives
	Introduction
	Getting Started
	Server-Side Programming
	Client-Side Programming
	Summary

	RadRibbonBar
	Objectives
	Introduction
	Getting Started
	Server-Side Programming
	Client-Side Programming
	How -to
	Summary

	RadOrgChart
	Objectives
	Introduction
	Getting Started
	Control Specifics
	Server-Side Programming
	How-to
	Summary

	RadPivotGrid
	Objectives
	Introduction
	Getting Started
	RadPivotGrid Fields
	Summary

	RadSocialShare
	Objectives
	Introduction
	Button Types And Button Collections
	 Important Properties
	Using The Configurator
	First Steps
	Controlling the URL and the Title
	Using Third Party Buttons

	RadTreeList
	Objectives
	Introduction
	Getting-Started
	Using the design-time interface
	Data Editing
	Appearance and Styling
	Summary
	Scrolling
	Items Drag and Drop
	Load On Demand
	Columns

	ActiveSkill: Database Maintenance
	Objectives
	Introduction
	Building the Categories Tree Control
	Implement Categories Control
	Implement Questions Control
	Implement CreateExams Control
	Summary

	ActiveSkill: User Functionality
	Objectives
	Build the User Home Page
	Build the Choose Exam Control
	Build the Exam Question Control
	Summary

	RadChart
	Objectives
	Introduction
	Getting Started
	Designer Interface
	Control Specifics
	Server-Side Programming
	Client-Side Programming
	How To
	Summary

	RadHtmlChart
	Objectives
	Introduction
	Getting Started
	Chart Types
	Databinding

	ActiveSkill: Building the Exam Finish Control
	Objectives
	Building the Exam Finish Page
	Summary

	Date, Time, Calendar and Scheduling
	Objectives
	Date-Time and Calendar Controls Getting Started
	Tour of Date-Time and Calendar Controls
	Date-Time and Calendar Controls Designer Interface
	Date-Time and Calendar Controls Server-Side Programming
	Date-Time and Calendar Controls Server-Side Walk-through
	Date-Time Picker Validation
	Date-Time and Calendar Controls Client-Side Programming
	Getting Started with RadScheduler
	Scheduler Resources
	Custom Attributes
	Scheduler Designer Interface
	Scheduler Server-Side Programming
	Scheduler Server-Side Events
	Scheduler Client-Side Programming
	Using Scheduler Templates
	Summary

	ActiveSkill: Exam Scheduling
	Objectives
	Defining the Markup
	Handling the Drag and Drop Client-Side
	Handle Server-Side Events
	Integrate the Exam Scheduler
	Summary

