

RadControls for Silverlight Made Easy

Welcome to Telerik RadControls for Silverlight Made Easy.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: January 2011

RadControls for Silverlight

© 2011 Telerik Inc.

Special thanks to:

Valeri Hristov
Nikolay Atanasov
Vassil Petev
Pavel Pavlov
Miroslav Nedyalkov
Tihomir Petkov
Boryana Miloshevska
Konstantin Petkov
Konstantina Gocheva
Tina Stancheva
Georgi Dangalov
Maya Zhecheva
Evgenia Milcheva
Veselin Vasilev
Stephen Forte.

Last but not least, thank you to all our families for their support and
patience while we wrote the book.

RadControls for Silverlight4

© 2011 Telerik Inc.

Table of Contents

Foreword 0

Part I Introduction 15

... 151 Who Should Read This Courseware

... 152 What Do You Need to Have Before Reading This Courseware

... 163 How This Courseware is Organized

... 164 About Telerik

... 165 About Falafel

... 176 Introducing RadControls for Silverlight

Part II Silverlight Introduction 20

... 201 Objectives

... 212 Overview

... 223 Silverlight Anatomy 101

.. 22Silverlight Files

.. 24The XAP FIle

.. 24The Application Manifest

.. 25Silverlight Applications in Visual Studio

.. 26The Silverlight Life Cycle

... 274 Silverlight Development Tools

... 285 Wrap Up

Part III Working with Silverlight 30

... 301 Objectives

... 312 Getting Started

.. 31Starting w ith Visual Studio

.. 37Starting w ith Expression Blend

.. 43Visual Studio With Expression Blend

... 473 Working with XAML

.. 47XAML Basics

.. 52Attached Properties and Events

.. 52Markup Extensions

.. 53Resources and Styles

.. 59Adding and Theming RadControls

.. 60Templates

... 614 Dependency Properties

... 625 Routed Events

... 636 Basic Databinding

... 667 Best Practices

... 678 Debugging

... 689 Wrap Up

5Contents

5

© 2011 Telerik Inc.

Part IV Data Binding 70

... 701 Objectives

... 702 Binding Basics

... 743 Binding Collections

... 754 Change Notification

... 805 Binding in Templates

.. 80DataTemplate

.. 81HierarchicalDataTemplate

... 836 Data Sources

.. 83XML

.. 86REST

.. 91RIA

... 92Project Setup

... 94Building the RIA Service

... 99Building the RIA Client

.. 101WCF

... 102Building the WCF Service

... 107Building the WCF Client

.. 110ADO.NET Data Services

... 111Building the Service

... 116Building the Client

.. 121OpenAccess

... 122Building the Data Access Layer

... 124Building the Service

... 126Building the Silverlight Client

... 1297 Wrap Up

Part V Expression Blend 131

... 1311 Objectives

... 1312 Overview

.. 132Expression Blend Project Types

.. 132The Expression Blend Environment

... 1383 Resources

... 1404 Restyling RadControls for Silverlight

... 1435 Customizing RadControls Templates

... 1466 Bring RadControls to Life with Animations

... 1547 Binding

.. 154Overview

.. 154Create Sample Data Sources

... 155Define Sample Objects

... 158Import From XML

.. 160Create Object Data Sources

.. 163Drag and Drop Binding

.. 166Binding RadControls Walk Through

... 1718 Wrap Up

Part VI Theming and Skinning 173

RadControls for Silverlight6

© 2011 Telerik Inc.

... 1731 Objectives

... 1732 Overview

... 1743 Getting Started

... 1774 Applying Themes to RadControls

... 1815 Creating a Custom Theme

... 1836 Modifying themes in Expression Blend

.. 183Overview

.. 184Modifying the Theme Brushes

.. 188Testing the Modified Theme

.. 190Modifying Theme Styles

... 1927 Wrap Up

Part VII Localization 194

... 1941 Objectives

... 1942 Overview

... 1953 Getting Started

... 1984 Control Details

.. 198LocalizationManager

.. 199Resource File Storage

.. 200Custom Storage

.. 201Assigning Resources to Elements

.. 202Using Predefined Localization

... 2025 Wrap Up

Part VIII UI Automation Support 204

... 2041 Objectives

... 2042 Overview

... 2073 Getting Started

... 2124 Automating

... 2135 Wrap Up

Part IX Input Controls 215

... 2151 Objectives

... 2162 Overview

... 2173 Getting Started

... 2314 Control Details

.. 231Masked Text Box

.. 243Up Down Controls

.. 248Color Pickers

.. 261Slider Control

... 2715 Customization

... 2786 Wrap Up

Part X Menu Controls 280

7Contents

7

© 2011 Telerik Inc.

... 2801 Objectives

... 2802 Overview

... 2813 Getting Started

... 2874 Control Details

.. 287RadMenu

.. 289Items

.. 291Walk Through: Creating Menu Items in Code

.. 294RadContextMenu

... 2995 Binding

... 3076 Customization

... 3277 Wrap Up

Part XI Tabbed Interfaces 329

... 3291 Objectives

... 3302 Overview

... 3323 Getting Started

... 3444 Control Details

.. 344RadTabControl

.. 358RadPanelBar

... 3655 Customization

... 3706 Wrap Up

Part XII ToolBar 372

... 3721 Objectives

... 3732 Overview

... 3753 Getting Started

... 3814 Control Details

... 3905 Binding

... 4006 Customization

... 4097 Wrap Up

Part XIII Expander 411

... 4111 Objectives

... 4112 Overview

... 4123 Getting Started

... 4164 Control Details

.. 416Populating RadExpander

.. 423Events

.. 424Animation

... 4265 Customization

... 4346 Wrap Up

Part XIV Drag and Drop. 436

RadControls for Silverlight8

© 2011 Telerik Inc.

... 4361 Objectives

... 4362 Overview

... 4373 Getting Started

... 4444 Control Details

.. 444Overview.

.. 445Make a Control Draggable

.. 446Accept Dropped Controls

.. 447RadDragAndDropManager

.. 448Events.

.. 454Visual Cues

... 4575 Binding

... 4586 Wrap Up

Part XV Date, Time and Calendar 460

... 4601 Objectives

... 4612 Overview

... 4643 Getting Started

... 4794 Control Details

.. 479Calendar

.. 489Date Picker

.. 490Time Picker

.. 493DateTime Picker

... 4945 Binding

... 5016 Customization

... 5087 Wrap Up

Part XVI ComboBox 510

... 5101 Objectives

... 5112 Overview

... 5123 Getting Started

... 5154 Control Details

... 5325 Binding

... 5406 Customization

... 5497 Wrap Up

Part XVII TreeView 551

... 5511 Objectives

... 5522 Overview

... 5553 Getting Started

... 5584 Control Details

.. 558Working with Nodes

... 558Adding Nodes

... 560Locating and Accessing Nodes

... 563Path Properties and Methods

9Contents

9

© 2011 Telerik Inc.

... 564Node Properties

... 565Removing Nodes

... 566Node Images

.. 568Selections

.. 572Node Expansion

.. 573Checkboxes and Radiobuttons

.. 577Drag-and-Drop

.. 583Editing

.. 586Keyboard Support

.. 587Performance

... 5885 Binding

.. 588Basic Binding

.. 591Hierarchical Templates

.. 609Template Selectors

.. 613Load-On-Demand

... 6176 Customization

... 6287 Wrap Up

Part XVIII GridView 630

... 6301 Objectives

... 6312 Overview

... 6323 Getting Started

... 6404 Control Details

.. 640Selections

.. 648Filtering Sorting and Grouping

... 649Filtering

... 654Sorting

... 657Grouping

.. 660Editing

.. 665Grid View Elements Visibility

.. 669Accessing Elements in a Grid Row Template

.. 670Sizing

.. 671Performance

... 671Virtualization

... 672Paging

.. 673Print and Export

... 674Exporting

... 677Formatting

... 677Printing

... 6785 Binding

.. 678.NET Objects

.. 683REST

... 683Project Setup

... 684XAML Editing

... 690Code Behind

.. 703WCF

... 704Building the WCF Service

... 712Building the WCF Silverlight Client

.. 715WCF RIA Services

... 716Project Setup

... 718Building the RIA Service

RadControls for Silverlight10

© 2011 Telerik Inc.

... 723Building the RIA Client

... 7246 Customization

... 7287 Wrap Up

Part XIX Scheduler 730

... 7301 Objectives

... 7312 Overview

... 7333 Getting Started

... 7364 Control Details

.. 736Time Slots

.. 737Views

.. 739Appointments

.. 743Recurrence

.. 744Resources

.. 749Events

.. 750Commands

.. 754Drag-and-Drop

... 754Drag-and-Drop Overview

... 758Drag-and-Drop Walk Through

.. 768Internationalization

... 768Using Predefined Cultures

... 771Custom Translations

... 7755 Binding

.. 775Basic Binding

.. 779Custom Appointments

... 7846 Customization

... 7957 Wrap Up

Part XX Gauges 797

... 7971 Objectives

... 7982 Overview

... 8003 Getting Started

... 8084 Control Details

... 8315 Binding

... 8426 Customization

... 8467 Wrap Up

Part XXI ProgressBar 848

... 8481 Objectives

... 8482 Overview

... 8493 Getting Started

... 8554 Wrap Up

Part XXII Charting 857

... 8571 Objectives

11Contents

11

© 2011 Telerik Inc.

... 8582 Overview

... 8593 Getting Started

... 8684 Control Details

.. 868Chart Series Types

.. 874Chart Elements

... 874Series and DataPoints

... 877Axis Elements

.. 878Animations

.. 880Integration w ith ASP.NET AJAX

... 8865 Binding

.. 886Binding Basics

.. 894Binding Axis Labels

.. 895Tooltips

.. 899Format Expressions

... 9056 Customization

.. 905Coloring Chart Elements

.. 914Styling the Chart

... 9177 Wrap Up

Part XXIII Docking 919

... 9191 Objectives

... 9202 Overview

... 9213 Getting Started

... 9274 Control Details

.. 927Creating Containers in Code

.. 930Sizing and Positioning

.. 933Pane Pinning and Visibility

.. 933Prevent Docking

.. 934Saving and Loading

... 9385 Binding

.. 939Building the WCF Service

.. 953Building the Docking Client Application

... 953Project Setup

... 954Silverlight Client Code Behind

... 963Silverlight Client XAML

... 967Run and Test the Application

... 9686 Customization

... 9707 Wrap Up

Part XXIV Windows 972

... 9721 Objectives

... 9722 Overview

... 9733 Getting Started

... 9764 Control Details

.. 976Predefined Dialogs

... 976Alert

... 980Confirm

RadControls for Silverlight12

© 2011 Telerik Inc.

... 983Prompt

.. 986Brushes

.. 988Events

.. 989Window State and Z-Order

... 9905 Binding

... 9936 Customization

... 9977 Wrap Up

Part XXV HTMLPlaceholder 999

... 9991 Objectives

... 9992 Overview

... 10003 Getting Started

... 10044 Control Details

.. 1004Loading Content

.. 1008Events

.. 1009Sizing and Positioning

.. 1010Interaction w ith the Page

... 1011Calling Javascript from Managed Code

... 1014Calling Managed Code from Javascript

... 10175 Binding

... 10226 Wrap Up

Part XXVI MediaPlayer 1024

... 10241 Objectives

... 10242 Overview

... 10253 Getting Started

... 10284 Control Details

... 10325 Binding

... 10466 Customization

... 10487 Wrap Up

Part XXVII CoverFlow 1050

... 10501 Objectives

... 10502 Overview

... 10513 Getting Started

... 10524 Control Details

.. 1052Items

.. 1057Item Properties

.. 1059Distance

.. 1060Camera

.. 1061Animation

.. 1061Reflection

... 10625 Binding

... 10746 Customization

.. 1074Navigation

13Contents

13

© 2011 Telerik Inc.

... 10767 Wrap Up

Part XXVIII Upload 1078

... 10781 Objectives

... 10782 Overview

... 10803 Getting Started

... 10844 Control Details

.. 1084Controlling Upload Access

.. 1085Working with the Upload Handler

.. 1091Events and Methods

... 10925 Customization

... 10956 Wrap Up

Index 1096

Part

I
Introduction

Introduction 15

© 2011 Telerik Inc.

1 Introduction

1.1 Who Should Read This Courseware

This courseware assumes that you are familiar with VB.NET or C# code. The courseware uses Visual
Studio 2010 and assumes you know your way around this environment. You should be able to navigate the
basic functional areas of the IDE (e.g. Solution Explorer, Properties, code/designer web pages etc.) and be
able to run and debug applications and class libraries. You should have a basic familiarity with XML syntax.

1.2 What Do You Need to Have Before Reading This Courseware

Computer Setup

The courseware assumes you are running Windows X86 or x64 500-megahertz (MHz) or higher processor
with 128-megabytes (MB) of RAM.

Silverlight Setup

For information on system requirements for Silverlight, see "Microsoft Silverlight System Requirements" at
http://www.microsoft.com/silverlight/get-started/install/default.aspx. This will show you the combinations of
operating system and browser that will support Silverlight.

Development Tools

This courseware assumes that you have installed:

Visual Studio 2010 or better

Expression Blend 4 [optional]

Silverlight 4 SDK

Silverlight Toolkit

WCF RIA Services

See the Silverlight Getting Started site at http://silverlight.net/getstarted/ for links to these resources.

RadControls for Silverlight

Get RadControls for Silverlight at http://www.telerik.com/purchase/individual/silverlight.aspx.

http://www.microsoft.com/silverlight/get-started/install/default.aspx
http://silverlight.net/getstarted/
http://www.telerik.com/purchase/individual/silverlight.aspx

RadControls for Silverlight16

© 2011 Telerik Inc.

1.3 How This Courseware is Organized

The initial chapters of this courseware will help you quickly get up to speed with Silverlight and will discuss
some of the issues in common with all RadControls such as binding or theming. In the "Controls" section of
this Courseware, the chapter structure is as follows:

Objectives: A summary of what you will learn in the chapter.

Overview: A high-level overview of the control, what it does and its key features.

Getting Started: A step-by-step walk through of building an application that uses the control in the
minimal number of steps.

Control Details: One or more topics that dig into specific properties, methods and events of the
control.

Binding: How to bind the control to data.

Customization: How to give the control a custom look and feel or special functionality. Typically this
will be through the use of templates and includes many examples of using Expression Blend.

Wrap Up: A summary of what you learned in the chapter.

1.4 About Telerik

Telerik is a leading vendor of User Interface (UI) components for Microsoft .NET technologies (ASP.NET
AJAX, WinForms, Windows Presentation Foundation and Silverlight), as well as tools for .NET Reporting,
ORM and web content management. Building on our expertise in interface development and Microsoft
technologies, Telerik helps customers build applications with unparalleled richness, responsiveness and
interactivity. Created with passion, Telerik products help thousands of developers every day to be more
productive and deliver reliable applications under budget and on time.

1.5 About Falafel

Founded in 2003, Falafel Software, Inc. provides the highest quality software development, consultation, and
training services available. Starting initially with consulting and training, Falafel Software found itself
expanding rapidly on the excellence of its engineers and the incredible sense of teamwork exhibited by
everyone in the company. This common mutual respect for each other's talents has been a major asset for
Falafel, causing extraordinary growth, and a level of quality that very few other IT companies can match.
Employees include best-selling authors, industry speakers, technology decision makers, and former
Microsoft and Borland engineers. All of Falafel engineers are Microsoft Certified Professionals, Certified
Application Developers, or Most Valuable Professionals.

Falafel has written the following Telerik courseware:

RadControls for ASP.NET

RadControls for ASP.NET AJAX

RadControls for Winforms

Telerik Reporting

Telerik OpenAccess ORM

Introduction 17

© 2011 Telerik Inc.

1.6 Introducing RadControls for Silverlight

RadControls are built on Microsoft Silverlight 3 and include UI controls for building rich line-of-business
Silverlight applications. Sharing the same code base with Telerik WPF controls, the Silverlight controls offer
a clean and intuitive API, Blend support and powerful theming capabilities that will radically improve your
RIA development.

Comprehensive Toolset from the Masters of
Web UI: An established leader in web interface
technologies, Telerik now offers you RadControls for
Silverlight 3 – a comprehensive suite of controls that
bring style and interactivity to your LOB
applications.

Rich Data Visualization Capabilities: Featuring
everything from a super powerful Silverlight grid, to
animated, fully customizable Silverlight charts and
gauges, Telerik Silverlight 3 controls enable
developers to transform data into interactive,
animated visuals that empower end-users to
analyze complex business scenarios.

Engineered for Great Performance: Telerik
Silverlight 3 controls are engineered for outstanding
performance through native UI virtualization, an
innovative LINQ-based data engine, asynchronous
data binding, RadCompression module and other
techniques that help reduce page loading time and
speed up data operations.

Full Interoperability with ASP.NET AJAX:
RadControls for Silverlight 3 are a perfect addition
for existing ASP.NET AJAX applications and work
nicely with Telerik RadControls for ASP.NET AJAX.
This enables you to add islands of rich functionality
to standards-based websites when needed, without
rewriting your working applications for scratch.

WCF RIA Services support: All data-bound Telerik
Silverlight 3 controls support binding to WCF RIA
Services. This enables all data operations to
execute on the server, which results in speedier
sorting, filtering and paging for RadGridView. With
completely codeless binding, it takes almost no
extra effort to bind RadControls for Silverlight 3 to
WCF RIA Services.

Ready-to-Use Themes: Styling is made easy
thanks to the integrated theme support. Telerik
Silverlight controls ship with 5 major themes: Vista,
Summer, Office Blue, Black and Silver. These
themes help you deliver a consistent look-and-feel
throughout your application.

Validation support: All Telerik Silverlight 3 input
controls support metadata-driven validation via data
annotations.

3D Charts for Silverlight: Pushing the envelope of
rich data presentation, Telerik offers the first
commercial 3D chart control for Silverlight.

Integration with Leading-Edge Technologies:
RadControls for Silverlight 3 are designed to work
effortlessly with cutting-edge Silverlight technologies
like MVVM and Microsoft Composite Application
Guidance (Prism).

Support for Expression Blend: RadControls for
Silverlight are styleable through Microsoft
Expression Blend. As a result, you can unleash
your imagination and redefine how elements look
and behave.

Code Re-Use with RadControls for WPF:
RadControls for Silverlight 3 and RadControls for
WPF suites are derived from the same codebase
and share the same API. They represent two almost
mirror toolsets for building rich line-of-business web
and desktop applications, allowing for substantial
code and skills reuse between Silverlight and WPF
development.

Enhanced Routed Events Framework: To help
your code become even more elegant and concise,
we implemented an Enhanced Routed Events
Framework for RadControls for Silverlight 3. This
allows you to handle "bubbling" and "tunneling"
events from other elements in the visual tree.

RadControls for Silverlight18

© 2011 Telerik Inc.

Free Testing Framework for RadControls: The
free WebAii Testing Framework helps developers
build automated functional tests and end–to-end
scenario tests for both Silverlight- and AJAX-
powered applications. The framework ships with
special wrappers for Telerik RadControls for
Silverlight and ASP.NET AJAX, making it easier
than ever before to create and maintain tests.

Part

II
Silverlight Introduction

RadControls for Silverlight20

© 2011 Telerik Inc.

2 Silverlight Introduction

2.1 Objectives

This chapter will give you a feel for how Silverlight fits relative to other web technologies. You will get a
rundown on the parts that make up a Silverlight application and how those parts fits in a Visual Studio
project. You will get an overview of the Silverlight Life Cycle. Finally, you will learn about the development
tools available for Silverlight development and where each tool is used.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\SilverlightIntroduction\SilverlightIntroduction.sln.

Silverlight Introduction 21

© 2011 Telerik Inc.

2.2 Overview

Silverlight is a web application framework that runs on the client and delivers Rich Internet Applications
(RIA) capability. Here's a blurb from the MSDN Silverlight Architecture page that summarizes:

"Silverlight is not only an appealing canvas for displaying rich and interactive Web and media
content to end users. It is also a powerful yet lightweight platform for developing portable, cross-
platform, networked applications that integrate data and services from many sources.
Furthermore, Silverlight enables you to build user interfaces that will significantly enhance the
typical end user experience compared with traditional Web applications."

Silverlight started out life as a video streaming plug-in. As the platform has matured, capabilities have
expanded to more closely rival those of Adobe Flash: interactive graphics, multi-media and animations in a
single runtime environment.

Silverlight is routinely compared to Flash or AJAX and there is frequent speculation on what technology
might prevail. Silverlight actually fits within a spectrum of existing technologies with "simple" HTML and
ASP.NET web pages on one end and desk top applications on the other. Silverlight uses a small plug-in
that can be hosted within traditional web pages either as an "island" or constituting the entire browser
experience. Even when used as an island, you can communicate between the Silverlight application and the
HTML page through Javascript.

Like AJAX, the Silverlight display is updated without refreshing the entire page. But where AJAX
development has a patchwork feel, Silverlight lets you write managed code using your favorite .NET
language. Silverlight user interfaces are defined in XAML (Extensible Application Markup Language) and can
be built using Visual Studio or Expression Blend. The isolation between UI and functionality allows web
designers to build high-end graphic interfaces that really shine without colliding with development efforts.

Silverlight is supported by a lightweight class library. This slim subset of the .NET framework Base Class
Library handles collections, reflection, regular expressions, threading, web services, rich media, vector
graphics and user interface tasks. Parts of the framework that are not compatible with security or that would
make the plugin too heavy have been omitted, e.g. System.IO is not present in the Silverlight class library.
Don't expect to find all the classes, methods or properties of the original framework, even in familiar
namespaces. For example, the Enum class exists in Silverlight and has GetName() and Parse() methods,
but no GetValues() method. Likewise, WebClient running in Silverlight does not allow synchronous
communication. Even with these changes, Silverlight has significant functionality for such a small footprint.

Silverlight runs in a "Sandbox" and can't invoke the platform API. Files are accessed through the native
"Save" and "Open" file dialogs and files can also be persisted in local "Isolated Storage". To connect to
databases or access server-side classes, you need to go through an intermediary, typically a web service.
Silverlight can talk with WCF, RIA, ADO.NET Data Services and REST based services. Silverlight can
converse using JSON and XML formats, including RSS and ATOM.

RadControls for Silverlight22

© 2011 Telerik Inc.

2.3 Silverlight Anatomy 101

2.3.1 Silverlight Files

At a high level we can think of a Silverlight application as assembly that includes two sets of files:

App.xaml & App.xaml.cs: This class is the entry point for the application as a whole. The class handles
application startup and has several events for handling application wide events such as startup, exit and
unhandled exceptions.

Public Sub New()
 AddHandler Me.Startup, AddressOf Application_Startup
 Me.Exit += Me.Application_Exit
 Me.UnhandledException += Me.Application_UnhandledException

 InitializeComponent()
End Sub

Private Sub Application_Startup(ByVal sender As Object, ByVal e As StartupEventArgs)
 Me.RootVisual = New MainPage()
End Sub
'. . .

public App()
{
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_UnhandledException;

 InitializeComponent();
}

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new MainPage();
}
. . .

Silverlight Introduction 23

© 2011 Telerik Inc.

MainPage.xaml & MainPage.xaml.cs: The initial main page is created automatically and contains a
XAML (Extensible Application Markup Language) file to describe the user interface and managed code-
behind to define the client logic. The screenshot below shows a minimal "Hello World" example. Most of
your typical development effort will center around these files.

RadControls for Silverlight24

© 2011 Telerik Inc.

2.3.2 The XAP FIle

When the application is compiled, the assembly DLL is placed into a "*.xap" file along with a manifest. The
"xap" file is simply a compressed file, like a "*.zip". When a browser requests a Silverlight application to
run, the xap file is downloaded on demand and executed by the Silverlight plugin. To view the "xap" file,
change the extension to "zip" and open it. The screenshot below shows the xap contents for a minimal
"Hello World" application named "SilverlightIntroduction".

If we reference assemblies that are not part of the base Silverlight class library, these DLL's will also be
included in the xap. Adding a RadCalendar to the "Hello World" application requires references to the
Telerik.Windows.Controls and Telerik.Windows.Controls.Input assemblies. Once referenced, these
assemblies are automatically included in the xap:

2.3.3 The Application Manifest

The application manifest describes the contents of the xap file and tells Silverlight how to run a particular
application. Looking inside the AppManifest.xaml you can see that the Deployment.Parts element lists
and names each assemblies in the xap. The Deployment RuntimeVersion is the version of Silverlight
required to run the application. The Deployment EntryPointAssembly and EntryPointType are the names
of the assembly and the class that will be instantiated to start the Silverlight application.

<Deployment
 xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 EntryPointAssembly="SilverlightIntroduction"
 EntryPointType="SilverlightIntroduction.App"
 RuntimeVersion="3.0.40624.0">
 <Deployment.Parts>
 <AssemblyPart x:Name="SilverlightIntroduction" Source="SilverlightIntroduction.dll" />
 <AssemblyPart x:Name="Telerik.Windows.Controls" Source="Telerik.Windows.Controls.dll" />
 <AssemblyPart x:Name="Telerik.Windows.Controls.Input"
 Source="Telerik.Windows.Controls.Input.dll" />
 </Deployment.Parts>
</Deployment>

Silverlight Introduction 25

© 2011 Telerik Inc.

2.3.4 Silverlight Applications in Visual Studio

When you create a new Silverlight application in Visual Studio, two projects are created, the Silverlight
Application project and a Host Web Application project. The screenshot below shows the key elements:

1. "App" represents the application class. This class handles instantiation and other application level
tasks.

2. "MainPage" has xaml to describe the user interface for your application and code-behind to define the
logic.

3. After the Silverlight application is compiled, the "xap" is placed in the host web application \ClientBin
folder.

4. Standard ASP.NET or HTML test pages are automatically added to the host web application. These
pages contain "<object>" tags that reference the Silverlight plugin. The two pages are substantially the
same. Looking at the "*.html" file we can see that it contains boilerplate Javascript code for handling
Silverlight errors. In the HTML portion of the file below the Javascript, there is an "<object>" element. The
object element represents the Silverlight plugin. Notice that it has a series of parameter tags that tell it
where the "xap" file can be found and what Javascript should be run if there's an error.
"minRuntimeVersion" and "autoUpgrade" are configured to automatically update the plugin if it is out of
date.

RadControls for Silverlight26

© 2011 Telerik Inc.

<body>
 <form id="form1" runat="server" style="height:100%">
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2," type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/SilverlightIntroduction.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="3.0.40624.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40624.0"
 style="text-decoration:none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
 alt="Get Microsoft Silverlight" style="border-style:none"/>

 </object>
 <iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px">
 </iframe></div>
 </form>
</body>

2.3.5 The Silverlight Life Cycle

The sequence below is a simplified Silverlight Life Cycle.

1) The cycle begins when a user requests a web page that contains a Silverlight application.

2) The host page downloads to the client browser.

3) The browser renders the HTML.

4) The browser reaches the "<object>" element and loads the Silverlight Plugin.

5) The Silverlight Plugin downloads the "xap" file specified in the "source" parameter of the object
element.

6) The plugin extracts the xap and reads the manifest.

7) Using information from the manifest, the plugin creates an instance of your application.

8) The default constructor for the App class:

a) Hooks up event handlers for the Startup, Exit and UnhandledException events.

b) Calls InitializeComponent() that loads the application XAML.

9) The plugin fires the application Startup event.

10)The application Startup event handler creates an instance of the MainPage.

11)The constructor for the MainPage calls InitializeComponent() for the page where the XAML for the page
is loaded and creates any Silverlight elements defined there.

12)The MainPage instance is assigned to the applications RootVisual property. The RootVisual is the
page that the application is displaying at any one time.

Silverlight Introduction 27

© 2011 Telerik Inc.

2.4 Silverlight Development Tools

Visual Studio and Expression Blend

Both Visual Studio and Expression Blend can be used to build Silverlight applications. In fact, you can work
in both environments for the same project and pass the project back in forth. Both environments sense
when changes have been made outside their environments and update their interfaces accordingly. Both
environments have shortcuts to invoke each other.

Why would you use one over the other? Visual Studio can be thought of as primarily a developers tool set.
Visual Studio is the appropriate tool when you need to build disparate parts of a larger solution. Expression
Blend can be thought of as a designer's environment. While you can still code in Blend, the toolset leans
towards rich media display and animation, all accomplished with visually oriented tools and methods.

 Notes

Expect the dichotomy between Visual Studio and Expression Blend to be a temporary state of
affairs. Future versions of both environments are likely to overlap to a greater degree as the
toolset progresses.

Links to Silverlight development tools and other resources can be found at http://silverlight.net/getstarted/.

Silverlight SDK

The SDK includes the necessary Silverlight assemblies, documentation, Visual Studio templates and
examples. This download is required for developing Silverlight applications. The install currently includes the
following DLL's:

System.ComponentModel.DataAnnotations.dll

System.Data.Services.Client.dll

System.Json.dll

System.Runtime.Serialization.Json.dll

System.ServiceModel.PollingDuplex.dll

System.ServiceModel.Syndication.dll

System.Windows.Controls.Data.dll

System.Windows.Controls.Data.Input.dll

System.Windows.Controls.dll

System.Windows.Controls.Input.dll

System.Windows.Controls.Navigation.dll

System.Windows.Data.dll

System.Windows.VisualStudio.Design.dll

System.Xml.Linq.dll

System.Xml.Serialization.dll

System.Xml.Utils.dll

http://silverlight.net/getstarted/

RadControls for Silverlight28

© 2011 Telerik Inc.

WCF RIA Services

"Microsoft WCF RIA Services simplifies the traditional n-tier application pattern by bringing together the
ASP.NET and Silverlight platforms. RIA Services provides a pattern to write application logic that runs on
the mid-tier and controls access to data for queries, changes and custom operations."

Using WCF RIA services is demonstrated in this Courseware as part of the "Data Binding" chapter.

Silverlight Toolkit

The toolkit has a collection of useful controls and classes. While its not required to build Silverlight
applications, some of the resources in this download are used in this Courseware. The toolkit is a
community project at located at http://silverlight.codeplex.com.

2.5 Wrap Up

In this chapter you got a feel for where Silverlight fits relative to other web technologies. You were given a
rundown on the elements that make up a Silverlight application and how those parts fits in a Visual Studio
project. You learned about the basic Silverlight Life Cycle. Finally, you learned about the development tools
available for Silverlight development and where each tool is used.

http://silverlight.codeplex.com

Part

III
Working with Silverlight

RadControls for Silverlight30

© 2011 Telerik Inc.

3 Working with Silverlight

3.1 Objectives

This chapter is intended to get you started working with Silverlight. This is not intended to be a
comprehensive coverage of all things Silverlight, but rather a quick guide to basic "up-and-running"
information. In this chapter you will build simple "Hello World" Silverlight applications using both Visual
Studio and Expression Blend. You will also learn how to hand off projects back and forth between the two
environments and in the process learn the basic working styles of both. In this chapter you will learn the
basics about XAML, including XML namespaces, defining objects, properties and collections in XAML,
attached properties, markup extensions, how to define and apply styles to Silverlight elements, how to
define and use resources and how RadControls are defined and themed in XAML.

You will learn how templates are used to create free form arrangements of Silverlight elements without
affecting underlying functionality. You will learn the basics on how to bind data to Silverlight elements.

You will learn about Silverlight best practices including MVVM and Prism. Finally, you will learn the settings
for debugging a Silverlight application.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\WorkingWithSilverlight\WorkingWithSilverlight.sln.

Working with Silverlight 31

© 2011 Telerik Inc.

3.2 Getting Started

3.2.1 Starting with Visual Studio

This walk through will take you step-by-step building a classic "Hello World" Silverlight application.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

RadControls for Silverlight32

© 2011 Telerik Inc.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

Working with Silverlight 33

© 2011 Telerik Inc.

3) Review the contents of the solution in the Solution Explorer. There are two projects. The Silverlight
Application project contains "MainPage" where MainPage.xaml contains the markup for the user
interface and "MainPage.xaml.cs" is the code-behind that defines the client-side logic. The host project
contains two test pages: an "aspx" test page and a "html" test page.

4) In the Solution Explorer, right-click the host project and select "Set as Startup Project" from the
context menu.

5) In the Solution Explorer, right-click the host project "aspx" test page and select "Set as Start Page".

6) Build the solution. In the Solution Explorer, find the "ClientBin" folder and notice that a "xap" file has
been created

RadControls for Silverlight34

© 2011 Telerik Inc.

7) Navigate to the Silverlight project and open MainPage.xaml for editing. It should contain markup similar
to the example shown below.

<UserControl x:Class="_01_GettingStarted.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot">

 </Grid>
</UserControl>

8) Drag a Button control from the "Silverlight XAML Controls" tab of the Toolbox to a point between the
main Grid element tags.

9) Replace the Button tag with the XAML shown below.

<Button Content="Click Me" Click="Button_Click"></Button>

Working with Silverlight 35

© 2011 Telerik Inc.

10)The completed XAML should now look like the example below:

<UserControl x:Class="_01_GettingStarted.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot">
 <Button Content="Click Me" Click="Button_Click"></Button>
 </Grid>
</UserControl>

11)Press F7 to navigate to the code behind.

12)Locate the button Click event handler and insert a call to the static MessageBox.Show() method as
shown in the example below.

Private Sub Button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 MessageBox.Show("Hello World")
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Hello World");
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight36

© 2011 Telerik Inc.

Modify the Application

By default, the Button stretches to take up the entire width and height of the screen. Hardly optimal but
easily fixed. Return to the MainPage.xaml file to continue editing. Replace the Button element with the
markup example below. These changes will align the button to the top left of the page and move it 20 pixels
off all sides.

<Button Content="Click Me" Click="Button_Click"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="20"></Button>

Press F5 to re-run the application which should now look like this:

Working with Silverlight 37

© 2011 Telerik Inc.

3.2.2 Starting with Expression Blend

This walk through will take you step-by-step building a classic "Hello World" Silverlight application in
Expression Blend. You will also get a chance to contrast the working styles of Expression Blend and Visual
Studio from the previous example.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. If Expression Blend is configured to show the startup dialog,
click the New Project... option.

RadControls for Silverlight38

© 2011 Telerik Inc.

3) In the "New Project" dialog select the "Silverlight" project type. In the right hand list select the
"Silverlight 3 Application + Website". Provide a unique name for the application and click OK to close
the dialog.

Working with Silverlight 39

© 2011 Telerik Inc.

4) When Expression Blend displays there are quite a number of features available at once. The key
features we will use right away are the Assets pane, the Projects pane, the Objects and Timeline pane,
the Artboard and the Properties pane.

The Assets pane can be thought of as a smart Toolbox that makes it easy to search for controls but
also contains effects, styles, behaviors and media. The Projects pane is analogous to the Solution
Explorer and contains the projects, files and other resources for a solution. The Objects and Timeline
pane displays the visual tree of Silverlight elements in outline form and helps orient you even when the
page is very complex. The Artboard is the design surface for the page where controls are added and
modified. The Properties pane is much like the Visual Studio Properties window but includes
extensive tools for visual properties such as alignment or color gradients.

5) Open the Assets pane.

6) On the left side of the Assets pane is a tree view. Locate and select the "Controls" node.

RadControls for Silverlight40

© 2011 Telerik Inc.

7) In the Assets pane, just above the tree view is the Assets Find entry text box. Enter "button" and
notice that the list of controls narrows as you type.

8) From the Assets pane, drag the Button control onto the Artboard.

9) Looking at the Button in the Artboard you can see that it does not stretch to take up the entire page
and remains at the location on the page where you dropped it.

Working with Silverlight 41

© 2011 Telerik Inc.

10)Look at the Properties pane, locate the Layout tab and notice that the Width, Height, Horizontal
Alignment, Vertical Alignment and Margin have all been set. Locate the Common Properties tab and
set the Content property to "Click Me". Note: You can also set the text on the control directly in the
Artboard by double-click ing or selecting the control and click ing F2.

11)Locate the Events button in the Properties pane and click it.

12)Double-click the "Click" event to create an event handler. This will navigate you to the Expression
Blend code editor.

13)In the code editor, add a call to MessageBox.Show() inside the Click event handler.

RadControls for Silverlight42

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Working with Silverlight 43

© 2011 Telerik Inc.

3.2.3 Visual Studio With Expression Blend

The process of building the same application in two environments provides a glimpse of the stylistic
differences between the two environments. This is a glimpse only. As we use Expression Blend more
extensively you will see how it excels when handling design tasks, animation and rich media. Visual Studio
and Expression Blend are designed to work together, handing off the project to the best suited environment
for a given task.

Let's walk through how the hand off occurs, starting with the previous Expression Blend project.

1) Start with the previous Expression Blend project.

2) In the Projects pane, locate MainPage.xaml, right-click and select Edit in Visual Studio from the
context menu. Do NOT close Expression Blend. We will want to test how the two environments are
notified of changes by the other.

3) Visual Studio will start and automatically open the entire Silverlight project, including the host web
application.

4) In Visual Studio, drag an image file "Folder_open.png" to the Silverlight project. You can find this file in
the "\courseware\images" directory.

RadControls for Silverlight44

© 2011 Telerik Inc.

5) Open MainPage.xaml for editing. Replace the Button with the XAML below.

This version of the Button replaces the Content attribute with Content as a full sub-element. Inside the
Content element, a StackPanel contains an Image and a TextBlock.

<Button HorizontalAlignment="Left" Margin="61,99,0,0"
 VerticalAlignment="Top" Click="Button_Click">
 <Button.Content>
 <StackPanel Orientation="Horizontal">
 <Image Source="Folder_open.png" Width="48"
 Height="48" />
 <TextBlock Text="Open" VerticalAlignment="Center"
 HorizontalAlignment="Center" />
 </StackPanel>
 </Button.Content>
</Button>

6) Select File > Save All from the Visual Studio menu.

7) Press F5 to run the application. The Button in the Silverlight application running from Visual Studio now
looks like the screenshot below.

8) Close the running Silverlight Application.

Working with Silverlight 45

© 2011 Telerik Inc.

9) In the Visual Studio Solution Explorer, right-click MainPage.xaml and select Open in Expression
Blend... from the context menu.

10)Expression Blend will come to the front and display a dialog "This Solution has been modified outside
of Expression Blend. Do you want to reload it?". Click the Yes button to close the dialog and reload the
project.

RadControls for Silverlight46

© 2011 Telerik Inc.

11)Notice how the Objects and Timeline pane reflects the new Button content.

12)In the Assets pane, select the "Effects" node in the tree on the left. Locate the "Drop Shadow Effect"
effect, drag it to Objects and Timeline pane and drop it on the StackPanel.

Working with Silverlight 47

© 2011 Telerik Inc.

 Notes

Keep your eye on the tooltip as you drag assets to the Objects and Timeline pane. The tooltip will
change to let you know what container it will be dropped into.

13)Press F5 to run the application. The shadow effect added by Expression Blend shows on the Image
and Text elements.

From this walk through you have seen how the project is passed back and forth between Visual Studio
and Expression Blend.

3.3 Working with XAML

3.3.1 XAML Basics

In this section we will look at how to think about XAML syntax, how to reference assemblies, use
IntelliSense, create styles, build templates and refactor your XAML with resources.

 Gotcha!

Before working with XAML in Visual Studio you can tweak the environment to make editing a little
faster. Go to Tools > Options... > Text Editor > XAML > Miscellaneous. Set the "Always open
documents in full XAML view" option on. Now when you open a XAML file the read-only Visual
Designer view will not load. It is substantially quicker to edit XAML in this manner for Visual Studio
2008. Use Expression Blend when you need to visually edit your pages.

XAML is a declarative markup language that simplifies creating user interfaces. XAML elements directly
represent instantiation of objects. The visible elements are defined in XAML, then matching code-behind is
used to manipulate those objects. This separation of concerns allows a work flow where separate parties
can work on UI and logic at the same time, using different tools.

RadControls for Silverlight48

© 2011 Telerik Inc.

MainPage.xaml

Your typical starting point for a XAML file is the either the App.xaml or MainPage.xaml. In App.xaml you
can define resources for the entire application. We will discuss resources a little later but for now take a
look at MainPage.xaml. The page starts out looking like the example below:

<UserControl x:Class="_02_WorkingWithXAML.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot">

 </Grid>
</UserControl>

The root element is "UserControl". The "x:Class" attribute lets us know the name of the UserControl class
in the code-behind, i.e. "MainPage".

XML Namespaces

Following the class declaration is a series of "xmlns" or XML namespaces. The syntax is "xmlns" followed
by a name, an equals sign, then the namespace itself. The first "xmlns" has no name and is the default
namespace.

What happens if we want to include references to assemblies, similar to "Imports" (VB) or "using" (C#)
statements? For that we can type in "xmlns:" plus a name and an equals sign. IntelliSense will display a
list of assemblies in scope for the project. The screenshot below shows a namespace called "thisProject".
The list drop down to reveal all the possible namespaces in scope.

If you have a class called "MyElement" defined in the code-behind, you can reference it in XAML by starting
your tag and adding "thisProject:" namespace. Once you type a colon, IntelliSense will display a list of
objects in the namespace as shown in the screenshot below.

Working with Silverlight 49

© 2011 Telerik Inc.

RadControls for Silverlight50

© 2011 Telerik Inc.

Defining Objects in XAML

XAML elements are used to declare instances of a classes. Elements can be expressed as starting and
ending XML tags or can use the shorter "self closing" syntax. Here is an example that shows both
syntaxes:

<!--using start and end tags...-->
<Button></Button>
<!--or self closing syntax-->
<Button />

Defining Properties in XAML

Properties are defined as attributes whose values are always strings. In the example below, Button Width
and Height attributes are both assigned the string value "100".

<Button Width="100" Height="100"></Button>

Properties can also be assign with "property element", "content element" and "collection" syntax. Property
element syntax takes the form of "<typeName.PropertyName>". The Width and Height example below
makes the XAML more verbose in this case, but if properties are complex or can't be expressed in a single
string value, this syntax becomes useful.

<Button >
 <Button.Width>100</Button.Width>
 <Button.Height>100</Button.Height>
</Button>

Another example shows property element syntax where the Button's BorderBrush contains another object
called a SolidColorBrush.

<Button>
 <Button.BorderBrush>
 <SolidColorBrush Color="Red"/>
 </Button.BorderBrush>
</Button>

For objects that have Content, the syntax can be simplified to place the content between the tags as a
default.

Working with Silverlight 51

© 2011 Telerik Inc.

<Button>Hello World</Button>

And lastly, collection syntax allows you to list a number of elements and have them automatically added to
a collection. The XAML below shows a LinearGradientBrush object that has a GradientStop collection.

<Button>
 <Button.Background>
 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Offset="0.0" Color="Red" />
 <GradientStop Offset="1.0" Color="Blue" />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>
 </Button.Background>
</Button>

The parser knows how to locate and create a GradientStopCollection, so we can leave the
GradientStopCollection element out for a shorter syntax:

<Button>
 <Button.Background>
 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="Red" />
 <GradientStop Offset="1.0" Color="Blue" />
 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>
 </Button.Background>
</Button>

It turns out that GradientStops is also the content property for the class and so we can simplify even further:

RadControls for Silverlight52

© 2011 Telerik Inc.

<Button>
 <Button.Background>
 <LinearGradientBrush>
 <GradientStop Offset="0.0" Color="Red" />
 <GradientStop Offset="1.0" Color="Blue" />
 </LinearGradientBrush>
 </Button.Background>
</Button>

3.3.2 Attached Properties and Events

A XAML language feature allows assigning a property or event from any owning element, even if the element
that's being assigned doesn't have that property or event. You can think of an attached property as being
essentially a global property. The syntax is "ownerType.propertyName". The example below demonstrates
the utility of attached properties. The Button class has no ToolTip property. Button doesn't need one
because we can attach a ToolTip property from the ToolTipService class.

<Button ToolTipService.ToolTip="Click for Summary">
</Button>

3.3.3 Markup Extensions

"Markup extensions" is an XAML concept where the curly braces "{}" are used as escape characters for
syntax that differs from XML standard notation. Usually these refer to resources or binding (resources and
binding are discussed in upcoming sections). Here's a brief example of what markup extensions look like in
the wild:

<TextBlock
 Text="{Binding ProductNumber}"
 Style="{StaticResource MyTextStyle}">
</TextBlock>

Working with Silverlight 53

© 2011 Telerik Inc.

3.3.4 Resources and Styles

Resources are an extremely powerful feature of XAML that let us define styles, templates, brushes,
classes, properties and events in a separate location from their use. This allows resources to be reusable.
As a side effect, you can refactor your XAML so that as a page becomes burdened with larger amounts of
markup, chunks of the markup can be named and moved to separate files for reuse.

Resources are kept in ResourceDictionary objects and are properties of the Application and any
FrameworkElement (any element participating in Silverlight layout). What do you store in a resource?
Brushes for setting element colors, templates for customizing controls and data source objects can all be
kept in resources. One common use for resource dictionaries is to store Styles, i.e. named groups of
properties and values. Lets start with a Button that has several font related properties. Styles aren't used In
the example below where the attributes are described directly on the button element.

<Button Content="Click Me!" FontFamily="Verdana" FontSize="12"
 Foreground="Green"></Button>

You can convert the font related properties into a single Style. For the moment, this is more verbose and
isn't more useful than the previous example. Wait for it...

<Button Content="Click Me!">
 <Button.Style>
 <Style>
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Foreground" Value="Green" />
 </Style>
 </Button.Style>
</Button>

If we make the Style into a Resource, the stye can be used over and over. The button markup gets cleaned
up in the process. The Resources element in the example below is a sub property of the Grid, but could
have been placed in UserControl.Resources or App.Resources. Notice that the Style has two new attributes
that are very important, x:Key and TargetType. "x:Key" identifies the style so that we can refer to it later.
TargetType specifies the type that the style should be applied to. Also notice how the Style is applied to
each of the buttons. The curly braces enclose "StaticResource" followed by the style key.

RadControls for Silverlight54

© 2011 Telerik Inc.

In the running Silverlight example, the styled buttons look like the screenshot below:

 Gotcha!

Its very easy to forget the TargetType attribute for a Style. The error can be hard to debug
because the error message does not point straight back to the cause. If we forget TargetType in
the above example, an XMLParseException is generated with message "Invalid attribute value
FontFamily for property Property".

Inheriting Styles

If several styles have some common attributes, why repeat these attributes in every Style definition? Styles
can become large, complex and difficult to manage. At some point you will want to use an existing style as
a base for a new style. In the example below, the "BigButtonStyle" uses the BasedOn attribute to point
back to "ButtonStyle". In the example we overwrite the FontSize to "16", and all the other "ButtonStyle"
properties come along for the ride. The new "BigButtonStyle" is applied to the third button.

Working with Silverlight 55

© 2011 Telerik Inc.

<StackPanel>
 <StackPanel.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Foreground" Value="Green" />
 </Style>
 <Style x:Key="BigButtonStyle" TargetType="Button"
 BasedOn="{StaticResource ButtonStyle}">
 <Setter Property="FontSize" Value="16" />
 </Style>
 </StackPanel.Resources>
 <Button Content="Button 1" Style="{StaticResource ButtonStyle}" />
 <Button Content="Button 2" Style="{StaticResource ButtonStyle}" />
 <Button Content="Button 3" Style="{StaticResource BigButtonStyle}" />
</StackPanel>

In the running Silverlight example, the styled buttons look like the screenshot below.

Resource Scope

Where resources are placed in the XAML determine scope. The example below fails with an
XMLParseException, "Cannot find a Resource with the Name/Key ButtonStyle", because the last button
can't find "ButtonStyle". "ButtonStyle" is a resource declared inside the StackPanel resources and is out of
scope for the last button.

<StackPanel>
 <StackPanel.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Foreground" Value="Green" />
 </Style>
 </StackPanel.Resources>
 <Button Content="Button 1" Style="{StaticResource ButtonStyle}" />
 <Button Content="Button 2" Style="{StaticResource ButtonStyle}" />
</StackPanel>

<Button Content="Button 3" Style="{StaticResource ButtonStyle}" />

You can also move your resources out to the App.xaml file where they can be reused by the entire
application. All you are doing is moving the resource to a wider scope. After moving "ButtonStyle" to App.
xaml, App.xaml looks something like the example below:

RadControls for Silverlight56

© 2011 Telerik Inc.

<Application
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="_02_WorkingWithXAML.App">
 <Application.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Foreground" Value="Green" />
 </Style>
 </Application.Resources>
</Application>

Merging Resources

Silverlight 3 introduced a feature called "Merged Resources" where resources can be broken out into several
files. This feature allows you to better organize your project as it becomes larger. For the sake of
discussion, lets place all our button related styles into their own resource dictionary.

To add a new resource dictionary using the Solution Explorer, right-click the project and select Add > New
Item... from the context menu. You can find the "Silverlight Resource Dictionary" template in the
"Silverlight" category. Provide a unique name for the resource dictionary and click Add to create the file.

Working with Silverlight 57

© 2011 Telerik Inc.

You can create as many resource files as you require to organize your application. The styles we have
defined previously can be moved to this file where the contents now look like the example below.

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Foreground" Value="Green" />
 </Style>
 <Style x:Key="BigButtonStyle" TargetType="Button"
 BasedOn="{StaticResource ButtonStyle}">
 <Setter Property="FontSize" Value="16" />
 </Style>

</ResourceDictionary>

RadControls for Silverlight58

© 2011 Telerik Inc.

We can use the MergedDictionaries collection to pull in the separate XAML files to any Resources element.
The example below merges two dictionaries to the Application Resources element where they will be
available application wide.

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="MyButtonStyles.xaml" />
 <ResourceDictionary Source="MyTextStyles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

Working with Silverlight 59

© 2011 Telerik Inc.

3.3.5 Adding and Theming RadControls

Once installed to the Toolbox, RadControls can be dragged into the XAML just as you would drag a
standard Silverlight control. The screenshot below shows a RadCalendar being dragged inside the main
"LayoutRoot" Grid element.

When the drag is complete, an XML namespace is automatically added to the UserControl, and the control
is added, along with its corresponding namespace, to the grid.

To theme a RadControl, first right-click the References node in the Solution Explorer and select Add
Reference... Browse to the Telerik assemblies located in the Telerik RadControls for Silverlight installation
and select Telerik.Windows.Controls. Also add a reference to one of the theme assemblies. These
assemblies all start with "Telerik.Windows.Themes" and the name of the theme. The example below adds
the Telerik.Windows.Themes.Summer assembly.

Once assembly DLL's are referenced in the project you can add XML namespace references in the markup.
The screenshot below shows the reference being added with the name of "telerik".

RadControls for Silverlight60

© 2011 Telerik Inc.

That will provide access to the StyleManager class. From there you can set the theme using the
StyleManager Theme attached property. The example below sets the Summer theme to a RadCalendar
control. The exact same steps are used to theme all RadControls.

3.3.6 Templates

Templates are XAML patterns used visualize Silverlight elements. You can think of them as recipes for
rendering element trees. Templates descend from the abstract FrameworkTemplate where there are a few
commonly used descendants:

ControlTemplate creates a visual representation of a UI control, such as a button. With
ControlTemplate you can completely replace the visual tree of a control with any set of elements you
care to use without altering the control's behavior. The ControlTemplate "Template" property is available
to every descendant of "Control". This makes Template very general purpose and is useful when you
need to "rip up the planks" to create a new visual representation.

DataTemplate describes visual structure of a data object, such as a business object.

ItemsControl uses ItemTemplate to visualize child elements. ListBox would be an example of an
ItemsControl descendant that can be customized using ItemTemplate.

HierarchicalDataTemplate is used to display child objects of a data object, for example master/detail
grids or tree views.

Templates can also be surfaced for particular areas of a control that can be customized. This strategy is
used by RadControls to allow customization of controls that can be displayed in different orientations or
that have different states. For example, the RadPane element used in docking has a BottomTemplate,
LeftTemplate, RightTemplate and TopTemplate where the position of the pane determines which template
is being rendered. RadPane also has a TitleTemplate. All these templates allow you to customize the
parts of the control that are of interest to you without altering the underlying functionality of the control.

ControlTemplate

Let's take our simple Button example and add a ControlTemplate definition. The example below shows
that the Button has a Template property. The Template property is of type ControlTemplate. Inside the
ControlTemplate we place a simple TextBlock.

<Button Content="Button 1" Click="Button_Click">
 <Button.Template>
 <ControlTemplate>
 <TextBlock Text="Print" />
 </ControlTemplate>
 </Button.Template>
</Button>

When you run this, the text "Print" shows, not the content "Button 1" and the Click event still fires. The
usage you see in the example above is not usual for multiple reasons. First, templates are typically defined
in resources:

Working with Silverlight 61

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <ControlTemplate x:Key="MyButtonTemplate">
 <TextBlock Text="Print" />
 </ControlTemplate>
 </Grid.Resources>

 <Button Content="Button 1" Click="Button_Click"
 Template="{StaticResource MyButtonTemplate}" />
</Grid>

The TextBlock in the template has hard coded text. What if we want the Content for the button to be used
instead. Here the markup syntax "{TemplateBinding}" can be used to pass a property value through to the
template. In this example, Content is used to populate the TextBlock Text property so that "Button 1"
displays.

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <ControlTemplate x:Key="MyButtonTemplate" TargetType="Button">
 <TextBlock Text="{TemplateBinding Content}" />
 </ControlTemplate>
 </Grid.Resources>

 <Button Content="Button 1" Click="Button_Click"
 Template="{StaticResource MyButtonTemplate}" />
</Grid>

3.4 Dependency Properties

Standard CLR (Common Language Runtime) properties are not responsive or extensible enough to support
declarative interfaces with features like animation, templates, resources and data binding. Declarative
interfaces with these requirements need to establish property value based on input from multiple sources
and should be able to publish notification of property changes to multiple interested parties.

Dependency properties are an important cornerstone of Silverlight that make declarative user interfaces
possible. Dependency properties allow Silverlight to determine value properties dynamically from a number
of different inputs, including Resources, data binding and animations.

Dependency properties are set in the following order of precedence:

Animation

local values

templated values

style values

default value

RadControls for Silverlight62

© 2011 Telerik Inc.

3.5 Routed Events

One particularly useful application of dependency properties are "routed events". Routed events are events
that can travel a route along an element tree. Routed events can Bubble from from the source element that
triggered the event to the root element or tunnel from the root element down to the source element. Each
handler can set "Handled" argument to discontinue processing.

Routed events allow you to hook up disparate elements that perhaps aren't designed to be used together.
Say you have a combo box in a stack panel. The stack panel can be notified that the combo box selection
has changed. Events are no longer constrained to the element where they are defined.

Silverlight has been a little weak on some features that are standard with WPF.

Routed events haven't been widely defined.

Silverlight doesn't support custom routed events as of this writing.

Telerik RadControls for Silverlight provides WPF-like support for custom routed events and also allows
expanded support for varying "routing strategies" (Bubbling, Tunneling and Direct). Telerik RadControls
routinely implement their events as routed events so you can use them right "out of the box".

For more information on Silverlight routed events, download the Telerik Trainer application and the
"RadControls for Silverlight - Overview of Routed Events" interactive video at:

http://www.telerik.com/support/trainer/silverlight.aspx

http://www.telerik.com/support/trainer/silverlight.aspx

Working with Silverlight 63

© 2011 Telerik Inc.

3.6 Basic Databinding

FrameworkElement is the abstract base class for elements participating in Silverlight layout.
FrameworkElement introduces the key DataContext property. You can assign various data sources or your
own custom business objects to the DataContext.

The example below shows a simple "Report" class that contains "Title" and "Description" properties. A
single instance of the Report class is created and assigned to the DataContext of a Button.

Partial Public Class MainPage
 Inherits UserControl
 Public Sub New()
 InitializeComponent()
 btnPrint.DataContext = New Report() With { _
.Title = "Product List", .Description = "Lists all active products in inventory"}
 End Sub

End Class

Public Class Report
 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
End Class

RadControls for Silverlight64

© 2011 Telerik Inc.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 btnPrint.DataContext = new Report()
 {
 Title = "Product List",
 Description = "Lists all active products in inventory"
 };
 }
}

public class Report
{
 public string Title { get; set; }
 public string Description { get; set; }
}

To bind the particular properties of an element, use the markup extension syntax where curly braces
surround "Binding" and specify a "Path" to a particular property of your bound object. In the example below,
Button Content is bound to the "Title" property of the Report object and the ToolTip is bound to the
"Description".

<Button x:Name="btnPrint"
 Content="{Binding Path=Title}"
 ToolTipService.ToolTip="{Binding Path=Description}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="20"></Button>

The running Silverlight application shows the Button with bound properties:

 Notes

You can omit the "Path", as shown in the XAML below:

<Button Content="{Binding Title}" ToolTipService.ToolTip="{Binding Description}" . . ./>

Working with Silverlight 65

© 2011 Telerik Inc.

To instantiate objects for binding in XAML, first create an XML namespace for the project that contains the
object you want to bind to (see Working with XAML, XAML Basics for directions on how to do this). Then, in
a Resources element add a reference to your object. The XML namespace for the example below is
"thisProject" and the object is "Report". The two properties for the Report object, "Title" and "Description",
are represented by attributes of the same name. You must set the "x:Key" to some unique name so you
can refer to it during binding.

To bind the Report object instantiated in XAML, bind the DataContext to the resource key name.

<Grid.Resources>
 <thisProject:Report x:Key="Report"
 Title="Product Listing"
 Description="Lists all active products in stock" />
</Grid.Resources>

<Button x:Name="btnPrint"
 DataContext="{StaticResource Report}"
 Content="{Binding Title}"
 ToolTipService.ToolTip="{Binding Description}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="20" />

RadControls for Silverlight66

© 2011 Telerik Inc.

3.7 Best Practices

MVVM

When integration between the user interface and the data is too tight, testing, refactoring and maintenance
become more difficult. Changes in the data schema or the querying logic can require changes throughout
the application. Separating the application into clear separation of concerns makes the application easier to
maintain and test as changes are introduced.

There are well defined architectural patterns that provide a map of where functional parts of the application
should be placed. The MVC pattern, Model - View - Controller, can work well for applications that don't
have declarative, i.e. XAML, interfaces. In this pattern, Model is the data, View is the user interface and
Controller is the programmatic interface between model and view. But XAML can declare data binding,
blurring the line between data and the view.

The MVVM pattern, Model - View - ViewModel, is a pattern more suited to declarative interfaces. In this
pattern, the ViewModel sits between the Model and View, providing an abstraction that can be used both
programmatically and declaratively by the view. The View can be programmatically or declaratively bound to
the ViewModel without the View having direct knowledge of the Model.

Prism

When you start building Silverlight applications to test various Silverlight and RadControls, your applications
will be simple and small. As your applications become larger they need to allow separate testing and
maintenance. But separation of concerns is only one of the requirements of a full scale production
application including logging, load-on-demand and event publishing between services, to name a few.

Prism is a collection of resources for implementing best practices in Silverlight. You can pick and choose
the pieces you need from the Prism libraries, source code, examples, quick starts and documentation.

For more information see "Composite Apps from Prism" at http://msdn.microsoft.com/en-us/magazine/
dd943055.aspx. You can find the download for Prism at http://www.microsoft.com/downloads/details.aspx?
FamilyID=fa07e1ce-ca3f-4b9b-a21b-e3fa10d013dd&DisplayLang=en.

http://msdn.microsoft.com/en-us/magazine/dd943055.aspx
http://msdn.microsoft.com/en-us/magazine/dd943055.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=fa07e1ce-ca3f-4b9b-a21b-e3fa10d013dd&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=fa07e1ce-ca3f-4b9b-a21b-e3fa10d013dd&DisplayLang=en

Working with Silverlight 67

© 2011 Telerik Inc.

3.8 Debugging

You can debug a Silverlight application in much the same way as you would for a WinForms application.
Just set your breakpoints and press F5 to debug the application. Be aware that you cannot debug
Javascript and Silverlight at the same time. To enable debugging when you first create the Silverlight
application, leave the "Enable Silverlight debugging" option checked.

Later, you can go back to the Solution Explorer, right-click the host project and select Properties from the
context menu. Select the Web tab, then locate the Silverlight checkbox.

RadControls for Silverlight68

© 2011 Telerik Inc.

 Gotcha!

Question: When trying to debug I receive the error message "Unable to start debugging. The
silverlight managed debugging package isn't installed.".

Answer: You may have installed the end-user runtime, not the developer runtime. See the "What
Do You Need to Have Before Reading This Courseware" chapter and make sure you have
everything installed correctly.

3.9 Wrap Up

This chapter provided a quick guide to basic "up-and-running" information. In this chapter you built simple
"Hello World" Silverlight applications using both Visual Studio and Expression Blend. You also learned how
to hand off projects back and forth between the two environments and in the process learned the basic
working styles of both. In this chapter you learned the basics about XAML, including how XML namespaces
are defined, defining objects, properties and collections in XAML, attached properties, markup extensions,
how to define and apply styles to Silverlight elements, how to define and use resources and how
RadControls are defined and themed in XAML.

You learned how templates are used to create free form arrangements of Silverlight elements without
affecting underlying functionality. You learned the basics on how to bind data to Silverlight elements.

You learned about Silverlight best practices including MVVM and Prism. Finally, you learned the settings
that control debugging of a Silverlight application.

Part

IV
Data Binding

RadControls for Silverlight70

© 2011 Telerik Inc.

4 Data Binding

4.1 Objectives

In this chapter you will learn the basics of binding objects and collections of objects to Silverlight elements.
You will learn syntax variations used to bind declaratively and how to bind elements using code alone. You
will also learn how to detect changes in property data and changes to collections.

You will learn how to bind elements in two common templates: DataTemplate and
HierarchicalDataTemplate.

You will learn how to bind getting data from a variety of popular data sources including straight XML and
variations of XML, i.e. ATOM and RSS. In the process you will use a combination of XDocument and LINQ
to read, parse and convert the data to a form suitable for binding. Building off the XML techniques we will
discuss REST services, build WCF RIA services, WCF and ADO.NET Data Services.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Binding\Binding.sln.

\Courseware\Projects\<CS|VB>\Binding_Ria\Binding_Ria.sln.

4.2 Binding Basics

Data binding is the process of connecting Silverlight elements to standard CLR (Common Language
Runtime) objects. FrameworkElement is a base class for Silverlight elements that participate in layout,
but more importantly for our purposes, can be bound to data. FrameworkElement introduces the
DataContext property. DataContext can be assigned objects in XAML or code-behind as shown in the
example below. DataContext is available to the bound element and any children of the element. The
example below binds the DataContext property of a TextBox to a custom object called "Category".

tbTitle.DataContext = category

tbTitle.DataContext = category;

Binding in Silverlight requires three things:

A dependency property in a FrameworkElement descendant that you are binding to.

A standard property in a .NET object.

A Binding object to handle communication between the two. The Binding object defines the
DataContext, the identity of the objects being bound and the names of the properties involved.

Data Binding 71

© 2011 Telerik Inc.

Lets look at an example where we have a standard CLR object that we will call "Category". Category has
two properties, "Title" and "Description".

Public Class Category
 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property

public class Category
{
 public string Title { get; set; }
 public string Description { get; set; }
}

Because we're working with a dependency property, we can perform the binding right in the XAML. Take a
look at the example below. The UserControl.Resources defines a single instance of Category. In this
example, the FrameworkElement is a TextBox and the dependency property is the Text property. The
Binding object is declared using "{Binding ...} syntax. The critical Binding properties are:

Path: The name of the source property to get the data from. The example below omits the "Path" attribute
in favor of the shorter syntax where the property following "Binding" is the Path, i.e. "Title".

Source: The standard CLR object that contains the data. This object is assigned to the
FrameworkElement DataContext.

RadControls for Silverlight72

© 2011 Telerik Inc.

Mode: The data's direction of travel. This can be OneTime where the data is set one time and is not
updated after that, OneWay where the data flows one way from the CLR object to the Silverlight element
and TwoWay where the source object updates the target element and the target element can also update
the source object.

<UserControl.Resources>
 <local:Category x:Key="Category" Title="Fiction"
 Description="A wide range of fiction from the worlds best authors." />
</UserControl.Resources>

<Grid x:Name="LayoutRoot">
 <TextBox x:Name="tbTitle"
 Text="{Binding Title, Source={StaticResource Category}, Mode=OneTime}"
 HorizontalAlignment="Left" VerticalAlignment="Top" MinWidth="100"
 ></TextBox>
</Grid>

The bound TextBox in the running Silverlight application shows the title of the Category object.

What if you want to bind more than one Category property? The example below shows how you can assign
the DataContext of the element one time and then set the Binding for each property that needs data. This
example binds the Text property to the Category "Title" and also adds an attached ToolTip property and
binds it to the Category "Description".

<UserControl.Resources>
 <local:Category x:Key="Category" Title="Fiction"
 Description="A wide range of fiction from the worlds best authors." />
</UserControl.Resources>

<Grid x:Name="LayoutRoot">
 <TextBox x:Name="tbTitle"
 DataContext="{StaticResource Category}"
 Text="{Binding Title, Mode=OneTime}"
 ToolTipService.ToolTip="{Binding Description, Mode=OneTime}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 MinWidth="100" Margin="20"></TextBox>
</Grid>

The running application now shows that both the Text and ToolTip properties are bound.

Data Binding 73

© 2011 Telerik Inc.

DataContext is available to all children of an element. If we assign the Category object to a StackPanel
containing two TextBox elements, we can set the Binding for each TextBox using the Category as the
source.

<StackPanel DataContext="{StaticResource Category}">
 <TextBox x:Name="tbTitle"
 Text="{Binding Title, Mode=OneTime}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" />
 <TextBox x:Name="tbDescription"
 Text="{Binding Description, Mode=OneTime}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" />
</StackPanel>

The running application below shows that both TextBox elements contain data from the Category that was
assigned to the StackPanel's DataContext.

Binding can also be performed programmatically. The example below creates a new instance of a Category,
creates a new Binding object and finally, calls the SetBinding() method. SetBinding() is a
FrameworkElement method that takes a DependencyProperty and a Binding object. The Binding object is
assigned the Source, Path and Mode, just as in the XAML examples.

Dim category As New Category() With { _
.Title = "Fiction", _
.Description = "A wide range of fiction from the worlds best authors."}
Dim binding As New Binding() With {_
.Source = category, _
.Path = New PropertyPath("Title"), _
.Mode = BindingMode.OneTime}

tbTitle.SetBinding(TextBox.TextProperty, binding)

RadControls for Silverlight74

© 2011 Telerik Inc.

Category category = new Category()
{
 Title = "Fiction",
 Description = "A wide range of fiction from the worlds best authors."
};

Binding binding = new Binding()
{
 Source = category,
 Path = new PropertyPath("Title"),
 Mode = BindingMode.OneTime
};

tbTitle.SetBinding(TextBox.TextProperty, binding);

4.3 Binding Collections

Collection are represented by the ItemsControl class and its descendants. Binding a collection to an
ItemsControl is as simple as assigning the ItemsSource property to some collection and assigning the
DisplayMemberPath to a property of a collection item. The DataContext of each list box item maps to a
member of the bound collection and the DisplayMemberPath to the Binding Path. The example below
creates a list of Categories in XAML, assigns it to a ListBox ItemsSource and sets the "Description"
property of the Category object to be the display member.

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <local:Categories x:Key="Categories">
 <local:Category Title="Fiction"
 Description="A wide range of fiction from the worlds best authors." />
 <local:Category Title="Business and Investing" Description="Timely strategies and advice." />
 <local:Category Title="Cooking, Food and Wine"
 Description="Cook books for all budgets and palates." />
 </local:Categories>
 </Grid.Resources>
 <ListBox ItemsSource="{StaticResource Categories}" DisplayMemberPath="Description" />
</Grid>

The running Silverlight project displays the ListBox populated with category descriptions.

Data Binding 75

© 2011 Telerik Inc.

4.4 Change Notification

How are changes in objects and collections automatically propagated to elements? The "Binding Basics"
section used simple objects with straightforward property accessors and set the Binding Mode to
"OneTime". Implementing the INotifyPropertyChanged interface will allow changes to object properties to
show up instantly in Silverlight elements. A second interface, INotifyCollectionChanged notifies Silverlight
elements about changes to collections. Fortunately, you don't have to implement INotifyCollectionChanged.
Instead, descend from ObservableCollection<T> and the interface is implemented for you.

INotifyPropertyChanged

To allow changes in business object properties to be reflected automatically by Silverlight elements, add a
reference to System.ComponentModel and implement the INotifyPropertyChanged interface.
INotifyPropertyChanged has a single method PropertyChanged(). When setting a property value, you need
to call PropertyChanged if its been assigned and pass the name of the property that's being changed.

RadControls for Silverlight76

© 2011 Telerik Inc.

Public Class Category
 Implements INotifyPropertyChanged
 Private title_Renamed As String
 Public Property Title() As String
 Get
 Return title_Renamed
 End Get

 Set(ByVal value As String)
 If title_Renamed <> value Then
 title_Renamed = value
 OnPropertyChanged("Title")
 End If
 End Set
 End Property

 Private description_Renamed As String
 Public Property Description() As String
 Get
 Return description_Renamed
 End Get

 Set(ByVal value As String)
 If description_Renamed <> value Then
 description_Renamed = value
 OnPropertyChanged("Description")
 End If
 End Set
 End Property

 Public Event PropertyChanged As PropertyChangedEventHandler

 Public Sub OnPropertyChanged(ByVal propertyName As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
 End Sub
End Class

Data Binding 77

© 2011 Telerik Inc.

public class Category: INotifyPropertyChanged
{
 private string title;
 public string Title
 {
 get { return title;}

 set
 {
 if (title != value)
 {
 title = value;
 OnPropertyChanged("Title");
 }
 }
 }

 private string description;
 public string Description
 {
 get {return description;}

 set
 {
 if (description != value)
 {
 description = value;
 OnPropertyChanged("Description");
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 public void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

ObservableCollection

To provide notifications of collection changes, inherit from ObservableCollection<T>. Add a reference to
System.Collections.ObjectModel before using ObservableCollection. The example below adds several
sample Category objects to the collection.

RadControls for Silverlight78

© 2011 Telerik Inc.

Public Class Categories
 Inherits ObservableCollection(Of Category)
 Public Sub New()
 Me.Add(New Category() With { _
.Title = "Fiction", _
.Description = "A wide range of fiction from the worlds best authors."})
 Me.Add(New Category() With {_
.Title = "Business and Investing", _
.Description = "Timely strategies and advice."})
 Me.Add(New Category() With {_
.Title = "Cooking, Food and Wine", _
.Description = "Cook books for all budgets and palates."})
 End Sub
End Class

public class Categories : ObservableCollection<Category>
{
 public Categories()
 {
 this.Add(new Category()
 {
 Title = "Fiction",
 Description = "A wide range of fiction from the worlds best authors."
 });
 this.Add(new Category()
 {
 Title = "Business and Investing",
 Description = "Timely strategies and advice."
 });
 this.Add(new Category()
 {
 Title = "Cooking, Food and Wine",
 Description = "Cook books for all budgets and palates."
 });
 }
}

The example below assigns a Categories collection to the ItemsSource of a ListBox and sets the
DisplayMemberPath to the Category "Description" property. The example also has a Delete button that
removes the top element in the collection so we can see ObservableCollection notification in action.

Data Binding 79

© 2011 Telerik Inc.

<UserControl.Resources>
 <local:Categories x:Key="Categories" />
</UserControl.Resources>

<Grid x:Name="LayoutRoot">
 <ListBox x:Name="lbCategories" ItemsSource="{StaticResource Categories}"
 DisplayMemberPath="Description" HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" />
 <Button x:Name="btnDelete" Content="Delete" Click="btnDelete_Click"></Button>
</Grid>

 When elements are removed from the collection, the ListBox reflects the change.

Updating Data

This next example shows several of the previous techniques together. When the user changes the
description in the text box, then tabs off the text box, the Category business object is updated. Because
Category implements INotifyPropertyChanged, the currently selected list box item displays the matching.
text. Notice the new syntax in the Text Binding expression for the TextBox. It uses a new property
ElementName that points to the list box. The Binding Path points to the SelectedItem property of the list
box. The SelectedItem is actual a Category, so we can drill down to the "Description" property. Also notice
that the Binding Mode is TwoWay, allowing updates made in the Silverlight element to propagate back to
the business object.

<StackPanel DataContext="{StaticResource Categories}">

 <TextBox x:Name="tbDescription"
 Text="{Binding Path=SelectedItem.Description, ElementName=lbCategories, Mode=TwoWay}"
 HorizontalAlignment="Left" VerticalAlignment="Top" Margin="10" />

 <ListBox x:Name="lbCategories" ItemsSource="{Binding}"
 DisplayMemberPath="Description" HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" />

 <Button x:Name="btnDelete" Content="Delete" Click="btnDelete_Click" HorizontalAlignment="Left"
 VerticalAlignment="Top" Margin="10"></Button>
</StackPanel>

When the user selects items in the list box, the TextBox displays the corresponding Category Description.
When the TextBox Text is changed by the user and they tab off, the text is updated in the list box.

RadControls for Silverlight80

© 2011 Telerik Inc.

4.5 Binding in Templates

4.5.1 DataTemplate

Using templates you can bind your data but arrange the visual layout in any configuration that suits your
purpose. You're not limited to just using the DisplayMemberPath because you can aggregate any number of
elements in the template and bind each of them. The ListBox ItemTemplate is a DataTemplate type. Inside
the ListBox element tag use the syntax "ListBox.ItemTemplate", i.e. "objectName.propertyName". Inside
that element place the "<DataTemplate>". The DataTemplate can contain only a single item, but you can
make that a StackPanel, Grid or other container item. From there you can populate the container with any
elements that work for your requirements.

<UserControl.Resources>
 <local:Categories x:Key="Categories" />
</UserControl.Resources>

<Grid x:Name="LayoutRoot">
 <ListBox ItemsSource="{StaticResource Categories}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel
 ToolTipService.ToolTip="{Binding Description}" Margin="10" Orientation="Horizontal">
 <Image Source="journal.png" Width="48" Height="48" Margin="5" />
 <TextBlock Text="Title: " VerticalAlignment="Center" />
 <TextBlock Text="{Binding Title}" VerticalAlignment="Center" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

In the running Silverlight application we can see that using templates lets you achieve a free form layout
with data bound elements.

Data Binding 81

© 2011 Telerik Inc.

4.5.2 HierarchicalDataTemplate

HierarchicalDataTemplates allow multiple layers of hierarchical data to be
displayed. RadTreeView, RadPanelBar and RadMenu for example, all use
HierarchicalDataTemplate. The control's ItemTemplate points to a
HierarchicalDataTemplate. Each HierarchicalDataTemplate ItemTemplate
attribute points up to another HierarchicalDataTemplate except the last template
that has no children. This last template is a DataTemplate. Take a look at the
TreeView example below that represents a corporate hierarchy with President/
Vice President, Director and Manager.

Each level of the hierarchy has its own template. The RadTreeView ItemTemplate points at the
"PresidentTemplate", the "PresidentTemplate" ItemTemplate points to the "VPTemplate" and so on until the
last "ManagerTemplate".

RadControls for Silverlight82

© 2011 Telerik Inc.

<UserControl.Resources>. . .
 <DataTemplate x:Key="ManagerTemplate">. . . content
 </DataTemplate>
 <telerik:HierarchicalDataTemplate x:Key="DirectorTemplate"
 ItemTemplate="{StaticResource ManagerTemplate}">. . . content
 </telerik:HierarchicalDataTemplate>
 <telerik:HierarchicalDataTemplate x:Key="VPTemplate"
 ItemTemplate="{StaticResource DirectorTemplate}">. . . content
 </telerik:HierarchicalDataTemplate>
 <telerik:HierarchicalDataTemplate x:Key="PresidentTemplate"
 ItemTemplate="{StaticResource VPTemplate}">. . . content
 </telerik:HierarchicalDataTemplate>
</UserControl.Resources>. . .
<telerik:RadTreeView x:Name="tvMain" ItemTemplate="{StaticResource PresidentTemplate}">
</telerik:RadTreeView>

Here's another example that shows a two level hierarchy with Categories/Products. Look at the relationship
of the templates in the XAML below. The RadMenu ItemTemplate points to a HierarchicalDataTemplate
"CategoryTemplate". "CategoryTemplate" also has an ItemTemplate that points to a DataTemplate called
"ProductTemplate". There can be additional levels of templates. The rule is to use a
HierarchicalDataTemplate where there are more child items, then use a standard DataTemplate when no
more child levels remain.

Data Binding 83

© 2011 Telerik Inc.

Let's take another look at that same XAML to see how the data is being hooked up. The ItemsSource
attribute works in concert with the ItemTemplate. In the RadMenu XAML you can see that the
"CategoryTemplate" is supplied by data from the "Categories" object. In the "CategoryTemplate", the
"ProductTemplate" is supplied by data from the "Products" object.

See the "Menu Controls" and "TreeView" chapters "Binding" section for full walk throughs of these
examples.

4.6 Data Sources

4.6.1 XML

If you need to bind to an XML file, consider using a combination of the XDocument class to read and parse
the XML, and LINQ to transform the parsed XML into a collection suitable for binding.

XDocument is found in the System.XML.Linq namespace and has a static Load() method that reads an
entire XML file and return an XDocument. Or you can use the static Parse() method that takes a string and
also returns an XDocument. Using the same Category data from previous examples, we can create XML
with the same data and structure.

<?xml version="1.0" encoding="utf-8" ?>
<Categories>
 <Category Title="Fiction=" Description="A wide range of fiction from the worlds best authors." />
 <Category Title="Business and Investing" Description="Timely strategies and advice." />
 <Category Title="Cooking, Food and Wine=" Description="Cook books for all budgets and palates." />
</Categories>

RadControls for Silverlight84

© 2011 Telerik Inc.

This XML can be copied to a "Categories.xml" file and added to the project. In the constructor of the
UserControl, call the XDocument.Load() method and pass the path of the file, i.e. "Categories.xml".
XDocument has Element() and Elements() methods that return XElement and collections of XElement,
respectively. The example below first returns a collection of "Category" elements. A LINQ statement is used
to drill down to each Category "Title" and "Description" attribute and create new Category objects. This
collection of categories is assigned to the ItemsSource property and the DisplayMemberPath points to
"Description".

Imports System.Linq
Imports System.Windows.Controls
Imports System.Xml.Linq

Namespace _06_XML
 Partial Public Class MainPage
 Inherits UserControl
 Public Sub New()
 InitializeComponent()
 Dim document As XDocument = XDocument.Load("Categories.xml")
 Dim categoryElements = document.Element("Categories").Elements("Category")
 Dim categories = _
 From c In categoryElements _
 Select New Category()
 c.Attribute("Title").Value, Description = c.Attribute("Description").Value
 Title = c.Attribute("Title").Value, Description
 lbCategories.ItemsSource = categories
 lbCategories.DisplayMemberPath = "Description"
 End Sub
 End Class
End Namespace

Data Binding 85

© 2011 Telerik Inc.

using System.Linq;
using System.Windows.Controls;
using System.Xml.Linq;

namespace _06_XML
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 XDocument document = XDocument.Load("Categories.xml");
 var categoryElements = document.Element("Categories").Elements("Category");
 var categories = from c in categoryElements
 select new Category()
 {
 Title = c.Attribute("Title").Value,
 Description = c.Attribute("Description").Value
 };
 lbCategories.ItemsSource = categories;
 lbCategories.DisplayMemberPath = "Description";
 }
 }
}

The running Silverlight application results in the same display as when we bound the collection of Category
through other means.

RadControls for Silverlight86

© 2011 Telerik Inc.

4.6.2 REST

You can find a number of RESTful web services from popular web sites like YouTube, Flicker and Twitter.
These services are especially attractive because you don't need to deal with SOAP protocol, but instead,
you can simply use a WebClient object to download a resource from a standard URL. The returned string is
likely to be in XML, RSS or ATOM format. RSS and ATOM are XML variants and so the XDocument and
LINQ techniques explained in the previous XML section work well with REST service results.

For numerous example walk through using REST services, see the Binding sections of the "GridView",
"Docking", "ComboBox", "CoverFlow", "MediaPlayer" and "Charting" chapters.

The following explains the basic techniques of using REST services and a discussion of issues involved with
downloading images in Silverlight.

Using the WebClient

The backbone of REST binding projects is the WebClient object from the Silverlight System.Net
namespace. It has two key methods, DownloadStringAsync() and OpenReadAsync().
DownloadStringAsync() is used to bring down the initial XML document from a service and is paired with a
DownloadStringCompleted event handler. OpenReadAsync() can be used to download images or other
binary data and is paired with a OpenReadCompleted event handler. Here's a short example of using the
WebClient DownloadStringAsync() method that searches Twitter:

Dim webClient As New WebClient()
AddHandler webClient.DownloadStringCompleted, _
 AddressOf client_DownloadStringCompleted

If (Not webClient.IsBusy) Then
 webClient.DownloadStringAsync(_
New Uri("http://search.twitter.com/search.atom?q=telerik"))
End If

WebClient webClient = new WebClient();
webClient.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(client_DownloadStringCompleted);

if (!webClient.IsBusy)
 webClient.DownloadStringAsync(
 new Uri("http://search.twitter.com/search.atom?q=telerik"));

Data Binding 87

© 2011 Telerik Inc.

Inside the DownloadStringCompleted event handler you have access to the argument's Result property.
Result contains XML that looks something like this abbreviated version:

<feed
 <entry>
 <id>tag:search.twitter.com,2005:4175721855</id>
 <published>2009-09-22T16:37:21Z</published>
 <link type="text/html"
 href="http://twitter.com/timheuer/statuses/4175721855"
 rel="alternate" />
 <title>RT @nikiatanasov: Telerik announces new Book control for
 Silverlight/WPF for Q3 http://tinyurl.com/maguwd</title>
 <content type="html">RT
 @nikiatanasov: Telerik announces new Book
 control for Silverlight/WPF for Q3 <a href="http://tinyurl.com/maguwd"
 >http://tinyurl.com/maguwd</content>
 <updated>2009-09-22T16:37:21Z</updated>
 <link type="image/png"
 href="http://a1.twimg.com/profile_images/426936590/tim-twitter_normal.png"
 rel="image" />
 <twitter:source><a href="http://www.seesmic.com/"
 rel="nofollow">Seesmic</twitter:source>
 <twitter:lang>en</twitter:lang>
 <author>
 <name>timheuer (Tim Heuer)</name>
 <uri>http://twitter.com/timheuer</uri>
 </author>
 </entry>
</feed>

You can use the static XDocument Parse() method and pass the result XML to create an XDocument
instance. LINQ works nicely against XDocument so that you can select data from the document and
create a collection suitable for binding. The example below is primarily conceptual, so don't expect to
copy and paste it.

Private Sub client_DownloadStringCompleted(ByVal sender As Object, _
 ByVal e As DownloadStringCompletedEventArgs)
 Dim xDocument As XDocument = XDocument.Parse(e.Result)

 gvMain.ItemsSource = _
 From item In xDocument.Descendants("entry") _
 Select
End Sub

RadControls for Silverlight88

© 2011 Telerik Inc.

void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument xDocument = XDocument.Parse(e.Result);

 gvMain.ItemsSource = from item in xDocument.Descendants("entry")
 select;
}

The WebClient OpenReadAsync() method and OpenReadCompleted event have a similar pattern to their
DownloadStringAsync siblings. In this case we take advantage of a second parameter called "userToken"
that can be any object you care to send along. We can send a reference to an Image object that's already
on the page.

Dim webClient As New WebClient()
AddHandler webClient.OpenReadCompleted, _
AddressOf webClient_OpenReadCompleted
webClient.OpenReadAsync(New Uri(imageUrl), image)

WebClient webClient = new WebClient();
webClient.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(webClient_OpenReadCompleted);
webClient.OpenReadAsync(
 new Uri(imageUrl), image);

Data Binding 89

© 2011 Telerik Inc.

The Result parameter for the OpenReadCompleted event handler is a stream that contains our Image data.
Create a BitmapImage and set its source to be the Result stream. Finally, assign the BitmapImage as the
source of the Image control on the page.

Private Sub webClient_OpenReadCompleted(_
ByVal sender As Object, ByVal e As OpenReadCompletedEventArgs)
 Dim bitmap As New BitmapImage()
 Try
 bitmap.SetSource(e.Result)
 TryCast(e.UserState, Image).Source = bitmap
 Catch ex As System.Reflection.TargetInvocationException
 If Not(TypeOf ex.InnerException Is System.Security.SecurityException) Then
 MessageBox.Show(ex.Message)
 Throw
 End If
 End Try
End Sub

void webClient_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 BitmapImage bitmap = new BitmapImage();
 try
 {
 bitmap.SetSource(e.Result);
 (e.UserState as Image).Source = bitmap;
 }
 catch (System.Reflection.TargetInvocationException ex)
 {
 if (!(ex.InnerException is System.Security.SecurityException))
 {
 MessageBox.Show(ex.Message);
 throw;
 }
 }
}

Image Issues

The image downloading code above is actually incomplete. There are two common problems that occur
when grabbing images from uncontrolled sources:

As of this writing, Silverlight supports only ".png" and ".jpg" images. For the Twitter service, you can
check the file extension when you parse the initial document. If the image is not a supported extension
you can either skip loading the image altogether or load a default image of some sort.

RadControls for Silverlight90

© 2011 Telerik Inc.

Silverlight restricts "Cross Domain" access, i.e., where the image data is retrieved from an internet
domain that is different from the requesting application. This may be allowed if the server where the
image resides has a file called ClientAccessPolicy.xml and is configured to permit the download. In
sites that permit access to both Silverlight and Flash, the server may have a "Crossdomain.xml" file
instead (as is currently the case with Twitter). System.Reflection.TargetInvocationException is
raised when one of these files doesn't exist or is not configured to allow the download. You should test
that the inner exception is System.Security.SecurityException.

Data Binding 91

© 2011 Telerik Inc.

4.6.3 RIA

The marketing intro raises the key points:

"Microsoft WCF RIA Services simplifies the traditional n-tier application pattern by bringing together the
ASP.NET and Silverlight platforms. RIA Services provides a pattern to write application logic that runs
on the mid-tier and controls access to data for queries, changes and custom operations. It also
provides end-to-end support for common tasks such as data validation, authentication and roles by
integrating with Silverlight components on the client and ASP.NET on the mid-tier."

The very short story is that WCF RIA Services allows you can write code describing your entities once and
to share that data with the client. You first create a "domain service" in the ASP.NET application that is
flagged to "EnableClientAccess". You describe your entities there (typically using LINQ to Entities, but this
is not required). The Silverlight client application must be in the same solution with the service and linked to
the service. Visual Studio takes care of generating client proxy code. The client code is termed the
"Context" object.

A typical WCF RIA Services solution in the Solution Explorer might
look like this screenshot. The top-most project,
"WcfRiaServicesProject" is a Silverlight application. The "Show All
Files" button is pressed and we can see a folder called
"Generated_Code" that contains the automatically created proxy
class. The " WcfRiaServicesProject.Web" project is an ASP.NET web
application that contains a domain service.

For more high-level information on RIA Services, read the blog "What
is .NET RIA Services?" at http://blogs.msdn.com/brada/
archive/2009/03/19/what-is-net-ria-services.aspx by Brad Abrams.

The following walk through barely scratches the surface with RIA
Services, but will make you familiar with the basic process of defining
and consuming a service. The example service consumes the
Northwind "Employees" table using LINQ to Entities. The Silverlight
client instantiates a proxy client, retrieves a list of entities and binds
them to a RadGridView.

http://blogs.msdn.com/brada/archive/2009/03/19/what-is-net-ria-services.aspx
http://blogs.msdn.com/brada/archive/2009/03/19/what-is-net-ria-services.aspx

RadControls for Silverlight92

© 2011 Telerik Inc.

4.6.3.1 Project Setup

1) In Visual Studio, create a new Silverlight Application. This will display the New Silverlight Application
dialog. Check the "Enable .NET RIA Services" option. Leave the other defaults and click OK to close the
dialog and create the projects. The RIA service layer will be created in the ASP.NET host application, in
this case, the WcfRiaServicesProject.Web project.

Data Binding 93

© 2011 Telerik Inc.

2) Take a look at the Solution Explorer and notice that you now have two projects, the ASP.NET host
project ("WcfRiaServicesProject.Web in the screenshot below) that contains the RIA service and the
Silverlight client application ("WcfRiaServicesProject").

RadControls for Silverlight94

© 2011 Telerik Inc.

4.6.3.2 Building the RIA Service

1) Add a "ADO.NET Entity Data Model" item to the ASP.NET project. Name the data model "Northwind.
edmx" and click the Add button. This will display the Entity Data Model Wizard dialog.

2) In the first page of "Entity Data Model Wizard", select the "Generate from Database" icon and click the
Next button.

3) Create a connection to the Northwind database file that ships with RadControls for Silverlight.

a) In the "Choose your Data Connection" page of the wizard, click the New Connection button. This will
display the Connection Properties dialog.

b) Click the Change button to show the "Change Data Source" dialog, select the "Microsoft SQL Server
Database File" option and click the OK button to return to the "Change Data Source" dialog.

c) Click the Browse button, locate the file "Northwind.mdf" file in the RadControls for Silverlight
installation directory under \Demos\DataSources.

d) Click OK to create the connection and return to the "Entity Data Model Wizard" "Choose Your Data
Connection" page.

Data Binding 95

© 2011 Telerik Inc.

4) In the "Choose Your Data Connection" page of the wizard, enter "NorthwindEntities" in the "Save entity
connection settings in Web.Config" text box and click the Next button.

5) In the "Choose Your Database Objects" page of the wizard, expand the "Tables" node in the tree view
and select the "Employees" table check box.

RadControls for Silverlight96

© 2011 Telerik Inc.

6) Click the Finish button to create the data model.

7) Build the ASP.NET project. This step is important: the following step where you create the Domain
Service Class will not see the entity data model information without building the project.

8) Add a "Domain Service Class" item to your project. Name it "NorthwindService" and click the Add button
to create the service and close the dialog. This step will display the "Add New Domain Service Class"
dialog.

Data Binding 97

© 2011 Telerik Inc.

RadControls for Silverlight98

© 2011 Telerik Inc.

9) In the "Add New Domain Service Class" dialog, name the Domain Service Class "NorthwindService",
make sure that the "Enable client access" option is checked (this allows the client proxy code to be
generated), select "NorthwindEntities" from the drop down list of available context objects and check the
"Employees" entity check box. Click the OK button to create the domain service class and close the
dialog.

10)Build the project.

11)Review the generated NorthwindService code. Notice that a GetEmployees() (along with Insert, Update,
and Delete, since we enabled editing) method has been created. that returns an IQueryable<> of
Employees.

Data Binding 99

© 2011 Telerik Inc.

4.6.3.3 Building the RIA Client

1) In the Solution Explorer, open the Silverlight client application node.

2) In the Solution Explorer, right-click the References node and select Add References... from the context
menu. Add references to these assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Data

c) Telerik.Windows.Controls.GridView

d) Telerik.Windows.Controls.Input

3) Open "MainPage.xaml" for editing.

4) Drag a RadGridView from the Toolbox into the main "LayoutRoot" grid element of the page. Set the "x:
Name" attribute to "gvMain" so that we can refer to it later in code.

5) Open "MainPage.xaml.cs" for editing.

6) Add a namespace reference to the ASP.NET service project "Imports" (VB) or "using" (C#) portion of
code.

7) In the constructor for the UserControl, get the data from the domain service by way of the context object
and bind it to the grid view using the code below:

a) Create the "context" object (the generated client counterpart to the domain service).

b) Assign the context "Employees" property to the grid view ItemsSource property.

c) Call the context object Load() method and pass the context "GetEmployeesQuery()" method.

Public Sub New()
 InitializeComponent()

 Dim context As New NorthwindContext()
 gvMain.ItemsSource = context.Employees
 context.Load(context.GetEmployeesQuery())
End Sub

public MainPage()
{
 InitializeComponent();

 NorthwindContext context = new NorthwindContext();
 gvMain.ItemsSource = context.Employees;
 context.Load(context.GetEmployeesQuery());
}

RadControls for Silverlight100

© 2011 Telerik Inc.

 Notes

If you place your cursor on the Load() method and press F12 to see its definition, the Load()
method is of type LoadOperation<TEntity> and represents an asynchronous load operation. You
can get the return value from the Load() call and use it to attach a Completed event handler.
From there you can respond to errors or fine tune the data before assigning to the grid. Here's an
example that checks for the Error exception object and uses LINQ to only show employees with
first names starting with "A".

Public Sub New()
 InitializeComponent()
 Dim context As New NorthwindContext()
 Dim operation As LoadOperation = context.Load(context.GetEmployeesQuery())
 AddHandler operation.Completed, AddressOf operation_Completed
End Sub

Private Sub operation_Completed(ByVal sender As Object, ByVal e As EventArgs)
 Dim loadOperation As LoadOperation = TryCast(sender, LoadOperation)
 If loadOperation.Error Is Nothing Then
 gvMain.ItemsSource = _
 From employee As Employees In loadOperation.Entities _
 Where employee.FirstName.StartsWith("A") _
 Select employee
 End If
End Sub

public MainPage()
{
 InitializeComponent();
 NorthwindContext context = new NorthwindContext();
 LoadOperation operation = context.Load(context.GetEmployeesQuery());
 operation.Completed += new EventHandler(operation_Completed);
}

void operation_Completed(object sender, EventArgs e)
{
 LoadOperation loadOperation = sender as LoadOperation;
 if (loadOperation.Error == null)
 {
 gvMain.ItemsSource = from Employees employee in loadOperation.Entities
 where employee.FirstName.StartsWith("A")
 select employee;
 }
}

Run The Application

Data Binding 101

© 2011 Telerik Inc.

Press F5 to run the application. The web page should look something like the screenshot below.

4.6.4 WCF

Windows Communication Foundation (WCF) is an industrial strength infrastructure for moving data around
on the network. WCF separates the communication plumbing from the code that actually works with the
data. Silverlight applications can call WCF services provided we include a few tweaks that make WCF and
Silverlight happy with our security arrangements.

If the WCF service resides in a different domain than the client, i.e. a different port number for example, the
call is considered to be cross domain. To provide "cross domain access" to resources from a Silverlight
application, you must include a properly configured "ClientAccessPolicy.xml" file in the root where the
service lives. ClientAccessPolicy.xml defines the resources that can be retrieved and where they can be
retrieved from. The walk through following will show you how to do this using a generic ClientAccessPolicy.
xml that allows all traffic. You can "batten down the hatches" to restrict traffic later by making the policy file
entries more specific.

See the articles "Network Security Access Restrictions in Silverlight" (http://msdn.microsoft.com/en-us/
library/cc645032(VS.95).aspx and Http Communication with Silverlight (http://msdn.microsoft.com/en-us/
library/cc838250(VS.95).aspx) for more information.

The service for this walk through will bring back a simple list of categories. The actual logic or data access
in the service is not critical. In the background you could be using a SQL command, creating objects on the
fly, using Entities, WebClient, reading XML files, reading from isolated storage or any combination. This all
takes place in a server environment, so you have a lot of latitude.

http://msdn.microsoft.com/en-us/library/cc645032(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc645032(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc838250(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc838250(VS.95).aspx

RadControls for Silverlight102

© 2011 Telerik Inc.

4.6.4.1 Building the WCF Service

1) Create a new ASP.NET Web Application project. This application will host the WCF service.

2) In the Solution Explorer, right-click the web application project and select Add > New Item... from the
context menu.

3) Select the "Silverlight-enabled WCF Service" template, name it "CategoriesService.svc" and click the
Add button to create the service and close the dialog.

Data Binding 103

© 2011 Telerik Inc.

 Gotcha!

The Silverlight-enabled WCF Service template type is available for Visual Studio, SP1. Be aware
that it's not a project type, but rather a new item type that you add to an existing project, i.e. a
web application. If you have Visual Studio SP1, are adding an item to an existing ASP.NET Web
Application project and still don't see the "Silverlight-enabled WCF Service" template type, you
may have an issue with the path that defines the template location.

Using the Visual Studio menu, select the Tools > Options item and navigate to "Projects and
Solutions" in the tree view. Locate the "User item templates location:" entry on the right and
verify that it points to this path:

\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\ItemTemplates\Web\CSharp\1033

The screenshot below shows the options dialog with the default User Item Templates location
filled in.

The path should contain the template file "SLWcfService.zip". If
you have changed your "User Item Template Location" path to
some custom location, then just copy "SLWcfService.zip" to the
new location.

RadControls for Silverlight104

© 2011 Telerik Inc.

4) Add a new class file "Category.cs" and replace the class with the code below. The code defines a
simple Category class and a generic list of Category with sample categories defined in the constructor.

Public Class Categories
 Inherits List(Of Category)
 Public Sub New()
 Me.Add(New Category() With { _
.Title = "Fiction", _
.Description = "A wide range of fiction from the worlds best authors."})
 Me.Add(New Category() With { _
.Title = "Business and Investing", _
 .Description = "Timely strategies and advice."})
 Me.Add(New Category() With { _
.Title = "Cooking, Food and Wine", _
.Description = "Cook books for all budgets and palates."})
 End Sub
End Class

Public Class Category
 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
End Class

Data Binding 105

© 2011 Telerik Inc.

public class Categories : List<Category>
{
 public Categories()
 {
 this.Add(new Category()
 {
 Title = "Fiction",
 Description = "A wide range of fiction from the worlds best authors."
 });
 this.Add(new Category()
 {
 Title = "Business and Investing",
 Description = "Timely strategies and advice."
 });
 this.Add(new Category()
 {
 Title = "Cooking, Food and Wine",
 Description = "Cook books for all budgets and palates."
 });
 }
}

public class Category
{
 public string Title { get; set; }
 public string Description { get; set; }
}

5) Replace the service DoWork() method with a new GetCategories() method that returns a "Categories"
collection.

<OperationContract> _
Public Function GetCategories() As Categories
 Return New Categories()
End Function

[OperationContract]
public Categories GetCategories()
{
 return new Categories();
}

RadControls for Silverlight106

© 2011 Telerik Inc.

6) In the Solution Explorer, right-click the project and select Add > New Item... from the context menu.
Name the file "ClientAccessPolicy.xml", then click the Add button to create the file and close the
dialog.

7) Replace the contents of "ClientAccessPolicy.xml" with the following XML. This XML allows requests
from all domains to get resources from all locations on the server.

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

8) In the Solution Explorer, right-click the "ClientAccessPolicy.xml" file and select "Properties" from the
context menu. Set the "Copy to Output Directory" property to "Copy if Newer". This step will make
sure that policy file ends up in the \bin directory, i.e. the root directory for the service. When Silverlight
tries to access the service, it will find the policy file there and can continue interacting with the service.

Data Binding 107

© 2011 Telerik Inc.

4.6.4.2 Building the WCF Client

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

XAML Editing

1) Drag a RadGridView from the Toolbox to a point between the main "LayoutRoot" grid. Set the "x:Name"
attribute to "gvMain" so we can reference it later in code.

Reference The WCF Service

1) In the Solution Explorer, right-click the References node and select Add Service Reference... This
will display the "Add Service Reference" dialog.

RadControls for Silverlight108

© 2011 Telerik Inc.

2) In the "Add Service Reference" dialog, click the Discover button. The CategoriesService.svc server will
display. Enter "CategoriesServiceReference" as the Namespace and click OK to create the client
proxy.

Code Behind

1) Add a namespace reference for the proxy in the "Imports" (VB) or "using" (C#) section of code. This will
be the name of your project + "." + "CategoriesServiceReference", i.e. "MyProject.
CategoriesServiceReference".

2) Add the code below to the page constructor to create the proxy and call its methods. . Be sure that
you leave the call to InitializeComponent().

The client proxy methods are asynchronous. The proxy will have a "Completed" event, i.e.
"GetCategoriesCompleted" and an "Async" method, i.e. "GetCategoriesAsync()". Create an instance of
the client proxy object, hook up the "GetcategoriesCompleted" event, then call the
"GetCategoriesAsync()" method.

Data Binding 109

© 2011 Telerik Inc.

Public Sub New()
 InitializeComponent()

 Dim client As New CategoriesServiceClient()
 AddHandler client.GetCategoriesCompleted, AddressOf client_GetCategoriesCompleted

 client.GetCategoriesAsync()
End Sub

public MainPage()
{
 InitializeComponent();

 CategoriesServiceClient client = new CategoriesServiceClient();
 client.GetCategoriesCompleted +=
 new EventHandler<GetCategoriesCompletedEventArgs>(
 client_GetCategoriesCompleted);

 client.GetCategoriesAsync();
}

3) Handle the GetCategoriesCompleted event. The result of the method is passed back in e.Result.
Assign the result to the grid view ItemsSource property. Note: The result, even though it left the
service as a List<Customer>, ends up in Silverlight as ObservableCollection<Customer>.

Private Sub client_GetCategoriesCompleted(_
 ByVal sender As Object, ByVal e As GetCategoriesCompletedEventArgs)
 gvMain.ItemsSource = e.Result
End Sub

void client_GetCategoriesCompleted(object sender, GetCategoriesCompletedEventArgs e)
{
 gvMain.ItemsSource = e.Result;
}

RadControls for Silverlight110

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) All data with all columns from the Categories collection should show up in the grid.

2) Test the application without the ClientAccessPolicy.xml present. Running the Silverlight client should
display an error "...due to attempting to access a service in a cross-domain way without a proper cross-
comain policy in place...".

You may not get the error to fire right away. Try renaming or removing the ClientAccessPolicy.xml
altogether. Make sure the service is stopped and rebuild it. Then, on the client, right-click the service
reference node in the Solution Explorer and choose "Update Service Reference" from the context menu.
Its a good idea to get familiar with how these errors occur while you have control in this lab setting.

4.6.5 ADO.NET Data Services

ADO.NET Data Services expose data models as a set of REST Uri's that map to HTTP verbs POST
(Create), GET (Read), PUT (Update) and DELETE (Delete). The following walk through demonstrates
creating an ADO.NET Entity Data Model of the Northwind database. The example returns a simple address
table and displays it in a RadGridView control.

Data Binding 111

© 2011 Telerik Inc.

4.6.5.1 Building the Service

1) Create a new ASP.NET Web Application. Give it a unique name, click the OK button to create it and
close the dialog.

2) Add a "ADO.NET Entity Data Model" item to the ASP.NET project. Name the data model "Northwind.
edmx" and click the Add button. This will display the Entity Data Model Wizard dialog.

RadControls for Silverlight112

© 2011 Telerik Inc.

3) In the Entity Data Model Wizard dialog, select "Generate from database" and click the Next button to
continue.

4) Create a connection to the Northwind database file that ships with RadControls for Silverlight.

a) In the "Choose your Data Connection" page of the wizard, click the New Connection button. This will
display the "Connection Properties" dialog.

b) Click the Change button to show the "Change Data Source" dialog, select the "Microsoft SQL Server
Database File" option and click the OK button to return to the "Change Data Source" dialog.

c) Click the Browse button, locate the file "Northwind.mdf" file in the RadControls for Silverlight
installation directory under \Demos\DataSources.

Data Binding 113

© 2011 Telerik Inc.

d) Click OK to create the connection and return to the "Entity Data Model Wizard" "Choose Your Data
Connection" page.

5) In the "Choose Your Database Objects" page of the wizard, click the "AddressBook" table. Click the
Finish button to close the dialog.

RadControls for Silverlight114

© 2011 Telerik Inc.

6) Build the project.

Create Service

1) From the Solution Explorer, right-click the project and select Add > New Item... from the context
menu. Select the ADO.NET Data Service template, name it "NorthwindDataService.svc" and click the
Add button to create the service. This step will open "NorthwindDataService.svc.cs" for editing.

2) Change the NorthwindDataService class to the match the code below. "NorthwindDataService.svc.cs"
has a "TODO" comment marked in the source to insert a type into the DataService<T> class
declaration and another reminder to set access rules in the InitializeService() method. .

Public Class NorthwindDataService
 Inherits DataService(Of NorthwindEntities)
 Public Shared Sub InitializeService(ByVal config As IDataServiceConfiguration)
 config.SetEntitySetAccessRule("*", EntitySetRights.All)
 End Sub
End Class

public class NorthwindDataService : DataService<NorthwindEntities>
{
 public static void InitializeService(IDataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 }
}

Data Binding 115

© 2011 Telerik Inc.

3) Press F5 to run the application.

4) The browser shows that the "AddressBook" collection is available.

 Notes

The XML/ATOM above may display as a news feed. You can shut this off temporarily in Internet
Explorer from Tools > Internet Options > Content > Settings and unselecting the "Turn on feed
reading view" checkbox. Reopen the browser to display the XML.

5) Add "AddressBook" to the browser url to see the data:

RadControls for Silverlight116

© 2011 Telerik Inc.

4.6.5.2 Building the Client

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked. Important note: Select the data service ASP.NET application as the
host. Currently the client and service must have the same domain and using the service application as
the host accomplishes this. Click OK to close the dialog and create the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

Data Binding 117

© 2011 Telerik Inc.

XAML Editing

1) Drag a RadGridView from the Toolbox to a point between the main "LayoutRoot" grid. Replace the
RadGridView tag with the XAML below.

The XAML will define the name of the grid as "gvAddressBook" so we can refer to it later in code
behind. The columns are configured to fill the available width and column generation is turned off.
Instead, "FirstName", "LastName" and "Phone" columns of the table are defined.

<telerik:RadGridView x:Name="gvAddressBook"
 ColumnWidth="SizeToHeader" AutoGenerateColumns="False">
 <telerik:RadGridView.Columns>
 <telerik:GridViewDataColumn Header="First"
 DataMemberPath="FirstName" />
 <telerik:GridViewDataColumn Header="Last"
 DataMemberPath="LastName" />
 <telerik:GridViewDataColumn Header="Phone"
 DataMemberPath="Phone" />
 </telerik:RadGridView.Columns>
</telerik:RadGridView>

Reference The ADO.NET Data Service

1) In the Solution Explorer, right-click the References node and select Add Service Reference... This
will display the "Add Service Reference" dialog.

RadControls for Silverlight118

© 2011 Telerik Inc.

2) In the "Add Service Reference" dialog, click the Discover button. The NorthwindDataService.svc server
will display. Expand the node and select "AddressBook". Enter "NorthwindServiceReference" as the
Namespace and click OK to create the client proxy.

 Gotcha!

An exception that contains the phrase "Pattern constraint failed", can be caused by a leading
underscore "_" character in the project name. Also know that projects beginning with numeric
characters will also be automatically modified to include a leading underscore in the namespace.
The short story is to avoid leading underscores because the parser will generate an exception.

Code Behind

1) Add a namespace reference for the proxy in the "Imports" (VB) or "using" (C#) section of code. This will
be the name of your project + "." + "NorthwindServiceReference", i.e. "MyProject.
NorthwindServiceReference".

Data Binding 119

© 2011 Telerik Inc.

2) Add the code below to the page constructor to query the data service. Be sure that you leave the call to
InitializeComponent().

First create a Uri that points at the service. You can use the HtmlPage.Document.DocumentUri to get
the base address and then add the name of the service. Create an instance of NorthwindEntities,
passing the Uri in the constructor. The NorthwindEntities instance will be our "context". The context
contains "AddressBook" in the form of a DataServiceQuery that can be executed asynchronously to
return data. Call the DataServiceQuery BeginExecute() method and pass the name of a handler (to be
defined next) and the DataServiceQuery instance itself.

Public Sub New()
 InitializeComponent()

 Dim uri As New Uri(_
System.Windows.Browser.HtmlPage.Document.DocumentUri, "NorthwindDataService.svc")
 Dim context As New NorthwindEntities(uri)

 Dim query As DataServiceQuery(Of AddressBook) = context.AddressBook
 query.BeginExecute(Query_Completed, query)
End Sub

public MainPage()
{
 InitializeComponent();

 Uri uri = new Uri(System.Windows.Browser.HtmlPage.Document.DocumentUri,
 "NorthwindDataService.svc");
 NorthwindEntities context = new NorthwindEntities(uri);

 DataServiceQuery<AddressBook> query = context.AddressBook;
 query.BeginExecute(Query_Completed, query);
}

 Gotcha!

Attempting to simply access the data, e.g.

gvAddressBook.ItemsSource = context.AddressBook.ToList();

...will generate a NotSupportedException with message "Specified method is not supported."

3) Handle the DataServiceQuery execution result event. The signature of the event handler expects an
IAsyncResult "result" parameter. The AsyncState property of the result is the DataServiceQuery
instance you passed into BeginExecute(). Cast the AsyncState back to its original DataServiceQuery
type so that you can call the EndExecute() method, passing the IAsyncResult as the parameter.
EndExecute() returns an IEnumerable of AddressBook. Call the ToList() function on the collection and
assign it to the ItemsSource of the grid.

RadControls for Silverlight120

© 2011 Telerik Inc.

Private Sub Query_Completed(ByVal result As IAsyncResult)
 Dim query = TryCast(result.AsyncState, DataServiceQuery(Of AddressBook))
 Dim addressBook As IEnumerable(Of AddressBook) = query.EndExecute(result)
 gvAddressBook.ItemsSource = addressBook.ToList()
End Sub

private void Query_Completed(IAsyncResult result)
{
 var query = result.AsyncState as DataServiceQuery<AddressBook>;
 IEnumerable<AddressBook> addressBook =
 query.EndExecute(result);
 gvAddressBook.ItemsSource = addressBook.ToList();
}

 Gotcha!

If you don't include the call ToList(), you may get the error "Only a single enumeration is
supported by this IEnumerable". A Microsoft engineer's take on this from their forums:

"In the current implementation, the result from a query can only be enumerated once. This is
because the underlying feed is not saved locally, and once we have gone through it once, we
save all entities in the context . . ."

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Data Binding 121

© 2011 Telerik Inc.

4.6.6 OpenAccess

OpenAccess is a Object Relational Mapping technology from Telerik. OpenAccess is used to generate
objects that map to database tables and have data access tasks taken care of for you automatically. We
can use OpenAccess against databases such as SQL Server or together with other sources of data such
as REST, WCF and ADO.NET Data Services. These latter services can be code intensive and prone to error
if coded by hand. At the time of this writing, Telerik Labs has introduced the Data Services Wizard to handle
creating OpenAccess infrastructure for REST, WCF and ADO.NET Data Services. At this time, the
download is located at:

http://www.telerik.com/community/labs/telerik-data-services-wizard.aspx

This walk through requires OpenAccess to be installed.

http://www.telerik.com/community/labs/telerik-data-services-wizard.aspx

RadControls for Silverlight122

© 2011 Telerik Inc.

4.6.6.1 Building the Data Access Layer

1) In Visual Studio, create a new Class Library project to contain the Data Access Layer (DAL).

2) In Visual Studio, Right-click the class library project and select OpenAccess > Enable Project from
the context menu.

3) Take the defaults and on the "Does your project contain the following" page of the OpenAccess Wizard,
uncheck "Persistent Classes" and check the "Data Access code (DAL)" options.

4) Define the connection in the wizard:

a) Connection Id = "NorthwindConnection"

b) Backend = "Microsoft SQL Server"

c) Select "Use OpenAccess Connection Settings" radio button option.

d) Server Name = "(local)\SQLEXPRESS" (assuming you installed the sample database to the default
location)

Data Binding 123

© 2011 Telerik Inc.

e) Database Name = "NorthwindOA"

5) When you have finished ORM enabling the project using the wizard, open the Visual Studio menu and
select Telerik > Open Access > Reverse Mapping. Select only the Employees table and ignore the
other tables. Generate and save the configuration.

6) Build the DAL class library project.

RadControls for Silverlight124

© 2011 Telerik Inc.

4.6.6.2 Building the Service

1) Add a Silverlight Application to the solution and select the option to create a new web application to
host the Silverlight client.

2) Using the Telerik > Enable Project option against the ASP.NET host application. Uncheck both
"Persistent Classes" and "Data Access Code" options. In the connection portion of the wizard you can
select "None" from the drop down list.

3) In the Solution Explorer, make sure there are references to the following:

a) The DAL class library project.

b) Telerik.OpenAccess

c) Telerik.OpenAccess.Query

d) System.Data.Services

e) System.Data.Services.Client

f) System.ServiceModel

4) Run the Telerik Data Services Wizard and generate your data context and data service classes:

a) Click the Browse button for the "OpenAccess DAL". Locate and select the DAL assembly DLL.

b) Enter a new Namespace "Northwind" and Service Name "NorthwindService"

c) The server type should be "ADO.NET Data Service".

Data Binding 125

© 2011 Telerik Inc.

d) Click the Save button to generate the files. When the "Choose a Folder" dialog appears, locate the
folder in the host web application.

The sample project in the Solution Explorer looks like the screenshot below. Notice the generated
"Northwind" folder and that it contains "WebDataService.svc". We will refer to this file later in code.

RadControls for Silverlight126

© 2011 Telerik Inc.

4.6.6.3 Building the Silverlight Client

1) In the Solution Explorer, create a reference to the service (See the ADO.NET Data Services walk
through for more information on how to do this).

2) In the Solution Explorer, add references to the following assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

d) Telerik.Windows.Themes.Windows7 (optional)

3) Open MainPage.xaml for editing.

4) Drag a RadGridView from the Toolbox to the a point inside the main "LayoutRoot" grid element.
Replace the RadGridView element with the XAML below. The "x:Name" is defined so we can refer to
the grid in code for binding. The other top level properties are optional and deal with the appearance of
the grid. AutoGenerateColumns is set to false and two columns are defined for the first and last names
in the Employee table.

<telerik:RadGridView x:Name="gridEmployees"
 telerik:StyleManager.Theme="Windows7"
 ShowGroupPanel="False" AutoGenerateColumns="False"
 GridLinesVisibility="None">
 <telerik:RadGridView.Columns>
 <telerik:GridViewDataColumn Header="First"
 DataMemberBinding="{Binding FirstName}" />
 <telerik:GridViewDataColumn Header="Last"
 DataMemberBinding="{Binding LastName}" />
 </telerik:RadGridView.Columns>
</telerik:RadGridView>

5) In the code behind, use the code below to replace the constructor and add a handler for the result of the
data service query.

Data Binding 127

© 2011 Telerik Inc.

Public Sub New()
 ' leave this method call in place!
 InitializeComponent()

 ' create a Uri to the data service file
 Dim uri As New Uri(System.Windows.Browser.HtmlPage.Document.DocumentUri, _
"Northwind/WebDataService.svc")
 ' instantiate the data service
 Dim context As New NorthwindService(uri)
 ' create a DataServiceQuery against employee
 Dim query = TryCast((_
 From employee In context.Employees _
 Select employee), DataServiceQuery(Of Employee))
 ' execute asynchronously
 query.BeginExecute(AddressOf Query_Completed, query)
End Sub

Private Sub Query_Completed(ByVal result As IAsyncResult)
 ' get a reference to the DataServiceQuery
 Dim query = TryCast(result.AsyncState, DataServiceQuery(Of Employee))
 ' retrieve the data
 gridEmployees.ItemsSource = query.EndExecute(result).ToList()
End Sub

RadControls for Silverlight128

© 2011 Telerik Inc.

public MainPage()
{
 // leave this method call in place!
 InitializeComponent();

 // create a Uri to the data service file
 Uri uri =
 new Uri(System.Windows.Browser.HtmlPage.Document.DocumentUri,
 "Northwind/WebDataService.svc");
 // instantiate the data service
 NorthwindService context = new NorthwindService(uri);
 // create a DataServiceQuery against employee
 var query =
 (from employee in context.Employees
 select employee) as DataServiceQuery<Employee>;
 // execute asynchronously
 query.BeginExecute(Query_Completed, query);
}

private void Query_Completed(IAsyncResult result)
{
 // get a reference to the DataServiceQuery
 var query = result.AsyncState as DataServiceQuery<Employee>;
 // retrieve the data
 gridEmployees.ItemsSource =
 query.EndExecute(result).ToList();
}

Run the Application

Press F5 to run the application.

Data Binding 129

© 2011 Telerik Inc.

4.7 Wrap Up

In this chapter you learned the basics of binding objects and collections of objects to Silverlight elements.
You learned some of the syntax variations used to bind declaratively and how to bind elements using code
alone. You also learned how to detect changes in property data and changes to collections.

We looked at how elements are bound in two common templates: DataTemplate and
HierarchicalDataTemplate.

You learned how to bind data from a variety of popular data sources including straight XML and variations of
XML, i.e. ATOM and RSS. In the process you used a combination of XDocument and LINQ to read, parse
and convert the data to a form suitable for binding. Building off the XML techniques we discussed REST
services. Then you worked through examples of WCF RIA services, WCF and ADO.NET Data Services.

Part

V
Expression Blend

Expression Blend 131

© 2011 Telerik Inc.

5 Expression Blend

5.1 Objectives

In this chapter you will apply your general Silverlight knowledge to the Expression Blend environment. First
we will tour project types available in Expression Blend, then delve deeper into elements of the Expression
Blend environment, becoming familiar with the major functional areas of the application. You will learn how
Expression Blend organizes and manipulates resources. You will use Expression Blend to create and edit
styles and also restyle a RadControl. You will use Expression Blend to edit a control template. You will see
how Expression Blend creates animation and how animation can be triggered in code and through state
changes. Finally, you will learn how to interactively bind data to elements.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Blend\Animation

\Courseware\Projects\<CS|VB>\Blend\Binding

\Courseware\Projects\<CS|VB>\Blend\Resources

5.2 Overview

Expression Blend is an interactive, WYSIWYG design tool that helps you create compelling graphical web
and desktop applications. Expression Blend is designed to work well with Visual Studio to allow smooth
coordination between designers and developers. Both environments use the same design file format (XAML),
solution and project format. Expression Blend is part of the Microsoft Expression suite of tools that also
includes a website designer, a website compatibility preview, a vector graphics editor and applications to
manage and encode digital media.

RadControls for Silverlight132

© 2011 Telerik Inc.

5.2.1 Expression Blend Project Types

Currently in Expression Blend you can create the following project types:

Silverlight Application alone or with a hosting web site.

Silverlight Control Library to contain custom controls.

Silverlight SketchFlow applications allow you to rapidly evolve applications from prototype to
production.

WPF application, control library or SketchFlow application.

5.2.2 The Expression Blend Environment

In the "Working with Silverlight" chapter you briefly explored the Expression Blend environment and became
acquainted with some of the key areas such as the Artboard, Properties pane and the Objects and Timeline
pane. This section takes a deeper dive into the Expression Blend environment.

Projects pane

The Projects pane is very much like the Visual Studio
Solution Explorer that organizes solutions, projects and
items. Right-clicking a node in the project tree displays a
context menu that has many of the same options as its
Solution Explorer counterpart. The "Edit Externally" option
opens the solution or project in the associated application for
the file type.

Expression Blend 133

© 2011 Telerik Inc.

Assets pane

The Assets pane is like a standard toolbox, but contains
more than just controls and has a search capability that
makes it easy to find items when there are large numbers of
possibilities. A category tree on the left hand side of the
Assets pane pane also makes it easier to locate specific
types of items. For example "Project" shows assets that are
defined in the current project and "Locations" show all assets
for a selected DLL

Parts pane

Expression Blend supports the "Parts and States" model, a
pattern that provides a contract for describing a control
without locking down the visual design of the control. "Parts"
in this model are named elements. The Parts pane lists all
the named elements in a control. For example, a Slider
control has named parts for its thumb, increase and decrease
buttons in both vertical and horizontal orientations.

States pane

In the "Parts and States" model, "State" represents how a
control looks in a logical state such as "MouseOver" or
"Disabled". The States pane lists the possible states for a
control, allows you to define transitions between states and
also allows animation to be recorded that map to states.

RadControls for Silverlight134

© 2011 Telerik Inc.

Objects and Timeline pane

The Objects and Timeline pane displays the visual tree in the
left side of the pane. You can drag controls, effects, behaviors
and other assets to locations within the tree. This can be
especially helpful if the Artboard has become two
complicated to navigate easily. Element visibility can be
toggled and elements can also be locked in place to prevent
accidental rearranging. "StoryBoards" can be created to
animate element properties.

Properties pane

The Properties pane is analogous to the Properties pane in
Visual Studio, but is much more designer friendly. For
example, brushes are represented with interactive editors that
let you assign gradient brushes or use brushes from
resources. Wherever possible, properties are represented
with visual cues and tools.

The Properties pane is broken up into categories: Brushes,
Appearance, Layout, Common Properties, Text, Transform,
Miscellaneous.

Data pane

The Data pane lets you define data sources and drag data to
the design surface. Use the List button (upper left) to
determine that dragged items will be interpreted as
collections and will create a bound ListBox when dropped.
Use the Details button when you want to drop individual items
as a bound TextBlock.

The Sample Data drop down lets you define or import
"sample" data. The Data Source drop down lets you choose
an existing object as the data source.

Data sources are automatically defined as resources for the
project or the document (UserControl.Resources) only.

Expression Blend 135

© 2011 Telerik Inc.

Resources pane

The Resources pane lists the templates, brushes and other
resources in your application and in your user control.
Brushes can be edited on the spot using the drop down list.
Templates can be edited by clicking the button to the right of
the template name.

Results pane

The Results pane combines the Output and the Errors
windows.

Tools pane

The Tools pane provides quick access to the key tools you'll
need for working in the Artboard without having to dig too
deep into a menu. Look for the small arrow in the lower right
of some icons that can be right-clicked to show a sub-menu.
The screenshot shows all the available layout panels.

If one of the panes is not visible, use the main Expression Blend menu "Window" item to make the pane
visible again.

RadControls for Silverlight136

© 2011 Telerik Inc.

Expression Blend 137

© 2011 Telerik Inc.

Artboard

The application's visual interface is described using the Artboard. One or more files can be edited and these
files show as tabs across the top of the Artboard. Below these tabs is a breadcrumb bar that is
synchronized with the selected element in the Objects and Timeline pane. The selected element may have
a drop down list to enable template editing.

To the right of the file tabs, a drop down arrow displays a list of all files being edited currently. Below that
are three buttons that determine the active document. By default you first see a pure design view. You can
view the document as XAML only or split the view between design and XAML.

Below the design surface are controls that fine tune the interface. The Zoom control lets you enter a zoom
percentage directly, select from a list of values or choose "Fit to Selection". The set of buttons next to
zoom let you toggle rendering of effects, grid visibility, snap-to-grid, snap-to-snapline and annotations.

RadControls for Silverlight138

© 2011 Telerik Inc.

5.3 Resources

Resources are populated automatically by Expression Blend when you create new styles, templates and
data sources. The Resources pane lets you drag a resource between locations: the App.xaml file, the
UserControl.Resources element of MainPage.xaml or any other resource dictionaries that you define.

You can also use the Properties pane Advanced Property Options button to move properties between
locations, for example from "local", i.e. inside the element definition, to UserControl.Resources. Advanced
Property Options button also lets you take a property and Convert to New Resource. This places the
property into the resource element of the Application, the User Control or into a new resource dictionary.
The screenshot below is the Advanced Property Options for a Background property.

Expression Blend 139

© 2011 Telerik Inc.

 Notes

Notice the color key in the advanced properties menu. When you
select an option such as a local resource, the Advanced Property
Options button displays in the corresponding color. Here the
Background has been assigned a resource and displays in green.

Once a resource has been created, it can be applied to other elements by using the Advanced Property
Options button and selecting from the Local Resources list:

For larger production applications you will want to divide your resources into separate resource dictionaries.
You can do this in the Resources pane using the "Create new resource dictionary" button. Resource
dictionaries created this way are automatically linked into the App.xaml file and therefore available to your
entire application. Right-click the App.xaml node to Link or Unlink a resource dictionary.

RadControls for Silverlight140

© 2011 Telerik Inc.

5.4 Restyling RadControls for Silverlight

Creating and Editing Styles

Styles can be created interactively in Expression Blend and reused by applying to other elements. To copy
a style from existing properties, first, select an element in the Artboard. In this example the element is a
Button. In the menu, select Object > Edit Style > Create Empty. Note: you can also choose Edit a Copy
if you want all the current settings copied to the new style). In the "Create Style Resource" dialog, give the
style a descriptive name and decide what resource the style should be stored in (i.e. application, user
control). The new style will show up in several places of the Expression Blend UI.

The XAML for the page will now look like the example below. Notice that "MyButtonStyle" has been
created automatically as a resource and hooked up to a Button control.

<UserControl.Resources>
 <Style x:Key="MyButtonStyle" TargetType="Button"/>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White">
 <Button Margin="0" Content="Button" Style="{StaticResource MyButtonStyle}"/>
</Grid>

The Objects and Timeline pane shows that we're currently editing "MyButtonStyle". Note: The Scope
Up button lets you navigate back to editing the entire user control.

The Resources pane lists the new "MyButtonStyle" and has a button to edit the resource.

Expression Blend 141

© 2011 Telerik Inc.

Once we're editing the resource, you simply work directly in the Artboard and the changes become part of
the style. For example, you could change the brush colors for the Button Background, BorderBrush and
Foreground to some red, orange and yellow colors. Now the style reflects the changes made in the Artboard
and can be seen in the XAML below.

<Style x:Key="MyButtonStyle" TargetType="Button">
 <Setter Property="Background" Value="#FFF63B14"/>
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFEE330B" Offset="0"/>
 <GradientStop Color="#FFE28518" Offset="0.375"/>
 <GradientStop Color="#FFF6EC12" Offset="0.417"/>
 <GradientStop Color="#FFFE4B0A" Offset="1"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="Foreground" Value="#FFFF0202"/>
</Style>

If there are other buttons on the page you can right-click them and choose Edit Template > Apply
Resource > "MyButtonStyle" from the context menu. All the buttons will be styled exactly the same and
take up very little room in the generated XAML.

<StackPanel Height="100" HorizontalAlignment="Left" VerticalAlignment="Top" Width="100">
 <Button Content="Button" Style="{StaticResource MyButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource MyButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource MyButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource MyButtonStyle}"/>
</StackPanel>

Styling a RadControl

RadControls for Silverlight142

© 2011 Telerik Inc.

Lets use a RadButton and select the Edit a Copy context menu option. Where before the XAML was easily
viewed, the updated XAML will require scrolling through several screenfuls of styles, templates and brushes
and storyboard animations. This doesn't present a problem because Expression Blend lets us work in a
visual environment and forget about the XAML resource definitions. Looking at the Resources pane we can
see that RadButton has a number brushes already defined. Each brush colors part of the control for a given
state, e.g. "CoreButtonOuterBorder_Pressed". So we can edit colors right from the Resources pane without
having to pinpoint specific parts or states of the control first.

Now the edited style for the button in the designer looks like the screenshot below.

Expression Blend 143

© 2011 Telerik Inc.

5.5 Customizing RadControls Templates

You may need to add elements to a control or completely change the layout. Templates allow you "move
the furniture around" without breaking the basic control functionality. This walk through demonstrates
customizing a RadButton to include an image and a "shadow" image of the button content.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight Application" from the
right-most list. Enter a unique name for the project and click OK.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

2) In the Projects pane, right-click the References node and select Add Reference... from the context
menu. Add references to the following assemblies:

a) Telerik.Windows.Controls.dll

b) Telerik.Windows.Controls.Input.dll

3) In the Projects pane, right-click the project and select Add New Folder from the context menu. Name
the new folder "Images".

4) Drag "search.png" to the "images" folder. This image file can be found in "\courseware\images"
directory.

5) From the Project menu select Build Project.

6) Add a RadButton to the page.

a) Open the Assets pane.

b) On the left side of the Assets pane is a tree view. Locate and select the "Controls" node.

c) In the Assets pane, just above the tree view is the Assets Find entry text box.

d) Type the first few characters of "RadButton" into the Assets Find entry text box. A list of all matching
controls will show to the right of the tree view.

e) Locate the RadButton control and drag it onto the MainPage.xaml Artboard.

7) Set properties of the RadButton.

a) Layout > Width = "200"

b) Layout > Height = "100"

c) Common Properties > Content = "Search Flights"

d) Text > Font = "14pt"

8) Right-click the RadButton and select Edit Template > Edit a Copy from the context menu. In the
"Create Style Resource" dialog, set the Name (Key) to "MyButtonStyle". Click OK to create the style
resource and close the dialog.

RadControls for Silverlight144

© 2011 Telerik Inc.

Edit the Control Template

1) Locate a Grid element from the Assets pane to a the "backgroundDecoratorInner" element. Watch for
when the tool tip reads "Create as parent of Content". This will insert the Grid between
"backgroundDecoratorInner" and the Content element.

2) Right-click the grid and select "Rename" from the context menu. Name the grid "GridContent".

3) From the Assets pane > Media, drag "search.png" inside the "GridContent". The tool tip will read
"Create in GridContent". This should insert an Image control just before "Content". The screenshot
below shows the state of the template at this point.

4) In the Properties pane, set properties of the Image.

a) Appearance > Opacity = "30%"

b) Layout > MaxHeight = "128"

c) Layout > MaxWidth = "128"

d) Layout > HorizontalAlignment = "Stretch"

e) Layout > VerticalAlignment = "Stretch"

f) If any Layout > Margin properties have been set, zero them.

g) Common Properties > Stretch = "Uniform"

5) Make a copy of the "Content" element:

a) Right-click "Content" and select Copy from the context menu.

b) Select "GridContent", right-click and select Paste from the context menu.

Expression Blend 145

© 2011 Telerik Inc.

c) Right-click, select Rename from the context menu and set the name to "Content_Shadow". The
Objects and Timeline pane should look like the screenshot below.

6) Select the "Content_Shadow" element in the Objects and Timeline pane and set properties:

a) Appearance > Opacity = "30%"

b) Transform > Scale > Y = "-0.5"

c) Transform > Skew > X = "30"

d) Transform > Center Point > Y = "0.8"

7) The template in the Artboard looks like this screenshot:

8) Press the "Up Scope" button until you reach the User Control.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

The screenshot shows the button in its normal state and with mouse over. The button has all of its previous
capability and also includes the new "shadow" and image elements.

RadControls for Silverlight146

© 2011 Telerik Inc.

5.6 Bring RadControls to Life with Animations

Overview

Animation lets you control the transition between two property values. The property could be an element's
location, size, brush color, nearly any property. Animations can be contained in a "storyboard" and
triggered programmatically or can be triggered by a change in "state", e.g. the mouse passes over an
element.

You work with animation in the Timeline portion of the Objects and Timeline pane. The main function of the
Timeline is to record "Keyframe" objects that contain one or more properties for an element at a particular
point in time. Each row in the Timeline corresponds to an element and each column is a "frame", i.e. a
location in time. The Timeline marker indicates the frame that we're working with currently.

Clicking the Play Animation button snaps the Timeline marker to the start of the Timeline, where it begins to
move steadily to the right, encountering Keyframes and changing properties along the way. When the
animation is playing, you can watch the dynamically changing properties in the Artboard.

Expression Blend 147

© 2011 Telerik Inc.

Creating a Simple Animation

Let's look at the steps to creating a simple animation using the Expression Blend designer that rotates a
RadButton in place in response to the button's Click event. After the RadButton has been added to the
Artboard we can create a new Storyboard in the Objects and Timeline pane:

We provide a name in the Create Storyboard Resource dialog.

Once the storyboard is created, two things happen in the Expression Blend environment. The Artboard
displays a message that indicates that property changes are being recorded:

RadControls for Silverlight148

© 2011 Telerik Inc.

...and a Timeline has opened up in the Objects and Timeline pane. The Timeline will allow us to set property
changes at specific times and to play those changes as if playing a video.

Now we can change property values of the RadButton and the changes will be recorded in the Keyframe for
the current location in the Timeline. This example uses the Properties pane to change the Transform >
Rotate > Angle property to "180".

Expression Blend 149

© 2011 Telerik Inc.

Looking back to the Objects and Timeline pane we can see a new Keyframe is created for the button at the
Timeline marker location.

Tip!

If you don't want to change a property but instead want to use the current value of a property,
use the Properties pane Advanced Property Options button and select the "Record Current
Value" option if its enabled. If the button is not enabled, the property may not be supported for
animation.

If you double-click the Keyframe, its properties will display in the Properties pane along with the Keyframes
"Easing" settings. "Easing" is a path that the transition takes between two property values. For example,
you may wish for the change to take place evenly as the timeline progresses or you might want the change
to be nearly complete early on. You can use an EasingFunctions to establish a predefined easing profile
such as "Sine" or "Elastic". The "Hold In" tab simply waits until the animation completes before changing
the property value.

RadControls for Silverlight150

© 2011 Telerik Inc.

Clicking the Play button causes the RadButton to rotate at an even pace,
ending up at 180 degrees.

You can initiate the animation in code using the Storyboard Begin() method.

Private Sub radButton_Click(ByVal sender As Object, ByVal e As System.Windows.RoutedEventArgs)
 MyStoryBoard.Begin()
End Sub

private void radButton_Click(object sender, System.Windows.RoutedEventArgs e)
{
 MyStoryBoard.Begin();
}

Tip!

Click F6 in Expression Blend to switch between the "Design" and "Animation" workspaces.
"Animation" arranges the workspace with maximum space available for the Timeline.

Expression Blend 151

© 2011 Telerik Inc.

State Changes

Animations are often triggered by changes in control state such as a "mouse over" or "focused".
RadControls have a great deal of animation built-in for state changes, right out-of-the-box. For example,
RadMenu animates menu expansion and RadButton animates the MouseOver state. You can alter the
existing animations or add your own. The following walk through demonstrates enlarging the content of a
button when the mouse passes over.

1) Create a new Silverlight Application in Expression Blend.

2) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

3) In the Projects pane, right-click the References node and select Add Reference... from the context
menu.

4) Add a reference to the Telerik.Windows.Controls.dll assembly.

5) From the Project menu select Build Project.

6) Add the RadButton to the page.

a) Open the Assets pane.

b) On the left side of the Assets pane is a tree view. Locate and select the "Controls" node.

c) In the Assets pane, just above the tree view is the Assets Find entry text box.

d) Type the first few characters of RadButton into the Assets Find entry text box. A list of all matching
controls will show to the right of the tree view.

e) Locate the RadButton control and drag it onto the MainPage.xaml Artboard.

7) Set properties using the Properties pane:

a) Common Properties > Content = "Click Me!"

8) Right-click the RadButton and select Edit Template > Edit a Copy from the context menu. In the
"Create Style Resource" dialog, set the Name (Key) to "MyButtonStyle". Click OK to create the style
resource and close the dialog.

9) In the Objects and Timeline pane, expand the tree view and locate and select the "Content" node.

10)In the States pane, click the MouseOver state. This will turn on recording of properties. This should be
reflected in the Artboard as shown in the screenshot below:

RadControls for Silverlight152

© 2011 Telerik Inc.

11)The Objects and Timeline pane should now display the animation Timeline. If the Timeline does not
display, click the "camera" button (circled in red below) to open it. Notice the yellow Timeline marker at
the "0" position in the Timeline. There are elliptical marks next to two border elements that indicate that
animations have already been defined. These animations are responsible for changing brushes as the
mouse passes over the button.

Expression Blend 153

© 2011 Telerik Inc.

12)Move the Timeline marker to the next closest tick on the right of its current position. You can use the
"Go to next frame" button to move the marker or simply drag it.

13)In the Properties pane, set Transform > Scale > X = "1.5" and Transform > Scale > Y = "1.5"

14)Click the "Go to next frame" button.

15)In the Properties pane, set Transform > Scale > X = "1" and Transform > Scale > Y = "1"

16)Click the Play button to preview the animation.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

As the mouse passes over the button, the content expands briefly. Also notice that the existing animations
that change brush color also occur at the same time.

Ideas for Extending This Example

Try changing other Transformation properties including location, skew or rotate.

Try changing the duration of properties.

Try adding animations for other state transitions.

RadControls for Silverlight154

© 2011 Telerik Inc.

5.7 Binding

5.7.1 Overview

Using Expression Blend you can interactively assign a DataContext and bind specific properties to any data
in the project, including other elements in the page. The Data pane lets you drag-and-drop data onto
elements in the Artboard to automatically assign the DataContext and begin configuring the ItemsSource.
Data can come from business objects or you can use "sample" data where Expression Blend assigns
mock data while the interface is still being developed.

5.7.2 Create Sample Data Sources

Expression Blend introduces the notion of "Sample" data where you create data sources intended for use
during prototyping and development. You can create objects or collections right in the designer and
Expression Blend will populate with mock data. You can also import XML to populate your sample objects.
Sample data can be switched off in the production compile to significantly reduce the applications footprint.

See the upcoming "Drag and Drop Binding" on how to bind sample and object data sources to elements in
the page.

Expression Blend 155

© 2011 Telerik Inc.

5.7.2.1 Define Sample Objects

You can create your own objects on the fly using the "Define New Sample Data" option.

This will display the "Define New Sample Data" dialog. Enter a new Data source name and click the OK
button to create the data source and collection.

The data source starts out as a collection with sample properties. Each property can be renamed by
double-clicking. The drop down to the right of each property allows you to change the property types and
configure options for each property type.

For example, we can rename the first property to "RoomNumber". By dropping down the Property Options,
we can configure the property by choosing the type (String, Number, Boolean, Image), the Format (Name,
URL, Date, Phone number, etc), maximum number of words and the maximum word length.

RadControls for Silverlight156

© 2011 Telerik Inc.

Selecting the "Edit Sample Values" button displays the "Edit Sample Values" dialog. Rows are pre-
populated by default with random data that fits the property options rules. In the dialog you can access the
property options in the header of each column, edit the data directly in the grid or change the number of
records.

When the dialog is closed, the data refreshes the sample data XAML file maintained by Expression Blend.
The generated XAML is shown below:

Expression Blend 157

© 2011 Telerik Inc.

<!--
 ********* DO NOT MODIFY THIS FILE *********
 This file is regenerated by a design tool. Making
 changes to this file can cause errors.
-->
<SampleData:ReservationsDataSource
xmlns:SampleData="clr-namespace:Expression.Blend.SampleData.ReservationsDataSource"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
 <SampleData:ReservationsDataSource.Collection>
 <SampleData:Item RoomNumber="A3443" Vacant="True" />
 <SampleData:Item RoomNumber="A3445" Vacant="False" />
 <SampleData:Item RoomNumber="A3447" Vacant="True" />
 <SampleData:Item RoomNumber="A3450" Vacant="False" />
 <SampleData:Item RoomNumber="B1220" Vacant="True" />
 </SampleData:ReservationsDataSource.Collection>
</SampleData:ReservationsDataSource>

By using the Add Properties drop down you can build
up records of arbitrary complexity. The screenshot
shows a "Reservations" class with simple properties, a
complex property called "Amenities" and a
"ReservedDates" collection. The "complex" Amenities
class contains several Boolean properties.

RadControls for Silverlight158

© 2011 Telerik Inc.

5.7.2.2 Import From XML

To create sample data from existing XML, use the Data pane "Add sample data source" drop down and
select "Import Sample Data from XML...".

Shown below is a very small bit of XML that we can import as an example. The XML is stored in a file called
"Flights.xml". You can also use the XML files that ship in the RadControls installation under the \Examples
directory.

<Flights>
 <Flight Airline="United" FlightNumber="123" />
 <Flight Airline="Southwest" FlightNumber="3423" />
 <Flight Airline="American" FlightNumber="566" />
</Flights>

Clicking the "Import Sample Data from XML..." button displays the "Import Sample Data from XML" dialog.
Use the Browse... button to locate an XML file for importing. You can store the resource that points to this
data in either the user control or the application XAML. The "Enable sample data when application is
running" checkbox can be shut off later when you don't need the overhead of the sample data. Click the OK
to create the sample data objects in your project.

So what happened when we imported the sample data? A "SampleData" directory was created in our
project and populated with a second directory containing all the materials needed for our data source.

Expression Blend 159

© 2011 Telerik Inc.

The flightsSampleDataSource.xaml contains the imported data in XML form. The flightsSampleDataSource.
xaml.cs wraps the data in class form complete with INotifyPropertyChanged and ObservableCollection<>
support. These files are all generated and shouldn't be edited by hand. See an example of the generated
code below:

// ********* DO NOT MODIFY THIS FILE *********
// This file is regenerated by a design tool. Making
// changes to this file can cause errors.
namespace Expression.Blend.SampleData.flightsSampleDataSource
{
 using System;

// To significantly reduce the sample data footprint in your production application, you can set
// the DISABLE_SAMPLE_DATA conditional compilation constant and disable sample data at runtime.
#if DISABLE_SAMPLE_DATA
 internal class Flights { }
#else

 public class Flights : System.ComponentModel.INotifyPropertyChanged
 {
 public event System.ComponentModel.PropertyChangedEventHandler PropertyChanged;
//. . .

In the App.xaml file, a resource has been added to allow easy declarative access when we bind the data
source to an element in the page.

RadControls for Silverlight160

© 2011 Telerik Inc.

<Application . . .
 xmlns:SampleData1="clr-namespace:Expression.Blend.SampleData.flightsSampleDataSource" >
<Application.Resources>
 <SampleData1:Flights x:Key="flightsSampleDataSource" d:IsDataSource="True"/>
</Application.Resources>
</Application>

5.7.3 Create Object Data Sources

The sample data is handy for prototyping but limited in terms of the types of properties available and how
they are implemented. Expression Blend lets you hook up to any object in an available namespace. Lets
start with a "Flights" collection that defines instance of "Flight" in the constructor. This class could as
easily be a web service client or some other business object.

Public Class Flights
 Inherits ObservableCollection(Of Flight)
 Public Sub New()
 Me.Add(New Flight() With {.Airline = "American Airlines", .FlightNumber = "AA524"})
 Me.Add(New Flight() With {.Airline = "United", .FlightNumber = "UA55"})
 Me.Add(New Flight() With {.Airline = "Alaska Airline", .FlightNumber = "NA7785"})
 End Sub
End Class

Public Class Flight
 Private privateFlightNumber As String
 Public Property FlightNumber() As String
 Get
 Return privateFlightNumber
 End Get
 Set(ByVal value As String)
 privateFlightNumber = value
 End Set
 End Property
 Private privateAirline As String
 Public Property Airline() As String
 Get
 Return privateAirline
 End Get
 Set(ByVal value As String)
 privateAirline = value
 End Set
 End Property
End Class

Expression Blend 161

© 2011 Telerik Inc.

public class Flights: ObservableCollection<Flight>
{
 public Flights()
 {
 this.Add(new Flight() { Airline = "American Airlines", FlightNumber = "AA524" });
 this.Add(new Flight() { Airline = "United", FlightNumber = "UA55" });
 this.Add(new Flight() { Airline = "Alaska Airline", FlightNumber = "NA7785" });
 }
}

public class Flight
{
 public string FlightNumber { get; set; }
 public string Airline { get; set; }
}

The first step to accessing a class for binding is to select "Define New Object Data Source..." from the Data
pane.

This action displays the "Define New Object Data Source" dialog. The dialog has a tree view of classes
available to the Silverlight application. Use the entry above the tree view to filter the list. In the screenshot
below, the "Flights" class is selected.

RadControls for Silverlight162

© 2011 Telerik Inc.

The result of selecting OK in this dialog is to add a reference to the assembly that contains the data source
class. In the example below, the assembly is called "Binding" and the XML namespace alias is "local". A
resource is added automatically that references the "Flights" class called "FlightsDataSource". Now we can
use this data source in binding expressions. See the next section "Drag and Drop Binding" on how to bind
your data sources to elements in the page.

<UserControl xmlns:local="clr-namespace:Binding" . . .>

 <UserControl.Resources>
 <local:Flights x:Key="FlightsDataSource" d:IsDataSource="True"/>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White" />
</UserControl>

Expression Blend 163

© 2011 Telerik Inc.

5.7.4 Drag and Drop Binding

How a drag operation plays out between the Data pane and the Artboard depends on three things: the node
being dragged, where the node is being dragged to and the "Mode" button that is currently pressed. Either
the "List" or "Details" Mode button will be depressed at any one time. The node being dragged can be a
namespace, a data source class, a collection within the class or a field within a collection.

In List Mode, if you drag fields to the Artboard, a ListBox is created and the ItemsSource is bound to the
collection containing the fields.

In XAML, the result of the drag operation in the screenshot above is:

RadControls for Silverlight164

© 2011 Telerik Inc.

A DataTemplate is created to contain TextBlock elements bound to the Fields that were dragged

The DataContext of the parent, i.e. the "LayoutRoot" Grid, is bound to the data source class

The ListBox ItemsSource is bound to the collection.

The XAML below shows the placement of DataTemplate, DataContext and ItemsSource after the drag in
List Mode.

<UserControl.Resources>
 <DataTemplate x:Key="EmployeeTemplate">
 <StackPanel>
 <TextBlock Text="{Binding FirstName}"/>
 <TextBlock Text="{Binding HomePhone}"/>
 <TextBlock Text="{Binding LastName}"/>
 </StackPanel>
 </DataTemplate>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White"
 DataContext="{Binding Source={StaticResource EmployeesSampleDataSource}}" >
 <ListBox HorizontalAlignment="Left" Margin="25,154,0,129" Width="200"
 ItemTemplate="{StaticResource EmployeeTemplate}" ItemsSource="{Binding EmployeeCollection}"/>
</Grid>

In Details mode, fields dragged onto the Artboard are rendered as a set of TextBlocks wrapped in a bound
grid. If we already have a bound ListBox on the page, Expression Blend automatically binds to the ListBox
element SelectedItem property, so that the ListBox and the details are in sync.

Here's an abbreviated look at the XAML produced by a drag of fields in Details mode. Attributes not directly
related to this binding scenario have been removed. Notice that the innermost grid containing the detail
items is bound to the "listBox" element, SelectedItem property. .

Expression Blend 165

© 2011 Telerik Inc.

<UserControl.Resources>
 <DataTemplate x:Key="EmployeeTemplate">
 <StackPanel>
 <TextBlock Text="{Binding FirstName}"/>
 <TextBlock Text="{Binding HomePhone}"/>
 <TextBlock Text="{Binding LastName}"/>
 </StackPanel>
 </DataTemplate>
</UserControl.Resources>

<Grid x:Name="LayoutRoot"
 DataContext="{Binding Source={StaticResource EmployeesSampleDataSource}}" >
 <ListBox x:Name="listBox" ItemTemplate="{StaticResource EmployeeTemplate}"
 ItemsSource="{Binding EmployeeCollection}" />
 <Grid DataContext="{Binding SelectedItem, ElementName=listBox}"
 d:DataContext="{Binding EmployeeCollection[0]}">
 <TextBlock Text="FirstName"/>
 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="HomePhone"/>
 <TextBlock Text="{Binding HomePhone}" />
 <TextBlock Text="LastName"/>
 <TextBlock Text="{Binding LastName}" />
 </Grid>
</Grid>

 Notes

Don't be confused by the "d:DataContext" tag in the XAML. This is for design time only and binds to
the first element in the collection at design time just so you have some data to look at. You can
remove this tag without impact to the running application

When you run the application, the fields you selected in the Data pane are displayed in the ListBox. When
a list box item is selected, the corresponding data shows up in the detail TextBlocks.

RadControls for Silverlight166

© 2011 Telerik Inc.

5.7.5 Binding RadControls Walk Through

This walk through demonstrates binding a RadGridView to sample data.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight Application" from the
right-most list. Enter a unique name for the project and click OK.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

2) In the Projects pane, right-click the References node and select Add Reference... from the context
menu. Add references to the following assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

3) From the Project menu select Build Project.

4) From the Assets pane, locate RadGridView and drag it onto the MainPage.xaml Artboard.

5) In the Data pane, click "Import Sample Data From XML...". This will display the "Import Sample Data
From XML" dialog.

Expression Blend 167

© 2011 Telerik Inc.

6) Click the Browse... button, locate and select the "Employees.xml" file. "Employees.xml" can be found
in the RadControls installation directory under the \Examples\Datasources directory. Click OK to create
the data source.

7) Drag the "EmployeeCollection" from the Data pane onto the RadGridView in the Artboard. Notice the
tooltip that appears "Choose a property of [RadGridView] to bind to EmployeeCollection[0]". The
"Create Data Binding" dialog will appear in response to the drop.

RadControls for Silverlight168

© 2011 Telerik Inc.

 Notes

Be sure that the "Details Mode" button is down before you drag the collection. The
other button "List Mode" will create a bound ListBox.

8) In the "Create Data Binding" dialog, select the DataContext property and click OK to close the dialog.

9) In the Properties pane > Miscellaneous > ItemsSource, select Data Binding... from the Advanced
Property Options button. This action will display the Create Data Binding dialog.

10)In the Create Data Binding dialog, select the Data Field tab, select "EmployeesSampleDataSource"
from the Data sources list and "EmployeeCollection" in the Fields list. Click OK to create the binding
and close the dialog.

Expression Blend 169

© 2011 Telerik Inc.

11)The RadGridView displays the data in the Artboard at design time.

 Notes

If you review the XAML at this point, you can see that the DataContext is bound to the data
source through the "EmployeesSampleDataSource" resource. The ItemsSource is bound to the
EmployeeCollection within the data source.

<telerik:RadGridView Margin="19,27,0,141" d:LayoutOverrides="Width, Height"
 DataContext="{Binding Source={StaticResource EmployeesSampleDataSource}}"
 ItemsSource="{Binding EmployeeCollection, Mode=OneWay}"/>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight170

© 2011 Telerik Inc.

Ideas for Extending This Example

Add a TextBlock that shows the contents of the current RadGridView cell item.

This can be done through the Properties pane > Common Properties > Text, clicking the Advanced
Property Options button and selecting Data Binding... from the menu. In the Create Data Binding
dialog, select the Element property tab. Then select the RadGridView from the "Scene Elements" list
on the left and the CurrentCell > Content from the "Properties" list on the right.

Clicking OK on the dialog creates the following binding in the XAML where the Text property of the
TextBlock is bound to the RadGridView CurrentCell.Content property.

<TextBlock HorizontalAlignment="Left" Margin="19,0,0,105" VerticalAlignment="Bottom"
Text="{Binding CurrentCell.Content, ElementName=radGridView, Mode=OneWay}" TextWrapping="Wrap"/>

When you run the modified application, the contents of the selected cell show up in the text block.

Expression Blend 171

© 2011 Telerik Inc.

5.8 Wrap Up

In this chapter you learned how to apply your general Silverlight knowledge to the Expression Blend
environment. First we took a tour of project types available in Expression Blend. Then you delved deeper
into elements of the Expression Blend environment, becoming familiar with the major functional areas of the
application. You learned how Expression Blend organizes and manipulates resources. You used
Expression Blend to create and edit styles and you also restyled a RadControl. You used Expression Blend
to edit a control template. You saw how Expression Blend creates animation and how animation can be
triggered in code and through state changes. Finally, you learned how to interactively bind data to elements.

Part

VI
Theming and Skinning

Theming and Skinning 173

© 2011 Telerik Inc.

6 Theming and Skinning

6.1 Objectives

In this chapter you will learn how Telerik themes are used with RadControls and other Silverlight elements to
create a uniform look-and-feel for your application. First you will apply predefined themes to RadControls
and observe how themes can be changed without otherwise altering target elements. You will learn how
themes are distributed and applied to elements in XAML and in the code behind. You will apply themes to
an entire application and to individual elements in the application. You will also create a custom theme and
learn the syntax for applying the theme.

In the "Modifying Themes" section of the chapter you will learn about the "Themes" solution and its
structure. You will modify theme brushes to skin the theme with a new color set. You will apply the modified
theme to the UI in a Visual Studio project. Finally, you will expand this example to add effects and
animation to a RadButton control.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Theming\Theming.sln

6.2 Overview

A theme is a mechanism to organize multiple sets of styles and apply them all at one time to a control or
an entire application. The theme engine of RadControls for Silverlight is quite powerful and provides the
developers with the ability to apply an application-wide theme on all RadControls, as well as specific
themes on a single control. If the theme does not contain the needed styles, the controls fallback to their
default styles. You can create an application theme for just a couple of controls and the rest will display
with their default styles. RadControls for Silverlight comes with a set of predefined themes, that can be used
right out of the box, modified for your specific application requirements or new themes can be created from
scratch.

RadControls for Silverlight174

© 2011 Telerik Inc.

6.3 Getting Started

In this walk through you will apply themes to RadControls and standard Silverlight elements.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

c) Telerik.Windows.Controls.Navigation

d) Telerik.Windows.Themes.Summer

e) Telerik.Windows.Themes.Windows7

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespaces to the UserControl element:

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>

3) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags. This will define a number of RadControls and one standard Silverlight
CheckBox control. No specific theme has been applied to any of the controls.

Theming and Skinning 175

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <StackPanel>
 <telerik:RadToolBarTray Margin="10" HorizontalAlignment="Left" >
 <telerik:RadToolBar >
 <telerik:RadToolBar.Items>
 <telerik:RadButton Content="Click Me!" Margin="10" />
 <telerik:RadRadioButton Content="Red" IsChecked="True" Margin="10" />
 <telerik:RadRadioButton Content="Green" Margin="10" />
 <telerik:RadRadioButton Content="Blue" Margin="10" />
 <telerik:RadNumericUpDown Margin="10" Value="23" />
 <telerik:RadComboBox Margin="10">
 <telerik:RadComboBoxItem Content="Large" />
 <telerik:RadComboBoxItem Content="Medium" />
 <telerik:RadComboBoxItem Content="Small" />
 </telerik:RadComboBox>
 </telerik:RadToolBar.Items>
 </telerik:RadToolBar>
 </telerik:RadToolBarTray>
 <telerik:RadCalendar Margin="10" HorizontalAlignment="Left" />
 <StackPanel Orientation="Horizontal">
 <CheckBox Content="Print Double Sided" IsChecked="True" Margin="10" />
 </StackPanel>
 </StackPanel>
</Grid>

4) Press F5 to run the application. The controls display their default appearance.

RadControls for Silverlight176

© 2011 Telerik Inc.

5) Add the tag "telerik:StyleManager.Theme="Summer" to the RadToolBarTray, RadCalendar and
CheckBox controls. An abbreviated version of the XAML is shown below.

<telerik:RadToolBarTray telerik:StyleManager.Theme="Summer" >
 . . .
</telerik:RadToolBarTray>
<telerik:RadCalendar . . . telerik:StyleManager.Theme="Summer" />
<StackPanel >
 <CheckBox . . . telerik:StyleManager.Theme="Summer" />
</StackPanel>

6) Press F5 to run the application. Now all the RadControls inside the tool bar tray, the RadCalendar and
the standard Silverlight CheckBox control are all styled in the "Summer" theme.

7) Edit StyleManager.Theme tags in the XAML and assign the "Windows7" theme.

Theming and Skinning 177

© 2011 Telerik Inc.

8) Press F5 to run the application. Now all elements on the page display the "Windows7" theme.

6.4 Applying Themes to RadControls

Each theme is distributed as an assembly that contains a
ResourceDictionary full of Styles. To use a theme in XAML or in
code, first add a reference to the theme assembly. The
screenshot below shows multiple assembly references in
Solution Explorer. The "Office_Black" theme is the default
theme and you do not have to add a reference to use it.

RadControls for Silverlight178

© 2011 Telerik Inc.

Applying Themes in XAML

To use a theme in XAML, first declare an XML namespace alias to Telerik.Windows.Controls so that you
have access to the StyleManager.Theme attached property.

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
 . . .>

To apply a theme to a RadControl, add a StyleManager.Theme attached property. The XAML below
applies the "Windows7" theme to a RadButton.

<telerik:RadButton telerik:StyleManager.Theme="Windows7" />

You can also apply Telerik themes to standard controls such as Button, Check, RadioButton, ScrollViewer,
ListBox, etc. The example below sets themes to ListBoxItem elements, a different theme per item. Note:
You typically use a single theme against all your elements to achieve a common look-and-feel, but this
demonstrates that themes can be applied individually.

<ListBox >
 <ListBoxItem Content="Expression_Dark"
 telerik:StyleManager.Theme="Expression_Dark" />
 <ListBoxItem Content="Office_Black"
 telerik:StyleManager.Theme="Office_Black" />
 <ListBoxItem Content="Office_Blue"
 telerik:StyleManager.Theme="Office_Blue" />
 <ListBoxItem Content="Office_Silver"
 telerik:StyleManager.Theme="Office_Silver" />
 <ListBoxItem Content="Summer"
 telerik:StyleManager.Theme="Summer" />
 <ListBoxItem Content="Transparent"
 telerik:StyleManager.Theme="Transparent" />
 <ListBoxItem Content="Vista"
 telerik:StyleManager.Theme="Vista" />
 <ListBoxItem Content="Windows7"
 telerik:StyleManager.Theme="Windows7" />
</ListBox>

Here is a screenshot of the list box with themed items in the running Silverlight application.

Theming and Skinning 179

© 2011 Telerik Inc.

RadControls for Silverlight180

© 2011 Telerik Inc.

You can also set a theme for the entire application by adding a resource to the App.xaml file. The resource
points to one of the theme objects and sets the IsApplicationTheme property to "True".

<Application.Resources>
 <telerik:SummerTheme x:Key="theme" IsApplicationTheme="True" />
</Application.Resources>

 Notes

At the time of this writing, application themes only work against RadControls. To apply themes
to standard Silverlight controls they need to be applied individually.

Applying Themes in Code

Use the StyleManager static SetTheme() method to apply themes in code. Pass the target element to be
themed and an instance of a theme object.

StyleManager.SetTheme(calendar, New Office_BlackTheme())

StyleManager.SetTheme(calendar, new Office_BlackTheme());

You can apply a theme to the entire application in code, but do this as early as possible. Use the
Application.Startup event or the page constructor. The example below sets the application theme to "Vista"
in the constructor before calling InitializeComponent().

Public Sub New()
 StyleManager.ApplicationTheme = New VistaTheme()
 ' or ...
 'new VistaTheme().IsApplicationTheme = true;
 InitializeComponent()
End Sub

Theming and Skinning 181

© 2011 Telerik Inc.

public MainPage()
{
 StyleManager.ApplicationTheme = new VistaTheme();
 // or ...
 //new VistaTheme().IsApplicationTheme = true;
 InitializeComponent();
}

6.5 Creating a Custom Theme

You can create a custom theme that covers all of the controls you expect to have in your application or just
a few controls. If your theme doesn't contain a particular style, the control will fallback to its default. The
theme project is contained in a Silverlight Class Library. The example project below has a Themes folder
that contains a Silverlight Resource Dictionary named "Common.xaml".

 Gotcha!

Be sure to use a Silverlight class library, so that the proper Silverlight versions of the referenced
DLL's are included.

The resource dictionary has one or more styles. The example below has a single Style element where the
target type is Button and the Key is the full class name of the button. This style only sets the Background
property to "Red".

<ResourceDictionary . . .>
 <Style TargetType="Button" x:Key="System.Windows.Controls.Button">
 <Setter Property="Background" Value="Red" />
 </Style>
</ResourceDictionary>

RadControls for Silverlight182

© 2011 Telerik Inc.

To use the custom theme, create a resource that points to the theme, then assign the resource to the
StyleManager.Theme property using a "StaticResource" binding expression. Notice the syntax used in the
resource below for the Source attribute follows the pattern required to access resource URIs located in other
assemblies. The general syntax is:

"/assemblyShortName;component/resourceLocation".

... where the leading slash and the component keyword followed by a slash are both required.

<UserControl . . .
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation">

 <UserControl.Resources>
 <telerik:Theme x:Key="myTheme" Source="/MyTheme;component/Themes/Common.xaml" />
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Button" telerik:StyleManager.Theme="{StaticResource myTheme}" />
 </Grid>
</UserControl>

 Notes

See the MSDN article "Resources Files" at http://msdn.microsoft.com/en-us/library/cc296240
(VS.95).aspx for more information about accessing resources files and the syntax rules for
building URIs to access resources.

Running in the browser, the button has a red background. The pattern used to create this simple theme can
be used against any of the RadControls.

http://msdn.microsoft.com/en-us/library/cc296240(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc296240(VS.95).aspx

Theming and Skinning 183

© 2011 Telerik Inc.

6.6 Modifying themes in Expression Blend

6.6.1 Overview

The RadControls for Silverlight installation comes with a
"Themes" solution that contains a project for each theme
assembly. Use these projects to edit existing themes
within Visual Studio or Expression Blend.

Notice the project structure in the screenshot. Each
theme has a Themes folder that contains a set of XAML
files. There is a theme for every namespace being
themed, e.g.Telerik.Windows.Controls.Navigation. These
don't directly contain styles, but rather use
MergedDictionary elements to include one or more XAML
files with the actual styles for each group of controls.
Inside the Themes folder is a directory named for the
theme, e.g. "Windows7" that contain XAML files for each
group of controls, e.g. "Button.xaml". "Button.xaml"
contains a set of common brushes at the top of the file,
and styles for each of the button related controls, i.e.
RadButton, RadToggleButton, RadRadioButton, etc.

Using Expression Blend you can visually edit the
brushes, resources and templates of the theme solution.

The steps to modifying a theme in Expression Blend are:

Load the Themes solution into Expression Blend. Its
a large file and may take some time.

Also in Expression Blend, open one of the resource
files and edit the styles, templates and brushes.

In the Silverlight application to be themed, add a
reference to the theme assembly.

Add a StyleManager.Theme attribute and assign it
the theme name.

RadControls for Silverlight184

© 2011 Telerik Inc.

6.6.2 Modifying the Theme Brushes

In this example we will modify the Windows7 theme in Expression Blend, changing the brushes for some of
the button related controls including RadButton, RadRadioButton and RadToggleButton and
RadDropDownButton.

Editing the Theme Project

1) In Expression Blend, navigate to the RadControls for Silverlight install directory and locate the Themes
directory. Load the Themes.sln solution.

2) In the Projects pane, locate the Windows7 project, \Themes\Windows7\Button.xaml file and double-
click it.

Theming and Skinning 185

© 2011 Telerik Inc.

3) In the Resources pane, the brushes for all of the buttons are listed. Use the drop down arrow for each
brush and open the color editing popup. In the editor tab, make each of the colors some variant of a red
shade by dragging the marker in the rainbow colored bar.

RadControls for Silverlight186

© 2011 Telerik Inc.

4) When you're done editing brushes, they should look something like the example below. Note: the
colors you choose here aren't significant, except that they should be very different from the shades of
blue that we're starting with. We need to see that all of the colors have changed in the themed control.

5) Follow the same steps to modify the \Themes\Windows7\ButtonChrome.xaml file. When you're done
editing the ButtonChrome brushes, they should look something like the example below:

Theming and Skinning 187

© 2011 Telerik Inc.

6) Save the project, then press Ctrl-Shift-B to build the project (or select Build from the Project menu).

RadControls for Silverlight188

© 2011 Telerik Inc.

6.6.3 Testing the Modified Theme

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Themes.Windows7

Important note! Be sure to choose your custom version of this assembly, not the version that ships
with RadControls for Silverlight. You should be able to find this assembly in the \bin\debug directory of
the Windows7 themes project.

XAML Editing

1) Open MainPage.xaml for editing.

2) Replace the main "LayoutRoot" Grid element with the XAML below.

<Grid x:Name="LayoutRoot">
 <StackPanel>
 <!--RadButton-->

 <!--RadToggleButton-->

 <!--RadRadioButton-->

 <!--RadDropDownButton-->
 </StackPanel>
</Grid>

3) Drag a RadButton from the Toolbox to a point just under the "<!--RadButton-->" comment.

4) Drag a RadToggleButton, RadRadioButton and RadDropDownButton to a point underneath their
respective comments.

5) Set the attributes of all four buttons as follows:

a) Margin = "10"

b) HorizontalAlignment = "Left"

c) VerticalAlignment = "Top"

6) Set the Content attribute of each button to any text you choose.

Theming and Skinning 189

© 2011 Telerik Inc.

7) Above the main "LayoutRoot" grid, add a UserControl.Resources element. Inside the resources, add a
resource for the Windows7Theme, set the "x:Key" to "Windows7" and the IsApplicationTheme
property to "True".

<UserControl.Resources>
 <telerik:Windows7Theme IsApplicationTheme="True"
 x:Key="Windows7" />
</UserControl.Resources>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight190

© 2011 Telerik Inc.

6.6.4 Modifying Theme Styles

Often, modifying theme brushes can make the color scheme of the controls compatible with application
look-and-feel. But you don't need to stop there, you can also modify the entire style of a control, including
changes to layout, adding effects and animation. For example, you can add a shadow effect to the
RadButton Content and animate it so that it looks as if a light passed over the content text.

1) From the Expression Blend Resources pane, double-click the edit button next to the RadButton default
style.

2) In the Objects and Timeline pane, right-click the "Style<>" item and select Edit Template > Edit
Current. From this point on you can simply edit the control by selecting elements of the control in the
Objects and Timeline pane and Artboard.

3) In the Objects and Timeline pane, expand the outline and locate the "Content" node.

4) Open the Assets pane and drag a DropShadowEffect to the "Content" node in the Objects and Timeline
pane. The content in the button should now display a shadow as shown in the screenshot below.

5) Record animation for the MouseOver state

a) Open the States pane and click on the MouseOver state to begin state recording.

b) Click the Show Timeline button ()

c) Make sure the DropShadowEffect is selected

d) In the Properties pane, set the ShadowDepth property to "10".

e) Set the Timeline marker at the one second mark.

The Objects and Timeline pane will look something like the screenshot below.

Theming and Skinning 191

© 2011 Telerik Inc.

6) In the Properties pane, set both the Direction and Opacity properties to zero.

7) In the Objects and Timeline pane, click the play () button to test the animation.

The animation shows the shadow moving evenly under the content. Next, to make the animation less
mechanical, we can use an easing function to make the animation start gradually, then pick up speed.

8) In the Objects and Timeline pane, select the Direction property of the effect.

9) In the Properties pane, set the EasingFunction to "Power In".

10)Select the Opacity property and set the EasingFunction to "Power In".

11)Build the theme assembly in Expression Blend using the menu Project > Build Project or press Ctrl-
Shift-B.

RadControls for Silverlight192

© 2011 Telerik Inc.

12)Run the Visual Studio project that applies the theme and observe the new animated effects when the
mouse passes over the button.

6.7 Wrap Up

In this chapter you learned how Telerik themes are used with RadControls and other Silverlight elements to
create a uniform look-and-feel for your application. First you applied predefined themes to RadControls and
observed how themes can be changed without otherwise altering target elements. You learned how themes
are distributed and applied to elements in XAML and in the code behind. You applied themes to an entire
application and to individual elements in the application. You will also created a custom theme and learned
the syntax for applying the theme.

In the "Modifying Themes" section of the chapter you learned about the "Themes" solution and its structure.
You modified theme brushes to skin the theme with a new color set. You applied the modified theme to the
UI in a Visual Studio project. Finally, you expanded this example to add effects and animation to a
RadButton control.

Part

VII
Localization

RadControls for Silverlight194

© 2011 Telerik Inc.

7 Localization

7.1 Objectives

In this chapter you will learn how to localize your applications using the Telerik LocalizationManager class.
You will learn how to retrieve translations from resource files and from custom storage. You will assign keys
to translations in both XAML and in code.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Localization\Localization.sln

7.2 Overview

You may want your application to reflect some particular language, dialect or professional terminology.
Localization is a way to present your software product in a given language or culture that doesn't require
changes in the application itself. The translations are kept separate from application, allowing new
translations to be added. The language of the application can be changed on-the-fly so that buttons, titles,
column headings and other content will display in the appropriate language. The screenshot below shows
RadScheduler localized for Spanish.

Localization 195

© 2011 Telerik Inc.

7.3 Getting Started

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

c) Telerik.Windows.Themes.Windows7

4) In the Solution Explorer, right-click the Silverlight project and select Add > New Item... from the
context menu. Select the "Resources File" template, name it "Resources.resx" and click the OK
button.

5) Add a second resource file to the project and name it Resources.fr.resx.

RadControls for Silverlight196

© 2011 Telerik Inc.

6) In the Solution Explorer, drag both files to the Properties folder.

7) In the Solution Explorer, double-click Resources.resx and edit the file to include the following keys and
values.

8) In the Solution Explorer, double-click Resources.fr.resx and edit the file to include the following keys
and values.

9) Open the project file for the Silverlight project (i.e. "myProject.csproj") in Notepad. Locate the
SupportedCultures element and include a semi-colon delimited list of culture codes that you intend to
localize for. In this walk through the languages are English and French i.e. "en;fr".

<SupportedCultures>en;fr</SupportedCultures>

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags.

<StackPanel Orientation="Horizontal">
 <!--Print Button-->
 <!--Reports List-->
</StackPanel>

Localization 197

© 2011 Telerik Inc.

3) Drag a RadButton from the Toolbox to a point just below the "<!--Print Button-->" comment. Add a
LocalizationManager.ResourceKey attached property and assign it "ButtonPrintContent" (matching
the resource key of the same name). Set the VerticalAlignment to "Top", Margin to "10" and
Padding to "5".

<!--Print Button-->
<telerik:RadButton
 telerik:LocalizationManager.ResourceKey="ButtonPrintContent"
 VerticalAlignment="Top" Margin="10" Padding="5"></telerik:RadButton>

4) Drag a RadComboBox from the Toolbox to a point just below the "<!--Reports List-->" comment.
Replace the element with the XAML below. Notice that each of the RadComboBoxItem elements has
its own LocalizationManager.ResourceKey property defined. Each of the ResourceKey assignments
exactly matches keys in the two resource files.

<!--Reports List-->
<telerik:RadComboBox VerticalAlignment="Top" Margin="10">
 <telerik:RadComboBoxItem
 telerik:LocalizationManager.ResourceKey="ReportProductList" />
 <telerik:RadComboBoxItem
 telerik:LocalizationManager.ResourceKey="ReportProductNotInStock" />
 <telerik:RadComboBoxItem
 telerik:LocalizationManager.ResourceKey="ReportProductTop100" />
</telerik:RadComboBox>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) Telerik.Windows.Controls

2) Replace the constructor with the code below. Notice that the DefaultResourceManager points to the
Resources.ResourceManager. The file name "Resources" is arbitrary and can be whatever you like.
The DefaultCulture is set to the French culture. All of this code needs to happen before the call to
InitializeComponent().

Public Sub New()
 CType(New Windows7Theme(), Windows7Theme).IsApplicationTheme = True
 LocalizationManager.DefaultResourceManager = My.Resources.ResourceManager
 LocalizationManager.DefaultCulture = New CultureInfo("fr")

 InitializeComponent()
End Sub

RadControls for Silverlight198

© 2011 Telerik Inc.

public MainPage()
{
 new Windows7Theme().IsApplicationTheme = true;
 LocalizationManager.DefaultResourceManager =
 Properties.Resources.ResourceManager;
 LocalizationManager.DefaultCulture =
 new CultureInfo("fr");

 InitializeComponent();
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

7.4 Control Details

7.4.1 LocalizationManager

Telerik handles localization through the LocalizationManager class from the Telerik.Windows.Controls
assembly. LocalizationManager can work with almost any storage and retrieval scenario and apply it to any
Silverlight element. Currently, the LocalizationManager is designed to assign translations to Silverlight
elements only, not to HTML that may be on the host page.

You can store your localized content in either resource files or in any custom storage (database, web
service, isolated storage, etc). Translations are attached to Silverlight elements through keys that can be
assigned in XAML or in code behind.

Localization 199

© 2011 Telerik Inc.

7.4.2 Resource File Storage

Configuring LocalizationManager to retrieve the correct resources involves assigning a ResourceManager
to provide resources and a CultureInfo that points to a culture specific version of a resource file. You can
get this done by creating a LocalizationManager instance and assigning the Manager and Culture
properties or you can avoid creating an instance by assigning the static DefaultResourceManager and
DefaultCulture properties. Both techniques are shown below.

LocalizationManager.Manager = New LocalizationManager() With { _
.ResourceManager = My.Resources.ResourceManager, _
.Culture = New CultureInfo("fr")}
'... or
LocalizationManager.DefaultResourceManager = My.Resources.ResourceManager
LocalizationManager.DefaultCulture = New CultureInfo("fr")

LocalizationManager.Manager = new LocalizationManager()
{
 ResourceManager = Properties.Resources.ResourceManager,
 Culture = new CultureInfo("fr")
};
//... or
LocalizationManager.DefaultResourceManager = Properties.Resources.ResourceManager;
LocalizationManager.DefaultCulture = new CultureInfo("fr");

 Notes

You can skip assigning the Culture or DefaultCulture properties and the current UI culture will be
used.

If you use culture settings to determine the correct resource file, you must also modify a
SupportedCultures element in your project file. To do this, open your project "*.csproj" file as a text file,
locate the SupportedCultures element and include a semi-colon delimited list of culture codes that you
intend to localize for. In the example below, languages are English, German and French.

<SupportedCultures>en;de;fr</SupportedCultures>

RadControls for Silverlight200

© 2011 Telerik Inc.

7.4.3 Custom Storage

Resource files are effective for many uses, but you may need to store localization content in another
medium such as a database or from a web service. For example you might want to leverage an existing
database already containing a large number of translations. To introduce your own custom logic, descend
from LocalizationManager and override the GetStringOverride() method. Use the "key" parameter passed
in to determine the item being localized and return your translated value using any mechanism that suits
your purpose. The example below simply returns Swedish strings for the given key, but you can use any
custom storage and retrieval inside this method.

Partial Public Class MainPage
 Inherits UserControl
 Public Sub New()
 LocalizationManager.Manager = New MyLocalizationManager()
 InitializeComponent()
 End Sub
End Class

Public Class MyLocalizationManager
 Inherits LocalizationManager
 Public Overrides Function GetStringOverride(ByVal key As String) As String
 ' your custom logic here
 Select Case key
 Case "ButtonPrintContent"
 Return "Skriva ut rapporter"
 Case "ReportProductList"
 Return "Produktlista"
 Case "ReportProductNotInStock"
 Return "Produkter ej i lager"
 Case "ReportProductTop100"
 Return "Översta One Hundred produkter"
 End Select
 Return MyBase.GetStringOverride(key)
 End Function
End Class

Localization 201

© 2011 Telerik Inc.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 LocalizationManager.Manager = new MyLocalizationManager();
 InitializeComponent();
 }
}

public class MyLocalizationManager : LocalizationManager
{
 public override string GetStringOverride(string key)
 {
 // your custom logic here
 switch (key)
 {
 case "ButtonPrintContent": return "Skriva ut rapporter";
 case "ReportProductList": return "Produktlista";
 case "ReportProductNotInStock": return "Produkter ej i lager";
 case "ReportProductTop100": return "Översta One Hundred produkter";
 }
 return base.GetStringOverride(key);
 }
}

The running Silverlight application is identical to the example in "Getting Started" but with Swedish content.

 Notes

You can call the GetStringOverride() method directly if you need a translated string for some
other purpose than assigning to an element.

7.4.4 Assigning Resources to Elements

Use the attached ResourceKey property to identify the specific resource that should be applied to an
element. The example below shows the XAML syntax where "telerik" is an XML namespace that points to
Telerik.Windows.Controls.

<telerik:RadButton telerik:LocalizationManager.ResourceKey="ButtonPrintContent" />

RadControls for Silverlight202

© 2011 Telerik Inc.

In code, use the SetResourceKey() method and pass the element to be localized and the key name. The
example below is identical to the previous XAML-only example.

Public Sub New()
 InitializeComponent()
 LocalizationManager.SetResourceKey(btnPrint, "ButtonPrintContent")
End Sub

public MainPage()
{
 InitializeComponent();
 LocalizationManager.SetResourceKey(btnPrint, "ButtonPrintContent");
}

The mechanism works against any Silverlight element, not just RadControls. For example, you could
localize a window title, a standard button or a tool tip.

<Button>
 <ToolTipService.ToolTip>
 <ToolTip telerik:LocalizationManager.ResourceKey="MyKey" />
 </ToolTipService.ToolTip>
</Button>

7.4.5 Using Predefined Localization

Several of the RadControls are localized, right out of the box including RadUpload, RadTreeView,
RadMediaPlayer, RadColorSelector, RadColorPicker, RadScheduler and RadGridView.

7.5 Wrap Up

In this chapter you learned how to localize your applications using the Telerik LocalizationManager class.
You learned how to retrieve translations from resource files and using any custom storage mechanism. You
also learned how to assign translation keys in both XAML and in code.

Part

VIII
UI Automation Support

RadControls for Silverlight204

© 2011 Telerik Inc.

8 UI Automation Support

8.1 Objectives

In this chapter you will learn how RadControls for Silverlight provides UI Automation Support. First you will
see how the Microsoft UI Automation Verify tool is used to locate RadControls elements and spelunk the
element's properties and events. You will use AutomationProperties to support accessible applications in a
Silverlight application. You will also learn how to use AutomationPeer descendents to automate RadControl
elements.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\UI_Automation\UI_Automation.sln

8.2 Overview

Applications that speak to the widest possible audience need to allow their user interface (UI) elements to
be automated. Making your applications accessible means thinking outside the visible rectangle to include
other means of communication. Your application may be read and interacted with using alternatives such as
Braille output, screen readers, head tracking or sip & puff devices to name a few.

Microsoft UI Automation (UIA) allows programmatic access to user interface elements that enable
accessibility tools, such as screen readers, to provide information to end users and manipulate the UI
without requiring the use of standard input devices. UIA masks differences between frameworks, exposing
every piece of UI to client applications. UIA also allows automated test scripts to interact with the UI.

RadControls for Silverlight has excellent UI Automation Support that enables deep UI testing and control
from accessibility tools. We can see the support in action using the UI Automation Verify tool from
Microsoft. The tool and associated resources can be downloaded at:

http://www.codeplex.com/UIAutomationVerify

Lets use the tool to tour a simple application that contains a single RadNumericUpDown control. The XAML
below shows that the current Value property is "10" that the Minimum and Maximum are "1" and "100".

<Grid x:Name="LayoutRoot">
 <telerik:RadNumericUpDown x:Name="myUpdownControl" Value="10"
 Minimum="1" Maximum="100" HorizontalAlignment="Left"
 VerticalAlignment="Top" Margin="20" ></telerik:RadNumericUpDown>
</Grid>

When you first run the tool, you can set the Mode > Always On Top menu option to make it easier to view
the browser and the tool at the same time. Also turn on Mode > Focus Tracking so that the tool will
automatically find elements as they get focus. After you run the Silverlight application, simply click on it.
The focus rectangle generated by the tool will let you know what element is being examined. When you
click on the edit box of the RadNumericUpDown, the "Automation Elements Tree" navigates to the edit
control.

http://www.codeplex.com/UIAutomationVerify

UI Automation Support 205

© 2011 Telerik Inc.

The "Properties" will display useful information about the selected element including General Accessibility
(accelerator keys, help text, etc), Identification properties (hWnd, AutomationId, ClassName and
ControlType), Patterns to expose control functionality independent of the control type or appearance
(TextPattern, RangeValuePattern, ValuePattern, etc.), State (HasKeyBoardFocus, IsEnabled) and
Visibility (BoundingRectangle, IsOffScreen).

You can directly interact with elements using patterns. If you edit the SetValue of the ValuePattern, the
value in the Silverlight application is modified to match.

The UI Automation tool also includes a set of generic tests that can be run against the selected element or
against an element and all of its children. These are fairly basic tests and aren't designed to test the
functionality of your application, but instead check on low level element functionality, e.g. can we set focus
to the control.

RadControls for Silverlight206

© 2011 Telerik Inc.

The Test Results pane publishes a summary of the results and allows you to output the log of results as
XML.

If you follow the links and drill into the test detail you can see what classes and methods were used to run
the tests.

.

UI Automation Support 207

© 2011 Telerik Inc.

8.3 Getting Started

Much of the automation support is built-in and doesn't require extra work on your part. But you can provide
richer semantics that span a wider range of interaction using the static AutomationProperties class. With
AutomationProperties you can set:

Name: The name of the element. A screen reader will typically read off this name.

HelpText: This text is semantically equivalent to a tool tip.

AcceleratorKey/AccessKey: These properties are both strings that indicate keyboard shortcuts, such
as "CTRL-C" for a copy operation.

IsRequiredForForm: When true indicates that the element is required.

ItemStatus: This property is used to get information about an item in a list, tree view, grid or other
collection container. ItemStatus is string that indicates the elements status, for example an item being
retrieved from a database might read "Loading...".

ItemType: This property is used to get information about an item in a list, tree view, grid or other
collection container. ItemType is a string that describes the nature of the item. For example, in a file list
ItemType might be "document" or "folder".

LabeledBy: This property points to an element that is the text label for the element being described.

The walk through below displays a RadComboBox where both the combo box and its items are decorated
with AutomationProperties.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags.

<StackPanel>
 <!--TextBlock "label"-->
 <!--RadComboBox with list of print choices-->
</StackPanel>

RadControls for Silverlight208

© 2011 Telerik Inc.

3) Replace the comment "<!--TextBlock 'label'-->" with the XAML below. The TextBlock has an added
AutomationProperties.Name attached property.

<!--TextBlock "label"-->
<TextBlock AutomationProperties.Name="tbPrintComboBox" Text="Print Choices:" />

4) Drag a RadComboBox from the Toolbox to a point underneath the "<!--RadComboBox with list of print

choices-->" comment. Replace the RadComboBox element with the XAML below. The RadComboBox
has AutomationProperties defined for the Name and HelpText. Also notice that a SelectionChanged
event handler is included that we will code later.

<!--RadComboBox with list of print choices-->
<telerik:RadComboBox x:Name="cbPrintChoices"
 AutomationProperties.Name="PrintComboBox"
 AutomationProperties.HelpText="Print Choices"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 SelectionChanged="RadComboBox_SelectionChanged">

</telerik:RadComboBox>

5) Add three RadComboBoxItem elements inside the RadComboBox element begin and end tags. Each
item will contain the AutomationProperties HelpText and AcceleratorKey.

<telerik:RadComboBoxItem Content="Fast"
 AutomationProperties.HelpText="Fast Economical Printing"
 AutomationProperties.AcceleratorKey="F" />
<telerik:RadComboBoxItem Content="Green"
 AutomationProperties.HelpText="Paper Saving Printing"
 AutomationProperties.AcceleratorKey="G" />
<telerik:RadComboBoxItem Content="Photo"
 AutomationProperties.HelpText="Photo Quality Printing"
 AutomationProperties.AcceleratorKey="P" />

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) Telerik.Windows.Controls

b) System.Windows.Automation

2) In the constructor for the UserControl, add a line of code below the InitializeComponent() method call to
set the "LabeledBy" element. The first parameter is the element being labeled and the second, the
label element.

UI Automation Support 209

© 2011 Telerik Inc.

Public Sub New()
 InitializeComponent()

 AutomationProperties.SetLabeledBy(Me.cbPrintChoices, Me.tbPrintComboBox)
End Sub

public MainPage()
{
 InitializeComponent();

 AutomationProperties.SetLabeledBy(this.cbPrintChoices,
 this.tbPrintComboBox);
}

3) Handle the RadComboBox SelectionChanged event to react as items are selected.

Private Sub RadComboBox_SelectionChanged(_
ByVal sender As Object, ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 If e.AddedItems.Count > 0 Then
 Dim text As String = (TryCast(e.AddedItems(0), RadComboBoxItem)).Content.ToString()
 MessageBox.Show(text)
 End If
End Sub

private void RadComboBox_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 if (e.AddedItems.Count > 0)
 {
 string text =
 (e.AddedItems[0] as RadComboBoxItem).Content.ToString();
 MessageBox.Show(text);
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight210

© 2011 Telerik Inc.

Test Application Features

1) Try pressing the accelerator keys "F", "G" and "P". The corresponding items should be selected.

UI Automation Support 211

© 2011 Telerik Inc.

Ideas for Extending This Example

If you download the "UI Automation Verify Tool", run it and locate the RadComboBox, there's quite a bit of
information available now. We can see in the "General Accessibility" section that the HelpText is populated
and that LabeledBy points back to the text of the TextBlock above the combo box.

The Identification section has the automation Name, the ClassName "RadComboBox", ControlType and
FrameworkId of "Silverlight". Notice that the IsContentElement (Typically FrameworkElement descendant)
and IsControlElement (Control descendant) properties are both set True.

If you navigate to one of the RadComboBoxItem elements, the UI Automation Verify Tool displays the
AcceleratorKey and HelpText.

RadControls for Silverlight212

© 2011 Telerik Inc.

8.4 Automating

In addition to using the AutomationProperties, you can use the descendents of the abstract
AutomationPeer class to actually automate Silverlight elements. AutomationPeer has a number of
properties and methods of interest, such as how to focus on an element, how to get AutomationProperties,
how to raise automation events, execute patterns and get references to parent and child elements. Note:
This would not be your first stop for things like setting values or opening a combo box. You would use the
control's API for that. These methods are intended for applications that require generalized automation
functionality such as accessibility and testing applications.

The example below builds off the Getting Started example and adds a single button that automates the
RadComboBox. To do this, you can use the RadComboBoxAutomationPeer CreatePeerForElement()
method and pass the RadComboBox element you wish to automate. As you might guess, there are
AutomationPeer descendents implemented for other Silverlight elements and for RadControls elements.
This particular peer has Expand() and Collapse() methods that can be called.

Private Sub btnOpen_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim peer As RadComboBoxAutomationPeer = _
TryCast(RadComboBoxAutomationPeer.CreatePeerForElement(cbPrintChoices), _
RadComboBoxAutomationPeer)
 peer.Expand()
End Sub

private void btnOpen_Click(object sender, RoutedEventArgs e)
{
 IExpandCollapseProvider peer =
 RadComboBoxAutomationPeer.CreatePeerForElement(cbPrintChoices)
 as IExpandCollapseProvider;
 peer.Expand();
}

The running Silverlight application looks like the screenshot below:

UI Automation Support 213

© 2011 Telerik Inc.

8.5 Wrap Up

In this chapter you learned how RadControls for Silverlight provides UI Automation Support. First you saw
how the Microsoft UI Automation Verify tool is used to locate RadControls elements and spelunk the
automation information. In a standard Windows application you used AutomationProperties to support
accessible applications. You will also learned how to use AutomationPeer descendents to automate
RadControl elements.

Part

IX
Input Controls

Input Controls 215

© 2011 Telerik Inc.

9 Input Controls

9.1 Objectives

This chapter introduces controls for gathering user input, including a masked text box for restricting entry to
predefined patterns, a set of "UpDown" controls for entering numeric or other input through repeater buttons,
a set of color picking controls for selecting from a predefined palette of colors and a slider control for
choosing values within a range.

You'll learn how the masked text box handles numeric, date/time and developer-defined formats using
predefined masks or custom masks. We'll look at the important events for retrieving the user entered value
and how to retrieve the value combined together with the mask. You will also see how to localize the
masked text box.

In the section on "UpDown" controls you'll see how the numeric up-down control inherits from the
RangeBase class. You'll learn the key common properties and events for both controls. We will discuss the
key numeric up-down control ValueFormat property and some special case issues such as scrolling
through integers. You will learn how to format numeric entry for data that uses custom units.

We will review three different types of color pickers along with their common properties and events. We will
make use of the Silverlight Toolkit and the ObjectCollection class to define a custom palette of colors in
XAML and will also define a custom palette in code. You'll learn how to customize text labels for elements
of a color choosing control and how to hide specific elements of these controls.

The last part of this chapter will deal with how the slider control is used to pick a value within a range or a
range within a range. We will talk about the basic structure and parts of a slider, the slider's default
behavior, how to retrieve new and previous values and how to control selection ranges. We will pay particular
attention to how tick marks are placed along the slider and how to control tick mark frequency and visibility.
We will delve a little deeper into how templates allow fine-tune control over each tick mark, how to use
binding in templates to show data in a tick mark and finally how IValueConverter is used for highly
customized binding scenarios.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Input\Input.sln.

RadControls for Silverlight216

© 2011 Telerik Inc.

9.2 Overview

Input controls make it easier for your end user to provide the right information to your application.
RadMaskedTextBox restricts entry to date time, numeric and customized patterns. RadSlider allows
selection from a defined range using an intuitive interface with one or two slider buttons. The up-down
controls facilities paging through numbers or any custom series of values. Using a color picker the user can
select from a configurable palette of colors.

Input Controls 217

© 2011 Telerik Inc.

9.3 Getting Started

In this lab you will use a sampling of each input control type with some basic settings, then react to
changing values using the primary events for each control. You will also apply a predefined theme to each of
the RadControls: RadMaskedTextBox, RadColorPicker, RadNumericUpDown and RadSlider. Later in
this chapter we will show a wider range of functionality available for each control.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type,
then select the Silverlight Application template. Provide a unique name for the project and click the
OK button.

Figure 1

RadControls for Silverlight218

© 2011 Telerik Inc.

2) In the "New Silverlight Application" dialog select "Host the Silverlight application in a new Web site",
give the project a unique name and select the "ASP.NET Web Application Project" New Web Project
Type. Click OK to close the dialog and create the project.

Figure 2

XAML Editing

1) Use the Solution Explorer to open the MainPage.xaml file for editing.

2) Replace the <Grid> tag named "LayoutRoot" with the XAML markup below. This will setup a basic grid
with five rows and three columns. XML comments such as "<!--Title-->" will mark where you can paste
additional XAML markup in later steps.

Input Controls 219

© 2011 Telerik Inc.

<Grid
 x:Name="LayoutRoot"
 Background="White"
 Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <!--Title-->

 <!--Masked Edit Box-->

 <!--Numeric Up Down-->

 <!--Color Picker-->

 <!--Slider-->

</Grid>

3) Replace the XAML comment "<!--Title-->" with the markup below. This step will add a TextBlock control
that displays the title "Preferences" at the top of the page. Notice the Grid.Row and Grid.Column that
define where the TextBlock should be displayed within the grid.

<!--Title-->

<TextBlock
 Grid.Row="0"
 Grid.Column="0"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 FontWeight="Bold"
 Margin="5"
 MinHeight="25">
 Preferences
</TextBlock>

RadControls for Silverlight220

© 2011 Telerik Inc.

4) Replace the XAML comment "<!--Masked Edit Box-->" with the markup below. This step will add a
TextBlock with text "IP Address".

<!--Masked Edit Box-->

<TextBlock
 Grid.Row="1"
 Grid.Column="0"
 HorizontalAlignment="Right"
 VerticalAlignment="Top"
 Padding="0,0,10,0">
IP Address:
</TextBlock>

5) Drag a RadMaskedTextBox control from the Toolbox to the XAML, just below the <TextBlock> tag
defined in the previous step. This step will include a xml name space reference to the assembly
containing RadMaskedTextBox.

Figure 3

6) Replace the RadMaskedTextBox tag with the XAML markup below. This step defines properties for the
RadMaskedTextBox. The most important properties here are "Mask" that determines what k ind of input
will be accepted and "MaskType" that defines how the mask is interpreted. This particular mask will
allow twelve numeric characters separated by literal "." characters, e.g. "1234.5678.9012.1234". Also
notice that we've supplied a "Name" attribute so we can refer to the RadMaskedTextBox in code.

Input Controls 221

© 2011 Telerik Inc.

<telerik:RadMaskedTextBox
 Grid.Row="1"
 Grid.Column="1"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Name="tbIP"
 Mask="###.###.###.###"
 MaskType="Standard">
</telerik:RadMaskedTextBox>

7) Below the RadMaskedTextBox add the TextBlock tag below. This TextBlock will be used later to
display new values as the user types into the RadMaskedTextBox.

<TextBlock
 Name="tbNewIP"
 Margin="10,0,0,0"
 Grid.Row="1"
 Grid.Column="2"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
</TextBlock>

8) Replace the comment "<!--Numeric Up Down-->" with the XAML below. This step will add a TextBlock
that displays a title "Backup Disk Percentage" and will appear just above a RadNumericUpDown
control.

<TextBlock
 Grid.Row="2"
 Grid.Column="0"
 HorizontalAlignment="Right"
 VerticalAlignment="Top"
 Padding="0,0,10,0">
 Backup Disk Percentage:
</TextBlock>

RadControls for Silverlight222

© 2011 Telerik Inc.

9) Drag a RadNumericUpDown control from the Toolbox to the XAML, just below the TextBlock defined
in the previous step. Set the Name attribute to "nupBackupDiskPercentage", Grid.Row ="2", Grid.
Column="1", HorizontalAlignment="Left" and VerticalAlignment="Top". Add a ValueFormat
attribute and notice the IntelliSense list of valid values when you first type the equal sign ("="). Select
"Percentage" from the list.

Figure 4

10)Below the RadNumericUpDown, add the TextBlock tag shown below. The TextBlock will be used to
display value changes in the RadNumericUpDown control.

<TextBlock
 Name="tbNewPercentage"
 Margin="10,0,0,0"
 Grid.Row="2"
 Grid.Column="2"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
</TextBlock>

11)Replace the "<!--Color Picker-->" comment with the XAML shown below. This step creates a
TextBlock with text "Font Color:" that will appear above a RadColorPicker control.

<!--Color Picker-->

<TextBlock
 Grid.Row="3"
 Grid.Column="0"
 HorizontalAlignment="Right"
 VerticalAlignment="Top"
 Padding="0,0,10,0">
 Font Color:
</TextBlock>

12)Drag a RadColorPicker control from the Toolbox to the XAML, just below the TextBlock defined in the
previous step. Set the Name attribute to "cpFont", Grid.Row = "3", Grid.Column = "1" and
HorizontalAlignment = "Left".

Input Controls 223

© 2011 Telerik Inc.

13)Add an <Ellipse> tag below the RadColorPicker. The ellipse will display the color selected from the
RadColorPicker.

<Ellipse
 Name="elNewColor"
 Margin="10,0,0,0"
 Grid.Row="3"
 Grid.Column="2"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Width="20"
 Height="20">
</Ellipse>

14)Replace the comment "<!--Slider-->" with the TextBlock defined below. The TextBlock will add a label
"Volume Range:" above a RadSlider control.

<!--Slider-->

<TextBlock
 Grid.Row="4"
 Grid.Column="0"
 HorizontalAlignment="Right"
 VerticalAlignment="Top"
 Padding="0,0,10,0">
 Volume Range:
</TextBlock>

15)Drag a RadSlider control from the Toolbox to the XAML, just below the TextBlock defined in the
previous step. Set the Name attribute to "slVolume", Grid.Row="4" and Grid.Column="1". Also set
the following RadSlider-specific attributes: Minimum="1", Maximum="10", SelectionStart="2",
SelectionEnd="8", EnableSideTicks="True", TickFrequency="1", TickPlacement="BottomRight",
IsSelectionRangeEnabled="True" and HandlesVisibility="Visible".

16)Below the RadSlider add a TextBlock as defined below. This TextBlock will be used to display the
SelectionStart and SelectionEnd values as the slider is moved by the user.

<TextBlock
 Name="tbNewVolume"
 Margin="10,0,0,0"
 Grid.Row="4"
 Grid.Column="3"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
</TextBlock>

RadControls for Silverlight224

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Figure 5

Test Application Features

Experiment with the RadMaskedTextBox entry. Attempt to enter other than numeric characters.

Use the RadNumericUpDown control using the buttons, mouse, mouse wheel, and direct keyboard
entry.

Drop down the RadColorPicker and select from the Standard or Theme Colors.

Use the RadSlider control by way of clicking the +/- handles at the extreme ends of the slider using the
mouse, holding down the mouse outside the thumbs, dragging the thumbs, dragging the area between
the two thumbs and by using the mouse wheel.

Code Behind

The next step is to attach event handlers to the input controls and react to this feedback within the code
behind.

1) Navigate back to the RadMaskedTextBox in MainPage.xaml. Enter a new line inside the
RadMaskedTextBox tag and click Ctrl-Spacebar to activate IntelliSense. Locate the ValueChanged
event and press Enter to add it to the XAML.

Input Controls 225

© 2011 Telerik Inc.

Figure 6

2) IntelliSense will display an option to add "<New Event Handler>". Press Enter to create the new
event handler.

Figure 7

RadControls for Silverlight226

© 2011 Telerik Inc.

3) Right-click the new event handler and select "Navigate to Event Handler" from the context menu.
This step will take you to the code-behind for the event handler.

Figure 8

4) Replace the code-behind for the event handler with the code below. This event handling code
corresponds to the ValueChanged event you defined in the XAML for the previous step. In this code we
cast "sender" to be the RadMaskedTextBox, get its value property and display it in the TextBlock of
the right-most column. Whenever the user types a new character, the ValueChanged event fires and
this code re-displays the value.

Private Sub RadMaskedTextBox_ValueChanged(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 tbNewIP.Text = _
String.Format("Value: {0}", (TryCast(sender, RadMaskedTextBox)).Value)
End Sub

private void RadMaskedTextBox_ValueChanged(
 object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 tbNewIP.Text = String.Format("Value: {0}",
 (sender as RadMaskedTextBox).Value);
}

5) The reference to RadMaskedTextBox in the code-behind will be underlined in red, signalling an error.
This is because there is no namespace in scope that defines RadMaskedTextBox. To fix this, left-click
the red underline and look for a dark underline indicator at the end of "RadMaskedTextBox".

Input Controls 227

© 2011 Telerik Inc.

6) Move your mouse over the indicator until an icon with a drop-down arrow appears, click the arrow and
select "using Telerik.Windows.Controls;". This step will automatically add a reference to the "Telerik .
Windows.Controls" namespace.

Figure 9

7) Navigate back to MainPage.xaml and locate the RadNumericUpDown tag. Enter a new ValueChanged
attribute. Create a new event handler so that the XAML looks like the example below.

<telerik:RadNumericUpDown
 Name="nupBackupDiskPercentage"
 Grid.Row="2"
 Grid.Column="1"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 ValueFormat="Percentage"
 ValueChanged="RadNumericUpDown_ValueChanged"
 >
</telerik:RadNumericUpDown>

8) Navigate to the code-behind for the new ValueChanged event handler and replace the code with the
code below. The event arguments for this event handler include OldValue and NewValue properties.
Both properties are double types. In this event handler we are displaying the new value in a TextBlock.

Private Sub RadNumericUpDown_ValueChanged(_
ByVal sender As Object, _
ByVal e As System.Windows.RoutedPropertyChangedEventArgs(Of Double))
 tbNewPercentage.Text = String.Format("NewValue: {0}", e.NewValue)
End Sub

RadControls for Silverlight228

© 2011 Telerik Inc.

private void RadNumericUpDown_ValueChanged(
 object sender, System.Windows.RoutedPropertyChangedEventArgs<double> e)
{
 tbNewPercentage.Text =
 String.Format("NewValue: {0}", e.NewValue);
}

9) Navigate back to MainPage.xaml and locate the RadColorPicker tag. Enter a new
SelectedColorChanged attribute. Create a new event handler so that the XAML looks like the
example below.

<telerik:RadColorPicker
 Name="cpFont"
 Grid.Row="3"
 Grid.Column="1"
 HorizontalAlignment="Left"
 SelectedColorChanged="RadColorPicker_SelectedColorChanged"
 >
</telerik:RadColorPicker>

10)Navigate to the code-behind for the new SelectedColorChanged event handler and replace the code
with the code below. This step will create a new SolidColorBrush using the RadColorPicker's currently
selected color. The new brush is assigned to an Ellipse shape displayed in the right-most column of
the grid.

Private Sub RadColorPicker_SelectedColorChanged(_
ByVal sender As Object, ByVal e As EventArgs)

elNewColor.Fill = New SolidColorBrush(cpFont.SelectedColor)
End Sub

private void RadColorPicker_SelectedColorChanged(object sender, EventArgs e)
{
 elNewColor.Fill = new SolidColorBrush(cpFont.SelectedColor);
}

11)Verify that you have a reference to the System.Windows.Media namespace in the "Imports" (VB) or
"using" (C#) section of code.

12)Navigate back to MainPage.xaml and locate the RadSlider tag. Enter a new
SelectionRangeChanged attribute. Create a new event handler so that the XAML looks like the
example below.

Input Controls 229

© 2011 Telerik Inc.

<telerik:RadSlider
 Name="slVolume"
 Grid.Row="4"
 Grid.Column="1"
 Minimum="1"
 Maximum="10"
 SelectionStart="2"
 SelectionEnd="8"
 EnableSideTicks="True"
 TickFrequency="1"
 TickPlacement="BottomRight"
 IsSelectionRangeEnabled="True"
 HandlesVisibility="Visible"
 SelectionRangeChanged="RadSlider_SelectionRangeChanged">
</telerik:RadSlider>

13)Navigate to the code-behind for the new SelectionRangeChanged event handler and replace the code
with the code below. This step displays the upper and lower value of the two slider thumbs using the
event arguments NewValue.SelectionStart and NewValue.SelectionEnd properties.

Private Sub RadSlider_SelectionRangeChanged(_
ByVal sender As Object, _
ByVal e As System.Windows.RoutedPropertyChangedEventArgs(_
Of SelectionRangeChangedEventArgs))
 If tbNewVolume IsNot Nothing Then
 tbNewVolume.Text = _
String.Format("SelectionStart: {0} SelectionEnd: {1}", _
e.NewValue.SelectionStart, e.NewValue.SelectionEnd)
 End If
End Sub

private void RadSlider_SelectionRangeChanged(
 object sender,
 System.Windows.RoutedPropertyChangedEventArgs<SelectionRangeChangedEventArgs> e)
{
 if (tbNewVolume != null)
 {
 tbNewVolume.Text = String.Format("SelectionStart: {0} SelectionEnd: {1}",
 e.NewValue.SelectionStart, e.NewValue.SelectionEnd);
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight230

© 2011 Telerik Inc.

Figure 10

Theming

The last step in this exercise is to apply a theme to each of the input controls.

1) Navigate to the Solution Explorer in Visual Studio. Right-click the References node in the project
containing your MainPage.xaml file and select Add Reference.... In the "Add Reference" dialog, select
the "Browse" tag, locate the RadControls for Silverlight installation directory and select the Telerik.
Windows.Themes.Vista.dll assembly in the \Binaries\Silverlight directory. Press the OK button to
add the assembly.

Figure 11

Input Controls 231

© 2011 Telerik Inc.

2) In the MainPage.xaml, add the attribute 'telerik:StyleManager.Theme="Vista"' to each of the input

control tags (that includes RadMaskedTextBox, RadNumericUpDown, RadColorPicker and RadSlider).
Here's an example of what this looks like for the RadMaskedTextBox.

<telerik:RadMaskedTextBox
 Grid.Row="1"
 Grid.Column="1"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Name="tbIP"
 Mask="####.####.####.####"
 MaskType="Standard"
 ValueChanged="RadMaskedTextBox_ValueChanged"
 telerik:StyleManager.Theme="Vista"
 >
</telerik:RadMaskedTextBox>

3) Press Ctrl-F5 to run the application. The changes to the control can be very subtle depending on the
particular style and the version of the software. A text input may have slightly rounded corners with
subtle shading instead of an abrupt square of a solid color. More pronounced styles may include
complete changes in graphics for buttons and other visual elements of a given control.

9.4 Control Details

9.4.1 Masked Text Box

Use RadMaskedTextBox to validate user entry "up front". This control not only restricts entry to certain
predefined patterns but makes it easier for the user to figure out what data the application is asking for. This
help is provided courtesy of the Mask property that contains a set of characters to define the order and
content of allowed input. For example, a mask of "#####-####" could define a United States postal code
and looks something like this in the browser:

 The user can enter numbers only and automatically skips over the literal dash "-" symbol. The other key
property that makes RadMaskedTextBox so flexible is the MaskType property. MaskType determines how
the mask will be interpreted. MaskType can be one of four possible values:

MaskType Description

None If MaskType is set to "None", the RadMaskedTextBox does not validate and acts as a
standard text box for free-form entry.

Standard Use the Standard MaskType to define custom masks as in the previous "US Postal Code"
example.

Numeric Use predefined format codes to only allow currency, fixed point, decimal, percentages or
integers.

RadControls for Silverlight232

© 2011 Telerik Inc.

MaskType Description

DateTime Use predefined format codes for a wide range of date and time layouts. You can also use
format codes to create custom date formats.

Masks Cheat Sheet

You can use the tables below as a quick guide or check the help online for the latest information.

Standard Masks

Mask Allowed Input Example

Allows digit or
space, optional.
Plus (+) and
minus (-) signs are
also allowed.

<TextBlock
 Text="Zip Code:">
</TextBlock>
<telerik:RadMaskedTextBox
 MaskType="Standard"
 Mask="#####-####" >
</telerik:RadMaskedTextBox>

L Letter, required.
Restricts input to
the ASCII letters
a-z and A-Z. This
mask element is
equivalent to [a-
zA-Z] in regular
expressions.

<TextBlock
 Text="Enter your four character promotional code:">
</TextBlock>
<telerik:RadMaskedTextBox
 MaskType="Standard"
 Mask="LLLL"
 >
</telerik:RadMaskedTextBox>

a Any symbols <TextBlock
 Text="Product Key:">
</TextBlock>
<telerik:RadMaskedTextBox
 MaskType="Standard"
 Mask="aaaaa-aaaaa-aaaaa-aaaaa-aaaaa"
 >
</telerik:RadMaskedTextBox>

\ Escapes a mask
character, turning
it into a literal

<TextBlock
 Text="Chapter Number:">
</TextBlock>
<telerik:RadMaskedTextBox
 MaskType="Standard"
 Mask="\###"
 >
</telerik:RadMaskedTextBox>

| Accepts letters or
space, optional.

<TextBlock
 Text="Name:">
</TextBlock>
<telerik:RadMaskedTextBox
 MaskType="Standard"
 Mask="|||||||||||||||||||"
 >
</telerik:RadMaskedTextBox>

9 Digit, required.
This element will

<TextBlock
 Text="Page Number">

Input Controls 233

© 2011 Telerik Inc.

Mask Allowed Input Example

accept any single
digit between 0
and 9.

</TextBlock>
<telerik:RadMaskedTextBox
 MaskType="Standard"
 Mask="999"
 >
</telerik:RadMaskedTextBox>

Numeric Masks

Mask Allowed Input

c,C Currency

g,G,f,F Fixed point

n,N Decimal

p,P Percent

d,D Standard (integers)

You can also add a length specifier to any of the above masks. For example. "d5" accepts a five digit
integer.

Date/Time Masks

Mask Allowed Input Example

d Short date

D Long date

f Full date and time (long date, short time)

F Full date and time (long date, long time)

g General (short date, short time)

G General (short date, long time)

m,M Month day

r,R RFC1123

s Sortable Date/Time pattern

t Short time

T Long time

To completely customize the date mask, use a combination of the codes in the table below.

RadControls for Silverlight234

© 2011 Telerik Inc.

Mask Description

dd The numeric day of the month.

ddd The abbreviated day of the week name.

M The month name followed by the numeric day.

MM The numeric month

MMM The abbreviated name of the month.

MMMM The full name of the month.

y The full month name and year numeric

yy The year without the century.

yyyy The year in four digits, including the century.

h, hh The hour in a 12-hour clock.

H, HH The hour in a 24-hour clock.

m, mm The minute.

s, ss The second.

t The first character in the AM/PM designator.

tt The AM/PM designator.

Here is an example of using date/time formatting codes in combination to create a custom mask: "ddd -
MMMM - yyyy H:m:s tt". The result in the browser might look like this:

The user is able to use the mouse to put focus on one of the codes, e.g. the "MMMM" portion that shows
as "July", and then use the arrow keys to page through the months.

Properties and Events

Read the Value property to get the user entry without the mask. Use the MaskedText property to get both
the mask and the formatting characters.

In the "Getting Started" example you saw how the ValueChanged event responds as the user types in the
RadMaskedTextBox. The ValueChanging event lets you preview the NewValue and NewMaskedText
properties of the event arguments. The change can be canceled by setting the Handled argument property
to true. The example below prevents entry if the new value will be over 100.

Input Controls 235

© 2011 Telerik Inc.

Private Sub RadMaskedTextBox_ValueChanging(_
ByVal sender As Object, ByVal e As RadMaskedTextBoxValueChangingEventArgs)
 If e.NewValue.ToString().Length > 0 Then
 e.Handled = Convert.ToInt32(e.NewValue) > 100
 End If
End Sub

private void RadMaskedTextBox_ValueChanging(object sender,
 RadMaskedTextBoxValueChangingEventArgs e)
{
 if (e.NewValue.ToString().Length > 0)
 {
 e.Handled = Convert.ToInt32(e.NewValue) > 100;
 }
}

To localize the RadMaskedTextBox to a particular language and culture, set the Culture property to a
culture code at design time:

<telerik:RadMaskedTextBox
 Culture="fr-FR"
 MaskType="DateTime"
 Mask="D" >
</telerik:RadMaskedTextBox>

 ...or assign a new CultureInfo at run time:

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 tbCultureTest.Culture = New CultureInfo("fr-FR")
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 tbCultureTest.Culture = new CultureInfo("fr-FR");
}

Both the XAML markup and code-behind examples above show a long Date/Time in French:

RadControls for Silverlight236

© 2011 Telerik Inc.

Input Controls 237

© 2011 Telerik Inc.

Walk Through

In this lab you will use a sampling of each mask type with some basic settings, then react to changing
values using the primary events for RadMaskedTextBox.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

XAML Editing

1) Open the MainPage.xaml file for editing.

2) Replace the <Grid> tag named "LayoutRoot" with the XAML markup below. This will setup two nested
StackPanel controls inside the grid. The outermost stack panel will contain three RadMaskedTextBox
controls and the innermost stack panel will contain some TextBlock controls to display new values as
the user edits.

<Grid
 x:Name="LayoutRoot"
 Background="White">
 <StackPanel>

 <!--MaskType Standard-->

 <!--MaskType Numeric-->

 <!--MaskType DateTime-->

 <StackPanel
 Orientation="Horizontal">

 <!--Value-->

 <!--MaskedText-->

 </StackPanel>

 </StackPanel>
</Grid>

3) Locate the comment "<!--MaskType Standard-->" and drop a RadMaskedTextBox just below it. This step
will add the correct XAML name space assembly reference for RadMaskedTextBox.

RadControls for Silverlight238

© 2011 Telerik Inc.

4) Replace the RadMaskedTextBox with the XAML shown below. This step will add a TextBlock to act as a
label and a RadMaskedTextBox with MaskType = "Standard". The Mask will display an escaped literal
"#", followed by three alpha characters, a dash "-" and finally three more alpha characters. The
ValueChanged event handler will be common among all three RadMaskedTextBoxes and will be coded in
a later step.

<!--MaskType Standard-->

<TextBlock
 Text="Standard:">
</TextBlock>
<telerik:RadMaskedTextBox
 Margin="20"
 HorizontalAlignment="Left"
 MaskType="Standard"
 Mask="\#LLL-LLL"
 ValueChanged="ValueChangedHandler">
</telerik:RadMaskedTextBox>

5) Locate the comment "<!--MaskType Numeric-->" and add the XAML shown below. The
RadMaskedTextBox here has the MaskType set to "Numeric" with a mask of "p2", a percentage with two
places.

<!--MaskType Numeric-->

<TextBlock
 Text="Numeric Percentage:">
</TextBlock>
<telerik:RadMaskedTextBox
 Margin="20"
 HorizontalAlignment="Left"
 MaskType="Numeric"
 Mask="p2"
 ValueChanged="ValueChangedHandler">
</telerik:RadMaskedTextBox>

6) Locate the comment "<!--MaskType DateTime -->" and add the XAML shown below. The
RadMaskedTextBox here has the MaskType set to "DateTime" with a mask of "F" to designate a "Full"
date and time.

Input Controls 239

© 2011 Telerik Inc.

<!--MaskType DateTime-->

<TextBlock
 Text="DateTime: Full date and time">
</TextBlock>
<telerik:RadMaskedTextBox
 Margin="20"
 HorizontalAlignment="Left"
 MaskType="DateTime"
 Mask="F"
 ValueChanged="ValueChangedHandler">
</telerik:RadMaskedTextBox>

7) Locate the comment "<!--Value-->" and add the XAML shown below. The first TextBlock defined here
acts as a simple label. The second is named so we can update it with the latest value from the code-
behind.

<!--Value-->

<TextBlock
 Margin="10,0,0,0"
 Text="Value:">
</TextBlock>
<TextBlock
 Name="tbValue"
 Margin="10,0,0,0">
</TextBlock>

8) Locate the comment "<!--MaskedText-->" and add the XAML shown below.

<!--MaskedText-->

<TextBlock
 Text="MaskedText:"
 Margin="10,0,0,0">
</TextBlock>
<TextBlock
 Name="tbMaskedText"
 Margin="10,0,0,0">
</TextBlock>

RadControls for Silverlight240

© 2011 Telerik Inc.

9) Locate one of the RadMaskedTextBox controls (any of them will do), find the ValueChanged property,
right-click the "ValueChangedHandler" and select "Navigate to Event Handler" from the context menu.
Replace the event handler with the code below. The code casts "sender" as the RadMaskedTextBox that
has triggered this particular event, then assigns the Value and MaskedText to TextBlock controls in the
inner StackPanel. Notice that Value is an object type: depending on the MaskType, value may be a
string, double, or DateTime.

Private Sub ValueChangedHandler(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 Dim tb As RadMaskedTextBox = TryCast(sender, RadMaskedTextBox)
 tbValue.Text = tb.Value.ToString()
 tbMaskedText.Text = tb.MaskedText
End Sub

private void ValueChangedHandler(object sender,
 Telerik.Windows.RadRoutedEventArgs e)
{
 RadMaskedTextBox tb = sender as RadMaskedTextBox;
 tbValue.Text = tb.Value.ToString();
 tbMaskedText.Text = tb.MaskedText;
}

10)Add a Telerik.Windows.Controls namespace reference to your "Imports" (VB) or "uses" (C#) section of
code.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Input Controls 241

© 2011 Telerik Inc.

Test Application Features

Enter characters into the Standard masked text box.

Enter characters into the Numeric masked text box.

Enter characters into the DateTime masked text box.

Ideas for Extending This Example

Set focus on the first masked text of the page so the user can start typing immediately.

RadControls for Silverlight242

© 2011 Telerik Inc.

 Gotcha!

At the time of this writing, setting focus in Silverlight applications requires a work-around. First, you
need to set focus to the Silverlight Plugin, then you need to set focus to control itself. Set focus using
Dispatcher.BeginInvoke() to queue your code so that it occurs after the plugin has loaded.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 SetFocus(tbAirportCode)
End Sub

Private Sub SetFocus(ByVal control As Control)
 ' get focus inside the Silverlight plugin
 System.Windows.Browser.HtmlPage.Plugin.Invoke("focus")
 ' queue this call to occur after the plugin focus
 Dispatcher.BeginInvoke(Function() control.Focus())
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 SetFocus(tbAirportCode);
}

private void SetFocus(Control control)
{
 // get focus inside the Silverlight plugin
 System.Windows.Browser.HtmlPage.Plugin.Invoke("focus");
 // queue this call to occur after the plugin focus
 Dispatcher.BeginInvoke(delegate() { control.Focus(); });
}

Input Controls 243

© 2011 Telerik Inc.

9.4.2 Up Down Controls

The RadNumericUpDown control has a paired set of "repeat" buttons and can be used to increment and
decrement values and a text input element as well.

The story begins with the Telerik RadRangeBase abstract class. RadRangeBase represents an element
that has a value within a specific range such as a progress bar or slider control. RadUpDown,
RadNumericUpDown and RadSlider controls all ultimately descend from RadRangeBase. RadRangeBase
introduces LargeChange, SmallChange, Maximum, Minimum and Value properties and the
ValueChanged event. LargeChange determines the value change when the page up and down keys are
used and SmallChange is the value change when the arrow up and down keys are used.

RadNumericUpDown Properties

RadNumericUpDown adds the ability to display and format a value. The key properties added by
RadNumericUpDown are ValueFormat and NumberFormatInfo. ValueFormat is an enumeration that can be
Numeric, Currency or Percentage. NumberFormatInfo is a type from the System.Globalization
namespace that lets you fine-tune formatting and display depending on the culture. NumberFormatInfo
properties are clumped into prefixes that correspond to the ValueFormat setting, e.g. the number of decimal
digits is controlled by NumberDecimalDigits, CurrencyDecimalDigits and PercentageDecimalDigits.

If these formatting options aren't sufficient, you can assign a string to the CustomUnit property and the
string will be appended to the value automatically. For example, if you assigned Value = "3" and
CustomUnit = "Cases", the control will display "3 Cases". If you want to retrieve the formatted value, read
the ContentText property. To make the numeric up down control read-only set the IsEditable property to
false. You can set the ShowButtons property to false as well.

RadControls for Silverlight244

© 2011 Telerik Inc.

Walk Through

In this walk-through you will create a set of entries for price, quantity, discount and extended price. As the
values change, the extended price is calculated and placed in a read-only RadNumericUpDown.

1) Start with the previous RadUpDown project or a copy.

2) Open the MainPage.xaml file for editing.

3) Add a new StackPanel inside the StackPanel that already exists in this project. Notice that the
Orientation property is set to "Horizontal" so all the controls we add next will be arranged from left to
right in a line. The comments inside the StackPanel indicate where we will drop in groups of controls.

<StackPanel
 Orientation="Horizontal">
 <!--Price-->
 <!--Quantity-->
 <!--Discount-->
 <!--Extended Price-->
</StackPanel>

4) Locate the "<!--Price-->" comment and replace it with the XAML below. Notice that the ValueFormat is
"Currency". The NumberFormatInfo will be set later in the Loaded event of the user control.

<!--Price-->

<TextBlock
 Margin="5">Price:</TextBlock>
<telerik:RadNumericUpDown
 Name="tbPrice"
 Margin="5"
 HorizontalAlignment="Left"
 MinWidth="75"
 ValueFormat="Currency"
 Minimum="0"
 ValueChanged="RadNumericUpDown_ValueChanged">
</telerik:RadNumericUpDown>

 Gotcha!

As of this writing, the NumberFormatInfo properties can't be set properly in XAML. In this
exercise we will set the NumberFormatInfo properties in code.

5) Locate the "<!--Quantity-->" comment and replace it with the XAML below. Notice that the
ValueFormat is "Numeric", SmallChange is "1" and CustomUnit is "Items".

Input Controls 245

© 2011 Telerik Inc.

<!--Quantity-->

<TextBlock
 Margin="5">Quantity:</TextBlock>
<telerik:RadNumericUpDown
 Name="tbQuantity"
 Margin="5"
 HorizontalAlignment="Left"
 MinWidth="75"
 ValueFormat="Numeric"
 CustomUnit="Items"
 SmallChange="1"
 Minimum="0"
 Maximum="1000"
 ValueChanged="RadNumericUpDown_ValueChanged">
</telerik:RadNumericUpDown>

Tip!

To use integers in your RadNumericUpDown:

· Set ValueFormat = "Numeric"

· Set SmallChange = "1"

· In the code-behind set the NumberFormatInfo.NumberDecimalDigits to "0"

6) Locate the "<!--Discount-->" comment and replace it with the XAML below. Notice that the ValueFormat
is "Percentage".

<!--Discount-->

<TextBlock
 Margin="5">Discount:</TextBlock>
<telerik:RadNumericUpDown
 Name="tbDiscount"
 Margin="5"
 HorizontalAlignment="Left"
 MinWidth="75"
 ValueFormat="Percentage"
 ValueChanged="RadNumericUpDown_ValueChanged">
</telerik:RadNumericUpDown>

7) Locate the "<!--Extended Price-->" comment and replace it with the XAML below. Notice that the
ValueFormat is "Currency". Also notice that the IsEditable and ShowButtons properties are false to
make this a read-only control.

RadControls for Silverlight246

© 2011 Telerik Inc.

<!--Extended Price-->

<TextBlock
 Margin="5">Extended Price:</TextBlock>
<telerik:RadNumericUpDown
 Name="tbExtendedPrice"
 Margin="5"
 HorizontalAlignment="Left"
 MinWidth="75"
 IsEditable="False"
 ShowButtons="False"
 ValueFormat="Currency">
</telerik:RadNumericUpDown>

8) Locate the outermost <UserControl> tag and add a Loaded event and set the value to
"UserControl_Loaded". The XAML markup will look something like the example below.

<UserControl
...
Loaded="UserControl_Loaded">

9) Right-click the "UserControl_Loaded" event and select "Navigate to Event Handler" from the context
menu. Replace the event handler with the code below. Here we set the number of decimal digits for the
quantity to zero so that the control will be formatted as an integer. Also notice that we're setting the
price and extended price Maximum properties to the maximum allowed by the Double type.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 tbQuantity.NumberFormatInfo.NumberDecimalDigits = 0
 tbPrice.Maximum = Double.MaxValue
 tbExtendedPrice.Maximum = Double.MaxValue
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 tbQuantity.NumberFormatInfo.NumberDecimalDigits = 0;
 tbPrice.Maximum = Double.MaxValue;
 tbExtendedPrice.Maximum = Double.MaxValue;
}

Input Controls 247

© 2011 Telerik Inc.

10)Go back to the XAML and locate one of the ValueChanged properties, right-click and select "Navigate
to Event Handler" from the context menu. Replace the event handler with the code below. Here we
calculate an extended price, and subtract a discount if the user has entered a discount percentage.

Private Sub RadNumericUpDown_ValueChanged(ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.RadRangeBaseValueChangedEventArgs)
 If (tbQuantity IsNot Nothing) AndAlso (tbPrice IsNot Nothing) Then
 Dim extended As Double = CDbl(tbQuantity.Value) * CDbl(tbPrice.Value)
 If tbDiscount.Value > 0 Then
 Dim discount As Double = extended * CDbl(tbDiscount.Value)
 extended = extended - discount
 End If
 tbExtendedPrice.Value = extended
 End If
End Sub

private void RadNumericUpDown_ValueChanged(object sender,
 Telerik.Windows.Controls.RadRangeBaseValueChangedEventArgs e)
{
 if ((tbQuantity != null) && (tbPrice != null))
 {
 double extended = (double)tbQuantity.Value * (double)tbPrice.Value;
 if (tbDiscount.Value > 0)
 {
 double discount = extended * (double)tbDiscount.Value;
 extended = extended - discount;
 }
 tbExtendedPrice.Value = extended;
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Use the repeat buttons to change the price, quantity and discount.

RadControls for Silverlight248

© 2011 Telerik Inc.

9.4.3 Color Pickers

There are three color choosing controls currently in the Toolbox: RadColorPaletteView,
RadColorSelector and RadColorPicker. Since RadColorPicker has the superset of functionality in all the
color choosing controls, lets take a quick look at its structure:

Each color choosing control builds on the functionality of the previous:

RadColorPaletteView RadColorPaletteView is a simple grid of colors.

Assign a ColorPreset enumeration value to
the Palette property to display a ready-to-use
predefined set of colors such as GrayScale,
ReallyWebSafe, Office, etc.

Assign your own set of colors by binding the
ItemsSource property.

Get the selected color by handling the
SelectionChanged event and retrieving the
SelectedValue property. Note: you must cast
SelectedValue as a Color type to use it.

RadColorSelector RadColorSelector is a more complex grid of
colors that includes a "No Color" button, a
"Header palette" and a main palette. Here you
assign ColorPreset to the HeaderPalette,
MainPalette or StandardPalette properties.

To assign your own colors bind
HeaderPaletteItemsSource,
MainPaletteItemsSource or
StandardPaletteItemsSource.

To know when a new color is chosen, handle
the SelectedColorChanged event and
check the SelectedColor property.

Input Controls 249

© 2011 Telerik Inc.

 RadColorPicker RadColorPicker adds the ability to drop down the
selector. When a color is selected, the selector
rolls up and only the button with the new selected
color is displayed.

 Notes

Each of the controls above builds on the functionality of the previous control, but there is no direct
inheritance between these controls as of this writing.

Using ObjectCollection

Silverlight, unlike WPF, does not support ArrayList or any type that will easily let you define a list of objects
directly within XAML. To assign a list of any object in XAML you can use ObjectCollection which is included
in the "Toolkit" at http://silverlight.net/getstarted/. The Toolkit contains transitional controls, samples,
utilities and various goodies that haven't been incorporated to the base Silverlight product. Be aware that the
"Toolkit" is not the same as the "Developer Tools for Silverlight", where the latter contains the SDK,
Developer Runtime and the Visual Studio Project Templates.

Once you have the Tookit installed, you can find the binaries under:

\Program Files\Microsoft SDKs\Silverlight\v3.0\Toolkit\<version>\Bin

ObjectCollection is found in the System.Windows.Controls.Toolkit assembly. To use ObjectCollection, first
include a reference to this assembly in the Solution Explorer References node of your project. Then, in the
App.xaml, add a reference similar to the one below:

xmlns:controls=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit"

Then in your App.xaml markup, within the Application.Resources tag, add any number of custom
collections that can be referenced in your other XAML files. The collection below is named "FoodGroups"
and contains three String objects. The "sys" below stands for the System namespace that contains basic
CLR types and is found in the mscorlib.dll assembly.

http://silverlight.net/getstarted/

RadControls for Silverlight250

© 2011 Telerik Inc.

<Application.Resources>

 <controls:ObjectCollection
 x:Key="FoodGroups">
 <sys:String>Burgers</sys:String>
 <sys:String>Fries</sys:String>
 <sys:String>Soft Drinks</sys:String>
 </controls:ObjectCollection>

</Application.Resources>

You can reference the ObjectCollection using the name specified in the "x:Key" attribute using the binding
syntax below.

<telerik:RadComboBox
 ItemsSource="{Binding Source={StaticResource FoodGroups}}">

 Gotcha!

Be aware, due to the transitional nature of the toolkit, that this information is volatile and that the
naming, location and makeup of the toolkit may change.

Input Controls 251

© 2011 Telerik Inc.

Walk Through

This walk-through demonstrates how to respond to user selections for each color choosing control. The
exercise shows how to define a list of colors as a resource and assign in the XAML to a palette. You will
also see how a list of colors can be assigned programmatically to a palette.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

XAML Editing

1) From the Solution Explorer, open the App.xaml file for editing.

2) Add XML namespace references shown below to the App.xaml file. The Toolk it namespace location
may change in the future. See "Using ObjectCollection" above for more information.

xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit"
xmlns:media="clr-namespace:System.Windows.Media;assembly=System.Windows"

3) Replace the Application.Resources tag with the markup below:

<Application.Resources>
 <controls:ObjectCollection
 x:Key="SmokyMountain">
 <media:Color>#FFDDDDDD</media:Color>
 <media:Color>#FFCCCCFF</media:Color>
 <media:Color>#FFAAAAFF</media:Color>
 <media:Color>WhiteSmoke</media:Color>
 <media:Color>LightGray</media:Color>
 <media:Color>Gray</media:Color>
 <media:Color>#FFFFBBBB</media:Color>
 <media:Color>#FFEEAAAA</media:Color>
 <media:Color>#FFDDAAAA</media:Color>
 </controls:ObjectCollection>
</Application.Resources>

4) From the Solution Explorer, open the MainPage.xaml file for editing.

RadControls for Silverlight252

© 2011 Telerik Inc.

5) Insert the XAML below inside the Grid tag named "LayoutRoot". This step will setup the basic user
interface structure using StackPanels.

<StackPanel>

 <TextBlock
 Margin="5"
 FontWeight="Bold">Wall Color</TextBlock>

 <StackPanel
 Orientation="Horizontal">

 <!--RadColorPaletteView-->

 <Rectangle
 Name="rectWallColor"
 Width="50"
 Height="50">
 </Rectangle>

 </StackPanel>

 <TextBlock
 Margin="5"
 FontWeight="Bold">Cabinet Colors</TextBlock>

 <StackPanel
 Orientation="Horizontal">

 <!--RadColorSelector-->

 <Rectangle
 Name="rectCabinets"
 Width="50"
 Height="50"
 HorizontalAlignment="Left">
 </Rectangle>

 </StackPanel>

 <StackPanel
 Orientation="Horizontal">

 <TextBlock
 Margin="5"
 FontWeight="Bold">Appliance Color</TextBlock>

 <!--RadColorPicker-->

Input Controls 253

© 2011 Telerik Inc.

 <Rectangle
 Name="rectAppliance"
 Margin="5"
 Width="50"
 Height="50"
 HorizontalAlignment="Left">
 </Rectangle>

 </StackPanel>

 <!--Combined Colors-->

 <TextBlock
 Margin="5"
 FontWeight="Bold">Combined Colors</TextBlock>

 <StackPanel
 Orientation="Horizontal">

 <Rectangle
 Name="rectCombined"
 Margin="20"
 Width="150"
 Height="150"
 HorizontalAlignment="Left">
 </Rectangle>

 </StackPanel>

</StackPanel>

If you run the application now the web page looks something like this:

6) Drag a RadColorPaletteView control from the Toolbox to a place just under the comment "<!--
RadColorPaletteView-->". Set the following properties:

RadControls for Silverlight254

© 2011 Telerik Inc.

a) Name="cpvWallColor"

b) HorizontalAlignment="Left"

c) MaxWidth="200"

d) Margin="20, 5, 20, 5"

e) ItemsSource="{Binding Source={StaticResource SmokyMountain}}"

f) PaletteOrientation="Vertical"

g) PaletteColumnsCount="3"

h) SelectionChanged="RadColorPaletteView_SelectionChanged"

 Notes

In particular you should notice the ItemsSource property binding to the resource named
"SmokyMountain". This refers to the ObjectCollection you defined earlier in the App.xaml file.
Also notice the SelectionChanged event handler that we will define in a later step.

7) Drag a RadColorSelector control from the Toolbox to a place just under the comment "<!--
RadColorSelector-->". Set the following properties:

a) Name="csCabinets"

b) HorizontalAlignment="Left"

c) MaxWidth="200"

d) Margin="20, 5, 20, 5"

e) MainPalette="Concourse"

f) MainPaletteHeaderText="Cabinets"

g) HeaderPaletteVisibility="Collapsed"

h) StandardPalette="Concourse"

i) StandardPaletteHeaderText="Base Colors"

j) NoColorVisibility="Collapsed"

k) SelectedColorChanged="RadColorSelector_SelectedColorChanged"

 Notes

Notice that the "No Color" button and the HeaderPalette visibility are set to "Collapsed" and will
not be visible in the browser. We have also customized the MainPaletteText and
StandardPaletteHeaderText. The MainPalette is set to the ColorPreset enumeration value
"Concourse". Finally, we have a SelectedColorChanged event handler that we will define in a later
step.

8) Drag a RadColorPicker control from the Toolbox to a place just under the comment "<!--
RadColorPicker-->". Set the following properties:

a) Name="cpAppliance"

b) HorizontalAlignment="Left"

c) MaxWidth="200"

d) Margin="20, 5, 20, 5"

Input Controls 255

© 2011 Telerik Inc.

e) SelectedColorChanged="RadColorPicker_SelectedColorChanged"

f) Click="RadColorPicker_Click"

 Notes

Notice that there are event handlers for when the color first changes, or for when you click the
Color button after that.

9) Add a "Loaded" event handler to the UserControl tag. Later we will use this event handler to add a
custom set of colors to the RadColorPicker main palette.

<UserControl
...
 Loaded="UserControl_Loaded">

10)Right-click the "Loaded" event and select "Navigate to Event Handler" from the context menu. Add the
code below to the Loaded event handler. This code demonstrates how to create a custom palette of
colors in code. A generic list of Color is created and populated, then assigned to the
MainPaletteItemsSource property. The color picker control is configured in code to display only the
main palette.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim colors As List(Of Color) = _
New List(Of Color) (New Color() {Colors.Blue, Colors.Red, Colors.Black})
 cpAppliance.MainPaletteHeaderText = "Appliance Colors"
 cpAppliance.MainPaletteItemsSource = colors
 cpAppliance.StandardPaletteVisibility = Visibility.Collapsed
 cpAppliance.HeaderPaletteVisibility = Visibility.Collapsed
 cpAppliance.NoColorVisibility = Visibility.Collapsed
 cpAppliance.SelectedColor = Colors.Blue
End Sub

RadControls for Silverlight256

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 List<Color> colors = new List<Color>()
 {
 Colors.Blue,
 Colors.Red,
 Colors.Black
 };
 cpAppliance.MainPaletteHeaderText = "Appliance Colors";
 cpAppliance.MainPaletteItemsSource = colors;
 cpAppliance.StandardPaletteVisibility = Visibility.Collapsed;
 cpAppliance.HeaderPaletteVisibility = Visibility.Collapsed;
 cpAppliance.NoColorVisibility = Visibility.Collapsed;
 cpAppliance.SelectedColor = Colors.Blue;
}

11)Create a private method to update the user interface using the code below. This method extracts the
currently selected color for each color choosing control, then assigns those colors to the fill of several
Rectangle controls. The end of the method creates a RadialGradientBrush using a combination of all
the colors and assigns it to a rectangle.

Input Controls 257

© 2011 Telerik Inc.

Private Sub UpdateUI()
 ' show the selected wall color
 If cpvWallColor.SelectedValue IsNot Nothing Then
 rectWallColor.Fill = New SolidColorBrush(CType(cpvWallColor.SelectedValue, Color))
 End If

 ' show the selected cabinet color
 rectCabinets.Fill = New SolidColorBrush(csCabinets.SelectedColor)

 ' show the selected appliance color

 ' show the selected appliance color, b lended with the wall and cabinet color
 Dim stopCollection As New GradientStopCollection()

 If cpvWallColor.SelectedValue IsNot Nothing Then
 Dim stop1 As New GradientStop()
 stop1.Color = CType(cpvWallColor.SelectedValue, Color)
 stop1.Offset = 1
 stopCollection.Add(stop1)
 End If

 Dim stop2 As New GradientStop()
 stop2.Color = csCabinets.SelectedColor
 stop2.Offset = 0.5
 stopCollection.Add(stop2)

 Dim stop3 As New GradientStop()
 stop3.Color = cpAppliance.SelectedColor
 stop3.Offset = 0.2
 stopCollection.Add(stop3)

 rectCombined.Fill = New RadialGradientBrush(stopCollection)
End Sub

RadControls for Silverlight258

© 2011 Telerik Inc.

private void UpdateUI()
{
 // show the selected wall color
 if (cpvWallColor.SelectedValue != null)
 {
 rectWallColor.Fill = new SolidColorBrush((Color)cpvWallColor.SelectedValue);
 }

 // show the selected cabinet color
 rectCabinets.Fill = new SolidColorBrush(csCabinets.SelectedColor);

 // show the selected appliance color

 // show the selected appliance color, b lended with the wall and cabinet color
 GradientStopCollection stopCollection = new GradientStopCollection();

 if (cpvWallColor.SelectedValue != null)
 {
 GradientStop stop1 = new GradientStop();
 stop1.Color = (Color)cpvWallColor.SelectedValue;
 stop1.Offset = 1;
 stopCollection.Add(stop1);
 }

 GradientStop stop2 = new GradientStop();
 stop2.Color = csCabinets.SelectedColor;
 stop2.Offset = 0.5;
 stopCollection.Add(stop2);

 GradientStop stop3 = new GradientStop();
 stop3.Color = cpAppliance.SelectedColor;
 stop3.Offset = 0.2;
 stopCollection.Add(stop3);

 rectCombined.Fill = new RadialGradientBrush(stopCollection);
}

12)Call the UpdateUI() method from each event handler:

Input Controls 259

© 2011 Telerik Inc.

Private Sub RadColorPaletteView_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 UpdateUI()
End Sub

Private Sub RadColorSelector_SelectedColorChanged(_
ByVal sender As Object, ByVal e As EventArgs)
 UpdateUI()
End Sub

Private Sub RadColorPicker_SelectedColorChanged(_
ByVal sender As Object, ByVal e As EventArgs)
 UpdateUI()
End Sub

Private Sub RadColorPicker_Click(_
ByVal sender As Object, ByVal e As EventArgs)
 UpdateUI()
End Sub

private void RadColorPaletteView_SelectionChanged(
 object sender, Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 UpdateUI();
}

private void RadColorSelector_SelectedColorChanged(object sender, EventArgs e)
{
 UpdateUI();
}

private void RadColorPicker_SelectedColorChanged(object sender, EventArgs e)
{
 UpdateUI();
}

private void RadColorPicker_Click(object sender, EventArgs e)
{
 UpdateUI();
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight260

© 2011 Telerik Inc.

Test Application Features

Verify that your custom list of colors defined in the App.xaml shows in the RadColorPaletteView under
the "Wall Color" TextBlock.

Verify that the RadColorSelector shows colors from the "Concourse" ColorPreset in both the main and
standard palettes

Verify that the RadColorPicker displays the limited set of colors you assigned in code.

Check that the standard palette, header palette and "No Color" button have been hidden.

Verify that the Rectangle at the bottom of the web page shows the combined set of colors in a radial
gradient.

Input Controls 261

© 2011 Telerik Inc.

9.4.4 Slider Control

The RadSlider control lets users select a value from a defined range. The slider user interface makes the
process easy, quick and intuitive. The control is completely customizable in terms of appearance and offers
numerous configuration options like orientation, small change, mouse wheel support, snap to tick and tick
placement. Tick Templates allow you to tailor the Tick appearance and to customize through binding.

This enhanced slider control can be configured to allow a selection range. The structure diagram below
shows two "thumbs" that slide along a "track". The two thumbs delineate the start and end of the selection
range.

Using the RadSlider Defaults

By default, RadSlider appears with a horizontal track and a single thumb. The range selection feature is not
present, nor the increase/decrease handles at the far ends of the track, nor the tick marks. The thumb
slides between a Minimum value "0" and a Maximum of "1".

To use the slider defaults without the range selection feature enabled, handle the ValueChanged event.
You can read the slider Value property from any location in code or use the event arguments NewValue
and OldValue properties from within the ValueChanged event handler.

<StackPanel Orientation="Horizontal">

 <telerik:RadSlider
 MinWidth="200"
 ValueChanged="RadSlider_ValueChanged"></telerik:RadSlider>

 <TextBlock Name="tbSliderFeedback"></TextBlock>

</StackPanel>

RadControls for Silverlight262

© 2011 Telerik Inc.

Private Sub RadSlider_ValueChanged(_
ByVal sender As Object, ByVal e As RoutedPropertyChangedEventArgs(Of Double))
 'tbSliderFeedback.Text = (sender as RadSlider).Value.ToString();
 tbSliderFeedback.Text = _
String.Format("New Value: {0} Old Value: {1}", e.NewValue, e.OldValue)
End Sub

private void RadSlider_ValueChanged(
 object sender, RoutedPropertyChangedEventArgs<double> e)
{
 //tbSliderFeedback.Text = (sender as RadSlider).Value.ToString();
 tbSliderFeedback.Text = String.Format("New Value: {0} Old Value: {1}",
 e.NewValue, e.OldValue);
}

Using RadSlider With a Range

Once you change the IsSelectionRangeEnabled property to "true", then the game changes completely.
Now you must handle the SelectionRangeChanged event and again look at the event argument's
NewValue and OldValue properties. NewValue and OldValue are not "double" types in this situation,
instead read the SelectionStart and SelectionEnd sub-properties.

<telerik:RadSlider
 MinWidth="200"
 IsSelectionRangeEnabled="True"
 SelectionRangeChanged="RadSlider_SelectionRangeChanged">
</telerik:RadSlider>

Private Sub RadSlider_SelectionRangeChanged(_
ByVal sender As Object, _
ByVal e As RoutedPropertyChangedEventArgs(Of SelectionRangeChangedEventArgs))
 tbSliderFeedback.Text = _
String.Format("Start: {0} End: {1}", _
e.NewValue.SelectionStart, e.NewValue.SelectionEnd)

End Sub

Input Controls 263

© 2011 Telerik Inc.

private void RadSlider_SelectionRangeChanged(
 object sender, RoutedPropertyChangedEventArgs<SelectionRangeChangedEventArgs> e)
{
 tbSliderFeedback.Text = String.Format("Start: {0} End: {1}",
 e.NewValue.SelectionStart, e.NewValue.SelectionEnd);

}

Now the control displays thumbs for both selection start and end. By default the start value is "0.2" and the
end is "0.8".

Ticks

Default Behavior

To have tick marks placed along the track automatically, set the EnableSideTicks property to "true". By
default the TickPlacement property is "None" so you won't see the ticks even with the EnableSideTicks
property turned on. To show the ticks set TickPlacement to "TopLeft", "BottomRight" or "Both". To control
the interval between ticks set the TickFrequency property to some value between the Minimum and
Maximum property values that will display well. By default the thumb slides without interruption between
tick marks but you can set the IsSnapToTickEnabled property so that the thumb jumps from one tick to
the next.

<telerik:RadSlider
 MinWidth="200"
 EnableSideTicks="True"
 TickFrequency="0.1"
 TickPlacement="BottomRight"
 IsSnapToTickEnabled="True"
 >
</telerik:RadSlider>

Templates

If the default tick display doesn't work for you, a TickTemplate defines what a single tick looks like. Inside
the TickTemplate tag add a DataTemplate tag. Within the DataTemplate you can add whatever markup you
want to represent the tick mark. The example markup below adds a 10 x 10 pixel red ellipse to represent a
tick mark. Pay particular attention to the TickTemplate tag and syntax.

RadControls for Silverlight264

© 2011 Telerik Inc.

<telerik:RadSlider
 MinWidth="200"
 EnableSideTicks="True"
 TickFrequency="0.1"
 TickPlacement="BottomRight"
 IsSnapToTickEnabled="True">
 <telerik:RadSlider.TickTemplate>
 <DataTemplate>
 <Ellipse
 Width="10"
 Height="10"
 Fill="Red"></Ellipse>
 </DataTemplate>
 </telerik:RadSlider.TickTemplate>

</telerik:RadSlider>

The markup ends up looking like this at runtime:

Templates and Binding

You can go another step by binding within the template. For example, to simply show the values directly
next to the ticks, assign the expression "{Binding}" to the Text property of a TextBlock. Notice in this XAML
example that the Minimum and Maximum are zero to ten and that TickFrequency is "1".

<telerik:RadSlider
 MinWidth="200"
 EnableSideTicks="True"
 Minimum="0"
 Maximum="10"
 TickFrequency="1"
 TickPlacement="BottomRight"
 IsSnapToTickEnabled="True">
 <telerik:RadSlider.TickTemplate>
 <DataTemplate>
 <Grid>
 <TextBlock
 Text="{Binding}"
 FontSize="11" />
 </Grid>
 </DataTemplate>
 </telerik:RadSlider.TickTemplate>
</telerik:RadSlider>

Input Controls 265

© 2011 Telerik Inc.

If you leave the default "0.1" to "1", the intervening double values are very long and don't display well. Setting
TickFrequency to "1" outputs an array of integers:

Templates and Custom Binding

You can incorporate custom coding per tick mark using what one blogger called the "The Swiss Army Knife
of Bindings"*, the versatile IValueConverter interface. IValueConverter lets you implement a Convert
method that outputs an object of your choosing. For example, we could output the longhand name of the
number instead of the digit. The steps are:

Create a class that implements IValueConverter.

Reference the project containing the class in the MainPage.xaml where the slider is being used.

Create a resource for the UserControl that points to the class and gives it a name.

Bind to the converter.

IValueConverter comes from the System.Windows.Data namespace.

* "IValueConverter: The Swiss Army Knife of Bindings", Delays Blog

http://blogs.msdn.com/delay/archive/2008/05/04/ivalueconverter-the-swiss-army-knife-of-bindings-propertyviewer-sample-is-a-wpf-silverlight-visualization-and-debugging-aid.aspx

RadControls for Silverlight266

© 2011 Telerik Inc.

Walk Through

This walk-through demonstrates how IValueConverter can accept a value and output a string.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

Implementing and Using IValueConverter

1) In Visual Studio, right-click the project and select Add > Class... from the context menu. Name the
class file "MyValueConverter.cs".

1) Verify that references to the System.Windows.Data and System.Collections.Generic namespaces
are included in the "Imports" (VB) or "using" (C#) section of code.

2) Name the class MyValueConverter and inherit from the IValueConverter interface. Right-click the
IValueConverter reference and select "Implement Interface" from the context menu.

3) Modify the Convert() method to use the code below. This code creates a generic list of strings with the
proper number names and indexes into this list using the "value" parameter passed in. "value" is the
value for the tick mark being represented.

Input Controls 267

© 2011 Telerik Inc.

Public Class MyValueConverter
 Implements IValueConverter

 #Region "IValueConverter Members"

 Public Function Convert(ByVal value As Object, _
ByVal targetType As Type, _
ByVal parameter As Object, _
ByVal culture As System.Globalization.CultureInfo) As Object
 Dim numbers As List(Of String) = New List(Of String) (New String() _
{"Zero", "One", "Two", "Three", "Four", _
"Five", "Six", "Seven", "Eight", "Nine", "Ten"})

 Return numbers(CInt(Fix(CDbl(value))))
 End Function

 Public Function ConvertBack(ByVal value As Object, _
ByVal targetType As Type, _
ByVal parameter As Object, _
ByVal culture As System.Globalization.CultureInfo) As Object
 Throw New NotImplementedException()
 End Function

 #End Region
End Class

RadControls for Silverlight268

© 2011 Telerik Inc.

public class MyValueConverter : IValueConverter
{

 #region IValueConverter Members

 public object Convert(object value,
 Type targetType, object parameter, System.Globalization.CultureInfo culture)
 {
 List<string> numbers = new List<string>()
 {
 "Zero", "One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight", "Nine", "Ten"
 };

 return numbers[(int)(double)value];
 }

 public object ConvertBack(object value,
 Type targetType, object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }

 #endregion
}

4) Open the MainPage.xaml file for editing.

Input Controls 269

© 2011 Telerik Inc.

5) At the top of the file in the UserControl tag, add a reference to your project. To do this, type in
"xmlns" (XML name space) and a colon. After the colon put in an alias for the namespace; in this case
the alias will be called "local". Once you type in the equal sign ("=") a list of assemblies in scope will
drop down. Select the project that contains the IValueConverter implementation class. In the
screenshot below the project is "06_Slider".

6) Inside the UserControl element, add a resource that references your new MyValueConverter class. Use
the "x:Key" attribute to identify the class for later use in the XAML.

<UserControl.Resources>
 <local:MyValueConverter
 x:Key="MyValueConverter" />
</UserControl.Resources>

7) In the DataTemplate add the XAML below to define the RadSlider and the binding using the converter.
Notice the binding expression "{Binding Converter={StaticResource MyValueConverter}}" that
references the MyValueConverter through the resource.

RadControls for Silverlight270

© 2011 Telerik Inc.

<telerik:RadSlider
 Margin="30"
 Minimum="1"
 Maximum="10"
 TickFrequency="1"
 TickPlacement="BottomRight"
 IsSnapToTickEnabled="True">
 <telerik:RadSlider.TickTemplate>
 <DataTemplate>
 <TextBlock
 Text="{Binding Converter={StaticResource MyValueConverter}}"
 FontSize="10">
 </TextBlock>
 </DataTemplate>
 </telerik:RadSlider.TickTemplate>
</telerik:RadSlider>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Verify that the converter has supplied the names for the values.

Ideas for Extending This Example

Use layout panels to make use of multiple elements for each tick

Add an Ellipse above the text

Rotate text items using a RenderTransform tag.

Input Controls 271

© 2011 Telerik Inc.

9.5 Customization

Walk Through

Customizing controls by editing styles and control templates involves a fair amount of XAML, but you still
make these changes easily using Expression Blend. In this example we will customize the RadSlider
control background and thumb.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

3) Save and close the solution.

Edit the Project in Expression Blend

1) Run Expression Blend and from the File menu select Open Project/Solution...

2) Locate the project you created in Visual Studio. Note: you can also create the project directly in
Expression Blend.

3) In the Projects tab, locate MainPage.xaml and double-click to open it in the Expression Blend
designer.

4) In the Projects tab, right-click the References node and select Add Reference... from the context
menu.

5) Add a reference to the Telerik.Windows.Controls.dll assembly.

6) From the Project menu select Build Project.

7) Click on the Assets tab. On the left side of the of the area below the Assets tab is a tree view. Locate
and open the "Controls" node, then click the "All" node. A list of all available controls shows to the right
of the tree view. Locate the RadSlider control and drag it onto the MainPage.xaml design view.

RadControls for Silverlight272

© 2011 Telerik Inc.

8) Right-click the slider and select Edit Template > Edit a Copy from the context menu. In the "Create
Style Resource" dialog, set the Name (Key) to "ScovilleSlider" and click the "Define in Application"
radio button. Click OK to create the stye resource and close the dialog.

Input Controls 273

© 2011 Telerik Inc.

 Notes

1) This last step opens just the RadSlider template for editing, not the RadSlider instance on the
MainPage.xaml. The MainPage.xaml RadSlider has a reference to the "ScovilleSlider" style that
looks something like the XAML below. Notice the "Style" attribute points at "StaticResource
ScovilleSlider".

<telerik:RadSlider HorizontalAlignment="Left" Margin="24,20,0,0" VerticalAlignment="Top" Style="{StaticResource ScovilleSlider}"/>

In the App.xaml file, the complete definition of the "ScovilleSlider" style has been copied from
the RadSlider defaults and looks something like the small excerpt below:

 <Style x:Key="ScovilleSlider" TargetType="telerik:RadSlider">
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="telerik:RadSlider">
 <Grid x:Name="LayoutRoot"
 HorizontalAlignment="{TemplateBinding HorizontalAlignment}"
 VerticalAlignment="{TemplateBinding VerticalAlignment}">
 ...

9) In the Objects and Timeline tab, select the LayoutRoot from the tree view.

RadControls for Silverlight274

© 2011 Telerik Inc.

10)In the Properties tab, locate the Brushes group and select the "Gradient" brush.

11)Find the right-most gradient stop indicator and click it with the mouse.

Input Controls 275

© 2011 Telerik Inc.

12)Grab the eye dropper tool and select a red color for the gradient stop.

13)In the Objects and Timeline tab, select the "HorizontalSingleThumb" item.

RadControls for Silverlight276

© 2011 Telerik Inc.

14)In the Expression Blend design surface, right-click the slider thumb and select Edit Template > Edit
Current from the context menu. As a result, only the slider thumb will be shown in the designer.

15)In the Objects and Timeline tab, select "Border" from the tree view.

Input Controls 277

© 2011 Telerik Inc.

16)In the Properties tab, locate the Brushes section and again select the "Gradient" brush. Click the
right-most gradient stop indicator and use the eye dropper tool to select a red color.

17)In the Projects tab, locate MainPage.xaml and double-click to display the RadSlider with the styling in
play.

18)Save and close the project from Expression Blend.

19)Reopen the solution in Visual Studio.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight278

© 2011 Telerik Inc.

Test Application Features

1) Notice that the slider functionality is completely untouched by all this styling work. The designer didn't
need to know anything about how the slider works or what would be done with the slider within the
application.

2) Open the MainPage.xaml and notice the Style reference in the RadSlider tag. No other styling
information is kept directly with the slider. Open the App.xaml to see all the application resources that
support the RadSlider look and feel.

Ideas for Extending This Example

Add some logic to the application to verify that the slider events and behavior work as before the styling
was applied.

Add a RadMaskedTextBox to project and create a matching style for it in Expression Blend.

9.6 Wrap Up

This chapter introduced several controls used for gathering user input, including a masked text box for
restricting entry to predefined patterns, a set of "UpDown" controls for entering numeric or other input
through repeater buttons, a set of color picking controls for selecting from a predefined palette of colors and
a slider control for choosing values within a range.

In this chapter you learned how the masked text box handles numeric, date/time and developer-defined
formats using predefined masks or custom masks. We looked at important events for retrieving values and
also learned how to retrieve the value combined together with the mask. You also saw how masked text
boxes can be localized.

In the section on "UpDown" controls you saw how both the basic up-down control and numeric up-down
control both inherit from the RangeBase class. You learned the key common properties and events for both
controls. We discussed the key numeric up-down control ValueFormat property and some special case
issues such as scrolling through integers. You learned how to format numeric entry for data that uses
custom unit types.

We reviewed three different types of color pickers along with their common properties and events. We made
use of the Silverlight Toolkit and the ObjectCollection class to define a custom palette of colors in XAML
and also defined a custom palette in code. You learned how to customize text labels for elements of a color
choosing control and how to hide specific elements of these controls.

The last part of this chapter dealt with how the slider control is used to pick a value within a range or a
range within a range. We talked about the basic structure and parts of a slider, the slider's default behavior,
how to retrieve new and previous values and how to control selection ranges. We paid particular attention to
how tick marks are placed along the slider, how to control tick mark frequency and how to control visibility.
We delved a little more deeply into how templates allow fine-tune control over each tick mark, how to use
binding in templates to show data in a tick mark and finally how IValueConverter is used for highly
customized binding scenarios.

Part

X
Menu Controls

RadControls for Silverlight280

© 2011 Telerik Inc.

10 Menu Controls

10.1 Objectives

In this chapter you will use RadMenu, RadContextMenu and RadMenuItem to supply drop-down and pop-up
lists of user selections. You will see how MenuBase supplies properties common to both RadMenu and
RadContextMenu. You will build standard menus using RadMenu and use properties to control item opening
behavior and check/uncheck support. You will learn how to respond to user selections, create menus
dynamically in code and add images to menu items. Then you will apply these fundamentals to
RadContextMenu and explore context menu specific issues such as initiating the popup, placement, sizing
and right-click support. Finally, you will use Expression Blend to customize the appearance of a RadMenu
and its items.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Menu\Menu.sln.

10.2 Overview

Telerik Menu for Silverlight lets you build powerful, complex menu systems that are easy for your customer
to use. The control set includes a "main menu" style drop-down control and a context menu that can be
associated with a control or popped up from any location.

The menu controls are fully customizable and have advanced functionality including:

Hierarchical Data Binding: The menu controls bind to objects created in code-behind or from a web
service.

Boundary Detection: The menu controls detect the Silverlight plugin boundaries and open child items
in the opposite direction to avoid crossing screen boundaries. When there is not enough space in all
directions, the control adjusts its items' positions to make them visible whenever possible.

Checkable Items: Menu items can have check marks that can be toggled. Companion properties like
ClickToOpen and StaysOpenOnClick enhance usability.

The RadMenu control Orientation can be Horizontal or Vertical..

Menu Controls 281

© 2011 Telerik Inc.

10.3 Getting Started

In this walk through you will create a simple main menu at the top of the web page.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags.

<StackPanel>

 <!--Menu-->

</StackPanel>

3) Drag a RadMenu control from the Toolbox to a point just under the "<!--Menu-->" comment. Set the
following RadMenu properties:

a) x:Name = "mnuMain"

b) ClickToOpen = "True"

With the ClickToOpen property set true, the menu does not open on mouse over, but rather when the
mouse button is clicked.

RadControls for Silverlight282

© 2011 Telerik Inc.

4) Inside the RadMenu tag, add a RadMenu.Items tag. As of this writing, the namespace for this tag is
"telerik ".

5) Inside the RadMenu.Items tag, add a RadMenuItem tag.

Menu Controls 283

© 2011 Telerik Inc.

6) Set the RadMenuItem Header property to "Reports". The markup should now look something like the
figure below:

7) Add a second RadMenuItem with the Header property set to "Options".

8) Inside the "Reports" RadMenuItem, add two more RadMenuItem tags. Set the properties as follows:

a) Header = "Product Listing", Click = "Reports_Click".

b) Header = "Products by Category", Click = "Reports_Click".

9) Inside the "Options" RadMenuItem, add a RadMenuItem tag with properties set as follows:

a) Header = "Print Two Sided"

b) StaysOpenOnClick = "True"

c) IsCheckable = "True"

d) Click="OptionsMenuItem_Click"

The StaysOpenOnClick property set to true makes the "Print Two Side" menu item stay visible while
IsCheckable allows the user to toggle the check mark back and forth. These two properties work well
together and also combine nicely with the RadMenu ClickToOpen property.

The completed markup for the RadMenu is shown below.

RadControls for Silverlight284

© 2011 Telerik Inc.

<!--Menu-->
<telerik:RadMenu
 x:Name="mnuMain"
 ClickToOpen="True">
 <telerik:RadMenu.Items>
 <telerik:RadMenuItem
 Header="Reports">
 <telerik:RadMenuItem
 Header="Product Listing"
 Click="Reports_Click">
 </telerik:RadMenuItem>
 <telerik:RadMenuItem
 Header="Products by Category"
 Click="Reports_Click">
 </telerik:RadMenuItem>
 </telerik:RadMenuItem>
 <telerik:RadMenuItem
 Header="Options">
 <telerik:RadMenuItem
 Header="Print Two Sided"
 Click="OptionsMenuItem_Click"
 StaysOpenOnClick="True"
 IsCheckable="True">
 </telerik:RadMenuItem>
 </telerik:RadMenuItem>
 </telerik:RadMenu.Items>
</telerik:RadMenu>

Code Behind

1) In the code-behind, verify that references to the Telerik.Windows.Controls and Telerik.Windows
namespaces are included in the "Imports" (VB) or "using" (C#) section of code. Add these references if
they do not exist.

2) In the code-behind, add the "Reports_Click" and "OptionsMenuItem_Click" event handling code. The
code here simply shows the object that represents the clicked item. We could have used the System
MessageBox.Show() method to display the class name, but instead we're using the RadWindow.Alert()
function.

Private Sub Reports_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadWindow.Alert((TryCast(e, RadRoutedEventArgs)).Source.ToString())
End Sub

Private Sub OptionsMenuItem_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadWindow.Alert((TryCast(e, RadRoutedEventArgs)).Source.ToString())
End Sub

Menu Controls 285

© 2011 Telerik Inc.

private void Reports_Click(object sender, RoutedEventArgs e)
{
 RadWindow.Alert((e as RadRoutedEventArgs).Source.ToString());
}

private void OptionsMenuItem_Click(object sender, RoutedEventArgs e)
{
 RadWindow.Alert((e as RadRoutedEventArgs).Source.ToString());
}

 Notes

The RoutedEventArgs are seen everywhere in Silverlight code. In the example above these
arguments are cast as RadRoutedEventArgs classes that retain more information than their
RoutedEventArgs ancestors.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Notice that the menu items must be mouse clicked to open.

2) Try clicking the "Print Two Sided" menu item. Notice that it stays open when clicked and that the
check mark toggles.

3) Notice that the RadWindow.Alert() method triggered by the Click event handlers displays the
"RadMenuItem" class name.

Ideas for Extending This Example

RadControls for Silverlight286

© 2011 Telerik Inc.

Try extracting information from the RadMenuItem available in the Click event and displaying that
information in the alert.

Menu Controls 287

© 2011 Telerik Inc.

10.4 Control Details

10.4.1 RadMenu

Both RadMenu and RadContextMenu descend from MenuBase and ultimately, ItemsControl. ItemsControl
is the base class for objects that have multiple items.

MenuBase introduces basic menu functionality where users can choose from a drop down list of items.
MenuBase includes common events and properties:

ItemClick: This event fires when any item in the menu is clicked.

ClickToOpen: We saw in the "Getting Started" project how the ClickToOpen property, when true,
prevents the menu from opening merely from mouse-over, but instead requires a mouse click to open
the menu.

ShowDelay, HideDelay: These are both Duration properties that define a number of milliseconds
before the menu is shown or hidden.

NotifyOnHeaderClick when true causes the ItemClick event to fire even when the menu header is
clicked.

RadControls for Silverlight288

© 2011 Telerik Inc.

RadMenu adds an Orientation property that can be Horizontal...

or Vertical

Menu Controls 289

© 2011 Telerik Inc.

10.4.2 Items

Overview

Both RadMenu and RadContextMenu have an Items collection that contain a series of RadMenuItem
objects. RadMenuItem descends from HeaderedItemsControl (representing a control that has multiple
items and a header).

Here are a few significant properties of the RadMenuItem class:

The Role property for RadMenuItem determines the menu item behavior, particularly if the item can
invoke commands. Role can be TopLevelItem, TopLevelHeader, SubMenuItem, SubMenuHeader
and Separator. TopLevelItem and SubLevelItem can invoke commands.

IsCheckable when true determines that the item check mark can be toggled. IsChecked reflects the
current checked state of the item and can also be set in code or XAML.

Icon is an object property that can be assigned a Silverlight BitmapImage object that will display in the
menu item.

StaysOpenOnClick causes the menu item to stay open even after the click and is especially useful for
checkable menu items.

Set IsSeparator to true when the item should visually divide other menu items but not be able to invoke
commands.

RadMenuItem has routed events for Checked, Click, SubmenuClosed, SubmenuOpened and
Unchecked.

RadControls for Silverlight290

© 2011 Telerik Inc.

Using the Items Collection

To add an item to the menu, create a new RadMenuItem, set the item Header property to some value and
add it to the Items collection.

Dim item As New RadMenuItem()
item.Header = "Calendar"
mnuMain.Items.Add(item)

RadMenuItem item = new RadMenuItem();
item.Header = "Calendar";
mnuMain.Items.Add(item);

To display an image in the menu item, assign a BitmapImage to the Icon property:

Dim dayItem As New RadMenuItem()
dayItem.Icon = New Image() _
With {.Source = _
New BitmapImage(New Uri("Calendar.png", UriKind.Relative))}
dayItem.Header = day

myMenu.Items.Add(dayItem)

RadMenuItem dayItem = new RadMenuItem();
dayItem.Icon = new Image()
{
 Source = new BitmapImage(new Uri("Calendar.png", UriKind.Relative))
};
dayItem.Header = day;

myMenu.Items.Add(dayItem);

 Notes

BitmapImage is a member of the System.Windows.Media.Imaging namespace.

Menu Controls 291

© 2011 Telerik Inc.

10.4.3 Walk Through: Creating Menu Items in Code

This walk through will give you some practice at creating menu items with text and icons in code.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

4) Drag the image file "Calendar.png" from the Windows Explorer to the project in Solution Explorer. You
can find "Calendar.png" in the "\courseware\images" directory.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add a Loaded event handler to the UserControl element.

<UserControl
...
 Loaded="UserControl_Loaded">

3) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags. The "<!--menu-->" comment will be replaced with the actual RadMenu tag in
the next step.

<StackPanel>
 <!--menu-->
</StackPanel>

4) Drag a RadMenu from the Toolbox to a point just below the "<!--menu-->". Set the following properties:

a) x:Name = "mnuMain"

b) ItemClick = "mnuMain_ItemClick"

Code Behind

1) In the code-behind, add the Loaded event handler as shown below. The handler first defines a single
top level RadMenuItem with Header "Days" and adds it to the RadMenu Items collection. Then the
handler defines an array of short day names, creates RadMenuItem instances, assigns Icon and
Header for each before adding the instances to the "Days" menu item.

RadControls for Silverlight292

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim daysHeaderItem As New RadMenuItem()
 daysHeaderItem.Header = "Days"
 mnuMain.Items.Add(daysHeaderItem)

 Dim days() As String = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" }

 For Each day As String In days
 Dim dayItem As New RadMenuItem()
 dayItem.Icon = New Image() With _
{.Source = New BitmapImage(New Uri("Calendar.png", UriKind.Relative))}
 dayItem.Header = day

 daysHeaderItem.Items.Add(dayItem)
 Next day
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadMenuItem daysHeaderItem = new RadMenuItem();
 daysHeaderItem.Header = "Days";
 mnuMain.Items.Add(daysHeaderItem);

 string[] days = new string[]
 { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" };

 foreach (string day in days)
 {
 RadMenuItem dayItem = new RadMenuItem();
 dayItem.Icon = new Image()
 {
 Source = new BitmapImage(new Uri("Calendar.png", UriKind.Relative))
 };
 dayItem.Header = day;

 daysHeaderItem.Items.Add(dayItem);
 }
}

2) In the code-behind, add the handler for the menu's ItemClick event.

Menu Controls 293

© 2011 Telerik Inc.

Private Sub mnuMain_ItemClick(ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 Dim item As RadMenuItem = TryCast(e.Source, RadMenuItem)
 RadWindow.Alert(item.Header.ToString())
End Sub

private void mnuMain_ItemClick(object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 RadMenuItem item = e.Source as RadMenuItem;
 RadWindow.Alert(item.Header.ToString());
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight294

© 2011 Telerik Inc.

10.4.4 RadContextMenu

Using RadContextMenu

To use RadContextMenu in XAML, attach it to any UIElement using the RadContextMenu.ContextMenu
property. The sample below shows a standard Silverlight Button. Inside the button tag is the
RadContextMenu.ContextMenu tag, then the RadContextMenu tag with its ItemClick event defined and
finally, a series of RadMenuItem tags.

<Button
 Content="Submit Product Request"
 MaxWidth="200"
 HorizontalAlignment="Left"
 Margin="20"
 >

 <telerik:RadContextMenu.ContextMenu>
 <telerik:RadContextMenu ItemClick="RadContextMenu_ItemClick">
 <telerik:RadMenuItem
 Header="Print Product List"></telerik:RadMenuItem>
 <telerik:RadMenuItem
 Header="Add Product to Palette"></telerik:RadMenuItem>
 <telerik:RadMenuItem
 Header="Reassign Product Group"></telerik:RadMenuItem>
 </telerik:RadContextMenu>
 </telerik:RadContextMenu.ContextMenu>

</Button>

The context menu shows when the button is right-clicked by the mouse and looks something like the
screenshot below:

The context menu can display in response to any event by specifying the EventName property. In this
Button example, we can use the MouseEnter event so that when the mouse passes over the button, the
menu displays.

Menu Controls 295

© 2011 Telerik Inc.

<Button>
 <telerik:RadContextMenu.ContextMenu>
 <telerik:RadContextMenu
 EventName="MouseEnter"
...

For additional specificity, you can add the ModifierKey property in combination with the EventName. If we
set the ModifierKey property to "Control"...

...now the menu will only show when the control key is held down and the mouse passes over the button.

RadControls for Silverlight296

© 2011 Telerik Inc.

Assigning the Context Menu in Code

Use the static RadContextMenu SetContextMenu() method to assign context menus in code. The example
below builds menu items and adds them to the RadContextMenu Items collection just as you would for a
RadMenu. The only other difference to this code is that the EventName property is assigned. Also notice in
the example how the AddHandler() method is used to add a routed event handler to the menu's ItemClick
event.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim contextMenu As New RadContextMenu()
 contextMenu.EventName = "Click"

 Dim topLevelItem As New RadMenuItem() With {.Header = "Reports"}

 topLevelItem.Items.Add(New RadMenuItem() With {.Header = "Product Listing"})

 topLevelItem.Items.Add(New RadMenuItem() With {.Header = "Products by Category"})

 contextMenu.Items.Add(topLevelItem)

 contextMenu.AddHandler(RadMenuItem.ClickEvent, _
New RoutedEventHandler(AddressOf OnMenuItemClick), False)

 RadContextMenu.SetContextMenu(MyButton, contextMenu)
End Sub

Private Sub OnMenuItemClick(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim args As RadRoutedEventArgs = TryCast(e, RadRoutedEventArgs)
 Dim item As RadMenuItem = TryCast(args.OriginalSource, RadMenuItem)
 RadWindow.Alert(item.Header.ToString())
End Sub

Menu Controls 297

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadContextMenu contextMenu = new RadContextMenu();
 contextMenu.EventName = "Click";

 RadMenuItem topLevelItem = new RadMenuItem()
 {
 Header = "Reports"
 };

 topLevelItem.Items.Add(new RadMenuItem()
 {
 Header = "Product Listing"
 });

 topLevelItem.Items.Add(new RadMenuItem()
 {
 Header = "Products by Category"
 });

 contextMenu.Items.Add(topLevelItem);

 contextMenu.AddHandler(
 RadMenuItem.ClickEvent, new RoutedEventHandler(OnMenuItemClick), false);

 RadContextMenu.SetContextMenu(MyButton, contextMenu);
}

private void OnMenuItemClick(object sender, RoutedEventArgs e)
{
 RadRoutedEventArgs args = e as RadRoutedEventArgs;
 RadMenuItem item = args.OriginalSource as RadMenuItem;
 RadWindow.Alert(item.Header.ToString());
}

RadControls for Silverlight298

© 2011 Telerik Inc.

Placement and Sizing

RadContextMenu has several properties that govern the location of the context menu and its relationship to
the target control. The Placement property can be Absolute (default), Bottom, Center, Right, Left or
Top in relation to the target control. RadContextMenu also handles "Boundary Detection", so the menu will
only honor the Placement property if there is room. Instead of placing the menu relative to the target
control, PlacementRectangle can be defined as the area relative to which the context menu is positioned.
HorizontalOffset and VerticalOffset are the horizontal and vertical distances between the target control
and the popup. If you need to very specifically control where and how big the menu is, handle the Opened
event and look at the menu MousePostion and UIElement.RenderSize properties.

Private Sub contextMenu_Opened(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim menu As RadContextMenu = TryCast(sender, RadContextMenu)
 Dim menuSize As Size = menu.UIElement.RenderSize
 RadWindow.Alert(String.Format("W/H: {0}/{1} Mouse:{2},{3}", _
menuSize.Width, menuSize.Height, menu.MousePosition.X, menu.MousePosition.Y))
End Sub

void contextMenu_Opened(object sender, RoutedEventArgs e)
{
 RadContextMenu menu = sender as RadContextMenu;
 Size menuSize = menu.UIElement.RenderSize;
 RadWindow.Alert(String.Format("W/H: {0}/{1} Mouse:{2},{3}",
 menuSize.Width, menuSize.Height,
 menu.MousePosition.X, menu.MousePosition.Y));
}

Menu Controls 299

© 2011 Telerik Inc.

10.5 Binding

In this walk through, you will populate a menu with hierarchical data.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

RadControls for Silverlight300

© 2011 Telerik Inc.

Create the View Model Object

1) In the Solution Explorer, right-click the project and select Add > Class... Rename the class file
"Categories.cs". Copy and paste the code below.

The Categories class will initialize a list of Categories and Products to assign to the ItemsSource for
the menu. This will be a read-only list where the data is not expected to change. You would use
ObservableCollection<> and implement if the data was dynamic. See the Data Binding chapter for
more information.

Imports System.Collections.Generic
Imports System.Windows.Controls

Namespace _05_Databinding
 Public Class Product
 Private privateProductName As String
 Public Property ProductName() As String
 Get
 Return privateProductName
 End Get
 Set(ByVal value As String)
 privateProductName = value
 End Set
 End Property
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
 End Class

 Public Class Category
 Private privateCategoryName As String
 Public Property CategoryName() As String
 Get
 Return privateCategoryName
 End Get
 Set(ByVal value As String)
 privateCategoryName = value
 End Set
 End Property
 Private privateProducts As List(Of Product)
 Public Property Products() As List(Of Product)
 Get
 Return privateProducts

Menu Controls 301

© 2011 Telerik Inc.

 End Get
 Set(ByVal value As List(Of Product))
 privateProducts = value
 End Set
 End Property
 End Class

 Public Class Categories
 Inherits List(Of Category)
 Public Sub New()
 Me.Add(New Category() With {.CategoryName = "Coffee"})
 Me.Add(New Category() With {.CategoryName = "Chocolate"})
 Me(0).Products = New List(Of Product) (New Product() { _
New Product() With {.ProductName = "Guatemala", _
.Description = "Grown above 4,000 feet"}, _
New Product() With {.ProductName = "Kenya", _
.Description = "Excellent body"}})
 Me(1).Products = New List(Of Product) (New Product() { _
New Product() With {.ProductName = "Bittersweet Chocolate", _
.Description = "Sweetened dark chocolate without milk"}, _
New Product() With {.ProductName = "White Chocolate", _
.Description = "Sugar, cocoa butter, milk solids"}})
 End Sub
 End Class
End Namespace

using System.Collections.Generic;
using System.Windows.Controls;

namespace _05_Databinding
{
 public class Product
 {
 public string ProductName { get; set; }
 public string Description { get; set; }
 }

 public class Category
 {
 public string CategoryName { get; set; }
 public List<Product> Products { get; set; }
 }

 public class Categories : List<Category>
 {
 public Categories()
 {
 this.Add(new Category() { CategoryName = "Coffee" });
 this.Add(new Category() { CategoryName = "Chocolate" });
 this[0].Products = new List<Product>() {
 new Product()
 {

RadControls for Silverlight302

© 2011 Telerik Inc.

 ProductName = "Guatemala",
 Description = "Grown above 4,000 feet"
 },
 new Product()
 {
 ProductName = "Kenya",
 Description = "Excellent body"
 }
 };
 this[1].Products = new List<Product>() {
 new Product()
 {
 ProductName = "Bittersweet Chocolate",
 Description = "Sweetened dark chocolate without milk"
 },
 new Product()
 {
 ProductName = "White Chocolate",
 Description = "Sugar, cocoa butter, milk solids"
 }
 };
 }
 }
}

Menu Controls 303

© 2011 Telerik Inc.

XAML Editing

1) Open MainPage.xaml for editing.

2) Verify that the XML namespaces for Telerik.Windows.Controls and Telerik.Windows.Controls.
Navigation exist in the UserControl element. Add them if they do not exist. Also, add a reference to
your project and name it "local".

<UserControl
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
 xmlns:local="clr-namespace:_05_Databinding"
 . . . >

3) Add a Resources sub-element to the UserControl element. Copy the XAML below into the Resources
element.

This step creates a reference to the "Categories" object that contains the data we want to display in the
menu. The two data templates defined here, "CategoryTemplate" and "ProductTemplate" supply the
root node items in the menu and the children under those root nodes, respectively. Also notice that
we're binding a product description to the ToolTip of the child menu items.

<UserControl.Resources>

 <local:Categories x:Key="Categories" />

 <DataTemplate x:Key="ProductTemplate">
 <TextBlock Text="{Binding ProductName}"
 controls:ToolTipService.ToolTip="{Binding Description}" />
 </DataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="CategoryTemplate"
 ItemsSource="{Binding Products}"
 ItemTemplate="{StaticResource ProductTemplate}">
 <TextBlock Text="{Binding CategoryName}" />
 </telerik:HierarchicalDataTemplate>

</UserControl.Resources>

4) Drag a RadMenu from the Toolbox to the main "LayoutRoot" Grid element. Set the VerticalAlignment
attribute to "Top", the ItemsSource attribute to "{StaticResource Categories}" and the ItemTemplate
to "{StaticResource CategoryTemplate}".

RadControls for Silverlight304

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <telerik:RadMenu VerticalAlignment="Top"
 ItemsSource="{StaticResource Categories}"
 ItemTemplate="{StaticResource CategoryTemplate}">
 </telerik:RadMenu>
</Grid>

 Notes

Menu Controls 305

© 2011 Telerik Inc.

Look at the relationship of the templates in the XAML below. The RadMenu ItemTemplate points
to a HierarchicalDataTemplate "CategoryTemplate". "CategoryTemplate" also has an
ItemTemplate that points to a DataTemplate called "ProductTemplate". There can be additional
levels of templates. The rule is to use a HierarchicalDataTemplate when there are child items,
otherwise use a standard DataTemplate.

Let's take another look at that same XAML to see how the data is being hooked up. The
ItemsSource attribute works in concert with the ItemTemplate. In the RadMenu XAML you can
see that the "CategoryTemplate" is supplied by data from the "Categories" object. In the
"CategoryTemplate", the "ProductTemplate" is supplied by data from the "Products" object.

RadControls for Silverlight306

© 2011 Telerik Inc.

Menu Controls 307

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Ideas for Extending This Example

Define additional levels of HierarchicalDataTemplate.

Make the data object self-referential and only define a single level of HierarchicalDataTemplate. For
example, you can define a MenuItem object that has its own Items collection.

10.6 Customization

Walk Through

In this example we will customize the RadMenu control background and border. We will also add an
animated effect that takes place when the menu becomes disabled.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

RadControls for Silverlight308

© 2011 Telerik Inc.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight Application" from the
right-most list. Enter a unique name for the project and click OK.

1) In the Projects pane, locate MainPage.xaml and double-click to open the project in Expression Blend.

2) In the Projects pane, right-click the References node and select Add Reference... from the context
menu.

3) Add a reference to the Telerik.Windows.Controls.dll assembly.

4) Add a reference to the Telerik.Windows.Controls.Navigation.dll assembly.

5) From the Project menu select Build Project.

6) Open the Assets pane. On the left side of the Assets pane is a tree view. Locate and open the
"Controls" node, then click the "All" node. A list of all available controls will show to the right of the tree
view. Locate the RadMenu control and drag it onto the MainPage.xaml Artboard.

Menu Controls 309

© 2011 Telerik Inc.

7) In the Objects and Timeline pane, double-click "[RadMenu]" in the tree view. Enter a new name
"mnuMain".

8) Right-click the menu and select Edit Template > Edit a Copy from the context menu. In the "Create
Style Resource" dialog, set the Name (Key) to "ScovilleMenu" and click the "Define in Application"
radio button. Click OK to create the stye resource and close the dialog.

9) In the Objects and Timeline pane select "[border]" from the tree view.

RadControls for Silverlight310

© 2011 Telerik Inc.

10)Select the Gradient tool from the Tool Bar. Drag the tool from the top of the menu to the bottom.
This step will reset the fill style for the RadMenu border object and provide it with a gradient fill.

11)Find the right-most gradient stop indicator and click it with the mouse.

|

Menu Controls 311

© 2011 Telerik Inc.

12)Grab the and select a shade of black for the gradient stop.

13)Find the left-most gradient stop indicator and click it with the mouse.

14)Grab the eye dropper tool and select a shade of red for the gradient stop.

RadControls for Silverlight312

© 2011 Telerik Inc.

15)Click the Gradient Bar somewhere in the middle to create a new gradient stop.

16)In the States pane, click the "Disabled" state. This will cause a "Disabled" item to appear at the top of
the Objects and Timeline pane. In the Objects and Timeline pane, click the "Show Timeline" button.

17)In the Timeline, drag the Timeline marker to the 1 second mark.

Menu Controls 313

© 2011 Telerik Inc.

18)Back on the Properties pane, slide the middle gradient stop to the far left. This step creates an
animation of the middle gradient stop that plays automatically when the menu becomes disabled.

19)In the Objects and Timeline pane, click the Play button to see the animation in action. During the one
second animation, the darker shades should roll up to cover most of the menu.

20)In the States pane, click the "Normal" state. This will cause a "Normal" item to appear at the top of the
Objects and Timeline pane.

21)In the Timeline, drag the Timeline marker to the 1 second mark.

22)Back on the Properties pane, click the middle gradient stop. Type in "50" to the gradient step offset
text box. This step will create an animation that ends at one second leaving the "normal" property
settings, i.e. with the middle gradient stop midway between the red and black .

23)In the Projects pane, double-click MainPage.xaml to open it for editing in the Artboard.

RadControls for Silverlight314

© 2011 Telerik Inc.

24)Drag a CheckBox control from the Assets pane to a point just below the RadMenu.

25)Double-click the CheckBox and type in new text "Disable".

Menu Controls 315

© 2011 Telerik Inc.

 Notes

The "Select" tool must be active to allow you to double-click and rename the CheckBox control.

RadControls for Silverlight316

© 2011 Telerik Inc.

26)In the Properties pane make sure the Properties button is toggled down, then enter a new name
"cbDisable" for the CheckBox. Note: To see the properties, be sure you have the Properties button
toggled down, not the Events button.

27)In the Properties pane, toggle the "Events" button down. In the "Checked" event, enter an event handler
name "OnDisableChecked". The event handler will be created automatically by Expression Blend and
the code-behind for MainPage.xaml will display Also note that the event handler name is arbitrary and
can be whatever you choose to assign.

Menu Controls 317

© 2011 Telerik Inc.

28)In the code-behind for MainPage.xaml, code the Checked event handler to set the menu's IsEnabled
property to false as shown below. Note that the code editing happens right in Expression Blend and
includes IntelliSense support. You can also switch to Visual Studio and edit the same project if you
prefer.

Private Sub OnDisableChecked(ByVal sender As Object, ByVal e As System.Windows.RoutedEventArgs)
 mnuMain.IsEnabled = False
End Sub

private void OnDisableChecked(object sender, System.Windows.RoutedEventArgs e)
{
 mnuMain.IsEnabled = false;
}

29)Navigate back to editing MainPage.xaml in the Artboard. In the Properties pane select the Events
button and add an event handler for the Unchecked event.

RadControls for Silverlight318

© 2011 Telerik Inc.

30)In the code-behind for MainPage.xaml, code the Unchecked event handler to set the menu's IsEnabled
property to true as shown below.

Private Sub OnDisableChecked(ByVal sender As Object, ByVal e As System.Windows.RoutedEventArgs)
 mnuMain.IsEnabled = True
End Sub

private void OnDisableChecked(object sender, System.Windows.RoutedEventArgs e)
{
 mnuMain.IsEnabled = true;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Toggle the disable check box and observe the effect on the menu. When you check "Disable", the
animation of the center gradient stop should darken the menu. Unchecking "Disable" should animate
the center gradient stop back to its lighter "Normal" state.

Menu Controls 319

© 2011 Telerik Inc.

Ideas for Extending This Example

RadControls for Silverlight320

© 2011 Telerik Inc.

Add menu items to the menu using Expression Blend. This is done by navigating to MainPage.xaml
and editing the menu in the Artboard. Right-click the RadMenu control and select Add RadMenuItem
from the context menu.

You can click on the RadMenuItems in the menu and set properties. Find the Header property in the
"Miscellaneous" properties group.

Menu Controls 321

© 2011 Telerik Inc.

RadControls for Silverlight322

© 2011 Telerik Inc.

Menu Controls 323

© 2011 Telerik Inc.

Customize the template for the RadMenuItem, not just the RadMenu. You might do this so that menu
items react as the mouse passes over or to make the visual style of the menu items agree with the
overall menu. For example, the disabled state of the menu looks fine until you put items into it, but the
disabled state of the menu items includes a partially transparent rectangle over the item. This works fine
for the default menu, but is horrible for our new "Scoville" menu shown in the screenshot below.

This situation is fixed in the same manner as when creating the new RadMenu "ScovilleMenu" style, i.e.
right-clicking a RadMenuItem and selecting Edit Template > Edit a Copy from the context menu. We
might call this new template "ScovilleMenuItem" and edit it in the Artboard. The menu item includes a
"DisabledBox" that you can find in the Objects and Timeline pane.

If you select "DisabledBox" and navigate to the Properties pane, you can locate the Fill brush. At this
point the brush is set to "DisabledBrush" which happens to represent that unpleasant transparent white
background. If you click the Fill "Advanced property options" button, you can click the "Reset" option
from the drop down menu. This will set the brush fill to "Transparent", allowing the menu background to
show through without interference.

RadControls for Silverlight324

© 2011 Telerik Inc.

Now the menu item with the new "ScovilleMenuItem" template applied displays correctly when shown in
a menu with the "ScovilleMenu" template applied.

Menu Controls 325

© 2011 Telerik Inc.

To fix the other menu items, right-click each item and select Edit Template > Apply Resource > "<your
menu item style>", i.e. "ScovilleMenuItem".

RadControls for Silverlight326

© 2011 Telerik Inc.

By clicking the "XAML" button we can see that the markup for the menu is still clean, with the complexity
of these changes being stored in the resources for "ScovilleMenu" and "ScovilleMenuItem". In this case
we have the resources tucked away in the App.xaml file where they can be used by other pages in the
application, but they could also be stored in the same "MainPage.xaml" page or in another assembly
altogether.

Menu Controls 327

© 2011 Telerik Inc.

Try running the application from Visual Studio. Start from the Expression Blend Projects pane, right-
click the solution or project and select Edit in Visual Studio from the context menu.

10.7 Wrap Up

In this chapter you used RadMenu, RadContextMenu and RadMenuItem to supply drop-down and pop-up
lists of user selections. You saw how MenuBase supplies properties common to both RadMenu and
RadContextMenu. You built standard menus using RadMenu and used properties to control item opening
behavior and check/uncheck support. You learned how to respond to user selections, created menus
dynamically in code and added images to menu items. You applied these fundamentals to
RadContextMenu and explored context menu specific issues such as initiating the popup, placement,
sizing and right-click support. Finally, you used Expression Blend to customize the appearance of a
RadMenu and its items.

Part

XI
Tabbed Interfaces

Tabbed Interfaces 329

© 2011 Telerik Inc.

11 Tabbed Interfaces

11.1 Objectives

In this chapter you will learn how to create tabbed navigation systems and interfaces using RadTabControl
and RadPanelBar controls. You will see the commonality and differences between the two controls. You will
build tab controls and panel bars directly in the XAML and programmatically. You will assign simple text to
the header and content areas of each control and also learn how to stuff the header and content with filling
of any amount and complexity. You will embed controls into the RadTabControl header. You will also handle
the significant events of each control. Finally, you will learn how to completely customize a RadTabItem by
overriding the ControlTemplate.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Tabbed\Tabbed.sln.

RadControls for Silverlight330

© 2011 Telerik Inc.

11.2 Overview

Use RadTabControl to create tabbed navigation systems and interfaces.

RadTabControl is fully customizable and has advanced functionality including:

Nesting Controls in the tab content: You can put any control inside the tabs, which allows you to build
complex and flexible tabbed user interfaces.

Header Content: You can put any content and templates in the headers.

Powerful Data Binding: TabControl can be bound to various data source types, such as Object, XML
and WCF services.

Tab Orientation: Tabs can be positioned horizontally or vertically by setting a single property.

Multi-line Tabs: You can set the end of a tabs row by marking the last tab in the row with
IsBreak=”True”. The next tab will start on a new row.

Styling and Appearance: RadTabControl and RadTabItem can be fully customized using Expression
Blend. There are also several predefined themes that can be used to style the tab control.

Keyboard Support: Your end-user can navigate through the tabs using the left and right arrow keys.
The Home and End keys also navigate to the very first and last tabs.

RadPanelBar is a versatile component allowing you to build intuitive navigation systems such as left/right
side menus and Outlook style panels.

Tabbed Interfaces 331

© 2011 Telerik Inc.

RadPanelBar is fully customizable and has advanced functionality including:

Hierarchical Data Binding: You can bind RadPanelBar to hierarchical data structures contained in
various data source types, such as Object, XML and WCF services.

Styling and Appearance: RadPanelBar can be fully customized using Expression Blend. Predefined
themes let you instantly style the panel bar with a single setting.

Keyboard Support: Your end-user can navigate through the panels using the arrow keys. The Up and
Down arrow keys navigate through panel bar header and content items. Right and Left arrow keys
expand and collapse panels.

Expand Modes: The expand behavior can mimic popular tabbed interfaces using the single or multiple
ExpandMode property settings.

 Notes

You may have noticed a control similar to RadPanelBar in the Toolbox called RadExpander.
RadExpander is a very simple HeaderedContent control. It has only header and content and a single
action for toggling content visibility. When you insert several expanders into a single container, the
expanders don't communicate with one another. By contrast, RadPanelBar is an ItemsControl
descendant and supports hierarchy, data binding and a more complete set of functionality.

RadControls for Silverlight332

© 2011 Telerik Inc.

11.3 Getting Started

In this walk through you will define a RadTabControl and its items in XAML. One of the tabs will contain a
RadPanelBar and its items.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

c) Telerik.Windows.Themes.Summer

4) Add an "Images" directory to the project. Copy the following images from the "\courseware\images"
directory to the new images directory

a) Blue hills.jpg

b) Calculator.png

c) Camera.png

d) Favorites.png

e) Games.png

The Images directory should look something like the screenshot below.

Tabbed Interfaces 333

© 2011 Telerik Inc.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add a XML namespace,"telerik", that references the Telerik.Windows.Controls assembly.

xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"

3) Inside the UserControl element, add the XAML below. This XAML defines resources we will use later.

<UserControl.Resources>
 <Style x:Key="MyContentStyle" TargetType="FrameworkElement">
 <Setter Property="HorizontalAlignment" Value="Left"></Setter>
 <Setter Property="Margin" Value="10"></Setter>
 <Setter Property="MaxWidth" Value="200"></Setter>
 <Setter Property="MaxHeight" Value="200"></Setter>
 </Style>

 <Style
 x:Key="ImageStyle"
 TargetType="Image"
 BasedOn="{StaticResource MyContentStyle}">
 <Setter Property="Stretch" Value="Uniform"></Setter>
 </Style>

 <Style x:Key="IconStyle" TargetType="FrameworkElement">
 <Setter Property="HorizontalAlignment" Value="Left"></Setter>
 <Setter Property="Margin" Value="10"></Setter>
 <Setter Property="MaxWidth" Value="50"></Setter>
 <Setter Property="MaxHeight" Value="50"></Setter>
 </Style>
</UserControl.Resources>

RadControls for Silverlight334

© 2011 Telerik Inc.

4) Drag a RadTabControl from the Toolbox to a point within the main Grid tag.

5) Add three RadTabItem controls between the RadTabControl tags. Note: the XAML in the screenshot
below was massaged slightly to place the tab items on two lines each and to label each tab item with
comments for easier reference later in this tutorial.

Tabbed Interfaces 335

© 2011 Telerik Inc.

6) Add a StyleManager.Theme property to the RadTabControl and set it equal to the "Summer" theme.

<telerik:RadTabControl telerik:StyleManager.Theme="Summer">

 <!--first tab item-->
 <telerik:RadTabItem>
 </telerik:RadTabItem>

 <!--second tab item-->
 <telerik:RadTabItem>
 </telerik:RadTabItem>

 <!--third tab item-->
 <telerik:RadTabItem>
 </telerik:RadTabItem>

</telerik:RadTabControl>

7) Add Header and Content attributes to the first RadTabItem tag and set these attributes equal to
"Simple text in header" and "Simple text can go in the content", respectively.

<telerik:RadTabControl telerik:StyleManager.Theme="Summer">

 <!--first tab item-->
 <telerik:RadTabItem Header="Simple text in header"
 Content="Simple text can go in the content">
 </telerik:RadTabItem>

 . . .

</telerik:RadTabControl>

RadControls for Silverlight336

© 2011 Telerik Inc.

8) Inside the second tag add a RadTabItem.Header sub-element. Below the RadTabItem.Header
element, add a RadTabItem.Content sub-element.

<telerik:RadTabControl telerik:StyleManager.Theme="Summer">

 . . .

 <!--second tab item-->
 <telerik:RadTabItem>
 <telerik:RadTabItem.Header>

 </telerik:RadTabItem.Header>
 <telerik:RadTabItem.Content>

 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>

 . . .

</telerik:RadTabControl>

Tip!

You can populate the Header and Content attribute when you only need a single assignment. For
more complex arrangements with multiple items and arbitrary layout within the tab item, use
Header and Content sub-elements as shown in this last step. In following steps we will add
controls to the Header and Content sub-elements.

Tabbed Interfaces 337

© 2011 Telerik Inc.

9) Inside the second tab item Header element, add a TextBlock. You can use the text as shown below or
add your own text

 Notes

.The <Run> tags within the TextBlock element allow you to assign style to only parts of the
TextBlock contents.

<telerik:RadTabControl
 telerik:StyleManager.Theme="Summer">

 . . .

 <!--second tab item-->
 <telerik:RadTabItem>
 <telerik:RadTabItem.Header>
 <TextBlock>
 Header accepts <Run
 FontWeight="Bold">Silverlight</Run>
 or <Run
 FontWeight="Bold">Telerik</Run> controls
 </TextBlock>
 </telerik:RadTabItem.Header>
 <telerik:RadTabItem.Content>

 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>

 . . .

</telerik:RadTabControl>

RadControls for Silverlight338

© 2011 Telerik Inc.

10)Inside the second tab item's Content tags add a StackPanel tag. Within the StackPanel add
TextBlock, a Telerik RadCalendar and an Image control from the Toolbox. Add text to the TextBlock
either using the XAML below or any arbitrary text you care to add. To set the RadCalendar properties all
at one time, assign "{StaticResource MyContentStyle}" to the RadCalendar Style attribute. Set the
Image Style to "{StaticResource ImageStyle}". Point the Image Source property to the "Blue Hills.jpg"
image.

<telerik:RadTabControl
 telerik:StyleManager.Theme="Summer">

 . . .

 <!--second tab item-->
 <telerik:RadTabItem>
 . . .
 <telerik:RadTabItem.Content>
 <StackPanel>
 <TextBlock
 Margin="10">
 Content can hold arbitrary <Run
 FontWeight="Bold">Silverlight</Run>
 and <Run
 FontWeight="Bold">Telerik</Run> controls
 </TextBlock>
 <telerik:RadCalendar
 Style="{StaticResource MyContentStyle}">
 </telerik:RadCalendar>
 <Image
 Style="{StaticResource ImageStyle}"
 Source="../Images/Blue Hills.jpg">
 </Image>
 </StackPanel>
 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>

 . . .

</telerik:RadTabControl>

 Gotcha!

Does the editor flag an error "The type 'telerik:RadCalendar' was not found"? Make sure that you
actually drag the RadCalendar from the Toolbox rather than just copying the XAML here.
Dragging from the toolbox also adds an XML namespace that references the correct assembly.

Tabbed Interfaces 339

© 2011 Telerik Inc.

 Gotcha!

Image not displaying? Here are a few things to check:

Did you add a folder "Images" to your project?

Did you spell the name of the image file correctly, e.g. "Blue Hills.jpg" and not "BlueHills.jpg"
with no space or "Blue Hills.bmp" with an incorrect extension.

Does the path leading up to the file name match the path in your project?

RadControls for Silverlight340

© 2011 Telerik Inc.

11)In the third RadTabItem, set the Header value to "RadPanelBar". Add a RadTabItem.Content element.
Drag a RadPanelBar from the Toolbox to a point within the RadTabItem.Content beginning and ending
tags. Set the RadPanelBar attributes HorizontalAlignment = "Left" and add a StyleManager.Theme
attribute set to "Summer".

12)Add three RadPanelBarItem tags to the RadPanelBar from the Toolbox and assign Header attributes
"Favorites", "Reports" and "Options". The Result should now look like the XAML below.

<telerik:RadTabControl
 telerik:StyleManager.Theme="Summer">

 . . .

 <!--third tab item-->
 <telerik:RadTabItem Header="RadPanelBar">

 <telerik:RadTabItem.Content>

 <!--panel bar-->
 <telerik:RadPanelBar
 HorizontalAlignment="Left"
 telerik:StyleManager.Theme="Summer">

 <!--first panel bar item-->
 <telerik:RadPanelBarItem Header="Favorites">
 </telerik:RadPanelBarItem>

 <!--second panel bar item-->
 <telerik:RadPanelBarItem Header="Reports">
 </telerik:RadPanelBarItem>

 <!--third panel bar item-->
 <telerik:RadPanelBarItem Header="Options">
 </telerik:RadPanelBarItem>

 </telerik:RadPanelBar>

 </telerik:RadTabItem.Content>

 </telerik:RadTabItem>

</telerik:RadTabControl>

Tabbed Interfaces 341

© 2011 Telerik Inc.

13)Locate the first RadPanelBarItem and remove the 'Header="Favorites"' attribute. Add a
RadPanelBarItem.Header element inside the RadPanelBarItem. Inside the RadPanelBarItem.Header,
add an Image control. Set the Image Style equal to "{StaticResource IconStyle}", and point the
Source to "../Images/Favorites.png".

<telerik:RadTabControl
 telerik:StyleManager.Theme="Summer">
 . . .

 <!--third tab item-->
 <telerik:RadTabItem Header="RadPanelBar">

 <telerik:RadTabItem.Content>

 <!--panel bar-->
 <telerik:RadPanelBar
 HorizontalAlignment="Left"
 telerik:StyleManager.Theme="Summer">

 <!--first panel bar item-->
 <telerik:RadPanelBarItem>
 <telerik:RadPanelBarItem.Header>
 <Image Style="{StaticResource IconStyle}"
 Source="../Images/Favorites.png"></Image>
 </telerik:RadPanelBarItem.Header>

 . . .

 </telerik:RadPanelBarItem>
 </telerik:RadPanelBar>
 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>
</telerik:RadTabControl>

RadControls for Silverlight342

© 2011 Telerik Inc.

14)Below the RadPanelBarItem.Header, add a RadPanelBarItem.Items tag and three Image controls
within the Items tag. Again, set the Style for each Image to "{StaticResource IconStyle}" and the image
Source properties to "Calculator.png", "Camera.png" and "gamecontroller.png" (all image paths within
the \Images folder as shown below). Now the relevant portion of XAML for that first RadPanelBarItem
looks like the example below.

<telerik:RadTabControl
 telerik:StyleManager.Theme="Summer">

 . . .

 <!--third tab item-->
 <telerik:RadTabItem Header="RadPanelBar">

 <telerik:RadTabItem.Content>

 <!--panel bar-->
 <telerik:RadPanelBar
 HorizontalAlignment="Left"
 telerik:StyleManager.Theme="Summer">

 <!--first panel bar item-->
 <telerik:RadPanelBarItem>
 <telerik:RadPanelBarItem.Header>
 <Image Style="{StaticResource IconStyle}"
 Source="../Images/Favorites.png"></Image>
 </telerik:RadPanelBarItem.Header>
 <telerik:RadPanelBarItem.Items>
 <Image Style="{StaticResource IconStyle}"
 Source="../Images/Calculator.png"></Image>
 <Image Style="{StaticResource IconStyle}"
 Source="../Images/Camera.png"></Image>
 <Image Style="{StaticResource IconStyle}"
 Source="../Images/gamecontroller.png"></Image>
 </telerik:RadPanelBarItem.Items>
 </telerik:RadPanelBarItem>

 . . .

 </telerik:RadPanelBar>
 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>
</telerik:RadTabControl>

Tabbed Interfaces 343

© 2011 Telerik Inc.

15)Add two more RadPanelBarItem tags, each with a set of TextBlocks within the RadPanelBarItem.Items
tag. You can use any arbitrary text to fill the TextBlock controls or borrow from the XAML below.

<telerik:RadTabControl
 telerik:StyleManager.Theme="Summer">

 . . .

 <!--third tab item-->
 <telerik:RadTabItem Header="RadPanelBar">

 <telerik:RadTabItem.Content>

 <!--panel bar-->
 <telerik:RadPanelBar
 HorizontalAlignment="Left"
 telerik:StyleManager.Theme="Summer">

 <!--first panel bar item-->
 . . .

 <!--second panel bar item-->
 <telerik:RadPanelBarItem Header="Reports">
 <telerik:RadPanelBarItem.Items>
 <TextBlock>Product List</TextBlock>
 <TextBlock>Products By Category</TextBlock>
 <TextBlock>Out of Stock</TextBlock>
 </telerik:RadPanelBarItem.Items>
 </telerik:RadPanelBarItem>

 <!--third panel bar item-->
 <telerik:RadPanelBarItem Header="Options">
 <telerik:RadPanelBarItem.Items>
 <TextBlock>Printer Settings</TextBlock>
 <TextBlock>Roles</TextBlock>
 <TextBlock>Password</TextBlock>
 </telerik:RadPanelBarItem.Items>
 </telerik:RadPanelBarItem>

 </telerik:RadPanelBar>
 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>
</telerik:RadTabControl>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight344

© 2011 Telerik Inc.

Test Application Features

1) Navigate between tabs of the RadTabControl.

2) Expand and collapse RadPanelBar panels.

3) Notice that each Items collection member (the Favorites icon, calculator, camera, game controller,
reports and options items) all react when the mouse rolls over and can be clicked. In this chapter
section titled "RadPanelBar" you will see how to handle selected events.

11.4 Control Details

11.4.1 RadTabControl

Defining a RadTabControl in XAML

To minimally define a tab control and its items in XAML you only need a RadTabControl outer tag
containing a series of RadTabItem tags, each with a Header property defined. Be aware that RadTabItem
is available in the Toolbox and can be dragged to your XAML from there.

<telerik:RadTabControl x:Name="tcDogBreeds">
 <telerik:RadTabItem Header="Toy" />
 <telerik:RadTabItem Header="Small" />
 <telerik:RadTabItem Header="Medium" />
 <telerik:RadTabItem Header="Large" />
</telerik:RadTabControl>

Tabbed Interfaces 345

© 2011 Telerik Inc.

The example running in the browser looks like the screenshot below:

The Header can simply be text as in the example above, or can have a more complex arrangement of any
elements. This is done by enclosing content markup within a RadTabItem Header tag and filling it with any
Silverlight markup that suits your purpose. For example, the snippet below removes the "Header='Some
text'" property and adds the RadTabItem Header tag with a StackPanel inside to handle layout.The
StackPanel contains a TextBlock and an Image control.

 Notes

Resources not shown in this example are defined in the <UserControl.Resources> tag simply to move non-
relevant visual property settings out of the way. If you're interested you can review these resources in the
example solution for this chapter.

<telerik:RadTabControl
 x:Name="tcDogBreeds">

 <telerik:RadTabItem>
 <telerik:RadTabItem.Header>
 <StackPanel>
 <TextBlock Text="Toy"
 Style="{StaticResource CaptionStyle}" />
 <Image Style="{StaticResource ImageStyle}"
 Source="../Images/ToyDog.png" />
 </StackPanel>
 </telerik:RadTabItem.Header>
 </telerik:RadTabItem>

 . . .

</telerik:RadTabControl>

The result in the browser looks like the screenshot below:

The RadTabItem Content works in a similar manner to the Header. You could define "Content" just using
strings...

RadControls for Silverlight346

© 2011 Telerik Inc.

<telerik:RadTabControl
 x:Name="tcDogBreeds" telerik:StyleManager.Theme="Summer">
 <telerik:RadTabItem
 Header="Toy"
 Content="The Chihuahua is a brave and good natured dog." />
 <telerik:RadTabItem
 Header="Small"
 Content="The Pug is gentle and affectionate." />
 <telerik:RadTabItem
 Header="Medium"
 Content="The Irish Setter is active and affectionate." />
 <telerik:RadTabItem
 Header="Large"
 Content="The Great Pyrenees is loyal and protective." />
</telerik:RadTabControl>

This results in the simple display shown in the screenshot below:

More commonly you want to define a RadTabItem.Content tag and add other markup for a richer display
as demonstrated in this snippet:

<telerik:RadTabControl x:Name="tcDogBreeds">

 <telerik:RadTabItem Header="Toy">
 <telerik:RadTabItem.Content>
 <Border Style="{StaticResource ItemBorderStyle}">
 <Image Style="{StaticResource ImageStyle}"
 Source="../Images/ToyDog.png" />
 </Border>
 </telerik:RadTabItem.Content>
 </telerik:RadTabItem>
 . . .

The end result has simple text in the Header with Border and Image controls inside the RadTabItem.Content
tags.

Tabbed Interfaces 347

© 2011 Telerik Inc.

RadControls for Silverlight348

© 2011 Telerik Inc.

Creating Tabs in Code

To add a tab directly in code, create a RadTabItem, set the Header and Content properties, then add the
RadTabItem to the RadTabControl Items collection.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim item As RadTabItem = _
New RadTabItem With { _
.Header = "Teacup", _
.Content = "This dog is too small to see in this resolution"}
 tcDogBreeds.Items.Add(item)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadTabItem item = new RadTabItem
 {
 Header = "Teacup",
 Content = "This dog is too small to see in this resolution"
 };
 tcDogBreeds.Items.Add(item);
}

The tab displays after tabs already defined in the XAML, as shown in the screenshot below.

Tabbed Interfaces 349

© 2011 Telerik Inc.

Responding to Tab Selections

Handle the SelectionChanged event to respond when the user clicks a tab. You can cast the "sender"
argument of the event handler to RadTabControl. From there you can access the SelectedItem property
and cast it to RadTabItem. In this example the XAML defines a TextBlock and Image to reflect the
selected tab information. Some of the tabs have images, but the "Teacup" item only has text in the content.
The code tests to see if the content is an image and uses the image if its available. Likewise, the code
tests to see if any TextBlock controls exist in the item header and uses that text if available.

Private Sub tcDogBreeds_SelectionChanged(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim tabControl As RadTabControl = TryCast(sender, RadTabControl)
 If tabControl.SelectedContent IsNot Nothing Then
 Dim item As RadTabItem = TryCast(tabControl.SelectedItem, RadTabItem)

 Dim image As Image = TryCast(item.Content, Image)
 imgSelected.Source = If(image IsNot Nothing, image.Source, Nothing)

 Dim textBlocks As IList(Of TextBlock) = _
(TryCast(item.Header, UIElement)).ChildrenOfType(Of TextBlock)()
 tbSelected.Text = _
If(textBlocks.Count > 0, textBlocks(0).Text, String.Empty)
 End If
End Sub

private void tcDogBreeds_SelectionChanged(object sender, RoutedEventArgs e)
{
 RadTabControl tabControl = sender as RadTabControl;
 if (tabControl.SelectedContent != null)
 {
 RadTabItem item = tabControl.SelectedItem as RadTabItem;

 Image image = item.Content as Image;
 imgSelected.Source = image != null ? image.Source : null;

 IList<TextBlock> textBlocks = (item.Header as UIElement).ChildrenOfType<TextBlock>();
 tbSelected.Text = textBlocks.Count > 0 ? textBlocks[0].Text : String.Empty;
 }
}

RadControls for Silverlight350

© 2011 Telerik Inc.

 Notes

If you need only the content for the current selection then read the RadTabControl.SelectedContent
property. You can also get the position of the current selection using the SelectedIndex property that
indexes into the RadTabControl Items[] collection.

Tip!

The Telerik.Controls.Windows namespace defines a UIElementExtensions class that has three handy
extension methods. ChildrenOfType<T>() takes a UIElement and returns a IList<T> of all children in
the visual tree for a given type. FindChildByType<T>() takes a UIElement and returns the first child of
the given type. ParentOfType<T>() takes a UIElement and returns a parent element.

 The example running in the browser looks like the screenshot below. For the full source, see the solution
for this chapter.

Tabbed Interfaces 351

© 2011 Telerik Inc.

Embedding Controls in Tabs

One frequently asked question that comes up in the Telerik Forums is "How do I embed a control in a tab
header or content area"? Particularly, people want to know how to put a FireFox style "close" button with
an "X" graphic in a tab. Adding a Button with Image content is really a variation on adding any kind of
content to the RadTabItem.Header. There are a number of ways to get this done including:

Define the close button directly in XAML. This route is relatively straightforward with few surprises.

Duplicate the same XAML elements in the code-behind. This way of getting the job done has a couple
minor twists but is conceptually the same as the XAML-only route.

Soft-code the layout using templates. This is the easiest to maintain but has the steepest learning
curve in terms of Silverlight/WPF related concepts and mechanisms. See the Customization section of
this chapter for a discussion on how to override the RadTabItem ControlTemplate.

Let's first look at building the close button directly into the XAML. Inside the RadTabItem.Header tag we
place a StackPanel to contain a TextBlock and a Button. Inside the Button tag we place a Button.Content
with an Image inside that. The short version of the tag organization is...

RadTabItem.Header
 StackPanel
 Button
 Button.Content
 Image

Take a look at the XAML below to see the markup for a single RadTabItem:

<telerik:RadTabControl x:Name="tcDogBreeds"
 SelectionChanged="tcDogBreeds_SelectionChanged">
 <telerik:RadTabItem Style="{StaticResource TabItemStyle}">
 <telerik:RadTabItem.Header>
 <StackPanel Style="{StaticResource HorizontalPanelStyle}">
 <TextBlock Text="Toy" Style="{StaticResource CaptionStyle}" />
 <Button Click="Button_Click">
 <Button.Content>
 <Image Style="{StaticResource ButtonImageStyle}"
 Source="../Images/Close.png" />
 </Button.Content>
 </Button>
 </StackPanel>
 </telerik:RadTabItem.Header>

 <Image Style="{StaticResource ImageStyle}"
 Source="../Images/ToyDog.png" />
 </telerik:RadTabItem>
 . . .
</telerik:RadTabControl>

RadControls for Silverlight352

© 2011 Telerik Inc.

The remaining RadTabItem objects in the example XAML have a simple text header and an Image in the
content. How could you populate the remaining tabs to replace the simple text header with the same items
used in the XAML above? The code below runs in the UserControl Loaded event handler. First it gets all the
styles it will need from UserControl.Resources. The remaining code iterates all the RadTabItem instances in
the RadTabControl Items collection. If the RadTabItem Header does not have a StackPanel we assume it
needs the entire StackPanel-TextBlock-Button-Image combination. The StackPanel is then built, replicating
the settings of the previous XAML example.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' . . .

 ' get all the styles we need from User.Resources
 Dim TabItemStyle As Style = _
CType(Me.Resources("TabItemStyle"), Style)
 Dim HorizontalPanelStyle As Style = _
CType(Me.Resources("HorizontalPanelStyle"), Style)
 Dim CaptionStyle As Style = _
CType(Me.Resources("CaptionStyle"), Style)
 Dim ButtonImageStyle As Style = _
CType(Me.Resources("ButtonImageStyle"), Style)

 ' add close buttons to any tabs that don't have them
 For Each tab As RadTabItem In tcDogBreeds.Items
 ' this item doesn't have a stack panel with a close button
 If Not(TypeOf tab.Header Is StackPanel) Then
 ' get the header text
 Dim caption As String = tab.Header.ToString()

 ' create the stack panel, text b lock, button and image
 Dim stackPanel As New StackPanel()
 stackPanel.Style = HorizontalPanelStyle

 Dim textBlock As New TextBlock()
 textBlock.Style = CaptionStyle
 textBlock.Text = caption

 Dim button As New Button()
 ' Note: BitmapImage needs a reference to System.Windows.Media.Imaging

 ' create an Image (a FrameworkElement) that can be styled
 Dim image As New Image()
 image.Source = _
New BitmapImage(New Uri("../images/Close.png", UriKind.Relative))
 image.Style = ButtonImageStyle
 ' put the "X" image inside the button
 button.Content = image
 AddHandler button.Click, AddressOf Button_Click

 ' assemble the stack panel pieces

Tabbed Interfaces 353

© 2011 Telerik Inc.

 stackPanel.Children.Add(textBlock)
 stackPanel.Children.Add(button)
 tab.Header = stackPanel
 tab.Style = TabItemStyle

 End If
 Next tab
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // . . .

 // get all the styles we need from User.Resources
 Style TabItemStyle =
 (Style)this.Resources["TabItemStyle"];
 Style HorizontalPanelStyle =
 (Style)this.Resources["HorizontalPanelStyle"];
 Style CaptionStyle =
 (Style)this.Resources["CaptionStyle"];
 Style ButtonImageStyle =
 (Style)this.Resources["ButtonImageStyle"];

 // add close buttons to any tabs that don't have them
 foreach (RadTabItem tab in tcDogBreeds.Items)
 {
 // this item doesn't have a stack panel with a close button
 if (!(tab.Header is StackPanel))
 {
 // get the header text
 string caption = tab.Header.ToString();

 // create the stack panel, text b lock, button and image
 StackPanel stackPanel = new StackPanel();
 stackPanel.Style = HorizontalPanelStyle;

 TextBlock textBlock = new TextBlock();
 textBlock.Style = CaptionStyle;
 textBlock.Text = caption;

 Button button = new Button();
 // Note: BitmapImage needs a reference to
 // System.Windows.Media.Imaging

 // create an Image (a FrameworkElement) that can be styled
 Image image = new Image();
 image.Source =
 new BitmapImage(
 new Uri("../images/Close.png", UriKind.Relative));
 image.Style = ButtonImageStyle;
 // put the "X" image inside the button
 button.Content = image;

RadControls for Silverlight354

© 2011 Telerik Inc.

 button.Click += new RoutedEventHandler(Button_Click);

 // assemble the stack panel pieces
 stackPanel.Children.Add(textBlock);
 stackPanel.Children.Add(button);
 tab.Header = stackPanel;
 tab.Style = TabItemStyle;
 }
 }
}

Tabbed Interfaces 355

© 2011 Telerik Inc.

The Button Click event handler gets the RadTabItem that the button is sitting in, using the ParentOfType<>
() extension method. The RadTabItem is then removed from RadTabControl Items collection.

Private Sub Button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' get the button that was clicked and get the parent tab
 Dim button As Button = TryCast(sender, Button)
 Dim tab As RadTabItem = button.ParentOfType(Of RadTabItem)()
 ' delete the tab
 tcDogBreeds.Items.Remove(tab)

 ' clear the text and image in case
 ' no tabs are left to delete
 tbSelected.Text = String.Empty
 imgSelected.Source = Nothing
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 // get the button that was clicked and get the parent tab
 Button button = sender as Button;
 RadTabItem tab = button.ParentOfType<RadTabItem>();
 // delete the tab
 tcDogBreeds.Items.Remove(tab);

 // clear the text and image in case
 // no tabs are left to delete
 tbSelected.Text = String.Empty;
 imgSelected.Source = null;
}

RadControls for Silverlight356

© 2011 Telerik Inc.

Running in the browser, the tabs look like the screenshot below where some of the tabs have already been
closed.

Tabbed Interfaces 357

© 2011 Telerik Inc.

Layout and Placement

Here are the significant properties that control how the RadTabControl and its individual tabs are arranged:

The Align property arranges tab items Left (the default), Right, Center or Justify. If you use Justify,
the items are scaled proportionally to fill the available space. If there isn't enough space to contain the
tabs, each tab width is reduced and clipped if necessary. The tab items do not automatically move to
the next row. Use the RadTabItem IsBreak property to move tabs to the next row.

TabStripPlacement controls where the tabs are docked relative to the content. Tabs can be placed
Left, Right, Top or Bottom.

The ReorderTabRows property comes into play only when there are multiple rows of tabs, i.e. when a
RadTabItem has its IsBreak property set to true. When ReorderTabRows is true (the default), rows are
re-ordered so that the selected item is always in the row nearest to the content. For example, if
TabStripPlacement is Top the selected item is in the bottommost row.

TabOrientation determines if the individual tabs orientation is Vertical or Horizontal.

AllTabsEqualHeight when true (the default) determines that the height of all tab items will be equal to
the tallest item. This adjustment takes place on a per-row basis and may be different for each row.

The tab control in the example screenshot below has its TabOrientation property set to Vertical so that
the header text runs from top-to-bottom, not left-to-right. The Align property is "Justify", causing the tabs
to take the entire length next to the content instead of being bunched on the left, right or center.
TabStripPlacement is set to "Right".

Drag and Drop

Tabs can be dragged within the tab control if you set the AllowDragReorder property to true.

RadControls for Silverlight358

© 2011 Telerik Inc.

11.4.2 RadPanelBar

Defining RadPanelBar in XAML

Minimally defining a RadPanelBar and its items in XAML follows much the same pattern as RadTabControl.
You only need a RadPanelBar outer tag containing a series of RadPanelBarItem tags, each with a
Header property defined. Be aware that RadPanelBarItem is available in the Toolbox and can be dragged to
your XAML from there.

<telerik:RadPanelBar
 x:Name="pbDogBreeds"
 HorizontalAlignment="Left"
 MaxWidth="300"
 Margin="20">
 <telerik:RadPanelBarItem Header="Small Dogs" />
 <telerik:RadPanelBarItem Header="Medium Dogs" />
 <telerik:RadPanelBarItem Header="Large Dogs" />
</telerik:RadPanelBar>

The example running in the browser looks like the screenshot below:

Tabbed Interfaces 359

© 2011 Telerik Inc.

Creating panel bar item headers with more complex arrangements of contents also follows the same pattern
as RadTabControl. Inside each RadPanelBarItem tag add a RadPanelBarItem.Header, and within the header
add any contents that suit your purpose. Typically you will find a layout panel of some sort inside the
RadPanelBarItem.Header tag, such as a StackPanel or Grid.

<telerik:RadPanelBar x:Name="pbDogBreeds"
 HorizontalAlignment="Left"
 MaxWidth="300" Margin="20">
 <telerik:RadPanelBarItem>
 <telerik:RadPanelBarItem.Header>
 <StackPanel>
 <TextBlock Text="Toy"></TextBlock>
 <Border Style="{StaticResource ItemBorderStyle}">
 <Image Style="{StaticResource ImageStyle}"
 Source="../Images/ToyDog.png" />
 </Border>
 </StackPanel>
 </telerik:RadPanelBarItem.Header>
 </telerik:RadPanelBarItem>
 . . .
</telerik:RadPanelBar>

The panel bar running in the browser looks like the screenshot below.

RadControls for Silverlight360

© 2011 Telerik Inc.

Adding content to the items area below the header in the panel bar again follows the same pattern as
RadTabControl, but instead of a Content tag we use RadPanelBarItem.Items. The example below adds a
single item inside each header.

<telerik:RadPanelBar x:Name="pbDogBreeds"
 Margin="20" telerik:StyleManager.Theme="Vista">
 <telerik:RadPanelBarItem Header="Toy">
 <telerik:RadPanelBarItem.Items>
 <StackPanel Style="{StaticResource StackPanelStyle}">
 <TextBlock
 Text="Toy"
 Style="{StaticResource CaptionStyle}">
 </TextBlock>
 <Image
 Style="{StaticResource ImageStyle}"
 Source="../Images/ToyDog.png" />
 </StackPanel>
 </telerik:RadPanelBarItem.Items>
 </telerik:RadPanelBarItem>
 . . .
</telerik:RadPanelBar>

The results in the browser look something like the screenshot below.

Tabbed Interfaces 361

© 2011 Telerik Inc.

You can define multiple items as shown in the XAML below. Notice that RadPanelBarItem.Items tag is the
default and can be left out.

<telerik:RadPanelBar
 x:Name="pbDogBreeds"
 Margin="20"
 telerik:StyleManager.Theme="Vista">

 <telerik:RadPanelBarItem
 Header="Toy">
 <TextBlock
 Text="Chihuahua"
 Style="{StaticResource CaptionStyle}"></TextBlock>
 <TextBlock
 Text="English Toy Spaniel"
 Style="{StaticResource CaptionStyle}"></TextBlock>
 <TextBlock
 Text="Pekingese"
 Style="{StaticResource CaptionStyle}"></TextBlock>
 </telerik:RadPanelBarItem>

 . . .

</telerik:RadPanelBar>

RadControls for Silverlight362

© 2011 Telerik Inc.

Creating RadPanelBar Items in Code

There are two steps to creating panel bar items:

1. Create the RadPanelBarItem and define its Header property.

2. Add to the RadPanelBarItem.Items collection. This second step can take any object type.

This next example adds a panel bar item headed "Teacup" and adds a series of TextBlock elements to the
Items collection. Notice in this example...

The RadPanelBarItem with the Header defined is inserted to the head of the list using the RadPanelBar.
Items.Insert() method, rather than using the Add() method.

The panel bar items that already exist in the XAML use a style defined in UserControl.Resources called
"CaptionStyle". Now that we're adding more items on-the-fly, we need to apply that style to make the
appearance match. Notice the code that extracts "CaptionStyle" to a Style object. When the TextBlock
object is created, the object initializer for the TextBlock assigns the Style property.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim teacupBreeds As List(Of String) = _
New List(Of String) (_
New String() {"Teacup Poodle", "Chinese Crested", "Havanese"})

 ' get "CaptionStyle" from UserControl.Resources so
 ' added items look identical to items added in xaml
 Dim style As Style = CType(Me.Resources("CaptionStyle"), Style)

 ' Create new "Teacup" item header
 Dim teacupItem As RadPanelBarItem = _
New RadPanelBarItem With {.Header = "Teacup"}

 ' put new "Teacup" item header at the top of list
 pbDogBreeds.Items.Insert(0, teacupItem)

 ' add a list of TextBlock items under the "Teacup" header,
 ' set style to match existing, xaml-defined TextBlocks
 For Each breed As String In teacupBreeds
 teacupItem.Items.Add(New TextBlock With {.Text = breed, .Style = style})
 Next breed
End Sub

Tabbed Interfaces 363

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 List<string> teacupBreeds =
 new List<string>
 {
 "Teacup Poodle", "Chinese Crested", "Havanese"
 };

 // get "CaptionStyle" from UserControl.Resources so
 // added items look identical to items added in xaml
 Style style = (Style)this.Resources["CaptionStyle"];

 // Create new "Teacup" item header
 RadPanelBarItem teacupItem =
 new RadPanelBarItem { Header = "Teacup" };

 // put new "Teacup" item header at the top of list
 pbDogBreeds.Items.Insert(0, teacupItem);

 // add a list of TextBlock items under the "Teacup" header,
 // set style to match existing, xaml-defined TextBlocks
 foreach (string breed in teacupBreeds)
 {
 teacupItem.Items.Add(new TextBlock { Text = breed, Style = style });
 }
}

Running in the browser, the new "Teacup" RadPanelBarItem shows at the beginning of the list with
three new TextBlock controls added to the Items collection.

RadControls for Silverlight364

© 2011 Telerik Inc.

Events

You can react to panels opening and closing using the event pairs PreviewExpanded/Expanded and
PreviewCollapsed/Collapsed. All four of these events provide access to the expanding/collapsing panel
through the OriginalSource property. The "Preview" event versions allow you to cancel the event by setting
the Handled property to true. The example below prevents the panel from expanding if there are fewer than
four items in it.

Private Sub pbDogBreeds_PreviewExpanded(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 Dim item As RadPanelBarItem = TryCast(e.OriginalSource, RadPanelBarItem)
 e.Handled = item.Items.Count < 4
End Sub

private void pbDogBreeds_PreviewExpanded(
 object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 RadPanelBarItem item = e.OriginalSource as RadPanelBarItem;
 e.Handled = item.Items.Count < 4;
}

The Selected event fires for all items including the header item and all the items underneath the header.
The RadPanelBarItem Level property can give you a hand figuring out which item you have a reference to, i.
e. "1" for the header item and "2" for the items underneath the header. The RadPanelBarItem Item property
is a reference to the object actually being displayed.

Tabbed Interfaces 365

© 2011 Telerik Inc.

The example below gets a reference to the RadPanelBarItem. If the Level is "2", the Item property is
assumed to be a TextBlock and cast as such.

Private Sub pbDogBreeds_Selected(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 Dim item As RadPanelBarItem = TryCast(e.OriginalSource, RadPanelBarItem)

 If item.Level = 2 Then
 Dim tb As TextBlock = TryCast(item.Item, TextBlock)
 RadWindow.Alert("You clicked item " & tb.Text)
 End If
End Sub

private void pbDogBreeds_Selected(object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 RadPanelBarItem item = e.OriginalSource as RadPanelBarItem;

 if (item.Level == 2)
 {
 TextBlock tb = item.Item as TextBlock;
 RadWindow.Alert("You clicked item " + tb.Text);
 }
}

11.5 Customization

While styles can let you change a number of properties all at one time, templates provide the powerful
ability to completely change the makeup of a control without breaking its functionality. In this walk through
you will define new contents for the RadTabItem "TopTemplate" that defines the layout of the control when
the TabStripPlacement is "Top".

 Notes

We can define templates in Expression Blend, but it helps sometimes to see how the XAML is
structured so this time we will make these changes manually. Typically you will want to use Blend
not only for the ease-of-use, but because Blend does a much more complete job of making sure
all the styles, templates and brushes are included in your XAML.

RadControls for Silverlight366

© 2011 Telerik Inc.

 Notes

RadTabItem and RadTabControl have four templates each, not just one. These templates change
depending on the TabStripPlacement of the tab control and have corresponding names, i.e.
"BottomTemplate", "TopTemplate", "LeftTemplate" and "RightTemplate". This approach was
chosen by Telerik for performance reasons. The alternative would have been to have visual
elements in a single template with different parts shown or hidden as needed.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the XML name space attributes section of the UserControl tag.

<UserControl
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
 xmlns:Telerik_Windows_Controls_Primitives="clr-namespace:Telerik.Windows.Controls.Primitives;
assembly=Telerik.Windows.Controls.Navigation"
 . . .
>

3) Inside the UserControl tag, add the UserControl.Resources below. We'll use the comments to include
later the style for the RadTabItem and the top template:

Tabbed Interfaces 367

© 2011 Telerik Inc.

<UserControl.Resources>

 <!--ScovilleTopTemplate-->

 <!--ScovilleTab Style-->

</UserControl.Resources>

4) Replace the "<!--ScovilleTopTemplate-->" comment with the XAML below.

The XAML is a control template that will replace the top tabs. Notice that the template is encapsulated
with a standard Silverlight Grid named "wrapper". Be sure to leave the "wrapper" name in place or the
logic that changes content in response to click ing tabs will not work . Inside the Grid is an Ellipse and a
TabItemContentPresenter. The TabItemContentPresenter renders the header content.

<!--ScovilleTopTemplate-->
<ControlTemplate x:Key="ScovilleTopTemplate" TargetType="telerik:RadTabItem">
 <Grid x:Name="wrapper">
 <Ellipse>
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Red" Offset="0.1" />
 <GradientStop Color="DarkRed" Offset="0.5" />
 <GradientStop Color="Maroon" Offset=".7" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>

 <Telerik_Windows_Controls_Primitives:TabItemContentPresenter
 x:Name="HeaderElement"
 Content="{TemplateBinding Header}"
 Foreground="{TemplateBinding Foreground}"
 Margin="{TemplateBinding Margin}" />
 </Grid>
</ControlTemplate>

5) Replace the "<!--ScovilleTab Style-->" comment with the "ScovilleTab" style XAML below. The style
incorporates the TopTemplate property of the RadTabItem.

<!--ScovilleTab Style-->
<Style x:Key="ScovilleTab" TargetType="telerik:RadTabItem">
 <Setter Property="TopTemplate" Value="{StaticResource ScovilleTopTemplate}" />
 <Setter Property="Background" Value="White" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Margin" Value="10" />
</Style>

RadControls for Silverlight368

© 2011 Telerik Inc.

6) Drag a RadTabControl from the Toolbox to a point inside the main "LayoutRoot" grid. Set the
HorizontalAlignment to "Left", VerticalAlignment to "Top" and BackgroundVisibility to
"Collapsed". Add three RadTabItem and set the Style for each to "ScovilleTab". Set both the Content
and Header to "Very Spicy", "Hot" and "Mild".

<telerik:RadTabControl HorizontalAlignment="Left"
 VerticalAlignment="Top"
 BackgroundVisibility="Collapsed">
 <telerik:RadTabItem Header="Very Spicy"
 Content="Very Spicy"
 Style="{StaticResource ScovilleTab}" />
 <telerik:RadTabItem Header="Hot" Content="Hot"
 Style="{StaticResource ScovilleTab}" />
 <telerik:RadTabItem Header="Mild" Content="Mild"
 Style="{StaticResource ScovilleTab}" />
</telerik:RadTabControl>

7) Here's all the XAML together so far.

Tabbed Interfaces 369

© 2011 Telerik Inc.

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
 xmlns:Telerik_Windows_Controls_Primitives="clr-namespace:Telerik.Windows.Controls.Primitives;
assembly=Telerik.Windows.Controls.Navigation"
 x:Class="TabTemplateTest.MainPage" Width="640" Height="480">
 <UserControl.Resources>

 <!--ScovilleTopTemplate-->
 <ControlTemplate x:Key="ScovilleTopTemplate"
 TargetType="telerik:RadTabItem">
 <Grid x:Name="wrapper">
 <Ellipse>
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Red" Offset="0.1" />
 <GradientStop Color="DarkRed" Offset="0.5" />
 <GradientStop Color="Maroon" Offset=".7" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>

 <Telerik_Windows_Controls_Primitives:TabItemContentPresenter
 x:Name="HeaderElement"
 Content="{TemplateBinding Header}"
 Foreground="{TemplateBinding Foreground}"
 Margin="{TemplateBinding Margin}" />
 </Grid>
 </ControlTemplate>

 <!--ScovilleTab Style-->
 <Style x:Key="ScovilleTab"
 TargetType="telerik:RadTabItem">
 <Setter Property="TopTemplate"
 Value="{StaticResource ScovilleTopTemplate}" />
 <Setter Property="Background" Value="White" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Margin" Value="10" />

 </Style>
 </UserControl.Resources>
 . . .
</UserControl>

 Gotcha!

TabStripPlacement must correspond to the template you're defining or you will only see the
default appearance of the control. If you're using TabStripPlacement = "Top", then the
"TopTemplate" must be defined and visa-versa.

RadControls for Silverlight370

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Click each of the RadTabItem buttons and notice that the corresponding content changes. The
significance of this is that we completely replace parts of the RadTabItem internals, but the tabs still
work as before.

Ideas for Extending This Example

Try adding a Click event with an RadWindow.Alert() called from the handler. Once again, we can see
that the functionality for the tab control is completely intact.

Try changing the elements that make up the RadTabItem ControlTemplate.

Right-click the MainPage.xaml file and select "Open in Expression Blend" from the context menu. You
can continue to edit the page and the template within Blend.

11.6 Wrap Up

In this chapter you learned how to create tabbed navigation systems and interfaces using RadTabControl
and RadPanelBar controls. You built tab controls and panel bars directly in the XAML and
programmatically. You also assigned simple text to the header and content areas of each control and
learned how to add to the header and content with XAML markup of arbitrary complexity. You learned how
to embed controls into the RadTabControl header. You also learned how to handle the significant events of
each control. Finally, you learned how to completely customize a RadTabItem by overriding the
ControlTemplate.

Part

XII
ToolBar

RadControls for Silverlight372

© 2011 Telerik Inc.

12 ToolBar

12.1 Objectives

In this chapter you'll see how to organize multiple Silverlight controls into horizontal or vertical strips using
RadToolBar. You will use RadToolBarSeparator to visually divide groups of controls. You will see how the
theming mechanism for RadToolBar automatically styles both the tool bar and its items. You will use the
RadToolBar OverflowMode property to handle overflow behavior when there are more controls than can be
displayed at one time. You will handle events that react to the overflow area expanding and collapsing. You
will add items to the tool bar in XAML, using the programmatic API and through data binding.

You will use the RadToolBarTray to manage RadToolBar position, sizing and order.

Finally, you will create custom templates for the RadToolBar background and RadToolBarSeparator.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Toolbar\Toolbar.sln.

ToolBar 373

© 2011 Telerik Inc.

12.2 Overview

RadToolBar organizes multiple Silverlight controls into a strip where they can be presented in Horizontal or
Vertical orientation. Multiple RadToolBar controls can be managed using the RadToolBarTray.

When the browser is resized, buttons that don't fit the visible area are automatically relocated to an
"overflow" panel. The "down" overflow button at the right end of the tool bar displays the overflow panel area.

RadControls for Silverlight374

© 2011 Telerik Inc.

Predefined themes can be applied to the RadToolBarTray and to RadToolBars individually. Common control
primitives, e.g. Button, RadioButton, CheckBox, etc, are styled automatically to agree with the RadToolBar
theme. Take a look at some of the example screenshots below to see how the theme styles the tool bar
and its items:

Office_Silver

Office_Blue

Office_Black

Summer

Vista

Windows7

Transparent

Expression_Dark

ToolBar 375

© 2011 Telerik Inc.

12.3 Getting Started

In this walk through you will build a simple, single tool bar containing buttons, text boxes and images.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

c) Telerik.Windows.Themes.Vista

4) In the Solution Explorer, right-click the project and select Add > New Folder from the context menu.
Rename the folder "Images".

5) Add the images listed below to the new "Images" folder. The images can be found in the
"\courseware\images" directory:

a) CD_Add.png

b) CD_Burn.png

c) CD_Movies.png

d) CD_Mustic.png

e) Help.png

RadControls for Silverlight376

© 2011 Telerik Inc.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the following reference to the Telerik assemblies in the UserControl element:

<UserControl
 . . .
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation">
 . . .

3) Add a UserControl.Resources element to the UserControl. Inside the Resources element, add a new
Style with Key "ButtonStackPanelStyle" and TargetType "StackPanel". Add a single Setter element
that assigns the Property to be "Margin" and the Value to be "5".

<UserControl . . . >

 <UserControl.Resources>

 <Style
 x:Key="ButtonStackPanelStyle"
 TargetType="StackPanel">
 <Setter Property="Margin" Value="5" />
 </Style>

 </UserControl.Resources>
 . . .

4) Add a RadToolBarTray inside the main "LayoutRoot" Grid element, from the Toolbox.

Adding a RadToolBarTray is not strictly necessary in this example because we will add only a single
RadToolBar. But the RadToolBarTray does a nice job of constraining the RadToolBar dimensions so
that you don't have to define a MaxHeight or HorizontalAlignment. You can try the example both ways,
with and without the RadToolBarTray to see how they differ. In later sections of this chapter we will talk
about how RadToolBarTray manages multiple RadToolBar controls.

ToolBar 377

© 2011 Telerik Inc.

5) Inside the RadToolBarTray, add a RadToolBar from the Toolbox. Set the StyleManager.Theme
attribute to "Vista". The markup should look something like the example below:

<UserControl . . .>

 . . .

 <Grid x:Name="LayoutRoot">

 <telerik:RadToolBarTray>

 <telerik:RadToolBar telerik:StyleManager.Theme="Vista">
 </telerik:RadToolBar>

 </telerik:RadToolBarTray>

 </Grid>

</UserControl>

6) Add a Button inside the RadToolBar element. Inside the Button, add a StackPanel and set its Style to
the "ButtonStackPanelStyle" resource. Inside the StackPanel, add a TextBlock and an Image. Set the
TextBlock Text to "My Movies" and the Image Source to the "images/CD_Movies.png" path.

. . .
<Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="My Movies"></TextBlock>
 <Image Source="Images/CD_Movies.png"></Image>
 </StackPanel>
</Button>
. . .

RadControls for Silverlight378

© 2011 Telerik Inc.

7) Press F5 to run the application. The application displays the tool bar with a single button in it.

8) Add a series of buttons and a TextBlock to the RadToolBar using the XAML below.

<Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="My Tunes" ></TextBlock>
 <Image Source="Images/CD_Music.png"></Image>
 </StackPanel>
</Button>
<Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Add" ></TextBlock>
 <Image Source="Images/CD_Add.png"></Image>
 </StackPanel>
</Button>
<Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Burn" ></TextBlock>
 <Image Source="Images/CD_Burn.png"></Image>
 </StackPanel>
</Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Volume Name" ></TextBlock>
 <TextBox Text="My Music"></TextBox>
</StackPanel>

9) Drag a RadToolBarSeparator from the Toolbox to a point just below the buttons.

ToolBar 379

© 2011 Telerik Inc.

10)Below the RadToolBarSeparator, add one more button:

<Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Help" ></TextBlock>
 <Image Source="Images/Help.png"></Image>
 </StackPanel>
</Button>

RadControls for Silverlight380

© 2011 Telerik Inc.

11)The XAML so far should look like the example below:

. . .
<telerik:RadToolBarTray>
 <telerik:RadToolBar telerik:StyleManager.Theme="Vista" Margin="10">
 <Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="My Movies"></TextBlock>
 <Image Source="Images/CD_Movies.png"></Image>
 </StackPanel>
 </Button>
 <Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="My Tunes" ></TextBlock>
 <Image Source="Images/CD_Music.png"></Image>
 </StackPanel>
 </Button>
 <Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Add" ></TextBlock>
 <Image Source="Images/CD_Add.png"></Image>
 </StackPanel>
 </Button>
 <Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Burn" ></TextBlock>
 <Image Source="Images/CD_Burn.png"></Image>
 </StackPanel>
 </Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Volume Name" ></TextBlock>
 <TextBox Text="My Music"></TextBox>
 </StackPanel>
 <telerik:RadToolBarSeparator />
 <Button>
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Help" ></TextBlock>
 <Image Source="Images/Help.png"></Image>
 </StackPanel>
 </Button>
 </telerik:RadToolBar>
</telerik:RadToolBarTray>
. . .

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

ToolBar 381

© 2011 Telerik Inc.

Ideas for Extending This Example

Add event handlers for the Button Click events.

Add other control types to the Items collection.

Change the Theme of the RadToolBar or RadToolBarTray.

12.4 Control Details

RadToolBarTray

RadToolBarTray contains multiple RadToolBars and manages their position, sizing and order. The tool bar
tray is divided into bands where each band can contain multiple tool bars. Use the tool bar's Band property
to determine which row (or column if the tool bar Orientation is Vertical) that the tool bar appears on. Use
the BandIndex property to control where the tool bar appears on the Band in relation to other tool bars.

For example, the XAML below defines three tool bars within a RadToolBarTray and sets the Bands and
BandIndex properties for each tool bar.

<telerik:RadToolBarTray telerik:StyleManager.Theme="Vista" >

 <telerik:RadToolBar Band="0" BandIndex="1">
 <TextBlock Text="Tool Bar One" ></TextBlock>
 </telerik:RadToolBar>

 <telerik:RadToolBar Band="0" BandIndex="0">
 <TextBlock Text="Tool Bar Two" ></TextBlock>
 </telerik:RadToolBar>

 <telerik:RadToolBar Band="1">
 <TextBlock Text="Tool Bar Three" ></TextBlock>
 </telerik:RadToolBar>

</telerik:RadToolBarTray>

The screenshot below shows the result of these Band and BandIndex property settings. Tool bars "Tool Bar
One" and "Tool Bar Two" have a Band property of "0" so you can expect to see them both on the first row of
the RadToolBarTray. The Band property of tool bar "Tool Bar Three" is "1" and appears on the second row of
the RadToolBarTray.

The BandIndex property of "Tool Bar Two" is "0" and is placed before "Tool Bar One".

RadControls for Silverlight382

© 2011 Telerik Inc.

ToolBar 383

© 2011 Telerik Inc.

Adding Items

You can add items simply by including Silverlight visual elements within the RadToolBar Items tags:

<telerik:RadToolBar>
 <telerik:RadToolBar.Items>
 <Button />
 <telerik:RadCalendar />
 <TextBlock />
 </telerik:RadToolBar.Items>
</telerik:RadToolBar>

The Items sub-element is the default and therefore implicit. You can leave out the Items sub-element and
just start adding Silverlight controls inside the RadToolBar element:

<telerik:RadToolBar>
 <Button />
 <telerik:RadCalendar />
 <TextBlock />
</telerik:RadToolBar>

RadControls for Silverlight384

© 2011 Telerik Inc.

To add tool bar items in code, add to the Items collection. The example code below adds Silverlight Button,
RadCalendar and TextBlock controls as items to the tool bar.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim button As New Button()
 button.Content = "OK"
 tbMain.Items.Add(button)
 tbMain.Items.Add(New Calendar())
 Dim textBlock As New TextBlock()
 textBlock.Text = "Reports"
 tbMain.Items.Add(textBlock)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 Button button = new Button();
 button.Content = "OK";
 tbMain.Items.Add(button);
 tbMain.Items.Add(new Telerik.Windows.Controls.RadCalendar());
 TextBlock textBlock = new TextBlock();
 textBlock.Text = "Reports";
 tbMain.Items.Add(textBlock);
}

Without a RadToolBarTray and without any special attributes set to control sizing, the tool bar takes up the
entire available space in the browser.

ToolBar 385

© 2011 Telerik Inc.

Orientation

The RadToolBar Orientation property displays the tool bar in a Horizontal (default) or
Vertical layout. The tool bar here is shown with Orientation = Vertical. The
RadToolBarTray also has an Orientation property that takes precedence over the
Orientation property for individual tool bars.

Note: You may need to adjust the horizontal and vertical alignments depending on tool
bar orientation or the container that holds the tool bar.

RadControls for Silverlight386

© 2011 Telerik Inc.

Overflow

Tool bar items that can't fit in the visible area are automatically relocated to the overflow panel. The
screenshot below shows the overflow panel with two items.

Overflow is managed by setting the OverflowMode attached property to individual items within the tool bar.
The possible values that control how OverflowMode works on a particular item are:

Never: The item will only be placed in the strip panel.

Always: The item will only be placed in the overflow panel.

AsNeeded: The item will be visible in the strip panel if there's available space, otherwise the item will be
located in the overflow panel.

For example, the XAML for the button below determines that it will always be placed in the overflow panel:

<telerik:RadToolBar telerik:StyleManager.Theme="Vista" Margin="10" >
 . . .
 <Button telerik:RadToolBar.OverflowMode="Always">
 <StackPanel Style="{StaticResource ButtonStackPanelStyle}">
 <TextBlock Text="Help" ></TextBlock>
 <Image Source="Images/Help.png"></Image>
 </StackPanel>
 </Button>

</telerik:RadToolBar>

ToolBar 387

© 2011 Telerik Inc.

To set the overflow mode in code, use the static SetOverflowMode() method. Pass a reference to the item
within the tool bar and an OverflowMode enumeration member.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadToolBar.SetOverflowMode(btnHelp, OverflowMode.Always)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadToolBar.SetOverflowMode(btnHelp, OverflowMode.Always);
}

RadToolBar has two additional overflow related properties:

HasOverflowItems: A read-only property that lets you know if there are any items in the overflow
panel.

IsOverflowOpen: This property determines if the overflow panel is visible or not.

RadControls for Silverlight388

© 2011 Telerik Inc.

Themes

You can apply predefined themes to the RadToolBar or RadToolBarTray. Themes automatically apply to
certain Silverlight items contained in the tool bar. As of this writing, the controls that are automatically
styled include:

TextBlock

TextBox

Button

CheckBox

RadioButton

ToggleButton

RadToolBarSeparator

 Gotcha!

You may encounter a control called "RadSeparator". RadSeparator is technically included in the
above list, but is obsolete and included only for backward compatibility.

ToolBar 389

© 2011 Telerik Inc.

Events

As the overflow panel is opened or closed, the OverflowAreaOpened and OverflowAreaClosed routed
events fire.

Private Sub tbMain_OverflowAreaOpened(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadWindow.Alert("You can also get help by pressing F1")
End Sub

private void tbMain_OverflowAreaOpened(object sender, RoutedEventArgs e)
{
 RadWindow.Alert("You can also get help by pressing F1");
}

RadControls for Silverlight390

© 2011 Telerik Inc.

12.5 Binding

In this walk through you will populate a tool bar from a custom list of objects. In code you will create a
"Tool" object that represents each tool bar item, populate a generic List of Tool objects and assign the list
to the tool bar ItemsSource property. In the XAML markup you will layout all the Silverlight items to be
bound in a RadToolBar ItemTemplate. Along the way you will learn how to make the ItemTemplate markup
into a resource, create a font "shadow" effect and bind a ToolTip for each button.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

c) Telerik.Windows.Themes.Vista

4) In the Solution Explorer, add an Image directory. Add the image files below to the Image directory. You
can find these images in the "\courseware\images" directory.

a) 3.5_Disk_Drive.png

b) Folder_Open.png

c) Printer.png

d) RecycleBin.png

ToolBar 391

© 2011 Telerik Inc.

Create the View Model Object

1) In the Solution Explorer, right-click the project and select Add > Class... Copy and paste the code
below.

This simple "Tool" object will supply our data to the "View", i.e. the tool bar.

Public Class Tool
 Public Sub New(ByVal title As String, ByVal path As String, _
ByVal description As String)
 Me.Title = title
 Me.Path = path
 Me.Description = description
 End Sub

 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property

 Private privatePath As String
 Public Property Path() As String
 Get
 Return privatePath
 End Get
 Set(ByVal value As String)
 privatePath = value
 End Set
 End Property

 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
End Class

RadControls for Silverlight392

© 2011 Telerik Inc.

public class Tool
{
 public Tool(string title, string path, string description)
 {
 this.Title = title;
 this.Path = path;
 this.Description = description;
 }

 public string Title
 { get; set; }

 public string Path
 { get; set; }

 public string Description
 { get; set; }
}

XAML Editing

1) Open MainPage.xaml for editing.

2) Drag a RadToolBarTray from the Toolbox to the main "LayoutRoot" Grid element. Add a "telerik:
StyleManager.Theme" attribute to the RadToolBarTray and set its value to "Vista".

3) Drag a RadToolBar from the Toolbox to the RadToolBarTray element. Set the "x:Name" attribute to
"tbMain".

Setting the x:Name attribute will allow us to reference the tool bar later in code.

ToolBar 393

© 2011 Telerik Inc.

4) Inside the RadToolBar element, add a RadToolBar ItemTemplate. Inside the RadToolBar ItemTemplate,
add a DataTemplate. The XAML should now look something like the example below.

Each record within the ItemsSource will correspond to a tool bar item. When the ItemsSource property
is assigned data, the ItemTemplate will contain the Silverlight elements that display for each record in
the ItemsSource. Binding expressions in the ItemTemplate will decide where the data for each column
will be placed.

<Grid x:Name="LayoutRoot">
 <telerik:RadToolBarTray
 telerik:StyleManager.Theme="Vista">
 <telerik:RadToolBar x:Name="tbMain">
 <telerik:RadToolBar.ItemTemplate>
 <DataTemplate>

 </DataTemplate>
 </telerik:RadToolBar.ItemTemplate>
 </telerik:RadToolBar>
 </telerik:RadToolBarTray>
</Grid>

5) Add a Button control inside the DataTemplate, set the "x:Name" attribute to "btnItem" and set the
Content attribute to use the binding expression "{Binding Title, Mode=OneTime }".

<Grid x:Name="LayoutRoot">
 <telerik:RadToolBarTray
 telerik:StyleManager.Theme="Vista">
 <telerik:RadToolBar x:Name="tbMain">
 <telerik:RadToolBar.ItemTemplate>
 <DataTemplate >
 <Button x:Name="btnItem"
 Content="{Binding Title, Mode=OneTime }" />
 </DataTemplate>
 </telerik:RadToolBar.ItemTemplate>
 </telerik:RadToolBar>
 </telerik:RadToolBarTray>
</Grid>

6) Verify that the followin XML namespace for the Telerik.Windows.Controls and Telerik.Windows.
Controls.Navigation exists in the UserControl element. Add it if it does not exist. Also, add a
"Loaded" event handler to the UserControl element.

RadControls for Silverlight394

© 2011 Telerik Inc.

<UserControl
. . .
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .
Loaded="UserControl_Loaded">. . .

Code Behind

1) Navigate to the code for the UserControl Loaded event handler. Add the code below to create and
populate a generic List of Tool objects.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' Assign a list of "Tool" ob jects to the tool bar ItemsSource
 Dim tools As List(Of Tool) = New List(Of Tool) (New Tool() { _
New Tool("Open", "images/Folder_Open.png", "Open a file for editing"), _
New Tool("Save", "images/3.5_Disk_Drive.png", "Save the current file"), _
New Tool("Print", "images/Printer.png", "Print the current file"), _
New Tool("Trash", "images/RecycleBin.png", "Discard the current file")})
 tbMain.ItemsSource = tools
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // Assign a list of "Tool" ob jects to the tool bar ItemsSource
 List<Tool> tools = new List<Tool>() {
 new Tool("Open", "Images/Folder_Open.png", "Open a file for editing"),
 new Tool("Save", "Images/3.5_Disk_Drive.png", "Save the current file"),
 new Tool("Print", "Images/Printer.png", "Print the current file"),
 new Tool("Trash", "Images/RecycleBin.png", "Discard the current file")
 };
 tbMain.ItemsSource = tools;
}

Test and Refine

1) Press F5 to run the application in its current state.

A tool bar item is created for every Tool object in the list. Inside each item is a Button object with the
Content property bound to the Tool.Title property.

ToolBar 395

© 2011 Telerik Inc.

2) Now that you've implemented binding in its simplest form, replace the Button XAML with the new
markup below.

 Notes

Notice that the new XAML for the Button adds a number of features:

A ToolTip is added to the Button. The ToolTip is bound to the "Description" property of the
Tool object. The Mode attribute is set to "OneTime": we need to initially load the item from the
data, but we don't need to interact with the data after that.

A Grid with two columns is defined that will layout the elements for the item.

Two TextBlock controls are added to the Grid that are bound to the "Title" property of the Tool
object. The second TextBlock will display the text as a shadow. Styling will be assigned to the
TextBlock later to get the shadow effect.

In Image is added to the second column of the Grid and bound to the "Path" property of the
Tool object.

<Button
 ToolTipService.ToolTip="{Binding Description, Mode=OneTime }">
 <Grid ShowGridLines="False">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock
 Text="{Binding Title, Mode=OneTime }"
 Grid.Column="0">
 </TextBlock>
 <TextBlock
 Text="{Binding Title, Mode=OneTime }"
 Grid.Column="0">
 </TextBlock>
 <Image
 Source="{Binding Path, Mode=OneTime }"
 Grid.Column="1" Margin="5"></Image>
 </Grid>
</Button>

3) Press F5 to run the application again. The tool bar should look something like the screenshot below.
Verify that the ToolTip shows when you hover the mouse over any of the buttons.

RadControls for Silverlight396

© 2011 Telerik Inc.

4) Now we can style the text to give a "shadow" effect using the image "reflection" technique explained in
the "Expander" chapter. Add a UserControl.Resources element inside the UserControl element. Add
the two styles shown below.

<UserControl.Resources>

 <Style x:Key="ButtonTextStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Trebuchet MS" />
 <Setter Property="Margin" Value="10" />
 <Setter Property="FontSize" Value="20" />
 <Setter Property="Foreground" Value="#FF222222" />
 <Setter Property="FontWeight" Value="Bold" />
 </Style>

 <Style x:Key="ButtonTextShadowStyle" TargetType="TextBlock"
 BasedOn="{StaticResource ButtonTextStyle}">
 <Setter Property="Foreground" Value="#AAAAAAAA" />
 <Setter Property="RenderTransformOrigin" Value="0,0.5" />
 <Setter Property="RenderTransform">
 <Setter.Value>
 <TransformGroup>
 <ScaleTransform ScaleY="-.5"></ScaleTransform>
 </TransformGroup>
 </Setter.Value>
 </Setter>
 </Style>

</UserControl.Resources>

ToolBar 397

© 2011 Telerik Inc.

 Notes

The styles defined above produce a shadow or reflection effect like this small sample below
where the dark text facing straight forward is styled using "ButtonTextStyle" and the "reflection"
is styled using "ButtonTextShadowStyle".

The "ButtonTextStyle" style simply assigns the basic properties for the title TextBlock.
"ButtonTextShadowStyle" uses the "BasedOn" attribute and points back to the
"ButtonTextStyle". The "BasedOn" attribute will let us use all the properties of the first style and
allows us to add or modify additional properties. "ButtonTextShadowStyle" uses the technique
described in the "Expander" chapter to display a "reflection" or "shadow" effect. This style makes
the text color, i.e. "Foreground", a partially transparent gray. The RenderTransformOrigin is
pushed down slightly by setting the Y value to "0.5". A RenderTransform sets ScaleY as "-.5" to
flip and compress the text.

Notice that the Setter for the RenderTransform property uses a TransformGroup. This means
that you can add other transforms inside the group. For example you could add a
SkewTransform to slightly slant the shadow, as if the light source for the shadow was coming
from an angle.

5) Bind the Style of the two TextBlock controls to "ButtonTextShadowStyle" and "ButtonTextStyle"
respectively.

Notice that the first text block is styled to be the text "shadow".

<TextBlock . . .
 Style="{StaticResource ButtonTextShadowStyle}">
</TextBlock>
<TextBlock . . .
 Style="{StaticResource ButtonTextStyle}" >
</TextBlock>

6) Press F5 to run the application again. Now the text has a slight shadow out in front of it.

RadControls for Silverlight398

© 2011 Telerik Inc.

7) Now we will "refactor" the XAML and make the entire ItemTemplate into a resource. Locate the
"DataTemplate" element inside the RadToolBar. Cut the entire element and paste it inside the
UserControl.Resources element. Add a "x:Key" attribute to the DataTemplate element and set it to be
"ToolBarTemplate".

<UserControl.Resources>
. . .
 <DataTemplate x:Key="ToolBarTemplate">
 <Button
 ToolTipService.ToolTip="{Binding Description, Mode=OneTime }">
 <Grid ShowGridLines="False">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock
 Text="{Binding Title, Mode=OneTime }"
 Grid.Column="0"
 Style="{StaticResource ButtonTextShadowStyle}">
 </TextBlock>
 <TextBlock
 Text="{Binding Title, Mode=OneTime }"
 Grid.Column="0"
 Style="{StaticResource ButtonTextStyle}">
 </TextBlock>
 <Image
 Source="{Binding Path, Mode=OneTime }"
 Grid.Column="1" Margin="5"></Image>
 </Grid>
 </Button>
 </DataTemplate>

</UserControl.Resources>

ToolBar 399

© 2011 Telerik Inc.

8) Remove the "ItemTemplate" tags from inside the RadToolBar element. Add a ItemTemplate attribute to
the RadToolBar and assign it the binding expression "{StaticResource ToolBarTemplate". The
RadToolBar should now look like the example below.

<Grid x:Name="LayoutRoot">
 <telerik:RadToolBarTray
 telerik:StyleManager.Theme="Vista">
 <telerik:RadToolBar
 x:Name="tbMain"
 ItemTemplate="{StaticResource ToolBarTemplate}" />
 </telerik:RadToolBarTray>
</Grid>

9) Press F5 to run the application and verify that resourcing the ItemTemplate hasn't changed the
functionality.

Ideas for Extending This Example

Include additional transformations in the TransformGroup element of the ButtonTextShadowStyle style.
Try adding a SkewTransform element and set the AngleX and AngleY attributes.

Add more items to the template.

Try adding other properties to the Tool object and bind to properties in the item template. For example,
how about an "Enabled" property bound to the IsEnabled property of the button? The screenshot below
shows the "Trash" icon disabled.

RadControls for Silverlight400

© 2011 Telerik Inc.

12.6 Customization

Walk Through

In this example we will customize the RadToolBar control to have a "Scoville" style. We will also customize
the RadToolBarSeparator to show a gradient block of color.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and Silverlight 3 Application from the
right-most list. Enter a unique name for the project and click OK.

4) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the project.

5) In the Projects pane, right-click the References node and select Add Reference... from the context
menu. Add a references to the Telerik.Windows.Controls and Telerik.Windows.Controls.
Navigation assemblies.

6) From the Project menu select Build Project.

7) Open the Assets pane. On the left side of the Assets pane is a tree view. Locate and select the
"Controls" node. In the Assets pane, just above the tree view is the Assets Find entry text box. Type
the first few characters of RadToolBarTray into the Assets Find entry text box. A list of all matching
controls will show to the right of the tree view. Locate the RadToolBarTray control and drag it onto the
MainPage.xaml Artboard.

8) Drag a RadToolBar control from the Assets pane to the Objects and Timeline pane, just under the
RadToolBarTray. The tool tip should read "Create in [RadToolBarTray]".

9) Drag three RadioButton controls from the Assets pane to the Objects and Timeline pane, just under
the RadToolBar. The RadioButton controls should be children of the RadToolBar, i.e. the tool tip should
read "Create in [RadToolBar]".

ToolBar 401

© 2011 Telerik Inc.

10)Drag a RadToolBarSeparator control from the Assets pane to the Objects and Timeline pane, just
under the three RadioButton controls, as shown in the screenshot below. The RadToolBarSeparator
should also be a child of the RadToolBar and a sibling of the three RadioButton controls.

11)Drag a CheckBox control from the Assets pane to the Objects and Timeline pane, just under the
RadToolBarSeparator. The CheckBox should be a sibling of the RadioButton and RadToolBarSeparator
controls.

12)Find the Split button in the upper right-hand corner of the Artboard and click it to view both the Design
and XAML at the same time.

RadControls for Silverlight402

© 2011 Telerik Inc.

13)If Expression Blend has automatically included any dimensions for any of the controls, remove those
attributes manually. The XAML markup should look like the example below:

14)Click each of the RadioButton controls in the Objects and Timeline pane. In the Properties pane set
Common Properties > Content to "Mild", "Hot", "Very Hot", respectively.

15)Click the CheckBox control in the Objects and Timeline pane. In the Properties pane set Common
Properties > Content to "Ice Water?".

16)In the design view of the Artboard, the tool bar should look like the screenshot below.

ToolBar 403

© 2011 Telerik Inc.

Customize Templates and Styles

1) Right-click the RadToolBar and select Edit Template > Edit a Copy from the context menu. In the
"Create Style Resource" dialog, set the Name (Key) to "ScovilleToolBarStyle". Click OK to create the
style resource and close the dialog.

2) In the Objects and Timeline pane, select the element named "InnerBackground".

3) In the Properties pane, locate the Brushes > Background property. Click the Advanced Property
Options button and select Convert to New Resource... from the drop down menu.

RadControls for Silverlight404

© 2011 Telerik Inc.

4) Enter the new name "ScovilleToolBar_InnerBackground". Click OK to close the dialog and create the
brush resource.

5) Locate the Properties pane, Brushes > Background property. Click the Advanced Property Options
button and select "ScovilleToolBar_InnerBackground" from the Local Resource item of the drop down
menu.

6) In the Properties pane, select the Gradient Brush to use for the background.

ToolBar 405

© 2011 Telerik Inc.

7) Click the left-most gradient stop indicator, then drag the eye dropper tool to a red color. Click the right-
most gradient stop indicator, then drag the eye dropper tool to a black color. The gradient should look
like the red to black gradient shown in the screenshot below.

RadControls for Silverlight406

© 2011 Telerik Inc.

8) Click the Gradient Bar somewhere in the middle to create a new gradient stop. Set the new gradient
stop indicator to an orange color.

9) Click the Return Scope button until you return to editing the tool bar.

ToolBar 407

© 2011 Telerik Inc.

10)The tool bar should look something like the screenshot below when viewed in the Artboard:

11)In the Objects and Timeline pane, right-click the RadToolBarSeparator and select Edit Template >
Edit a Copy from the context menu. In the "Create Style Resource" dialog, set the Name (Key) to
"ScovilleToolBarSeparatorControlTemplate". Click OK to create the style resource and close the dialog.

The new template for the separator appears in the screenshot below. The template contains a grid with
two rectangles, one colored black , the other white, to create a contrasting edge.

12)Select the "[Grid]" item from the Objects and Timeline pane.

13)In the Properties pane, set the Layout > MinWidth property to "5".

14)Select the second "[Rectangle]" item under the Grid from the Objects and Timeline pane.

15)In the Properties pane, locate the Brushes > Fill property. Click the Advanced Property Options button
and click the Reset option from the drop down menu.

RadControls for Silverlight408

© 2011 Telerik Inc.

16)Select the Gradient Brush to use for the new fill. Use the two gradient stop indicators and the eye
dropper tool to create a orange-to-yellow gradient as shown in the screenshot below.

17)Click the Return Scope button until you return to editing the tool bar.

18)The tool bar should look something like the screenshot below when viewed in the Artboard:

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Ideas for Extending This Example

ToolBar 409

© 2011 Telerik Inc.

Try styling the other parts of the tool bar including the "Grip Ornament", the overflow area and the drop
down button.

Add animation to react to the tool bar's state. See the "Menu Controls" chapter, Customization section
for an example of how this can be done.

Style the tool bar for a consistent look in both horizontal and vertical orientations.

12.7 Wrap Up

In this chapter you learned how to organize multiple Silverlight controls into a horizontal or vertical strip
using RadToolBar. You used RadToolBarSeparator to visually divide groups of controls. You saw how the
theming mechanism for RadToolBar automatically styles both the tool bar and its items. You also saw how
the RadToolBar OverflowMode property handles overflow behavior when there are more controls than can be
displayed at one time. You handled events that reacted to the overflow area expanding and collapsing. You
added items to the tool bar in XAML, using the programmatic API and through data binding.

You used the RadToolBarTray to manage RadToolBar position, sizing and order. You used the Band
property to place each tool bar in a specific row and the BandIndex property to control each tool bar's
position within a band.

Finally, you created custom templates for the RadToolBar background and RadToolBarSeparator. You
created matching color schemes for both custom templates.

Part

XIII
Expander

Expander 411

© 2011 Telerik Inc.

13 Expander

13.1 Objectives

This chapter demonstrates using RadExpander to save space and to present Silverlight content as needed.
You will learn how to place simple text material in the Header and Content. You will see which properties
control expansion direction and animation. Then you will use the Header and Content sub-elements to
present multiple Silverlight items of any complexity and arrangement. Along the way you will use control
templates to display images, image reflections and custom buttons. Finally, you will use Expression Blend
to replace the standard "arrow" graphic with an image that rotates when clicked.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Expander\Expander.sln.

13.2 Overview

RadExpander is a flexible, lightweight control that saves page real estate and aids site navigation. You can
place the expander anywhere on the page and fill it with any content. The expander lets you control the
expand animation and direction of expansion. Your end user can press the Space key to toggle the
expansion without having to use the mouse.

RadControls for Silverlight412

© 2011 Telerik Inc.

13.3 Getting Started

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

c) Telerik.Windows.Themes.Vista

XAML Editing

1) Open MainPage.xaml for editing.

2) Add an XML namespace reference to Telerik assemblies as follows:

<UserControl
xmlns:telrik="http://schemas.telerik.com/2008/xaml/presentation" . . .>

3) Add the UserControl.Resources XAML below to the UserControl element.

<UserControl.Resources>
 <Style x:Key="CalendarStyle"
 TargetType="telerik:RadCalendar">
 <Setter Property="telerik:StyleManager.Theme" Value="Vista" />
 <Setter Property="MaxWidth" Value="250" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 <Setter Property="Margin" Value="10" />
 </Style>
</UserControl.Resources>

4) Drag a RadExpander control from the Toolbox to a point between the <Grid> and </Grid> tags.

5) Set the RadExpander Header property to "Set Backup Dates" and the ExpandDirection to "Down".

6) Inside the RadExpander element, add a RadExpander.Content tag. The XAML should look the the
example below at this point.

Expander 413

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <telerik:RadExpander ExpandDirection="Down" Header="Set Backup Dates">
 <telerik:RadExpander.Content>

 </telerik:RadExpander.Content>
 </telerik:RadExpander>
</Grid>

7) Inside the RadExpander.Content, add a StackPanel element.

8) Inside the StackPanel element, add a TextBlock and set the Text property to "Start Date:" and Margin
property to "10".

9) From the Toolbox, drag a RadCalendar control to a point just under the TextBlock. Set the Style
property to "{StaticResource CalendarStyle}"

10)Inside the StackPanel element, add a TextBlock and set the Text property to "End Date:" and Margin
property to "10".

11)From the Toolbox, drag a RadCalendar control to a point just under the TextBlock. Set the Style
property to "{StaticResource CalendarStyle}"

RadControls for Silverlight414

© 2011 Telerik Inc.

The XAML inside the UserControl element should look something like the example below:

<UserControl.Resources>
 <Style x:Key="CalendarStyle"
 TargetType="telerikInput:RadCalendar">
 <Setter Property="telerik:StyleManager.Theme" Value="Vista" />
 <Setter Property="MaxWidth" Value="250" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 <Setter Property="Margin" Value="10" />
 </Style>
</UserControl.Resources>

<Grid
 x:Name="LayoutRoot">
 <telerik:RadExpander
 ExpandDirection="Down"
 Header="Set Backup Dates"
 telerik:StyleManager.Theme="Vista">
 <telerik:RadExpander.Content>
 <StackPanel>
 <TextBlock Text="Start Date:" Margin="10" />
 <telerik:RadCalendar
 Style="{StaticResource CalendarStyle}" />
 <TextBlock Text="End Date:" Margin="10" />
 <telerik:RadCalendar
 Style="{StaticResource CalendarStyle}" />
 </StackPanel>
 </telerik:RadExpander.Content>
 </telerik:RadExpander>
</Grid>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Expander 415

© 2011 Telerik Inc.

Test Application Features

Test the expanding/collapsing functionality of the RadExpander button.

Ideas for Extending This Example

Set the ExpandDirection property to Up, Down or Left and observe the effect.

RadControls for Silverlight416

© 2011 Telerik Inc.

13.4 Control Details

13.4.1 Populating RadExpander

In its simplest form, RadExpander can be assigned Header and Content text. The ExpandDirection
property by default is "Down", but can also be "Left", "Right" or "Up". You can get a lot of styling mileage
simply by defining one of the predefined themes. The example below adds text to the Header and Content.
The ExpandDirection is set to "Left", IsExpanded is true and Theme is "Summer".

<telerik:RadExpander
 Header="Expander Header Text"
 Content="Content text"
 ExpandDirection="Left"
 IsExpanded="True"
 telerik:StyleManager.Theme="Summer" >
</telerik:RadExpander>

Running in the browser, the RadExpander looks like the screenshot below.

Expander 417

© 2011 Telerik Inc.

To create more complex arrangements of Silverlight controls in the header or content, Header and Content
sub-elements will let you pack as much XAML markup as you care to have. For example, the screenshot
below shows an expander where the header contains a TextBlock and Image. The content area to the right
of the header contains a RadWrapPanel with a series of TextBlock and Image controls. When one of the
images is clicked, a larger version of the clicked image and the image reflection appears to the right of the
RadExpander.

RadControls for Silverlight418

© 2011 Telerik Inc.

First lets look at the general layout of the page before breaking each part down for a closer look. The
abbreviated XAML below shows styles defined that will be applied to Button, Image and ContentControl. The
main "LayoutRoot" contains a StackPanel with Horizontal orientation. Inside the StackPanel is the
RadExpander that will contain the thumbnail size image controls and the ContentControl will contain the full
size image.

<UserControl . . .">
 <UserControl.Resources>
 <Style x:Key="ImageButtonStyle" TargetType="Button">. . .</Style>
 <Style x:Key="ImageReflectionStyle" TargetType="Image">. . .</Style>
 <Style x:Key="ReflectedImagePanel" TargetType="ContentControl">. . .</Style>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot">
 <StackPanel Orientation="Horizontal">
 <telerik:RadExpander>. . .</telerik:RadExpander>
 <ContentControl>. . .</ContentControl>
 </StackPanel>
 </Grid>
</UserControl>

 Notes

Notice the order that the styles are declared in. "ImageReflectionStyle" must be declared first as it
is referenced in "ReflectedImagePanel".

First, let's take a look at the layout of the page, then we will talk about the styles used in this page. In the
XAML below, the RadExpander has two main parts, Header and Content. The RadExpander.Header
contains a StackPanel that in turn holds a TextBlock and an Image. The RadExpander.Content uses a
RadWrapPanel as a container. In the RadWrapPanel are four buttons that hide much of their complexity in
a ControlTemplate stored as a resource called "ImageButtonStyle". At the bottom of this XAML is the
ContentControl that uses a custom style "ReflectedImagePanel" to get an image "reflection" effect.

Expander 419

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <StackPanel Orientation="Horizontal">
 <telerik:RadExpander x:Name="exMain" ExpandDirection="Right"
 telerik:StyleManager.Theme="Summer">
 <telerik:RadExpander.Header>
 <StackPanel>
 <TextBlock>My Pictures</TextBlock>
 <Image Source="Images/Camera.png" />
 </StackPanel>
 </telerik:RadExpander.Header>
 <telerik:RadExpander.Content>
 <telerik:RadWrapPanel MaxWidth="400">
 <Button
 Style="{StaticResource ImageButtonStyle}"
 Content="Images/Blue Hills.jpg" Click="Button_Click" />
 <Button
 Style="{StaticResource ImageButtonStyle}"
 Content="Images/Sunset.jpg" Click="Button_Click" />
 <Button
 Style="{StaticResource ImageButtonStyle}"
 Content="Images/Water lilies.jpg" Click="Button_Click" />
 <Button
 Style="{StaticResource ImageButtonStyle}"
 Content="Images/Winter.jpg" Click="Button_Click" />
 </telerik:RadWrapPanel>
 </telerik:RadExpander.Content>
 </telerik:RadExpander>

 <ContentControl x:Name="imgPanel" Margin="20"
 Style="{StaticResource ReflectedImagePanel}">
 </ContentControl>

 </StackPanel>
</Grid>

The Style used on the Button controls is called "ImageButtonStyle". It sets up a ControlTemplate to
completely replace the contents of a Button. Inside the template is a StackPanel. The StackPanel contains
a ContentPresenter that displays an image path and an Image control that displays the image pointed to by
the path. Each button has the same "Click" event handler assigned.

RadControls for Silverlight420

© 2011 Telerik Inc.

<Style x:Key="ImageButtonStyle" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <StackPanel Margin="10">
 <ContentPresenter Content="{TemplateBinding Content}" />
 <Image MaxHeight="50" Source="{TemplateBinding Content}" />
 </StackPanel>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Expander 421

© 2011 Telerik Inc.

The XAML used for the reflected image is a little more complicated and requires two styles. One style
creates an image "reflection" and the second is a ControlTemplate used to assemble the original image and
the reflected image together.

First lets see how you can create the reflection effect using a style. The first two properties in
"ImageReflectionStyle" are the RenderTransformOrigin property that determines the center point of any
transformation operation and a RenderTransform. Transformations can scale objects to be larger or
smaller, move objects to other locations, rotate objects or skew them. In this case we are changing the
scale along the "Y" axis to a negative number. This has the effect of flipping the image. If you supply a
negative one "-1" you simply flip the image. Negative fractions flip and compress the image at the same
time. A ScaleY value of "-.5" is flipped and compressed to half its original size. Finally the OpacityMask
property is configured to paint the image so that it fades.

<Style x:Key="ImageReflectionStyle" TargetType="Image">
 <Setter Property="RenderTransformOrigin" Value="0,1" />
 <Setter Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform ScaleY="-.5" />
 </Setter.Value>
 </Setter>
 <Setter Property="OpacityMask">
 <Setter.Value>
 <LinearGradientBrush
 StartPoint="0.5,0"
 EndPoint="0.5,1">
 <GradientStop Offset="0" Color="Transparent" />
 <GradientStop Offset="1" Color="#FFFFFFFF" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

The image and the reflected version of the image are assembled into a single ContentControl by way of the
"ReflectedImagePanel" style below. The style places both Images into a grid and applies the
"ImageReflectionStyle" to the second image.

RadControls for Silverlight422

© 2011 Telerik Inc.

<Style x:Key="ReflectedImagePanel"
 TargetType="ContentControl">
 <Setter
 Property="Template">
 <Setter.Value>
 <ControlTemplate
 TargetType="ContentControl">
 <Grid VerticalAlignment="Top">
 <Image
 Margin="0, 0, 0, 1"
 Source="{TemplateBinding Content}"
 MaxHeight="200" />
 <Image
 Source="{TemplateBinding Content}"
 MaxHeight="200"
 Grid.Row="1"
 Style="{StaticResource ImageReflectionStyle}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Expander 423

© 2011 Telerik Inc.

Finally, the Click event handler for each button simply assigns the image path to the content of the
ContentControl.

Private Sub Button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim path As String = (TryCast(sender, Button)).Content.ToString()
 imgPanel.Content = path
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 string path = (sender as Button).Content.ToString();
 imgPanel.Content = path;
}

13.4.2 Events

RadExpander has two events you can handle: Expanded and Collapsed. As with most of the Telerik
Silverlight controls, these are routed events and so pass the RoutedEventArgs parameter. You can cast
this parameter to a RadRoutedEventArgs type (from the Telerik.Windows namespace) to get additional
information. The example below changes the header as the control is expanded and collapsed.

Private Sub RadExpander_Expanded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim args As RadRoutedEventArgs = TryCast(e, RadRoutedEventArgs)
 Dim expander As RadExpander = TryCast(args.OriginalSource, RadExpander)
 expander.Header = "This is expanded"
End Sub

Private Sub RadExpander_Collapsed(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim args As RadRoutedEventArgs = TryCast(e, RadRoutedEventArgs)
 Dim expander As RadExpander = TryCast(args.OriginalSource, RadExpander)
 expander.Header = "This is collapsed"
End Sub

RadControls for Silverlight424

© 2011 Telerik Inc.

private void RadExpander_Expanded(object sender, RoutedEventArgs e)
{
 RadRoutedEventArgs args = e as RadRoutedEventArgs;
 RadExpander expander = args.OriginalSource as RadExpander;
 expander.Header = "This is expanded";
}

private void RadExpander_Collapsed(object sender, RoutedEventArgs e)
{
 RadRoutedEventArgs args = e as RadRoutedEventArgs;
 RadExpander expander = args.OriginalSource as RadExpander;
 expander.Header = "This is collapsed";
}

Running in the browser, the RadExpander looks like the screenshot below.

13.4.3 Animation

To enable or disable animation in XAML markup, set the AnimationManager IsAnimationEnabled
attribute:

<telerik:RadExpander
 . . .
 telerik:AnimationManager.IsAnimationEnabled="True"
 >
</telerik:RadExpander>

Expander 425

© 2011 Telerik Inc.

. . .or in code you can call the AnimationManager.SetIsAnimationEnabled(), passing the RadExpander
instance and a Boolean to turn the animation on or off. You must first add a reference to the Telerik.
Windows.Controls.Animation name space in your "Imports" (VB) or "using" (C#) section of code.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 AnimationManager.SetIsAnimationEnabled(Me.expander, True)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 AnimationManager.SetIsAnimationEnabled(this.expander, true);
}

RadControls for Silverlight426

© 2011 Telerik Inc.

13.5 Customization

Walk Through

In this example we will customize the RadExpander control by swapping out the standard "arrow" button
with an image of a pepper. The pepper image will be animated to swivel the pepper stem up and down as
the expander is expanded and collapsed.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and Silverlight 3 Application from the
right-most list. Enter a unique name for the project and click OK.

4) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

5) In the Projects pane, right-click the References node and select Add Reference... from the context
menu.

Expander 427

© 2011 Telerik Inc.

6) Add a reference to the Telerik.Windows.Controls.dll assembly.

7) From the Project menu select Build Project.

8) Open the Assets pane. On the left side of the Assets pane is a tree view. Locate and select the
"Controls" node. In the Assets pane, just above the tree view is the Assets Find entry text box. Type
the first few characters of "RadExpander" into the Assets Find entry text box. A list of all matching
controls will show to the right of the tree view. Locate the RadExpander control and drag it onto the
MainPage.xaml Artboard.

Tip!

If the Assets pane is not visible, select the main menu Windows item, locate "Assets" and click to
re-enable it.

9) In the Objects and Timeline pane, double-click "[RadExpander]" in the tree view. Enter a new name
"expPeppers".

10) In the Properties pane, locate the Common Properties > Header property and set Reset:

RadControls for Silverlight428

© 2011 Telerik Inc.

Expander 429

© 2011 Telerik Inc.

11)Right-click "expPeppers" and select Edit Template > Edit a Copy from the context menu. In the
"Create Style Resource" dialog, set the Name (Key) to "ScovilleExpanderStyle". Click OK to create the
style resource and close the dialog.

12)Right-click "HeaderButton" in the Objects and Timeline pane and select Edit Template > Edit
Current.... In the "Create Style Resource" dialog, set the Name (Key) to "ScovilleHeaderButton".
Click OK to create the style resource and close the dialog.

13)If you open all the nodes of the object tree, the Objects and Timeline pane should look something like
the screenshot below:

14)In the Objects and Timeline pane, select the "decorator" item in the object tree. In the Properties pane,
set the Appearance > Visibility property to "Collapsed".

RadControls for Silverlight430

© 2011 Telerik Inc.

15)In the Assets pane, type the first few characters of "Image" into the Assets Find entry text box. A list
of all matching controls will show to the right of the tree view. Locate the Image control and drag it to a
point just below the "decorator" node in the Objects and Timeline pane.

16)Double-click "[Image]" and rename it to "peppers". In the Properties pane, locate the Common
Properties > Source property. Click the ellipses and select "peppers.png" located in the
"\courseware\images" directory. Change the Layout > Width property to "120" and the Layout >
Height property to "120".

Expander 431

© 2011 Telerik Inc.

17)Locate the project in the Projects pane, right-click the project and select "Startup Project" from the
context menu. Press F5 to run the application in its present state.

18)Open the States pane. Select the "peppers" image in the Objects and Timeline pane. The following
steps will animate the pepper image as the state toggles between "Expanded" and "Collapsed".

19)In the States pane, select the "Expanded" state. Notice the indicator in the upper left corner of the
Artboard, that "Expanded state recording is on". This means that property changes you make now will
be recorded.

20)In the Timeline, drag the Timeline marker to the half second mark.

21)Make sure that the "peppers" item is still selected in the Objects and Timeline pane. Navigate to the
Properties pane and set Transform > Rotate > Angle property to "180":

22)In the States pane, select the "Collapsed" state.

23)In the Timeline, drag the Timeline marker to the half second mark.

24)Make sure that the "peppers" item is still selected in the Objects and Timeline pane. Navigate to the
Properties pane and set Transform > Rotate > Angle property to "0".

Note: The property will already be "0". Go ahead and re-enter the value anyway. This will add a new "key
frame" item to the Timeline representing the Angle value at the half second mark :

RadControls for Silverlight432

© 2011 Telerik Inc.

25) In the Objects and Timeline pane, select the "Return scope" button. Now that you've finished
spelunk ing into the guts of the control, you can return to editing the RadExpander as a whole.

Expander 433

© 2011 Telerik Inc.

26)In the Assets pane, type the first few characters of "TextBlock" into the Assets Find entry text box. A
list of all matching controls will show to the right of the tree view. Locate the TextBlock control and drag
it to a point just below the "expPeppers" node in the Objects and Timeline pane.

Notice the light blue insert marker just before you drop the TextBlock control into place below the
"expPeppers". Be aware of where the marker sits in relation to the other controls in the object tree. The
marker can be a peer of "expPeppers", i.e. the hint reads "Create in LayoutRoot", or can be a child of
"expPeppers", i.e. "Create in expPeppers". The TextBlock should be the content for the RadExpander
and so should be a child of "expPeppers".

27)In the Properties pane, locate the Common Properties > Text property and paste the text below:

The "Scoville Scale" was created by Wilbur Scoville in 1912 under the name "Scoville Organoleptic
Test" to measure the hotness of peppers.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight434

© 2011 Telerik Inc.

Test Application Features

Toggle the expand button to verify that the pepper graphic animates and rotates down and then back.

Ideas for Extending This Example

Add styling to the rest of the header content area.

Add styling to the content area.

Turn on animation for the control so that expansion occurs smoothly. See the previous RadExpander >
Animation section for more information.

13.6 Wrap Up

In this chapter you saw how RadExpander can save space and present Silverlight content as needed. You
learned how to place simple text material in the Header and Content. You saw which properties control
expansion direction and animation. You then used Header and Content sub-elements to present multiple
Silverlight items of arbitrary complexity and arrangement. Along the way you used control templates to
display images, image reflections and custom buttons. Finally, you used Expression Blend to replace the
standard "arrow" graphic with an image that rotates when clicked.

Part

XIV
Drag and Drop.

RadControls for Silverlight436

© 2011 Telerik Inc.

14 Drag and Drop.

14.1 Objectives

In this chapter you will learn how RadDragAndDropManager is used to allow intuitive drag-and-drop
operations between any two Silverlight controls or elements. You will learn the basic property settings that
allow drag from a source element and drop to a destination element as well as the event handling required
to complete the operation. While discussing the drag-and-drop events you will see how
RadDragAndDropManager properties, particularly the DragStatus property, is used to pinpoint the exact
state of the operation at the time the event is called. You will learn how to allow or refuse to continue during
event processing. You will also learn how to assign visual cues to notify the user of the progress of the
operation. Finally, you will see how visual cue templates allow binding and customization.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\DragAndDrop\DragAndDrop.sln

14.2 Overview

Although RadDragAndDropManager is already built into the tree view and tab control,
RadDragAndDropManager makes drag and drop possible between any Silverlight control or element.

The DragAndDrop framework events provide complete control over every stage of the drag-and-drop
operation. The drag-and-drop events are all routed and can be handled anywhere in the visual tree. Not only
can you allow or prevent drag-and-drop at several points during the operation, you can display visual cues in
the source, destination, the dragged object and an optional "Arrow" cue that stretches between the source
and destination.

ScrollViewers automatically reveal hidden content when the destination of a drag-and-drop is not visible.

Drag and Drop. 437

© 2011 Telerik Inc.

14.3 Getting Started

The minimal steps to bring drag-and-drop functionality to your application are:

Set the RadDragAndDropManager.AllowDrag attached property to True for any "Source" elements that
you want to drag.

Set the RadDragAndDropManager.AllowDrop attached property to True for any "Destination" elements
that should receive the dragged elements.

Handle DragQueryEvent, DropQueryEvent and DropInfoEvent events.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

XAML Editing

1) Open MainPage.xaml for editing.

2) In the UserControl element, add a reference to the Telerik.Windows.Controls.DragDrop namespace
in the Telerik.Windows.Controls assembly. Also add a handler for the Loaded event.

<UserControl . . .
xmlns:dragdrop=
"clr-namespace:Telerik.Windows.Controls.DragDrop;assembly=Telerik.Windows.Controls"
Loaded="UserControl_Loaded">

3) Inside the main "LayoutRoot" Grid element, add a StackPanel. Notice the comments that indicate
where we will place elements to drag and a destination element that will be the target of the drag
operation.

RadControls for Silverlight438

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">

 <StackPanel>

 <!--Source elements to drag-->

 <!--Destination element-->

 </StackPanel>

</Grid>

4) Under the comment "<!--Source elements to drag-->", add an Ellipse element with the following
property settings:

a) Width="50"

b) Height="50"

c) HorizontalAlignment="Center"

d) Margin="5"

e) Fill="Blue"

f) dragdrop:RadDragAndDropManager.AllowDrag="True"

5) Add two more Ellipse elements with the same settings. Change the Fill properties for the two ellipses
to be "Red" and "Green", respectively.

6) Under the comment "<!--Destination element-->", add a StackPanel element with the following property
settings:

a) MinHeight="200"

b) Margin="5"

c) Background="Silver"

d) dragdrop:RadDragAndDropManager.AllowDrop="True"

The completed XAML should look like the following:

Drag and Drop. 439

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">

 <StackPanel>

 <!--Source elements to drag-->
 <Ellipse Width="50" Height="50" HorizontalAlignment="Center"
 Margin="5" Fill="Blue"
 dragdrop:RadDragAndDropManager.AllowDrag="True"></Ellipse>

 <Ellipse Width="50" Height="50" HorizontalAlignment="Center"
 Margin="5" Fill="Red"
 dragdrop:RadDragAndDropManager.AllowDrag="True"></Ellipse>

 <Ellipse Width="50" Height="50" HorizontalAlignment="Center"
 Margin="5" Fill="Green"
 dragdrop:RadDragAndDropManager.AllowDrag="True"></Ellipse>

 <!--Destination element-->
 <StackPanel MinHeight="200" Margin="5" Background="Silver"
 dragdrop:RadDragAndDropManager.AllowDrop="True"></StackPanel>

 </StackPanel>

</Grid>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these name spaces:

a) Telerik.Windows.Controls.DragDrop

2) In the Loaded event handler, call RadDragAndDropManager methods to add handlers for routed events.
The actual handlers will be added in later steps.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadDragAndDropManager.AddDragQueryHandler(Me, OnDragQuery)
 RadDragAndDropManager.AddDropQueryHandler(Me, OnDropQuery)
 RadDragAndDropManager.AddDropInfoHandler(Me, OnDropInfo)
End Sub

RadControls for Silverlight440

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadDragAndDropManager.AddDragQueryHandler(this, OnDragQuery);
 RadDragAndDropManager.AddDropQueryHandler(this, OnDropQuery);
 RadDragAndDropManager.AddDropInfoHandler(this, OnDropInfo);
}

3) In the OnDragQuery event handler, set the event arguments QueryResult to "True". Also set the
Options.DragCue to the string "Dragging...".

Setting QueryResult ="True" allows the drag operation to continue. Options.DragCue is the object
that displays visually under the mouse as it moves during the drag operation.

Private Sub OnDragQuery(ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 e.QueryResult = True
 e.Options.DragCue = "Dragging..."
 e.Handled = True
End Sub

private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
 e.QueryResult = true;
 e.Options.DragCue = "Dragging...";
 e.Handled = true;
}

4) In the OnDropQuery event handler, set the event arguments QueryResult = "True" and Handled =
"True". Setting QueryResult allows the drop operation to continue. The Handled property is specific to
routed events and indicates that the event should not propagate any further.

Private Sub OnDropQuery(_
ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 e.QueryResult = True
 e.Handled = True
End Sub

Drag and Drop. 441

© 2011 Telerik Inc.

private void OnDropQuery(object sender, DragDropQueryEventArgs e)
{
 e.QueryResult = true;
 e.Handled = true
}

5) In the OnDropInfo event handler, complete the drop operation by removing the dragged ellipse from its
current parent and adding it to the drop Destination StackPanel.

a) Check that the event arguments Options.Status is in a DragStatus.DropComplete state. Note:
DropInfoEvent fires multiple times in varying statuses such as DragStatus.DropPossible.

b) Get a reference to the Ellipse being dragged, get its Parent and remove the Ellipse from the Parent's
Children collection.

c) Get a reference to the destination StackPanel. Add the Ellipse to the StackPanel Children collection.

d) Mark the routed event as Handled.

Private Sub OnDropInfo(ByVal sender As Object, ByVal e As DragDropEventArgs)
 ' verify that the drop is completed
 If e.Options.Status = DragStatus.DropComplete Then
 ' get a reference to the dragged ellipse
 Dim ellipse As Ellipse = TryCast(e.Options.Source, Ellipse)
 ' remove the ellipse from its parent so it can be added elsewhere
 TryCast(ellipse.Parent, Panel).Children.Remove(ellipse)
 ' get a reference to the drag destination StackPanel so we
 ' can use its methods
 Dim panel As StackPanel = TryCast(e.Options.Destination, StackPanel)
 ' add the ellipse to the destination StackPanel children
 panel.Children.Add(ellipse)
 ' decline further routed event handling
 e.Handled = True
 End If
End Sub

RadControls for Silverlight442

© 2011 Telerik Inc.

private void OnDropInfo(object sender, DragDropEventArgs e)
{
 // verify that the drop is completed
 if (e.Options.Status == DragStatus.DropComplete)
 {
 // get a reference to the dragged ellipse
 Ellipse ellipse = e.Options.Source as Ellipse;
 // remove the ellipse from its parent so it can be added elsewhere
 (ellipse.Parent as Panel).Children.Remove(ellipse);
 // get a reference to the drag destination StackPanel so we
 // can use its methods
 StackPanel panel = e.Options.Destination as StackPanel;
 // add the ellipse to the destination StackPanel children
 panel.Children.Add(ellipse);
 // decline further routed event handling
 e.Handled = true;
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Drag each of the elements to the StackPanel. There are no other drop destinations, so this will only
allow a one-way drag to the StackPanel.

Ideas for Extending This Example

Drag other element types.

Include additional destinations.

Drag and Drop. 443

© 2011 Telerik Inc.

Change the DragCue to some other representation, such as a faded copy of the source ellipse:

The code w ould be changed to the example code below :

Private Sub OnDragQuery(ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 e.QueryResult = True
 Dim sourceEllipse As Ellipse = TryCast(e.Options.Source, Ellipse)
 Dim sourceColor As Color = (TryCast(sourceEllipse.Fill, SolidColorBrush)).Color
 Dim dragBrush As New SolidColorBrush() With {.Color = sourceColor, .Opacity = 0.5}

 e.Options.DragCue = New Ellipse() With { _
.Fill = dragBrush, _
.Width = sourceEllipse.Width, _
.Height = sourceEllipse.Height}
 e.Handled = True
End Sub

RadControls for Silverlight444

© 2011 Telerik Inc.

private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
 e.QueryResult = true;
 Ellipse sourceEllipse = e.Options.Source as Ellipse;
 Color sourceColor = (sourceEllipse.Fill as SolidColorBrush).Color;
 SolidColorBrush dragBrush = new SolidColorBrush()
 {
 Color = sourceColor,
 Opacity = 0.5
 };

 e.Options.DragCue = new Ellipse()
 {
 Fill = dragBrush,
 Width = sourceEllipse.Width,
 Height = sourceEllipse.Height
 };
 e.Handled = true;
}

14.4 Control Details

14.4.1 Overview.

RadDragAndDropManager makes drag and drop possible between any Silverlight control or element (not
just RadControls). RadDragAndDropManager is a static class and not a control and so is not available in
the Toolbox. Instead, you add an XML namespace to Telerik.Windows.Controls.DragDrop in your XAML to
reference RadDragAndDropManager as shown in the example below:

<UserControl . . .
xmlns:dragdrop=
"clr-namespace:Telerik.Windows.Controls.DragDrop;assembly=Telerik.Windows.Controls"
>

Once you have access to RadDragAndDropManager, the remaining steps are:

Make one or more controls "draggable"

Configure one or more controls to accept dropped objects.

Handle drag and drop events. Event handling is necessary because any number of any type of controls
that can be dragged. Using event handlers provides the flexibility to deal with any drag-and-drop
situation.

Drag and Drop. 445

© 2011 Telerik Inc.

14.4.2 Make a Control Draggable

To make an control "draggable", set the AllowDrag property to "True". AllowDrag is an attached property
and can be set on an existing Silverlight control:

<Ellipse dragdrop:RadDragAndDropManager.AllowDrag="True"/>

In code, use the SetAllowDrag() method, passing the control to be dragged.

RadDragAndDropManager.SetAllowDrag(BlueEllipse, True)

RadDragAndDropManager.SetAllowDrag(BlueEllipse, true);

 Notes

Setting the attached property in code is recommended only when the visual objects are created
in code and a style is not / cannot be applied.

Another strategy that works when you have access to a style for the items, lets you avoid having to code for
each item by setting a property that propagates to all items:

<ListBox x:Name="listBox">
 <ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 <Setter
 Property="dragDrop:RadDragAndDropManager.AllowDrag"
 Value="True" />
 </Style>
 </ListBox.ItemContainerStyle>
 . . .
</ListBox>

RadControls for Silverlight446

© 2011 Telerik Inc.

14.4.3 Accept Dropped Controls

The mirror of the AllowDrag property is the AllowDrop attached property. You can add AllowDrop to any
Silverlight control:

<TextBlock
 dragdrop:RadDragAndDropManager.AllowDrop="True"></TextBlock>

To set the same property in code, use the SetAllowDrop() method. Like SetAllowDrag(), SetAllowDrop()
shines when a number of elements that are unknown at design time need to be configured to allow drop.
The example below allows "Time slots" in a RadScheduler to allow drop:

Private Sub InitializeTimeSlotItems()
 Me.timeSlotItems = Me.Scheduler.ChildrenOfType(Of TimeSlotItem)()
 For Each item As TimeSlotItem In Me.timeSlotItems
 item.SetValue(RadDragAndDropManager.AllowDropProperty, True)
 Next item
End Sub

private void InitializeTimeSlotItems()
{
 this.timeSlotItems = this.Scheduler.ChildrenOfType<TimeSlotItem>();
 foreach (TimeSlotItem item in this.timeSlotItems)
 {
 item.SetValue(RadDragAndDropManager.AllowDropProperty, true);
 }
}

Drag and Drop. 447

© 2011 Telerik Inc.

14.4.4 RadDragAndDropManager

With RadDragAndDropManager you can:

Flag the controls that can be dragged and that can accept a drag.

Hook up drag-and-drop events.

Maintain information on all aspects of the Drag-and-Drop operation using the DragDropOptions
property.

Automatically scroll content into view using the AutoBringIntoView property.

Prevent unintended dragging on mouse-down by setting the DragStartThreshold property. This is the
distance in pixels that the user needs to drag an object before a real drag operation starts.

Generate default visual cues.

DragDropOptions

Most aspects of the drag-and-drop operation are tracked through the RadDragAndDropManager Options
property. Some of the key Options sub-properties are:

 The Source and Destination FrameworkElement objects represent the drag source and target.

While the drag operation is underway, you can supply feedback to the user with several visual cues:
ArrowCue and DragCue. See the upcoming section "Visual Cues" for detail on how to use these
properties.

The Payload property lets you tuck away arbitrary object data.

The Status property provides fine-grain understanding of the drag progress during drag-and-drop events.
See the upcoming section "Events" for a detailed listing of these events.

When you have popups involved with a drag-and-drop operation, be sure to add them to the
ParticipatingVisualRoots collection. This collection contains visual roots what will participate in the
drag/drop operation but are not descendants of the application root visual.

 From the Forums...

Question: "Drag & Drop works except inside a Popup. I tried to use a Popup, unfortunately, all
the drop events are not launched, we can see the visual cue, but cannot deliver 'the drop'." How
can I get the drag and drop properties to work?

Answer: "'Windows' in Silverlight come up in popups and by default popups are not part of the
main visual tree. Therefore, RadDragAndDrop does not know about them. There is a property on
the DragDrop option, called ParticipatingVisualRoots. You can add the currently opened child
windows to ParticipatingVisualRoots and they will participate in the DragDrop. You can keep a
static collection with all the opened windows and add it during DragInfo. You can do this
transparently by adding a DragInfo handler to the root visual of the application that will do this
for every successful drag operation."

There is no need to do this for the RadWindow or popups that Telerik controls create. More
typically you may need to do this for the ChildWindow control.

RadControls for Silverlight448

© 2011 Telerik Inc.

14.4.5 Events.

RadDragAndDropManager generates four events: DragQuery, DragInfo, DropQuery and DropInfo. The
"Query" events fire just before some action is taken, allowing you to change settings or cancel the event
altogether. The "Info" events notify you that some action has occurred. The diagram below shows the
general order that these events occur in. These are all "routed" events, i.e. they can be handled by any of
the elements in the visual or logical tree.

DragQuery lets you allow or cancel the drag and also lets you specify visual cues that let the user
know what's happening.

DragInfo fires when the drag is already under way.

DropQuery lets you allow or cancel dropping onto some other element. The event handler supplies an
"options" parameter with complete information on what is being dragged, where its being dropped, the
status of the operation and all the other data about the drag-and-drop.

DropInfo occurs when the drop is complete. The RadDragAndDropManager infrastructure displays all
the trappings of a drag-and-drop, but doesn't actually change the underlying state of elements in the
page. The DropInfo handler is your opportunity to actually move or copy objects to their new locations in
response to the drop.

To subscribe to the routed events, use the static methods of RadDragAndDropManager:
AddDragQueryHandler, AddDragInfoHandler, AddDropQueryHandler and AddDropInfoHandler. The
snippet below demonstrates hooking up DropQuery using the static AddDropQueryHandler() method. The
first parameter is to the object handling the event, in this case the UserControl ("Me" or "this"). The second
parameter is a reference to the handler itself.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' . . .

 RadDragAndDropManager.AddDropQueryHandler(Me, AddressOf OnDropQuery)
End Sub

Private Sub OnDropQuery(ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 e.QueryResult = True
 e.Handled = True
End Sub

Drag and Drop. 449

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // . . .

 RadDragAndDropManager.AddDropQueryHandler(this, OnDropQuery);
}

private void OnDropQuery(object sender, DragDropQueryEventArgs e)
{
 e.QueryResult = true;
 e.Handled = true;
}

Event Status

The four events actually fire multiple times as they track progress the operation from the perspective of both
source and destination. Each event handler contains a key property, DragDropOptions, that holds a
Status sub-property. Status lets you know the nature of each event call:

None No drag/drop is taking place.

DragQuery A drag is about to take place for an element where AllowDrag = "True". To allow
the drag to proceed, set event handler QueryResult argument to "True".

DragInProgress Dragging has started, no drop locations have been found.

DragComplete The drag is complete. Source objects may be removed at this point.

DragCancel The drag was canceled.

DropDestination
Query

The destination is asked if the element can be dropped from this particular
source.

DropSourceQue
ry

The source is asked if the element can be dropped on this particular destination

DropPossible The drop is acknowledged from both parties. You can use this status to signal
visually to the user that a drop is possible.

DropImpossible The drop is refused by one or both parties.

DropComplete The drop is complete. Copying or moving elements takes place here.

DropCancel The drop was canceled.

RadControls for Silverlight450

© 2011 Telerik Inc.

Generally a successful DragDrop involves the following events and statuses:

DragQuery event with status DragQuery

DragInfo event with status DragInProgress

Then when a possible target is reached:

DragQuery event with status DropSourceQuery

DropQuery event with status DropDestinationQuery

DragInfo event with status DropPossible

DropInfo event with status DropPossible

On a successful drop:

DragInfo event with status DragComplete

DropInfo event with status DropComplete

Here's a log of the typical event sequence taken from the "Getting Started" project. From the log you can
see that this is a two-way, handshake process where both the source and destination must agree for the
operation to continue. Notice that when the DragQuery and DragInProgress first fire, the destination object
is unknown.

Event: OnDragQuery Status: DragQuery Source: Ellipse Destination: null
Event: OnDragInfo Status: DragInProgress Source: Ellipse Destination: null
Event: OnDropQuery Status: DropDestinationQuery Source: Ellipse Destination: StackPanel
Event: OnDragQuery Status: DropSourceQuery Source: Ellipse Destination: StackPanel
Event: OnDropInfo Status: DropPossible Source: Ellipse Destination: StackPanel
Event: OnDragInfo Status: DropPossible Source: Ellipse Destination: StackPanel
Event: OnDragInfo Status: DragComplete Source: Ellipse Destination: StackPanel
Event: OnDropInfo Status: DropComplete Source: Ellipse Destination: StackPanel

Drag and Drop. 451

© 2011 Telerik Inc.

 Gotcha!

Question: I'm handling the DragQuery event and have set QueryResult = "True" when the status
is "DragQuery". But the drag does not take place. What is happening?

Answer: There are two checks that must both pass. QueryResult must be set true when the
status is DragQuery and DropSourceQuery. DragQuery occurs at the very beginning of the event
sequence and "Destination" is null at this point. When the status is DropSourceQuery, the
operation can be canceled based on the destination object.

Responding to Events

Now that you know the events and the status, you will want to make your visual layout respond to the drag
operation. What happens here is up to your business logic. For example, you may have a "Tool Box"
scenario where an item is copied onto an element on the page, or you may be developing a "Visio"-like
diagram where node elements are moved around. In this second instance you have to remove an element
from one parent element on the page and add it to another. Use the OnDragInfo event to remove an element
from one location and the OnDropInfo is always used (for either copy or move type operations) to create the
element in its new location. The example below removes an ellipse from its parent, then recreates the
ellipse inside a StackPanel where it was dropped.

RadControls for Silverlight452

© 2011 Telerik Inc.

Private Sub OnDragInfo(ByVal sender As Object, ByVal e As DragDropEventArgs)
 Log("OnDragInfo", e.Options)

 If e.Options.Status = DragStatus.DragComplete Then
 ' get a reference to the dragged ellipse
 Dim ellipse As Ellipse = TryCast(e.Options.Source, Ellipse)
 ' remove the ellipse from its parent so it can be added elsewhere
 TryCast(ellipse.Parent, Panel).Children.Remove(ellipse)
 End If

End Sub

Private Sub OnDropInfo(ByVal sender As Object, ByVal e As DragDropEventArgs)
 Log("OnDropInfo", e.Options)

 ' verify that the drop is completed
 If e.Options.Status = DragStatus.DropComplete Then
 ' get a reference to the dragged ellipse
 Dim ellipse As Ellipse = TryCast(e.Options.Source, Ellipse)

 ' get a reference to the drag destination StackPanel so we
 ' can use its methods
 Dim panel As StackPanel = TryCast(e.Options.Destination, StackPanel)
 ' add the ellipse to the destination StackPanel children
 panel.Children.Add(ellipse)
 ' decline further routed event handling
 e.Handled = True
 End If
End Sub

Drag and Drop. 453

© 2011 Telerik Inc.

private void OnDragInfo(object sender, DragDropEventArgs e)
{
 Log("OnDragInfo", e.Options);

 if (e.Options.Status == DragStatus.DragComplete)
 {
 // get a reference to the dragged ellipse
 Ellipse ellipse = e.Options.Source as Ellipse;
 // remove the ellipse from its parent so it can be added elsewhere
 (ellipse.Parent as Panel).Children.Remove(ellipse);
 }
}

private void OnDropInfo(object sender, DragDropEventArgs e)
{
 Log("OnDropInfo", e.Options);

 // verify that the drop is completed
 if (e.Options.Status == DragStatus.DropComplete)
 {
 // get a reference to the dragged ellipse
 Ellipse ellipse = e.Options.Source as Ellipse;

 // get a reference to the drag destination StackPanel so we
 // can use its methods
 StackPanel panel = e.Options.Destination as StackPanel;
 // add the ellipse to the destination StackPanel children
 panel.Children.Add(ellipse);
 // decline further routed event handling
 e.Handled = true;
 }
}

RadControls for Silverlight454

© 2011 Telerik Inc.

14.4.6 Visual Cues

Display a visual cue under the mouse when dragging and an "Arrow" cue between the source and the
mouse by assigning the options DragCue and ArrowCue properties. The screenshot below shows the
default appearance when a drag is underway.

You can use these defaults by calling the GenerateVisualCue() and GenerateArrowCue() methods. You
may pass an optional Framework element to GenerateVisualCue() and the properties of that element will be
used as a basis for the visual cue.

Private Sub OnDragQuery(ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 Log("OnDragQuery", e.Options)

 e.QueryResult = True
 e.Options.DragCue = _
RadDragAndDropManager.GenerateVisualCue(TryCast(e.Options.Source, FrameworkElement))
 e.Options.ArrowCue = RadDragAndDropManager.GenerateArrowCue()
 e.Handled = True
End Sub

private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
 Log("OnDragQuery", e.Options);

 e.QueryResult = true;
 e.Options.DragCue =
 RadDragAndDropManager.GenerateVisualCue(
 e.Options.Source as FrameworkElement);
 e.Options.ArrowCue = RadDragAndDropManager.GenerateArrowCue();
 e.Handled = true;
}

You can use visual elements of the source or destination to help the user decide what to do. The sample
below uses the OnDragInfo when the status is DropPossible to highlight the background when it's ok to drop
the dragged item.

Drag and Drop. 455

© 2011 Telerik Inc.

Private Sub OnDragInfo(ByVal sender As Object, ByVal e As DragDropEventArgs)
 DropPanel.Background = _
If(e.Options.Status = DragStatus.DropPossible, _
New SolidColorBrush(Colors.Gray), _
New SolidColorBrush(Colors.LightGray))
End Sub

private void OnDragInfo(object sender, DragDropEventArgs e)
{
 DropPanel.Background = e.Options.Status == DragStatus.DropPossible ?
 new SolidColorBrush(Colors.Gray) : new SolidColorBrush(Colors.LightGray);
}

You're not stuck with the built-in visual cues. All cue objects are simply objects, so you can assign a string
or a visual element. The screenshot below shows the DragCue as a "check" image.

 From the Forums...

Question: "I would like to show an array of objects with a specific foreground and background."

Answer: "You can put anything as the DragCue during DragDrop. What you can try is add a
ContentControl. Then as Content you assign the collection of items being dragged. Then you give it a
ContentTemplate which has an items control with a template for your items. The ItemTemplate of this
inner items control can contain borders, TextBlocks, and other visual items which you can modify. If
you assign a collection of the dragged items to the content of the DragCue then the inner items
control can have its ItemsSource equal to {Binding}, i.e. bound directly to the items.

If do not like all the binding, you can create an ItemsControl in code and set its items source and item
template properties. Alternatively you can build the whole visual object in code, starting from a panel
and adding TextBlocks (or other visuals) as needed. Then you assign the panel as DragCue. In all
these cases you can modify the brushes or fonts of the displayed items."

RadControls for Silverlight456

© 2011 Telerik Inc.

You can directly assign some object to Content, say a scaled down ellipse to indicate that we're dragging
an ellipse, or you could assign a TextBlock that describes the action. There's no limit as to what you could
assign here. The effective limit is complexity. Let's say you want the cue to show a description, an icon and
an image. In this situation you should use the ContentControl ContentTemplate property and assign a
DataTemplate to it. Now you can build templates of great complexity by hand or using Expression Blend
and they can be used as your cue. The example from the screenshot above actually uses a simple
template that contains an image:

<UserControl.Resources>

 <DataTemplate x:Key="DragTemplate">
 <Image Source="images/check.png" Stretch="None"
 VerticalAlignment="Top" />
 </DataTemplate>

</UserControl.Resources>

In code, create a ContentControl instance and assign the template from the Resources collection and cast
it to be a DataTemplate type. Finally, assign the ContentControl to the cue.

Private Sub OnDragQuery(ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 e.QueryResult = True
 Dim cue As New ContentControl()
 cue.ContentTemplate = TryCast(Me.Resources("DragTemplate"), DataTemplate)
 e.Options.DragCue = cue

 e.Handled = True
End Sub

private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
 e.QueryResult = true;
 ContentControl cue = new ContentControl();
 cue.ContentTemplate = this.Resources["DragTemplate"] as DataTemplate;
 e.Options.DragCue = cue;

 e.Handled = true;
}

Drag and Drop. 457

© 2011 Telerik Inc.

14.5 Binding

You can bind data to visual cues data templates for greater flexibility. The screenshot below shows a
slightly more complex template that demonstrates binding.

The code assigns a simple "MyDragInfo" object to the Content property. MyDragInfo has "ImagePath" and
"Comment" properties that are then bound in the ContentTemplate.

Private Sub OnDragQuery(ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 Log("OnDragQuery", e.Options)

 e.QueryResult = True

 Dim cue As New ContentControl()
 cue.ContentTemplate = TryCast(Me.Resources("DragTemplate"), DataTemplate)
 cue.Content = New MyDragInfo() With {.ImagePath = "images/check.png", .Comment = "Drag in progress"}
 e.Options.DragCue = cue

 e.Handled = True
End Sub

private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
 Log("OnDragQuery", e.Options);

 e.QueryResult = true;

 ContentControl cue = new ContentControl();
 cue.ContentTemplate =
 this.Resources["DragTemplate"] as DataTemplate;
 cue.Content = new MyDragInfo()
 {
 ImagePath = "images/check.png",
 Comment = "Drag in progress"
 };
 e.Options.DragCue = cue;

 e.Handled = true;
}

RadControls for Silverlight458

© 2011 Telerik Inc.

The XAML for the template is slightly more involved and contains the binding expressions for the ImagePath
and Comment.

<UserControl.Resources>

 <RadialGradientBrush x:Key="DragBackgroundBrush">
 <GradientStop Offset="0" Color="Transparent" />
 <GradientStop Offset="0.9" Color="White" />
 <GradientStop Offset="1" Color="SkyBlue" />
 </RadialGradientBrush>

 <DataTemplate x:Key="DragTemplate">
 <Grid>
 <Ellipse MinWidth="50" MinHeight="50"
 Fill="{StaticResource DragBackgroundBrush}">
 </Ellipse>
 <StackPanel>
 <TextBlock Text="{Binding Comment}"
 HorizontalAlignment="Center"></TextBlock>
 <Image Source="{Binding ImagePath}"
 Stretch="None" />
 </StackPanel>
 </Grid>
 </DataTemplate>

</UserControl.Resources>

14.6 Wrap Up

In this chapter you learned how RadDragAndDropManager can be used to allow intuitive drag-and-drop
operations between any two Silverlight controls or elements. You learned the basic property settings to
allow drag from a source element and drop to a destination element as well as the event handling required
to complete the operation. While discussing the drag-and-drop events you saw how
RadDragAndDropManager properties, particularly the DragStatus property, is used to pinpoint the exact
state of the operation at the time the event is called. You learned how to allow or refuse to continue during
event processing. You learned how to assign visual cues to notify the user of the progress of the operation.
You also learned how to assign templates to the visual cues to allow binding and customization.

Part

XV
Date, Time and Calendar

RadControls for Silverlight460

© 2011 Telerik Inc.

15 Date, Time and Calendar

15.1 Objectives

In this chapter you will learn how to use calendar, date picker, time picker and datetime picker control to
collect date and time data from the user. In the Control Details section of this chapter, you will review the
types of date and time controls and the appropriate uses for each control type. You will learn how to control
the number of dates that can be selected at one time and the manner that they can be selected. You will
also learn about the SelectedDate and SelectedDates properties for RadDatePicker and SelectedValue
property for RadDateTimePicker used to store selections and the SelectionChanged event that flags when
its time to look at this property. You will become aware of the properties used to limit the dates and times
that can be selected or viewed. You will also look at the RadClock control used to select time values. In the
Binding section of this chapter you will see how calendar and date time picker controls are bound to custom
objects and will also look at a short example of binding RadTimePicker to a collection of TimeSpan objects.
Finally, you will customize the background of RadCalendar using Expression Blend.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Calendar\Calendar.sln

Date, Time and Calendar 461

© 2011 Telerik Inc.

15.2 Overview

If your user interface requires picking dates and times, use RadCalendar and RadDatePicker controls.
RadCalendar looks like the page of a calendar where the user can click dates to select them. The
RadDatePicker is a hybrid of masked text box/parser and a button that displays the calendar.
RadDatePicker takes the minimum amount of screen real estate.

Calendar Features

Display modes show the calendar in Century, Decade, Year or Month views.

Multiple months can be shown at one time.

Three styles of date selection let the user choose only one date at a time or multiple dates. Explorer
style selection using Ctrl and Shift keys is also supported.

Viewable and selectable dates can be restricted to custom ranges.

The calendar can be bound to Object, XML or WCF services. Two-way binding allows the user to update
the data source simply by clicking the calendar.

The calendar can be internationalized by setting a single property.

RadControls for Silverlight462

© 2011 Telerik Inc.

DateTime Picker Features

All the features of RadCalendar and/or RadClock in an easy-to-use, space saving control.

The DateTime picker control can be bound to various data sources.

The RadDateTimePicker advanced parsing feature allow you to enter any number or string in the input
field and the entered value will be transformed to a valid date, time or both.

The RadDateTimePicker can also be internationalized by setting a single property.

InputMode - The user can set mode for RadDateTimePicker which specifies whether the
RadDateTimePicker control will allow Time input, Date Input or both.

A PreviewToolTip - This new cool feature helps the user to preview the inputted text while typing in the
RadDateTimePicker.

Date Picker Features

All the features of RadCalendar in an easy-to-use, space saving control.

All the features of RadDateTimePicker but selecting only dates.

Time Picker Features

Date, Time and Calendar 463

© 2011 Telerik Inc.

The time picker comes either as RadTimePicker, a space saving text box/parser plus drop down or as
RadClock where all the times are viewable immediately.

All the features of RadDateTimePicker but selecting only times.

RadControls for Silverlight464

© 2011 Telerik Inc.

15.3 Getting Started

In this walk through we will build a stub airline flight form that will collect a date range using RadDatePicker
controls. When the "Search" button is clicked, "flight" dates within the range will be selected.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

c) Telerik.Windows.Controls.Summer

4) In the Solution Explorer, right-click the project and select Add > New Folder from the context menu.
Rename the folder "Images".

5) Right-click the new "Images" folder and select Add > Existing Item... from the context menu. Locate
the image file "map.png" from the "\courseware\images" directory. Select the file and click the Add
button.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace alias for the Telerik.Windows.Controls and Telerik.Windows.Controls.Input
assemblies. Also add a handler for the "Loaded" event.

Note: Each xmlns statement should be all on one line. The example below is split up to fit the size
constraints of the page in this manual.

<UserControl
xmlns:telerik=
"http://schemas.telerik.com/2008/xaml/presentation"
. . .
Loaded="UserControl_Loaded">

Date, Time and Calendar 465

© 2011 Telerik Inc.

3) Copy the UserControl.Resources element below inside the UserControl element.

These resources are placed here primarily to let us move property settings out of the control elements
they describe. We can see the structure of controls without the property settings being in the way.
There are a few points of interest you should take a look at in this markup. The SolidColorBrush
named "NormalBrush" uses a shade of color from the "Vista" theme. We will use it to color the titling
and button text. Notice that we also have setters for "telerik :StyleManager.Theme" and that we set the
theme to "Vista".

<UserControl.Resources>

 <SolidColorBrush x:Key="NormalBrush" Color="#FF6596AF" />

 <Style x:Key="DatePickerStyle"
 TargetType="telerik:RadDatePicker">
 <Setter Property="telerik:StyleManager.Theme"
 Value="Vista" />
 <Setter Property="Margin" Value="0,0,10,10" />
 <Setter Property="VerticalAlignment" Value="Bottom" />
 </Style>

 <Style x:Key="CalendarFontStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Foreground"
 Value="{StaticResource NormalBrush}" />
 </Style>

 <Style x:Key="TitleStyle" TargetType="TextBlock"
 BasedOn="{StaticResource CalendarFontStyle}">
 <Setter Property="Margin" Value="0,0,10,10" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>

 <Style x:Key="HeadingStyle" TargetType="TextBlock"
 BasedOn="{StaticResource CalendarFontStyle}">
 <Setter Property="Margin" Value="0,0,10,0" />
 <Setter Property="FontSize" Value="11" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>

 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Foreground"
 Value="{StaticResource NormalBrush}" />
 <Setter Property="HorizontalAlignment" Value="Right" />
 </Style>

RadControls for Silverlight466

© 2011 Telerik Inc.

 <Style x:Key="GridBackgroundStyle" TargetType="Grid">
 <Setter Property="Background">
 <Setter.Value>
 <ImageBrush ImageSource="../images/map.png"
 Stretch="Uniform" Opacity=".1">
 </ImageBrush>
 </Setter.Value>
 </Setter>
 </Style>

 <Style x:Key="MaskedTextBoxStyle" TargetType="telerik:RadMaskedTextBox">
 <Setter Property="telerik:StyleManager.Theme"
 Value="Vista"></Setter>
 <Setter Property="MaskType" Value="Standard"></Setter>
 <Setter Property="Mask" Value="LLL"></Setter>
 <Setter Property="HorizontalAlignment" Value="Left"></Setter>
 </Style>

 <Style x:Key="StackPanelStyle" TargetType="StackPanel">
 <Setter Property="Orientation" Value="Horizontal" />
 <Setter Property="Margin" Value="0,0,0,10" />
 </Style>

</UserControl.Resources>

Date, Time and Calendar 467

© 2011 Telerik Inc.

 From the Forums...

How do I display a background image behind my controls? How can I make this image appear as a
faint, watermark-like picture that recedes in the background and doesn't overpower the foreground?

Examine the "GridBackgroundStyle" XAML below. You can set a Brush property to be an
ImageBrush and assign the brush to the Grid Background. To make the image seem faint, set the
Opacity property to a low value where valid values are "0" to "1".

<UserControl.Resources>
. . .
 <Style x:Key="GridBackgroundStyle" TargetType="Grid">
 <Setter Property="Background">
 <Setter.Value>
 <ImageBrush ImageSource="../images/map.png"
 Stretch="Uniform" Opacity=".1">
 </ImageBrush>
 </Setter.Value>
 </Setter>
 </Style>
. . .
</UserControl.Resources>

If Opacity is not set, the image appears like
this in the browser:

With Opacity set to ".1", the image recedes
and is more suitable for a background.

RadControls for Silverlight468

© 2011 Telerik Inc.

4) Use the XAML below to replace the main "LayoutRoot" Grid element.

This will provide the general layout where we will add additional elements later. The StackPanel inside
the grid is centered both vertically and horizontally. The Orientation of this StackPanel is Vertical by
default. Inside this outer StackPanel are three more StackPanel elements, each styled to arrange its
children horizontally.

<Grid x:Name="LayoutRoot" Style="{StaticResource GridBackgroundStyle}">

 <StackPanel HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <!--Title-->

 <StackPanel Style="{StaticResource StackPanelStyle}">

 <!--Airport Code Entry-->

 </StackPanel>

 <StackPanel Style="{StaticResource StackPanelStyle}">

 <!--Departure Entry-->

 </StackPanel>

 <StackPanel Style="{StaticResource StackPanelStyle}">

 <!--Arrival Entry-->

 </StackPanel>

 <!--Search Button-->

 <!--Results Calendar-->

 </StackPanel>

</Grid>

Date, Time and Calendar 469

© 2011 Telerik Inc.

5) Locate the comment "<!--Title-->" and replace it with the XAML markup for the titling text below.

<!--Title-->
<TextBlock Text="Search for Flights"
 Style="{StaticResource TitleStyle}" />

6) Locate the comment "<!--Airport Code Entry-->" and replace it with the XAML markup below. This step
will add an Airport code entry using a RadMaskedTextBox. Notice the "MaskedTextBoxStyle" reference
that ties the resource properties to the RadMaskedTextBox.

<!--Airport Code Entry-->
<TextBlock Text="Airport Code"
 Style="{StaticResource HeadingStyle}" />

<telerik:RadMaskedTextBox x:Name="tbAirportCode"
 Style="{StaticResource MaskedTextBoxStyle}" />

7) Locate the comment "<!--Start Entry-->" and replace it with the XAML markup below. This step will add
a RadDatePicker and assign its style.

<!--Start Entry-->
<TextBlock Text="Start Date"
 Style="{StaticResource HeadingStyle}" />

<telerik:RadDatePicker x:Name="dpStart"
 Style="{StaticResource DatePickerStyle}"
 SelectionChanged="DateChanged" />

8) Locate the comment "<!--End Entry-->" and replace it with the XAML markup below. This step will add
another RadDatePicker. .

RadControls for Silverlight470

© 2011 Telerik Inc.

<!--End Entry-->
<TextBlock Text="End Date"
 Style="{StaticResource HeadingStyle}" />

<telerik:RadDatePicker x:Name="dpEnd"
 Style="{StaticResource DatePickerStyle}"
 SelectionChanged="DateChanged" />

9) Locate the comment "<!--Search Button-->" and replace it with the XAML markup below. This step
adds a standard Button control and attaches a "Click" event handler.

<!--Search Button-->
<Button x:Name="btnSearch"
 Style="{StaticResource ButtonStyle}"
 Content="Search"
 Click="btnSearch_Click" />

Date, Time and Calendar 471

© 2011 Telerik Inc.

10)Locate the comment "<!--Results-->" and replace it with the XAML markup below. This step adds a
TextBlock to display a status message and a RadCalendar named "calResults". The RadCalendar is
marked read-only and invisible. Setting the Columns property to "3", displays three consecutive
months in the calendar. Setting the ViewsHeaderVisibility property to "Visible" displays month titles
above each calendar. HeaderVisibility set to "Collapsed" hides the top title bar graphic. Notice that
SelectionMode is set to "Multiple".

<!--Results -->
<TextBlock x:Name="tbResults"
 Style="{StaticResource HeadingStyle}" />

<telerik:RadCalendar x:Name="calResults"
 Margin="0,10,0,0"
 telerik:StyleManager.Theme="Vista"
 IsReadOnly="True" IsTodayHighlighted="False"
 Columns="3" Rows="1"
 ViewsHeaderVisibility="Visible"
 HeaderVisibility="Collapsed"
 SelectionMode="Multiple">
</telerik:RadCalendar>

Code Behind

1) In the code-behind for the page, add a private Random member.

Dim _random As New Random()

Random _random = new Random();

2) In the code-behind for the page, navigate to the Loaded event handler and add the code below.

Set the date picker selections to "Tomorrow" and the following week. Call the UpdateCalendar() and
SetFocus() methods. Both methods will be written later.

RadControls for Silverlight472

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' set the date pickers pairs to start tomorrow and
 ' end the following week.
 dpStart.SelectedDate = DateTime.Today.AddDays(1)
 dpEnd.SelectedDate = DateTime.Today.AddDays(8)
 ' set the displayable and selected dates
 UpdateCalendar()
 ' put focus on the "airport code" text box
 SetFocus(tbAirportCode)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // set the date pickers pairs to start tomorrow and
 // end the following week.
 dpStart.SelectedValue = DateTime.Today.AddDays(1);
 dpEnd.SelectedValue = DateTime.Today.AddDays(8);
 // set the displayable and selected dates
 UpdateCalendar();
 // put focus on the "airport code" text box
 SetFocus(tbAirportCode);
}

3) Add a helper method to set the focus on the "Airport Code" text box.

Note: This work-around to set focus in Silverlight was discussed briefly in the Input Controls chapter,
Control Details section.

Private Sub SetFocus(ByVal control As Control)
 ' get focus inside the Silverlight plugin
 System.Windows.Browser.HtmlPage.Plugin.Invoke("focus")
 ' queue this call to occur after the plugin focus
 Dispatcher.BeginInvoke(Function() control.Focus())
End Sub

Date, Time and Calendar 473

© 2011 Telerik Inc.

private void SetFocus(Control control)
{
 // get focus inside the Silverlight plugin
 System.Windows.Browser.HtmlPage.Plugin.Invoke("focus");
 // queue this call to occur after the plugin focus
 Dispatcher.BeginInvoke(delegate() { control.Focus(); });
}

4) In the search button's Click event handler, add the code below.

This code looks at the window of available dates in the calendar and selects up to five of them
randomly. To do this, first calculate the number of days between the date picker "Start" and "End"
selected dates.

Note: Operator overloads of the DateTime class allow you to subtract one DateTime from another. The
result of the operation is a TimeSpan type.

Call the RadCalendar SelectedDates Clear() method to remove any existing collection members. Then
cycle through a "For" loop and add DateTime instances to the SelectedDates collection. Use the
Random class Next() method to get a number between 1 and the number of selectable days

Private Sub btnSearch_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' calculate the number of days availab le between start and end
 Dim difference As Nullable(Of TimeSpan) = _
dpEnd.SelectedDate - dpStart.SelectedDate
 ' Add random selected dates
 calResults.SelectedDates.Clear()
 For i As Integer = 0 To 4
 Dim dayNumber As Integer = _random.Next(1, difference.Value.Days)
 Dim dateTime As DateTime = dpStart.SelectedDate.Value.AddDays(dayNumber)
 If (Not calResults.SelectedDates.Contains(dateTime)) Then
 calResults.SelectedDates.Add(dateTime)
 End If
 Next i

 ' display the number of selected dates
 tbResults.Text = String.Format(_
"{0} flights are available for {1} on selected dates.", _
calResults.SelectedDates.Count, tbAirportCode.Value.ToString())
End Sub

RadControls for Silverlight474

© 2011 Telerik Inc.

private void btnSearch_Click(object sender, RoutedEventArgs e)
{
 // calculate the number of days availab le between start and end
 TimeSpan? difference = dpEnd.SelectedDate - dpStart.SelectedDate;
 // Add random selected dates
 calResults.SelectedDates.Clear();
 for (int i = 0; i < 5; i++)
 {
 int dayNumber = _random.Next(1, difference.Value.Days);
 DateTime dateTime = dpStart.SelectedDate.Value.AddDays(dayNumber);
 if (!calResults.SelectedDates.Contains(dateTime))
 {
 calResults.SelectedDates.Add(dateTime);
 }
 }

 // display the number of selected dates
 tbResults.Text =
 String.Format("{0} flights are available for {1} on selected dates.",
 calResults.SelectedDates.Count, tbAirportCode.Value.ToString());
}

Date, Time and Calendar 475

© 2011 Telerik Inc.

5) Both RadDatePicker controls share a common SelectionChanged event handler named "DateChanged".
Create the event handler and call UpdateCalendar(), as shown below.

Private Sub DateChanged(ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 UpdateCalendar()
End Sub

private void DateChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 UpdateCalendar();
}

RadControls for Silverlight476

© 2011 Telerik Inc.

6) Use the selected dates from the two date picker controls to calculate both the "displayable" start and
end dates and the "selectable" start and end dates. To do this, first set the SelectableDateStart and
SelectableDateEnd from the corresponding date picker values, i.e. dpStart.SelectedDate.Value and
dpEnd.SelectedDate.Value. The RadCalendar DisplayDateStart and DisplayDateEnd should range from
the month previous to the date picker start date, to month-end of the date picker end date.

Private Sub UpdateCalendar()
 If dpStart.SelectedDate IsNot Nothing AndAlso dpEnd.SelectedDate IsNot Nothing Then
 Dim dtStart As DateTime = dpStart.SelectedDate.Value
 Dim dtEnd As DateTime = dpEnd.SelectedDate.Value

 ' displayable dates
 calResults.DisplayDateStart = New DateTime(dtStart.Year, dtStart.Month, 1)
 calResults.DisplayDateEnd = New DateTime(dtEnd.AddMonths(2).Year, dtEnd.AddMonths(2).Month, GetLastDayOfMonth(dtEnd.AddMonths(2)))

 ' selectable dates
 calResults.SelectableDateStart = dtStart
 calResults.SelectableDateEnd = dtEnd
End If
End Sub

private void UpdateCalendar()
{
 if (dpStart.SelectedDate != null && dpEnd.SelectedDate != null)
 {
 DateTime dtStart = dpStart.SelectedDate.Value;
 DateTime dtEnd = dpEnd.SelectedDate.Value;

 // displayable dates
 calResults.DisplayDateStart =
 new DateTime(dtStart.Year, dtStart.Month, 1);
 calResults.DisplayDateEnd =
 new DateTime(dtEnd.AddMonths(2).Year, dtEnd.AddMonths(2).Month,
GetLastDayOfMonth(dtEnd.AddMonths(2)));

 // selectable dates
 calResults.SelectableDateStart = dtStart;
 calResults.SelectableDateEnd = dtEnd;
 }
}

Date, Time and Calendar 477

© 2011 Telerik Inc.

7) Add a private method that calculates the last day of the month. This calculation takes a reference
DateTime value passed in, moves to the following month, then subtracts all the days of that month to
arrive at the last day of the month.

Private Function GetLastDayOfMonth(ByVal referenceDate As DateTime) As Integer
 Dim result As DateTime = referenceDate.AddMonths(1)
 result = result.AddDays(-result.Day)
 Return result.Day
End Function

private int GetLastDayOfMonth(DateTime referenceDate)
{
 DateTime result = referenceDate.AddMonths(1);
 result = result.AddDays(-result.Day);
 return result.Day;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Try selecting different start and end RadDatePicker dates. The calendar should only allow selection
between those dates. The displayable dates should range from a month before and the remainder of the
month containing the end date. Be aware that there is no safety code to ensure that end dates are
greater than start dates.

RadControls for Silverlight478

© 2011 Telerik Inc.

Ideas for Extending This Example

Prevent the user from entering invalid dates, i.e. where the end date is greater than begin date.

Date, Time and Calendar 479

© 2011 Telerik Inc.

15.4 Control Details

15.4.1 Calendar

Overview

RadCalendar is used for displaying and selecting dates in an easy-to-navigate calendar interface. One of
your first choices is to set the DisplayMode property to view the calendar by century, decade, year or
month (the default). The user can navigate views by clicking a calendar cell. The calendar animates the
selected cell expanding to display the next view down in the hierarchy. The screenshot below shows the
relationship of views.

RadControls for Silverlight480

© 2011 Telerik Inc.

The Columns and Rows properties control how many instances of the calendar you see displayed down
and across the control surface. You can have multiple columns and rows in any of the DisplayModes. The
screenshot below shows the calendar in MonthView display mode where both columns and rows are set to
"3".

The distinct areas that make up the calendar are shown in this next screenshot. The header, by default,
shows a title for the calendar as a whole. The Views Header appears below the header and is most useful
when there are more than one column or row. The Week Days are displayed across the top of the dates
and the Week Numbers display vertically down the side. Use the AreWeekNumbersVisible and
AreWeekNamesVisible properties to toggle their visibility. Selected dates and "Today's" date each have
their own highlight style.

 Notes

If you need full featured event calendaring, or behavior that more closely emulates Outlook, be sure
to check out the Scheduler chapter.

Date, Time and Calendar 481

© 2011 Telerik Inc.

Date Selection

The SelectionMode property controls how many dates can be selected at one time and in what manner
they can be selected.

In Single SelectionMode (the default), only one date can be selected at a time. Click a date with the
mouse or press the space bar to toggle selection. Use the arrow keys to move the selection.

The Multiple SelectionMode allows any number of dates to be selected at one time. Click individual
dates with the mouse or press the space bar to toggle selection. Drag with the mouse over a number of
dates at one time to toggle a series of dates.

The Extended SelectionMode also allows any number of dates to be selected, but the behavior is
similar to Windows Explorer. Holding the Shift key down allows a range of dates to be selected with
the mouse or keyboard (using the arrow keys and space bar). The Control key allows individual dates to
be selected even when they are not part of a continuous range.

There are two properties that tell you what dates are selected: SelectedDate and SelectedDates.
SelectedDate is a nullable DateTime object while SelectedDates is a collection of DateTime. If no dates in
the calendar are selected, SelectedDate is null and SelectedDates has a Count = 0. When one or more
dates are selected, SelectedDate and SelectedDates[0] are the same value. Elements of SelectedDates
appear in the order they are added. The screenshot below shows the Visual Studio QuickWatch window
after five dates have been selected in the calendar.

Set new dates in code by assigning a DateTime instance to SelectedDate or add new DateTime instances
to the SelectedDates collection:

RadControls for Silverlight482

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(ByVal sender As Object, _
ByVal e As RoutedEventArgs)
 calMain.SelectedDate = New DateTime(2010, 7, 7)
 calMain.SelectedDates.Add(New DateTime(2010, 7, 7))
 calMain.SelectedDates.Add(New DateTime(2010, 7, 8))
 calMain.SelectedDates.Add(New DateTime(2010, 7, 10))
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 calMain.SelectedDate = new DateTime(2010, 7, 7);
 calMain.SelectedDates.Add(new DateTime(2010, 7, 7));
 calMain.SelectedDates.Add(new DateTime(2010, 7, 8));
 calMain.SelectedDates.Add(new DateTime(2010, 7, 10));
}

The screenshot below shows the code example running in the browser.

Tip!

You can set the DisplayDate property to navigate the calendar to the month or year that contains this
date (depending on the current DisplayMode). Note that the DisplayDate property cannot be set to
null.

Date, Time and Calendar 483

© 2011 Telerik Inc.

Constraints

If you need to restrict the range of dates that can be selected, set the SelectableDateStart and
SelectableDateEnd properties. Dates outside this range will be styled to indicate they can not be
selected.

To restrict dates that can be browsed (displayed), set the DisplayDateStart and DisplayDateEnd
properties. Dates outside this range will not be visible. The screenshot below shows how these properties
play out in a running application. The DisplayDateStart is set to be the first date in the calendar, but is not
selectable. August 1st is the SelectableDateStart and September 15th is the SelectableDateEnd. The
dates between these two properties show in a darker type style and can be selected by the user. Dates
after DisplayDateEnd on September 30 are not visible.

Tip!

RadCalendar has a set of static methods for checking date validity: IsDisplayDateEndValid(),
IsDisplayDateStartValid(), IsDisplayDateValid(), IsSelectableDateEndValid() and
IsSelectableDateStartValid(). Each method takes an instance of the RadCalendar to be checked
against and the DateTime being checked.

RadControls for Silverlight484

© 2011 Telerik Inc.

Events

To be notified of date selections by the user, subscribe to the SelectionChanged event. You can query
either SelectedDate or SelectedDates as shown in the code sample below where a LINQ statement is used
to extract a collection of short date strings. The String Join() method is used to make a comma delimited
list for display.

Private Sub calMain_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 Dim calendar As RadCalendar = (TryCast(sender, RadCalendar))
 If calendar.SelectedDates.Count > 0 Then
 ' convert the collection of dates to short date strings
 Dim dates = _
 From d As DateTime In calendar.SelectedDates _
 Select d.ToShortDateString()

 ' make a comma delimited list and display
 tbStatus.Text = String.Join(", ", dates.ToArray(Of String)())
 End If
End Sub

private void calMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 RadCalendar calendar = (sender as RadCalendar);
 if (calendar.SelectedDates.Count > 0)
 {
 // convert the collection of dates to short date strings
 var dates =
 from DateTime d in calendar.SelectedDates
 select d.ToShortDateString();

 // make a comma delimited list and display
 tbStatus.Text = String.Join(", ", dates.ToArray<string>());
 }
}

Date, Time and Calendar 485

© 2011 Telerik Inc.

The code example running in browser looks like this screenshot:

RadControls for Silverlight486

© 2011 Telerik Inc.

RadCalendar also surfaces the DisplayDateChanged and DisplayModeChanged events. Both events
pass arguments that contain the new and old DisplayDate and DisplayMode, respectively. The code
example below shows a DisplayModeChanged event handler that displays the new and old modes.

Private Sub RadCalendar_DisplayModeChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.Calendar.CalendarModeChangedEventArgs)
 If tbStatus IsNot Nothing Then
 tbStatus.Text = _
String.Format("Old mode is: {0} New Mode is: {1}", _
e.OldMode.ToString(), e.NewMode.ToString())
 End If
End Sub

private void RadCalendar_DisplayModeChanged(
 object sender,
 Telerik.Windows.Controls.Calendar.CalendarModeChangedEventArgs e)
{
 if (tbStatus != null)
 {
 tbStatus.Text =
 String.Format("Old mode is: {0} New Mode is: {1}",
 e.OldMode.ToString(), e.NewMode.ToString());
 }
}

The screenshot below shows the code sample running in the browser:

Date, Time and Calendar 487

© 2011 Telerik Inc.

Internationalization

To internationalize the calendar, assign a new CultureInfo instance to the Culture property. The
screenshot below shows the result of adding a number of culture codes to a combo box and using the
selected culture code to create a CultureInfo.

The XAML that defines the combo box stores the culture codes, e.g. "en-us" for United States English, in
the combo box item's Tag property...

<telerik:RadComboBox
 SelectionChanged="RadComboBox_SelectionChanged"
 HorizontalAlignment="Left" SelectedIndex="0">
 <telerik:RadComboBoxItem Content="US English"
 Tag="en-us" />
 <telerik:RadComboBoxItem Content="French"
 Tag="fr-FR" />
 <telerik:RadComboBoxItem Content="German"
 Tag="de-DE" />
</telerik:RadComboBox>

When a combo box item is clicked, the culture code is retrieved from the tag and fed to the CultureInfo
constructor. The CultureInfo is assigned to the RadCalendar Culture property and the calendar displays
in that language.

RadControls for Silverlight488

© 2011 Telerik Inc.

Private Sub RadComboBox_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 If calMain IsNot Nothing Then
 Dim item As RadComboBoxItem = _
TryCast(e.AddedItems(0), RadComboBoxItem)
 calMain.Culture = _
New System.Globalization.CultureInfo(item.Tag.ToString())
 End If
End Sub

private void RadComboBox_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 if (calMain != null)
 {
 RadComboBoxItem item = e.AddedItems[0] as RadComboBoxItem;
 calMain.Culture =
 new System.Globalization.CultureInfo(item.Tag.ToString());
 }
}

Culture can also be set directly in the XAML:

<telerik:RadCalendar Culture="fr-FR" />

Date, Time and Calendar 489

© 2011 Telerik Inc.

15.4.2 Date Picker

Overview

If you need a calendar that takes less space, use the RadDatePicker control. RadDatePicker is essentially
a text box / parser with a drop down button that displays a calendar. The advanced parsing feature allow
you to enter any number or string in the input field and the entered value will be transformed to a valid date.
For example, if you type “1”, the first day of the month will be shown after leaving the input field. If you type
“Monday”, the corresponding date of the current week will be selected.

RadDatePicker properties, for the most part, simply carry over from RadCalendar. One exception to this rule
is the IsDropDownOpen property that reflects when the calendar portion of the control is showing.

RadControls for Silverlight490

© 2011 Telerik Inc.

15.4.3 Time Picker

Overview

Use RadTimePicker to select from a set of times displayed in a drop down list. The range of times
displayed are bounded by the StartTime and EndTime properties. The TimeInterval property determines
the number of minutes between selectable entries. The example below displays the hours between 9AM
and 5PM with selections spaced 1 hour apart.

The XAML and code below show how to set StartTime, EndTime and TimeInterval properties. In XAML,
the values are set to military (24 hour) format.

<telerik:RadTimePicker x:Name="tpMain" Margin="10"
 telerik:StyleManager.Theme="Summer"
 StartTime="09:00:00" EndTime="17:00:00"
 TimeInterval="01:00:00">
</telerik:RadTimePicker>

Date, Time and Calendar 491

© 2011 Telerik Inc.

StartTime, EndTime and TimeInterval properties are all instances of TimeSpan. The code below
produces equivalent results to the prior XAML example.

tpMain.StartTime = New TimeSpan(9, 0, 0)
tpMain.EndTime = New TimeSpan(17, 0, 0)
tpMain.TimeInterval = New TimeSpan(1, 0, 0)

tpMain.StartTime = new TimeSpan(9, 0, 0);
tpMain.EndTime = new TimeSpan(17, 0, 0);
tpMain.TimeInterval = new TimeSpan(1, 0, 0);

Use the HeaderContent property to place text or other content into the time picker header. In the
screenshot below, HeaderContent has been assigned the simple text "Appointment Time".

RadClock

RadClock displays the grid of times without the input and button portions of a RadDatePicker. RadClock is
to RadTimePicker as RadCalendar is to RadDatePicker. It simply displays all the times at once without
having to click the drop down button. Set the heading content by assigning the Header property. In the
screenshot below, Header is set to text "Available Classes".

RadControls for Silverlight492

© 2011 Telerik Inc.

Internationalization

To internationalize RadTimePicker, assign the Culture property. For example, the RadTimePicker in the
screenshot below displays time in military format because the culture is set to "en-gb", i.e. "English - Great
Britain".

Here's the line of code that sets the culture:

tpMain.Culture = New System.Globalization.CultureInfo("en-gb")

tpMain.Culture = new System.Globalization.CultureInfo("en-gb");

Date, Time and Calendar 493

© 2011 Telerik Inc.

15.4.4 DateTime Picker

Overview

If you need to select date and time together, use the RadDateTimePicker control. RadDateTimePicker is
essentially a text box / parser with a drop down button that displays a calendar and/or a set of times. The
advanced parsing feature allow you to enter any number or string in the input field and the entered value will
be transformed to a valid date and/or time. DateTimePicker control can be used as date picker, time picker
or both together when set InputMode property.

RadDateTimePicker properties, for the most part, simply put together properties from RadDatePicker and
RadTimePicker. One exception to this rule is the SelectedDate and SelectedTime properties are
combined in SelectedValue property.

RadControls for Silverlight494

© 2011 Telerik Inc.

15.5 Binding

Calendar and Date Picker Binding

How do I bind to the calendar and date picker controls?

The preferred approach is to use the MVVM pattern (see the Data Binding for more information on MVVM
and binding in general). Your custom object exposes a property that is bound to the SelectedDate property
of RadDatePicker. You can use TwoWay binding so that user selections in the calendar are propagated
back to the object. The example below demonstrates binding to a RadComboBox, TextBlock, RadCalendar
and RadDatePicker controls. The example has a list of "Flight" objects that have fields for "Airline", "Flight
Number", "Departure Date" and "Arrival Date". The RadComboBox contains the entire list of flights. when a
flight is selected from the list, the DataContext for the other objects is set to match the currently selected
flight object.

Tip!

The SelectedDates property is an observable collection of all the selected dates. Although it is
exposed as a list, you can bind it and cast it to an observable collection if you need. Note that the
SelectedDates property in the case of a Single selection mode will also contain the currently selected
date, but it will be read-only.

The basic binding steps are a) build a custom "View Model" object, b) change the XAML to bind specific
properties, c) add code behind. The code will populate a list of objects and set the data context for each
control that needs to be bound.

For the TwoWay binding to work, your custom object needs to implement the INotifyPropertyChanged
interface. The "Flight" object below handles firing notification if any of the properties are changed.

Public Class Flight
 Implements INotifyPropertyChanged

Date, Time and Calendar 495

© 2011 Telerik Inc.

 Private _airline As String

 Public Property Airline() As String
 Get
 Return _airline
 End Get
 Set(ByVal value As String)
 If _airline <> value Then
 _airline = value
 OnPropertyChanged("Airline")
 End If
 End Set
 End Property

 Private _number As String

 Public Property Number() As String
 Get
 Return _number
 End Get
 Set(ByVal value As String)
 If _number <> value Then
 _number = value
 OnPropertyChanged("Number")
 End If
 End Set
 End Property

 Private _departure As DateTime

 Public Property Departure() As DateTime
 Get
 Return _departure
 End Get
 Set(ByVal value As DateTime)
 If _departure <> value Then
 _departure = value
 OnPropertyChanged("Departure")
 End If
 End Set
 End Property

 Private _arrival As DateTime

 Public Property Arrival() As DateTime
 Get
 Return _arrival
 End Get
 Set(ByVal value As DateTime)
 If _arrival <> value Then
 _arrival = value
 OnPropertyChanged("Arrival")
 End If
 End Set
 End Property

RadControls for Silverlight496

© 2011 Telerik Inc.

 Protected Overridable Sub OnPropertyChanged(ByVal propertyName As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
 End Sub

 Public Event PropertyChanged As PropertyChangedEventHandler

End Class

public class Flight : INotifyPropertyChanged
{

 private string _airline;

 public string Airline
 {
 get
 {
 return _airline;
 }
 set
 {
 if (_airline != value)
 {
 _airline = value;
 OnPropertyChanged("Airline");
 }
 }
 }

 private string _number;

 public string Number
 {
 get
 {
 return _number;
 }
 set
 {
 if (_number != value)
 {
 _number = value;
 OnPropertyChanged("Number");
 }
 }
 }

 private DateTime _departure;

 public DateTime Departure
 {

Date, Time and Calendar 497

© 2011 Telerik Inc.

 get
 {
 return _departure;
 }
 set
 {
 if (_departure != value)
 {
 _departure = value;
 OnPropertyChanged("Departure");
 }
 }
 }

 private DateTime _arrival;

 public DateTime Arrival
 {
 get
 {
 return _arrival;
 }
 set
 {
 if (_arrival != value)
 {
 _arrival = value;
 OnPropertyChanged("Arrival");
 }
 }
 }

 protected virtual void OnPropertyChanged(String propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

}

The XAML takes care of hooking up specific properties to the data using binding syntax, e.g. "{Binding
MyProperty, Mode=TwoWay}".

RadControls for Silverlight498

© 2011 Telerik Inc.

<StackPanel Orientation="Vertical">
 <StackPanel Orientation="Horizontal">
 <telerik:RadComboBox x:Name="cbMain" Margin="5"
 telerik:StyleManager.Theme="Office_Silver"
 HorizontalAlignment="Left"
 SelectionChanged="cbMain_SelectionChanged" />
 <Border BorderBrush="Gray" BorderThickness="1"
 CornerRadius="5" HorizontalAlignment="Left"
 Padding="5" Margin="5">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Flight:" />
 <TextBlock x:Name="tbFlightNumber"
 Text="{Binding Number, Mode=OneWay}" />
 </StackPanel>
 </Border>
 </StackPanel>

 <StackPanel Orientation="Horizontal">
 <telerik:RadCalendar x:Name="calMain" Margin="5"
 telerik:StyleManager.Theme="Office_Silver"
 SelectedDate="{Binding Departure, Mode=TwoWay}"
 HorizontalAlignment="Left" />
 <telerik:RadDatePicker x:Name="dpMain" Margin="5"
 telerik:StyleManager.Theme="Office_Silver"
 SelectedValue="{Binding Arrival, Mode=TwoWay}"
 HorizontalAlignment="Left" VerticalAlignment="Top" />
 </StackPanel>

The remainder of the work takes place in the code-behind. The code first populates an ObservableCollection
with a series of new Flight objects. This list is assigned to the combo box ItemsSource property and the
DisplayMemberPath is set to "Airline". When the SelectionChanged event fires, the selected item is cast
back to a Flight object type and assigned as the DataContext for all the other controls, i.e. calendar, date
picker and text block.

Date, Time and Calendar 499

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' populate a collection of Flight ob jects
 Dim flights As ObservableCollection(Of Flight) = _
New ObservableCollection(Of Flight)()
 flights.Add(New Flight() With { _
.Airline = "United", _
.Number = "UA12354", _
.Departure = New DateTime(2010, 12, 20, 9, 20, 0), _
.Arrival = New DateTime(2010, 12, 22, 11, 15, 0)})
 flights.Add(New Flight() With { _
.Airline = "Japan Airlines", _
.Number = "JP4533", _
.Departure = New DateTime(2010, 12, 21, 20, 0, 0), _
.Arrival = New DateTime(2010, 12, 25, 21, 32, 0)})
 flights.Add(New Flight() With { _
.Airline = "Southwest", _
.Number = "SW55908", _
.Departure = New DateTime(2010, 12, 23, 2, 12, 0), _
.Arrival = New DateTime(2010, 12, 24, 8, 24, 0)})

 ' assign the list of flights to the combo box
 cbMain.ItemsSource = flights
 ' display the Airline property in the combo box text
 cbMain.DisplayMemberPath = "Airline"
 ' select the first item
 cbMain.SelectedIndex = 0
End Sub

Private Sub cbMain_SelectionChanged(ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 ' get the flight ob ject from the currently selected combo box item
 Dim flight As Flight = TryCast(cbMain.SelectedItem, Flight)

 ' assign the flight as the DataContext of the calendar,
 ' date picker and text b lock
 calMain.DataContext = flight
 calMain.DisplayDate = flight.Departure
 dpMain.DataContext = flight
 tbFlightNumber.DataContext = flight
End Sub

RadControls for Silverlight500

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // populate a collection of Flight ob jects
 ObservableCollection<Flight> flights =
 new ObservableCollection<Flight>();
 flights.Add(new Flight()
 {
 Airline = "United",
 Number = "UA12354",
 Departure = new DateTime(2010, 12, 20, 9, 20, 0),
 Arrival = new DateTime(2010, 12, 22, 11, 15, 0),
 });
 flights.Add(new Flight()
 {
 Airline = "Japan Airlines",
 Number = "JP4533",
 Departure = new DateTime(2010, 12, 21, 20, 0, 0),
 Arrival = new DateTime(2010, 12, 25, 21, 32, 0),
 });
 flights.Add(new Flight()
 {
 Airline = "Southwest",
 Number = "SW55908",
 Departure = new DateTime(2010, 12, 23, 2, 12, 0),
 Arrival = new DateTime(2010, 12, 24, 8, 24, 0),
 });

 // assign the list of flights to the combo box
 cbMain.ItemsSource = flights;
 // display the Airline property in the combo box text
 cbMain.DisplayMemberPath = "Airline";
 // select the first item
 cbMain.SelectedIndex = 0;
}

private void cbMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 // get the flight ob ject from the currently selected combo box item
 Flight flight = cbMain.SelectedItem as Flight;

 // assign the flight as the DataContext of the calendar,
 // date picker and text b lock
 calMain.DataContext = flight;
 calMain.DisplayDate = flight.Departure;
 dpMain.DataContext = flight;
 tbFlightNumber.DataContext = flight;
}

Time Picker Binding

Date, Time and Calendar 501

© 2011 Telerik Inc.

To bind to time picker controls, first create an ObservableCollection of TimeSpan objects and assign the
collection to the RadTimePicker ClockItemSource property. The snippet below shows a simple example.

Dim classTimes As ObservableCollection(Of TimeSpan) = _
New ObservableCollection(Of TimeSpan) (New TimeSpan() {New TimeSpan(9, 0, 0), _
New TimeSpan(10, 0, 0), New TimeSpan(11, 0, 0), New TimeSpan(12, 0, 0)})
tpMain.ClockItemSource = classTimes

ObservableCollection<TimeSpan> classTimes =
 new ObservableCollection<TimeSpan>()
{
 new TimeSpan(9, 0, 0),
 new TimeSpan(10, 0, 0),
 new TimeSpan(11, 0, 0),
 new TimeSpan(12, 0, 0)
};
tpMain.ClockItemSource = classTimes;

15.6 Customization

In this example we will customize the RadCalendar control background to use the "Scoville" set of colors.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight Application" from the
right-most list. Enter a unique name for the project and click OK.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

RadControls for Silverlight502

© 2011 Telerik Inc.

2) In the Projects pane, right-click the References node and select Add Reference... from the context
menu.

a) Add a reference to the Telerik.Windows.Controls.dll assembly.

b) Add a reference to the Telerik.Windows.Controls.Input.dll assembly.

3) From the Project menu select Build Project.

4) Add the RadCalendar to the page.

a) Open the Assets pane.

b) On the left side of the Assets pane is a tree view. Locate and select the "Controls" node.

c) In the Assets pane, just above the tree view is the Assets Find entry text box.

d) Type the first few characters of "RadCalendar" into the Assets Find entry text box. A list of all
matching controls will show to the right of the tree view.

e) Locate the RadCalendar control and drag it onto the MainPage.xaml Artboard.

5) In the Objects and Timeline pane, right-click "[RadCalendar]" and select Edit Template > Edit a
Copy from the context menu. In the "Create Style Resource" dialog, set the Name (Key) to
"ScovilleCalendarStyle". Click OK to create the style resource and close the dialog.

Date, Time and Calendar 503

© 2011 Telerik Inc.

6) In the Objects and Timeline pane, open the element tree and find the top two "[Border]" elements.
These two elements represent the calendar background and the calendar header background.

7) Click the top-most "[Border]" element to select it.

8) In the Properties pane, Brushes section, locate the Background property. Click the Advanced Property
Options button and select Reset from the drop down menu.

RadControls for Silverlight504

© 2011 Telerik Inc.

9) Also in the Brushes section of the Properties pane, select the Gradient button. Use the eye dropper
tool to replace the black color of the default gradient with yellow and replace the white color with red.
The Properties pane at this point should look something like the screenshot below.

10)Select the Radial Gradient button from the lower left hand corner of the Brushes section:

Date, Time and Calendar 505

© 2011 Telerik Inc.

11)Going back to the Properties pane, Brushes section, again locate the Background property. Click the
Advanced Property Options button and select Convert to New Resource.. from the drop down menu.
The Create Brush Resource dialog will appear. Enter "ScovilleBrush" as the name for the brush. Click
the OK button to close the dialog and create the brush. This will allow us to reuse the same brush later
in the same project.

12)In the Objects and Timeline pane, click the second "[Border]" element to begin editing the header
background.

13)In the Properties pane, Brushes section, locate the Background property. Click the Advanced
Property Options button and select Local Resource > ScovilleBrush from the drop down menu.

RadControls for Silverlight506

© 2011 Telerik Inc.

14)Looking to the Artboard, the RadCalendar should look something like the screenshot below.

15)Navigate to the Resources pane, find the "RadCalendar_RowBackground" brush in the list and select
it. Click the drop-down arrow to open the popup editor.

Date, Time and Calendar 507

© 2011 Telerik Inc.

16) In the Editor, locate the Advanced Property Options button and click it.

17)Select Reset from the menu. This will set the Background for the rows underneath the column and row
headers to Transparent

18)Checking the appearance of the calendar in the Artboard, you will see that setting the
"RadCalendar_RowBackground" brush to transparent allows the calendar background color to show
through.

Run The Application

RadControls for Silverlight508

© 2011 Telerik Inc.

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Functionally, the calendar should behave as it did before the styling changes were made. You should be
able to use the same events, properties and methods and get the same results.

Verify that the calendar has the same styling in each of the DisplayMode property settings.

15.7 Wrap Up

In this chapter you learned how to use calendar, date picker, time and datetime picker controls to collect
date and time data from the user. In the Control Details section of this chapter, you reviewed the types of
date and time controls and the appropriate uses for each control type. You learned how to control the
number of dates that can be selected at one time and the manner that they can be selected. You also
learned about the SelectedDate and SelectedDates properties for RadDatePicker and SelectedValue
property for RadDateTimePicker used to store selections and the SelectionChanged event that flags when
its time to look at these properties. You are aware of the properties used to limit the dates that can be
selected or viewed. You have also looked at the RadTimePicker and RadClock controls used to select
times. In the Binding section of this chapter you saw how calendar and date picker controls are bound to
custom objects and also looked at a short example of binding RadTimePicker to a collection of TimeSpan
objects. Finally, you customized the background of RadCalendar using Expression Blend.

Part

XVI
ComboBox

RadControls for Silverlight510

© 2011 Telerik Inc.

16 ComboBox

16.1 Objectives

In this chapter you will build a RadComboBox and its items using XAML and in code. You will learn how to
use the Content property assignment for simple text lists and how to bind to templates for more complex
layout. You will learn how to handle the SelectionChanged event of the combo box and the Selection event
of the individual items. In the process, you will find out how to get and set the selected RadComboBoxItem
or custom object. You will also have a brief look at events that respond to drop down opening and closing.

You will learn how various edit modes control the combo box Autocomplete, text search, read-only and
editing behavior. You will learn how to search for items and determine if a specific item exists in a combo
box. You will use ItemTemplate and SelectionBoxTemplate to build content of arbitrary complexity. You will
also bind template elements to live data. Along the way you will discover a few helpful classes in the
System.ServiceModel.Syndication namespace for working with RSS (Really Simple Syndication) feeds.
Finally, you will use Expression Blend to style the background color of RadComboBox.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Combo\Combo.sln

ComboBox 511

© 2011 Telerik Inc.

16.2 Overview

RadComboBox has powerful built-in features such as Autocomplete, automatic filtering and text search.
Templates allow the combo box to appear as a multiple column, grid-like list of arbitrary complexity. Using
templates, you can completely customize the selected area at the top of the list and the individual list items
in the drop down area. All aspects of the combo box can be customized in both editable and non-editable
modes.

The text search, Autocomplete and filtering features also work when the items are composed of templates.
Filtering modes show items that either start with or contain characters entered by the user.

RadComboBox keyboard support allows the user to press the arrow keys to move through items in the list,
page up or down to move a page at a time, press Enter to select an item and Escape to close the drop
down list.

RadControls for Silverlight512

© 2011 Telerik Inc.

16.3 Getting Started

In this walk through, you will build a simple list of items in a RadComboBox. This example will simulate a
list of RSS articles. Later in this chapter we will hook up the logic to get live RSS data. For now the article
titles will be hard coded in XAML.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

c) Telerik.Windows.Controls.Navigation

d) Telerik.Windows.Themes.Summer

ComboBox 513

© 2011 Telerik Inc.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references for Telerik.Windows.Controls and Telerik.Windows.Controls.
Input.assemblies:

Note: Each xmlns statement should be all on one line. The example below is split up to fit the size
constraints of the page in this manual.

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>

3) Drag a RadComboBox from the Toolbox to a point just inside the main Grid named "LayoutRoot". Set
the x:Name property to "cbMain", the HorizontalAlignment to "Left", VerticalAlignment to "Top",
Margin to "10", StyleManager.Theme to "Summer" and the SelectionChanged event to
"cbMain_SelectionChanged".

<Grid x:Name="LayoutRoot">
 <telerik:RadComboBox x:Name="cbMain"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" telerik:StyleManager.Theme="Summer"
 SelectionChanged="cbMain_SelectionChanged">

 </telerik:RadComboBox>
</Grid>

4) Drag a RadComboBoxItem from the Toolbox to a point just inside the RadComboBox element. Set
the Content attribute to "RadControls Silverlight 3 Official".

<telerik:RadComboBox x:Name="cbMain"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" telerik:StyleManager.Theme="Summer"
 SelectionChanged="cbMain_SelectionChanged">
 <telerik:RadComboBoxItem
 Content="RadControls Silverlight 3 Official" />
</telerik:RadComboBox>

RadControls for Silverlight514

© 2011 Telerik Inc.

5) Add four more RadComboBoxItem elements and set the Content attribute for each item to the
following series of strings:

"Medium Trust Support for Telerik Reporting"

"Telerik Extensions for ASP.NET MVC"

"First Level Cache of Telerik OpenAccess"

"Animating the RadWindow control for Silverlight and WPF"

The XAML should now look something like the example below:

<telerik:RadComboBox x:Name="cbMain"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10" telerik:StyleManager.Theme="Summer"
 SelectionChanged="cbMain_SelectionChanged">
 <telerik:RadComboBoxItem
 Content="RadControls Silverlight 3 Official" />
 <telerik:RadComboBoxItem
 Content="Medium Trust Support for Telerik Reporting" />
 <telerik:RadComboBoxItem
 Content="Telerik Extensions for ASP.NET MVC" />
 <telerik:RadComboBoxItem
 Content="First Level Cache of Telerik OpenAccess" />
 <telerik:RadComboBoxItem
 Content="Animating the RadWindow control for Silverlight and WPF" />
</telerik:RadComboBox>

Code Behind

1) Navigate to the code-behind and add a reference to Telerik.Windows.Controls in the "Imports" (VB) or
"using" (C#) section of code.

2) Add a handler for the SelectionChanged event defined previously in the XAML.

This event handler fires when the user selects another item. First the handler retrieves the arguments
AddedItems property and casts the first and only element in the collection to a RadComboBoxItem
type. Then the Content for the item is displayed in an Alert.

ComboBox 515

© 2011 Telerik Inc.

Private Sub cbMain_SelectionChanged(ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 Dim item As RadComboBoxItem = TryCast(e.AddedItems(0), RadComboBoxItem)
 RadWindow.Alert(item.Content.ToString())
End Sub

private void cbMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 RadComboBoxItem item = e.AddedItems[0] as RadComboBoxItem;
 RadWindow.Alert(item.Content.ToString());
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) All the strings defined as RadComboBoxItem Content should display in the list.

2) Selecting an item from the list should display the corresponding content in an alert dialog.

16.4 Control Details

Adding Items

To add items at design-time, include one or more RadComboBoxItem elements inside the RadComboBox
element. Set the Content to the text you want to have displayed. At the same time you can set other
RadComboBoxItem properties to tweak behavior and appearance.

RadControls for Silverlight516

© 2011 Telerik Inc.

<telerik:RadComboBox . . .>
 <telerik:RadComboBoxItem
 Content="RadControls for Silverlight"
 FontFamily="Corbel" />
 <telerik:RadComboBoxItem
 Content="Telerik Extensions for MVC"
 Foreground="SkyBlue" />
 <telerik:RadComboBoxItem
 Content="Animating RadWindow"
 IsEnabled="False" />
</telerik:RadComboBox>

The results of the XAML show in the screenshot below with item text displaying in a new FontFamily and
Foreground font color. The last item is disabled.

To add items at run-time, create RadComboBoxItem instances in code, then set the Content and any
properties related to behavior and appearance. Add each item to the RadComboBox Items collection. The
example below configures a linear gradient brush and assigns it to the Foreground property. The second
item is disabled and the last item is selected.

ComboBox 517

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' setup a linear gradient brush to use in an item font
 Dim linearGradientBrush As New LinearGradientBrush()
 linearGradientBrush.GradientStops.Add(_
New GradientStop() With {.Color = Colors.Orange, .Offset = 0})
 linearGradientBrush.GradientStops.Add(_
New GradientStop() With {.Color = Colors.Red, .Offset = 0.5})
 linearGradientBrush.GradientStops.Add(_
New GradientStop() With {.Color = Colors.Magenta, .Offset = 1})

 ' add a new combo box item, change the font family, size and color
 cbMain.Items.Add(New RadComboBoxItem() _
With {
.Content = "OpenAccess and the 2nd Level Cache", _
.FontFamily = New FontFamily("Corbel"), _
.FontSize = 15, _
.Foreground = linearGradientBrush})
 ' add another item, but disable it
 cbMain.Items.Add(New RadComboBoxItem() _
With { _
.Content = "Building Advanced Layouts with RadSplitContainer", _
.IsEnabled = False})
 ' add another item and select it
 cbMain.Items.Add(New RadComboBoxItem() _
With { _
.Content = "Multiple Child Views with RadGridView for Winforms", _
.IsSelected = True})
End Sub

RadControls for Silverlight518

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // setup a linear gradient brush to use in an item font
 LinearGradientBrush linearGradientBrush = new LinearGradientBrush();
 linearGradientBrush.GradientStops.Add(new GradientStop()
 {
 Color = Colors.Orange, Offset = 0
 });
 linearGradientBrush.GradientStops.Add(new GradientStop()
 {
 Color = Colors.Red, Offset = 0.5
 });
 linearGradientBrush.GradientStops.Add(new GradientStop()
 {
 Color = Colors.Magenta, Offset = 1
 });

 // add a new combo box item, change the font family, size and color
 cbMain.Items.Add(new RadComboBoxItem()
 {
 Content = "OpenAccess and the 2nd Level Cache",
 FontFamily = new FontFamily("Corbel"),
 FontSize = 15,
 Foreground = linearGradientBrush
 });
 // add another item, but disable it
 cbMain.Items.Add(new RadComboBoxItem()
 {
 Content = "Building Advanced Layouts with RadSplitContainer",
 IsEnabled = false
 });
 // add another item and select it
 cbMain.Items.Add(new RadComboBoxItem()
 {
 Content = "Multiple Child Views with RadGridView for Winforms",
 IsSelected = true
 });
}

Here is a screenshot of the resulting combo box running in the browser:

ComboBox 519

© 2011 Telerik Inc.

You may need to include a "Create New" at the head of the list. Use the Items collection Insert() method,
first passing the index where you want the item placed, then passing a RadComboBoxItem reference. The
snippet below shows adding an item to the start of the list, hooking up its Selected event and displaying the
new clicked item's content.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim newItem As New RadComboBoxItem() _
With {.Content = "-- New --", .Tag = "NEW"}
 AddHandler newItem.Selected, AddressOf newItem_Selected
 cbMain.Items.Insert(0, newItem)
End Sub

Private Sub newItem_Selected(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim item As RadComboBoxItem = TryCast(sender, RadComboBoxItem)
 MessageBox.Show("You clicked " & item.Content.ToString())
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadComboBoxItem newItem =
 new RadComboBoxItem() { Content = "-- New --", Tag = "NEW" };
 newItem.Selected += new RoutedEventHandler(newItem_Selected);
 cbMain.Items.Insert(0, newItem);
}

void newItem_Selected(object sender, RoutedEventArgs e)
{
 RadComboBoxItem item = sender as RadComboBoxItem;
 MessageBox.Show("You clicked " + item.Content.ToString());
}

RadControls for Silverlight520

© 2011 Telerik Inc.

Item Selection

To get or set the currently selected combo box item, use either the RadComboBox SelectedIndex or
SelectedItem property. You can also set the IsSelected property of an individual RadComboBoxItem.
Here are some examples that show all three possibilities: selecting the first item in the list by index, using
a reference to the last item in the list and using the IsSelected property of a RadComboBoxItem.

ComboBox 521

© 2011 Telerik Inc.

' select the first item in the list
cbMain.SelectedIndex = 0

' select the last item in the list
Dim lastItem As Object = cbMain.Items(cbMain.Items.Count - 1)
cbMain.SelectedItem = lastItem

' using the IsSelected property of an item
Dim newItem As New RadComboBoxItem() _
With {.Content = "This will be selected", .IsSelected = True}
cbMain.Items.Add(newItem)

// select the first item in the list
cbMain.SelectedIndex = 0;

// select the last item in the list
object lastItem = cbMain.Items[cbMain.Items.Count - 1];
cbMain.SelectedItem = lastItem;

// using the IsSelected property of an item
RadComboBoxItem newItem = new RadComboBoxItem()
{
 Content = "This will be selected",
 IsSelected = true
};
cbMain.Items.Add(newItem);

 From the Forums...

Forum question: "Sometimes... the SelectionBoxTemplate is not applied until the combo box is
opened, even though an item is selected."

Answer:

"The problem is that the RadComboBoxItem containers are generated after the combo box drop
down is opened for the first time. If the containers are not generated, the container bindings are not
applied and the combo box does not 'know' which data item is selected. The correct way to initially
select an item is through one of the following properties: SelectedItem, SelectedIndex."

RadControls for Silverlight522

© 2011 Telerik Inc.

Searching Items

You can use LINQ statements or expressions to check whether a certain RadComboBoxItem (or other
object) is present a RadComboBox.Items collection. You can make variations of the LINQ statement
example below. Once you have a reference to the Content, compare the Content object using the
appropriate methods for the type. In this case the Content is a string so we can use the String methods
such as Contains(), StartsWith() or Equals().

Imports System.Linq
'. . .
Private exists As Boolean = cbMain.Items.Any(item => _
(TryCast(item, RadComboBoxItem)).Content.ToString().Contains("OpenAccess"))
If exists Then
 tbStatus.Text = "There are OpenAccess articles in the list"
End If

using System.Linq;
//. . .
bool exists = cbMain.Items.Any(item =>
 (item as RadComboBoxItem).Content.ToString().Contains("OpenAccess"));
if (exists)
{
 tbStatus.Text = "There are OpenAccess articles in the list";
}

ComboBox 523

© 2011 Telerik Inc.

Here's another example where a LINQ expression selects all the items that contain the string
"OpenAccess". The resulting collection can be enumerated, converted to a generic list or operated on by
other LINQ methods.

Dim foundItems = _
 From item In cbMain.Items _
 Where (TryCast(item, _
RadComboBoxItem)).Content.ToString().Contains("OpenAccess") _
 Select item

For Each item As RadComboBoxItem In foundItems
 MessageBox.Show(item.Content.ToString())
Next item

var foundItems =
 from item in cbMain.Items
 where (item as RadComboBoxItem).Content.ToString().Contains("OpenAccess")
 select item;

foreach (RadComboBoxItem item in foundItems)
{
 MessageBox.Show(item.Content.ToString());
}

RadControls for Silverlight524

© 2011 Telerik Inc.

Edit modes

The behavior of the combo box is controlled by a combination of IsEditable and IsReadOnly property
settings. RadComboBox can be editable, allowing the user to type in its text box, or non-editable, where the
text box is hidden. In addition, you could make the text box read-only, in order to keep the editable look,
but prevent the user from typing. The combinations are shown in the screenshot below.

Both IsEditable and IsReadOnly properties are "False" by default. In this mode the user can perform a text
search by typing a few characters in the combo box. The screenshot below shows a series of RSS feed
titles. When the user types in "M", the selection travels to the 'Medium Trust Support for Telerik Reporting"
item. When the user types in "u", the selection moves down to "Multiple child views with RadGridView for
WinForms" item.

ComboBox 525

© 2011 Telerik Inc.

If IsEditable is "True", the combo box provides Auto Complete functionality. The selection behavior is the
same as before. The difference is the "type ahead" behavior. When the user types "M" the text entry area
of the combo box is automatically completed with the nearest entry starting with "M", i.e. "Medium Trust
Support for Telerik Reporting". When the user types "Mu", again the entry is completed with the nearest
match.

In this next screenshot, both IsEditable and IsReadOnly are "True".

By default RadComboBox uses the DisplayMemberPath property to determine which property of a data
source to use for auto complete.

<telerik:RadComboBox
 DisplayMemberPath="Title.Text">
</telerik:RadComboBox>

RadControls for Silverlight526

© 2011 Telerik Inc.

If you are defining an ItemTemplate, there can be multiple items in the template. Use the TextSearch.
TextPath attached property to specify which bound property to search on. Note: TextSearch.TextPath is in
the Telerik.Windows.Controls namespace.

<telerik:RadComboBox
 telerik:TextSearch.TextPath="Title.Text">
 <telerik:RadComboBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Title.Text}" />
 </DataTemplate>
 </telerik:RadComboBox.ItemTemplate>
</telerik:RadComboBox>

Filtering

Filtering capability is built into RadComboBox. The TextSearchMode property can be "StartsWith",
"StartsWithCaseSensitive", "Contains" or "ContainsCaseSensitive" to automatically filter the combo. The
example below shows the combo where TextSearchMode is set to "StartsWith". To control the text
filtering you can set the IsFilteringEnabled property. By default the IsFilteringEnabled is set to False.

<telerik:RadComboBox x:Name="cbMain" Margin="10"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 DisplayMemberPath="Title.Text" TextSearchMode="StartsWith" IsFilteringEnabled="True">
</telerik:RadComboBox>

In the screenshot below the "M" character is entered. As additional characters are entered, the list narrows
to meet the criteria.

 From the Forums...

"When TextSearchMode == Contains or StartsWith, RadComboBox searches through its items for
items that match its Text. Those items that match are made visible, the rest are collapsed."

ComboBox 527

© 2011 Telerik Inc.

Selection Events

The most significant event to handle is SelectionChanged that fires when the user clicks a new item in the
list or arrow keys down and hits Enter. The Sender parameter represents the RadComboBox and
SelectionChangedEventArgs contains an AddedItems property that holds the selected item. Typically
you will check that there is at least one item in AddedItems and retrieve the first (and only) item in the list.
What you do from here depends on what is in the list. If you added a series of RadComboBoxItem in code
or XAML, you will cast to a RadComboBoxItem type.

Here is an example that uses a collection of RSS objects (available in the System.ServiceModel.
Syndication namespace). The code fragment at the top shows how to create a series of
RadComboBoxItem objects, populate each with content and add to the RadComboBox Items collection. In
the SelectionChanged event handler you can cast the first AddedItems element as a RadComboBoxItem
type and work with that.

' . . .
For Each item As SyndicationItem In syndicationFeed.Items
 Dim cbItem As New RadComboBoxItem() With {.Content = item.Title.Text}
 cbMain.Items.Add(cbItem)
Next item
cbMain.SelectedIndex = 0
' . . .

Private Sub cbMain_SelectionChanged(ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 If e.AddedItems.Count > 0 Then
 Dim item As RadComboBoxItem = TryCast(e.AddedItems(0), RadComboBoxItem)
 tbTitle.Text = item.Content.ToString()
 End If
End Sub

RadControls for Silverlight528

© 2011 Telerik Inc.

// . . .
foreach (SyndicationItem item in syndicationFeed.Items)
{
 RadComboBoxItem cbItem =
 new RadComboBoxItem() { Content = item.Title.Text };
 cbMain.Items.Add(cbItem);
}
cbMain.SelectedIndex = 0;
// . . .

private void cbMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 if (e.AddedItems.Count > 0)
 {
 RadComboBoxItem item = e.AddedItems[0] as RadComboBoxItem;
 tbTitle.Text = item.Content.ToString();
 }
}

ComboBox 529

© 2011 Telerik Inc.

If you bound the RadComboBox ItemsSource to a collection of some sort, then you will cast to the
collection item type. One other possibility is that you could add instances of an object directly to the
RadComboBox.Items collection. In both cases DisplayMemberPath indicates the property of the object to
display in the list.

'. . .
' b ind to ItemsSource...
cbMain.ItemsSource = syndicationFeed.Items

' or add each object directly into the Items array
'For Each item As SyndicationItem In syndicationFeed.Items
' cbMain.Items.Add(item)
'Next item
cbMain.SelectedIndex = 0
cbMain.DisplayMemberPath = "Title.Text"
'. . .

Private Sub cbMain_SelectionChanged(ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 If e.AddedItems.Count > 0 Then
 Dim item As SyndicationItem = TryCast(e.AddedItems(0), SyndicationItem)
 tbTitle.Text = item.Title.Text
 End If
End Sub

//. . .
// b ind to ItemsSource...
cbMain.ItemsSource = syndicationFeed.Items;

// or add each object directly into the Items array
//foreach (SyndicationItem item in syndicationFeed.Items)
//{
// cbMain.Items.Add(item);
//}
cbMain.SelectedIndex = 0;
cbMain.DisplayMemberPath = "Title.Text";
//. . .

private void cbMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 if (e.AddedItems.Count > 0)
 {
 SyndicationItem item = e.AddedItems[0] as SyndicationItem;
 tbTitle.Text = item.Title.Text;
 }
}

RadControls for Silverlight530

© 2011 Telerik Inc.

If you want notification of individual item selection, handle the RadComboBoxItem Selection event. The
"Sender" parameter passed to the event handler will be the RadComboBoxItem instance (or whatever item
type was added to the Items collection).

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim item As New RadComboBoxItem() With {.Content = "Test"}
 AddHandler item.Selected, AddressOf item_Selected
 cbMain.Items.Add(item)
End Sub

Private Sub item_Selected(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim item As RadComboBoxItem = TryCast(sender, RadComboBoxItem)
 MessageBox.Show("You clicked " & item.Content.ToString())
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadComboBoxItem item =
 new RadComboBoxItem() { Content = "Test" };
 item.Selected += new RoutedEventHandler(item_Selected);
 cbMain.Items.Add(item);
}

void item_Selected(object sender, RoutedEventArgs e)
{
 RadComboBoxItem item = sender as RadComboBoxItem;
 MessageBox.Show("You clicked " + item.Content.ToString());
}

ComboBox 531

© 2011 Telerik Inc.

DropDown Events

The RadComboBox class introduces the DropDownOpened and DropDownClosed events. You can use
these events for any setup or tear down work just before and after the user opens the list.

The example below clears the text selection of the combo box just before the list is opened and just after it
closes. The ChildrenOfType<> method (an extension method from Telerik.Windows.Controls) gets a
reference to the TextBox contained by RadComboBox and sets the SelectionLength to zero.

' Unselect the text in the RadComboBox TextBox
Private Sub ClearSelection(ByVal comboBox As RadComboBox)
 Dim textBox As TextBox = comboBox.ChildrenOfType(Of TextBox)()(0)
 textBox.SelectionStart = 0
 textBox.SelectionLength = 0
End Sub

Private Sub cbMain_DropDownClosed(_
ByVal sender As Object, ByVal e As EventArgs)
 ClearSelection(TryCast(sender, RadComboBox))
End Sub

Private Sub cbMain_DropDownOpened(_
ByVal sender As Object, ByVal e As EventArgs)
 ClearSelection(TryCast(sender, RadComboBox))
End Sub

// Unselect the text in the RadComboBox TextBox
private void ClearSelection(RadComboBox comboBox)
{
 TextBox textBox =
 comboBox.ChildrenOfType<TextBox>()[0];
 textBox.SelectionStart = 0;
 textBox.SelectionLength = 0;
}

private void cbMain_DropDownClosed(object sender, EventArgs e)
{
 ClearSelection(sender as RadComboBox);
}

private void cbMain_DropDownOpened(object sender, EventArgs e)
{
 ClearSelection(sender as RadComboBox);
}

RadControls for Silverlight532

© 2011 Telerik Inc.

16.5 Binding

RadComboBox is an ItemsControl descendant and has an ItemTemplate that handles layout for each of
the individual list items.SelectionBoxItemTemplate handles the layout of the text at the top of the
RadComboBox. Both templates can contain static and bound elements. This walk through creates custom
layouts for both templates.

In the example we will use Silverlight classes that do a nice job of parsing RSS (Really Simple Syndication)
format. These classes are SyndicationFeed and SyndicationItem, both found in the System.
ServiceModel.Syndication namespace. We will use the WebClient from the System.Net namespace to
download the RSS data into a stream, then load the stream into a SyndicationFeed instance. From there,
SyndicationFeed provides a collection of SyndicationItem that can be bound to the combo box.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

c) Telerik.Windows.Themes.Vista

d) System.ServiceModel.Syndication

XAML Editing

1) Open MainPage.xaml for editing.

2) Verify that the XML namespaces for Telerik.Windows.Controls and Telerik.Windows.Controls.
Input exist in the UserControl element. Add them if they do not exist. Also, add a "Loaded" event
handler to the UserControl element.

<UserControl
xmlns:telerik=
"http://schemas.telerik.com/2008/xaml/presentation"
. . .
Loaded="UserControl_Loaded">. . .

3) Drag a RadComboBox from the Toolbox to a point inside the main "LayoutRoot" Grid. Set the x:Name
attribute to "cbMain", the Margin to "10", MinWidth to "200", HorizontalAlignment to "Left",
VerticalAlignment to "Top" and the StyleManager.Theme to "Vista".

ComboBox 533

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <telerik:RadComboBox x:Name="cbMain" Margin="10"
 MinWidth="200" HorizontalAlignment="Left"
 VerticalAlignment="Top" telerik:StyleManager.Theme="Vista">
 <!--Templates go here-->
 </telerik:RadComboBox>
</Grid>

4) Add a RadComboBox.SelectionBoxTemplate and a RadComboBox.ItemTemplate inside the
RadComboBox element. Inside these two template elements, add DataTemplate elements.

We will put our custom markup and binding expressions inside these two DataTemplate elements.

<telerik:RadComboBox x:Name="cbMain" Margin="10"
 MinWidth="200" HorizontalAlignment="Left"
 VerticalAlignment="Top" telerik:StyleManager.Theme="Vista">
 <telerik:RadComboBox.SelectionBoxTemplate>
 <DataTemplate>
 <!--custom markup goes here-->
 </DataTemplate>
 </telerik:RadComboBox.SelectionBoxTemplate>
 <telerik:RadComboBox.ItemTemplate>
 <DataTemplate>
 <!--custom markup goes here-->
 </DataTemplate>
 </telerik:RadComboBox.ItemTemplate>
</telerik:RadComboBox>

RadControls for Silverlight534

© 2011 Telerik Inc.

5) Add a TextBlock inside the SelectionBoxTemplate DataTemplate element. Set the Margin to "10",
MinWidth to "200" and the FontSize to "15". Assign a binding expression to the Text property:
"{Binding Title.Text}".

The SyndicationItem object has a Title property that in turn has a Text sub-property. It's the Text sub-
property that we actually want to display in the upper portion of the RadComboBox.

<telerik:RadComboBox.SelectionBoxTemplate>
 <DataTemplate>
 <TextBlock Margin="10" MinWidth="200"
 FontSize="15" Text="{Binding Title.Text}" />
 </DataTemplate>
</telerik:RadComboBox.SelectionBoxTemplate>

6) Populate the ItemTemplate DataTemplate element. This is a more complex layout. Start by inserting a
StackPanel with Margin = "10". Inside the StackPanel add a TextBlock and a RadMaskedTextBox.
Set the TextBlock HorizontalAlignment to "Left" and make the binding expression "{Binding Title.Text}".
Set the RadMaskedTextBox HorizontalAlignment to "Left", MinWidth to "200", MaskType to
"DateTime", Mask to "D" and IsReadOnly to "True". Bind the RadMaskedTextBox Value property to
"{Binding PublishDate.DateTime}".

The RadComboBox items displayed when the list is opened will show the title text and the publish date
right underneath the title.

<telerik:RadComboBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="10">
 <TextBlock HorizontalAlignment="Left"
 Text="{Binding Title.Text}" />
 <telerik:RadMaskedTextBox
 HorizontalAlignment="Left"
 MinWidth="200" MaskType="DateTime"
 Mask="D" IsReadOnly="True"
 Value="{Binding PublishDate.DateTime}" />
 </StackPanel>
 </DataTemplate>
</telerik:RadComboBox.ItemTemplate>

Code Behind

ComboBox 535

© 2011 Telerik Inc.

1) Verify that namespace references below are included in the "Imports" (VB) or "using" (C#) section of
code.

System.IO

System.Net

System.ServiceModel.Syndication

System.Windows

System.Windows.Controls

System.Xml

2) Handle the UserControl Loaded event. Create a new WebClient instance to download the RSS data.
Assign a DownloadStringCompleted event handler that will respond once all the data has been
downloaded. Call the WebClient DownloadStringAsync() method and pass a Uri of an RSS web site.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim client As New WebClient()
 AddHandler client.DownloadStringCompleted, _
AddressOf client_DownloadStringCompleted
 client.DownloadStringAsync(New Uri("http://feeds.feedburner.com/telerik"))
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri("http://feeds.feedburner.com/telerik"));
}

 Notes

Be aware that this implementation is specific to this particular RSS site. This code assumes the
return data will be a string and there is no safety code for null fields within the returned XML. This
is to keep the code small and relevant to RadComboBox binding.

RadControls for Silverlight536

© 2011 Telerik Inc.

3) Handle the DownloadStringCompleted event.

The DownloadStringCompletedEventArgs contain a Result string property that holds the RSS XML data.
Pass that Result string to a StringReader constructor, then pass the StringReader to a XmlReader
constructor. Use the XmlReader in the static SyndicationFeed.Load() method.

Now that the SyndicationFeed object is completely initialized and loaded with RSS items, assign the
SyndicationFeed Items collection to the RadComboBox ItemsSource property.

Private Sub client_DownloadStringCompleted(_
ByVal sender As Object, ByVal e As DownloadStringCompletedEventArgs)
 ' Create an XmlReader using a StringReader containing the result string
 Dim stringReader As New StringReader(e.Result)
 Dim xmlReader As XmlReader = XmlReader.Create(stringReader)
 ' Load and create the SyndicationFeed instance using the XmlReader
 Dim syndicationFeed As SyndicationFeed = SyndicationFeed.Load(xmlReader)

 ' b ind to ItemsSource
 cbMain.ItemsSource = syndicationFeed.Items

 ' select the first item in the list
 cbMain.SelectedIndex = 0
End Sub

void client_DownloadStringCompleted(
object sender, DownloadStringCompletedEventArgs e)
{
 // Create an XmlReader using a StringReader containing the result string
 StringReader stringReader = new StringReader(e.Result);
 XmlReader xmlReader = XmlReader.Create(stringReader);
 // Load and create the SyndicationFeed instance using the XmlReader
 SyndicationFeed syndicationFeed = SyndicationFeed.Load(xmlReader);

 // b ind to ItemsSource
 cbMain.ItemsSource = syndicationFeed.Items;

 // select the first item in the list
 cbMain.SelectedIndex = 0;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

ComboBox 537

© 2011 Telerik Inc.

Ideas for Extending This Example

Disable the RadComboBox until it finishes loading.

Point to a different RSS URL location. This will require changing the coding. RSS sites vary on what
information they choose to send out, so code defensively and assume null fields.

Add images to the template. The example below displays an Rss symbol image to the left of the other
content. Also, the theme has been changed to "Summer". See below for sample XAML markup.

RadControls for Silverlight538

© 2011 Telerik Inc.

<telerik:RadComboBox x:Name="cbMain" Margin="10"
 MinWidth="200" HorizontalAlignment="Left"
 VerticalAlignment="Top"
 telerik:StyleManager.Theme="Summer">

 <telerik:RadComboBox.SelectionBoxTemplate>
 <DataTemplate>
 <TextBlock Margin="10" MinWidth="200"
 FontSize="15" Text="{Binding Title.Text}" />
 </DataTemplate>
 </telerik:RadComboBox.SelectionBoxTemplate>
 <telerik:RadComboBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Image Source="../images/Rss.png" Width="50"
 Height="50" Stretch="Uniform"
 HorizontalAlignment="Left" />
 <StackPanel Margin="10">
 <TextBlock HorizontalAlignment="Left"
 Text="{Binding Title.Text}" />
 <telerik:RadMaskedTextBox
 HorizontalAlignment="Left"
 MinWidth="200" MaskType="DateTime"
 Mask="D" IsReadOnly="True"
 Value="{Binding PublishDate.DateTime}" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </telerik:RadComboBox.ItemTemplate>
</telerik:RadComboBox>

Refactor the XAML to move the DataTemplate out into UserControl.Resources. Just relocate the
DataTemplate elements to the UserControl.Resources element. Be sure to assign the "x:Key" attribute
to the DataTemplate. Then, assign the RadComboBox ItemTemplate and SelectionBoxTemplate
attributes. As usual, moving XAML into the Resources area really cleans up the XAML.

ComboBox 539

© 2011 Telerik Inc.

<UserControl . . .>

 <UserControl.Resources>

 <!--Template for RadComboBox ItemTemplate-->
 <DataTemplate x:Key="MyItemTemplate">
 <StackPanel Orientation="Horizontal">
 <Image Source="../images/Rss.png" Width="50"
 Height="50" Stretch="Uniform"
 HorizontalAlignment="Left" />
 <StackPanel Margin="10">
 <TextBlock HorizontalAlignment="Left"
 Text="{Binding Title.Text}" />
 <telerik:RadMaskedTextBox
 HorizontalAlignment="Left" MinWidth="200"
 MaskType="DateTime" Mask="D"
 IsReadOnly="True"
 Value="{Binding PublishDate.DateTime}" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>

 <!--Template for RadComboBox SelectionBoxTemplate-->
 <DataTemplate x:Key="MySelectionBoxTemplate">
 <TextBlock Margin="10" MinWidth="200" FontSize="15"
 Text="{Binding Title.Text}" />
 </DataTemplate>

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot">
 <telerik:RadComboBox x:Name="cbMain" Margin="10"
 MinWidth="200" HorizontalAlignment="Left"
 VerticalAlignment="Top"
 telerik:StyleManager.Theme="Summer"
 ItemTemplate="{StaticResource MyItemTemplate}"
 SelectionBoxTemplate=
 "{StaticResource MySelectionBoxTemplate}">
 </telerik:RadComboBox>
 </Grid>
</UserControl>

RadControls for Silverlight540

© 2011 Telerik Inc.

16.6 Customization

In this walk through we will customize the RadComboBox background. Before going into Expression Blend,
you should know that RadComboBox has two control templates and that the IsEditable property
determines which control template is shown: "NonEditableComboBox" or "EditableComboBox". We're going
to edit the drop down button of the "NonEditableComboBox" to use "Scoville" colors.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight 4" Application from
the right-most list. Enter a unique name for the project and click OK.

4) In the Projects pane, right-click the References node and select Add Reference... from the context
menu.

5) Add references to Telerik.Windows.Controls.dll and Telerik.Windows.Controls.Input.dll.

ComboBox 541

© 2011 Telerik Inc.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

2) From the Project menu select Build Project.

3) Add a RadComboBox to the page.

a) Open the Assets pane.

b) On the left side of the Assets pane is a tree view. Locate and select the "Controls" node.

c) In the Assets pane, just above the tree view is the Assets Find entry text box.

d) Type the first few characters of "RadComboBox" into the Assets Find entry text box. A list of all
matching controls will show to the right of the tree view.

e) Locate the RadComboBox control and drag it onto the MainPage.xaml Artboard.

4) In the Artboard, select the XAML view button

RadControls for Silverlight542

© 2011 Telerik Inc.

5) Replace the RadComboBox element with the markup below. This will define several sample
RadComboBoxItem to populate the list.

<telerik:RadComboBox
 HorizontalAlignment="Left"
 Margin="8,8,0,0"
 VerticalAlignment="Top">
 <telerik:RadComboBoxItem Content="Red Savina Habanero"
 IsSelected="True" />
 <telerik:RadComboBoxItem Content="Datil pepper" />
 <telerik:RadComboBoxItem Content="Chiltepin Pepper" />
 <telerik:RadComboBoxItem Content="Jalapeño" />
 <telerik:RadComboBoxItem Content="Pimento" />
 <telerik:RadComboBoxItem Content="Pepperoncini" />
</telerik:RadComboBox>

6) In the Objects and Timeline pane, right-click the "[RadComboBox]" node and select Edit Template >
Edit a Copy from the context menu. In the "Create Style Resource" dialog, set the Name (Key) to
"ScovilleComboBoxStyle". Click OK to create the style resource and close the dialog.

ComboBox 543

© 2011 Telerik Inc.

7) In the Objects and Timeline pane, notice that we’re looking at the “NonEditableCimboBox” control
template. Open the tree view and review the nodes there. Within the "VisualRoot" element of this
template we have the "Border" which represents the combo box in its closed state and "PART_Popup"
which represents the drop down list portion of the combo box.

8) In the Objects and Timeline pane, locate the "PART_DropDownButton" node in the tree view, expand it
and in the Grid element find “ButtonChrome” control. Right-click and select Edit a Copy... from the
context menu. In the "Create Style Resource" dialog, set the Name (Key) to
"ScovilleButtonChromeStyle". Click OK to create the style resource and close the dialog.

NOTE: Make sure that all the Brushes are on top of the page, before all styles and control templates.

RadControls for Silverlight544

© 2011 Telerik Inc.

9) In the Resources pane, open the resources for the User Control and locate locate
"ControlBackground_Normal". Click the downward pointing arrow button to display a color editing popup.

The color editing popup defines a gradient color with four gradient stops. The middle two gradient stops
overlap each other. This gradient describes the 3-D, slightly beveled appearance of the RadComboBox
when closed.

ComboBox 545

© 2011 Telerik Inc.

10) Move one of the middle gradient stops slightly to the right so that the two middle gradient stops do not
overlap.

There is no design reason to do this. We're separating the two gradient stops merely to make it easier to
talk about the process of editing the stops in Expression Blend.

RadControls for Silverlight546

© 2011 Telerik Inc.

11) Select and change the color for each of the gradient stops using the eye dropper tool. The general color
hues, in order of gradient stop, should be pink, orange, red and red-with-black mixed.

The colors need not be exact to demonstrate customizing the RadComboBox background. Feel free to
"get creative".

 From the Forums...

People will often ask on the forums "how do I change the background color" of "X" control. Given
the flexibility of Silverlight and RadControls, answering that question may not be a one-property
answer, i.e. Background = "Blue". There are multiple brushes that correspond to states in the
control, such as "normal", "mouse over", "selected", etc. You can edit these brushes in Expression
Blend to fit your application look-and-feel. Other properties of the control may also determine
what set of control parts you're looking at, and these parts may use a different set of brushes. For
example, RadComboBox uses two different control templates based on the setting of the
IsEditable property.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Verify that the new "Scoville" colors are "in play" when the RadComboBox is closed and unselected.

ComboBox 547

© 2011 Telerik Inc.

Ideas for Extending This Example

The Resources pane contains other brushes for "button pressed" and "mouse hovered" states. Use the
same technique from the steps in this walk through to edit the "ControlBackground_Pressed" and "
ControlBackground_MouseOver" brushes.

Edit the border brushes.

RadControls for Silverlight548

© 2011 Telerik Inc.

Change the background of the individual RadComboBoxItem instances. Here are some hints to get you
started. In the Objects and Timeline pane, make a copy of the RadComboBoxItem template. It has the
same structure as the one of the RadComboBox itself. Find the ButtonChrome element, right-click it
and choose Edit Template > Apply Resource > ScovilleButtonChromeStyle. That will apply the
same style of the ButtonChrome used for the ComboBox. If you want to define different look for each
item you will have to generate ButtonChrome templates for each one.

NOTE: Please make sure that the ButtonChrome in the ScovilleComboBoxItemStyle is defined like so:

<Telerik_Windows_Controls_Chromes:ButtonChrome x:Name="ButtonChrome" CornerRadius="{StaticResource SplitButton_SpanCornerRadius}"
RenderMouseOver="{Binding IsMouseOver, ElementName=PART_DropDownButton}"
RenderFocused="{TemplateBinding IsFocused}" RenderEnabled="{TemplateBinding IsEnabled}"

ComboBox 549

© 2011 Telerik Inc.

 telerik:StyleManager.Theme="{StaticResource Theme}" Style="{StaticResource ScovilleButtonChromeStyle}"/>

The resulting styled items end up looking something like the screenshot below:

16.7 Wrap Up

In this chapter you built a RadComboBox and its items using XAML and in code. You learned how to use
the Content property assignment for simple text lists and how to bind to templates for more complex layout.
You learned how to handle the SelectionChanged event of the combo box and the Selection event of the
individual items. In the process, you found out how to get and set the selected RadComboBoxItem or
custom object. You also had a brief look at events that respond to drop down opening and closing.

You learned how various edit modes control the combo box Autocomplete, text search, read-only and
editing behavior. You learned how to search for items and determine if a specific item exists in a combo
box. You used ItemTemplate and SelectionBoxTemplate to compose multiple Silverlight elements. You also
bound template elements to live data. Along the way you discovered a few helpful classes in the System.
ServiceModel.Syndication namespace for working with RSS feeds. Finally, you used Expression Blend to
style the background color of a RadComboBox.

Part

XVII
TreeView

TreeView 551

© 2011 Telerik Inc.

17 TreeView

17.1 Objectives

In this chapter we will cover a wide range of tasks that exercise many of the RadTreeView features including
defining trees manually, using the API to add/remove/enable/select nodes, locating and accessing nodes,
adding images to nodes, handling node expansion and reacting to node selection. You will also define trees
with mixed groups of radio buttons and checkboxes. You will learn how to work with drag-and-drop
operations, both to enable simple drag-and-drop functionality and to fine-tune the behavior based on multiple
conditions such as source and target nodes and the state of the data associated with a node.

You will bind the tree to a simple list of data as well as bind specific nodes to data sources. Then you will
use Hierarchical Templates to organize data and present a specific appearance based on the level of data.
You will learn how to use Template Selectors to choose templates on-the-fly. You will use the load-on-
demand feature to quickly load only the visible nodes of the tree view.

Finally, you will learn how to customize the appearance of individual nodes using Expression Blend.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Treeview\Treeview.sln

RadControls for Silverlight552

© 2011 Telerik Inc.

17.2 Overview

RadTreeView provides a powerful platform for building complex hierarchical navigation systems that your
clients will find intuitive and fun to use. The "lookless" nature of the control lets you build unique interfaces
like this team playoff example displayed in a horizontal tree.

The tree view's drag-and-drop capability interacts automatically within the same tree or other tree views. The
drag-and-drop functionality is based on a built-in RadDragAndDropManager, so you can drag between the
tree view and any other Silverlight element.

TreeView 553

© 2011 Telerik Inc.

You can bind to hierarchical data such as file directories or relational data. Bind the entire tree view or mix-
and-match statically defined nodes and individual nodes bound to collections of disparate data. Enable the
"load-on-demand" feature for performant loading of only visible nodes. Hierarchical templates allow you to
paint each level within a hierarchy using a completely unique rendering. Template selectors choose the look
for each node on-the-fly at runtime based on the node's level within the hierarchy, the data in the node, or
any other criteria you can think up.

Nodes can be edited by the user or programmatically in the code behind. The rich event model lets you
control the flow throughout the editing cycle.

RadControls for Silverlight554

© 2011 Telerik Inc.

RadTreeView supports mixed collections of radio buttons and check boxes. "Tri-state" check boxes
represent intermediate states where child items are both checked and unchecked.

As with all the RadControls for Silverlight, RadTreeView plays nicely in Expression Blend where you can
make simple changes to brush colors or to make deep changes to the tree view makeup.

TreeView 555

© 2011 Telerik Inc.

17.3 Getting Started

This walk through will demonstrate the basics of defining a RadTreeView with root level nodes and child
nodes of the root level. The example will show how to respond to user selections and retrieve the text for a
selected node.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags.

<Border Margin="10"
 CornerRadius="5"
 BorderBrush="Red"
 BorderThickness="1"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 MinHeight="500"
 MinWidth="500"
 >

 <!--Tree view goes here-->

</Border>

3) Drag a RadTreeView from the Toolbox to a point under the comment "<!--Tree view goes here-->". Set
the x:Name attribute to "tvMain". Add a SelectionChanged event handler.

4) Drag a RadTreeViewItem from the toolbox to a point within the RadTreeView tags. Set the Header
attribute to "Extremely Hot".

5) Add two more RadTreeViewItems below the first and set the Header attributes to "Hot" and "Mild",
respectively.

6) Inside the first RadTreeViewItem ("Extremely Hot"), add three more RadTreeViewItems and set the
Header attributes to

RadControls for Silverlight556

© 2011 Telerik Inc.

a) "Pure capsaicin"

b) "Naga Jolokia"

c) "Red Savina Habanero"

7) Inside the second RadTreeViewItem ("Hot"), add three more RadTreeViewItems and set the Header
attributes to

a) "Cayenne Pepper"

b) "Tabasco"

c) "Chipotle"

8) Inside the third RadTreeViewItem ("Mild"), add three more RadTreeViewItems and set the Header
attributes to

a) "Bell Pepper"

b) "Pimento"

c) "Peperoncini"

The XAML markup should now look like the example below:

<telerik:RadTreeView x:Name="tvMain"
 SelectionChanged="tvMain_SelectionChanged">

 <telerik:RadTreeViewItem Header="Extremely Hot">
 <telerik:RadTreeViewItem Header="Pure capsaicin" />
 <telerik:RadTreeViewItem Header="Naga Jolokia" />
 <telerik:RadTreeViewItem Header="Red Savina Habanero" />
 </telerik:RadTreeViewItem>

 <telerik:RadTreeViewItem Header="Hot">
 <telerik:RadTreeViewItem Header="Cayenne Pepper" />
 <telerik:RadTreeViewItem Header="Tabasco" />
 <telerik:RadTreeViewItem Header="Chipotle" />
 </telerik:RadTreeViewItem>

 <telerik:RadTreeViewItem Header="Mild">
 <telerik:RadTreeViewItem Header="Bell Pepper" />
 <telerik:RadTreeViewItem Header="Pimento" />
 <telerik:RadTreeViewItem Header="Peperoncini" />
 </telerik:RadTreeViewItem>

</telerik:RadTreeView>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) Telerik.Windows.Controls

TreeView 557

© 2011 Telerik Inc.

2) Add code for the SelectionChanged event handler.

This code gets a reference to the RadTreeView and it's SelectedItem property. SelectedItem is an
object type. Because we've added RadTreeViewItems directly (and haven't bound the tree view), we can
cast SelectedItem as RadTreeViewItem to use its properties, e.g. Header. Note that if the TreeView is
bound, the selected item will be a business object. Use the Header ToString() method and display the
results in a MessageBox.

Private Sub tvMain_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 Dim item As RadTreeViewItem = _
TryCast((TryCast(sender, RadTreeView)).SelectedItem, RadTreeViewItem)
 MessageBox.Show("You selected " & item.Header.ToString())
End Sub

private void tvMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 RadTreeViewItem item =
 (sender as RadTreeView).SelectedItem as RadTreeViewItem;
 MessageBox.Show("You selected " + item.Header.ToString());
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

RadControls for Silverlight558

© 2011 Telerik Inc.

1) Clicking an item should fire the SelectionChanged event and display the MessageBox with the text for
the selected item. The event should also fire when using the keyboard Arrow keys to navigate the tree
view.

2) Expanding or collapsing nodes should not fire the SelectionChanged event.

17.4 Control Details

17.4.1 Working with Nodes

17.4.1.1 Adding Nodes

Adding a node to the tree view is as simple as creating a new RadTreeViewItem object and including it in
the tree view Items collection. The example below creates three instances of RadTreeViewItem and adds
them as root nodes to the Items collection.

Private Sub AddNodes()
 ' add root level nodes
 tvMain.Items.Add(New RadTreeViewItem() With { _
.Name = "tviExtremelyHot", .Header = "Extremely Hot"})

 tvMain.Items.Add(New RadTreeViewItem() With {_
.Name = "tviHot", .Header = "Hot"})

 tvMain.Items.Add(New RadTreeViewItem() With {_
.Name = "tviMild", .Header = "Mild"})
End Sub

private void AddNodes()
{
 // add root level nodes
 tvMain.Items.Add(new RadTreeViewItem()
 {
 Name = "tviExtremelyHot",
 Header = "Extremely Hot"
 });

 tvMain.Items.Add(new RadTreeViewItem()
 {
 Name = "tviHot",
 Header = "Hot"
 });

 tvMain.Items.Add(new RadTreeViewItem()
 {
 Name = "tviMild",
 Header = "Mild"
 });
}

TreeView 559

© 2011 Telerik Inc.

Each RadTreeViewItem has its own Items collection and can be used to create a hierarchy in code. The
example below gets a reference to one of the root level nodes and adds three RadTreeViewItem instances
to the Items collection.

Private Sub AddSubNodes()

' find one of the root nodes

Dim mild As RadTreeViewItem = TryCast(tvMain.Items(2),
RadTreeViewItem)

' then add items to the root level node

mild.Items.Add(New RadTreeViewItem() With { _
.Name = "tviBellPepper", .Header = "Bell Pepper"})

mild.Items.Add(New RadTreeViewItem() With { _
.Name = "tviPimento", .Header = "Pimento"})

mild.Items.Add(New RadTreeViewItem() With { _
.Name = "tviPeperoncini", .Header = "Peperoncini"})
End Sub

private void AddSubNodes()
{
 // find one of the root nodes
 RadTreeViewItem mild =
 tvMain.Items[2] as RadTreeViewItem;

 // then add items to the root level node
 mild.Items.Add(new RadTreeViewItem()
 {
 Name = "tviBellPepper",
 Header = "Bell Pepper"

 });
 mild.Items.Add(new RadTreeViewItem()
 {
 Name = "tviPimento",
 Header = "Pimento"
 });
 mild.Items.Add(new RadTreeViewItem()
 {
 Name = "tviPeperoncini",
 Header = "Peperoncini"
 });
}

The result of using code to add the root level nodes and sub-nodes looks like the screenshot below:

RadControls for Silverlight560

© 2011 Telerik Inc.

17.4.1.2 Locating and Accessing Nodes

You can locate and access nodes in a variety of ways including using the index of the RadTreeViewItem
within the Items collection or using LINQ expressions against the Items collection. To use LINQ
expressions, remember to add the System.Linq namespace to your "Imports" (VB) or "using" (C#) section
of code.

The code below demonstrates finding a particular node.

' locating by index
Dim hotItem As RadTreeViewItem = _
TryCast(tvMain.Items(1), RadTreeViewItem)

' using LINQ expressions
Dim mildItem As RadTreeViewItem = (_
 From i As RadTreeViewItem In tvMain.Items _
 Where i.Name.Equals("tviMild") _
 Select i).FirstOrDefault()

// locating by index
RadTreeViewItem hotItem =
 tvMain.Items[1] as RadTreeViewItem;

// using LINQ expressions
RadTreeViewItem mildItem =
 (from RadTreeViewItem i in tvMain.Items
 where i.Name.Equals("tviMild")
 select i).FirstOrDefault();

TreeView 561

© 2011 Telerik Inc.

 Gotcha!

RadControls for Silverlight562

© 2011 Telerik Inc.

The Items property only contains the immediate children of an items control, so you have to
search recursively to handle n-level searches. The example below searches recursively, given an
ItemCollection and a string to search for. This example searches on the Header property, not the
Name.

' recursively search
Public Function FindItemByHeaderRecursive(_
ByVal nodes As ItemCollection, ByVal searchFor As String) As RadTreeViewItem
 For Each item As RadTreeViewItem In nodes
 If item.Header.Equals(searchFor) Then
 Return item
 End If

 If item.Items.Count > 0 Then
 Dim result As RadTreeViewItem = _
FindItemByHeaderRecursive(item.Items, searchFor)
 If result IsNot Nothing Then
 Return result
 End If
 End If
 Next item
 Return Nothing
End Function

' . . . calling the method
pimento = FindItemByHeaderRecursive(tvMain.Items, "Pimento")

TreeView 563

© 2011 Telerik Inc.

// recursively search
public RadTreeViewItem FindItemByHeaderRecursive(
 ItemCollection nodes, string searchFor)
{
 foreach (RadTreeViewItem item in nodes)
 {
 if (item.Header.Equals(searchFor))
 return item;

 if (item.Items.Count > 0)
 {
 RadTreeViewItem result =
 FindItemByHeaderRecursive(item.Items, searchFor);
 if (result != null)
 return result;
 }
 }
 return null;
}

// . . . calling the method
pimento = FindItemByHeaderRecursive(tvMain.Items, "Pimento");

17.4.1.3 Path Properties and Methods

Forum question: "I want to be able to expand the tree to specific nodes."

Answer: Use the ExpandItemByPath() or GetItemByPath() methods. If we have a hierarchy like the small
example below and want to expand the "Pimento" node:

Mild
 Bell Pepper
 Pimento
Hot
 Tabasco
 ...

RadControls for Silverlight564

© 2011 Telerik Inc.

ExpandItemByPath() expands the tree view so that the item in the path is exposed. GetItemByPath()
retrieves a reference to the item and also automatically expands the tree view so the item is exposed. The
first parameter is the path itself, the second is the separator character.

Dim item As RadTreeViewItem = tvMain.GetItemByPath("Mild|Pimento", "|")
item.IsSelected = True
' or...
tvMain.ExpandItemByPath("Mild|Pimento", "|")

RadTreeViewItem item = tvMain.GetItemByPath("Mild|Pimento", "|");
item.IsSelected = true;
// or...
tvMain.ExpandItemByPath("Mild|Pimento", "|");

17.4.1.4 Node Properties

Once you locate a specific node, you can disable, expand, select or remove the node. The example below
selects the second node of the tree, expands the third node and disables the "Pimento" node. Use the
IsExpanded, IsSelected and IsEnabled RadTreeViewItem properties to toggle these node states.

' use nodes references to expand, select, disable and remove nodes
mildItem.IsExpanded = True
hotItem.IsSelected = True
pimento.IsEnabled = False

// use nodes references to expand, select,
// disable and remove nodes
mildItem.IsExpanded = true;
hotItem.IsSelected = true;
pimento.IsEnabled = false;

TreeView 565

© 2011 Telerik Inc.

17.4.1.5 Removing Nodes

To delete a node, use the tree view Remove() method and pass the item to be removed or call RemoveAt()
and pass the index of the item within the Items collection to be removed. The example below removes the
same item using both methods. Note: This way you can remove children of the RadTreeView but not
descendants. They have to be removed from their respective parents.

' remove the "Hot" node
tvMain.Items.Remove(hotItem)
' or . . .
'tvMain.Items.RemoveAt(1)

// remove the "Hot" node
tvMain.Items.Remove(hotItem);
// or . . .
//tvMain.Items.RemoveAt(1);

RadControls for Silverlight566

© 2011 Telerik Inc.

17.4.1.6 Node Images

Images can display automatically in response to the default, expanded and selected states of the node.
Use the DefaultImageSrc, ExpandedImageSrc, SelectedImageSrc to assign paths to the images
using code or XAML. If all images reside in the same folder, assign the folder path to the ImagesBaseDir
property. Then you can omit the path for your image source properties. The example below sets the default
and selected images:

The XAML assignment sets the ImagesBaseDir to the path (notice the trailing forward slash). The
DefaultImageSrc and SelectedImageSrc are assigned only the image file name.

<telerik:RadTreeView x:Name="tvMain"
 ImagesBaseDir="images/">
 <telerik:RadTreeViewItem Header="Extremely Hot"
 DefaultImageSrc="peppers.png"
 SelectedImageSrc="peppers_selected.png">
. . .
</telerik:RadTreeView>

In code, you can assign the image paths at any time. The image source properties all take either a path or
a ImageSource instance, as shown in the example below.

TreeView 567

© 2011 Telerik Inc.

tvMain.ImagesBaseDir = "images/"

' add root level nodes
tvMain.Items.Add(New RadTreeViewItem() With { _
.Name = "tviExtremelyHot", _
.Header = "Extremely Hot", _
.DefaultImageSrc = "peppers.png", _
.SelectedImageSrc = "peppers_selected.png"})

tvMain.Items.Add(New RadTreeViewItem() With { _
.Name = "tviHot", _
.Header = "Hot", _
.DefaultImageSrc = _
New BitmapImage(_
New Uri("images/peppers.png", UriKind.RelativeOrAbsolute)), _
.SelectedImageSrc = _
New BitmapImage(_
New Uri("images/peppers_selected.png", UriKind.RelativeOrAbsolute))})

tvMain.ImagesBaseDir = "images/";

// add root level nodes
tvMain.Items.Add(new RadTreeViewItem()
{
 Name = "tviExtremelyHot",
 Header = "Extremely Hot",
 DefaultImageSrc = "peppers.png",
 SelectedImageSrc = "peppers_selected.png"
});

tvMain.Items.Add(new RadTreeViewItem()
{
 Name = "tviHot",
 Header = "Hot",
 DefaultImageSrc =
 new BitmapImage(
 new Uri("images/peppers.png",
 UriKind.RelativeOrAbsolute))
 ,
 SelectedImageSrc =
 new BitmapImage(
 new Uri("images/peppers_selected.png",
 UriKind.RelativeOrAbsolute))
});

RadControls for Silverlight568

© 2011 Telerik Inc.

17.4.2 Selections

By default, you can select one node at a time in the tree view. The SelectionMode property, first introduced
in the Date, Time and Calendar chapter, can be Single, Multiple or Extended.

Note: The TreeView interprets SelectionMode “Multiple” as “Extended”, i.e. there are just two selection
modes “Single” and “Extended”. The same enum is used for convenience.

In Single SelectionMode (the default), only node data can be selected at a time. Click a node with the
mouse or press the space bar to toggle selection. Use the arrow keys to move the selection.

The Extended SelectionMode allows any number of nodes to be selected, but the behavior is similar
to Windows Explorer. Holding the Shift key down allows a range of nodes to be selected with the
mouse or keyboard (using the arrow keys and space bar). The Control key allows individual nodes to be
selected even when they are not part of a continuous range.

Each RadTreeViewItem has a IsSelected property that can be set programmatically or in XAML. As the
user clicks nodes in the tree, the PreviewSelected, Selected, PreviewUnselected and Unselected
routed events fire on the item. The "Preview" events can be canceled. For example, to make sure the user
doesn't lose unsaved work when navigating between nodes, you could set the Handled argument to cancel
before the selection was complete. The basic idea is sketched out in the code sample below.

' moving off this node
Private Sub tvMain_PreviewUnselected(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 ' if changes have occurred, prompt to allow
 If Me.isChanged Then
 If MessageBox.Show("You have made some changes. Do you want to continue?", _
"Alert", MessageBoxButton.OKCancel) = MessageBoxResult.Cancel Then
 ' allowed, so continue
 e.Handled = True
 Else
 ' restore any state here
 End If
 End If
End Sub

TreeView 569

© 2011 Telerik Inc.

// moving off this node
private void tvMain_PreviewUnselected(object sender,
 Telerik.Windows.RadRoutedEventArgs e)
{
 // if changes have occurred, prompt to allow
 if (this.isChanged)
 {
 if (MessageBox.Show(
 "You have made some changes. Do you want to continue?",
 "Alert",
 MessageBoxButton.OKCancel) == MessageBoxResult.Cancel)
 {
 // allowed, so continue
 e.Handled = true;
 }
 else
 {
 // restore any state here
 }
 }
}

To reference selected nodes, use these RadTreeView properties:

SelectedItem: This is the last item selected in the tree view. If you defined a series of
RadTreeViewItems directly in XAML or code without binding, then SelectedItem will be a
RadTreeViewItem type. If you bound the control to a collection of "MyObject" types, then SelectedItem
will be a "MyObject" type.

SelectedItems: A collection of all the items selected, stored in the order they were selected. Again,
these will be RadTreeViewItems if not bound in XAML or code. The example below shows a tree view on
the left bound to a collection of "MyObject" that contains a "Description" property. The user clicks on
the "Three" node, then the "One" node. A text box to the right of the tree view shows the output.

RadControls for Silverlight570

© 2011 Telerik Inc.

Private Sub tvMain_SelectionChanged(_
ByVal sender As Object,
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 ' get the tree view
 Dim treeView As RadTreeView = TryCast(sender, RadTreeView)

 ' get a collection of strings from the "Description"
 ' property of "MyObject".
 Dim descriptions = _
 From myObject As MyObject In treeView.SelectedItems _
 Select myObject.Description

 ' display the event name and list of descriptions
 tbLog.Text &= "SelectionChanged: " & _
String.Join(", ", descriptions.ToArray()) & Environment.NewLine
End Sub

void tvMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 // get the tree view
 RadTreeView treeView = sender as RadTreeView;

 // get a collection of strings from the "Description"
 // property of "MyObject".
 var descriptions = from MyObject myObject in treeView.SelectedItems
 select myObject.Description;

 // display the event name and list of descriptions
 tbLog.Text += "SelectionChanged: " +
 String.Join(", ", descriptions.ToArray()) + Environment.NewLine;
}

SelectedContainer: This is the RadTreeViewItem that contains a bound object.

In addition to these properties, the SelectionChanged event supplies a SelectionChangedEventArgs
that contains two collections AddedItems and RemovedItems. Instead of returning all objects, these two
properties keep track of that items that were just added or removed in response to the event. The example
below displays the results as items are selected in the list.

TreeView 571

© 2011 Telerik Inc.

Private Sub tvMain_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 Dim added = _
 From item As RadTreeViewItem In e.AddedItems _
 Select item.Header.ToString()

 Dim removed = _
 From item As RadTreeViewItem In e.RemovedItems _
 Select item.Header.ToString()

 tbLog.Text &= "Added: " & _
String.Join(", ", added.ToArray()) & _
Environment.NewLine & " Removed: " & _
String.Join(", ", removed.ToArray()) _
& Environment.NewLine
End Sub

void tvMain_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 var added =
 from RadTreeViewItem item in e.AddedItems
 select item.Header.ToString();

 var removed =
 from RadTreeViewItem item in e.RemovedItems
 select item.Header.ToString();

 tbLog.Text += "Added: " +
 String.Join(", ", added.ToArray()) +
 Environment.NewLine +
 " Removed: " +
 String.Join(", ", removed.ToArray()) +
 Environment.NewLine;
}

RadControls for Silverlight572

© 2011 Telerik Inc.

17.4.3 Node Expansion

Expanding an individual item is simply a matter of setting the IsExpanded property to true. To expand or
collapse all items at all levels in the tree, call the ExpandAll() and CollapseAll() methods. ExpandAll() and
CollapseAll() are available not only for the RadTreeView, but for any RadTreeViewItem so that you can
expand or collapse the item and all its children recursively.

When an item expands or collapses, the PreviewExpand, Expanded, PreviewCollapsed and
Collapsed events fire. The "Preview" events can be canceled by setting the Handled argument property to
True.

Private Sub tvMain_PreviewExpanded(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 If Me.role <> Role.Administrator Then
 e.Handled = True
 MessageBox.Show("You do not have permissions to this information")
 End If
End Sub

private void tvMain_PreviewExpanded(object sender,
 Telerik.Windows.RadRoutedEventArgs e)
{
 if (this.role != Role.Administrator)
 {
 e.Handled = true;
 MessageBox.Show("You do not have permissions to this information");
 }
}

Here are a few properties that fine-tune expand behavior:

To only allow expanding one node at a time, set the IsSingleExpandPath property to True. When True,
the tree view will automatically collapse one branch before expanding another.

By default you can click an item to toggle expansion. To allow expansion only when the expansion arrow
is clicked, set the IsExpandOnSingleClickEnabled and IsExpandOnDblClickEnabled properties
False.

TreeView 573

© 2011 Telerik Inc.

17.4.4 Checkboxes and Radiobuttons

You can build complex arrangements of checks and radio buttons, show "tri-state" check boxes that
visually indicate "Indeterminate" states, and use events to completely control checking and unchecking
behavior.

Start by setting the RadTreeView IsOptionElementsEnabled property to true. After that, you can set the
ItemsOptionListType property for the tree view as a whole, or for any individual RadTreeViewItem, to
OptionList or CheckList. OptionList displays radio buttons and CheckList displays check boxes. The
minimal XAML snippet below displays a list of radio buttons and also introduces the CheckState property,
that sets the check mark On, Off or to an Indeterminate state.

<telerik:RadTreeView
 IsOptionElementsEnabled="True"
 ItemsOptionListType="OptionList">
 <telerik:RadTreeViewItem
 Header="Minimal" />
 <telerik:RadTreeViewItem
 Header="Typical" CheckState="On" />
 <telerik:RadTreeViewItem
 Header="Custom" />
</telerik:RadTreeView>

The result of the XAML shows in this screenshot:

The ItemsOptionListType property acts against all child nodes of a given node. Using this property, you
can display mixed combinations of radio and check boxes. Starting from the previous example, you can add
three child nodes to the "Custom" node and set the ItemsOptionListType to CheckList.

RadControls for Silverlight574

© 2011 Telerik Inc.

<telerik:RadTreeView
 IsOptionElementsEnabled="True"
 ItemsOptionListType="OptionList">
 <telerik:RadTreeViewItem
 Header="Minimal" />
 <telerik:RadTreeViewItem
 Header="Typical" CheckState="On" />
 <telerik:RadTreeViewItem Header="Custom"
 ItemsOptionListType="CheckList"
 IsExpanded="True">
 <telerik:RadTreeViewItem
 Header="Core Product" CheckState="On" />
 <telerik:RadTreeViewItem
 Header="Help Files" CheckState="On" />
 <telerik:RadTreeViewItem
 Header="Extras" CheckState="Off">
 </telerik:RadTreeViewItem>
 </telerik:RadTreeViewItem>
</telerik:RadTreeView>

Now you have a tree view that displays radio buttons at the root level and check boxes underneath the
"Custom" node.

TreeView 575

© 2011 Telerik Inc.

"tri-state" refers to the ability of a check box to display not only checked and unchecked, but to show an
"Indeterminate" state as well. The "Indeterminate" state indicates to the user that child nodes have a mix of
checked and unchecked nodes. The specific visual cues used to represent check states vary, depending on
theme and styling, but the screenshot below shows a typical example. To enable the "tri-state" behavior,
you only need to set the tree view IsTriStateMode property to True.

Here is one more example with all of the previously described elements in play:

<telerik:RadTreeView
 IsOptionElementsEnabled="True"
 ItemsOptionListType="OptionList"
 telerik:StyleManager.Theme="Summer"
 IsTriStateMode="True">
 <telerik:RadTreeViewItem Header="Minimal" CheckState="Off" />
 <telerik:RadTreeViewItem Header="Typical" CheckState="On" />
 <telerik:RadTreeViewItem Header="Custom"
 ItemsOptionListType="CheckList" IsExpanded="True">
 <telerik:RadTreeViewItem Header="Core Product" CheckState="On" />
 <telerik:RadTreeViewItem Header="Help Files" CheckState="On" />
 <telerik:RadTreeViewItem Header="Extras" CheckState = "Indeterminate"
 ItemsOptionListType="CheckList" IsExpanded="True">
 <telerik:RadTreeViewItem Header="Source files"
 CheckState="On" />
 <telerik:RadTreeViewItem Header="Examples"
 CheckState="Off" />
 <telerik:RadTreeViewItem Header="Reference Project"
 CheckState="Off" />
 </telerik:RadTreeViewItem>
 </telerik:RadTreeViewItem>
</telerik:RadTreeView>

RadControls for Silverlight576

© 2011 Telerik Inc.

The screenshot below shows the XAML sample running in the browser:

TreeView 577

© 2011 Telerik Inc.

17.4.5 Drag-and-Drop

Users can rearrange the tree view using the built-in drag-and-drop capability. The user can drop one or more
nodes onto another node, between nodes and onto other tree views. The drag-and-drop infrastructure is built
using the RadDragAndDropManager, so all the RadDragAndDropManager events and properties are
available.

Your first move is to set the IsDragDropEnabled tree view property to "True". If you want to simply move
nodes around in a tree or drag them between trees without any rules, then you're done. But typically there
are business rules that govern what can be dragged and where nodes can be dropped. Look at the
screenshot above for example. We have a set of possible products that can be dragged to a "Shopping
Cart" tree view. So right away we have several implied business rules:

Root level nodes should not be dragged. The "Processors", "Displays" and "Keyboards" nodes should
behave as if fixed into place.

Nodes with Level == 1 should be dropped under Level 0 nodes. We should only drop the "Standard"
keyboard node under one of the root level, "fixed" nodes.

Nodes that describe particular processors should only be dragged to a root level "Processors" node.
Displays should be dragged under the "Displays" node and likewise for keyboards.

Nodes should not be dropped to the same tree.

In some other application it might be ok to drag the root level nodes around. You have to decide that for
yourself and add logic to enforce the behavior. That begs the question, "ok, so how do I enforce the
business logic?"

You can get some minimal control using the IsDropAllowed property of the RadTreeViewItem or take
advantage of the RadTreeView drag/drop events.

RadControls for Silverlight578

© 2011 Telerik Inc.

 Notes

The RadTreeView API offers you four events for managing the drag and drop behavior:

PreviewDragStarted

DragStarted

PreviewDragEnded

DragEnded

But to get the fine-grain control you really want in a production application, you need to handle
RadDragAndDropManager events.
There are two "gotchas" you may run into right away. So, to save you some time:

1. Be sure to add Telerik.Windows to the "Imports" (VB) or "using" (C#) sections of code so that the
AddHandler() extension method is available.

2. RadTreeView will mark all the events its responds to as "handled", so, without special measures, you
will not see any events. Call the AddHandler() overload that includes the handledEventsToo
parameter. Set the handledEventsToo parameter "True" when you also want the drag-and-drop events to
fire, even though RadTreeView has already had a crack at them.

TreeView 579

© 2011 Telerik Inc.

Here's what the code looks like for the application shown running in the screenshot above. The AddHandler()
extension method registers the DropQueryEvent, then all the nodes of the tree are expanded.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' Gotcha: be sure to add Telerik.Windows to get AddHandler extension method
 ' Gotcha #2, pass "handledEventsToo" as true -- tree view already handles,
 ' so you must pass this to get the event raised.
 Me.AddHandler(RadDragAndDropManager.DropQueryEvent, _
New EventHandler(Of DragDropQueryEventArgs)(AddressOf OnDropQuery), True)

 Dispatcher.BeginInvoke(Function() { tvPossibleOptions.ExpandAll(); })
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // Gotcha: be sure to add Telerik.Windows to get AddHandler extension method
 // Gotcha #2, pass "handledEventsToo" as true -- tree view already handles,
 // so you must pass this to get the event raised.
 this.AddHandler(RadDragAndDropManager.DropQueryEvent,
 new EventHandler<DragDropQueryEventArgs>(OnDropQuery), true);

 Dispatcher.BeginInvoke(() =>
 {
 tvPossibleOptions.ExpandAll();
 });
}

RadControls for Silverlight580

© 2011 Telerik Inc.

The OnDropQuery event handler enforces all the business rules we first described. By getting references to
the source and destination RadTreeViewItem objects, we can tell what level they belong to, if the source
and destination parent tree views are the same (i.e. we're trying to drop back to the same tree we're
dragging from) and the position we're attempting to drop into (i.e. inside, before, after). Not shown here is
the XAML that includes a Tag property for each RadTreeViewItem where we define a "group" that the node
belongs to, i.e. "Processors" or "Keyboards". All of this logic is arbitrary and must be modified to fit your
particular business requirements. This example covers a lot of ground though and addresses a number of
issues you may run into.

Private Sub OnDropQuery(_
ByVal sender As Object, ByVal e As DragDropQueryEventArgs)
 ' get references to the source and destination nodes
 Dim sourceItem As RadTreeViewItem = _
TryCast(e.Options.Source, RadTreeViewItem)
 Dim destinationItem As RadTreeViewItem = _
TryCast(e.Options.Destination, RadTreeViewItem)
 ' we should have valid source and destination items before proceeding
 If (sourceItem IsNot Nothing) AndAlso (destinationItem IsNot Nothing) Then
 ' Nodes should not be dropped to the same tree.
 Dim isSameTree As Boolean = _
sourceItem.ParentTreeView = destinationItem.ParentTreeView
 ' Nodes should only be dragged to the same "group",
 ' i.e. processors to processors, keyboards to keyboards
 Dim isSameNodeType As Boolean = sourceItem.Tag.Equals(destinationItem.Tag)
 ' Only drop a node inside the root, or before/after a level 1 node
 Dim isCorrectDropPosition As Boolean = destinationItem.Level = 0 _
AndAlso destinationItem.DropPosition = DropPosition.Inside _
OrElse destinationItem.Level = 1 _
AndAlso destinationItem.DropPosition = DropPosition.Before _
OrElse destinationItem.Level = 1 _
AndAlso destinationItem.DropPosition = DropPosition.After
 ' if all the above conditions apply and the item
 ' being dragged is Level = 1, then allow dropping
 e.QueryResult = isSameNodeType AndAlso (Not isSameTree) _
AndAlso sourceItem.Level = 1 AndAlso isCorrectDropPosition
 End If
End Sub

TreeView 581

© 2011 Telerik Inc.

private void OnDropQuery(object sender, DragDropQueryEventArgs e)
{
 // get references to the source and destination nodes
 RadTreeViewItem sourceItem = e.Options.Source as RadTreeViewItem;
 RadTreeViewItem destinationItem = e.Options.Destination as RadTreeViewItem;
 // we should have valid source and destination items before proceeding
 if ((sourceItem != null) &&
 (destinationItem != null))
 {
 // Nodes should not be dropped to the same tree.
 bool isSameTree = sourceItem.ParentTreeView == destinationItem.ParentTreeView;
 // Nodes should only be dragged to the same "group",
 // i.e. processors to processors, keyboards to keyboards
 bool isSameNodeType = sourceItem.Tag.Equals(destinationItem.Tag);
 // Only drop a node inside the root, or before/after a level 1 node
 bool isCorrectDropPosition =
 destinationItem.Level == 0 && destinationItem.DropPosition == DropPosition.Inside ||
 destinationItem.Level == 1 && destinationItem.DropPosition == DropPosition.Before ||
 destinationItem.Level == 1 && destinationItem.DropPosition == DropPosition.After;
 // if all the above conditions apply and the item being dragged is Level = 1, then allow dropping
 e.QueryResult = isSameNodeType && !isSameTree && sourceItem.Level == 1 && isCorrectDropPosition;
 }
}

You may want a small representative sample of the XAML to refer to. This XAML defines the left-most tree
view shown in the screenshot.

<telerik:RadTreeView IsDragDropEnabled="True"
 IsDragPreviewEnabled="True" IsDragTooltipEnabled="True"
 IsDropPreviewLineEnabled="True" Style="{StaticResource TreeViewStyle}" >
 <telerik:RadTreeViewItem Header="Processors"
 DefaultImageSrc="ram.png" Tag="Processor">
 <telerik:RadTreeViewItem
 Header="Intel P8600" Tag="Processor" />
. . .

RadControls for Silverlight582

© 2011 Telerik Inc.

Other properties that govern drag and drop behavior in RadTreeView:

IsDragPreviewEnabled, IsDragTooltipEnabled, IsDropPreviewLineEnabled: When true, these
properties provide visual cues automatically without having to handle RadDragAndDropManager events.

TextDropAfter, TextDropBefore, TextDropIn, TextDropRoot: These are string properties that
display as tool tips and are followed automatically by the node text.

<telerik:RadTreeView
. . .
 TextDropAfter="Drop it right there mister:"
. . . />

The TextDropAfter property set in the XAML above displays like this screenshot example:.

DropExpandDelay: This is a TimeSpan property that determines the wait before an item is expanded
when something is dragged over it.

RadTreeViewItem properties that govern drag and drop behavior are:

IsDropAllowed: This property allows specific nodes to refuse a drop.

DropPosition: This is an enumeration that indicates the relative position of the dragged node to the
node it's being dropped on and can be Before, After or Inside.

TreeView 583

© 2011 Telerik Inc.

17.4.6 Editing

By default, the nodes of a tree view cannot be edited. Setting the tree view IsEditable property to True
allows the user to press the F2 key to edit tree view nodes. After changes are entered, the user can press
the Esc key to cancel editing or Enter to commit their changes.

You can also set the IsInEditMode property to True to initiate editing programmatically. For example, if you
might want the user to click a button to add a new node to the tree and automatically make that node
editable:

First create the RadTreeViewItem and add it to the tree view Items collection. Then set IsInEditMode after
the node has been generated.

Private Sub Button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' create an add the item
 Dim item As New RadTreeViewItem() With {.Header = "New Product Type"}
 tvPossibleOptions.Items.Add(item)
 item.IsInEditMode = True
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 // create an add the item
 RadTreeViewItem item = new RadTreeViewItem()
 {
 Header = "New Product Type",
 };
 tvPossibleOptions.Items.Add(item);
 item.IsInEditMode = true;
}

Much like the tree view drag-and-drop capability, once you make editing available for the tree view, it's an
"open season" and the user can edit anything in the tree without restriction. This won't do for the typical
production application. Some nodes should not be editable, or not editable in certain circumstances or
should not allow certain input. The PreviewEditStarted, EditStarted, PreviewEdited, Edited and
EditCanceled routed events allow you to enforce business logic. The sequence of event is:

User presses F2 or IsInEditMode is set to True.

PreviewEditStarted

RadControls for Silverlight584

© 2011 Telerik Inc.

EditStarted

User presses Enter, focus is moved away from the node, or IsInEditMode is set to False

PreviewEdited

Edited

Once the edit is started and if the user presses the escape key or the CancelEdit() method is called, the
EditCanceled event fires.

As is standard with all Silverlight routed events, the "Preview" events can be canceled by setting the
Handled property to "True". For example, if you wanted to prevent root level nodes from being edited, you
could check the Level property of the node and set Handled to true if the Level was "0". Notice in the
example that you can obtain the item being edited from the parameter arguments Source property.

Private Sub tvPossibleOptions_PreviewEditStarted(_
ByVal sender As Object, ByVal e As RadRoutedEventArgs)
 ' get a reference to the item being edited
 Dim item As RadTreeViewItem = TryCast(e.Source, RadTreeViewItem)
 ' disallow editing root level items
 e.Handled = item.Level = 0
End Sub

private void tvPossibleOptions_PreviewEditStarted(_
object sender, RadRoutedEventArgs e)
{
 // get a reference to the item being edited
 RadTreeViewItem item = e.Source as RadTreeViewItem;
 // disallow editing root level items
 e.Handled = item.Level == 0;
}

TreeView 585

© 2011 Telerik Inc.

The PreviewEdited and Edited events pass a RadTreeViewItemEditedEventArgs as a parameter that
includes OldValue and NewValue object properties. The screenshot below shows what happens when you
use the PreviewEdited event to display a confirmation dialog:

The MessageBox takes a string containing the new and old text, then sets Handled to True if the user
decides they don't want to confirm the edit. When Handled is set to True, the default behavior is that the
"New" text stays in place and the node is still available for editing. If you want to restore the data to a
previous state, you can set the node's Header property and call CancelEdit().

Private Sub tvPossibleOptions_PreviewEdited(ByVal sender As Object, _
ByVal e As RadTreeViewItemEditedEventArgs)
 Dim message As String = _
String.Format("Old text was ""{0}"", new text is ""{1}"". Do you want to make this change?", _
e.OldValue.ToString(), e.NewValue.ToString())

 ' show the user the old and new state of the edited text
 Dim cancel As Boolean = MessageBox.Show(message, "Make Changes?", _
MessageBoxButton.OKCancel) = MessageBoxResult.Cancel

 ' the user wants to cancel, so restore the header to the old text and
 ' stop the edit
 If cancel Then
 TryCast(e.Source, RadTreeViewItem).Header = e.OldText
 TryCast(e.Source, RadTreeViewItem).CancelEdit()
 End If

 e.Handled = cancel
End Sub

RadControls for Silverlight586

© 2011 Telerik Inc.

private void tvPossibleOptions_PreviewEdited(object sender, RadTreeViewItemEditedEventArgs e)
{
 string message = String.Format(
 "Old text was \"{0}\", new text is \"{1}\". Do you want to make this change?",
 e.OldValue.ToString(), e.NewValue.ToString());

 // show the user the old and new state of the edited text
 bool cancel =
 MessageBox.Show(message,
 "Make Changes?", MessageBoxButton.OKCancel) == MessageBoxResult.Cancel;

 // the user wants to cancel, so restore the header to the old text and
 // stop the edit
 if (cancel)
 {
 (e.Source as RadTreeViewItem).Header = e.OldText;
 (e.Source as RadTreeViewItem).CancelEdit();
 }

 e.Handled = cancel;
}

17.4.7 Keyboard Support

RadTreeView has a rich set of keyboard commands that deserve special mention:

Arrow Keys navigate, one item at a time, within the tree. The left arrow key collapses an item if
expanded, otherwise it navigates one item up in the tree. The right arrow key expands an item or travels
one item down in the tree.

PageUp, PageDown keys page through items in the view port area.

End, Home keys navigate to last or first visible item in the tree.

Enter toggles the collapsed/expanded state of an item. If the tree is in edit mode, pressing the Enter
key confirms the new item value.

Esc cancels an edit or drag operation.

Add, Subtract expands or collapses a selected item.

Multiply, Divide expands or collapses all child items.

F2 puts an item into edit mode.

Shift is used to select multiple contiguous items.

Ctrl is used to select multiple items that may not be contiguous.

TreeView 587

© 2011 Telerik Inc.

17.4.8 Performance

At the time of this writing, tree view aspects relating to performance are in flux, but this forum entry may
help your planning.

 From the Forums...

Question: Are there some tweaks I can make to help improve performance of the TreeView?

Answer: Generally, you can think of performance in the following terms:

1. A smart use of templates/control logic can achieve good performance for items in the
hundreds (1-1000). Currently the Template of the TreeViewItems has a lot of elements that
you may not need - for example a loading animation, disabled state visual, checkbox, radio
button, lines, edit presenter, etc. The total number of visual elements for a single TreeView
item is 25 and could be reduced to approx 5-6.

2. UI Virtualization can increase the usable items count to thousands - 1000-10000. See the UI
Virtualization section below.

3. Data Virtualization is needed for more items, going to 1 mil. for example.

UI Virtualization

RadTreeView supports virtualization to allow large amounts of nodes to be presented without performance
loss. Things to keep in mind:

The IsVirtualizing property needs to be set to true.

Containers will be generated only for the visible items.

The GetContainerByItem() method becomes expensive and should not be called in a cycle. The tree
view needs to do some “guessing” where the container of an item is, which may take time if the tree
view has deep jagged hierarchy.

Containers for expanded items are currently not virtualized. There are some issues in Silverlight
currently that demand this, so keeping hundreds of expanded items will hurt performance.

The virtualization has three modes: Standard, Recycling and Hierarchical. The “Recycling” is the default.
It creates a visual cache of items per-ItemsControl. This way scrolling is faster but the tree view takes
more memory. For “Standard” the TreeView should take less memory but scroll slower. (i.e. this is the
memory-cpu tradeoff with caches). When you use "Hierarchical" mode, then all items that are out of
view will be virtualized, including the expanded items. Containers are cached and reused at a TreeView
level. This mode is suited for indented hierarchies and fully expanded trees. Scrolling may be slower in
longer lists (collapsed trees) but faster when the tree is expanded.

The mode is set through the TreeViewPanel VirtualizationMode attached property found in the Telerik.
Windows.Controls.TreeView namespace.

<telerik:RadTreeView
 IsVirtualizing="True"
 telerk:TreeViewPanel.VirtualizationMode="Recycling" ...

Animation

RadControls for Silverlight588

© 2011 Telerik Inc.

You can also disable animation like so:

<telerik:RadTreeView telerik:AnimationManager.IsAnimationEnabled="False" />

Where the telerik namespace is:
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"

17.5 Binding

17.5.1 Basic Binding

Minimally, you can assign an IEnumerable collection to the RadTreeView ItemsSource property to bind it.
For example, it's perfectly OK to assign a collection of strings:

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim categories As ObservableCollection(Of String) = _
 New ObservableCollection(Of String) (New String() _
{"Hardware", "Clothing", "Electronics"})
 tvMain.ItemsSource = categories
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 ObservableCollection<string> categories =
 new ObservableCollection<string>()
 {
 "Hardware", "Clothing", "Electronics"
 };
 tvMain.ItemsSource = categories;
}

The bound tree view might show up in the browser like the screenshot below. You will be able to select
nodes, edit nodes and perform drag-and-drop operations on the bound data.

TreeView 589

© 2011 Telerik Inc.

 Gotcha!

"Drag-and-Drop doesn't work when I bind the tree view, why"?

This question comes up in various guises quite often. If you want the tree view to track changes in
the collection, you must bind to an ObservableCollection, not a generic List or other collection.
Also, if you want property changes to show up, the objects in the collection need to implement
the INotifyPropertyChanged interface.

Not only can you bind the tree view, you can bind each of the nodes. The screenshot below shows a single
"Categories" node added to the root of the tree view with our bound items underneath the root node.

The code snippet for this example adds a single RadTreeViewItem with header "Categories" to the Items
collection of the tree view, then binds a collection underneath the programmatically defined node using the
node's ItemsSource property

.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim item As New RadTreeViewItem() With {.Header ="Categories"}
 tvMain.Items.Add(item)

 item.ItemsSource = New ObservableCollection(Of String) _
(New String() {"Hardware", "Clothing", "Electronics"})
End Sub

RadControls for Silverlight590

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 RadTreeViewItem item = new RadTreeViewItem() { Header ="Categories" };
 tvMain.Items.Add(item);

 item.ItemsSource =
 new ObservableCollection<string>()
 {
 "Hardware", "Clothing", "Electronics"
 };
}

TreeView 591

© 2011 Telerik Inc.

17.5.2 Hierarchical Templates

Of course, it's not worthwhile to bind a tree view just to get a flat list. Tree views are all about hierarchical
data. For that you need to use HierarchicalDataTemplates as previously discussed in the "Menu
Controls" chapter. A quick reminder on hierarchical templates work: The RadTreeView ItemTemplate points
to a HierarchicalDataTemplate. Each HierarchicalDataTemplate ItemTemplate attribute points up to another
HierarchicalDataTemplate except the last template that has no children. This last template is a
DataTemplate. Take a look at the example below that represents a corporate hierarchy with President/Vice
President, Director and Manager.

RadControls for Silverlight592

© 2011 Telerik Inc.

Each level of the hierarchy has its own template. The RadTreeView ItemTemplate points at the
"PresidentTemplate", the "PresidentTemplate" ItemTemplate points to the "VPTemplate" and so on until the
last "ManagerTemplate".

<UserControl.Resources>
. . .
 <DataTemplate x:Key="ManagerTemplate">
 . . . content
 </DataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="DirectorTemplate"
 ItemTemplate="{StaticResource ManagerTemplate}">
 . . . content
 </telerik:HierarchicalDataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="VPTemplate"
 ItemTemplate="{StaticResource DirectorTemplate}">
 . . . content
 </telerik:HierarchicalDataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="PresidentTemplate"
 ItemTemplate="{StaticResource VPTemplate}">
 . . . content
 </telerik:HierarchicalDataTemplate>

</UserControl.Resources>
. . .
<telerik:RadTreeView x:Name="tvMain"
 ItemTemplate="{StaticResource PresidentTemplate}">
</telerik:RadTreeView>

TreeView 593

© 2011 Telerik Inc.

Walk Through

This walk through will first demonstrate how to display a static hierarchy using the templates as explained
above. Then a more maintainable solution will be presented that uses a single HierarchicalDataTemplate.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

c) Telerik.Windows.Themes.Summer

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references to System.Windows, Telerik.Windows.Controls, Telerik.
Windows.Controls.Navigation and to the project itself. This last reference will allow access to our
data source that we will write later.

<UserControl
xmlns:local="clr-namespace:_03B_Binding_Hierarchy"
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.Windows">

RadControls for Silverlight594

© 2011 Telerik Inc.

3) Add a UserControl Resources element inside the UserControl element as shown below.

The two comments are mark ing where you will add resources in the following steps. The first set of
resources that control appearance related properties of the page aren't important to this example and
can be copied and pasted without examination. The second set of resources, i.e. "<!--data binding
resources-->", is the crucial part of this example that makes hierarchical data binding work .

<UserControl.Resources>

 <!--resources for the appearance of the page-->

 <!--data binding resources-->

</UserControl.Resources>

TreeView 595

© 2011 Telerik Inc.

4) Add the following appearance related XAML under the comment "<!--resources for the appearance of
the page-->".

<!--resources for the appearance of the page-->

<Style x:Key="BorderStyle" TargetType="Border">
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="#55000055" />
 <GradientStop Offset="1" Color="#99BFD2C2" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="#9FBFD2C2" />
 <GradientStop Offset=".9" Color="#1ABFD2C2" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

<Style x:Key="TreeStackPanel" TargetType="StackPanel">
 <Setter Property="Orientation" Value="Vertical" />
 <Setter Property="Margin" Value="20" />
</Style>

<Style x:Key="TitleStyle" TargetType="TextBlock">
 <Setter Property="Margin" Value="20" />
 <Setter Property="FontSize" Value="20" />
</Style>

RadControls for Silverlight596

© 2011 Telerik Inc.

5) Add the following appearance related XAML under the comment "<!--data binding resources-->".

"local:OrgChart" will point to an object we will write later to contain our data. Each of the
HierarchicalDataTemplate tag contains an ItemsSource attribute that specifies a collection property in
the OrgChart object and an ItemTemplate attribute that points to the next template in line. The last
template in line is a DataTemplate called "ManagerTemplate".

<!--data binding resources-->

<local:OrgChart x:Key="OrgChart" />

<DataTemplate x:Key="ManagerTemplate">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FullName}" />
 <TextBlock Foreground="PowderBlue" Text="{Binding Title}" />
 </StackPanel>
</DataTemplate>

<telerik:HierarchicalDataTemplate x:Key="DirectorTemplate"
 ItemsSource="{Binding DirectReports}"
 ItemTemplate="{StaticResource ManagerTemplate}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FullName}" />
 <TextBlock Foreground="SkyBlue" Text="{Binding Title}" />
 </StackPanel>
</telerik:HierarchicalDataTemplate>

<telerik:HierarchicalDataTemplate x:Key="VPTemplate"
 ItemsSource="{Binding DirectReports}"
 ItemTemplate="{StaticResource DirectorTemplate}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FullName}" />
 <TextBlock Foreground="SlateBlue" Text="{Binding Title}" />
 </StackPanel>
</telerik:HierarchicalDataTemplate>

<telerik:HierarchicalDataTemplate x:Key="PresidentTemplate"
 ItemsSource="{Binding DirectReports}"
 ItemTemplate="{StaticResource VPTemplate}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FullName}" />
 <TextBlock Foreground="Blue" Text="{Binding Title}" />
 </StackPanel>
</telerik:HierarchicalDataTemplate>

TreeView 597

© 2011 Telerik Inc.

6) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags.

<Border Style="{StaticResource BorderStyle}">
 <StackPanel Style="{StaticResource TreeStackPanel}">
 <TextBlock Text="Organization Chart"
 Style="{StaticResource TitleStyle}" />
 <!--tree view-->
 </StackPanel>
</Border>

7) Drag a RadTreeView from the Toolbox and drop it just below the "<!--tree view-->" comment, under the
TextBlock. Set the RadTreeView ItemsSource property to "{StaticResource OrgChart}" and the
ItemTemplate to "{StaticResource PresidentTemplate}". The XAML should look like the example
below when you're done.

<Border Style="{StaticResource BorderStyle}">
 <StackPanel Style="{StaticResource TreeStackPanel}">
 <TextBlock Text="Organization Chart"
 Style="{StaticResource TitleStyle}" />
 <!--tree view-->
 <telerik:RadTreeView
 ItemsSource="{StaticResource OrgChart}"
 ItemTemplate="{StaticResource PresidentTemplate}">
 </telerik:RadTreeView>
 </StackPanel>
</Border>

RadControls for Silverlight598

© 2011 Telerik Inc.

Coding the Data Source Object

In these next steps we will create an "OrgChart" object that has a collection of "Management" objects. The
OrgChart object will form a corporate reporting structure where each Management object will have a
"DirectReports" collection of other Management objects.

1) In the Solution Explorer, right-click the project and select Add > Class... from the context menu. Name
the class file "Management.cs" and click Add to create the class file.

2) In the code-behind for the class, add references to the "Imports" (VB) or "using" (C#) section of the
code for these namespaces:

a) System.Collections.ObjectModel (to support the ObservableCollection class)

b) System.ComponentModel (to support the INotifyPropertyChanged interface)

3) Add a public enumeration "Title" with members "President", "VicePresident", "Director" and
"Manager".

Public Enum Title
 President
 VicePresident
 Director
 Manager
End Enum

public enum Title { President, VicePresident, Director, Manager };

TreeView 599

© 2011 Telerik Inc.

4) Add a Management class to the class file. It should implement the INotifyPropertyChanged interface. It
should have a string "FullName" property, Title property, and DirectReports property. DirectReports will
be an ObservableCollection of Management.

Public Class Management
 Implements INotifyPropertyChanged
Public Sub New()
 Me._directReports = New ObservableCollection(Of Management)()
End Sub

Private _fullName As String
Public Property FullName() As String
 Get
 Return _fullName
 End Get

 Set(ByVal value As String)
 If _fullName <> value Then
 _fullName = value
 OnPropertyChanged("FullName")
 End If
 End Set
End Property

Private _directReports As ObservableCollection(Of Management)
Public Property DirectReports() As ObservableCollection(Of Management)
 Get
 Return _directReports
 End Get

 Set(ByVal value As ObservableCollection(Of Management))
 If _directReports IsNot value Then
 _directReports = value
 OnPropertyChanged("DirectReports")
 End If
 End Set
End Property

Private _title As Title
Public Property Title() As Title
 Get
 Return _title
 End Get

 Set(ByVal value As Title)
 If _title IsNot value Then
 _title = value
 OnPropertyChanged("Title")
 End If
 End Set
End Property

RadControls for Silverlight600

© 2011 Telerik Inc.

Protected Overridable Sub OnPropertyChanged(ByVal propertyName As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
End Sub

Public Event PropertyChanged As PropertyChangedEventHandler
End Class

public class Management : INotifyPropertyChanged
{
public Management()
{
 this._directReports = new ObservableCollection<Management>();
}

private string _fullName;
public string FullName
{
 get
 {
 return _fullName;
 }

 set
 {
 if (_fullName != value)
 {
 _fullName = value;
 OnPropertyChanged("FullName");
 }
 }
}

private ObservableCollection<Management> _directReports;
public ObservableCollection<Management> DirectReports
{
 get
 {
 return _directReports;
 }

 set
 {
 if (_directReports != value)
 {
 _directReports = value;
 OnPropertyChanged("DirectReports");
 }
 }
}

private Title _title;

TreeView 601

© 2011 Telerik Inc.

public Title Title
{
 get
 {
 return _title;
 }

 set
 {
 if (_title != value)
 {
 _title = value;
 OnPropertyChanged("Title");
 }
 }
}

protected virtual void OnPropertyChanged(string propertyName)
{
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

public event PropertyChangedEventHandler PropertyChanged;
}

5) In the Solution Explorer, right-click the project and select Add > Class... from the context menu. Name
the class file "OrgChart.cs" and click Add to create the class file.

6) In the code-behind for the class, add references to the "Imports" (VB) or "using" (C#) section of the
code for this namespace:

a) System.Collections.ObjectModel (to support the ObservableCollection class)

RadControls for Silverlight602

© 2011 Telerik Inc.

7) Paste the code below to create the OrgChart class.

It inherits from ObservableCollection of type Management. The class simply instantiates a number of
Management objects and adds them to the collection. notice that the Management objects are nested
by way of the DirectReports property.

Public Class OrgChart
 Inherits ObservableCollection(Of Management)
 Public Sub New()
 Me.Add(New Management() With { _
.FullName = "Mathes Zackey", _
.Title = Title.President, _
.DirectReports = { New Management() With {_
.FullName = "Aya Sato", _
.Title = Title.VicePresident, _
.DirectReports = { New Management() With {_
.FullName = "Hamlima Massri", _
.Title = Title.Director}, New Management() With {_
.FullName = "Robert Simpson", _
.Title = Title.Director}, New Management() With {_
.FullName = "Mary Sweitzer", _
.Title = Title.Director}, New Management() With {_
.FullName = "Lian Ran", _
.Title = Title.Director} }}, New Management() With {_
.FullName = "Petar Sofianski", _
.Title = Title.VicePresident, _
.DirectReports = { New Management() With {_
.FullName = "Isabella Benson", _
.Title = Title.Director}, New Management() With {_
.FullName = "Aaron Silverman", _
.Title = Title.Director, _
.DirectReports = { New Management() With {_
.FullName = "Sam Schwartz", _
.Title = Title.Manager}, New Management() With {_
.FullName = "Adelia Luna", _
.Title = Title.Manager} }} }} }})
 End Sub
End Class

public class OrgChart : ObservableCollection<Management>
{
 public OrgChart()
 {
 this.Add(new Management()
 {
 FullName = "Mathes Zackey",
 Title = Title.President,
 DirectReports =

TreeView 603

© 2011 Telerik Inc.

 {
 new Management()
 {
 FullName = "Aya Sato",
 Title = Title.VicePresident,
 DirectReports =
 {
 new Management()
 {
 FullName = "Hamlima Massri",
 Title = Title.Director,
 },
 new Management()
 {
 FullName = "Robert Simpson",
 Title = Title.Director,
 },
 new Management()
 {
 FullName = "Mary Sweitzer",
 Title = Title.Director,
 },
 new Management()
 {
 FullName = "Lian Ran",
 Title = Title.Director,
 }
 }
 },
 new Management()
 {
 FullName = "Petar Sofianski",
 Title = Title.VicePresident,
 DirectReports =
 {
 new Management()
 {
 FullName = "Isabella Benson",
 Title = Title.Director,
 },
 new Management()
 {
 FullName = "Aaron Silverman",
 Title = Title.Director,
 DirectReports =
 {
 new Management()
 {
 FullName = "Sam Schwartz",
 Title = Title.Manager,
 },
 new Management()
 {
 FullName = "Adelia Luna",
 Title = Title.Manager

RadControls for Silverlight604

© 2011 Telerik Inc.

 }
 }
 }

 }
 }
 }
 });
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

The example so far shows how you can customize each level if you have a static hierarchy. The problem
with this approach is that its inflexible and not easy to maintain. The structure of each level in the hierarchy
is identical, so do I need a template for each level? No, a single template will do, as shown below. This
solution will handle additional levels automatically, as long as they follow the same structure where the
ItemsSource refers to the collection for the next level down. Change the example to include only a single
HierarchicalDataTemplate as shown below. Notice that the ItemTemplate is not defined because we don't
want to refer to another template. Also notice the "TitleToBrushConverter" that we will implement in a later
step.

TreeView 605

© 2011 Telerik Inc.

<UserControl.Resources>

 . . .
 <local:OrgChart x:Key="OrgChart" />
 <local:TitleToBrushConverter x:Name="TitleToBrushConverter" />

 <telerik:HierarchicalDataTemplate
 x:Key="DirectReportsTemplate"
 ItemsSource="{Binding DirectReports}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FullName}" />
 <TextBlock Text="{Binding Title}"
 Foreground="{Binding Title, Converter={StaticResource TitleToBrushConverter}}"
 Margin="5, 0, 0, 0" />
 </StackPanel>
 </telerik:HierarchicalDataTemplate>

</UserControl.Resources>

<Grid x:Name="LayoutRoot">
 <Border Style="{StaticResource BorderStyle}">
 <StackPanel Style="{StaticResource TreeStackPanel}">
 <TextBlock Text="Organization Chart"
 Style="{StaticResource TitleStyle}" />
 <!--tree view-->
 <telerik:RadTreeView
 ItemsSource="{StaticResource OrgChart}"
 ItemTemplate="{StaticResource DirectReportsTemplate}">
 </telerik:RadTreeView>
 </StackPanel>
 </Border>
</Grid>
</UserControl>

The TitleToBrushConverter accepts the bound object's Title enumeration property and returns a brush. The
brush is applied to the text Foreground property. Here's the implementation of the new
TitleToBrushConverter class.

RadControls for Silverlight606

© 2011 Telerik Inc.

Public Class TitleToBrushConverter
 Implements IValueConverter

 #Region "IValueConverter Members"

 Public Function Convert(ByVal value As Object, ByVal targetType As Type,
ByVal parameter As Object, ByVal culture As System.Globalization.CultureInfo) As Object
 Select Case CType(value, Title)
 Case Title.President
 Return New SolidColorBrush(Colors.Black)
 Case Title.VicePresident
 Return New SolidColorBrush(Colors.DarkGray)
 Case Title.Director
 Return New SolidColorBrush(Colors.Blue)
 Case Title.Manager
 Return New SolidColorBrush(Colors.LightGray)
 Case Else
 Return New SolidColorBrush(Colors.White)
 End Select
 End Function

 Public Function ConvertBack(ByVal value As Object, ByVal targetType As Type, _
ByVal parameter As Object, ByVal culture As System.Globalization.CultureInfo) As Object
 Throw New NotImplementedException()
 End Function

 #End Region
End Class

TreeView 607

© 2011 Telerik Inc.

public class TitleToBrushConverter : IValueConverter
{

 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 switch ((Title)value)
 {
 case Title.President: return new SolidColorBrush(Colors.Black);
 case Title.VicePresident: return new SolidColorBrush(Colors.DarkGray);
 case Title.Director: return new SolidColorBrush(Colors.Blue);
 case Title.Manager: return new SolidColorBrush(Colors.LightGray);
 default: return new SolidColorBrush(Colors.White);
 }
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }

}

Test Application Features

1) Verify that all four templates worth of data display.

Ideas for Extending This Example

Include additional fields in the Management object and surface them in the template.

RadControls for Silverlight608

© 2011 Telerik Inc.

Change the "DirectorTemplate" from a HierarchicalDataTemplate to a DataTemplate. Remove the
ItemsSource and ItemTemplate attributes from the DataTemplate. You should now see only the first
three levels, even though there is more data.

TreeView 609

© 2011 Telerik Inc.

17.5.3 Template Selectors

Template selectors let you choose between multiple templates at runtime. The screenshot below shows a
template for the president that has an image and where the other templates also have slight differences in
foreground brush colors.

 Notes

Templates are selected when an item is first prepared but cannot be changed once shown.

The key piece to making template selectors work is first to inherit from the DataTemplateSelector class
and override its SelectTemplate() method. Use the method's "item" parameter to reference the business
object bound to the template. In this case the business object is a Management object with Name and Title
properties.The example uses the Title property to determine which template should be returned.
"MyTemplateSelector" defined below also has properties to store each of the types of templates it might
select (these properties are set later in the XAML).

RadControls for Silverlight610

© 2011 Telerik Inc.

Public Class MyTemplateSelector
 Inherits DataTemplateSelector
 ' save off references to the page and templates on the page here
 Private privatePresidentTemplate As HierarchicalDataTemplate
 Public Property PresidentTemplate() As HierarchicalDataTemplate
 Get
 Return privatePresidentTemplate
 End Get
 Set(ByVal value As HierarchicalDataTemplate)
 privatePresidentTemplate = value
 End Set
 End Property
 Private privateVPTemplate As HierarchicalDataTemplate
 Public Property VPTemplate() As HierarchicalDataTemplate
 Get
 Return privateVPTemplate
 End Get
 Set(ByVal value As HierarchicalDataTemplate)
 privateVPTemplate = value
 End Set
 End Property
 Private privateDirectorTemplate As HierarchicalDataTemplate
 Public Property DirectorTemplate() As HierarchicalDataTemplate
 Get
 Return privateDirectorTemplate
 End Get
 Set(ByVal value As HierarchicalDataTemplate)
 privateDirectorTemplate = value
 End Set
 End Property
 Private privateManagerTemplate As DataTemplate
 Public Property ManagerTemplate() As DataTemplate
 Get
 Return privateManagerTemplate
 End Get
 Set(ByVal value As DataTemplate)
 privateManagerTemplate = value
 End Set
 End Property

 Public Overrides Function SelectTemplate(ByVal item As Object, ByVal container As DependencyObject) As DataTemplate
 MyBase.SelectTemplate(item, container)

 ' get the bound object
 Dim management As Management = TryCast(item, Management)

 ' use the ob ject data to choose a template
 Select Case management.Title
 Case Title.President
 Return PresidentTemplate
 Case Title.VicePresident
 Return VPTemplate
 Case Title.Director
 Return DirectorTemplate
 Case Title.Manager
 Return ManagerTemplate
 Case Else
 Return Nothing
 End Select
 End Function
End Class

TreeView 611

© 2011 Telerik Inc.

public class MyTemplateSelector : DataTemplateSelector
{
 // save off references to the page and templates on the page here
 public HierarchicalDataTemplate PresidentTemplate
 {
 get;
 set;
 }
 public HierarchicalDataTemplate VPTemplate
 {
 get;
 set;
 }
 public HierarchicalDataTemplate DirectorTemplate
 {
 get;
 set;
 }
 public DataTemplate ManagerTemplate
 {
 get;
 set;
 }

 public override DataTemplate SelectTemplate(
 object item, DependencyObject container)
 {
 base.SelectTemplate(item, container);

 // get the bound object
 Management management = item as Management;

 // use the ob ject data to choose a template
 switch (management.Title)
 {
 case Title.President: return PresidentTemplate;
 case Title.VicePresident: return VPTemplate;
 case Title.Director: return DirectorTemplate;
 case Title.Manager: return ManagerTemplate;
 default: return null;
 }
 }
}

Notice the XAML below:

Appearance related styles are omitted for brevity.

There are no ItemTemplate references as in the Hierarchical Template example because the template
selector takes care of identifying the template to use.

Each template can contain any content you care to fill it with.

RadControls for Silverlight612

© 2011 Telerik Inc.

The template selector "MyTemplateSelector" defines the template properties, "PresidentTemplate", etc,
that we defined in the MyTemplateSelector code behind. Each template property is hooked up to its
respective template resource.

<UserControl.Resources>. . .

 <local:OrgChart x:Key="OrgChartDataSource" />

 <telerik:HierarchicalDataTemplate x:Key="Manager">
 <TextBlock Text="{Binding FullName}" Foreground="{StaticResource ManagerBrush}" />
 </telerik:HierarchicalDataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="Director" ItemsSource="{Binding DirectReports}">
 <TextBlock Text="{Binding FullName}" Foreground="{StaticResource DirectorBrush}" />
 </telerik:HierarchicalDataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="VP" ItemsSource="{Binding DirectReports}">
 <TextBlock Text="{Binding FullName}" Foreground="{StaticResource VPBrush}" />
 </telerik:HierarchicalDataTemplate>

 <telerik:HierarchicalDataTemplate x:Key="President" ItemsSource="{Binding DirectReports}">
 <StackPanel Orientation="Horizontal">
 <Image Source="images/Favorites.png" />
 <TextBlock Text="{Binding FullName}" />
 </StackPanel>
 </telerik:HierarchicalDataTemplate>

 <local:MyTemplateSelector x:Key="MyTemplateSelector"
 PresidentTemplate="{StaticResource President}"
 VPTemplate="{StaticResource VP}"
 DirectorTemplate="{StaticResource Director}"
 ManagerTemplate="{StaticResource Manager}" />
</UserControl.Resources>

In the XAML, RadTreeView ItemTemplateSelector is assigned the "MyTemplateSelector" reference.

<telerik:RadTreeView
 ItemsSource="{StaticResource OrgChartDataSource}"
 ItemTemplateSelector="{StaticResource MyTemplateSelector}">
</telerik:RadTreeView>

TreeView 613

© 2011 Telerik Inc.

17.5.4 Load-On-Demand

The end-user doesn't need to see every node in the tree. Nodes only
need to be retrieved when they are expanded, i.e. "on demand". In
the running application, a "spinny" graphic automatically displays to
indicate that data is being retrieved for the expanding node.

You can mix-and-match so that some nodes are pre-loaded and expanded, while less used nodes are
loaded when the user clicks the expansion button. The general steps for making load-on-demand work are
the same without regard to the actual source of the data, be it from a web service, from a network source or
from some other origin. The key pieces for getting load-on-demand to work are:

Set the RadTreeView IsLoadOnDemandEnabled property to "True".

Handle the LoadOnDemand event. In the event, get a reference to the node being expanded and
assign its ItemsSource property. The ItemsSource property for the node supplies just the data for the
node's children and no more.

Private Sub tvMain_LoadOnDemand(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 ' get a reference to the node being expanded
 Dim treeViewItem As RadTreeViewItem = TryCast(e.OriginalSource, RadTreeViewItem)
 ' you can also get a reference to a bound object
 Dim myObject As MyObject = TryCast(treeViewItem.Item, MyObject)
 treeViewItem.ItemsSource = SomeDataSource
End Sub

void tvMain_LoadOnDemand(object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 // get a reference to the node being expanded
 RadTreeViewItem treeViewItem = e.OriginalSource as RadTreeViewItem;
 // you can also get a reference to a bound object
 MyObject myObject = treeViewItem.Item as MyObject;
 treeViewItem.ItemsSource = SomeDataSource;
}

RadControls for Silverlight614

© 2011 Telerik Inc.

The code below shows a modified "OrgChart" example that demonstrates the load-on-demand feature. The
"DirectReports" property is assigned to each node ItemsSource property as needed. Here are some things
to look for in the code:

In the Loaded event, the IsLoadOnDemandEnabled property is set to "True" and the
LoadOnDemand event is assigned an event handler. Both of these could be defined directly in the
XAML. The root level object in OrgChart is assigned as the root of the tree.

The LoadOnDemand event handler has two major aspects. Part of the code simulates an asynchronous
operation with some latency and is included here just to get a feel for how the tree view behaves when
loading from a remote source over the network. The significant part of the code, that you should pay
attention to, gets a reference to the expanded node and its bound object, then assigns the node's
ItemsSource property if there's any data. Notice that if there is no data to be assigned, the node's
IsLoadOnDemandEnabled property is set "False" to remove the expansion button.

Private orgChart As New OrgChart()

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' turn on the load-on-demand feature
 tvMain.IsLoadOnDemandEnabled = True
 ' handle the load on demand event
 AddHandler tvMain.LoadOnDemand, AddressOf tvMain_LoadOnDemand
 ' assign the initial node that displays at startup
 tvMain.ItemsSource = New ObservableCollection(Of Management) (New Management() {orgChart(0)})
 ' tweak load on demand related node properties based on its data
 AddHandler tvMain.ItemPrepared, AddressOf tvMain_ItemPrepared
End Sub

Private Sub tvMain_LoadOnDemand(_
ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 ' simulate asynchronous operation
 ' simulate lag time
 ' get the node being expanded
 ' get the node's bound object
 ' load the node if there's any data
 CType(New System.Threading.Thread(Function() With { _
System.Threading.Thread.Sleep(1000); Dispatcher.BeginInvoke(Function() { _
RadTreeViewItem treeViewItem = TryCast(e.OriginalSource, RadTreeViewItem); _
Management management = TryCast(treeViewItem.Item, Management); _
if (management.HasDirectReports) { _
treeViewItem.ItemsSource = management.DirectReports; } else { _
treeViewItem.IsLoadOnDemandEnabled = False; } }); }), _
System.Threading.Thread).Start()
End Sub

TreeView 615

© 2011 Telerik Inc.

private OrgChart orgChart = new OrgChart();

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // turn on the load-on-demand feature
 tvMain.IsLoadOnDemandEnabled = true;
 // handle the load on demand event
 tvMain.LoadOnDemand +=
 new EventHandler<Telerik.Windows.RadRoutedEventArgs>(tvMain_LoadOnDemand);
 // assign the initial node that displays at startup
 tvMain.ItemsSource = new ObservableCollection<Management>() { orgChart[0] };
}

void tvMain_LoadOnDemand(object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 // simulate asynchronous operation
 new System.Threading.Thread(() =>
 {
 // simulate lag time
 System.Threading.Thread.Sleep(1000);
 Dispatcher.BeginInvoke(() =>
 {
 // get the node being expanded
 RadTreeViewItem treeViewItem = e.OriginalSource as RadTreeViewItem;
 // get the node's bound object
 Management management = treeViewItem.Item as Management;
 // load the node if there's any data
 if (management.HasDirectReports)
 {
 treeViewItem.ItemsSource = management.DirectReports;
 }
 else
 {
 treeViewItem.IsLoadOnDemandEnabled = false;
 }
 });
 }).Start();
}

RadControls for Silverlight616

© 2011 Telerik Inc.

 From the Forums...

Question: "If I know that a node has no children, I don't want to display the expansion button to
begin with. Is there a way to hide the expansion button when the node is first displayed?"

Answer: Handle the ItemPrepared event and set the IsLoadOnDemandEnabled to "False" when
there are no children available.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' . . .
 ' tweak load on demand related node properties based on its data
 AddHandler tvMain.ItemPrepared, AddressOf tvMain_ItemPrepared
End Sub

Private Sub tvMain_ItemPrepared(ByVal sender As Object, _
ByVal e As RadTreeViewItemPreparedEventArgs)
 If TypeOf e.PreparedItem.Item Is Management Then
 ' Hide the expand icon if the node has no children
 If Not(TryCast(e.PreparedItem.Item, Management)).HasDirectReports Then
 e.PreparedItem.IsLoadOnDemandEnabled = False
 End If
 End If
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // . . .
 // tweak load on demand related node properties based on its data
 tvMain.ItemPrepared +=
 new EventHandler<RadTreeViewItemPreparedEventArgs>(tvMain_ItemPrepared);
}

void tvMain_ItemPrepared(object sender, RadTreeViewItemPreparedEventArgs e)
{
 if (e.PreparedItem.Item is Management)
 {
 // Hide the expand icon if the node has no children
 if (!(e.PreparedItem.Item as Management).HasDirectReports)
 {
 e.PreparedItem.IsLoadOnDemandEnabled = false;
 }
 }
}

TreeView 617

© 2011 Telerik Inc.

17.6 Customization

The tree view is a complex control with many templated elements that let you control the appearance of the
expander button, drag-and-drop elements, header and individual nodes, just to name a few.

To change the appearance of nodes in the tree view, edit the RadTreeViewItem style and assign this new
style to the tree items. Here are some of the basic approaches:

If you code (i.e. create) tree items in XAML than you should modify the Style property.

If you bind the tree's ItemsSource property you should use the tree view ItemContainerStyle property

If you have different items or need to dynamically change styles at runtime than you should use the
ItemContainerStyleSelector property.

The easiest way to get started is to edit an existing Style. Using Expression Blend, for example, you can
add a RadTreeView to a page with at least one RadTreeViewItem. Select the tree item and choose to Edit
Template from the context menu. This action will generate a new item style and can be modified to suit your
requirements. This will allow you to change various elements of the item such as MouseOverVisual and
SelectionUnfocusedVisual. The screenshot below shows the brushes used by the MouseOverVisual and
SelectionUnfocusedVisual changed to fit the "Scoville" set of red, yellow, orange and black colors. The
RadTreeView itself for the most part is transparent. In the example below, a Border was placed around the
RadTreeView and the background was filled with a RadialGradientBrush providing the "sunburst" effect you
see below.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

RadControls for Silverlight618

© 2011 Telerik Inc.

Walk Through

In this example we will customize the RadTreeViewItems of a RadTreeView.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight Application" from the
right-most list. Enter a unique name for the project and click OK.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

2) In the Projects pane, right-click the References node and select Add Reference... from the context
menu. Add references to the Telerik.Windows.Controls.dll and Telerik.Windows.Controls.
Navigation.dll assemblies.

3) From the Project menu select Build Project.

4) Add a Border control to the page:

a) Open the Assets pane. On the left side of the Assets pane is a tree view. Locate and select the
"Controls" node.

b) In the Assets pane, just above the tree view is the Assets Find entry text box. Type the first few
characters of "Border" into the Assets Find entry text box. A list of matching controls will show to the
right of the tree view.

c) Locate the Border control and drag it onto the "LayoutRoot" node. Notice how the tool tip reads
"Create in LayoutRoot".

TreeView 619

© 2011 Telerik Inc.

5) Add a RadTreeView from the Assets pane into the Border. Again, watch the tool tip to see that the
tree view is created "in" the Border (i.e., not as a sibling of the Border).

RadControls for Silverlight620

© 2011 Telerik Inc.

6) Drag three RadTreeViewItem from the Assets pane into the RadTreeView. Select each
RadTreeViewItem in the Objects and Timeline pane and set the Header properties in the Properties
pane to "Extremely Hot", "Hot" and "Mild".

TreeView 621

© 2011 Telerik Inc.

 Notes

Alternatively, you can switch to the XAML view using the buttons on the upper right hand side of
the Artboard and paste in the same node structure used in the Getting Started chapter. The
XAML is included below for convenience.

<telerik:RadTreeView>

 <telerik:RadTreeViewItem Header="Extremely Hot">
 <telerik:RadTreeViewItem Header="Pure capsaicin" />
 <telerik:RadTreeViewItem Header="Naga Jolokia" />
 <telerik:RadTreeViewItem Header="Red Savina Habanero" />
 </telerik:RadTreeViewItem>

 <telerik:RadTreeViewItem Header="Hot">
 <telerik:RadTreeViewItem Header="Cayenne Pepper" />
 <telerik:RadTreeViewItem Header="Tabasco" />
 <telerik:RadTreeViewItem Header="Chipotle" />
 </telerik:RadTreeViewItem>

 <telerik:RadTreeViewItem Header="Mild">
 <telerik:RadTreeViewItem Header="Bell Pepper" />
 <telerik:RadTreeViewItem Header="Pimento" />
 <telerik:RadTreeViewItem Header="Peperoncini" />
 </telerik:RadTreeViewItem>

</telerik:RadTreeView>

RadControls for Silverlight622

© 2011 Telerik Inc.

7) In the Objects and Timeline pane, select the RadTreeView to edit its properties. In the Properties
pane > Layout panel, set the HorizontalAlignment and VerticalAlignment properties to center. This will
place the tree view in the dead center of the "sunburst" inside the border.

8) In the Objects and Timeline pane, select the Border and edit its properties.

a) In the Layout panel, locate the Advanced Property Options button next to the Width and Height
properties. Click the "Set to Auto" button.

b) In the Properties pane, select "Background" from the Brushes panel. Click the Gradient Brush button.
Click the Radial Gradient button.

TreeView 623

© 2011 Telerik Inc.

9) In the Gradient Bar, select the left-most gradient stop indicator, then choose a yellow color from the
palette. Select the right-most gradient stop indicator and choose a red/orange color from the palette.

Now the tree view in the Artboard should look something like the screenshot below:

10)Right-click the first RadTreeViewItem in the tree view and select Edit Template > Edit a Copy from
the context menu. In the "Create Style Resource" dialog, set the Name (Key) to "ScovilleItem". Click
OK to create the style resource and close the dialog.

RadControls for Silverlight624

© 2011 Telerik Inc.

11)In the Objects and Timeline pane, open up the "HeaderRow" and select the "MouseOverVisual" node.
Expand it and select the inner "Border" element.

12)Change the MouseOverVisual brush.

a) In the Properties pane, the Background property in the Brushes pane should already be selected. The
"ControlSubItem_Background_MouseOver" local brush resource should also be selected. Before
making changes, the Properties pane should look something like the screenshot:

TreeView 625

© 2011 Telerik Inc.

b) Click the color block to the left of the "ControlSubItem_Background_MouseOver" to display the color
editing drop down.

c) Select the gradient stop indicators and select yellow, orange and red from the palette. The exact
colors aren't critical, but could look something like the screenshot below.

RadControls for Silverlight626

© 2011 Telerik Inc.

Tip!

Also notice that you can set the "A" (Alpha or transparency) percentage to something less than
100%. This allows you to use stronger, darker colors without overpowering the content of the
item.

13)Change the SelectionVisual brush using the same techniques you used to modify the
MouseOverVisual. The brush in this case will be "ControlSubItem_Background_Selected" brush.
Change the colors for this brush to use the same palette of red, orange and yellow, but make the color
selection somewhat different than the MouseOverVisual.

14)In the Objects and Timeline pane, click the Return Scope button to return to the UserControl scope.

15)Up to this point we have styled the first RadTreeViewItem in the tree. To apply this style to other items,
right-click each RadTreeViewItem in the Objects and Timeline pane and select Edit Template > Apply
Resource > "ScovilleItem" from the context menu.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

TreeView 627

© 2011 Telerik Inc.

Test Application Features

The "sunburst" effect of the border background should take up the entire browser client area.

Selected and hovered items should match the MouseOverVisual and SelectionVisual modified brushes.

Look at the XAML and notice the "Style" attribute points to our "ScovilleItem" style. In this example, the
style was only applied to the root items.

RadControls for Silverlight628

© 2011 Telerik Inc.

Ideas for Extending This Example

Bind the tree view and modify the ItemContainerStyle property instead of the Style property. To find
the correct options in Expression Blend during design time, you need to have the tree view already
bound to data. When you load a project with bound data into Expression Blend, you can select the tree
view in the Objects and Timeline pane. Then, in the Expression Blend Object menu, you will be able to
find the new menu item Edit Additional Styles > ItemContainerStyle option

17.7 Wrap Up

In this chapter we covered a wide range of tasks that exercise many of the RadTreeView features including
defining trees manually, using the API to add/remove/enable/select nodes, locating and accessing nodes,
adding images to nodes, handling node expansion and reacting to node selection. You also defined trees
with mixed groups of radio buttons and checkboxes. You learned how to work with drag-and-drop
operations, both to enable simple drag-and-drop functionality and to fine-tune the behavior based on multiple
conditions such as source and target nodes and the state of the data associated with a node.

You bound the tree to simple lists of data, then bound specific nodes to data sources. Then you used
Hierarchical Templates to organize the data and present a specific appearance based on the level of data.
You learned how to use Template Selectors to choose templates where decisions need to be made on-the-
fly at runtime. You used the load-on-demand feature to allow performant data loading restricted to nodes
being expanded at any one time.

Finally, you learned how to customize the appearance of individual nodes using Expression Blend.

Part

XVIII
GridView

RadControls for Silverlight630

© 2011 Telerik Inc.

18 GridView

18.1 Objectives

In this chapter you will be introduced to RadGridView and many of its key features. Starting out you will
bind the grid view to some basic data. Afterwards you will see how to expand the example to use
hierarchical data and how to customize columns.

While delving into the details of RadGridView, you will work with selected rows and cells. You will handle
events that notify you in case a change or selection has been made within the grid. You will learn the
programming model commonalities for filtering, sorting and grouping. Furthermore, on working with groups,
you will learn how to add aggregate functions for each one of them. You will be introduced to column types
and learn about special columns that handle images, hyperlinks and lookups. The "Grid View Elements
Visibility" section will demonstrate how to show and hide the visual elements of the grid view. Last, but not
least you will be introduced to the technique of formatting and exporting the content of the grid by different
clipboard capabilities.

In the Binding section of this chapter you will connect the grid view to simple .NET objects. From there you
will build a REST service against the Twitter API. Then you will be prompt to build WCF and WCF RIA
services. In the process you will work with inherent Silverlight security restrictions. You will also learn how
to customize the layout of an entire grid view row.

In the Customization section of this chapter you will customize grid view cells to achieve a unique look.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Gridview\Gridview.sln

GridView 631

© 2011 Telerik Inc.

18.2 Overview

RadGridView is the ultimate Silverlight grid control that features unrivalled performance through LINQ-based
data engine, remarkably flexible hierarchy model, advanced features such as Excel-like filtering, row details,
totals, export to Word/Excel/CSV and many more. RadGridView is a truly lookless Silverlight Grid that can
be easily customized to blend perfectly into your applications.

RadGridView has a truly impressive list of features that make it a workhorse for your RIA applications:

WPF/Silverlight Code Compatibility

Support for WCF RIA Services

LINQ-Based Data Engine and Native UI
Virtualization

Truly Lookless, Blend Skinnable, Completely
Customizable Control

RadCompression Module

Direct Data Operations

Powerful Databinding

Asynchronous Databinding

Data Source Updates

Grouping and Aggregates

Sorting

Hierarchy

In-place Editors and Built-in Data Validation

Totals Row with Aggregate Functions

Frozen Columns

Export to Word/Excel/CSV

Custom Layout

Row Details

Styling

Gridlines Visibility

Localization Support

Selecting and Navigating

Filtering and Excel-like Filtering

RadControls for Silverlight632

© 2011 Telerik Inc.

18.3 Getting Started

This project demonstrates binding to a grid view to simple category data being displayed in read-only
mode.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

d) Telerik.Windows.Controls.Input.dll

XAML Editing

1) Open MainPage.xaml for editing.

2) Drag a RadGridView control from the Toolbox to a point between the "LayoutRoot" <Grid> and </Grid>
tags. Set the x:Name attribute to "gvMain" so the grid view can be referenced later in code. In order to
work with the RadGridView for Silverlight 4 and its components, it is necessary to add a XML
namespace reference to the Telerik.Windows.Controls assembly in the XAML markup. However, you
may find it more convenient to use the Uri namespace that may be used for a reference to all included
in the application Telerik assemblies.

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>
<Grid x:Name="LayoutRoot">
 <telerik:RadGridView x:Name="gvMain">
 </telerik:RadGridView>
</Grid>

</UserControl>

GridView 633

© 2011 Telerik Inc.

Code Behind

1) In the code-behind for the UserControl, add a Category class with a single string "Description" field. It
should be defined outside and after the UserControl class.

Public Class Category
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
End Class

public class Category
{
 public string Description { get; set; }
}

2) In the constructor, create a generic list of Category and assign it to the RadGridView ItemsSource
property.

Public Sub New()
 InitializeComponent()

 Dim categories As List(Of Category) = New List(Of Category) _
(New Category() {New Category() With { _
.Description = "Kayaks"}, New Category() With { _
.Description = "Inflatables"}, New Category() With { _
.Description = "Canoes"}, New Category() With { _
.Description = "Dinghies"}})
 gvMain.ItemsSource = categories
End Sub

RadControls for Silverlight634

© 2011 Telerik Inc.

public MainPage()
{
 InitializeComponent();

 List<Category> categories = new List<Category>()
 {
 new Category() { Description = "Kayaks" },
 new Category() { Description = "Inflatables" },
 new Category() { Description = "Canoes" },
 new Category() { Description = "Dinghies" }
 };
 gvMain.ItemsSource = categories;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

The grid should display a single column of Category Description strings.

Ideas for Extending This Example

Display a hierarchy of data.

 For example, new "Product" objects may be shown under each Category in a master/detail relationship.
In order to achieve this, add a GridViewTableDefinition to the grid view's ChildTableDefinitions
collection. It specifies the collection property, containing the data about the children. In the example
below, the Category class has been moved to its own class file and joined by a "Product" class.

Public Class Categories
 Inherits List(Of Category)
 Public Sub New()
 Me.Add(New Category() With { _

GridView 635

© 2011 Telerik Inc.

.Description = "Kayaks", . _
Products = New List(Of Product) (New Product() {New Product() With { _
.Description = "Touring Kayak"}, New Product() With { _
.Description = "Double Frame"}, New Product() With { _
.Description = "Ocean Kayak"}})})

 Me.Add(New Category() With { _
.Description = "Dinghies", _
.Products = New List(Of Product) (New Product() {New Product() With { _
.Description = "Sport Dinghy"}, New Product() With { _
.Description = "Ribbed with Wood Floor"}, New Product() With { _
.Description = "Fishing Dinghy"}, New Product() With { _
.Description = "Yacht Tender"}})})

 Me.Add(New Category() With { _
.Description = "Canoes", _
.Products = New List(Of Product) (New Product() {New Product() With { _
.Description = "Maine River Canoe"}, New Product() With { _
.Description = "Seattle Sport"}, New Product() With { _
.Description = "Inflatable Canoe"}})})
 End Sub
End Class

Public Class Category
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
 Private privateProducts As List(Of Product)
 Public Property Products() As List(Of Product)
 Get
 Return privateProducts
 End Get
 Set(ByVal value As List(Of Product))
 privateProducts = value
 End Set
 End Property
End Class

Public Class Product
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
End Class

RadControls for Silverlight636

© 2011 Telerik Inc.

public class Categories : List<Category>
{
 public Categories()
 {
 this.Add(new Category()
 {
 Description = "Kayaks",
 Products = new List<Product>()
 {
 new Product() { Description = "Touring Kayak" },
 new Product() { Description = "Double Frame" },
 new Product() { Description = "Ocean Kayak" }
 }
 });

 this.Add(new Category()
 {
 Description = "Dinghies",
 Products = new List<Product>()
 {
 new Product() { Description = "Sport Dinghy" },
 new Product() { Description = "Ribbed with Wood Floor" },
 new Product() { Description = "Fishing Dinghy" },
 new Product() { Description = "Yacht Tender" }
 }
 });

 this.Add(new Category()
 {
 Description = "Canoes",
 Products = new List<Product>()
 {
 new Product() { Description = "Maine River Canoe" },
 new Product() { Description = "Seattle Sport" },
 new Product() { Description = "Inflatable Canoe" }
 }
 });

 }
}

public class Category
{
 public string Description { get; set; }
 public List<Product> Products { get; set; }
}

public class Product
{
 public Product() {}

 public string Description { get; set; }
}

GridView 637

© 2011 Telerik Inc.

Define a GridViewTableDefinition inside the constructor. Every such table definition has a Relation
property that points to the collection of child objects.

Public Sub New()
 InitializeComponent()

 ' This class defines the field used to
 ' display a child tab le, in this case the
 ' "Products" collection of a "Category".
 Dim tableViewDefinition As New GridViewTableDefinition() With { _
.Relation = New PropertyRelation("Products")}
 gvMain.ChildTableDefinitions.Add(tableViewDefinition)

 ' assign the generic list of Category
 gvMain.ItemsSource = New Categories()
End Sub

public MainPage()
{
 InitializeComponent();

 // This class defines the field used to
 // display a child tab le, in this case the
 // "Products" collection of a "Category".
 GridViewTableDefinition tableViewDefinition =
 new GridViewTableDefinition()
 {
 Relation = new PropertyRelation("Products")
 };
 gvMain.ChildTableDefinitions.Add(tableViewDefinition);

 // assign the generic list of Category
 gvMain.ItemsSource = new Categories();
}

Running in the browser, the example now looks like this screenshot:

RadControls for Silverlight638

© 2011 Telerik Inc.

Specify the columns to be displayed

 By default, the AutoGenerateColumns property of the grid is set to "False" and all columns in the bound
object are created for you. However, you can easily control which columns should be displayed as well as
their properties. For instance, the "Products" column that reads "System.Collection" at the moment can
be removed. Furthermore, the Header property of the "Description" column may be modified to "Category
Description". The first thing to be done is to set the AutoGenerateColumns property to "False", then add
to the Columns collection.

' Only display the "Description" column, not the "Products" column
gvMain.AutoGenerateColumns = False
gvMain.Columns.Add(New GridViewDataColumn() With { _
.DataMemberBinding = New Binding("Description"), .Header = "Category Description"})

// Only display the "Description" column, not the "Products" column
gvMain.AutoGenerateColumns = false;
gvMain.Columns.Add(new GridViewDataColumn()
{
 DataMemberBinding = new Binding("Description"),
 Header = "Category Description"
});

Now, only the new column description with its header displays in the grid.

GridView 639

© 2011 Telerik Inc.

Style the grid using one of the pre-defined themes.

 As with all the RadControls for Silverlight, you need to add the theme assembly (i.e. Telerik.Windows.
Themes.Vista), add a XML namespace reference to the Telerik.Windows.Controls assembly in the XAML
markup, and finally, add a StyleManager.Theme assignment to the theme. However, for facilitation you
may use the common Uri namespace that gathers up all the relevant Telerik assemblies and you may use
it to reference each one of them, once they are added in the applicaion. The relevant XAML markup will
look like this example:

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>

 <Grid x:Name="LayoutRoot">
 <telerik:RadGridView
 telerik:StyleManager.Theme="Vista"
 x:Name="gvMain">
 </telerik:RadGridView>
 </Grid>

</UserControl>

The RadGridView in the browser now displays the new theme without any other specific styling
changes:

RadControls for Silverlight640

© 2011 Telerik Inc.

18.4 Control Details

18.4.1 Selections

The RadGridView provides you with a selection functionality, which allows the user to select one or more
items from the data displayed by the control. The only thing you need to do for selecting an item is to click
somewhere inside a row. Once a selection is made, the SelectionChanged event is fired and you are free
to manipulate all selected and unselected elements. The most straight-forward way of getting the object for
the selected row is to access the RadGridView SelectedItem property and cast the item to the appropriate
type.

In the example below, the grid view is bound to a list of Category objects. The SelectedItem is retrieved and
cast it to a Category type. Afterwards, you can easily use its to populate a TextBlock for instance.

Private Sub gvMain_SelectionChanged(_
ByVal sender As Object, ByVal e As SelectionChangeEventArgs)
 tbCurrentItem.Text = (TryCast(gvMain.SelectedItem, Category)).CategoryName
End Sub

GridView 641

© 2011 Telerik Inc.

private void gvMain_SelectionChanged(
 object sender, SelectionChangeEventArgs e)
{
 tbCurrentItem.Text = (gvMain.SelectedItem as Category).CategoryName;
}

RadGridView provides another feature at your hands - control of the SelectionMode. It can be set by the
equally named property and have the following values:

Single - only one item can be selected at a time. (default value)

Multiple - items are added to the selection when they get clicked and get removed when they get clicked
again.

Extended - items are added to the selection only by combining the mouse clicks with the Ctrl or Shift
key.

Furthermore, as of Q2 2010, you can select not only rows, but also single or multiple cells. The desired
behavior can be easily set by the SelectionUnit property, whose value may be:

FullRow - this is the default value. Clicking within the cells will select the row

Cell - the clicked cell is selected only. Depending on the value of the SelectionModes property you can
have more than one selected cell.

Both collections for selected items (rows) and selected cells may be manipulated through the
SelectedItems and SelectedCells Collections.

The example below uses LINQ to transform the SelectedItems into a collection of String. The String.Join()
method turns the collection into a comma delimited list for displaying it in a TextBlock. The
"CategoryName" for the three selected items is shown at the top of the screenshot.

Private Sub gvMain_SelectionChanged(ByVal sender As Object, ByVal e As SelectionChangeEventArgs)
 Dim items = _
 From c As Category In gvMain.SelectedItems _
 Select c.CategoryName
 tbCurrentItem.Text = String.Join(", ", items.ToArray())
End Sub

RadControls for Silverlight642

© 2011 Telerik Inc.

private void gvMain_SelectionChanged(
 object sender, SelectionChangeEventArgs e)
{
 var items = from Category c in gvMain.SelectedItems select c.CategoryName;
 tbCurrentItem.Text = String.Join(", ", items.ToArray());
}

If the selected item has scrolled away from view, you can use the ScrollIntoView() method and pass it the
data bound to a particular row. For example, the code below gets the item for the last row, adds it to the
SelectedItems collection if its not there already and then calls ScrollIntoView(), passing it the last item.

Private Sub btnSelectLast_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim lastItem = gvMain.Items(gvMain.Items.Count - 1)
 If (Not gvMain.SelectedItems.Contains(lastItem)) Then
 gvMain.SelectedItems.Add(lastItem)
 End If
 gvMain.ScrollIntoView(lastItem)
End Sub

private void btnSelectLast_Click(object sender, RoutedEventArgs e)
{
 var lastItem = gvMain.Items[gvMain.Items.Count - 1];
 if (!gvMain.SelectedItems.Contains(lastItem))
 gvMain.SelectedItems.Add(lastItem);
 gvMain.ScrollIntoView(lastItem);
}

You can get a selected cell by handling the CurrentCellChanged event. The event arguments passed in
include OldCell and NewCell references. Not only can retrieve the Content of the cell, but you can alter all
the properties of the cell. In the example below, the OldCell font is set to a bold italic and the NewCell
Content is displayed in TextBox at the top of the page. Note: use the cell DataContext to get the object
bound to the row.

GridView 643

© 2011 Telerik Inc.

Private Sub gvMain_CurrentCellChanged(_
ByVal sender As Object, ByVal e As GridViewCurrentCellChangedEventArgs)
 If e.OldCell IsNot Nothing Then
 e.OldCell.FontStyle = FontStyles.Italic
 e.OldCell.FontWeight = FontWeights.Bold
 End If
 tbCurrentCell.Text = DirectCast(e.NewCell.Content, TextBlock).Text
End Sub

private void gvMain_CurrentCellChanged(
 object sender, GridViewCurrentCellChangedEventArgs e)
{
 if (e.OldCell != null)
 {
 e.OldCell.FontStyle = FontStyles.Italic;
 e.OldCell.FontWeight = FontWeights.Bold;
 }
 tbCurrentCell.Text = ((TextBlock)e.NewCell.Content).Text;
}

RadControls for Silverlight644

© 2011 Telerik Inc.

 From the Forums...

GridView 645

© 2011 Telerik Inc.

Question: How to make my first row selected initially and synchronize it with the current item?

Answer: Initially, the current item of the grid is the first one to be displayed. The current item is
the one that holds the data item (business object) of the row which currently keeps the focus.
However,it may or may not coincide with the selected row. What you can do in order to
synchronize those two properties and make your first item selected is to use the property of the
grid - IsSynchronizedWithCurrentItem. Once it is set to "True", you will get the desired result.

Question: I am currently writing a method to reverse the selected rows in the RadGridView. But
adding items to the selected items in a "for" loop its becomes very slow. (It actually hangs the UI
on the test page as there are about 5000 rows to select.) The SelectAll and UnselectAll methods
on the grid are a lot quicker though (even with the 5000 of rows). So I was wondering is there a
way to load the selected items collection quickly?

On a side note is it possible to display the Asynchronous animation from a call in the code
behind? As I would quite like to display the "busy" message while we wait for a service call to
return or when we invert the selection.

Answer: 1) You could utilize the UnselectAll() and SelectAll() methods to boost the performance
when reverting the selection.

2) RadGridView has a property called IsBusy that controls the visibility of its loading indicator -
when set to true the loading indicator is shown. You can use this property to control the loading
indicator when you are waiting for a response from a service call.

You can select and de-select all items at once using the SelectAll() method and UnselectAll()
methods. You can also add and remove from the SelectedItems collection programmatically, as
shown in this next example where the selections for the entire grid are toggled. The code first
determines if there are a greater number of selected or unselected items in order to determine the
most efficient algorithm. The selected items are saved temporarily, the SelectAll()/UnselectAll()
method is called, then the saved selected items are added or removed from the SelectedItems
collection.

RadControls for Silverlight646

© 2011 Telerik Inc.

GridView 647

© 2011 Telerik Inc.

Private Sub btnReverseSelect_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 gvMain.IsBusy = True

 If gvMain.SelectedItems.Count <= gvMain.Items.Count Then
 ReverseWithSelectAll()
 Else
 ReverseWithUnselectAll()
 End If

 gvMain.IsBusy = False
End Sub

Private Sub ReverseWithUnselectAll()
 var old SelectedItems = gvMain.SelectedItems.ToList()
 gvMain.UnselectAll()

 For Each item In (CType(gvMain.ItemsSource, IList))
 If (Not oldSelectedItems.Contains(item)) Then
 gvMain.SelectedItems.Add(item)
 End If
 Next item
End Sub

Private Sub ReverseWithSelectAll()
 Dim oldSelectedItems = gvMain.SelectedItems.ToList()
 gvMain.SelectAll()

 For Each item In oldSelectedItems
 gvMain.SelectedItems.Remove(item)
 Next item
End Sub

RadControls for Silverlight648

© 2011 Telerik Inc.

private void btnReverseSelect_Click(object sender, RoutedEventArgs e)
{
 gvMain.IsBusy = true;

 if (gvMain.SelectedItems.Count <= gvMain.Items.Count)
 ReverseWithSelectAll();
 else
 ReverseWithUnselectAll();

 gvMain.IsBusy = false;
}

private void ReverseWithUnselectAll()
{
 var old SelectedItems = gvMain.SelectedItems.ToList();
 gvMain.UnselectAll();

 foreach (var item in ((IList)gvMain.ItemsSource))
 {
 if (!oldSelectedItems.Contains(item))
 gvMain.SelectedItems.Add(item);
 }
}

private void ReverseWithSelectAll()
{
 var oldSelectedItems = gvMain.SelectedItems.ToList();
 gvMain.SelectAll();

 foreach (var item in oldSelectedItems)
 {
 gvMain.SelectedItems.Remove(item);
 }
}

18.4.2 Filtering Sorting and Grouping

Filtering, sorting and grouping all follow a similar programming model. Each have a collection of descriptor
objects. The descriptor defines the operation specifics, e.g. what column to sort/ filter/ group on. The
descriptor is simply added to the collection to enable the operation. The upcoming sections demonstrate
defining each kind of descriptor, adding to the collection, and viewing the result effect in a screenshots.

Parallel to this mechanism of descriptor collections, each operation also has Filtering, Sorting and
Grouping events. These events allow you to get "down to the metal", so you can react to non-standard or
more complex situations. Each event supplies "new" and "old" descriptor objects as well as a Cancel
property to prevent the operation from occurring.

GridView 649

© 2011 Telerik Inc.

18.4.2.1 Filtering

You can filter RadGridView on the client, assuming you are not filtering on the database server, or further
up, in a service before returning the data to the Silverlight client. You will need to consider the performance
tradeoffs when designing your solution. By default the user can filter by clicking the "funnel" icons available
on each group header. The pop-up filter dialog allows the user to check particular values or specify a filter
criteria using an operation and value. Multiple filters can be "AND"-ed together. Furthermore, the user can
filter multiple columns.

RadControls for Silverlight650

© 2011 Telerik Inc.

The grid view FilterDescriptors collection lets you add a pre-defined filter or a custom filter of your own that
implements IFilterDescriptor. The most important classes that implement this interface directly or not are:

Filter Descriptor - implements filtering property (field) name, filtering operator and value. It is used for
defining filtering expressions like Country = "Germany".

CompositeFilterDescriptor - a collection of multiple filter descriptors with logical operator. It is used for
defining complex filtering expressions like (Country = "Germany" AND (City = "Berlin" OR City =
"Aachen")).

ColumnFilterDescriptor - a collection of multiple filter descriptors for single property (field). This type of
object is being created and added to the RadGridView's filters collection when a filter is defined using the
user interface.

The example below uses the built-in FilterDescriptor class - a basic filter that takes a data member name,
an operation and value.

Private Sub btnFilter_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim filter As New FilterDescriptor("CategoryName", _
FilterOperator.Contains, tbFilter.Text)
 gvMain.FilterDescriptors.Add(filter)
End Sub

private void btnFilter_Click(object sender, RoutedEventArgs e)
{
 FilterDescriptor filter =
 new FilterDescriptor("CategoryName",
 FilterOperator.Contains, tbFilter.Text);
 gvMain.FilterDescriptors.Add(filter);
}

GridView 651

© 2011 Telerik Inc.

You can simply add more filters and they will "AND" together like this example where only one record
survives the process:

Dim filter As New FilterDescriptor("CategoryName", _
FilterOperator.StartsWith, tbValue1.Text)
gvMain.FilterDescriptors.Add(filter)
Dim filter2 As New FilterDescriptor("Description", _
FilterOperator.Contains, tbValue2.Text)
gvMain.FilterDescriptors.Add(filter2)

FilterDescriptor filter =
 new FilterDescriptor("CategoryName", FilterOperator.StartsWith, tbValue1.Text);
gvMain.FilterDescriptors.Add(filter);
FilterDescriptor filter2 =
 new FilterDescriptor("Description", FilterOperator.Contains, tbValue2.Text);
gvMain.FilterDescriptors.Add(filter2);

RadControls for Silverlight652

© 2011 Telerik Inc.

To "OR" filters together, CompositeFilterDescriptor lets you set a logical operator that defines the
relationship between two filters. You can add any IFilterDescriptor implementation to the
CompositeFilterDescriptor FilterDescriptors collection and define the LogicalOperator property as "Or" or
 "AND". The example below uses the same FilterDescriptors and values as the previous example, but adds
those two descriptors to a ComposititeFilterDescriptor with an "Or" logical operator. Now the filter operation
brings back a wider set of data.

Dim composite As New CompositeFilterDescriptor()

Dim filter As New FilterDescriptor("CategoryName", _
FilterOperator.StartsWith, tbValue1.Text)
Dim filter2 As New FilterDescriptor("Description", _
FilterOperator.Contains, tbValue2.Text)
composite.FilterDescriptors.Add(filter)
composite.LogicalOperator = FilterCompositionLogicalOperator.Or
composite.FilterDescriptors.Add(filter2)

gvMain.FilterDescriptors.Add(composite)

CompositeFilterDescriptor composite = new CompositeFilterDescriptor();

FilterDescriptor filter =
new FilterDescriptor("CategoryName", FilterOperator.StartsWith, tbValue1.Text);
FilterDescriptor filter2 =
 new FilterDescriptor("Description", FilterOperator.Contains, tbValue2.Text);
composite.FilterDescriptors.Add(filter);
composite.LogicalOperator = FilterCompositionLogicalOperator.Or;
composite.FilterDescriptors.Add(filter2);

gvMain.FilterDescriptors.Add(composite);

GridView 653

© 2011 Telerik Inc.

Disabling Filtering

By default, users can filter against any column they want. The IsFilteringAllowed property manipulates
the capability for the grid as a whole. IsFilterable toggles filtering only for a single column. When
IsFilterable is set to "False", the filtering UI for that column is hidden from the user, but still available
programmatically.

In case you want to remove the filters programmatically, you may call the FilterDescriptors Clear() method.

Distinct Values

You can get a list of distinct values for a column using the GetDistinctValues() method and passing the
column where the values should come from and a Boolean that indicates if the existing filters in the other
columns should be honored. The example below gets a distinct list of categories. If a CategoryName
appears more than once in the column of the grid, the returned collection will only have a single occurrence
of the category name.

Dim column As GridViewDataColumn = _
TryCast(gvMain.Columns("CategoryName"), GridViewDataColumn)
lbDistinct.ItemsSource = gvMain.GetDistinctValues(column, False)

GridViewDataColumn column = gvMain.Columns["CategoryName"] as GridViewDataColumn;
lbDistinct.ItemsSource = gvMain.GetDistinctValues(column, false);

RadControls for Silverlight654

© 2011 Telerik Inc.

18.4.2.2 Sorting

Sorting in the RadGridView from the user perspective, simply means clicking the heading of any row and
watching the sort rotate between sorted ascending, sorted descending and unsorted states. The user can
also hold down the SHIFT key to sort on multiple columns.

The general model for sorting programmatically is similar to the one of filtering. RadGridView has a
SortDescriptors collection that you can add one or more SortDescriptor to. The SortDescriptor has
properties for the Member (the property towards which the sorting will be accomplished) and a
SortDirection (it can be set to either Ascending or Descending). Furthermore, like the filtering model, you
simply need to call the SortDescriptors Clear() method to reset them. The sorting functionality can be
controlled on a grid level by setting the CanUserSortColumns or on a column level by setting IsSortable
property.

The example below programmatically sorts by ID and Description in descending order. Notice the downward
pointing arrows in the column headers that indicate the descending sort order.

Private Sub btnSort_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 gvMain.Columns("CategoryName").IsSortable = False
 gvMain.SortDescriptors.Add(New SortDescriptor() With { _
.Member = "ID", _
.SortDirection = System.ComponentModel.ListSortDirection.Descending})
 gvMain.SortDescriptors.Add(New SortDescriptor() With { _
.Member = "Description", _
.SortDirection = System.ComponentModel.ListSortDirection.Descending})
End Sub

Private Sub btnClearSort_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 gvMain.SortDescriptors.Clear()
End Sub

GridView 655

© 2011 Telerik Inc.

private void btnSort_Click(object sender, RoutedEventArgs e)
{
 gvMain.Columns["CategoryName"].IsSortable = false;
 gvMain.SortDescriptors.Add(new SortDescriptor()
 {
 Member = "ID",
 SortDirection = System.ComponentModel.ListSortDirection.Descending
 });
 gvMain.SortDescriptors.Add(new SortDescriptor()
 {
 Member = "Description",
 SortDirection = System.ComponentModel.ListSortDirection.Descending
 });
}

private void btnClearSort_Click(object sender, RoutedEventArgs e)
{
 gvMain.SortDescriptors.Clear();
}

RadControls for Silverlight656

© 2011 Telerik Inc.

In case you need to perform more complicated custom sorting, you may handle the Sorting or Sorted
events of the RadGridView. The arguments of the first event handler allow you to get the sorting state
(Ascending, Descending or None) by the corresponding property - NewSortingState. Furthermore, the
sorting may be canceled at this level by using the Cancel property. Another important property available in
both handlers is Column - it is of type GridViewColumn and may be cast to a specific column type
depending on your requirements.

You may take a look at the code below for an example on the way to prevent sorting on integer columns.

Private Sub gvMain_Sorting(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.GridViewSortingEventArgs)
 If TypeOf e.Column Is GridViewDataColumn Then
 Dim column As GridViewDataColumn = _
TryCast(e.Column, GridViewDataColumn)
 If e.NewSortingState = SortingState.Descending Then
 If column.DataType Is GetType(System.Int32) Then
 e.Cancel = True
 End If
 End If
 End If
End Sub

private void gvMain_Sorting(object sender,
 Telerik.Windows.Controls.GridViewSortingEventArgs e)
{
 if (e.Column is GridViewDataColumn)
 {
 GridViewDataColumn column = e.Column as GridViewDataColumn;
 if (e.NewSortingState == SortingState.Descending)
 {
 if (column.DataType == typeof(System.Int32))
 {
 e.Cancel = true;
 }
 }
 }
}

GridView 657

© 2011 Telerik Inc.

18.4.2.3 Grouping

RadGridView allows the user to create groups depending on the values in a particular column. This can be
achieved by dragging a column's header into the group panel. Consequently, the group can be removed
either by dragging the group off the page or clicking the close button, or the user can click the group to
cycle the sort order between ascending, descending and no sort order.

RadGridView also provides the ability of defining aggregate functions for each group. Thus you may easily
display the total count of the items in each group, the minimum value, their sum, etc. Again, like the filtering
and sorting models, each GroupDescriptor is held in the GroupDescriptors collection. Each GroupDescriptor
defines a data Member property and a SortDirection. Then you can add to the GroupDescriptor
AggregateFunctions collection. As mentioned previously, all the usual aggregate suspects are
represented: count, sum, min, max, average, first and last. Each has a corresponding "Function" object, e.
g. CountFunction, SumFunction, etc, that describes the source field to aggregate, the caption that appears
before the aggregate result and a formatted string to present the result.

The example below groups on the Category column and sets the sort order to ascending. There are two
aggregates defined. The CountFunction definition demonstrates how to use the Caption and
ResultFormatString. The second is a SumFunction that defines the "InStock" property as the
SourceField.

The SourceField property for the category in the CountFunction code is not defined because the field is
assumed be the group column, i.e. a count of the "Category" source field.

RadControls for Silverlight658

© 2011 Telerik Inc.

Private Sub btnGroup_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim group As New GroupDescriptor()
 group.Member = "Category"
 group.SortDirection = ListSortDirection.Ascending

 Dim countFunction As New CountFunction() With { _
.Caption = "Count", .ResultFormatString = "{0} categories"}
 group.AggregateFunctions.Add(countFunction)

 Dim sumFunction As New SumFunction() With { _
.SourceField = "InStock", .Caption = "In Stock"}
 group.AggregateFunctions.Add(sumFunction)

 gvMain.GroupDescriptors.Add(group)
End Sub

GridView 659

© 2011 Telerik Inc.

private void btnGroup_Click(object sender, RoutedEventArgs e)
{
 GroupDescriptor group = new GroupDescriptor();
 group.Member = "Category";
 group.SortDirection = ListSortDirection.Ascending;

 CountFunction countFunction = new CountFunction()
 {
 Caption = "Count",
 ResultFormatString = "{0} categories"
 };
 group.AggregateFunctions.Add(countFunction);

 SumFunction sumFunction = new SumFunction()
 {
 SourceField = "InStock",
 Caption = "In Stock"
 };
 group.AggregateFunctions.Add(sumFunction);

 gvMain.GroupDescriptors.Add(group);
}

Expanding and Collapsing Groups

Use the CollapseGroup() and ExpandGroup() methods to toggle expansion of individual groups. Pass
those methods an IGroup item as a parameter that you can locate using System.Linq methods. The
example below uses the First() LINQ extension method. You can also call CollapseAllGroups() and
ExpandAllGroups() to toggle expansion for all groups.

Dim group = gvMain.Items.Cast(Of IGroup)().First()
gvMain.CollapseGroup(group)
' or
gvMain.ExpandGroup(group)

var group = gvMain.Items.Cast<IGroup>().First();
gvMain.CollapseGroup(group);
// or
gvMain.ExpandGroup(group);

RadControls for Silverlight660

© 2011 Telerik Inc.

18.4.3 Editing

RadGridView can automatically supply an appropriate editor based on the data type of the column. These
all use the GridViewDataColumn type. Here are some of the editors you will see for the
GridViewDataColumn:

The most basic editor handles text input in place.

DateTime values use a built-in date picker editor.

Boolean values are edited using a check box.

You can also define specific-purpose editors, such as the GridViewComboBoxColumn column.

Lookups are handled using a combo box. You can define the value field that is
to be updated in the grid view, the display member for the combo box and the
selected value for the combo box.

Two hyperlink column types have been introduced:
GridViewHyperlinkColumn and GridViewDynamicHyperlinkColumn that
let you bind a URL. The "Dynamic" version lets you specify a format string and
bind multiple columns for the values in the format string.

GridView 661

© 2011 Telerik Inc.

You may take a look at the code below for more details on the way those columns are defined. The
GridViewDataColumns are handled automatically simply by binding to the column name. Minimally, you
can set the DataMemberBinding and "you're good to go".

<telerik:RadGridView x:Name="gvMain"
 Margin="10" AutoGenerateColumns="False"
 ItemsSource="{StaticResource Products}">

 <telerik:RadGridView.Columns>
 . . .
 <telerik:GridViewDataColumn
 DataMemberBinding="{Binding ProductName, Mode=TwoWay}" />
 <telerik:GridViewDataColumn
 DataMemberBinding="{Binding Discontinued, Mode=TwoWay}" />
 <telerik:GridViewDataColumn
 DataMemberBinding="{Binding LastUpdated, Mode=TwoWay}" />
 </telerik:RadGridView.Columns>

</telerik:RadGridView>

The GridViewComboBoxColumn is used for lookups and requires more attention. In this example,
DataMemberBinding points to the property in the "Products" table that is being updated after the edit,
SelectedValueMemberPath is the value in the lookup collection and DisplayMemberPath is the
property that will display in the combo drop down.

<telerik:RadGridView x:Name="gvMain"
 Margin="10" AutoGenerateColumns="False"
 ItemsSource="{StaticResource Products}">

 <telerik:RadGridView.Columns>
 <telerik:GridViewComboBoxColumn
 Header="Category"
 SelectedValueMemberPath="ID"
 DisplayMemberPath="CategoryName"
 DataMemberBinding="{Binding CategoryID, Mode=TwoWay}"
 ItemsSource="{StaticResource Categories}"
 />
 . . .
 </telerik:RadGridView.Columns>

</telerik:RadGridView>

RadControls for Silverlight662

© 2011 Telerik Inc.

Sometimes its easier to see the relationship in diagram form. A cut down representation of the data shows
the RadGridView ItemsSource (Categories) and the ItemsSource for the GridViewComboBoxColumn
(Products) and how each of the properties relate to the data.

GridView 663

© 2011 Telerik Inc.

 From the Forums...

Question: I want to put a HyperlinkButton in my GridView but I want to pass in a query string to
the NavigateUri from my DataSource collection. Is this even possible?

Answer: We introduced two new columns: GridViewHyperlinkColumn and
GridViewDynamicHyperlinkColumn. Here is an example for both columns:

...
<telerik:GridViewHyperlinkColumn DataMemberBinding="{Binding Url}"
ContentBinding="{Binding CompanyName}" />
...

<telerik:GridViewDynamicHyperlinkColumn DataFormatString="Send mail to: {0}"
DataMemberBinding="{Binding CompanyName}"
NavigateUrlMemberPaths="ContactName, CompanyName"
NavigateUrlFormatString="mailto:{0}@{1}.com"/>

or

<telerik:GridViewDynamicHyperlinkColumn DataMemberBinding="{Binding MyProperty1}"
TargetName="_blank"
NavigateUrlMemberPaths="MyProperty2, MyProperty3"
NavigateUrlFormatString="http://www.myurl.com/page.aspx?q1={0}&q2={1}"/>

The GridViewHyperlinkColumn is used to define simple links where no substitutions to values in the URL
need to happen. Bind DataMemberBinding to the column holding the URL and the ContentBinding to the
column holding the text you want to display.

<telerik:GridViewHyperlinkColumn
 DataMemberBinding="{Binding InfoLink}"
 ContentBinding="{Binding ProductName}"
 />

The GridViewDynamicHyperlinkColumn is quite useful because you can merge your database data into
a format string to produce searches on more than one column's worth of data. Use the
DataMemberBinding and DataFormatString to build what the user sees in the column. The
DataMemberBinding replaces the DataFormatString arguments, i.e. "{0}", "{1}", etc. The
NavigateUrlFormatString and NavigateUrlMemberPaths produce the URL that will show when the user
clicks the link.

RadControls for Silverlight664

© 2011 Telerik Inc.

<telerik:GridViewDynamicHyperlinkColumn
 DataMemberBinding="{Binding ProductName}"
 DataFormatString="Find out more about {0}"
 NavigateUrlFormatString="http://www.bing.com/search?q={0}"
 NavigateUrlMemberPaths="ProductName"
 TargetName="_blank" />

Here is the dynamic hyperlink running in the browser.

GridView 665

© 2011 Telerik Inc.

18.4.4 Grid View Elements Visibility

Usually, every user has specific requirements for the outlook of the RadGridView and a necessity of
changing some visual elements comes appears. Therefore, the RadGrodView enables you to hide show
headers, footers, grid lines, row indicators and all the other spreadsheet-like trappings of a standard grid.
Erasing these visual cues may be challenging unless you know where they are. Usually, those properties
are not quite obvious, i.e. not always the property names end in "Visibility". The grid below has most of the
visual details removed.

Let us turn a few of these settings back on so you can see how each property impacts the visual makeup of
the grid. The Background and BorderBrush properties can be assigned "Transparent" in order to be
removed. The screenshot below shows a lime green BorderBrush while the BorderThickness is set to 3
pixels and the background is green.

RadGridView provides a CanUserFreezeColumns property that enables you to freeze columns. When
being set to "True", it results in some side-effect where visual artifacts are displayed to the left of the row.

RadControls for Silverlight666

© 2011 Telerik Inc.

The ShowGroupPanel, ShowColumnHeaders and ShowColumnFooters properties toggle visibility for
the group panel element at the top of the grid, the column headers just below the group header and above
the data rows and the column footer found below the data rows.

When grouping is applied, ShowGroupFooters toggles visibility for the element below a group of data
rows.

GridView 667

© 2011 Telerik Inc.

GridLinesVisibility can be Vertical, Horizontal, Both or None (to hide grid lines altogether). The
screenshot below shows the "Both" setting.

The row indicator visually flags the current row. RowIndicatorVisibility can be Visible or Collapsed.

Alternating row styles are the traditional technique for making it easier to visually differentiate between rows
of complex data. They produce that "zebra" effect you see in the screenshot below. The BaseItemsControl
AlternationCount is zero by default, so you don't need to explicitly turn this off.

If the grid is placed in an area too small for the grid, scroll bars will display. By default, the scrolling behavior
defers the actual scrolling of the grid view contents and instead displays a hint with the data for the current
row. The screenshot below shows that the user has scrolled to the "Cheeses" row. The subtle side-effect is
the pop-up hint itself. If you want to hide the hint, set the ScrollMode to RealTime. Otherwise, leave the
property at Deferred (the default).

RadControls for Silverlight668

© 2011 Telerik Inc.

To summarize what we've learned up to this point, here is the XAML markup that removes most of the
common visual cues:

<telerik:RadGridView
 Background="Transparent" BorderBrush="Transparent"
 CanUserFreezeColumns="False" ShowColumnFooters="False"
 ShowColumnHeaders="False" ShowGroupFooters="False"
 ShowGroupPanel="False"
 RowIndicatorVisibility="Collapsed"
 GridLinesVisibility="None"
 ScrollMode="RealTime">
</telerik:RadGridView>

 Notes

To configure alternate rows, set the AlternationCount property.

GridView 669

© 2011 Telerik Inc.

18.4.5 Accessing Elements in a Grid Row Template

When you require to customize the rows of the RadGridView - to load images for each one for example or
any other changes to a row or its elements, you may handle the grid view RowLoaded event. Use the
arguments Row property to find out what kind of a row this is (i.e. header, footer, "New row" element, detail
row), and access the elements in the row.

Important note: make sure you add the Telerik.Windows.Controls namespace to the "Imports" (VB) or
"using" (C#) section of code to get access to critical extension methods: ChildrenOfType<T>() and
ParentOfType<T>(). ChildrenOfType<T>() is really the all-purpose "Swiss Army Knife" method that makes
it easy to get at all the elements in the row. The sample below shows how you can check the Row type,
then use the ChildrenOfType<T>() method to get a particular element in the row.

Private Sub gvMain_RowLoaded(_
ByVal sender As Object, ByVal e As RowLoadedEventArgs)
 Dim isDetailRow As Boolean = _
Not(TypeOf e.Row Is GridViewNewRow OrElse _
TypeOf e.Row Is GridViewHeaderRow OrElse _
TypeOf e.Row Is GridViewFooterRow)
 If isDetailRow Then
 Dim image = e.Row.ChildrenOfType(Of Image)().FirstOrDefault()
 If image IsNot Nothing Then
 ' do something with the element
 End If
 End If
End Sub

private void gvMain_RowLoaded(object sender, RowLoadedEventArgs e)
{
 bool isDetailRow = !(e.Row is GridViewNewRow ||
 e.Row is GridViewHeaderRow ||
 e.Row is GridViewFooterRow);
 if (isDetailRow)
 {
 var image = e.Row.ChildrenOfType<Image>().FirstOrDefault();
 if (image != null)
 {
 // do something with the element
 }
 }
}

RadControls for Silverlight670

© 2011 Telerik Inc.

If you need to include more information about a row, show hierarchal data or provide a rich user editing
environment with RadGridView you can use the Row Details. Row Details is a DataTemplate defined on
the grid- or row-level and it is used for displaying data without affecting the dimensions of the row and the
cells within it. You can define Row Details template through the RowDetailsTemplate property of the grid.
The display mode is specified by the RowDetailsVisibilityMode property and the available two options -
Visible, Collapsed or VisibleWhenSelected. As the names imply the row details can be visible or
collapsed for each row or only for the selected one.

You can define the row details template, like:

<telerikGrid:RadGridView x:Name="radGridView"
 RowDetailsVisibilityMode="VisibleWhenSelected">
 <telerikGrid:RadGridView.RowDetailsTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal"
 Margin="10,10,10,10">
 <TextBlock Text="City: " />
 <TextBlock Text="{Binding City}" />
 </StackPanel>
 </DataTemplate>
 </telerikGrid:RadGridView.RowDetailsTemplate>
 ...
</telerikGrid:RadGridView>

You can also change the appearance of the Row Details by using the RowDetailsStyle property of the
RadGridView.

18.4.6 Sizing

The ColumnWidth property can be set for the RadGridView. Valid values are Auto(default), Star (*),
SizeToHeader, SizeToCells or a number of pixels. The property will set Width for auto-generated
columns when they are first generated. Changes made to ColumnWidth after auto-generation will have no
effect.

 Notes

Note that if the column is set to "*" then column virtualization will be off (see the following
section Performance > Virtualization for more information). Also for "*" columns to work
correctly you should not place RadGridView in panels/controls that will measure its children with
infinity: e.g. StackPanel, Grid panel with Column Width=Auto or Row with Height=Auto and
ScrollViewer. The problem is that infinite space cannot be distributed. Also see the article at
http://msdn.microsoft.com/en-us/library/cc645025(VS.95).aspx for more information about the
Silverlight layout system.

http://msdn.microsoft.com/en-us/library/cc645025(VS.95).aspx

GridView 671

© 2011 Telerik Inc.

<telerik:RadGridView x:Name="grid" ColumnWidth="SizeToHeader">
 <telerik:RadGridView.Columns>
 <telerik:GridViewDataColumn Header="Company Name" />
 <telerik:GridViewDataColumn Header="Contact" />
 <telerik:GridViewDataColumn Header="Phone" />
 <telerik:GridViewDataColumn Header="Ext" />
 </telerik:RadGridView.Columns>
</telerik:RadGridView>

The Width for individual columns can use a "*" notation to denote width percentages.

<telerik:RadGridView x:Name="grid" >
 <telerik:RadGridView.Columns>
 <telerik:GridViewDataColumn Header="Company Name" />
 <telerik:GridViewDataColumn Header="Contact" Width=".35*" />
 <telerik:GridViewDataColumn Header="Phone" Width=".5*" />
 <telerik:GridViewDataColumn Header="Ext" Width=".1*" />
 </telerik:RadGridView.Columns>
</telerik:RadGridView>

18.4.7 Performance

18.4.7.1 Virtualization

Virtualization of rows and columns means that only visible rows and columns are created. Likewise, when a
cell is marked with IsVisible = "False", the cell is not created and does not appear in the Cells collection.
You could turn off the vertical virtualization by setting the EnableRowVirtualization property to false which
will cause all rows to be created. However, it will also have a negative impact on the performance. You can
also turn off the horizontal virtualization by means of EnableColumnVirtualization property. Again all
elements - columns in this case will be created. It is the recommended best practice to leave virtualization
in place. Furthermore, it is advisable to work with the underlying data instead of the visual elements.

Tip!

In general you should not use visual elements like GridViewRow. The problem with GridViewRow
is that RadGridView uses virtualization and only a handful of rows are available at any time (just
the visible ones).

The demo projects included with the Visual Studio installation contains a GridView > Performance
example that loads a 500,000 rows of 100 columns each. The XAML declaration is very basic:

<telerik:RadGridView x:Name="RadGridView1" IsFilteringAllowed="False"
 ColumnWidth="100" ShowGroupPanel="False" IsReadOnly="True" />

RadControls for Silverlight672

© 2011 Telerik Inc.

The code-behind defines a collection of example objects populated with random data. The collection is
simply assigned to the RadGridView ItemsSource property.

 From the Forums...

Question: Performance can be slow when the RadGridView is placed inside a ScrollViewer. Why?

Answer: Some reports pointed to reduced performance of the RadGridView control when the
grid is placed in a control that measures its children with infinity. Such controls are ScrollViewer,
StackPanel (when vertical it measures with infinite height and when horizontal - with infinite
width), and Grid panel with RowDefinition Height="Auto" or ColumnDefinition Width="Auto".
When RadGridView (or any other grid) is measured with infinity virtualization is turned off which
results in reduced performance. Modify your code so that RadGridView is placed in a container
that will not measure it with infinity and the performance will be back to normal.

18.4.7.2 Paging

You can improve performance by simply limiting the number of records in view at any particular time. A
good approach for achieving this is to add paging. What you need to do is to use a
QueryableCollectionView (or any IEnumerable) to serve up the correct set of records, and a
RadDataPager control on the page to navigate the data. In the XAML, make sure you have a xml
namespace reference to the Telerik.Windows.Controls.Data assembly. Add a RadDataPager control and
set its Source attribute to bind to the RadGridView element Items property.

<UserControl
 xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>
 <Grid x:Name="LayoutRoot">
 <telerik:RadGridView x:Name="gridView" />
 <telerik:RadDataPager Source="{Binding Items, ElementName=gridView}" PageSize="10" />
 </Grid>
</UserControl>

Instead of assigning data directly to the RadGridView ItemsSource, assign a QueryableCollectionView.
The QueryableCollectionView constructor consumes a source collection of IEnumerable and its PageSize
property can be set to the number of records that should appear at any one time.

The example uses a source collection called "BusinessObjects" (not shown) that holds random data and
can output a given number of sample data rows using its "GetData()" method. You can use any
IEnumerable in place of the "BusinessObjects" collection.

Dim businessObjects As New MyBusinessObjects()
Dim view As New QueryableCollectionView(businessObjects.GetData(100))
view.PageSize = 10
Me.gridView.ItemsSource = view

GridView 673

© 2011 Telerik Inc.

MyBusinessObjects businessObjects = new MyBusinessObjects();
QueryableCollectionView view =
 new QueryableCollectionView(businessObjects.GetData(100));
view.PageSize = 10;
this.gridView.ItemsSource = view;

When you run the application, the RadDataPager will appear, allowing you to move through the data.

18.4.8 Print and Export

Exporting and printing from RadGridView are supported by the Export method or the extension methods in
static classes ExportExtensions and PrintExtensions, where both classes can be found in the Telerik.
Windows.Controls namespace.

RadControls for Silverlight674

© 2011 Telerik Inc.

18.4.8.1 Exporting

To export the RadGridView's data use the Export method of the control. The method expects two
parameters:

1. Stream - usually the file stream which you are exporting data to.

2. GridViewExportOptions or GridViewCsvExportOptions object - use it to set the following export
options:

Format - the possible formats are defined in the ExportFormat enumeration: Csv, ExcelML, Html or Text

Encoding - the possible values are Encoding.Unicode, Encoding.UTF8, etc.

ShowColumnHeaders - determines whether to export the column headers

ShowColumnFooters - determines whether to export the column footers

ShowGroupFooters - determines whether to export the group footers

ColumnDelimiter - determines the string that will separate the cells of the exported data. Default is
comma ",". Available in GridViewCsvExportOptions only.

RowDelimiter - determines the string that will separate the rows of the exported data. Default is new line.
Available in GridViewCsvExportOptions only.

UseSystemCultureSeparator - if set, the RadGridView will use the system List Separator string, specified
in Control Panel's Regional Options, to separate cells. This property overrides the ColumnDelimiter
property. Available in GridViewCsvExportOptions only.

 The following example shows how to show a save file dialog asking the user to save the file in excel format:

Public Sub New()
 InitializeComponent()
 AddHandler btnExport.Click, AddressOf btnExport_Click
End Sub
Private Sub btnExport_Click(sender As Object, e As RoutedEventArgs)
 Dim extension As String = "xls"
 Dim dialog As New SaveFileDialog() With { _
 .DefaultExt = extension, _
 .Filter = [String].Format("{1} files (*.{0})|*.{0}|All files (*.*)|*.*", extension, "Excel"), _
 .FilterIndex = 1 _
 }
If dialog.ShowDialog() = True Then
 Using stream As Stream = dialog.OpenFile()
 gridViewExport.Export(stream, New GridViewExportOptions() With { _
 .Format = ExportFormat.Html, _
 .ShowColumnHeaders = True, _
 .ShowColumnFooters = True, _
 .ShowGroupFooters = False _
 })
 End Using
 End If
End Sub

GridView 675

© 2011 Telerik Inc.

public MainPage()
{
InitializeComponent();
btnExport.Click += new RoutedEventHandler(btnExport_Click);
}
void btnExport_Click(object sender, RoutedEventArgs e)
{
string extension = "xls";
SaveFileDialog dialog = new SaveFileDialog()
{
 DefaultExt = extension,
 Filter = String.Format("{1} files (*.{0})|*.{0}|All files (*.*)|*.*", extension, "Excel"),
 FilterIndex = 1
};
if (dialog.ShowDialog() == true)
{
 using (Stream stream = dialog.OpenFile())
 {
 gridViewExport.Export(stream,
 new GridViewExportOptions()
 {
 Format = ExportFormat.Html,
 ShowColumnHeaders = true,
 ShowColumnFooters = true,
 ShowGroupFooters = false,
 });
 }
}
}

RadControls for Silverlight676

© 2011 Telerik Inc.

In addition, you can use the following extension methods which allow RadGridView to export tab delimited
text, comma delimited text, XML and HTML:

ToText(): Returns a string with tab delimited text.

ToHtml(): Returns an HTML string that can be saved as both "doc" and "xls" files.

ToCsv(): Returns a string with comma delimited text.

ToExcelML(): Returns an XML string.

The contents for all formats can all be written to disk using the same general technique shown below. This
particular example writes an HTML file. As we are in a Silverlight environment, you will need to use the
SaveFileDialog to access local file storage.

Dim dialog As New SaveFileDialog() With {.Filter = "HTML files (*.html)|*.html|All files (*.*)|*.*"}
If dialog.ShowDialog() = True Then
 Using stream As Stream = dialog.OpenFile()
 Using writer As New StreamWriter(stream, Encoding.UTF8)
 writer.Write(gridView.ToHtml())
 End Using
 stream.Close()
 End Using
End If

SaveFileDialog dialog = new SaveFileDialog()
{
 Filter = "HTML files (*.html)|*.html|All files (*.*)|*.*"
};
if (dialog.ShowDialog() == true)
{
 using (Stream stream = dialog.OpenFile())
 {
 using (StreamWriter writer =
 new StreamWriter(stream, Encoding.UTF8))
 {
 writer.Write(gridView.ToHtml());
 }
 stream.Close();
 }
}

GridView 677

© 2011 Telerik Inc.

18.4.8.2 Formatting

Formatting the elements of the grid is available through subscribing to the ElementExporting event. Each
element is passed in the GridViewElementExportingEventArgs. You can find the usage of the element by
comparing to the ExportElement enumeration (i.e. if its a Cell, Row, HeaderRow, etc) and the elements
value. The example below simply bolds the header row text.

Private Sub gridView_Exporting(ByVal sender As Object, ByVal e As GridViewExportEventArgs)
 If e.Element Is ExportElement.HeaderRow Then
 e.FontWeight = FontWeights.Bold
 End If
End Sub

private void gridView_Exporting(object sender, GridViewExportEventArgs e)
{
 if (e.Element == ExportElement.HeaderRow)
 {
 e.FontWeight = FontWeights.Bold;
 }
}

18.4.8.3 Printing

Printing the contents of the grid view using the host browser is enabled by calling the PrintToHtml()
method. Use the same ElementExporting event to format the HTML content while printing.

Private Sub Print(ByVal sender As Object, ByVal e As Telerik.Windows.RadRoutedEventArgs)
 gridView.PrintToHtml()
End Sub

private void Print(object sender, Telerik.Windows.RadRoutedEventArgs e)
{
 gridView.PrintToHtml();
}

RadControls for Silverlight678

© 2011 Telerik Inc.

18.5 Binding

18.5.1 .NET Objects

As mentioned previously in the Getting Started section of this chapter, you can easily bind a simple generic
list if the user does not need to change the data. The typical grid is not used as a list, but still it allows the
user to change its data. For this you must descend any collections from ObservableCollection and
implement INotifyPropertyChanged for each object in a collection. No additional coding is needed for the
grid view, only the bound object class definitions change. For example, the code below will run but not
display a new category object in the grid.

Private Sub AddCategoriesClick(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim categories As Categories = _
TryCast(gvMain.ItemsSource, Categories)
 categories.Add(New Category() With {_
.Description = "Life Rafts", .Products = New List(Of Product)()})
End Sub

private void AddCategoriesClick(object sender, RoutedEventArgs e)
{
 Categories categories = gvMain.ItemsSource as Categories;
 categories.Add(new Category()
 {
 Description = "Life Rafts",
 Products = new List<Product>()
 });
}

GridView 679

© 2011 Telerik Inc.

To make the button click code above work, the generic List<> has to be changed to an
ObservableCollection<>. Note that ObservableCollection is found in the System.ComponentModel
namespace.

' change this...
Public Class Categories
 Inherits ObservableCollection(Of Category)

' to this...
Public Class Categories
 Inherits List(Of Category)

// change this...
public class Categories : List<Category>
// to this...
public class Categories : ObservableCollection<Category>

You also need to change the Products property from a List<> to ObservableCollection<>.

RadControls for Silverlight680

© 2011 Telerik Inc.

Then implement the INotifyPropertyChanged interface in each of the objects and sub-objects in the
collection. Implementing the interface simply surfaces the PropertyChanged event. Trigger PropertyChanged
after you assign each new property value. The sample below shows the Product class with a
INotifyPropertyChanged interface implementation. Use this same pattern to implement the interface in the
Category class.

Public Class Product
 Implements INotifyPropertyChanged
 Public description_Renamed As String
 Public Property Description() As String
 Get
 Return description_Renamed
 End Get
 Set(ByVal value As String)
 description_Renamed = value
 OnPropertyChanged("Description")
 End Set
 End Property

 Public Sub OnPropertyChanged(ByVal propertyName As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
 End Sub

 Public Event PropertyChanged As PropertyChangedEventHandler
End Class

GridView 681

© 2011 Telerik Inc.

public class Product : INotifyPropertyChanged
{
 public string description;
 public string Description
 {
 get { return description; }
 set
 {
 description = value;
 OnPropertyChanged("Description");
 }
 }

 public void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

 Gotcha!

The grid may still refresh at times even if all the plumbing described here is not done completely.
For example, if you neglect to change the Products property from List<> to
ObservableCollection, you would see a refresh of the Products when a new category is added.
This could cause hard-to-debug behavior as the project becomes more complex.

RadControls for Silverlight682

© 2011 Telerik Inc.

Property Paths

How can you flatten out a nested object hierarchy? For example, if our Category object has a Buyer object
that in turn has properties for "First", "Last" and "Home Phone", how do we display this on one line? The
Property Paths feature allows you to drill down and include properties from sub-objects. The example below
shows Category.Description and Category.Buyer.FirstName, both in the same row.

To display sub-property values, set the AutoGenerateColumns property to "False", add
GridViewDataColumn instances to the Columns collection and assign a new Binding (using the property
path) to the DataMemberBinding property of the column. Use the dot notation of the full path when
creating the Binding.

gvMain.AutoGenerateColumns = False
gvMain.Columns.Add(New GridViewDataColumn() With {. _
DataMemberBinding = New Binding("Description")})
gvMain.Columns.Add(New GridViewDataColumn() With {. _
DataMemberBinding = New Binding("Buyer.FirstName")})
gvMain.Columns.Add(New GridViewDataColumn() With {. _
DataMemberBinding = New Binding("Buyer.LastName")})
gvMain.Columns.Add(New GridViewDataColumn() With {. _
DataMemberBinding = New Binding("Buyer.HomePhone")}

gvMain.AutoGenerateColumns = false;
gvMain.Columns.Add(new GridViewDataColumn()
{
 DataMemberBinding = new Binding("Description")
});
gvMain.Columns.Add(new GridViewDataColumn()
{
 DataMemberBinding = new Binding("Buyer.FirstName")
});
gvMain.Columns.Add(new GridViewDataColumn()
{
 DataMemberBinding = new Binding("Buyer.LastName")
});
gvMain.Columns.Add(new GridViewDataColumn()
{
 DataMemberBinding = new Binding("Buyer.HomePhone")
}

GridView 683

© 2011 Telerik Inc.

18.5.2 REST

Twitter exposes a REST service that searches for a string and returns an XML document. The results
presented in the RadGridView look like the screenshot below.

This particular example covers a wide range of techniques, including:

How to use WebClient to return data from a REST service.

How to use templates to freely format a row in the grid view.

How to handle the grid view RowLoaded event.

How to programmatically access elements in the template from the RowLoaded event.

How to download and display images from an external site.

How to work with image related issues such as image type and security concerns.

Use LINQ to parse an XML document.

18.5.2.1 Project Setup

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

d) Telerik.Windows.Controls.Input.dll

RadControls for Silverlight684

© 2011 Telerik Inc.

18.5.2.2 XAML Editing

1) Add XML namespace references for Telerik.Windows.Controls and Telerik.Windows.Controls.
GridView in the Telerik.Windows.Controls.GridView assembly and to the Telerik.Windows.
Controls namespace in the Telerik.Windows.Controls assembly. Also add a Loaded event handler for
the UserControl.

<UserControl
xmlns:telerik=
"http://schemas.telerik.com/2008/xaml/presentation"
Loaded="UserControl_Loaded">

GridView 685

© 2011 Telerik Inc.

2) Add a UserControl.Resources element and a Grid inside the UserControl tags.

This step will replace the existing "LayoutRoot" Grid element. In following steps we will replace the
comments with work ing XAML. The grid defines three rows of that will contain the search controls at the
top, the grid view in the middle and the paging controls of the bottom.

<UserControl.Resources>
 <!--brushes-->
 <!--styles-->
 <!--custom row template-->
</UserControl.Resources>

<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>
 <!--search controls row-->
 <!--search results-->
 <!--pager-->
</Grid>

3) Replace the "<!--brushes-->" comment with the XAML below. These will color the background and
border to harmonize with the Twitter logo color.

<!--brushes-->
<LinearGradientBrush x:Key="RowBackgroundBrush">
 <GradientStop Color="White" Offset="0" />
 <GradientStop Color="#FF33CCFF" Offset="1" />
</LinearGradientBrush>

<LinearGradientBrush x:Key="RowBorderBrush">
 <GradientStop Color="SkyBlue" Offset="0" />
 <GradientStop Color="LightBlue" Offset=".3" />
 <GradientStop Color="AliceBlue" Offset="1" />
</LinearGradientBrush>

RadControls for Silverlight686

© 2011 Telerik Inc.

4) Replace the "<!--custom row template-->" comment with the XAML below.

<!--custom row template-->
<ControlTemplate x:Key="MyCustomRowTemplate"
 TargetType="telerik:GridViewRow">
 <Border Background="{StaticResource RowBackgroundBrush}"
 BorderBrush="{StaticResource RowBorderBrush}"
 BorderThickness="3">
 <StackPanel Margin="10" VerticalAlignment="Center"
 Orientation="Horizontal"
 HorizontalAlignment="Left">
 <Image VerticalAlignment="Top" />
 <StackPanel Orientation="Vertical"
 VerticalAlignment="Center"
 Margin="10,0,0,0">
 <StackPanel Orientation="Horizontal"
 VerticalAlignment="Center">
 <HyperlinkButton
 Content="{Binding Author.Name}"
 Foreground="Blue"
 TargetName="_blank"
 NavigateUri="{Binding Author.Url}" />
 <TextBlock Text=":" />
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right"
 VerticalAlignment="Center">
 <TextBlock Margin="30,0,0,0"
 Text="{Binding Published}" />
 <HyperlinkButton Margin="30,0,0,0"
 Content="View Tweet"
 Foreground="Blue"
 TargetName="_blank"
 NavigateUri="{Binding Url}" />
 </StackPanel>
 </StackPanel>
 <TextBlock Width="500" Height="40"
 Text="{Binding Title}"
 TextWrapping="Wrap" />
 </StackPanel>
 </StackPanel>
 </Border>
</ControlTemplate>

GridView 687

© 2011 Telerik Inc.

 Notes

The XAML creates the layout for each GridViewRow. The screenshot below is a sample of a single
row. The outer-most Border sets the border and the background color of the row as a whole. Inside
that, a StackPanel arranges groups of elements from left to right. The left-most element is an Image
that contains the "Avatar" or image representing each member mak ing a Twitter post (or "Tweet"). To
the right of the image, at the top is a HyperlinkButton that points to the author of the tweet with a link
to their page. Then, moving to the right is the publish date and time, followed by a "View Tweet"
HyperlinkButton that links to a URL for that specific post. Underneath all of this is the content of the
tweet displayed in a TextBlock.

RadControls for Silverlight688

© 2011 Telerik Inc.

5) Replace the "<!--styles-->" comment with the XAML below.

Take a moment to review the style called "GridViewStyle" that will be applied to the RadGridView. The
XAML here is mainly concerned with removing the lines, headers and other style details that might get in
the way of the custom row style we apply later.

Also take a careful look at "RowStyle". This style points to a ControlTemplate that we shall add later.
The ControlTemplate defines the arrangement of elements for each grid view row.

<!--styles-->
<Style x:Key="TextBlockStyle" TargetType="TextBlock">
 <Setter Property="Margin" Value="10" />
</Style>
<Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="Margin" Value="10" />
</Style>
<Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Margin" Value="10" />
</Style>
<Style x:Key="GridViewStyle"
 TargetType="telerikControlsGridView:RadGridView">
 <Setter Property="Margin" Value="10" />
 <Setter Property="ShowGroupPanel" Value="False" />
 <Setter Property="ShowColumnHeaders" Value="False" />
 <Setter Property="ScrollMode" Value="RealTime" />
 <Setter Property="VerticalGridlinesVisibility"
 Value="Collapsed" />
 <Setter Property="VerticalGridlinesBrush"
 Value="Transparent" />
</Style>
<Style x:Key="StackPanelStyle" TargetType="StackPanel">
 <Setter Property="Orientation" Value="Horizontal" />
 <Setter Property="HorizontalAlignment" Value="Left" />
</Style>
<Style x:Key="RowStyle"
 TargetType="telerik:GridViewRow">
 <Setter Property="Template"
 Value="{StaticResource MyCustomRowTemplate}" />
</Style>

GridView 689

© 2011 Telerik Inc.

6) Replace the <!--search controls row--> comment with the XAML below.

<!--search controls row-->
<StackPanel Grid.Row="0"
 Style="{StaticResource StackPanelStyle}">
 <Image x:Name="imageTwitterLogo" Stretch="None"
 Margin="10, 10, 0, 0" />
 <TextBox x:Name="tbSearch"
 Style="{StaticResource TextBoxStyle}" Width="300" />
 <Button x:Name="btnSearch"
 Style="{StaticResource ButtonStyle}"
 Content="Search" Click="btnSearch_Click" />
</StackPanel>

 Notes

This step defines the Twitter logo image, the search text box and button. The screenshot below
shows the arrangement of controls at runtime.

7) Replace the <!--search results--> comment with the XAML below.

This step defines the RadGridView itself. The grid view is named "gvMain" so we can refer to it in code.
The Style points back to the "GridViewStyle" we defined earlier and "RowStyle" points back to the
GridViewRow style definition. The RowLoaded event handler is defined so we can populate the images as
we go.

<!--search results-->
<telerik:RadGridView x:Name="gvMain"
 Grid.Row="1" Style="{StaticResource GridViewStyle}"
 RowStyle="{StaticResource RowStyle}"
 RowLoaded="gvMain_RowLoaded">
</telerik:RadGridView>

RadControls for Silverlight690

© 2011 Telerik Inc.

8) Replace the <!--pager--> comment with the XAML below.

 Notes

This step defines a "pager", actually an arrangement of controls at the bottom of the page where two
Buttons flank a TextBlock. The screenshot below shows the pager controls in action.

<!--pager-->
<StackPanel x:Name="Pager" Grid.Row="2"
 Style="{StaticResource StackPanelStyle}"
 Visibility="Collapsed">
 <Button x:Name="btnNewer"
 Style="{StaticResource ButtonStyle}"
 Content="Newer" Click="Button_Click" />
 <TextBlock x:Name="PageInfo"
 Style="{StaticResource TextBlockStyle}" />
 <Button x:Name="btnOlder"
 Style="{StaticResource ButtonStyle}"
 Content="Older" Click="Button_Click" />
</StackPanel>

18.5.2.3 Code Behind

1) From the Solution Explorer, right-click the project and select Add > Class... from the context menu.
Name the class file "Twitter" and click the Add button.

2) Add the code below to the class file.

The code here defines "TwitterEntry" and "TwitterAuthor" classes that store information returned from
the service. These two classes have no logic of their own.

Public Class TwitterEntry
 Private privateID As String
 Public Property ID() As String
 Get
 Return privateID
 End Get
 Set(ByVal value As String)
 privateID = value
 End Set
 End Property
 Private privatePublished As DateTime
 Public Property Published() As DateTime
 Get
 Return privatePublished

GridView 691

© 2011 Telerik Inc.

 End Get
 Set(ByVal value As DateTime)
 privatePublished = value
 End Set
 End Property
 Private privateUrl As String
 Public Property Url() As String
 Get
 Return privateUrl
 End Get
 Set(ByVal value As String)
 privateUrl = value
 End Set
 End Property
 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property
 Private privateContent As String
 Public Property Content() As String
 Get
 Return privateContent
 End Get
 Set(ByVal value As String)
 privateContent = value
 End Set
 End Property
 Private privateUpdated As DateTime
 Public Property Updated() As DateTime
 Get
 Return privateUpdated
 End Get
 Set(ByVal value As DateTime)
 privateUpdated = value
 End Set
 End Property
 Private privateImageUrl As String
 Public Property ImageUrl() As String
 Get
 Return privateImageUrl
 End Get
 Set(ByVal value As String)
 privateImageUrl = value
 End Set
 End Property
 Private privateAuthor As TwitterAuthor
 Public Property Author() As TwitterAuthor
 Get
 Return privateAuthor
 End Get

RadControls for Silverlight692

© 2011 Telerik Inc.

 Set(ByVal value As TwitterAuthor)
 privateAuthor = value
 End Set
 End Property
End Class

Public Class TwitterAuthor
 Private privateName As String
 Public Property Name() As String
 Get
 Return privateName
 End Get
 Set(ByVal value As String)
 privateName = value
 End Set
 End Property
 Private privateUrl As String
 Public Property Url() As String
 Get
 Return privateUrl
 End Get
 Set(ByVal value As String)
 privateUrl = value
 End Set
 End Property
End Class

public class TwitterEntry
{
 public string ID { get; set; }
 public DateTime Published { get; set; }
 public string Url { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime Updated { get; set; }
 public string ImageUrl { get; set; }
 public TwitterAuthor Author { get; set; }
}

public class TwitterAuthor
{
 public string Name { get; set; }
 public string Url { get; set; }
}

3) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) System.Windows.Media.Imaging (supports BitmapImage)

b) Telerik.Windows.Controls (supports ChildrenOfType<T>())

c) Telerik.Windows.Controls.GridView (supports GridViewRow types, RowLoadedEventArgs)

GridView 693

© 2011 Telerik Inc.

4) Define a private integer member "currentPageIndex" to track the location of paging through multiple
pages of data.

Private currentPageIndex As Integer = 1

private int currentPageIndex = 1;

RadControls for Silverlight694

© 2011 Telerik Inc.

5) Define a private method "DownloadTwitterPage" as shown in the code below.

It should take a search string as a parameter. Create a new WebClient instance, hook up a
DownloadStringCompleted event handler and call the WebClient DownloadStringAsync() method. The
string passed to DownloadStringAsync() is defined in the "urlFormat" constant below. The format of the
string is Twitter service specific, so if you use a REST service from some other site you will need to
research the appropriate format. Before calling DownloadStringAsync() you should check that the
search string is not empty and that a WebClient request is not already in process. Show the button
labeled "Newer" based on the position of the current page index.

Private Sub DownloadTwitterPage(ByVal searchString As String)
 Const pageSize As Integer = 4
 ' 0 = search string, 1 = page size, 2 = current page index
 Const urlFormat As String = _
"http://search.twitter.com/search.atom?q={0}&rpp={1}&page={2}"

 Dim webClient As New WebClient()
 AddHandler webClient.DownloadStringCompleted, _
AddressOf client_DownloadStringCompleted

 If (Not String.IsNullOrEmpty(searchString)) Then
 If (Not webClient.IsBusy) Then
 webClient.DownloadStringAsync(_
New Uri(String.Format(urlFormat, searchString, pageSize, currentPageIndex)))
 End If
 End If
 btnNewer.Visibility = _
If(currentPageIndex > 1, Visibility.Visible, Visibility.Collapsed)
End Sub

GridView 695

© 2011 Telerik Inc.

private void DownloadTwitterPage(string searchString)
{
 const int pageSize = 4;
 // 0 = search string, 1 = page size, 2 = current page index
 const string urlFormat =
 "http://search.twitter.com/search.atom?q={0}&rpp={1}&page={2}";

 WebClient webClient = new WebClient();
 webClient.DownloadStringCompleted += new DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);

 if (!String.IsNullOrEmpty(searchString))
 {
 if (!webClient.IsBusy)
 webClient.DownloadStringAsync(
 new Uri(String.Format(urlFormat, searchString, pageSize,
 currentPageIndex)));
 }
 btnNewer.Visibility = currentPageIndex > 1 ?
 Visibility.Visible : Visibility.Collapsed;
}

RadControls for Silverlight696

© 2011 Telerik Inc.

6) Handle the DownloadStringCompleted event as shown in the code below.

The purpose of this handler is to parse the XML returned in the Result parameter and load new
instances of the TwitterEntry object. The collection of TwitterEntry objects is assigned to the grid view
ItemsSource property. This event handler also sets the pager visibility, grid view visibility and pager
text.

Private Sub client_DownloadStringCompleted(_
ByVal sender As Object, ByVal e As DownloadStringCompletedEventArgs)
 Pager.Visibility = Visibility.Visible
 gvMain.Visibility = Pager.Visibility
 PageInfo.Text = String.Format("Page {0}", currentPageIndex)
 Dim atomNamespace As XNamespace = "http://www.w3.org/2005/Atom"
 Dim xDocument As XDocument = XDocument.Parse(e.Result)
 Dim twitterData = _
 From item In xDocument.Descendants(atomNamespace + "entry") _
 Select New TwitterEntry
item.Descendants(atomNamespace + _
"link").Last().Attribute("href").Value, _
Author = New TwitterAuthor() With {
.Name = (CType(item.Element(atomNamespace + _
"author").FirstNode, XElement)).Value, _
.Url = (CType(item.Element(atomNamespace + _
"author").LastNode, XElement)).Value}
DateTime.Parse(item.Element(atomNamespace + _
"updated").Value), _
ImageUrl = _
item.Descendants(atomNamespace + _
"link").Last().Attribute("href").Value, Author
item.Element(atomNamespace + "content").Value, _
Updated = DateTime.Parse(item.Element(atomNamespace + _
"updated").Value), ImageUrl
item.Element(atomNamespace + "title").Value, _
Content = item.Element(atomNamespace + _
"content").Value, Updated
item.Element(atomNamespace + "link").Attribute("href").Value, _
Title = item.Element(atomNamespace + "title").Value, Content
DateTime.Parse(item.Element(atomNamespace + _
"published").Value), _
Url = item.Element(atomNamespace + _
"link").Attribute("href").Value, Title
item.Element(atomNamespace + _
"id").Value, _
Published = DateTime.Parse(item.Element(atomNamespace + _
"published").Value), Url
ID = item.Element(atomNamespace + "id").Value, Published
 gvMain.ItemsSource = twitterData
End Sub

GridView 697

© 2011 Telerik Inc.

void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 gvMain.Visibility = Pager.Visibility = Visibility.Visible;
 PageInfo.Text = String.Format("Page {0}", currentPageIndex);

 XNamespace atomNamespace = "http://www.w3.org/2005/Atom";

 XDocument xDocument = XDocument.Parse(e.Result);

 var twitterData =
 from item in xDocument.Descendants(atomNamespace + "entry")
 select new TwitterEntry
 {
 ID = item.Element(atomNamespace + "id").Value,
 Published =
 DateTime.Parse(item.Element(atomNamespace + "published").Value),
 Url =
 item.Element(atomNamespace + "link").Attribute("href").Value,
 Title =
 item.Element(atomNamespace + "title").Value,
 Content =
 item.Element(atomNamespace + "content").Value,
 Updated =
 DateTime.Parse(item.Element(atomNamespace + "updated").Value),
 ImageUrl =
 item.Descendants(atomNamespace +
 "link").Last().Attribute("href").Value,
 Author = new TwitterAuthor()
 {
 Name = ((XElement)item.Element(atomNamespace +
 "author").FirstNode).Value,
 Url = ((XElement)item.Element(atomNamespace +
 "author").LastNode).Value
 }
 };
 gvMain.ItemsSource = twitterData;
}

RadControls for Silverlight698

© 2011 Telerik Inc.

7) Add a new method "LoadImage()" that will take a string parameter that defines the URL where the
image is located, and an Image object that will be loaded with the new image.

Check that the URL points to a ".png" or ".jpg" file. These are the only supported image types in
Silverlight at the time of this writing. Create a new WebClient instance, hook up a OpenReadCompleted
event handler and call the OpenReadAsync() method. OpenReadAsync() should take a URI object that
points to the image URL and pass a reference to the Image to be loaded.

Private Sub LoadImage(ByVal imageUrl As String, ByVal image As Image)
 Dim isValidSilverlightImageType As Boolean = imageUrl.EndsWith(".png") OrElse imageUrl.EndsWith(".jpg")

 If (Not isValidSilverlightImageType) Then
 Return
 End If

 Dim webClient As New WebClient()
 AddHandler webClient.OpenReadCompleted, AddressOf webClient_OpenReadCompleted
 webClient.OpenReadAsync(New Uri(imageUrl), image)
End Sub

private void LoadImage(string imageUrl, Image image)
{
 bool isValidSilverlightImageType =
 imageUrl.EndsWith(".png") || imageUrl.EndsWith(".jpg");

 if (!isValidSilverlightImageType)
 return;

 WebClient webClient = new WebClient();
 webClient.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(webClient_OpenReadCompleted);
 webClient.OpenReadAsync(
 new Uri(imageUrl), image);
}

GridView 699

© 2011 Telerik Inc.

8) Handle the OpenReadCompleted event to retrieve the streamed image and assign it to an Image
object.

Create a BitmapImage and use the SetSource method to assign the stream held in Result. Then
assign the BitmapImage to the source of the Image. Remember that Image will be passed as the
UserState argument when OpenReadAsync() is first called. To handle security restrictions where no
ClientAccessPolicy.xml exists on the server where the image resides, trap for the
TargetInvocationException. Inside the "Catch", verify that the InnerException is a SecurityException.
The code below ignores the security exception, assuming that we're trying to access an image across
domains but without the permissions granted by the presence of a ClientAccessPolicy.xml file. If there
is any other k ind of exception, re-throw the exception.

Private Sub webClient_OpenReadCompleted(_
ByVal sender As Object, ByVal e As OpenReadCompletedEventArgs)
 Dim bitmap As New BitmapImage()
 Try
 bitmap.SetSource(e.Result)
 TryCast(e.UserState, Image).Source = bitmap
 Catch ex As System.Reflection.TargetInvocationException
 If Not(TypeOf ex.InnerException Is _
System.Security.SecurityException) Then
 MessageBox.Show(ex.Message)
 Throw
 End If
 End Try
End Sub

void webClient_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 BitmapImage bitmap = new BitmapImage();
 try
 {
 bitmap.SetSource(e.Result);
 (e.UserState as Image).Source = bitmap;
 }
 catch (System.Reflection.TargetInvocationException ex)
 {
 if (!(ex.InnerException is System.Security.SecurityException))
 { MessageBox.Show(ex.Message); throw; }
 }
}

RadControls for Silverlight700

© 2011 Telerik Inc.

9) Handle the grid view RowLoaded event as shown in the code below.

This is your opportunity to alter elements of the row programmatically. First check that this is not a
header, footer or "new row" using the Row property of the event argument. Use the ChildrenOfType<T>()
method to get a reference to the Image object in the grid row template. There is only one Image object
in the template, so we can call FirstOrDefault() to get the instance. Use the DataElement property of
the event argument to get the bound TwitterEntry object. Finally, call the private LoadImage() method
you created earlier and pass the ImageUrl of the TwitterEntry and the instance of the Image object that
you retrieved from the template.

Private Sub gvMain_RowLoaded(ByVal sender As Object, ByVal e As RowLoadedEventArgs)
 Dim isDetailRow As Boolean = Not(TypeOf e.Row Is GridViewNewRow OrElse _
TypeOf e.Row Is GridViewHeaderRow OrElse TypeOf e.Row Is GridViewFooterRow)
 If isDetailRow Then
 Dim image = e.Row.ChildrenOfType(Of Image)().FirstOrDefault()
 If image IsNot Nothing Then
 Dim twitterEntry As TwitterEntry = TryCast(e.DataElement, TwitterEntry)
 LoadImage(twitterEntry.ImageUrl, image)
 End If
 End If
End Sub

private void gvMain_RowLoaded(object sender, RowLoadedEventArgs e)
{
 bool isDetailRow = !(e.Row is GridViewNewRow ||
 e.Row is GridViewHeaderRow ||
 e.Row is GridViewFooterRow);
 if (isDetailRow)
 {
 var image = e.Row.ChildrenOfType<Image>().FirstOrDefault();
 if (image != null)
 {
 TwitterEntry twitterEntry = e.DataElement as TwitterEntry;
 LoadImage(twitterEntry.ImageUrl, image);
 }
 }
}

GridView 701

© 2011 Telerik Inc.

10)Handle the Button Click events for the "Newer" and "Older" buttons as well as the "Search" button.

The "Search" button click simply calls the private DownloadTwitterPage() method you wrote earlier and
passes the text entered into the search text box. The "Button_Click" event handler is triggered by both
the "Newer" and "Older" buttons. Depending on the identity of the button, the current page index is
advanced or decreased. Then, like the search button, the DownloadTwitterPage() method is called,
passing the search text.

Private Sub Button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 If sender Is btnNewer Then
 If currentPageIndex >= 2 Then
 currentPageIndex -= 1
 End If
 ElseIf sender Is btnOlder Then
 currentPageIndex += 1
 End If

 DownloadTwitterPage(tbSearch.Text)
End Sub

Private Sub btnSearch_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 DownloadTwitterPage(tbSearch.Text)
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 if (sender == btnNewer)
 {
 if (currentPageIndex >= 2)
 currentPageIndex--;
 }
 else if (sender == btnOlder)
 currentPageIndex++;

 DownloadTwitterPage(tbSearch.Text);
}

private void btnSearch_Click(object sender, RoutedEventArgs e)
{
 DownloadTwitterPage(tbSearch.Text);
}

RadControls for Silverlight702

© 2011 Telerik Inc.

11)Handle the UserControl Loaded event. Here we simply load the Twitter logo to the top of the page.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Const twitterLogoUrl As String = _
"http://search.twitter.com/images/search/twitter-logo-small.png"

 LoadImage(twitterLogoUrl, imageTwitterLogo)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 const string twitterLogoUrl =
 "http://search.twitter.com/images/search/twitter-logo-small.png";

 LoadImage(twitterLogoUrl, imageTwitterLogo);
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Enter a search string and click the Search button. Depending on the number of hits for the data, you
should see the grid fill up with new rows.

2) Each row should conform to the grid row template you defined.

3) Images should appear for the Twitter logo (assuming Twitter doesn't move the image) and next to each
of the "Tweets". Some or even many rows may not show an image if they were not a supported image
type or if there was no ClientAccessPolicy.xml on the server.

4) Click the link for the author to navigate to their Twitter page.

GridView 703

© 2011 Telerik Inc.

5) Click the "View Tweet" link to navigate to the page for that specific tweet.

6) Use the "Newer" and "Older" buttons to page through the available data.

Ideas for Extending This Example

Display a default image when the image is not presented due to security issues or is not supported by
Silverlight.

Allow the user to navigate to the main Twitter page by clicking the logo. Wrap the logo image in a
HyperlinkButton.

Visit the wiki at http://apiwiki.twitter.com for additional Twitter REST services that can be called.

Google for other REST services that could be adapted.

18.5.3 WCF

The walk through that follows demonstrates building a simple WCF service that supplies a list of customers
and populates a RadGridView in a Silverlight client.

http://apiwiki.twitter.com

RadControls for Silverlight704

© 2011 Telerik Inc.

18.5.3.1 Building the WCF Service

1) Create a new ASP.NET Web Application project.

This application will host the WCF service.

GridView 705

© 2011 Telerik Inc.

2) Navigate to the RadControls for Silverlight installation directory and find the Customer.cs class file in
the "\Examples\GridView" directory (there is also a copy for your convenience located in the
"\courseware\datasources" directory). Drag this file to the Solution Explorer and drop it in the root of the
project.

3) In the Solution Explorer, double click the Properties node of the project, then click the Settings tab.
You will see a message "This project does not contain a default settings file. Click here to create one".
Click the link to create the settings file.

4) In the Settings, configure the first setting so that Name = "Northwind", Type = "(Connection string)
and Scope = "Application". Click in the Value entry box, then click the ellipses to edit the connection.
This will display the Connection Properties window.

RadControls for Silverlight706

© 2011 Telerik Inc.

5) In the Connection Properties window, click the Change... button to display the Change Data Source
dialog. Select "Microsoft SQL Server Database File" from the list and click the OK button to close the
dialog, returning you to the Connection Properties window.

GridView 707

© 2011 Telerik Inc.

6) Click the Browse... button. Navigate to the "Northwind.mdf" file located in the RadControls for Silverlight
installation directory under the "\Examples\DataSources" path (there is also a copy for your
convenience located in the "\courseware\datasources" directory). Click the OK button to close the
dialog and create the connection string.

RadControls for Silverlight708

© 2011 Telerik Inc.

7) In the Solution Explorer, right-click and select Add > New Item... from the context menu.

8) Select the "Silverlight-enabled WCF Service" template, name it "Northwind.svc" and click the Add
button to create the service and close the dialog.

9) Open the "Northwind.svc.cs" file for editing.

10)Verify that the following namespaces are added to the "Imports" (VB) or "using" (C#) clauses.

System.Collections.Generic
System.Configuration
System.Data
System.Data.SqlClient
System.ServiceModel
System.ServiceModel.Activation
Telerik.Windows.Examples (supports the Customer.cs class you copied to this project)

GridView 709

© 2011 Telerik Inc.

11)Replace the default "DoWork()" method that already exists in the service with the GetCustomers()
method using the code below. Important note: Be sure to replace the string "<project name>" passed
to connection strings, with the actual name of your project. So, for a project named
"Binding_WCF_Service" and connection string named "Northwind", the connection string is named:

"Binding_WCF_Service.Properties.Settings.Northwind"

In this example a SqlCommand is used to select a set of customers and a SqlDataReader populates
customer objects. Customer instances are added to a generic list and passed back as the result of the
service method.

You could use a variety of other databases and data retrieval mechanisms here. As long as the
contract is satisfied and the method returns a generic list of Customer, how you fill the list can vary
according to your situation.

<OperationContract> _
Public Function GetCustomers() As List(Of Customer)
 Dim connectionString As String = _
ConfigurationManager.ConnectionStrings(_
"<project name>.Properties.Settings.Northwind").ConnectionString
 Dim result = New List(Of Customer)()
 Using conn As New SqlConnection(connectionString)
 Const sql As String = "SELECT Top 10 Address, Bool, City, " & _
"CompanyName, ContactName, ContactTitle, " & _
"Country, CustomerID, Fax, Phone, PostalCode FROM Customers"
 conn.Open()
 Using command As New SqlCommand(sql, conn)
 Dim reader As SqlDataReader = _
command.ExecuteReader(CommandBehavior.CloseConnection)
 Do While reader.Read()
 Dim customer = New Customer With { _
.Address = reader.GetValue(0).ToString(), _
.Bool = reader.GetBoolean(1), _
.City = reader.GetValue(2).ToString(), _
.CompanyName = reader.GetValue(3).ToString(), _
.ContactName = reader.GetValue(4).ToString(), _
.ContactTitle = reader.GetValue(5).ToString(), _
.Country = reader.GetValue(6).ToString(), _
.CustomerID = reader.GetValue(7).ToString(), _
.Fax = reader.GetValue(8).ToString(), _
.Phone = reader.GetValue(9).ToString(), _
.PostalCode = reader.GetValue(10).ToString()}
 result.Add(customer)
 Loop
 Return result
 End Using
 End Using
End Function

RadControls for Silverlight710

© 2011 Telerik Inc.

[OperationContract]
public List<Customer> GetCustomers()
{
 string connectionString =
 ConfigurationManager.ConnectionStrings[
"<project name>.Properties.Settings.Northwind"].ConnectionString;
 var result = new List<Customer>();
 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 const string sql = @"SELECT Top 10 Address, Bool, City, " +
 "CompanyName, ContactName, ContactTitle, " +
 "Country, CustomerID, Fax, Phone, PostalCode FROM Customers";
 conn.Open();
 using (SqlCommand command = new SqlCommand(sql, conn))
 {
 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);
 while (reader.Read())
 {
 var customer = new Customer
 {
 Address = reader.GetValue(0).ToString(),
 Bool = reader.GetBoolean(1),
 City = reader.GetValue(2).ToString(),
 CompanyName = reader.GetValue(3).ToString(),
 ContactName = reader.GetValue(4).ToString(),
 ContactTitle = reader.GetValue(5).ToString(),
 Country = reader.GetValue(6).ToString(),
 CustomerID = reader.GetValue(7).ToString(),
 Fax = reader.GetValue(8).ToString(),
 Phone = reader.GetValue(9).ToString(),
 PostalCode = reader.GetValue(10).ToString()
 };
 result.Add(customer);
 }
 return result;
 }
 }
}

GridView 711

© 2011 Telerik Inc.

12)In the Solution Explorer, right-click the project and select Add > New Item... from the context menu.
Name the file "ClientAccessPolicy.xml", then click the Add button to create the file and close the
dialog.

13)Replace the contents of "ClientAccessPolicy.xml" with the following XML.

This XML allows requests from all domains to get resources from all locations on the server.

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

14)In the Solution Explorer, right-click the "ClientAccessPolicy.xml" file and select "Properties" from the
context menu. Set the "Copy to Output Directory" property to "Copy if Newer". This step will make
sure that policy file ends up in the \bin directory, i.e. the root directory for the service. When Silverlight
tries to access the service, it will find the policy file there and can continue interacting with the service.

RadControls for Silverlight712

© 2011 Telerik Inc.

18.5.3.2 Building the WCF Silverlight Client

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Data

d) Telerik.Windows.Controls.Input.dll

XAML Editing

1) Drag a RadGridView from the Toolbox to a point between the main "LayoutRoot" grid. Set the "x:Name"
attribute to "gvMain" so we can reference it later in code.

Reference The WCF Service

1) In the Solution Explorer, right-click the References node and select Add Service Reference... This
will display the "Add Service Reference" dialog.

2) In the "Add Service Reference" dialog, click the Discover button. The Northwind.svc server will display.
Enter "NorthwindServiceReference" as the Namespace and click OK to create the client proxy object.

GridView 713

© 2011 Telerik Inc.

Code Behind

1) Add a namespace reference for the proxy in the "Imports" (VB) or "using" (C#) section of code. This will
be the name of your project + "." + "NorthwindServiceReference", i.e. "MyProject.
NorthwindServiceReference".

2) Handle the UserControl Loaded event.

The client proxy methods are asynchronous, so this will be very much like work ing with the WebClient
against a REST service. The proxy will have a "Completed" event, i.e. "GetCustomersCompleted" and
an "Async" method, i.e. "GetCustomersAsync()". Create an instance of the client proxy object, hook up
the "GetCustomersCompleted" event, then call the "GetCustomersAsync()" method.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim client As New NorthwindClient()
 AddHandler client.GetCustomersCompleted, _
AddressOf client_GetCustomersCompleted
 client.GetCustomersAsync()
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 NorthwindClient client = new NorthwindClient();
 client.GetCustomersCompleted +=
 new EventHandler<GetCustomersCompletedEventArgs>(
 client_GetCustomersCompleted);
 client.GetCustomersAsync();
}

3) Handle the GetCustomersCompleted event. The result of the method is passed back in e.Result.
Simply assign the result to the grid view ItemsSource property. Note: The result, even though it left
the service as a List<Customer>, ends up in Silverlight as ObservableCollection<Customer>.

Private Sub client_GetCustomersCompleted(ByVal sender As Object, _
ByVal e As GetCustomersCompletedEventArgs)
 gvMain.ItemsSource = e.Result
End Sub

RadControls for Silverlight714

© 2011 Telerik Inc.

void client_GetCustomersCompleted(object sender, _
GetCustomersCompletedEventArgs e)
{
 gvMain.ItemsSource = e.Result;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Ten rows of data with all columns from the SQL should show up in the grid.

Ideas for Extending This Example

GridView 715

© 2011 Telerik Inc.

Change the service method or add a new method that allows parameters. You can either parameterize
the query itself or use LINQ to filter the contents. Add a text box and search button to the client. You
can send the search text when calling GetCustomersAsync() using one of the overloads that allows an
"userState" object parameter.

18.5.4 WCF RIA Services

The example service consumes the Northwind "Categories" table using LINQ to Entities. The Silverlight
client instantiates a proxy client, retrieves a list of entities and binds them to the grid view.

RadControls for Silverlight716

© 2011 Telerik Inc.

18.5.4.1 Project Setup

1) In Visual Studio, create a new Silverlight Application. This will display the New Silverlight Application
dialog. Check the "Enable WCF RIA Services" option. Leave the other defaults and click OK to close the
dialog and create the projects.

The RIA service layer will be created in the ASP.NET host application, in this case, the
Gridview_RIA_Demo.Web project.

GridView 717

© 2011 Telerik Inc.

2) Take a look at the Solution Explorer and notice that you now have two projects, the ASP.NET host
project ("Gridview_RIA_Demo.Web in the screenshot below) that will contain the RIA service and the
Silverlight client application ("Gridview_RIA_Demo").

RadControls for Silverlight718

© 2011 Telerik Inc.

18.5.4.2 Building the RIA Service

1) Add a "ADO.NET Entity Data Model" item to the ASP.NET project. Name the data model "Northwind.
edmx" and click the Add button.

This will display the Entity Data Model Wizard dialog.

2) In the first page of "Entity Data Model Wizard", select the "Generate from Database" icon and click the
Next button.

3) Create a connection to the Northwind database file that ships with RadControls for Silverlight.

a) In the "Choose your Data Connection" page of the wizard, click the New Connection button. This will
display the Connection Properties dialog.

b) Click the Change button to show the "Change Data Source" dialog, select the "Microsoft SQL Server
Database File" option and click the OK button to return to the "Change Data Source" dialog.

c) Click the Browse button, locate the file "Northwind.mdf" file in the RadControls for Silverlight
installation directory under \Examples\DataSources.

d) Click OK to create the connection and return to the "Entity Data Model Wizard" "Choose Your Data
Connection" page.

GridView 719

© 2011 Telerik Inc.

4) In the "Choose Your Data Connection" page of the wizard, enter "NorthwindEntities" in the "Save entity
connection settings in Web.Config" text box and click the Next button.

RadControls for Silverlight720

© 2011 Telerik Inc.

5) In the "Choose Your Database Objects" page of the wizard, expand the "Tables" node in the tree view
and select the "Categories" table check box.

GridView 721

© 2011 Telerik Inc.

6) Click the Finish button to create the data model.

7) Build the ASP.NET project. This step is important: the following step where you create the Domain
Service Class will not see the entity data model information without building the project.

8) Add a "Domain Service Class" item to your project. Name it "NorthwindService" and click the Add button
to create the service and close the dialog. This step will display the "Add New Domain Service Class"
dialog.

RadControls for Silverlight722

© 2011 Telerik Inc.

9) In the "Add New Domain Service Class" dialog, name the Domain Service Class "NorthwindService",
make sure that the "Enable client access" option is checked (this allows the client proxy code to be
generated), select "NorthwindEntities" from the drop down list of available context objects and check the
"Categories" entity check box. Click the OK button to create the domain service class and close the
dialog.

10)Build the project.

11)Review the generated NorthwindService code. Notice that a GetCategories() method has been created
that returns an IQueryable<> of Categories.

GridView 723

© 2011 Telerik Inc.

18.5.4.3 Building the RIA Client

1) In the Solution Explorer, open the Silverlight client application node.

2) In the Solution Explorer, right-click the References node and select Add References... from the context
menu. Add references to these assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Data

c) Telerik.Windows.Controls.GridView

d) Telerik.Windows.Controls.Input.dll

3) Open "MainPage.xaml" for editing.

4) Drag a RadGridView from the Toolbox into the main "LayoutRoot" grid element of the page. Set the "x:
Name" attribute to "gvMain" so that we can refer to it later in code.

5) Open "MainPage.xaml.cs" for editing.

6) Add a namespace reference to the ASP.NET service project "Imports" (VB) or "using" (C#) portion of
code.

7) In the constructor for the UserControl, get the data from the domain service by way of the context object
and bind it to the grid view using the code below:

a) Create the "context" object (the generated client counterpart to the domain service).

b) Assign the context "Categories" property to the grid view ItemsSource property.

c) Call the context object Load() method and pass the context "GetCategoriesQuery()" method.

Public Sub New()
 InitializeComponent()

 Dim context As New NorthwindContext()
 gvMain.ItemsSource = context.Categories
 context.Load(context.GetCategoriesQuery())
End Sub

public MainPage()
{
 InitializeComponent();

 NorthwindContext context = new NorthwindContext();
 gvMain.ItemsSource = context.Categories;
 context.Load(context.GetCategoriesQuery());
}

Run The Application

Press F5 to run the application.

RadControls for Silverlight724

© 2011 Telerik Inc.

18.6 Customization

The "A RESTful Walk Through" section of this chapter demonstrated customizing an entire row for that free
form "Card" look. In this section we will look at individual customization of a column using a cell template.
This example extends the "WCF RIA Services Walk Through" by displaying the "Picture" column. In the
process we will cover the following:

Format a CellTemplate of a GridViewDataColumn. The first column will contain a TextBlock bound to the
category description. It will use a variation on the "shadow" technique discussed in the ToolBar chapter to
place a second TextBlock "reflection" of the first. The second column will contain an Image surrounded by
a Border.

Use an IValueConverter to convert the binary picture data to a BitmapImage. Note: Be sure to check the
latest features of RadControls for Silverlight for the new GridViewImageColumn type that replaces the
need for converters in most cases.

Hide all visual clues that we're working with a grid except the category description and the picture.

We will look at just those key parts that have changed from the original RIA Services Walk Through project,
starting with the cell template. First, to get oriented in the XAML before we dig down into the cell template,
take a look at the RadGridView element. It contains a Columns element and within that, multiple
GridViewDataColumn elements, one for each column.

<telerik:RadGridView . . .">
 <telerik:RadGridView.Columns>
 <telerik:GridViewDataColumn
 DataMemberBinding="{Binding Description}">
 <!--template here-->
 </telerik:GridViewDataColumn>
 <telerik:GridViewDataColumn
 DataMemberBinding="{Binding Picture}" >
 <!--template here-->
 </telerik:GridViewDataColumn>
 </telerik:RadGridView.Columns>
</telerik:RadGridView>

GridView 725

© 2011 Telerik Inc.

Now we can look at the detail of the "Description" column and see how the template is put together. Inside
the GridViewDataColumn, add a GridViewDataColumn CellTemplate element. Inside the CellTemplate is a
DataTemplate that holds whatever elements suit your purpose. Here we are adding a StackPanel to
organize the two TextBlocks. The Text property of both TextBlock elements is bound to the "Description"
property.

<telerik:GridViewDataColumn
 DataMemberBinding="{Binding Description} ">
 <telerik:GridViewDataColumn.CellTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock HorizontalAlignment="Right"
 Text="{Binding Description}"
 Style="{StaticResource TextStyle}" />
 <TextBlock HorizontalAlignment="Right"
 Text="{Binding Description}"
 Style="{StaticResource ShadowTextStyle}" />
 </StackPanel>
 </DataTemplate>
 </telerik:GridViewDataColumn.CellTemplate>
</telerik:GridViewDataColumn>

The "Picture" column follows the same pattern, but the DataTemplate contains a Border surrounding an
Image element. One difference to this column is that we are using an IValueConverter called
"ImageConverter" to create a BitmapImage from the raw database data.

<telerik:GridViewDataColumn
 DataMemberBinding="{Binding Picture}">
 <telerik:GridViewDataColumn.CellTemplate>
 <DataTemplate>
 <Border Style="{StaticResource BorderStyle}">
 <Image Margin="5"
 Source="{Binding Picture,
 Converter={StaticResource ImageConverter}}"
 Width="50" Height="50" />
 </Border>
 </DataTemplate>
 </telerik:GridViewDataColumn.CellTemplate>
</telerik:GridViewDataColumn>

RadControls for Silverlight726

© 2011 Telerik Inc.

We looked briefly at IValueConverter in the Input Controls chapter to demonstrate converting a number
to a string displayed on a Slider control. Refer back to that chapter for a more detailed explanation of
IValueConverter. The "value" parameter passed to Convert is the byte array from the "Picture" column in
the database. Use that byte array to populate a new MemoryStream and then, set the source of a
BitmapImage to be the MemoryStream. Finally, the BitmapImage is returned from the method.

Public Class ImageConverter
 Implements IValueConverter
 Public Function Convert(ByVal value As Object, ByVal targetType As Type, _
 ByVal parameter As Object, ByVal culture As CultureInfo) As Object
 ' convert the "Picture" byte array to a memory stream
 Dim memoryStream As New MemoryStream((CType(value, Byte())))
 Dim image As New BitmapImage()
 Try
 image.SetSource(memoryStream)
 Catch ' ignore invalid arrays
 End Try
 Return image
 End Function

 Public Function ConvertBack(ByVal value As Object, ByVal targetType As Type, _
ByVal parameter As Object, ByVal culture As CultureInfo) As Object
 Throw New NotImplementedException()
 End Function
End Class

public class ImageConverter: IValueConverter
{
 public object Convert(
 object value, Type targetType, object parameter, CultureInfo culture)
 {
 // convert the "Picture" byte array to a memory stream
 MemoryStream memoryStream = new MemoryStream(((byte[])value));
 BitmapImage image = new BitmapImage();
 try { image.SetSource(memoryStream); }
 catch {} // ignore invalid arrays
 return image;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 { throw new NotImplementedException(); }
}

GridView 727

© 2011 Telerik Inc.

For a reference, here are the resources used in the project. Remember that you will need to add an XML
namespace reference to the project that contains the IValueConverter implementation (shown below as
"local"). The other resources are styles that you can copy or change as you wish.

<UserControl.Resources>
 <LinearGradientBrush x:Key="BorderBrush">
 <GradientStop Color="DarkGray" Offset=".7" />
 <GradientStop Color="Silver" Offset=".8" />
 <GradientStop Color="LightGray" Offset=".9" />
 <GradientStop Color="Gray" Offset="1" />
 </LinearGradientBrush>
 <Style x:Key="BorderStyle" TargetType="Border">
 <Setter Property="BorderBrush" Value="{StaticResource BorderBrush}" />
 <Setter Property="BorderThickness" Value="3" />
 <Setter Property="Margin" Value="3" />
 </Style>
 <Style x:Key="TextStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Comic Sans MS" />
 <Setter Property="Margin" Value="0" />
 <Setter Property="FontSize" Value="13" />
 <Setter Property="Foreground" Value="#FF222222" />
 <Setter Property="FontWeight" Value="Bold" />
 </Style>
 <Style x:Key="ShadowTextStyle" TargetType="TextBlock"
 BasedOn="{StaticResource TextStyle}">
 <Setter Property="OpacityMask">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Transparent" Offset="0" />
 <GradientStop Color="#33000000" Offset="1" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="RenderTransformOrigin" Value="0,0.5" />
 <Setter Property="RenderTransform">
 <Setter.Value>
 <TransformGroup>
 <ScaleTransform ScaleY="-.5"></ScaleTransform>
 <SkewTransform AngleX="0.1"></SkewTransform>
 </TransformGroup>
 </Setter.Value>
 </Setter>
 </Style>
 <local:ImageConverter x:Key="ImageConverter" />
</UserControl.Resources>

RadControls for Silverlight728

© 2011 Telerik Inc.

The finished project will look something like the screenshot below:

18.7 Wrap Up

In this chapter you were introduced to RadGridView and many of its key features. You started out by
binding the grid view to some basic data. Then you saw how to expand that example to use hierarchical
data and how to customize the columns.

While delving into the details of RadGridView you worked with selected rows and cells. You handled events
that notified you when the user was moving within the grid view. You learned the programming model
commonalities for filtering, sorting and grouping. While working with groups, you learned how to add
aggregate functions for each group. You were introduced to column types and learned about special
columns that handle images, hyperlinks and lookups. "Grid View Elements Visibility" demonstrated how to
show and hide the visual elements of the grid view.

In the Binding section of this chapter you bound the grid view to simple .NET objects. From there you built a
REST service that queried Twitter. Then you built WCF and WCF RIA services. In the process you also
learned about how to work with inherent Silverlight security restrictions. You also learned how to customize
the layout of an entire grid view row.

In the Customization section of this chapter you customized grid view cells to achieve a unique look.

Part

XIX
Scheduler

RadControls for Silverlight730

© 2011 Telerik Inc.

19 Scheduler

19.1 Objectives

This chapter starts out by using RadScheduler in a simple project to create a single appointment. Then you
will be introduced to view modes that allow you switch between month, week and day views. You will create
and configure appointments and also learn role of IAppointment and AppointmentBase in building custom
appointment classes. You will select appointments programmatically and respond to user selections in the
scheduler. You will use RecurrenceRule and RecurrencePattern classes to specify the recurrence behavior
of an appointment. We will take a brief look at scheduler commands and how they can be used
programmatically and declaratively within XAML. RadDragAndDropManager will be used to drag-and-drop
ListBox items into time slots. You will localize the scheduler using the LocalizationManager with pre-
defined cultures and custom resource files.

You will perform basic data binding to a collection of Appointments and also work with building and binding
to custom appointment objects. Finally, you will create a custom Theme for RadScheduler where the
Appointment Editing dialog user interface is modified to include a custom appointment property.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Scheduler\Scheduler.sln

Scheduler 731

© 2011 Telerik Inc.

19.2 Overview

RadScheduler serves up Office-like appointment scheduling packed with features:

Day, Week, Month and configurable multi-day views

Binds to collections of pre-defined Appointment objects or to a custom classes you define for your
specific business requirements.

Fully templated to allow customization at any level. Alter the appearance of any view, time slots,
appointments and appointment editing dialog.

RadControls for Silverlight732

© 2011 Telerik Inc.

Recurrent appointment behavior handles appointments that repeat within a time range or fit a pattern, e.
g. "every Thursday, weekly".

RadScheduler can easily adjust to any culture or use resources to completely modify the terminology
used in the scheduler.

Scheduler 733

© 2011 Telerik Inc.

19.3 Getting Started

In this walk through we will use only the very basic capabilities of RadScheduler. We will set the view of the
scheduler and add a single appointment in code.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Scheduler

c) Telerik.Windows.Controls.Input.dll

d) Telerik.Windows.Controls.Navigation.dll

e) Telerik.Windows.Data.dll

f) Telerik.Windows.Themes.Vista

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references to the Telerik assemblies.

xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"

3) Add a "Loaded" event to the UserControl element.

<UserControl
. . .
 Loaded="UserControl_Loaded">

RadControls for Silverlight734

© 2011 Telerik Inc.

4) Drag a RadScheduler from the Toolbox to a point inside the main "LayoutRoot" Grid element. The
XAML should be added between the <Grid> and </Grid> tags. Name the RadScheduler "schTasks".
Add attributes to the RadScheduler so that the ViewMode="Week" and telerik:StyleManager.
Theme="Vista".

<telerik:RadScheduler x:Name="schTasks"
 ViewMode="Week"
 telerik:StyleManager.Theme="Vista">
</telerik:RadScheduler>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these name spaces:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Scheduler

2) Handle the Loaded event of the UserControl.

a) Create a new Appointment instance and add it to the scheduler's Appointments collection.

b) Set the Start property to the current date and time using the DateTime.Now property.

c) Set the End property to 15 minutes after the current time using the AddMinutes() method of
DateTime.

d) Set the Subject property to "Backup servers"

e) Set the Body to "Backup server contents to network storage".

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 schTasks.Appointments.Add(New Appointment() _
With {.Start = DateTime.Now, .End = DateTime.Now.AddMinutes(15), _
.Subject = "Backup servers", .Body = "Backup server contents to network storage"})
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 schTasks.Appointments.Add(new Appointment()
 {
 Start = DateTime.Now,
 End = DateTime.Now.AddMinutes(15),
 Subject = "Backup servers",
 Body = "Backup server contents to network storage",
 });
}

Scheduler 735

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) The "Backup servers" appointment should be placed on the current time and date.

2) Double-click the "Backup servers" appointment to edit it. The Start, End, Subject and Description
should match the corresponding properties set in the UserControl Loaded event.

3) Edit and save the appointment. Open it again and verify the changes have persisted.

RadControls for Silverlight736

© 2011 Telerik Inc.

4) From the edit dialog, click the Edit Recurrence button and make changes to the Appointment
Recurrence dialog. When you're through making edits, Click OK. Then click the Save & Close button
of the edit dialog.

19.4 Control Details

19.4.1 Time Slots

Time slots are the areas of time in the scheduler that appointments can be placed in. You can select a time
slot of any duration by assigning the scheduler SelectedTimeSlot property. SelectedTimeSlot is a
TimeSlot defined in the Telerik.Windows.Controls.Scheduler namespace.

schTasks.SelectedTimeSlot = _
New TimeSlot(appointment1.Start, appointment1.End.AddHours(1))

schTasks.SelectedTimeSlot =
 new TimeSlot(appointment1.Start, appointment1.End.AddHours(1));

Running in the browser, the TimeSlot selection appears underneath an Appointment that happens to fall
within the slot.

Scheduler 737

© 2011 Telerik Inc.

19.4.2 Views

RadScheduler has views for Day, Week and Month controlled by the ViewMode property.

Day Week Month

The ViewMode can be set in XAML or in code to show a particular view when your page starts up.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 schTasks.ViewMode = Telerik.Windows.Controls.SchedulerViewMode.Day
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 schTasks.ViewMode = Telerik.Windows.Controls.SchedulerViewMode.Day;
}

RadControls for Silverlight738

© 2011 Telerik Inc.

The ViewMode also controls the ActiveViewDefinition property. ActiveViewDefinition controls how the
times and dates are arranged in the view and how the view behaves. The instance contained in
ActiveViewDefinition may be DayViewDefinition, WeekViewDefinition or MonthViewDefinition types. All three
descend from the abstract ViewDefinitionBase and implement some of these properties:

VisibleDays: The number of days that show in the view. You can use this property to have multiple
days in Day mode or have a week of any length in Week mode.

LargeChangeInterval: The amount of time to move in response to the forward and backward buttons.
By default, the amount is one month for MonthViewDefinition, seven days for WeekViewDefinition and a
single day for DayViewDefinition. The screenshot below shows the navigation buttons being used to
move between days in the Day view.

TimeSlotLength: A TimeSpan that sets the length of each time slot.

DayViewDefinition and MonthViewDefinition both have additional DayStartTime and DayEndTime
TimeSpan properties that limit the length of the visible day. You could use these properties to display
only business hours.

The XAML below shows how DayViewDefinition and WeekViewDefinition are configured. Take a look at the
DayViewDefinition markup:

Only one day is shown at a time

Time slots are two hours long

Large changes, triggered from the forward and back navigation buttons, move two days at a time

The day starts at 9AM and ends at 5PM.

<telerik:RadScheduler x:Name="schTasks"
 telerik:StyleManager.Theme="Vista">
 <telerik:RadScheduler.DayViewDefinition>
 <telerik:DayViewDefinition VisibleDays="1"
 TimeSlotLength="2:0:0"
 LargeChangeInterval="2d" DayStartTime="9:0:0"
 DayEndTime="17:0:0">
 </telerik:DayViewDefinition>
 </telerik:RadScheduler.DayViewDefinition>
 <telerik:RadScheduler.WeekViewDefinition>
 <telerik:WeekViewDefinition VisibleDays="5"
 TimeSlotLength="1:0:0"
 LargeChangeInterval="7d">
 </telerik:WeekViewDefinition>
 </telerik:RadScheduler.WeekViewDefinition>
</telerik:RadScheduler>

Scheduler 739

© 2011 Telerik Inc.

Running in the browser, the day view looks like the screenshot below.

19.4.3 Appointments

RadScheduler can consume any appointment classes that implement IAppointment. You can implement
IAppointment yourself, descend from the abstract AppointmentBase or use the Appointment class right-
out-of-the-box. The easiest route of course is to create instances of Appointment and add them to the
Appointments collection:

schTasks.Appointments.Add(_
New Appointment() With { _
.Start = DateTime.Now, _
.End = DateTime.Now.AddHours(1), _
.Subject = "RadControls for Silverlight Class", _
.Body = "A three day, on-site course with mixed _
lecture and hands-on practical labs", _
.IsAllDayEvent = False, _
.Location = "Capitola, California", _
.Url = "http://www.telerik.com", _
.TimeZone = TimeZoneInfo.Local, _
.UniqueId = "1234"})

RadControls for Silverlight740

© 2011 Telerik Inc.

schTasks.Appointments.Add(new Appointment()
{
 Start = DateTime.Now,
 End = DateTime.Now.AddHours(1),
 Subject = "RadControls for Silverlight Class",
 Body = "A three day, on-site course with mixed lecture" +
 "and hands-on practical labs",
 IsAllDayEvent = false,
 Location = "Capitola, California",
 Url = "http://www.telerik.com",
 TimeZone = TimeZoneInfo.Local,
 UniqueId = "1234"
});

Scheduler 741

© 2011 Telerik Inc.

Removing appointments is relatively straightforward and can be accomplished in several ways. You can use
RemoveAt(index) to remove the appointment at a given index, Remove(IAppointment) takes an instance of
the appointment to remove and RemoveAll() lets you remove every appointment that fits a certain filter. The
example below uses a Lambda expression in the RemoveAll() parameter list to filter for all appointments
where IsAllDayEvent is true.

' remove the appointment at index "0"
schTasks.Appointments.RemoveAt(0)
' remove an IAppointment instance
schTasks.Appointments.Remove(TryCast(schTasks.Appointments(0), IAppointment))
' remove all matching appointments
schTasks.Appointments.RemoveAll(Function(app) app.IsAllDayEvent = True)

// remove the appointment at index "0"
schTasks.Appointments.RemoveAt(0);
// remove an IAppointment instance
schTasks.Appointments.Remove(schTasks.Appointments[0] as IAppointment);
// remove all matching appointments
schTasks.Appointments.RemoveAll(app => app.IsAllDayEvent == true);

Much like RadCalendar or selection in a ListBox control, appointments can be selected by assigning the
SelectedAppointment property or adding to the SelectedAppointments collection.

schTasks.SelectedAppointment = appointment1
schTasks.SelectedAppointments.Add(appointment2)

schTasks.SelectedAppointment = appointment1;
schTasks.SelectedAppointments.Add(appointment2);

RadControls for Silverlight742

© 2011 Telerik Inc.

Tip!

By default, the scheduler displays today's date. Use the scheduler's SetFirstVisibleDate() method
to bring a specific day into view.

schTasks.SetFirstVisibleDate(appointment1.Start)

schTasks.SetFirstVisibleDate(appointment1.Start);

Scheduler 743

© 2011 Telerik Inc.

19.4.4 Recurrence

To make an appointment recur programmatically, create a RecurrenceRule instance and assign it to an
Appointment RecurrenceRule. The key RecurrenceRule property is RecurrencePattern.
RecurrencePattern answers questions about when the rule will fire including: how frequently (monthly,
weekly, hourly?), must the appointment occur on specific days of the week?, when does the appointment
first occur after the initial appointment?, how long does the appointment keep recurring?.

The code example below defines an appointment that recurs on Mondays after the initial appointment.

The code example demonstrates how the RecurrencePattern is setup, assigned to the RecurrenceRule and
finally the RecurrenceRule is assigned to the Appointment.

' Create a RecurrenceRule. The RecurrencePattern
' assigned to this rule estab lishes that the appointment
' will recur on Mondays after the initial appointment
Dim pattern As New RecurrencePattern(Nothing, RecurrenceDays.Monday, _
RecurrenceFrequency.Monthly, 1, Nothing, Nothing)
Dim rule As New RecurrenceRule(pattern)

Dim appointment As New Appointment() With { _
.Subject = "Customizing RadScheduler", _
.Start = DateTime.Today.AddHours(3), _
.End = DateTime.Today.AddHours(4), _
.RecurrenceRule = rule}

RadControls for Silverlight744

© 2011 Telerik Inc.

// Create a RecurrenceRule. The RecurrencePattern
// assigned to this rule estab lishes that the appointment
// will recur on Mondays after the initial appointment
RecurrencePattern pattern =
 new RecurrencePattern(null, RecurrenceDays.Monday,
 RecurrenceFrequency.Monthly, 1, null, null);
RecurrenceRule rule = new RecurrenceRule(pattern);

Appointment appointment = new Appointment()
{
 Subject = "Customizing RadScheduler",
 Start = DateTime.Today.AddHours(3),
 End = DateTime.Today.AddHours(4),
 RecurrenceRule = rule
};

19.4.5 Resources

RadScheduler provides the ability to define different resource types and also group the appointments by

these resource types. The code example below shows how to add resources

to the RadScheduler's ResourceTypes collection:

Scheduler 745

© 2011 Telerik Inc.

<telerik:RadScheduler x:Name="scheduler" Grid.Row="1" DisplayEmptyGroup="True"
 OpenModalDialogs="True" AppointmentTemplate="{StaticResource AppointmentTemplate}"
 AppointmentCreating="scheduler_AppointmentCreating" ViewMode="Week" MonthViewScrollBarVisibility="Collapsed" >
 <telerik:RadScheduler.ResourceTypes>
 <telerik:ResourceType Name="Speaker" >
 <telerik:ResourceType.Resources>
 <telerik:Resource ResourceName="Shoun Petrik" />
 <telerik:Resource ResourceName="Jack Tadros" />
 <telerik:Resource ResourceName="Vladi Pelev"/>
 </telerik:ResourceType.Resources>
 </telerik:ResourceType>
 <telerik:ResourceType Name="Level" >
 <telerik:ResourceType.Resources>
 <telerik:Resource ResourceName="100" DisplayName="Level 100" />
 <telerik:Resource ResourceName="200" DisplayName="Level 200" />
 <telerik:Resource ResourceName="300" DisplayName="Level 300" />
 <telerik:Resource ResourceName="400" DisplayName="Level 400" />
 </telerik:ResourceType.Resources>
 </telerik:ResourceType>
 </telerik:RadScheduler.ResourceTypes>
</telerik:RadScheduler>

As a result to the above code the edit dialog will look like the image shown below. The predefined resources

are "Speaker" and "Level". To assign the appointment to certain resources you should select

the respective "Speaker" and/or "Level".

RadControls for Silverlight746

© 2011 Telerik Inc.

After you have assigned an appointment to certain resources you can group appointments by the

resources, to which they have been assigned. The code example below demonstrates how to group

the appointments by "Speaker".

<telerik:RadScheduler x:Name="scheduler" GroupBy="Speaker" >.
 …
</ telerik:RadScheduler>

As a result, the grouped appointments will appear as shown in the image below:

Scheduler 747

© 2011 Telerik Inc.

In addition you can customize the look and feel of each resource group. To achieve this you need to create

a ResourceStyleMapping object for every resource group and set the following properties of this object:

ResourceName - defines the name of the resource that should be associated with this style

ResourceBrush - sets the color of the header of the resource group and to the background of the

appointments in this group

AppointmentBrush - sets the color of the appointments in this group. The color is different from the

background of the group's header

MouseOverAppointmentBrush - sets the color of the appointments on mouse-over

SelectedAppointmentBrush - sets the color of the appointments when they have been clicked

HeaderTemplate - used to customize the header of the resource group. The value of this property

should be of DataTemplate type

The code example below shows how to use all the aforementioned properties to customize the appearance

of the appointments and the resource groups.

RadControls for Silverlight748

© 2011 Telerik Inc.

<telerik:RadScheduler x:Name="scheduler" GroupBy="Speaker" >
 ...
 <telerik:RadScheduler.ResourceStyleMappings>
 <telerik:ResourceStyleMapping ResourceType="Speaker" ResourceName="Shoun Petrik" ResourceBrush="{StaticResource ShounResourceBrush}" HeaderTemplate="{StaticResource ShounHeaderTemplate}" />
 <telerik:ResourceStyleMapping ResourceType="Speaker" ResourceName="Jack Tadros" ResourceBrush="{StaticResource JackResourceBrush}" HeaderTemplate="{StaticResource JackHeaderTemplate}" />
 <telerik:ResourceStyleMapping ResourceType="Speaker" ResourceName="Vladi Pelev" ResourceBrush="{StaticResource VladiResourceBrush}" HeaderTemplate="{StaticResource VladiHeaderTemplate}" />
 <telerik:ResourceStyleMapping ResourceType="Level" ResourceName="200" ResourceBrush="#E28B66" />
 <telerik:ResourceStyleMapping ResourceType="Level" ResourceName="300" ResourceBrush="#C06969"/>
 <telerik:ResourceStyleMapping ResourceType="Level" ResourceName="400" ResourceBrush="#BC5E84"/>
 </telerik:RadScheduler.ResourceStyleMappings>
</telerik:RadScheduler>

The result will be looking like:

Scheduler 749

© 2011 Telerik Inc.

19.4.6 Events

RadScheduler has a full set of events to cover all the basic CRUD (Create, Read, Update, Delete)
operations and then some. The events are paired so that they occur just before and after the actual
operation. The "before" events end in the postfix "ing", e.g. "AppointmentCreating". The "after" events end in
the postfix "ed", e.g. "AppointmentCreated".

For example, when an appointment about to be added, the AppointmentAdding event fires. Based on the
content of the appointment, you can decide to cancel the event. Once the Appointment is added, the
AppointmentAdded event fires, again passing a reference to the Appointment.

Private Sub schTasks_AppointmentAdding(_
ByVal sender As Object, ByVal e As AppointmentAddingEventArgs)
 If e.Appointment.Start <= DateTime.Today Then
 MessageBox.Show("You can only add dates in the future")
 e.Cancel = True
 End If
End Sub

Private Sub schTasks_AppointmentAdded(_
ByVal sender As Object, ByVal e As AppointmentAddedEventArgs)
 If e.Appointment.Subject.StartsWith("UC Class Schedule") Then
 Dim message As String = _
"A reminder email for ""{0}"" will be sent one week before class"
 MessageBox.Show(String.Format(message, e.Appointment.Subject))
 End If
End Sub

private void schTasks_AppointmentAdding(object sender,
AppointmentAddingEventArgs e)
{
 if (e.Appointment.Start <= DateTime.Today)
 {
 MessageBox.Show("You can only add dates in the future");
 e.Cancel = true;
 }
}

private void schTasks_AppointmentAdded(object sender,
AppointmentAddedEventArgs e)
{
 if (e.Appointment.Subject.StartsWith("UC Class Schedule"))
 {
 string message =
 "A reminder email for \"{0}\" will be sent one week before class";
 MessageBox.Show(string.Format(message, e.Appointment.Subject));
 }
}

RadControls for Silverlight750

© 2011 Telerik Inc.

There are similar event pairs for creating, deleting and editing appointments. Along with these event
pairs is a lone AppointmentSaving event that fires after pressing the "Save & Close" button of the
appointment editing dialog.

19.4.7 Commands

To act on the scheduler programmatically, or to implement your own custom templates and bind to actions
directly in XAML, use methods of the RadSchedulerCommands class. Each command is a
RoutedCommand type and so has an Execute() method. The signature for Execute() includes "parameter"
that can be null or another value appropriate to the command. The second parameter is "target", a
UIElement that the command executes against. Here is the Execute() method signature:

public void Execute(Object parameter, UIElement target)

public void Execute(object parameter, UIElement target);

In the case of RadScheduler commands, the parameter may be an Appointment or a TimeSlot, depending
on the context. The UIElement is the scheduler itself. For example, if you want a button click to trigger a
new appointment you could call it in code like this:

Private Sub Add_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadSchedulerCommands.CreateAppointment.Execute(Nothing, schTasks)
End Sub

private void Add_Click(object sender, RoutedEventArgs e)
{
 RadSchedulerCommands.CreateAppointment.Execute(null, schTasks);
}

Scheduler 751

© 2011 Telerik Inc.

The button click fires the command and the Appointment dialog displays, all without directly touching the
scheduler. When the first parameter is null, the SelectedTimeSlot is used to set the Start and End time.
You can add a TimeSlot instance as the first parameter instead:

Private Sub Add_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim startTime As New DateTime(_
DateTime.Today.Year, DateTime.Today.Month, DateTime.Today.Day, 12, 0, 0)
 Dim timeSlot As New TimeSlot(startTime, startTime.AddHours(1))
 RadSchedulerCommands.CreateAppointment.Execute(timeSlot, schTasks)
End Sub

private void Add_Click(object sender, RoutedEventArgs e)
{
 DateTime startTime = new DateTime(DateTime.Today.Year,
 DateTime.Today.Month, DateTime.Today.Day, 12, 0, 0);
 TimeSlot timeSlot = new TimeSlot(startTime, startTime.AddHours(1));
 RadSchedulerCommands.CreateAppointment.Execute(timeSlot, schTasks);
}

Running this code displays the dialog with the Start and End time set to match the TimeSlot parameter:

RadControls for Silverlight752

© 2011 Telerik Inc.

The EditAppointment(), DeleteAppointment() and SaveAppointment() methods all follow the same format as
CreateAppointment().

Private Sub Save_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 If schTasks.SelectedAppointment IsNot Nothing Then
 TryCast(schTasks.SelectedAppointment, Appointment).Body &= _
" " & DateTime.Now.ToLongTimeString()

 RadSchedulerCommands.SaveAppointment.Execute(_
schTasks.SelectedAppointment, schTasks)
 End If
End Sub

private void Save_Click(object sender, RoutedEventArgs e)
{
 if (schTasks.SelectedAppointment != null)
 {
 (schTasks.SelectedAppointment as Appointment).Body +=
 " " + DateTime.Now.ToLongTimeString();

 RadSchedulerCommands.SaveAppointment.Execute(
 schTasks.SelectedAppointment, schTasks);
 }
}

Here are the list of all the possible commands you can invoke as of this writing:

ChangeRecurrenceState

ChangeTimePickersVisibility

DecreaseVisibleDateLarge

DecreaseVisibleDateSmall

DeleteRecurrenceRule

EditParentAppointment

EditRecurrenceRule

IncreaseVisibleDateLarge

IncreaseVisibleDateSmall

SaveRecurrenceRule

SetDayViewMode

SetMonthViewMode

SetWeekViewMode

Scheduler 753

© 2011 Telerik Inc.

These commands are especially useful when you want to customize the scheduler. When you add new
elements to customized templates, commands allow you to bind functionality to the new elements. The
snippet below is from the resources that define a RadScheduler theme. The snippet defines the "Save"
button. Notice how the MouseBinding Command attribute is assigned the SaveAppointment command.

<Button
 telerik:StyleManager.Theme="{StaticResource SchedulerSystemControlsTheme}"
 telerik:LocalizationManager.ResourceKey="SaveAndCloseCommandText">
 <telerik:CommandManager.InputBindings>
 <telerik:InputBindingCollection>
 <telerik:MouseBinding
 Command="telerik:RadSchedulerCommands.SaveAppointment"
 Gesture="LeftClick" />
 </telerik:InputBindingCollection>
 </telerik:CommandManager.InputBindings>
</Button>

See the Customization section of this chapter for more information about customizing scheduler and using
themes.

 Notes

A RoutedCommand is a WPF construct where a command source, e.g. a Button, can be bound
to a command and the command is executed when the command source is activated, e.g. the
button is clicked. RoutedCommands are executed from code, but also can be bound to a
command source in XAML. RoutedCommand doesn't exist in Silverlight yet, but Telerik has built
a RoutedCommand implementation in the Telerik.Windows.Controls namespace.

RadControls for Silverlight754

© 2011 Telerik Inc.

19.4.8 Drag-and-Drop

19.4.8.1 Drag-and-Drop Overview

If you remember from the "Drag and Drop" chapter, the basic steps for implementing drag-and-drop are:

Set the RadDragAndDropManager.AllowDrag attached property to True for any "Source" elements that
you want to drag.

Set the RadDragAndDropManager.AllowDrop attached property to True for any "Destination" elements
that should receive the dragged elements.

Handle DragQueryEvent, DropQueryEvent and DropInfoEvent events.

If you want to drag items from some collection container to the scheduler, the steps are the same. To drag
from a ListBox, you need to set the RadDragAndDropManager AllowDrag = "True" for every item in the list.
ListBox items have an ItemContainerStyle property that handles this automatically without having to
assign the property to each item individually. Inside the ItemContainerStyle, just add a Style with
"ListBoxItem" as its TargetType. Include a single Setter element where the property is
RadDragAndDropManager.AllowDrag and the Value is "True". The relevant parts of the XAML are shown
below:

<ListBox x:Name="listBox">
 <ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 <Setter
 Property="dragDrop:RadDragAndDropManager.AllowDrag"
 Value="True" />
 </Style>
 </ListBox.ItemContainerStyle>
 . . .
</ListBox>

You also need to set the RadDragAndDropManager AllowDrop property for every time slot in the current
scheduler view. This is a little more involved because AllowDrop is set programmatically and must be reset
every time the view changes. The view can change for a variety of reasons, including the initial load of the
scheduler, if the visible range dates change or if the active view changes. When any of these occur, you
need to roll through the current set of time slots and set the AllowDrop property. InitializeTimeSlotItems() is
a private method that sets the AllowDrop property and will be discussed momentarily.

Scheduler 755

© 2011 Telerik Inc.

Private Sub OnSchedulerViewPropertyChanged(_
ByVal sender As Object, ByVal e As PropertyChangedEventArgs)
 If e.PropertyName = "VisibleRangeStart" OrElse _
e.PropertyName = "VisibleRangeEnd" Then
 Me.viewChanged = True
 End If
End Sub

Private Sub Scheduler_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Me.viewChanged = True
End Sub

Private Sub Scheduler_ActiveViewDefinitionChanged(_
ByVal sender As Object, ByVal e As EventArgs)
 Me.viewChanged = True
End Sub

Private Sub Scheduler_LayoutUpdated(_
ByVal sender As Object, ByVal e As EventArgs)
 If Me.viewChanged Then
 Me.viewChanged = False
 Me.InitializeTimeSlotItems()
 End If
End Sub

RadControls for Silverlight756

© 2011 Telerik Inc.

private void OnSchedulerViewPropertyChanged(object sender, PropertyChangedEventArgs e)
{
 if (e.PropertyName == "VisibleRangeStart" || e.PropertyName == "VisibleRangeEnd")
 {
 this.viewChanged = true;
 }
}

private void Scheduler_Loaded(object sender, RoutedEventArgs e)
{
 this.viewChanged = true;
}

private void Scheduler_ActiveViewDefinitionChanged(object sender, EventArgs e)
{
 this.viewChanged = true;
}

private void Scheduler_LayoutUpdated(object sender, EventArgs e)
{
 if (this.viewChanged)
 {
 this.viewChanged = false;
 this.InitializeTimeSlotItems();
 }
}

Scheduler 757

© 2011 Telerik Inc.

Setting AllowDrop on each item is made easier by the ChildrenOfType() extension method that collects all
of the TimeSlotItem objects from the scheduler. Once you have the TimeSlotItems, iterate and call the
SetValue() method to assign AllowDrop.

Private Sub InitializeTimeSlotItems()
 Me.timeSlotItems = Me.Scheduler.ChildrenOfType(Of TimeSlotItem)()
 For Each item As TimeSlotItem In Me.timeSlotItems
 item.SetValue(RadDragAndDropManager.AllowDropProperty, True)
 Next item
End Sub

private void InitializeTimeSlotItems()
{
 this.timeSlotItems = this.Scheduler.ChildrenOfType<TimeSlotItem>();
 foreach (TimeSlotItem item in this.timeSlotItems)
 {
 item.SetValue(RadDragAndDropManager.AllowDropProperty, true);
 }
}

RadControls for Silverlight758

© 2011 Telerik Inc.

19.4.8.2 Drag-and-Drop Walk Through

Now we're going to walk through the complete steps, including the event handlers for the Drag-and-Drop
operation. The application simulates a series of servers to be scheduled for backup.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Scheduler

c) Telerik.Windows.Controls.Input.dll

d) Telerik.Windows.Controls.Navigation.dll

e) Telerik.Windows.Data.dll

f) Telerik.Windows.Themes.Summer

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XML name space references below to the UserControl element to support the scheduler, Drag-
and-Drop and themes.

<UserControl . . .
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation">

Scheduler 759

© 2011 Telerik Inc.

3) Add the XAML below to replace the main "LayoutRoot" Grid element. This XAML defines the ListBox
and the scheduler. The ListBox has the ItemContainerStyle defined as discussed in the previous "Drag-
and-Drop Overview" section. The ListBox also contains a relatively simple ItemTemplate that has a
single bound TextBlock that will display an ObservableCollection of strings.

<Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox x:Name="listBox">
 <ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 <Setter
 Property="dragDrop:RadDragAndDropManager.AllowDrag"
 Value="True" />
 </Style>
 </ListBox.ItemContainerStyle>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <telerik:RadScheduler Grid.Column="1" ViewMode="Day"
 telerik:StyleManager.Theme="Summer" Name="Scheduler">
 </telerik:RadScheduler>
</Grid>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) System.Collections.ObjectModel

b) Telerik.Windows.Controls

c) Telerik.Windows.Controls.DragDrop

d) Telerik.Windows.Controls.Scheduler

2) Add two private members as shown in the code below: A Boolean "viewChanged" variable to signal
between event handlers when the time slots need to be re-initialized with the AllowDrop property
setting, and "listData" that contains a collection of strings to display in the ListBox.

RadControls for Silverlight760

© 2011 Telerik Inc.

Private viewChanged As Boolean

Private listData As ObservableCollection(Of String) = _
New ObservableCollection(Of String){ _
"Backup Houdini", _
"Backup Kirby", _
"Backup Maxine", _
"Backup Smoky", _
"Backup Kiwi", _
"Backup Bobo" _
}

private bool viewChanged;

private ObservableCollection<string> listData = new ObservableCollection<string>{
 "Backup Houdini", "Backup Kirby", "Backup Maxine", "Backup Smoky",
 "Backup Kiwi", "Backup Bobo"
 };

3) Change the constructor for the page to add event handlers for the scheduler, add drag-and-drop routed
event handlers and assign ListBox data. Note: be sure to leave the call to InitializeComponent() in
place.

Public Sub New()
 InitializeComponent()

 ' add scheduler events
 Me.Scheduler.Loaded += Me.Scheduler_Loaded
 Me.Scheduler.ActiveViewDefinitionChanged += _
Me.Scheduler_ActiveViewDefinitionChanged
 Me.Scheduler.LayoutUpdated += Me.Scheduler_LayoutUpdated
 Me.Scheduler.View.PropertyChanged += Me.OnSchedulerViewPropertyChanged

 ' handle drag-and-drop routed events
 RadDragAndDropManager.AddDragQueryHandler(Me, OnDragQuery)
 RadDragAndDropManager.AddDropQueryHandler(Me, OnDropQuery)
 RadDragAndDropManager.AddDropInfoHandler(Me, OnDropInfo)

 ' assign the ListBox data
 Me.listBox.ItemsSource = Me.listData
End Sub

Scheduler 761

© 2011 Telerik Inc.

public MainPage()
{
 InitializeComponent();

 // add scheduler events
 this.Scheduler.Loaded += this.Scheduler_Loaded;
 this.Scheduler.ActiveViewDefinitionChanged +=
 this.Scheduler_ActiveViewDefinitionChanged;
 this.Scheduler.LayoutUpdated += this.Scheduler_LayoutUpdated;
 this.Scheduler.View.PropertyChanged += this.OnSchedulerViewPropertyChanged;

 // handle drag-and-drop routed events
 RadDragAndDropManager.AddDragQueryHandler(this, OnDragQuery);
 RadDragAndDropManager.AddDropQueryHandler(this, OnDropQuery);
 RadDragAndDropManager.AddDropInfoHandler(this, OnDropInfo);

 // assign the ListBox data
 this.listBox.ItemsSource = this.listData;
}

RadControls for Silverlight762

© 2011 Telerik Inc.

4) Add a private method to assign AllowDrop to each scheduler time slot for the current view.

Private Sub InitializeTimeSlotItems()
 Dim timeSlots As IList(Of TimeSlotItem) = _
Me.Scheduler.ChildrenOfType(Of TimeSlotItem)()
 For Each timeSlot As TimeSlotItem In timeSlots
 timeSlot.SetValue(RadDragAndDropManager.AllowDropProperty, True)
 Next timeSlot
End Sub

private void InitializeTimeSlotItems()
{
 IList<TimeSlotItem> timeSlots = this.Scheduler.ChildrenOfType<TimeSlotItem>();
 foreach (TimeSlotItem timeSlot in timeSlots)
 {
 timeSlot.SetValue(RadDragAndDropManager.AllowDropProperty, true);
 }
}

Scheduler 763

© 2011 Telerik Inc.

5) Add the scheduler event handlers.

Private Sub OnSchedulerViewPropertyChanged(_
ByVal sender As Object, ByVal e As PropertyChangedEventArgs)
 If e.PropertyName = "VisibleRangeStart" OrElse _
e.PropertyName = "VisibleRangeEnd" Then
 Me.viewChanged = True
 End If
End Sub

Private Sub Scheduler_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Me.viewChanged = True
End Sub

Private Sub Scheduler_ActiveViewDefinitionChanged(_
ByVal sender As Object, ByVal e As EventArgs)
 Me.viewChanged = True
End Sub

Private Sub Scheduler_LayoutUpdated(_
ByVal sender As Object, ByVal e As EventArgs)
 If Me.viewChanged Then
 Me.viewChanged = False
 Me.InitializeTimeSlotItems()
 End If
End Sub

RadControls for Silverlight764

© 2011 Telerik Inc.

private void OnSchedulerViewPropertyChanged(object sender, PropertyChangedEventArgs e)
{
 if (e.PropertyName == "VisibleRangeStart" || e.PropertyName == "VisibleRangeEnd")
 {
 this.viewChanged = true;
 }
}

private void Scheduler_Loaded(object sender, RoutedEventArgs e)
{
 this.viewChanged = true;
}

private void Scheduler_ActiveViewDefinitionChanged(object sender, EventArgs e)
{
 this.viewChanged = true;
}

private void Scheduler_LayoutUpdated(object sender, EventArgs e)
{
 if (this.viewChanged)
 {
 this.viewChanged = false;
 this.InitializeTimeSlotItems();
 }
}

Scheduler 765

© 2011 Telerik Inc.

6) Add the drag-and-drop event handlers.

Private Sub OnDropInfo(ByVal sender As Object, ByVal e As DragDropEventArgs)
 ' get references to the source list box item and
 ' destination timeslot item
 Dim sourceListBoxItem = TryCast(e.Options.Source, _
System.Windows.Controls.ListBoxItem)
 Dim timeSlotItem = TryCast(e.Options.Destination, TimeSlotItem)

 ' if the drop is complete and we have a valid timeslot
 If e.Options.Status = DragStatus.DropComplete AndAlso _
timeSlotItem IsNot Nothing Then
 ' add a new appointment that matches the timeslot duration
 ' and copy in the listbox item text as the appointment subject
 Me.Scheduler.Appointments.Add(New Appointment() With { _
.Start = timeSlotItem.TimeSlot.Start, _
.End = timeSlotItem.TimeSlot.End, _
.Subject = sourceListBoxItem.FindChildByType(Of TextBlock)().Text})
 ' remove the item from the listbox
 Me.listData.Remove(sourceListBoxItem.Content.ToString())
 End If
End Sub

RadControls for Silverlight766

© 2011 Telerik Inc.

private void OnDropInfo(object sender, DragDropEventArgs e)
{
 // get references to the source list box item and
 // destination timeslot item
 var sourceListBoxItem =
 e.Options.Source as System.Windows.Controls.ListBoxItem;
 var timeSlotItem = e.Options.Destination as TimeSlotItem;

 // if the drop is complete and we have a valid timeslot
 if (e.Options.Status == DragStatus.DropComplete && timeSlotItem != null)
 {
 // add a new appointment that matches the timeslot duration
 // and copy in the listbox item text as the appointment subject
 this.Scheduler.Appointments.Add(
 new Appointment()
 {
 Start = timeSlotItem.TimeSlot.Start,
 End = timeSlotItem.TimeSlot.End,
 Subject = sourceListBoxItem.FindChildByType<TextBlock>().Text
 }
);
 // remove the item from the listbox
 this.listData.Remove(sourceListBoxItem.Content.ToString());
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Scheduler 767

© 2011 Telerik Inc.

Test Application Features

1) Drag items from the list on the left onto scheduler time slots.

2) When the item is dropped, an appointment should be created automatically, using the text of the
ListBox item.

3) Items added to the scheduler should disappear from the ListBox.

Ideas for Extending This Example

Try dragging from another type of list object, e.g. combo box or tab strip.

RadControls for Silverlight768

© 2011 Telerik Inc.

19.4.9 Internationalization

19.4.9.1 Using Predefined Cultures

The scheduler Culture property has been deprecated. In its place use the LocalizationManager
DefaultCulture property. You also need to have the scheduler recognize the changes. This currently
involves a workaround where the scheduler's template is set to null, then reassigned. For the sake of
example, we can bind a List of CultureInfo objects to a RadComboBox ItemsSource.

cbCultures.ItemsSource = New List(Of CultureInfo) (_
New CultureInfo() { CultureInfo.InvariantCulture, _
New CultureInfo("es"), _
New CultureInfo("de"), _
New CultureInfo("fr"), _
New CultureInfo("it"), _
New CultureInfo("tr")})

cbCultures.ItemsSource = new List<CultureInfo>() {
 CultureInfo.InvariantCulture,
 new CultureInfo("es"),
 new CultureInfo("de"),
 new CultureInfo("fr"),
 new CultureInfo("it"),
 new CultureInfo("tr")
};

The combo box DisplayMemberPath points to the CultureInfo DisplayName property.

<telerik:RadComboBox
 x:Name="cbCultures"
 DisplayMemberPath="DisplayName"
 SelectionChanged="cbCultures_SelectionChanged"
 HorizontalAlignment="Left" />

Scheduler 769

© 2011 Telerik Inc.

When the user clicks on a culture name, the SelectionChanged event handler picks up the selected culture
and assigns it to the LocalizationManager.DefaultCulture. The ResetTemplate() method takes care of the
workaround that allows the new culture to be displayed.

Private Sub cbCultures_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 LocalizationManager.DefaultCulture = _
CType(cbCultures.SelectedItem, CultureInfo)
 ResetTemplate()
End Sub

Private Sub ResetTemplate()
 Dim template As ControlTemplate = schTasks.Template
 schTasks.Template = Nothing
 schTasks.Template = template
End Sub

private void cbCultures_SelectionChanged(
 object sender, Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 LocalizationManager.DefaultCulture = (CultureInfo)cbCultures.SelectedItem;
 ResetTemplate();
}

private void ResetTemplate()
{
 ControlTemplate template = schTasks.Template;
 schTasks.Template = null;
 schTasks.Template = template;
}

RadControls for Silverlight770

© 2011 Telerik Inc.

When selected from the combo box, the new culture is reflected in the scheduler and all its child
elements, including the drop down date picker.

Scheduler 771

© 2011 Telerik Inc.

19.4.9.2 Custom Translations

If there is no predefined translation for the culture you want to use or if you want the scheduler to reflect
some particular language, dialect or professional terminology, use a custom resource file and assign it to
the scheduler. The screenshot below shows the scheduler language customized for online webinars.

RadControls for Silverlight772

© 2011 Telerik Inc.

To customize the language, you need a resource file populated with specific names that correspond to
strings in the scheduler. You can use the SchedulerStrings.resx file found at "\courseware\resources"
directory. Open the resource file in Visual Studio and edit the Value columns to use the specific language
or terminology.

Scheduler 773

© 2011 Telerik Inc.

In the code behind, you need to assign the resource file's ResourceManager to the LocalizationManager.
DefaultResourceManager. Currently, you also need to perform the work-around explained earlier in this
chapter to reset the scheduler Template.

Private Sub CustomTranslation_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 schTasks.DayHeaderFormat = "Webinars for {0:dddd MMM d}"
 ' assign the custom resource file to the LocalizationManager
 LocalizationManager.DefaultResourceManager = SchedulerStrings.ResourceManager
 ResetTemplate()
End Sub

Private Sub ResetTemplate()
 Dim template As ControlTemplate = schTasks.Template
 schTasks.Template = Nothing
 schTasks.Template = template
End Sub

private void CustomTranslation_Click(object sender, RoutedEventArgs e)
{
 schTasks.DayHeaderFormat = "Webinars for {0:dddd MMM d}";
 // assign the custom resource file to the LocalizationManager
 LocalizationManager.DefaultResourceManager = SchedulerStrings.ResourceManager;
 ResetTemplate();
}

private void ResetTemplate()
{
 ControlTemplate template = schTasks.Template;
 schTasks.Template = null;
 schTasks.Template = template;
}

RadControls for Silverlight774

© 2011 Telerik Inc.

Tip!

Notice that we're using the scheduler DayHeaderFormat property to set the language at the top of
each day. There are several similar properties appended with "Format" that you can use to customize
parts of the scheduler. The tool tip for each property provides the default format you can use as a
starting point. The screenshot below shows the tool tip displayed in the Visual Studio editor.

This particular property setting results in the heading shown below that reads "Webinars for
Thursday Oct 15".

Scheduler 775

© 2011 Telerik Inc.

19.5 Binding

19.5.1 Basic Binding

RadScheduler can bind to any IAppointment implementation. Telerik provides an Appointment class that
serves nicely where you don't need any custom fields. To setup binding, add Appointment instances to an
ObservableCollection, then assign the collection to the scheduler AppointmentsSource property. The walk
through below demonstrates just that.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Scheduler

c) Telerik.Windows.Controls.Input.dll

d) Telerik.Windows.Controls.Navigation.dll

e) Telerik.Windows.Data.dll

f) Telerik.Windows.Themes.Vista

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references to the Telerik.Windows.Controls and Telerik.Windows.Controls.
Scheduler assemblies. Also add a Loaded event handler.

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .
Loaded="UserControl_Loaded">
. . .
</UserControl>

3) Drag a RadScheduler from the Toolbox to a point inside the main "LayoutRoot" grid. Set the name to
"schTasks" and the Theme to "Vista".

RadControls for Silverlight776

© 2011 Telerik Inc.

<Grid x:Name="LayoutRoot">
 <telerik:RadScheduler
 x:Name="schTasks"
 telerik:StyleManager.Theme="Vista" />
</Grid>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these name spaces:

a) System.Collections.ObjectModel (Supports the ObservableCollection class)

b) Telerik.Windows.Controls.Scheduler

2) Add the code below to the Loaded event handler.

This code creates the series of Appointment objects and adds them to the ObservableCollection. The
populated collection is assigned to the RadScheduler AppointmentsSource.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim webinars As ObservableCollection(Of Appointment) = _
New ObservableCollection(Of Appointment)()

 webinars.Add(New Appointment() With { _
.Subject = "Go with the CoverFlow", _
.Start = DateTime.Today, _
.End = DateTime.Today.AddHours(1)})

 webinars.Add(New Appointment() With { _
.Subject = "TreeView Tips and Tricks", _
.Start = DateTime.Today.AddHours(1), _
.End = DateTime.Today.AddHours(2)})

 Dim pattern As New RecurrencePattern(Nothing, _
RecurrenceDays.Monday, RecurrenceFrequency.Monthly, 1, Nothing, Nothing)
 Dim rule As New RecurrenceRule(pattern)

 webinars.Add(New Appointment() With { _
.Subject = "Customizing RadScheduler", _
.Start = DateTime.Today.AddHours(3), _
.End = DateTime.Today.AddHours(4), _
.RecurrenceRule = rule})

 schTasks.AppointmentsSource = webinars
End Sub

Scheduler 777

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 ObservableCollection<Appointment> webinars =
 new ObservableCollection<Appointment>();

 webinars.Add(new Appointment()
 {
 Subject = "Go with the CoverFlow",
 Start = DateTime.Today,
 End = DateTime.Today.AddHours(1)
 });

 webinars.Add(new Appointment()
 {
 Subject = "TreeView Tips and Tricks",
 Start = DateTime.Today.AddHours(1),
 End = DateTime.Today.AddHours(2)
 });

 RecurrencePattern pattern =
 new RecurrencePattern(null, RecurrenceDays.Monday,
 RecurrenceFrequency.Monthly, 1, null, null);
 RecurrenceRule rule = new RecurrenceRule(pattern);

 webinars.Add(new Appointment()
 {
 Subject = "Customizing RadScheduler",
 Start = DateTime.Today.AddHours(3),
 End = DateTime.Today.AddHours(4),
 RecurrenceRule = rule
 });

 schTasks.AppointmentsSource = webinars;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight778

© 2011 Telerik Inc.

Test Application Features

1) Verify that you can change the appointment information and that the changes persist.

2) Verify that the recurring appointment is listed for every Monday after the initial appointment.

Scheduler 779

© 2011 Telerik Inc.

19.5.2 Custom Appointments

Telerik provides an abstract AppointmentBase class that includes all the basics, i.e. "Subject", "Start",
"End". AppointmentBase also has INotifyPropertyChanged support baked in. Once you have an
AppointmentBase descendant, you can create an ObservableCollection of your custom appointment
objects.

Here's a sample AppointmentBase descendant called WebinarAppointment that adds a single new property
"Presenter". Notice that plumbing for Start, End, Subject, Recurrence, IsAllDayEvent and TimeZone
properties is already taken care of by the AppointmentBase class. Also notice that the call to the
OnPropertyChanged() method inside the "Presenter" property setter. Likewise, the CopyFrom()
IAppointment method calls the base method and only adds the new "Presenter" property assignment.

RadControls for Silverlight780

© 2011 Telerik Inc.

Public Class WebinarAppointment
 Inherits AppointmentBase
 #Region "properties"

 Private _presenter As String
 Public Property Presenter() As String
 Get
 Return _presenter
 End Get

 Set(ByVal value As String)
 If _presenter <> value Then
 _presenter = value
 OnPropertyChanged("Presenter")
 End If
 End Set
 End Property

 #End Region

 #Region "IAppointment methods"

 ' makes a new appointment with all the properties of this
 ' appointment
 Public Overrides Function Copy() As IAppointment
 Dim app As IAppointment = New WebinarAppointment()
 app.CopyFrom(Me)
 Return app
 End Function

 ' copy all the properties from another appointment
 Public Overrides Sub CopyFrom(ByVal other As IAppointment)
 MyBase.CopyFrom(other)
 Dim appointment = TryCast(other, WebinarAppointment)
 If appointment IsNot Nothing Then
 Presenter = appointment.Presenter
 End If
 End Sub
 #End Region

End Class

Scheduler 781

© 2011 Telerik Inc.

public class WebinarAppointment : AppointmentBase
{
 #region properties

 private string _presenter;
 public string Presenter
 {
 get
 {
 return _presenter;
 }

 set
 {
 if (_presenter != value)
 {
 _presenter = value;
 OnPropertyChanged("Presenter");
 }
 }
 }

 #endregion

 #region IAppointment methods

 // makes a new appointment with all the properties of this
 // appointment
 public override IAppointment Copy()
 {
 IAppointment app = new WebinarAppointment();
 app.CopyFrom(this);
 return app;
 }

 // copy all the properties from another appointment
 public override void CopyFrom(IAppointment other)
 {
 base.CopyFrom(other);
 var appointment = other as WebinarAppointment;
 if (appointment != null)
 {
 Presenter = appointment.Presenter;
 }
 }
 #endregion

}

RadControls for Silverlight782

© 2011 Telerik Inc.

Like the previous example from the "Basic Binding" section that binds Appointment class instances,
WebinarAppointment instances are created and added to an ObservableCollection, then assigned to the
scheduler's AppointmentsSource. The major difference here, other than the use of WebinarAppointment
instead of Appointment, is the inclusion of the new "Presenter" property.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' create WebinarAppointment custom objects and add
 ' them to the observable collection
 Dim webinars As ObservableCollection(Of WebinarAppointment) = _
New ObservableCollection(Of WebinarAppointment)()

 webinars.Add(New WebinarAppointment() With { _
.Subject = "Go with the CoverFlow", _
.Presenter = "Hristo Borisov", _
.Start = DateTime.Today, _
.End = DateTime.Today.AddHours(1)})

 webinars.Add(New WebinarAppointment() With { _
.Subject = "TreeView Tips and Tricks", _
.Presenter = "Valeri Hristov", _
.Start = DateTime.Today.AddHours(1), _
.End = DateTime.Today.AddHours(2)})

 ' Create a RecurrenceRule. The RecurrencePattern
 ' assigned to this rule estab lishes that the appointment
 ' will recur on Mondays after the initial appointment
 Dim pattern As New RecurrencePattern(Nothing, _
RecurrenceDays.Monday, RecurrenceFrequency.Monthly, 1, Nothing, Nothing)
 Dim rule As New RecurrenceRule(pattern)

 webinars.Add(New WebinarAppointment() With { _
.Subject = "Customizing RadScheduler", _
.Presenter = "Rosi F", _
.Start = DateTime.Today.AddHours(3), _
.End = DateTime.Today.AddHours(4), _
.RecurrenceRule = rule})

 schTasks.AppointmentsSource = webinars
End Sub

Scheduler 783

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // create WebinarAppointment custom objects and add
 // them to the observable collection
 ObservableCollection<WebinarAppointment> webinars =
 new ObservableCollection<WebinarAppointment>();

 webinars.Add(new WebinarAppointment()
 {
 Subject = "Go with the CoverFlow",
 Presenter = "Hristo Borisov",
 Start = DateTime.Today,
 End = DateTime.Today.AddHours(1)
 });

 webinars.Add(new WebinarAppointment()
 {
 Subject = "TreeView Tips and Tricks",
 Presenter = "Valeri Hristov",
 Start = DateTime.Today.AddHours(1),
 End = DateTime.Today.AddHours(2)
 });

 // Create a RecurrenceRule. The RecurrencePattern
 // assigned to this rule estab lishes that the appointment
 // will recur on Mondays after the initial appointment
 RecurrencePattern pattern =
 new RecurrencePattern(null, RecurrenceDays.Monday,
 RecurrenceFrequency.Monthly, 1, null, null);
 RecurrenceRule rule = new RecurrenceRule(pattern);

 webinars.Add(new WebinarAppointment()
 {
 Subject = "Customizing RadScheduler",
 Presenter = "Rosi F",
 Start = DateTime.Today.AddHours(3),
 End = DateTime.Today.AddHours(4),
 RecurrenceRule = rule
 });

 schTasks.AppointmentsSource = webinars;
}

RadControls for Silverlight784

© 2011 Telerik Inc.

19.6 Customization

In the previous Binding section of this chapter we created a new bit of data called "Presenter". Its all very
good that the data is somehow available, but how do you get this data to show in the scheduler? As with all
the Silverlight controls, control templates let you compose arbitrary arrangements of elements and bind
them to data. The scheduler provides access to the control template using a custom theme. Custom
themes are implemented using XAML resource files stored in a separate assembly. The general steps that
display a new bound data property in a custom theme are:

Create a new Silverlight Class Library project. The class library will hold a XAML file that contains all the
resources for the scheduler and a Telerik.Windows.Controls.Theme descendant.

Edit the XAML to alter the specific template resource you're interested in.

Reference the new theme in a Silverlight application.

You would use these steps for any customization of the scheduler, such as including additional properties
or changing the layout and appearance of any scheduler aspect.

In this next walk through, you will create a new "MyCustomTheme" class. By altering the
"EditAppointmentTemplate" of the theme XAML file, you will include an additional row containing a TextBox
bound to the "Presenter" property.

Build the Silverlight Class Library

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Class Library template. Name the project "CustomTheme" and click the OK
button.

2) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add references to these assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Scheduler

c) Telerik.Windows.Controls.Input.dll

d) Telerik.Windows.Controls.Navigation.dll

e) Telerik.Windows.Data.dll

3) In the Solution Explorer, rename the default "Class1" file to "MyCustomTheme".

4) Open the class file for editing and make the following changes:

a) Add the Telerik.Windows.Controls namespace to the "Imports" (VB) or "using" (C#) section of
code.

b) Replace "Class1" with the code below. Also replace the "path" string "<My Project Name>" with the
name of your Silverlight Class Library project.

Scheduler 785

© 2011 Telerik Inc.

Public Class MyCustomTheme
 Inherits Theme
 Public Sub New()
 ' path the XML that defines this theme
 Dim path As String = "/<My Project Name>;component/themes/Generic.xaml"

 ' assign the source file for this theme
 Me.Source = New Uri(path, UriKind.RelativeOrAbsolute)
 End Sub
End Class

public class MyCustomTheme : Theme
{
 public MyCustomTheme()
 {
 // path the XML that defines this theme
 string path =
 "/<My Project Name>;component/themes/Generic.xaml";

 // assign the source file for this theme
 this.Source =
 new Uri(path, UriKind.RelativeOrAbsolute);
 }
}

 Notes

In the sample projects that accompany this courseware, the theme project is called
"04B_CustomTheme", so the correct path for the XAML resource file is "04B_CustomTheme;
component/themes/Generic.xaml". See the screenshot of the Solution Explorer below for reference.

RadControls for Silverlight786

© 2011 Telerik Inc.

5) Drag a copy of the "\Themes" folder and its contents from the "\courseware\resources" directory into
your Silverlight Class Library. Note that this file can also be obtained from the project source available
from download page of your Telerik account.

6) Open the Generic.xaml file for editing.

7) Locate the "EditAppointmentTemplate" ControlTemplate. We will be editing the grid within this
element.

8) Set the Grid Height attribute to "350". This will grow the edit appointment dialog slightly to
accommodate the new row you are about to add.

Scheduler 787

© 2011 Telerik Inc.

9) Find the Grid.RowDefinitions element within the grid. Replace the row definitions with the XAML
below: This will provide one extra row.

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>

10)Locate the TextBox element named "Subject", i.e., 'x:Name="Subject"'. Add the following XAML just
below this TextBox element.

Notice in the XAML below that the TextBox is bound to the Presenter property.

<!--new controls to represent the "Presenter" property-->
<TextBlock Text="Presenter:" Grid.Row="1"
 Style="{StaticResource FormElementTextBlockStyle}"
 telerik:StyleManager.Theme="{StaticResource Theme}" />
<TextBox
 telerik:StyleManager.Theme="{StaticResource Theme}"
 x:Name="Presenter" Grid.Row="1" Grid.Column="1"
 Text="{Binding Presenter, Mode=TwoWay}"
 MaxLength="255" Margin="10, 10, 20, 2" />

11)Build the Silverlight Class Library project.

RadControls for Silverlight788

© 2011 Telerik Inc.

Build the Silverlight Application

Project Setup

1) In the Solution Explorer, right-click the solution and select Add > New Project..., select the Silverlight
project type, then select the Silverlight Application template. Provide a unique name for the project and
click the OK button.

2) In the "New Silverlight Application" dialog, make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web project Type option is checked. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add references to these assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Scheduler

c) Your Silverlight Class Library assembly. You can find your custom theme project in the Projects tab of
the Add Reference dialog.

4) In the Solution Explorer, create a WebinarAppointment class file and copy the code below into the file.
Note: This is the exact same WebinarAppointment file created in the Binding section of this chapter.
Feel free to copy this file over to save time.

Scheduler 789

© 2011 Telerik Inc.

Imports System
Imports Telerik.Windows.Controls.Scheduler

Namespace _04_Customization
 Public Class WebinarAppointment
 Inherits AppointmentBase

 Private _presenter As String
 Public Property Presenter() As String
 Get
 Return _presenter
 End Get

 Set(ByVal value As String)
 If _presenter <> value Then
 _presenter = value
 OnPropertyChanged("Presenter")
 End If
 End Set
 End Property

 ' makes a new appointment with all the properties of this
 ' appointment
 Public Overrides Function Copy() As IAppointment
 Dim app As IAppointment = New WebinarAppointment()
 app.CopyFrom(Me)
 Return app
 End Function

 ' copy all the properties from another appointment
 Public Overrides Sub CopyFrom(ByVal other As IAppointment)
 MyBase.CopyFrom(other)
 Dim appointment = TryCast(other, WebinarAppointment)
 If appointment IsNot Nothing Then
 Presenter = appointment.Presenter
 End If
 End Sub

 End Class
End Namespace

RadControls for Silverlight790

© 2011 Telerik Inc.

using System;
using Telerik.Windows.Controls.Scheduler;

namespace _04_Customization
{
 public class WebinarAppointment : AppointmentBase
 {
 private string _presenter;
 public string Presenter
 {
 get { return _presenter; }

 set
 {
 if (_presenter != value)
 {
 _presenter = value;
 OnPropertyChanged("Presenter");
 }
 }
 }

 // makes a new appointment with all the properties of this
 // appointment
 public override IAppointment Copy()
 {
 IAppointment app = new WebinarAppointment();
 app.CopyFrom(this);
 return app;
 }

 // copy all the properties from another appointment
 public override void CopyFrom(IAppointment other)
 {
 base.CopyFrom(other);
 var appointment = other as WebinarAppointment;
 if (appointment != null)
 {
 Presenter = appointment.Presenter;
 }
 }
 }
}

Scheduler 791

© 2011 Telerik Inc.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XML namespace references below to the UserControl element to support the scheduler and
your custom theme. Also add a Loaded event handler.

Important Note: In the XML namespace "customTheme", replace the portion to the right of the "=" with
your own custom theme assembly reference. Put the cursor to the right of the equal sign and press
Ctrl-Spacebar to get a list of available assemblies. Select your custom theme assembly reference from
the list.

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
Loaded="UserControl_Loaded">

3) Add a UserControl.Resources element. In the Resources element, add a reference to your custom
theme.

<UserControl.Resources>
 <customTheme:MyCustomTheme x:Key="theme" />
</UserControl.Resources>

RadControls for Silverlight792

© 2011 Telerik Inc.

4) Drag a RadScheduler control from the Toolbox to a point inside the main "LayoutRoot" grid element.
Name the scheduler "schTasks" and set the Theme to "{StaticResource theme}".

Just to recap, "{StaticResource theme}" points back to the UserControl.Resources element with
key="theme". That element points back to "customTheme", a reference to your Silverlight Class
Library and its "MyCustomTheme" class.

<telerik:RadScheduler x:Name="schTasks"
 telerik:StyleManager.Theme="{StaticResource theme}" />

 Notes

An alternative to the last two steps would be to assign the theme in code using the StyleManager.
SetTheme() method. SetTheme() takes a reference to the scheduler and an instance of the
custom theme class.

' alternative to defining in XAML
Telerik.Windows.Controls.StyleManager.SetTheme(schWebinars, New MyCustomTheme())

// alternative to defining in XAML
Telerik.Windows.Controls.StyleManager.SetTheme(schWebinars, new MyCustomTheme());

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) System.Collections.ObjectModel

b) Telerik.Windows.Controls.Scheduler

2) Create an ObservableCollection of WebinarAppointment objects and assign it to the scheduler
AppointmentsSource.

This code is replicated from the Binding section regarding Custom Appointments.

Scheduler 793

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' create WebinarAppointment custom objects and add
 ' them to the observable collection
 Dim webinars As ObservableCollection(Of WebinarAppointment) = _
New ObservableCollection(Of WebinarAppointment)()

 webinars.Add(New WebinarAppointment() With { _
.Subject = "Go with the CoverFlow", _
.Presenter = "Hristo Borisov", _
.Start = DateTime.Today, _
.End = DateTime.Today.AddHours(1)})

 webinars.Add(New WebinarAppointment() With { _
.Subject = "TreeView Tips and Tricks", _
.Presenter = "Valeri Hristov", _
.Start = DateTime.Today.AddHours(1), _
.End = DateTime.Today.AddHours(2)})

 ' Create a RecurrenceRule. The RecurrencePattern
 ' assigned to this rule estab lishes that the appointment
 ' will recur on Mondays after the initial appointment
 Dim pattern As New RecurrencePattern(_
Nothing, RecurrenceDays.Monday, RecurrenceFrequency.Monthly, 1, Nothing, Nothing)
 Dim rule As New RecurrenceRule(pattern)

 webinars.Add(New WebinarAppointment() With { _
.Subject = "Customizing RadScheduler", _
.Presenter = "Rosi F", _
.Start = DateTime.Today.AddHours(3), _
.End = DateTime.Today.AddHours(4), _
.RecurrenceRule = rule})

 schTasks.AppointmentsSource = webinars
End Sub

RadControls for Silverlight794

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // create WebinarAppointment custom objects and add
 // them to the observable collection
 ObservableCollection<WebinarAppointment> webinars =
 new ObservableCollection<WebinarAppointment>();

 webinars.Add(new WebinarAppointment()
 {
 Subject = "Go with the CoverFlow",
 Presenter = "Hristo Borisov",
 Start = DateTime.Today,
 End = DateTime.Today.AddHours(1)
 });

 webinars.Add(new WebinarAppointment()
 {
 Subject = "TreeView Tips and Tricks",
 Presenter = "Valeri Hristov",
 Start = DateTime.Today.AddHours(1),
 End = DateTime.Today.AddHours(2)
 });

 // Create a RecurrenceRule. The RecurrencePattern
 // assigned to this rule estab lishes that the appointment
 // will recur on Mondays after the initial appointment
 RecurrencePattern pattern =
 new RecurrencePattern(null, RecurrenceDays.Monday,
 RecurrenceFrequency.Monthly, 1, null, null);
 RecurrenceRule rule = new RecurrenceRule(pattern);

 webinars.Add(new WebinarAppointment()
 {
 Subject = "Customizing RadScheduler",
 Presenter = "Rosi F",
 Start = DateTime.Today.AddHours(3),
 End = DateTime.Today.AddHours(4),
 RecurrenceRule = rule
 });

 schTasks.AppointmentsSource = webinars;
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Scheduler 795

© 2011 Telerik Inc.

The edit appointment dialog appears with the new "Presenter:" title TextBlock and TextBox bound to
the Presenter property of the WebinarAppointment object.

Test Application Features

1) Verify that the new Presenter fields appear on the appointment editing dialog.

2) Make changes to the presenter, save, then re-open the dialog to verify the changes.

19.7 Wrap Up

In this chapter you covered a wide range of material in the process of learning how to use RadScheduler to
best effect. You started out by using RadScheduler in a simple project that created a single appointment.
You learned how to switch the view between month, week and day. You also learned how to create and
configure appointments and the role of IAppointment and AppointmentBase in building custom appointment
classes. You selected appointments programmatically and responded to user selections in the scheduler.
You worked with RecurrenceRule and RecurrencePattern classes to specify the recurrence behavior of an
appointment. You looked briefly at scheduler commands and how they can be used programmatically or to
add functionality to controls defined in XAML. You learned how to drag-and-drop ListBox items into time
slots using the RadDragAndDropManager control. You also learned how to localize the scheduler using the
LocalizationManager and you also saw how to provide a custom translation using resource files.

You performed basic data binding to a collection of the supplied Appointment class and you also worked
with building and binding to custom appointment objects. Finally, you built a custom Theme for
RadScheduler and modified the Appointment Editing dialog user interface.

Part

XX
Gauges

Gauges 797

© 2011 Telerik Inc.

20 Gauges

20.1 Objectives

This chapter demonstrates how to use gauges to support dynamic data visualization. "First up", you will
learn how to build a gauge starting with RadGauge and adding its constituent elements. You'll learn how to
work with radial and numeric gauges and how these two element can be swapped without affecting
application behavior. You will drill down into the gauge elements to see how scales, indicators and ranges
work together and how some of the important properties are used to tweak behavior and appearance. Next,
you'll learn how to bind individual indicators to data. Finally, you will use Expression Blend to customize
gauge appearance.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Gauge\Gauge.sln.

RadControls for Silverlight798

© 2011 Telerik Inc.

20.2 Overview

Use Telerik Gauge controls to build dashboards for business, science, electronics or any purpose where
dynamic data visualization is required.

RadGauge has circular, linear and numeric gauges that work with a many indicator types, such as needle,
bar, state and marker. RadGauge comes with several predefined themes that provide visual "pop" at the
cost of a single property assignment. The gauge and its elements can be composed and styled in endless
ways to provide a unique, striking appearance for any purpose. For example, a car dashboard can be
assembled using multiple radial and numeric gauges combined with any other Silverlight elements you
might care to use.

Gauges 799

© 2011 Telerik Inc.

Features

Radial Gauge: a circular scale with numbers and tick marks. You can adjust the radius, center point,
sweep angle, start angle and end angle of the scale.

Linear Gauge: a rectangular scale that can be used for many familiar interfaces such as a
thermometer or graphic equalizer.

Indicators: There are five types of indicators that you can mix and match: marker, needle, bar, state
indicator and numeric indicator. "State" indicators help you signal a change in the status of the data, e.
g. "over temperature threshold" or "stock sell price".

Ranges: Use ranges to stake out areas along the scale for special attention, particularly thresholds or
other areas that may call for some decision to be made in response to the current data. The "State"
indicator automatically mirrors the background of the corresponding range.

Rich Customization Capabilities: The look-and-feel of the gauge can be articulated separately from
the gauge behavior. The gauge and its constituent parts can be styled for a completely custom look.
Each of the gauge elements, i.e. indicators, ranges, etc., has a rich set of properties and events to
handle the most demanding requirements.

Animations: gauges are smoothly animated, right out of the box.

Events: indicators and ranges generate events to alert you to value changes, when indicator values are
entering or leaving a range or when a value stays in a range for a given time period.

RadControls for Silverlight800

© 2011 Telerik Inc.

20.3 Getting Started

In this walk through you will build a simple linear gauge with a single indicator. You will also implement a
timer that changes the indicator value to a random value every half second.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Gauge

c) Telerik.Windows.Themes.Vista

d) Telerik.Windows.Themes.Summer

XAML Editing

1) Open MainPage.xaml for editing.

2) Add an event handler to the UserControl element for the "Loaded" event.

3) Add XML namespace references for the Telerik.Windows.Controls and Telerik.Windows.Controls.
Gauges namespaces found in the Telerik.Windows.Controls.Gauge assembly. Also add an XML
namespace reference to the Telerik.Windows.Controls namespace found in the Telerik.Windows.
Controls assembly.

Note: Each xmlns statement should be all on one line. The example below is split up to fit the size
constraints of the page in this manual.

xmlns:control=
"clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls.Gauge"
xmlns:gauge=
"clr-namespace:
Telerik.Windows.Controls.Gauges;assembly=Telerik.Windows.Controls.Gauge"
xmlns:telerik=
"clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls"

Gauges 801

© 2011 Telerik Inc.

4) Drag a RadGauge control to a point inside the main "LayoutRoot" Grid element.

<UserControl . . .>
 <Grid x:Name="LayoutRoot">
 <control:RadGauge>

 </control:RadGauge>
 </Grid>
</UserControl>

If you run the application now, the web page will be blank. RadGauge is a ContentControl descendant,
whose purpose is to hold other Silverlight controls. In particular, RadGauge can contain RadialGauge,
LinearGauge and NumericScale controls.

5) Add a LinearGauge inside the RadGauge element.

<Grid x:Name="LayoutRoot">
 <control:RadGauge>
 <gauge:LinearGauge></gauge:LinearGauge>
 </control:RadGauge>
</Grid>

RadControls for Silverlight802

© 2011 Telerik Inc.

6) Press F5 to run the application. Now the web page will display the default background of a
LinearGauge. As yet, there is no other gauge functionality added, just the background appearance:

7) Close the browser to end the application.

8) Add a StyleManager.Theme attribute and set it to "Vista".

<gauge:LinearGauge telerik:StyleManager.Theme="Vista">
</gauge:LinearGauge>

9) Press F5 to run the application again to see the Vista theme in action.

10)Close the browser to end the application.

11)Add a LinearScale element to the LinearGauge. Set the Min attribute to "0" and the Max attribute to
"100".

Gauges 803

© 2011 Telerik Inc.

<control:RadGauge>
 <gauge:LinearGauge telerik:StyleManager.Theme="Vista">
 <gauge:LinearScale Min="0" Max="100"></gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

12)Press F5 to run the application and see the scale.

13)Close the browser to end the application.

14)Inside the LinearScale element, add an IndicatorList. Inside the IndicatorList, add a LinearBar
element and name it "linearBar" so we can access it in code later.

<control:RadGauge>
 <gauge:LinearGauge telerik:StyleManager.Theme="Vista">
 <gauge:LinearScale Min="0" Max="100">
 <gauge:IndicatorList>
 <gauge:LinearBar x:Name="linearBar"></gauge:LinearBar>
 </gauge:IndicatorList>
 </gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

Code Behind

1) In the code-behind for the page, add references to the System.Windows.Threading namespace in the
"Imports" (VB) or "using" (C#) section of code.

2) Add a DispatcherTimer and a Random object. Instantiate both objects.

RadControls for Silverlight804

© 2011 Telerik Inc.

Private _timer As New DispatcherTimer()
Private _random As New Random()

private DispatcherTimer _timer = new DispatcherTimer();
private Random _random = new Random();

Gauges 805

© 2011 Telerik Inc.

3) In the UserControl Loaded event handler, set the DispatcherTimer Interval to a half second time span,
add a Tick event handler and call the Start() method.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 _timer.Interval = New TimeSpan(0, 0, 0, 0, 500)
 AddHandler _timer.Tick, AddressOf _timer_Tick
 _timer.Start()
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 _timer.Interval = new TimeSpan(0, 0, 0, 0, 500);
 _timer.Tick += new EventHandler(_timer_Tick);
 _timer.Start();
}

RadControls for Silverlight806

© 2011 Telerik Inc.

4) Add a Tick event handler. Inside the new handler, set the LinearBar Value property using the Random.
Next() method. Pass the Next() method the minimum and maximum values it can return.

Private Sub _timer_Tick(ByVal sender As Object, ByVal e As EventArgs)
 linearBar.Value = _random.Next(1, 100)
End Sub

void _timer_Tick(object sender, EventArgs e)
{
 linearBar.Value = _random.Next(1, 100);
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

 Verify that the linear bar animates smoothly up and down as the values change every half second.

Ideas for Extending This Example

Try styling the LinearGauge with the "Summer" theme.

Change the LinearGauge to be a RadialGauge.

Gauges 807

© 2011 Telerik Inc.

Change the LinearScale to RadialScale and LinearBar to RadialBar. The screenshot below shows the
resulting RadialGauge/RadialScale/RadialBar combination. You can make these changes to the XAML
alone. No other code changes are required.

RadControls for Silverlight808

© 2011 Telerik Inc.

20.4 Control Details

In the "Getting Started" section, you created a simple RadGauge example that shows the typical hierarchy
of elements that make up a gauge. If we open up the project in Expression Blend and look at the Objects
and Timeline pane, the tree of elements shows how the RadGauge contains gauge controls, scale and a list
of indicators.

RadGauge

The RadGauge control can contain all gauge types (radial, linear or numeric). Layout is completely flexible
and any Panel object (StackPanel, Grid, etc.) can be used as content. RadGauge will typically contain one
or more gauge objects such as RadialGauge or LinearGauge. RadGauge is themeable and can set the style
for all contained gauges. In the XAML below, the RadGauge has a "Summer" theme and contains a
StackPanel as its content. Inside the StackPanel a LinearGauge and a RadialGauge are displayed side-by-
side.

<control:RadGauge telerik:StyleManager.Theme="Summer">
 <StackPanel Orientation="Horizontal">
 <gauge:LinearGauge>
 </gauge:LinearGauge>
 <gauge:RadialGauge>
 </gauge:RadialGauge>
 </StackPanel>
</control:RadGauge>

The result of the markup shows the two gauges with the Summer theme applied:

Gauges 809

© 2011 Telerik Inc.

Gauges

RadialGauge and LinearGauge classes provide a visual background for radial, linear and numeric scales.
Both classes have a similar construction shown in the simplified XAML control template below. The
template contains a ContentControl for the background, an ItemsPresenter to contain scales or indicators
and another ContentControl for the foreground. You can use the predefined themes to handle the
background and foreground or you can design your own unique look for the control.

<ControlTemplate x:Key="RadialGaugeTemplate" TargetType="local:RadialGauge">
 <Border . . .>
 <Grid>
 <ContentControl Template="{StaticResource RadialGaugeBackground}"/>
 <ItemsPresenter />
 <ContentControl Template="{StaticResource RadialGaugeForeground}"/>
 </Grid>
 </Border>
</ControlTemplate>

RadControls for Silverlight810

© 2011 Telerik Inc.

Tip!

While the typical layout of a gauge is gauge\scale\indicators, there is some latitude to mix-and-match.
Scale objects for example, can be contained directly in the RadGauge or in any Panel. At minimum you
need a scale object to render your indicators, ranges, etc. The XAML below uses a StackPanel to contain
a LinearScale.

<UserControl.Resources>
 <LinearGradientBrush x:Key="OrangeBrush">
 <GradientStop Color="Yellow" Offset="1" />
 <GradientStop Color="Orange" Offset="0.9" />
 <GradientStop Color="OrangeRed" Offset="0.2" />
 <GradientStop Color="Red" Offset="0" />
 </LinearGradientBrush>
</UserControl.Resources>

<Grid x:Name="LayoutRoot">

 <StackPanel Orientation="Vertical">
 <gauge:LinearScale Min="0" Max="25">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" Background
="Black"/>
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07"
Background="Black"/>
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055"
Background="Black"/>
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Foreground
="Black" Location="Outside" />
 </gauge:LinearScale.Label>
 <gauge:IndicatorList>
 <gauge:LinearBar Value="10" />
 <gauge:StateIndicator Value="8" Top="0.2" Left="0.2"/>
 </gauge:IndicatorList>
 <gauge:RangeList>
 <gauge:LinearRange Background="Yellow"
 Min="0" Max="5" StartWidth="0.1" EndWidth="0.1" />
 <gauge:LinearRange Background="{StaticResource OrangeBrush}"
 Min="5" Max="20" StartWidth="0.1" EndWidth="0.1" />
 <gauge:LinearRange Background="Red"
 Min="20" Max="25" StartWidth="0.1" EndWidth="0.1" />
 </gauge:RangeList>

Gauges 811

© 2011 Telerik Inc.

 </gauge:LinearScale>

 </StackPanel>

</Grid>

The XAML rendered in the browser is shown in the screenshot below.

RadControls for Silverlight812

© 2011 Telerik Inc.

Scales

LinearScale and RadialScale are used to control the overall layout of tick marks, labels, indicators, ranges
and an optional scale bar. Both of these classes descend from ScaleBase (in the Telerik.Windows.
Controls.Gauges namespace). Starting with a LinearScale, lets walk through some of the rich set of
properties available in ScaleBase.

The first task should be to set the Min and Max values. In this example the Min is "0" and Max is "25".
This will automatically place a set of tick marks and labels in the scale area. MajorTick, MinorTick,
MiddleTick and Label Properties are used to set correct location for ticks and Labels ; otherwise they will
be shown shifted.

<control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07" />
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055" />
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location="Outside" />
 </gauge:LinearScale.Label>
 </gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

Now the output looks like this screenshot:

Gauges 813

© 2011 Telerik Inc.

Set the IsReversed attribute "True" to swap the Min and Max locations:

<control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25" IsReversed="True">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07" />
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055" />
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location="Outside" />
 </gauge:LinearScale.Label>
 </gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

RadControls for Silverlight814

© 2011 Telerik Inc.

Values along the scale are marked with "Major", "Middle" and "Minor" ticks. The "Major" ticks are labeled.

You can control the number of ticks by setting the MajorTicks, MiddleTicks and MinorTicks attributes to
integer values.

<control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25"
 MajorTicks="2" MiddleTicks="5" MinorTicks="2">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07" />
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055" />
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location="Outside" />
 </gauge:LinearScale.Label>
 </gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

In the screenshot below, there are two major ticks, five middle ticks and two minor ticks.

Gauges 815

© 2011 Telerik Inc.

Note: The ShowFirstLabel and ShowLastLabel attributes control visibility of the first and last major ticks.
Labels are only shown for the major ticks.

You can actually have the ticks start at a particular value by using the StartTickOffset to set the starting
point for drawing ticks. In this example, the ticks are drawn beginning with the StartTickOffset value of "10".

<control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25"
 StartTickOffset="10">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07" />
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055" />
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location="Outside" />
 </gauge:LinearScale.Label>
 </gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

RadControls for Silverlight816

© 2011 Telerik Inc.

Gauges 817

© 2011 Telerik Inc.

The scale width can be wider at one end using the StartWidth and EndWidth properties. In this example
the EndWidth is slightly wider than the StartWidth. The "Office_Black" theme is being used here for better
contrast so you can see the scale outline.

<control:RadGauge telerik:StyleManager.Theme="Office_Black">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25"
 StartWidth=".1" EndWidth=".2">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07" />
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055" />
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location="Outside" />
 </gauge:LinearScale.Label>
 </gauge:LinearScale>
 </gauge:LinearGauge>
</control:RadGauge>

RadControls for Silverlight818

© 2011 Telerik Inc.

By default, the numbers on the scale are distributed in a linear fashion. Distribute the numbers using a
logarithmic scale by setting IsLogarithmic to "True". Base 10 is used by default, but the
LogarithmicBase property can be set to a custom value. The screenshot below shows the same scale
with and without IsLogarithmic enabled.

Indicators

You will want to populate your scale objects with "Indicators", i.e. visual objects that report a value or state
to the user. These indicators can be bars, needles, markers or state indicators. Most of the indicators
descend from IndicatorBase (except for NumericIndicator which is an ItemsControl). IndicatorBase has
several important common properties:

Value is the key property that drives everything. In a "Bar" indicator, the Value is the location of the top
of the bar in the scale. For a "Needle" indicator, Value is the position of the needle along the scale.

Refresh Behavior: RefreshMode can be Average, Last, Min or Max. If the user is clicking the
indicator with a mouse, RefreshMode determines the new value for the indicator. RefreshRate is a
TimeSpan and determines when to supply a new value.

Animation: By default, the IsAnimated property is true, the indicators are animated and move
smoothly between points on the scale. Duration controls the amount of time the animation takes to
complete.

Snap Behavior: SnapType can be None, ToGrid and ToInterval. "None" turns off snapping.
"ToGrid" causes the indicator to snap to the nearest tick mark. "ToInterval" causes the indicator to snap
to the next value that is SnapInterval away from the starting value.

IndicatorBase descends from a ScaleBase object that adds a few more important properties including:

Location is the position of the indicator relative to parts of the scale and can be Outside, OverOutside
, OverCenter, OverInside, CenterOutside, CenterInside and Inside. The exact meaning of these
settings is dependant on the type of scale (radial or linear) that the indicator is part of. See the online
help for detailed information.

Offset is the distance of the indicator from the scale.

Gauges 819

© 2011 Telerik Inc.

A scale bar is an indicator that is rendered as a continuous band spanning the gauge and stopping at a
point matching its Value property setting. The scale bar is also used as a platform for the placement of child
elements, such as tick marks and labels. To add an indicator to your scale element, first add an
IndicatorList element, then one or more indicators inside this list element. In the example below there is a
single LinearBar added to the list with its value set at "10". The Background brush is defined in a resource
not shown here in the interests of brevity.

 <control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07"
/>
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055"
/>
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location
="Outside" />
 </gauge:LinearScale.Label>
 <gauge:IndicatorList>
 <gauge:LinearBar Value="10"
 Background="{StaticResource IndicatorBrush}" />
 </gauge:IndicatorList>
 </gauge:LinearScale>
 </gauge:LinearGauge>
 </control:RadGauge>

The output for the XAML in the screenshot shows the bar ending at "10".

RadControls for Silverlight820

© 2011 Telerik Inc.

Gauges 821

© 2011 Telerik Inc.

If you want the user to set the values of the indicators using the mouse, set the scale IsInteractive
property to "True".

 <control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25"
 IsInteractive="True">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07"
/>
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055"
/>
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location
="Outside" />
 </gauge:LinearScale.Label>
 <gauge:IndicatorList>
 <gauge:LinearBar
 Background="{StaticResource IndicatorBrush}" />
 </gauge:IndicatorList>
 </gauge:LinearScale>
 </gauge:LinearGauge>
 </control:RadGauge>

In the screenshot below, the mouse sets the LinearBar Value at "6".

RadControls for Silverlight822

© 2011 Telerik Inc.

In this next example we add a Marker, a NumericIndicator and a StateIndicator to the indicator list.

Notice that the NumericIndicator has several NumberPosition elements defined in order to show up in the
scale, one for each digit that will be displayed. Both the Marker and NumericIndicator will respond to mouse
clicks when the IsInteractive property is set to "True". You can set the Format attribute if you have a
specific number of decimals to display or want to display as currency {C} or percentage {P}. This example
uses the floating point format.

The StateIndicator will be used a little later when we discuss ranges. For now, know that it signals some
state of the data. For example, if you had a "danger zone" temperature in a scale, the StateIndicator might
change to a red color to alert the user.

Gauges 823

© 2011 Telerik Inc.

 <control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:LinearGauge>
 <gauge:LinearScale Min="0" Max="25"
 IsInteractive="True">
 <gauge:LinearScale.MajorTick>
 <gauge:MajorTickProperties Location="OverCenter" />
 </gauge:LinearScale.MajorTick>
 <gauge:LinearScale.MiddleTick>
 <gauge:MiddleTickProperties Location="OverCenter" Length="0.07"
/>
 </gauge:LinearScale.MiddleTick>
 <gauge:LinearScale.MinorTick>
 <gauge:MinorTickProperties Location="OverCenter" Length="0.055"
/>
 </gauge:LinearScale.MinorTick>
 <gauge:LinearScale.Label>
 <gauge:LabelProperties FontSize="9" Offset="0.02" Location
="Outside" />
 </gauge:LinearScale.Label>
 <gauge:IndicatorList>
 <gauge:LinearBar Value="10"
 Background="{StaticResource IndicatorBrush}" />
 <gauge:Marker Value="13"
 Background="{StaticResource IndicatorBrush}" />
 <gauge:NumericIndicator Format="{}{0:F0}"
 Left="0.2" Top="0.08"
 RelativeWidth="0.1"
 RelativeHeight="0.05" Value="10"
 Background="{StaticResource IndicatorBrush}">
 <gauge:NumberPosition />
 <gauge:NumberPosition />
 <gauge:NumberPosition />
 </gauge:NumericIndicator>
 <gauge:StateIndicator Value="10" Top="0.19"
 Left="0.2" RelativeWidth="0.07"
 RelativeHeight=".07"
 Background="{StaticResource IndicatorBrush}" />
 </gauge:IndicatorList>
 </gauge:LinearScale>
 </gauge:LinearGauge>
 </control:RadGauge>

RadControls for Silverlight824

© 2011 Telerik Inc.

Running in the browser, you can see that the numeric indicator shows in the upper left hand corner. The
marker shows to the right of the bar. IsInteractive is set to "True", so the value selected by the mouse is
reflected by bar, marker and numeric indicators.

Gauges 825

© 2011 Telerik Inc.

Everything you've learned up to this point is also valid for the "Radial", versions of the gauge elements. The
XAML below is essentially the same as the previous example except that RadialGauge, RadialScale and
RadialBar have replaced their "Linear" counterparts. A few minor tweaks to size and location make it easier
to see the numeric and state indicators.

 <control:RadGauge telerik:StyleManager.Theme="Office_Silver">
 <gauge:RadialGauge>
 <gauge:RadialScale Min="0" Max="25"
 IsInteractive="True">
 <gauge:IndicatorList>
 <gauge:RadialBar Value="10"
 Background="{StaticResource IndicatorBrush}" />
 <gauge:Marker Value="13"
 Background="{StaticResource IndicatorBrush}" />
 <gauge:NumericIndicator Format="{}{0:F0}"
 Left="0.3" Top="0.3"
 RelativeWidth="0.1"
 RelativeHeight="0.1" Value="10"
 Background="{StaticResource IndicatorBrush}">
 <gauge:NumberPosition />
 <gauge:NumberPosition />
 <gauge:NumberPosition />
 </gauge:NumericIndicator>
 <gauge:StateIndicator Value="10" Top="0.5"
 Left="0.3" RelativeWidth="0.1"
 RelativeHeight=".1"
 Background="{StaticResource IndicatorBrush}" />
 </gauge:IndicatorList>
 </gauge:RadialScale>
 </gauge:RadialGauge>
 </control:RadGauge>

Running in the browser, the gauge performs in the same manner as the "Linear" version.

RadControls for Silverlight826

© 2011 Telerik Inc.

Ranges

Ranges represent a continuous set of values along a scale. Every range has minimum/maximum values and
can fire events when an indicator enters, leaves or stays in a range for a specified time span. You can
define multiple ranges. When a StateIndicator value falls within a range, the StateIndicator fill color matches
the range color.

To create a range, first add a RangeList element at the same level within a scale as an IndicatorList.
Greater Offset numbers moves the range away from the center of the scale. StartWidth and EndWidth can
be equal to make the range appear as an even bar, or can be asymmetrical to display as a bevel (perhaps
to communicate that values farther up the range are larger).

There are three ranges in the example below that divide the scale between 0..5, 5..20 and 20..25.

. . .
<gauge:RangeList>
 <gauge:LinearRange Min="0" Max="5"
 Background="{StaticResource BottomRangeBrush}"
 Offset="0.1" StartWidth="0.1"
 EndWidth="0.1" />
 <gauge:LinearRange Min="5" Max="20"
 Background="{StaticResource MiddleRangeBrush}"
 Offset="0.1" StartWidth="0.1"
 EndWidth="0.1" />
 <gauge:LinearRange Min="20" Max="25"
 Background="{StaticResource TopRangeBrush}"
 Offset="0.1" StartWidth="0.1"
 EndWidth="0.1" />
</gauge:RangeList>
. . .

Gauges 827

© 2011 Telerik Inc.

Notice that when the application runs, the StateIndicator color matches the range that the user clicks in.

RadControls for Silverlight828

© 2011 Telerik Inc.

Range Events

Respond to indicator activity within a range using the EnterRange, LeaveRange and RangeTimeout
events. The RangeTimeout event fires based on the setting of the Timeout property of the range. You can
assign the Timeout at the same time you subscribe to the event. The event arguments for all three events
pass a reference to the Indicator object that's generating the activity and the Range object that is
responding to the activity. The sample code below shows some of the possibilities.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 AddHandler bottomRange.LeaveRange, AddressOf bottomRange_LeaveRange
 AddHandler bottomRange.EnterRange, AddressOf bottomRange_EnterRange
 bottomRange.Timeout = New TimeSpan(0, 30, 0)
 AddHandler bottomRange.RangeTimeout, AddressOf bottomRange_RangeTimeout
End Sub

Private Sub bottomRange_EnterRange(_
ByVal sender As Object, ByVal eventArgs As RoutedRangeEventArgs)
 If (TypeOf eventArgs.Indicator Is LinearBar) _
AndAlso (eventArgs.Range.Name.Equals("bottomRange")) Then
 RadWindow.Alert("Price has dropped below the threshold")
 End If
End Sub

Private Sub bottomRange_RangeTimeout(_
ByVal sender As Object, ByVal eventArgs As RoutedRangeEventArgs)
 RadWindow.Alert("Indicator has remained in the bottom range for 30 minutes")
End Sub

Private Sub bottomRange_LeaveRange(_
ByVal sender As Object, ByVal eventArgs As RoutedRangeEventArgs)
 If (TypeOf eventArgs.Indicator Is LinearBar) _
AndAlso (eventArgs.Range.Name.Equals("bottomRange")) Then
 RadWindow.Alert("Price has risen above the threshold")
 End If
End Sub

Gauges 829

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 bottomRange.LeaveRange += new RoutedRangeEventHandler(bottomRange_LeaveRange);
 bottomRange.EnterRange += new RoutedRangeEventHandler(bottomRange_EnterRange);
 bottomRange.Timeout = new TimeSpan(0, 30, 0);
 bottomRange.RangeTimeout += new RoutedRangeEventHandler(bottomRange_RangeTimeout);
}

void bottomRange_EnterRange(object sender, RoutedRangeEventArgs eventArgs)
{
 if ((eventArgs.Indicator is LinearBar) &&
 (eventArgs.Range.Name.Equals("bottomRange")))
 {
 RadWindow.Alert("Price has dropped below the threshold");
 }
}

void bottomRange_RangeTimeout(object sender, RoutedRangeEventArgs eventArgs)
{
 RadWindow.Alert("Indicator has remained in the bottom range for 30 minutes");
}

void bottomRange_LeaveRange(object sender, RoutedRangeEventArgs eventArgs)
{
 if ((eventArgs.Indicator is LinearBar) &&
 (eventArgs.Range.Name.Equals("bottomRange")))
 {
 RadWindow.Alert("Price has risen above the threshold");
 }
}

RadControls for Silverlight830

© 2011 Telerik Inc.

LinearScale Specifics

Orientation can be Horizontal or Vertical. You can set the location of the scale relative to its container
using the Left and Top properties. Use the RelativeHeight property to set the height of the scale relative
to its container.

RadialScale Specifics

By default the scale is automatically centered within the gauge with a Center property of "0.5,0.5". That
works out nicely because the gauge graphics for a given style form a frame around the scale. You can use
the Center property to move the scale to any Point. Set the Radius property to a value between 0 and 1. A
Radius of "0.5", for instance, renders the scale at the half way point of the container.

The origin and length of a radial scale are controlled by StartAngle and SweepAngle properties. These
properties are in degrees and follow Silverlight standards where zero degrees points due east and positive
angles result in a clockwise rotation. The screenshot below shows the result when StartAngle = "0" and
SweepAngle = "180".

Gauges 831

© 2011 Telerik Inc.

20.5 Binding

To bind data using the current edition of RadGauge you actually bind the individual indicator elements. In
this walk through you will bind a series of "Stock" market objects to linear bar elements and update them
periodically.

 Gotcha!

At the time of this writing there is a Silverlight issue where animation and binding conflict. As a
workaround you can leave animation off or create your own external animation.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Gauge

Create the View Model Object

1) In the Solution Explorer, right-click the project and select Add > Class... Rename the class file
"Stock.cs". Verify that a reference to the System.ComponentModel namespace is included in the
"Imports" (VB) or "using" (C#) section of code. Copy and paste the code below.

This class will represent a single stock market symbol and "quote" or price. Stock implements the
INotifyPropertyChanged interface so that changes to the Quote property will be reflected automatically
in a bound LinearBar Value property.

RadControls for Silverlight832

© 2011 Telerik Inc.

Public Class Stock
 Implements INotifyPropertyChanged
 Public Event PropertyChanged As PropertyChangedEventHandler

 Private _quote As Double
 Private _symbol As String

 Public Sub New(ByVal symbol As String, ByVal quote As Double)
 Me.Quote = quote
 Me.Symbol = symbol
 End Sub

 Public Property Quote() As Double
 Get
 Return _quote
 End Get
 Set(ByVal value As Double)
 _quote = value
 NotifyPropertyChanged("Quote")
 End Set
 End Property

 Public Property Symbol() As String
 Get
 Return _symbol
 End Get
 Set(ByVal value As String)
 _symbol = value
 NotifyPropertyChanged("Symbol")
 End Set
 End Property

 Private Sub NotifyPropertyChanged(ByVal propertyName As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
 End Sub
End Class

Gauges 833

© 2011 Telerik Inc.

public class Stock : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private double _quote;
 private string _symbol;

 public Stock(string symbol, double quote)
 {
 this.Quote = quote;
 this.Symbol = symbol;
 }

 public double Quote
 {
 get
 {
 return _quote;
 }
 set
 {
 _quote = value;
 NotifyPropertyChanged("Quote");
 }
 }

 public string Symbol
 {
 get
 {
 return _symbol;
 }
 set
 {
 _symbol = value;
 NotifyPropertyChanged("Symbol");
 }
 }

 private void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

RadControls for Silverlight834

© 2011 Telerik Inc.

2) In the Solution Explorer, right-click the project and select Add > Class... Rename the class file
"Stocks.cs". Verify that references to the System.Collections.Generic and System.Collections.
ObjectModel namespaces are included in the "Imports" (VB) or "using" (C#) section of code. Copy
and paste the code below.

This class will represent a series of Stock objects that will be bound to gauge controls.

Public Class Stocks
 Inherits List(Of Stock)
 Public Sub New()
 Dim symbols As List(Of String) = _
New List(Of String) (New String() {"MSFT", "GOOG", "YHOO", "IBM", "AAPL"})
 Dim random As New Random()
 For Each symbol As String In symbols
 Me.Add(New Stock(symbol, random.Next(0, 100)))
 Next symbol
 End Sub
End Class

public class Stocks : List<Stock>
{
 public Stocks()
 {
 List<string> symbols = new List<string>()
 { "MSFT", "GOOG", "YHOO", "IBM", "AAPL" };

 Random random = new Random();
 foreach(string symbol in symbols)
 {
 this.Add(new Stock(symbol, random.Next(0, 100)));
 }
 }
}

Gauges 835

© 2011 Telerik Inc.

XAML Editing

1) Open MainPage.xaml for editing.

2) Verify that the XML namespaces for Telerik.Windows.Controls exist in the UserControl element. Add
them if they do not exist. Also, add a "Loaded" event handler to the UserControl element.

<UserControl
. . .
xmlns:telerik=
"clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls"
. . .
Loaded="UserControl_Loaded">. . .

3) Add a UserControl.Resources element. Add a LinearGradientBrush to the resources using the
XAML below.

<UserControl.Resources>
 <LinearGradientBrush x:Key="BackgroundBrush">
 <GradientStop Color="LightBlue" Offset="0.01" />
 <GradientStop Color="SkyBlue" Offset="0.02" />
 <GradientStop Color="SlateBlue" Offset="0.8" />
 <GradientStop Color="SkyBlue" Offset="0.99" />
 <GradientStop Color="LightBlue" Offset="1" />
 </LinearGradientBrush>
</UserControl.Resources>

RadControls for Silverlight836

© 2011 Telerik Inc.

4) Drag a RadGauge control from the Toolbox to a point inside the main "LayoutRoot" grid element. Inside
the RadGauge element, add two nested StackPanel controls using the XAML below.

The first stack panel provides the background. The second stack panel contains a series of text
blocks and linear scale elements, centered in the browser.

<telerik:RadGauge>
 <StackPanel
 Background="{StaticResource BackgroundBrush}"
 HorizontalAlignment="Stretch">
 <StackPanel x:Name="spScales"
 Orientation="Horizontal"
 HorizontalAlignment="Center"
 Margin="10" />
 </StackPanel>
</telerik:RadGauge>

Code Behind

1) Navigate to the code-behind for the page. Verify that references to the System.Windows.Controls,
System.Windows.Data, System.Windows.Media, System.Windows.Threading and Telerik.
Windows.Controls.Gauges namespaces are included in the "Imports" (VB) or "using" (C#) section of
code.

2) Add private members using the code below.

The Random object will generate random numbers for stock quotes and linear bar colors. The
DispatcherTimer will update the quotes every half second.

Dim _random As New Random()
Dim _timer As New DispatcherTimer()
Dim _stocks As New Stocks()

Random _random = new Random();
DispatcherTimer _timer = new DispatcherTimer();
Stocks _stocks = new Stocks();

Gauges 837

© 2011 Telerik Inc.

3) Navigate to the code for the UserControl Loaded event handler. Add the code below to create a stack
panel for each stock and populate each stack panel with a text label and linear bar.

The code iterates the collection of Stock objects and generates a text block label and linear bar
element for each stock . The GetLinearBar() method takes a Stock reference, creates the linear bar
and binds the Value property to the Stock object's Quote property. At the end of this event handler, a
timer is initialized and started. The timer will take care of updating the data.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' Create a stack panel for each stock and populate
 ' with text label and linear bar
 For Each stock As Stock In _stocks
 ' initialize a linear scale
 Dim scale As New LinearScale()
 scale.Min = 0
 scale.Max = 100
 scale.Width = 70

 ' add a linear bar, already bound to the stock
 scale.Indicators.Add(GetLinearBar(stock))

 ' create a label to display stock symbol
 Dim tb As New TextBlock()
 tb.FontWeight = System.Windows.FontWeights.Bold
 tb.Text = stock.Symbol

 ' initialize a stack panel to contain a text label
 ' and scale. Add the stack panel to the stack panel
 ' already in the xaml markup
 Dim stackPanel As New StackPanel()
 stackPanel.VerticalAlignment = VerticalAlignment.Stretch
 stackPanel.Children.Add(tb)
 stackPanel.Children.Add(scale)
 spScales.Children.Add(stackPanel)
 Next stock

 ' initialize and start a timer to update the stocks
 AddHandler _timer.Tick, AddressOf _timer_Tick
 _timer.Interval = New TimeSpan(0, 0, 0, 1)
 _timer.Start()
End Sub

RadControls for Silverlight838

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // Create a stack panel for each stock and populate
 // with text label and linear bar
 foreach (Stock stock in _stocks)
 {
 // initialize a linear scale
 LinearScale scale = new LinearScale();
 scale.Min = 0;
 scale.Max = 100;
 scale.Width = 70;

 // add a linear bar, already bound to the stock
 scale.Indicators.Add(GetLinearBar(stock));

 // create a label to display stock symbol
 TextBlock tb = new TextBlock();
 tb.FontWeight = System.Windows.FontWeights.Bold;
 tb.Text = stock.Symbol;

 // initialize a stack panel to contain a text label
 // and scale. Add the stack panel to the stack panel
 // already in the xaml markup
 StackPanel stackPanel = new StackPanel();
 stackPanel.VerticalAlignment = VerticalAlignment.Stretch;
 stackPanel.Children.Add(tb);
 stackPanel.Children.Add(scale);
 spScales.Children.Add(stackPanel);
 }

 // initialize and start a timer to update the stocks
 _timer.Tick += new EventHandler(_timer_Tick);
 _timer.Interval = new TimeSpan(0, 0, 0, 1);
 _timer.Start();
}

Gauges 839

© 2011 Telerik Inc.

4) Add a private method to create a LinearBar element and bind it to the Stock Quote property.

"Binding" is System.Windows.Data object that connects the properties of binding targets and data
sources. Because we're getting our data from a "Stock" object, the Stock object is assigned as the
Binding Source. PropertyPath describes the property that we're binding to in the source. In this case,
PropertyPath is the "Quote" property of the Stock object. BindingMode describes when and how the
data will propagate. In this case, we want the data to be travel "one way" from the Stock object to the
target. The SetBinding() method associates the binding information with the LinearBar Value property.
When changes occur to the Stock Quote property, the new data propagates to the bound LinearBar'
Value property automatically.

' generate a linear bar and b ind Value to the Stock "Quote" property
Private Function GetLinearBar(ByVal stock As Stock) As LinearBar
 Dim linearBar As New LinearBar()
 linearBar.Value = stock.Quote
 linearBar.Background = New SolidColorBrush(GetRandomColor())
 linearBar.StartWidth =.1
 linearBar.EndWidth =.1
 linearBar.RelativeHeight = 0.9

 ' Bind linear bar to the Quote property of the data ob ject.
 Dim binding As New Binding()
 binding.Source = stock
 binding.Path = New PropertyPath("Quote")
 binding.Mode = BindingMode.OneWay
 linearBar.SetBinding(LinearBar.ValueProperty, binding)
 Return linearBar
End Function

RadControls for Silverlight840

© 2011 Telerik Inc.

// generate a linear bar and b ind Value to the Stock "Quote" property
private LinearBar GetLinearBar(Stock stock)
{
 LinearBar linearBar = new LinearBar();
 linearBar.Value = stock.Quote;
 linearBar.Background = new SolidColorBrush(GetRandomColor());
 linearBar.StartWidth = .1;
 linearBar.EndWidth = .1;
 linearBar.RelativeHeight = 0.9;

 // Bind linear bar to the Quote property of the data ob ject.
 Binding binding = new Binding();
 binding.Source = stock;
 binding.Path = new PropertyPath("Quote");
 binding.Mode = BindingMode.OneWay;
 linearBar.SetBinding(LinearBar.ValueProperty, binding);
 return linearBar;
}

Gauges 841

© 2011 Telerik Inc.

5) Add a private method to generate a semi-transparent random color.

This method is used by the GetLinearBar() method to set the Background brush for the linear bar
element.

Private Function GetRandomColor() As Color
 Return Color.FromArgb(150, CByte(_random.Next(0, 255)), _
 CByte(_random.Next(0, 255)), CByte(_random.Next(0, 255)))
End Function

private Color GetRandomColor()
{
 return Color.FromArgb(150, (byte)_random.Next(0, 255),
 (byte)_random.Next(0, 255), (byte)_random.Next(0, 255));
}

6) Add the Tick event handler for the timer. Iterate the Stock objects in the Stocks collection and refresh
the Quote property using the Random.Next() method.

Private Sub _timer_Tick(ByVal sender As Object, ByVal e As EventArgs)
 For Each stock As Stock In _stocks ' update the symbols
 stock.Quote = _random.Next(0, 100)
 Next stock
End Sub

void _timer_Tick(object sender, EventArgs e)
{
 foreach (Stock stock in _stocks) // update the symbols
 {
 stock.Quote = _random.Next(0, 100);
 }
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

RadControls for Silverlight842

© 2011 Telerik Inc.

Ideas for Extending This Example

Change the type of object from Stock to some other entity.

Change the method of updating the object, using a web service for example.

Use another type of scale object, i.e. radial or numeric.

20.6 Customization

In this example we will customize the RadGauge control. Specifically, we will change the background of a
LinearGauge to fit with the "Scoville" style.

"Scoville" Styles

We will use a set of colors that include black, red, yellow and orange in many of the style related
topics and prefix the style names with "Scoville". The "Scoville scale" measures the spiciness of
peppers and other culinary irritants.

Project Setup

1) Start with the "Getting Started" project or a copy. Open the project in Expression Blend.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

2) In the Objects and Timeline pane, right-click the "[LinearGauge]" element and select Edit Template >
Edit a Copy from the context menu. In the "Create Style Resource" dialog, set the Name (Key) to
"ScovilleLinearGaugeStyle". Click OK to create the style resource and close the dialog.

Gauges 843

© 2011 Telerik Inc.

3) In the Objects and Timeline pane, the template contains a border with a grid. Inside the grid you find a
"[ContentControl]" that you may remember from the Control Details section as the "
LinearGaugeBackground". Right-click the [ContentControl] and select Edit Template > Edit a Copy
from the context menu. In the "Create Style Resource" dialog, set the Name (Key) to "Scoville
LinearGaugeBackground". Click OK to create the style resource and close the dialog.

RadControls for Silverlight844

© 2011 Telerik Inc.

4) In the Objects and Timeline pane, open the object tree and select the innermost "[Border]" object.

5) In the Properties pane, select the Brushes > Fill property. The Border object will already have a
gradient brush assigned. Notice the series of existing gradient stop indicators at the bottom of the
Brushes pane. Select each gradient stop indicator and choose a color (you can use the eye dropper
tool or the color slider just above the eye dropper). Choose between shades of black, red and orange.

Gauges 845

© 2011 Telerik Inc.

6) Select the Radial Gradient button from the lower left of the Brushes pane.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

The animation for the application should run with the same functionality as when tested during the
"Getting Started" walk through.

Ideas for Extending This Example

Modify the foreground [ContentControl] element.

Animate the background gradient.

Modify the LinearBar indicator appearance.

RadControls for Silverlight846

© 2011 Telerik Inc.

20.7 Wrap Up

This chapter demonstrated how to use gauges to support dynamic data visualization. "First up", you learned
how to build a gauge starting with RadGauge and adding its constituent elements. You learned how to work
with radial and numeric gauges and how these two element can be swapped without affecting the
applications behavior. You drilled down into the gauge elements to see how scales, indicators and ranges
work together and how some of the important properties are used to tweak behavior and appearance. Next,
you learned how to bind individual indicators to data. Finally, you used Expression Blend to customize
gauge appearance.

Part

XXI
ProgressBar

RadControls for Silverlight848

© 2011 Telerik Inc.

21 ProgressBar

21.1 Objectives

In this chapter you will use the RadProgressBar control to visually notify users about processes of a known
or indeterminate length. You will learn how to work with the progress bar orientation, minimum/maximum
values and how to update the progress bar.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\ProgressBar\ProgressBar.sln.

21.2 Overview

RadProgressBar, like the slider and up-down controls, is a RangeBase descendant and so has Minimum,
Maximum and Value properties. RadProgressBar also uses the RangeBase ValueChanged event to
notify your application when the progress bar value moves. Typically you won't code the ValueChanged
event but instead code an event handler for some other control that acts on the progress bar.
RadProgressBar includes a SkipValue property that starts the progress indicator at some midpoint
between Minimum and Maximum. The image shows a SkipValue of "50" where the Minimum is "1" and the
Maximum is "100".

By default the progress bar has an Orientation of Horizontal...

... but can also be set Vertical:

The IsIndeterminate property, when true, animates a striped "barbershop" background indicating that the
operation length is unknown.

ProgressBar 849

© 2011 Telerik Inc.

21.3 Getting Started

The following walk through uses a timer to update the progress bar Value property. A label above the
progress bar displays the Value property as a percentage of completion. Buttons are used to start, stop and
reset the progress bar.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

XAML Editing

1) Open MainPage.xaml for editing.

2) In the UserControl tag, add a "Loaded" event handler. We will code this event later to initialize the timer
that updates the progress bar.

<UserControl
...
 Loaded="UserControl_Loaded">

3) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags. This XAML defines a basic structure of StackPanel elements where labels,
buttons and the progress bar will be placed. The comments mark locations where you will add XAML in
later steps.

RadControls for Silverlight850

© 2011 Telerik Inc.

<StackPanel
 HorizontalAlignment="Center">

 <StackPanel
 Orientation="Horizontal"
 HorizontalAlignment="Center"
 Margin="20">

 <!--Loading text-->

 </StackPanel>

 <StackPanel
 Width="Auto"
 Orientation="Horizontal"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Height="30">

 <!--Buttons-->

 </StackPanel>

 <!--ProgressBar-->

</StackPanel>

4) Locate the comment "<!--Loading text-->" and replace it with the XAML below. This step adds two
TextBlocks that will display the "Loading..." and current progress bar percentage value.

<!--Loading text-->

<TextBlock
 x:Name="loadingText"
 HorizontalAlignment="Center"
 Text="Loading... " />

<TextBlock
 x:Name="loadingPercentage"
 HorizontalAlignment="Center"
 FontWeight="Bold"
 Text="" />

5) Locate the comment "<!--Buttons-->" and replace it with the XAML below. This step will add the "Start",
"Stop" and "Reset" buttons. Notice that the Click event has already been defined for each button. We
will define the actual event handling code in a later step.

ProgressBar 851

© 2011 Telerik Inc.

<!--Buttons-->

<Button
 x:Name="btn_start"
 Margin="0 0 10 0"
 Click="Btn_start_Click"
 VerticalAlignment="Top"
 Content=" Start " />

<Button
 x:Name="btn_stop"
 Margin="0 0 10 0"
 Click="Btn_stop_Click"
 VerticalAlignment="Top"
 Content=" Stop " />

<Button
 x:Name="btn_restart"
 Margin="0 0 10 0"
 Click="Btn_restart_Click"
 VerticalAlignment="Top"
 Content=" Restart " />

6) Drag a RadProgressBar from the Toolbox to a point just under the <!--ProgressBar--> comment. Edit
the RadProgressBar tag to add the following properties.

a) Name = "pb"

b) Minimum = "1"

c) Maximum = "100"

d) MinHeight = "25"

Code Behind

1) Locate the <UserControl> tag at the top of MainPage.xaml. Right-click the Loaded event and select
"Navigate to Event Handler" from the context menu.

RadControls for Silverlight852

© 2011 Telerik Inc.

2) Leave the Loaded event handler empty. Above the Loaded event handler, add a private member for the
timer.

Private timer As System.Windows.Threading.DispatcherTimer

private System.Windows.Threading.DispatcherTimer timer;

3) Add the code below to the Loaded event handler. This code creates an instance of a timer and sets the
timer Interval to fire a Tick event every 10 milliseconds.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Me.timer = New System.Windows.Threading.DispatcherTimer()
 Me.timer.Interval = TimeSpan.FromMilliseconds(10.0)
 AddHandler timer.Tick, AddressOf timer_Tick
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 this.timer = new System.Windows.Threading.DispatcherTimer();
 this.timer.Interval = TimeSpan.FromMilliseconds(10.0);
 this.timer.Tick += new EventHandler(timer_Tick);
}

4) Add a private helper method GetValuePercentage(). This method calculates the Value as a percentage,
given a RangeBase Minimum and Maximum properties.

' Get a percentage based on the Value and its
' relation to the Minimum and Maximum properties.
Private Function GetValuePercentage(ByVal rb As RangeBase) As Integer
 Dim value As Double = rb.Value - rb.Minimum
 Dim [end] As Double = rb.Maximum - rb.Minimum
 Return Convert.ToInt32(value / [end] * 100)
End Function

ProgressBar 853

© 2011 Telerik Inc.

// Get a percentage based on the Value and its
// relation to the Minimum and Maximum properties.
private int GetValuePercentage(RangeBase rb)
{
 double value = rb.Value - rb.Minimum;
 double end = rb.Maximum - rb.Minimum;
 return Convert.ToInt32(value / end * 100);
}

5) Verify that a reference to the System.Windows.Controls.Primitives namespace is included in the
"Imports" (VB) or "using" (C#) section of code.

6) Handle the timer Tick event to update the progress bar. This event handler receives the current
percentage of the progress bar, updates the "loadingPercentage" TextBlock to reflect the percentage
and "bumps" the progress bar Value property.

Private Sub timer_Tick(ByVal sender As Object, ByVal e As EventArgs)
 Dim value As Integer = GetValuePercentage(pb)
 loadingPercentage.Text = value.ToString() & "%"
 pb.Value += 1
End Sub

void timer_Tick(object sender, EventArgs e)
{
 int value = GetValuePercentage(pb);
 loadingPercentage.Text = value.ToString() + "%";
 pb.Value++;
}

7) Add event handlers for each of the button Click events. These handlers start, stop and reset the timer
and progress bar.

RadControls for Silverlight854

© 2011 Telerik Inc.

Private Sub Btn_start_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Me.timer.Start()
End Sub

Private Sub Btn_stop_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Me.timer.Stop()
End Sub

Private Sub Btn_restart_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Me.timer.Stop()
 pb.Value = pb.Minimum
 Me.timer.Start()
End Sub

private void Btn_start_Click(object sender, RoutedEventArgs e)
{
 this.timer.Start();
}

private void Btn_stop_Click(object sender, RoutedEventArgs e)
{
 this.timer.Stop();
}

private void Btn_restart_Click(object sender, RoutedEventArgs e)
{
 this.timer.Stop();
 pb.Value = pb.Minimum;
 this.timer.Start();
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

Click the Start, Stop and Restart buttons.

Ideas for Extending This Example

ProgressBar 855

© 2011 Telerik Inc.

Change the RadProgressBar in MainPage.xaml to use different Minimum and Maximum values. Be
aware that there is no safety code checking that Minimum is not greater than or equal to the Maximum
value.

In the code behind for the UserControl Loaded event, change the Interval so that updates are more or
less frequent.

Set the SkipValue property to a value between Minimum and Maximum.

Turn on the IsIndeterminate property and observe the effect on the Value property and on the progress
indicator.

21.4 Wrap Up

In this chapter you used RadProgressBar to visually notify the user about processes of known and
indeterminate length. You worked with the progress bar orientation, minimum/maximum values and also
learned how to update the progress bar value.

Part

XXII
Charting

Charting 857

© 2011 Telerik Inc.

22 Charting

22.1 Objectives

In this chapter you will first build a chart declaratively using default settings wherever possible. In the
process you will learn the differences between default vs. custom layouts. You will define a series with
individual data points and specify the legend and chart title. You will also learn about how the series
definition displays the data in a particular arrangement, i.e. bar, pie, 3D line, etc. You will enable the
interactivity feature of the chart.

During the exploration of chart control details you will take a tour of the many chart series types that include
the standard bar/line/pie, stacked versions that compare contributions of values across categories, stacked
bar 100% that show the stacked values as percentages, special purpose charts like "candlestick" for
showing stock price and currency changes, and many 3D chart series types as well. You will learn how to
create chart series and data points programmatically. If you need to integrate the chart with existing ASP.
NET applications, the section on "Integration with ASP.NET" will walk you through how this is done.

As part of the binding chapter you will first learn about series and item mappings that route data to various
elements in the chart, including the data point and axis labels. You will display tool tips as simple text, use
special formatting tokens to show data as currency or as percentages of all categories and you will learn
how to display a tool tip that shows another chart as a drill-down.

You will apply styles to customize elements of the chart. You will use the MVVM pattern to display chart
elements in colors corresponding to data in the model.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Chart\Chart.sln.

RadControls for Silverlight858

© 2011 Telerik Inc.

22.2 Overview

With RadChart you can transform business scenarios into interactive, rich, animated charts. RadChart
takes data visualization to another dimension and is the first commercial 3D Chart for Silverlight. RadChart
features include:

20 2D Charts Types for Silverlight

9 3D Chart Types for Silverlight

Rich Data Binding Support

Automated Data Binding to Nested Collections

Tooltip Support, from simple text, formatted data
or drill-downs into charts or other Silverlight
elements.

Flexible API

MVVM Support

Advanced X Axis Capabilities

Strict Mode for X Axis

Easily Customizable Series

Flexible Layout

Axis AutoRange Functionality

Axis AutoStep Functionality

Styling and Appearance

Animations and Interactivity

Categorical Axis

Charting 859

© 2011 Telerik Inc.

22.3 Getting Started

In this walk through you will build a simple chart declaratively.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Charting

c) Telerik.Windows.Data

XAML Editing

1) Open MainPage.xaml for editing.

2) Add references to Telerik.Windows.Controls and Telerik.Windows.Controls.Charting XML
namespaces, both from the Telerik.Windows.Controls.Charting assembly.

<UserControl
xmlns:control=
"clr-namespace:Telerik.Windows.Controls;assembly=Telerik.Windows.Controls.Charting"
xmlns:chart=
"clr-namespace:Telerik.Windows.Controls.Charting;assembly=Telerik.Windows.Controls.Charting"
. . .>

3) Drag a RadChart from the Toolbox to a point between the main "LayoutRoot" grid begin and end tags.

4) Setup the basic chart structure.

a) Inside the RadChart element, add a RadChart.DefaultView. Notice that DefaultView uses the
"control" XML namespace reference.

b) Inside the DefaultView, add a ChartDefaultView. Notice that ChartDefaultView uses the "chart" XML
namespace reference.

c) Add the comments shown below to indicate where we will place the ChartArea, ChartLegend and
ChartTitle elements.

The XAML markup should look like the example below.

RadControls for Silverlight860

© 2011 Telerik Inc.

<control:RadChart>
 <control:RadChart.DefaultView>
 <chart:ChartDefaultView>

 <!--ChartArea-->

 <!--ChartLegend-->

 <!--ChartTitle-->

 </chart:ChartDefaultView>
 </control:RadChart.DefaultView>
</control:RadChart>

If you ran the application right now, it would report "No Data Series.", as shown in the screenshot
below.

 Notes

RadChart has a UseDefaultLayout property. By default, this property is true and the chart
expects a single ChartArea, ChartLegend and ChartTitle. When UseDefaultLayout is false
RadChart can contain an arbitrary arrangement of any number of chart elements (analogous to
how gauges allow any number of gauge types - see the Gauges chapter). UseDefaultLayout is a
handy way to avoid completely overriding a control template. For example, you could have a pie
chart along side another chart showing a bar graph, and place the legend centered below the two
chart areas and leave the chart title off altogether. The arrangement can be defined solely by your
requirements.

Charting 861

© 2011 Telerik Inc.

5) Replace the "<!--ChartArea-->" comment with the XAML below.

The ChartDefaultView contains a ChartArea and within the ChartArea, a DataSeries. The DataSeries.
Definition element determines the type of series it will be, i.e. pie, line, 3D bar, etc. Then a collection of
DataPoint elements list the data that will display in the series. Bar charts are relatively simple and only
need a single "Y" value for each data point. Note that the properties you fill out for each DataPoint vary
depending on the type of series and the amount of data it requires. For example, a "Candlestick" series
require four different values for each data point.

The series below defines a Bar3DSeriesDefinition with four data points, each with a YValue defined.

<!--ChartArea-->
<chart:ChartDefaultView.ChartArea>
 <chart:ChartArea>
 <chart:ChartArea.DataSeries>
 <chart:DataSeries>
 <chart:DataSeries.Definition>
 <chart:Bar3DSeriesDefinition />
 </chart:DataSeries.Definition>
 <chart:DataPoint YValue="15" />
 <chart:DataPoint YValue="5" />
 <chart:DataPoint YValue="34" />
 <chart:DataPoint YValue="11" />
 </chart:DataSeries>
 </chart:ChartArea.DataSeries>
 </chart:ChartArea>
</chart:ChartDefaultView.ChartArea>

If you ran the project, now you would see the data displayed as a 3D bar chart. There is a default
"Legend" label in the upper right corner and no title as yet.

RadControls for Silverlight862

© 2011 Telerik Inc.

6) Replace the "<!--ChartLegend-->" comment with the XAML below to define the ChartLegend and use its
defaults.

In a moment we will go back and point the LegendName property of the ChartArea at this element.

<!--ChartLegend-->
<chart:ChartDefaultView.ChartLegend>
 <chart:ChartLegend x:Name="CustomLegend" />
</chart:ChartDefaultView.ChartLegend>

7) Go back to the ChartArea element and add a LegendName attribute with a value of "CustomLegend".
Also, add a LegendLabel attribute to the DataSeries element and set the value to "Store Sales".

You can see that the "Store Sales" label shows up in the legend. Note: The ChartLegend element has
a UseAutoGeneratedItems property ("True" by default) that makes all DataSeries labels display
automatically in the legend.

Charting 863

© 2011 Telerik Inc.

8) Replace the "<!--ChartTitle-->" comment with the XAML below. This new element will display a chart
title "Sales Summary" at the top of the page.

<!--ChartTitle-->
<chart:ChartDefaultView.ChartTitle>
 <chart:ChartTitle Content="Sales Summary" />
</chart:ChartDefaultView.ChartTitle>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) The application should display four data points in 3D bar format, a legend that reads "Store Sales" and
a title, "Sales Summary".

Ideas for Extending This Example

Try this: copy the DataSeries element labeled "Store Sales". Change the copied DataSeries Label to
"Comparable Stores" and change the DataSeries.Definition to Line3DSeriesDefintion. Change the
DataPoint YValue attributes to different values.

RadControls for Silverlight864

© 2011 Telerik Inc.

<chart:ChartArea.DataSeries>
 <chart:DataSeries LegendLabel="Store Sales">
 <chart:DataSeries.Definition>
 <chart:Bar3DSeriesDefinition />
 </chart:DataSeries.Definition>
 <chart:DataPoint YValue="15" />
 <chart:DataPoint YValue="5" />
 <chart:DataPoint YValue="34" />
 <chart:DataPoint YValue="11" />
 </chart:DataSeries>
 <chart:DataSeries LegendLabel="Comparable Stores">
 <chart:DataSeries.Definition>
 <chart:Line3DSeriesDefinition/>
 </chart:DataSeries.Definition>
 <chart:DataPoint YValue="1" />
 <chart:DataPoint YValue="6" />
 <chart:DataPoint YValue="38" />
 <chart:DataPoint YValue="12" />
 </chart:DataSeries>
</chart:ChartArea.DataSeries>

The second series should display over the first as a 3D line chart and add a new "Comparable Stores"
entry in the legend.

Try this: arrange the elements of the chart to make your own custom layout.

Set the chart UseDefaultLayout property to "False". Then remove all the references to ChartDefaultView.
The example below uses a StackPanel to arrange the chart elements vertically. There are two
ChartArea elements, where the second is a 3D pie chart, the Legend is removed altogether and the
ChartTitle appears at the bottom of the page.

Charting 865

© 2011 Telerik Inc.

<control:RadChart UseDefaultLayout="False">

 <StackPanel>
 <!--ChartArea-->
 <chart:ChartArea MaxHeight="300" MaxWidth="300">
 <chart:ChartArea.DataSeries>
 <chart:DataSeries>
 <chart:DataSeries.Definition>
 <chart:Bar3DSeriesDefinition />
 </chart:DataSeries.Definition>
 <chart:DataPoint YValue="15" />
 <chart:DataPoint YValue="5" />
 <chart:DataPoint YValue="34" />
 <chart:DataPoint YValue="11" />
 </chart:DataSeries>
 </chart:ChartArea.DataSeries>
 </chart:ChartArea>

 <!--ChartArea-->
 <chart:ChartArea MaxHeight="300" MaxWidth="300">
 <chart:ChartArea.DataSeries>
 <chart:DataSeries>
 <chart:DataSeries.Definition>
 <chart:Pie3DSeriesDefinition/>
 </chart:DataSeries.Definition>
 <chart:DataPoint YValue="15" />
 <chart:DataPoint YValue="5" />
 <chart:DataPoint YValue="34" />
 <chart:DataPoint YValue="11" />
 </chart:DataSeries>
 </chart:ChartArea.DataSeries>
 </chart:ChartArea>

 <!--ChartTitle-->
 <chart:ChartTitle MaxHeight="100" MaxWidth="100">
 <chart:ChartTitle Content="Sales Summary" />
 </chart:ChartTitle>

 </StackPanel>

</control:RadChart>

RadControls for Silverlight866

© 2011 Telerik Inc.

The XAML above results in a page layout similar to the screenshot below.

Charting 867

© 2011 Telerik Inc.

 From the Forums...

Question: Is RadChart interactive out of the box? Can I interact with the chart, i.e rotate in 3d
space, using my mouse pointer?

Answer: RadChart supports mouse interactivity through instantiating a CameraExtension
instance.

'needed for the 3D zoom & interactivity out-of-the-box
chart.DefaultView.ChartArea.Extensions.Add(New CameraExtension())

//needed for the 3D zoom & interactivity out-of-the-box
chart.DefaultView.ChartArea.Extensions.Add(new CameraExtension());

Now the user can use the mouse to drag across the chart and rotate the chart image in all directions.

RadChart supports extensibility for the creation of custom chart extensions via the Extensible
Object Pattern. This pattern enables an object to participate in custom behavior, such as
registering for events, or watching state transitions. The camera extension is included "out of the
box". See the online help article "Chart Extensions" for more information.

RadControls for Silverlight868

© 2011 Telerik Inc.

22.4 Control Details

22.4.1 Chart Series Types

At the time of this writing there are twenty-four 2D charts and ten 3D charts. The following is a quick
reference to the available chart types and some of the typical uses. Be sure to check www.telerik.com for
the latest developments!

Bar Bar charts graphically display values in vertical and
horizontal bars across categories. Bar charts are useful
for comparing multiple series of data (i.e. providing
snapshots of data at particular points in time).

Stacked Bar Stacked Bar charts are used to compare contributions of
values to a total across categories. Use the Stacked Bar
chart when you need visibility to the combined values for
each category.

Stacked Bar
100%

Stacked Bar 100% shows the combined contribution of
values as percentages where the combined total for each
category is 100 percent. Use when the relationship
between values in a category is more significant than the
amounts.

Pie The Pie chart shows slices representing fractional parts of
a whole. Use when you need to display the contribution of
fractional parts to a whole.

Doughnut The Doughnut chart is very close to the Pie chart. The
only difference is that it uses a doughnut shape instead of
the solid pie. Use when you need to display the
contribution of fractional parts to a whole.

http://www.telerik.com

Charting 869

© 2011 Telerik Inc.

Spline Spline charts allow you to take a limited set of known
data points and approximate intervening values. The
Spline chart is often used for data modeling by taking a
limited number of data points and interpolating or
estimating the intervening values.

Stacked Spline Use the Stacked Spline when you need to show the
correlation between two or more series of data visualized
as splines.

Spline Area The Spline Area chart type defines one or more spline
curves and fills in the area defined by the spline. Can be
used for data modeling in that it takes a limited number of
data points and interpolates the intervening values. This
chart type also emphasizes the area between the spline
curve and a mid-point of the spline.

Stacked Spline
Area

The Stacked Spline Area chart is a variation of the Spline
Area chart. The areas are stacked so that each series
adjoins but does not overlap the preceding series. Can be
used for data modeling in that it takes a limited number of
data points and interpolates the intervening values. This
chart type allows the entire surface area for all sequences
to be displayed at one time.

Stacked Spline
Area 100%

The Stacked Spline Area 100% chart is a variation of the
Spline Area chart. The areas are stacked so that each
series adjoins but does not overlap the preceding series
and where the combined total for each category is 100
percent. Can be used for data modeling in that it takes a
limited number of data points and interpolates the
intervening values. This chart type allows the entire
surface area for all sequences to be displayed at one
time. Use this chart type when the relationship between
values in a category is more significant than the amounts.

RadControls for Silverlight870

© 2011 Telerik Inc.

Bubble The Bubble chart show correlations between sets of
values. The bubble size is used to convey larger values.
The Bubble chart is often used for scientific data modeling
or financial data.

Line This chart type displays a set of data points connected by
a line. A common use for the line chart is to show trends
over a period of time.

Stacked Line Use the Stacked Line when you need visibility to the
combined values of two or more series.

Area The Area chart consists of a series of data points joined
by a line where the area below the line is filled. Area
charts are appropriate for visualizing data that fluctuates
over a period of time and can be useful for emphasizing
trends.

Stacked Area The Stacked Area chart is a variation of the Area chart
that displays trends of the contribution of each value over
time (or across categories). The areas are stacked so
that each series adjoins but does not overlap the
preceding series. Stacked Area charts are appropriate for
visualizing data that fluctuates over a period of time and
where the entire area for all series data must be visible at
one time.

Stacked Area
100%

Stacked Areas 100% charts are a variation of Stacked
Area charts that present values for trends as percentages,
totaling to 100% for each category. Use this chart type to
visualize data that fluctuates over a period of time and
where the relationship between values in a category is
more significant than the amounts.

Charting 871

© 2011 Telerik Inc.

Range A range chart type displays a set of data points that are
each defined by multiple values for the same category.
Values are represented by the height of the marker as
measured by the value axis. The range chart fills in the
area between the top and bottom value for each data
point. Range charts are often used to graph data that
contains minimum and maximum values for each
category group in the dataset.

SplineRange A spline range chart type displays a set of data points
that are each defined by multiple values for the same
category. Values are represented by the height of the
marker as measured by the value axis. The spline range
chart fills in the area between the top and bottom value for
each data point. Spline range charts are often used to
graph data that contains minimum and maximum values
for each category group in the dataset.

CandleStick The CandleStick chart combines bar and line chart styles
to show a range of value movement over time. Dark
colored bars show downward trends, light colored bars
show upward trends and the line through the center (the
"wick") shows the extreme high and low values. Use this
chart type to visualize price or currency fluctuations.
Typically this chart is used to analyze stock prices or
currency changes.

Stick The Stick, like the CandleStick chart shows a range of
value movement over time. It uses only lines to do so. The
left tick shows the "open" value, while the right one
represents the "close" value. The vertical line shows the
extreme high and low values. Use this chart type to
visualize price or currency fluctuations. Typically this
chart is used to analyze stock prices or currency
changes.

Horizontal Bar Horizontal bar charts are typically used to compare two or
more series of data. Also, for categorical charts, you have
more space for labels on the Y-Axis. The labels read as a
list from top to bottom. These charts might be used to
represent data that has a defined start and an end date.

RadControls for Silverlight872

© 2011 Telerik Inc.

Horizontal
Stacked Bar

Use the Horizontal Stacked Bar chart when you need
visibility to the combined values for each category.
Suitable when you have more than three data series.

Horizontal
Stacked Bar
100%

Use when the relationship between values in a category is
more significant than the amounts. Suitable when you
have more than three data series.

Scatter Use when you have to compare aggregated data across
categories.

Bar 3D As Bar charts do, the Bar3D charts graphically display
values in vertical and horizontal bars across categories.
Bar3D charts are useful for comparing multiple series of
data (i.e. providing snapshots of data at particular points
in time).

Stacked Bar 3D Similar to the Stacked Bar chart, StackedBar3D is used
to compare contributions of values to a total across
categories. Use the StackedBar3D chart when you need
visibility to the combined values for each category.

Stacked Bar
100% 3D

Similar to the Stacked Bar 100% chart, Stacked Bar
100% 3D shows the combined contribution of values as
percentages where the combined total for each category
is 100 percent. Use when the relationship between values
in a category is more significant than the amounts.

Charting 873

© 2011 Telerik Inc.

Pie 3D The Pie3D chart shows slices representing fractional
parts of a whole. Use when you need to display the
contribution of fractional parts to a whole.

Doughnut 3D Same as Pie3D chart, but leaving the center empty (for
additional Pie3D/Doughnut3D series). Use when you need
to display the contribution of fractional parts to a whole.

Line 3D Line3D chart type displays a set of data points connected
by a line in a 3D scene. A common use for the line chart
is to show trends over a period of time.

Area 3D The Area 3D chart consists of a series of data points
joined by a line where the area below the line is filled.
Area charts are appropriate for visualizing data that
fluctuates over a period of time and can be useful for
emphasizing trends.

Stacked Area
3D

The Stacked Area 3D chart is a variation of the Area 3D
chart that displays trends of the contribution of each value
over time (or across categories). The areas are stacked
so that each series adjoins but does not overlap the
preceding series. Stacked Area charts are appropriate for
visualizing data that fluctuates over a period of time and
can be useful for emphasizing trends.

Stacked Area
100% 3D

The Stacked Area 100% 3D charts charts are a variation
of Stacked Area charts that present values for trends as
percentages, totaling to 100% for each category. Use this
chart type to visualize data that fluctuates over a period of
time and where the relationship between values in a
category is more significant than the amounts.

RadControls for Silverlight874

© 2011 Telerik Inc.

Stacked Line 3D The Stacked Line 3D chart is a variation of the Stacked
Line Chart that displays a set of data points connected by
a line, but the lines are stacked so that each series
adjoins but does not overlap the preceding series.

22.4.2 Chart Elements

The three main areas of the chart are ChartTitle, ChartArea and ChartLegend. Inside the ChartArea are
the chart series that in turn contain data points. At the outer edge of the ChartArea you can find the AxisY
and AxisX objects.

22.4.2.1 Series and DataPoints

You can replicate everything you did declaratively during the Getting Started walk through, in code. If you
have a chart with essentially no content...

<control:RadChart x:Name="chart" />

Charting 875

© 2011 Telerik Inc.

You can build up the individual elements that parallel the XAML. You still need to create a DataSeries,
assign its Definition and fill it with DataPoints. You create a ChartLegend and add the DataSeries, create a
ChartLegend and assign its Name and finally, create a ChartTitle and assign its Content. A few notes to
remember here:

The ChartArea LegendName needs to match the ChartLegend's Name property.

Be aware that the ChartArea DataSeries is a DataSeriesCollection while the stand-alone DataSeries
type is a collection of DataPoint.

Public Sub New()
 InitializeComponent()
 ' create a series and set its definition
 Dim series As New DataSeries() With { _
.Definition = New Bar3DSeriesDefinition(), .LegendLabel = "Store Sales"}

 ' add data to the series
 series.Add(New DataPoint(15))
 series.Add(New DataPoint(5))
 series.Add(New DataPoint(34))
 series.Add(New DataPoint(11))

 ' Create and populate the chart area
 chart.DefaultView.ChartArea = New ChartArea() With { _
.LegendName = "CustomLegend"}

 ' add series to the area
 chart.DefaultView.ChartArea.DataSeries.Add(series)

 ' create the populate legend
 chart.DefaultView.ChartLegend = New ChartLegend() With { _
.Name = "CustomLegend"}

 ' create and populate the chart title
 chart.DefaultView.ChartTitle = New ChartTitle() With { _
.Content = "Sales Summary"}
End Sub

RadControls for Silverlight876

© 2011 Telerik Inc.

public MainPage()
{
 InitializeComponent();
 // create a series and set its definition
 DataSeries series = new DataSeries()
 {
 Definition = new Bar3DSeriesDefinition(),
 LegendLabel = "Store Sales"
 };

 // add data to the series
 series.Add(new DataPoint(15));
 series.Add(new DataPoint(5));
 series.Add(new DataPoint(34));
 series.Add(new DataPoint(11));

 // Create and populate the chart area
 chart.DefaultView.ChartArea = new ChartArea()
 {
 LegendName = "CustomLegend"
 };

 // add series to the area
 chart.DefaultView.ChartArea.DataSeries.Add(series);

 // create the populate legend
 chart.DefaultView.ChartLegend = new ChartLegend()
 {
 Name = "CustomLegend"
 };

 // create and populate the chart title
 chart.DefaultView.ChartTitle = new ChartTitle()
 {
 Content = "Sales Summary"
 };
}

Charting 877

© 2011 Telerik Inc.

22.4.2.2 Axis Elements

Use the Axis properties to control the axis Title, visibility of the axis itself, the grid lines and the strip lines
(strip lines are the alternating bands of color on the background). These properties are controlled by the
Telerik.Windows.Controls.Charting Axis class. Properties specific to each axis, i.e. X or Y, are controlled
by the corresponding AxisX and AxisY classes. AxisY for instance has an ExtendDirection property that
controls the addition of "head room" above or below the chart area. AxisX has a LabelRotationAngle used
to spin the label such that more data points can fit

The example below sets the titles for both axis. The visibility for the axis, strip lines and grid lines are
enabled explicitly for your reference.

Set the IsDateTime property "True" to display DateTime values on the X-axis. You can also use the
DefaultLabelFormat to display dates according to a date and time format. In the example, the format is
"dddd" and displays the day names.

RadControls for Silverlight878

© 2011 Telerik Inc.

chart.DefaultView.ChartArea.AxisX.Title = "X-Axis"
chart.DefaultView.ChartArea.AxisX.Visibility = Visibility.Visible
chart.DefaultView.ChartArea.AxisX.StripLinesVisibility = _
Visibility.Visible
chart.DefaultView.ChartArea.AxisX.MajorGridLinesVisibility = _
Visibility.Visible
chart.DefaultView.ChartArea.AxisX.AutoRange = True
chart.DefaultView.ChartArea.AxisX.IsDateTime = True
chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45
chart.DefaultView.ChartArea.AxisX.DefaultLabelFormat = "dddd"

chart.DefaultView.ChartArea.AxisY.Title = "Y-Axis"
chart.DefaultView.ChartArea.AxisY.Visibility = Visibility.Visible
chart.DefaultView.ChartArea.AxisY.StripLinesVisibility = _
Visibility.Visible
chart.DefaultView.ChartArea.AxisY.MajorGridLinesVisibility = _
Visibility.Visible
chart.DefaultView.ChartArea.AxisY.ExtendDirection = _
AxisExtendDirection.Smart

chart.DefaultView.ChartArea.AxisX.Title = "X-Axis";
chart.DefaultView.ChartArea.AxisX.Visibility = Visibility.Visible;
chart.DefaultView.ChartArea.AxisX.StripLinesVisibility = Visibility.Visible;
chart.DefaultView.ChartArea.AxisX.MajorGridLinesVisibility = Visibility.Visible;
chart.DefaultView.ChartArea.AxisX.AutoRange = true;
chart.DefaultView.ChartArea.AxisX.IsDateTime = true;
chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45;
chart.DefaultView.ChartArea.AxisX.DefaultLabelFormat = "dddd";

chart.DefaultView.ChartArea.AxisY.Title = "Y-Axis";
chart.DefaultView.ChartArea.AxisY.Visibility = Visibility.Visible;
chart.DefaultView.ChartArea.AxisY.StripLinesVisibility = Visibility.Visible;
chart.DefaultView.ChartArea.AxisY.MajorGridLinesVisibility = Visibility.Visible;
chart.DefaultView.ChartArea.AxisY.ExtendDirection = AxisExtendDirection.Smart;

22.4.3 Animations

For perceived performance or aesthetic reasons you may need to disable animation altogether. Set the
EnableAnimations property of the ChartArea:

RadChart1.DefaultView.ChartArea.EnableAnimations = False

Charting 879

© 2011 Telerik Inc.

RadChart1.DefaultView.ChartArea.EnableAnimations = false;

Animation timings can be modified for the entire chart or for an individual series. The settings for the
example below cause the animation for a SeriesDefinition to take 10 seconds. The spline series is drawn
slowly, as if being traced on a white board. This setting isn't performant of course, but you may want to
display some series more slowly to point out the relationship of data. Quicker animation settings provide
visual "pop" without noticeable pause in the rendering. The ItemAnimationDuration property controls the
time span for the animation of each individual item in the chart. TotalSeriesAnimationDuration controls
the time span for the animation of the entire series. ItemDelay and DefaultSeriesDelay delay the the item
and series animation.

chart.DefaultSeriesDefinition.AnimationSettings = _
New AnimationSettings() With { _
.TotalSeriesAnimationDuration = TimeSpan.FromSeconds(10)}

chart.DefaultSeriesDefinition.AnimationSettings =
 new AnimationSettings()
 {
 TotalSeriesAnimationDuration = TimeSpan.FromSeconds(10)
 };

RadControls for Silverlight880

© 2011 Telerik Inc.

22.4.4 Integration with ASP.NET AJAX

You may not have the luxury of building Silverlight-only solutions for your business. But you can introduce
Silverlight elements into existing ASP.NET applications. Silverlight RadChart, RadGridView or any of the
other RadControls can be including as-needed. The technique is to wrap a Silverlight control in a web user
control, then supply the plumbing to communicate from the ASP.NET web page that contains the user
control, all the way back to the Silverlight control. In the example below, we pass a chart title string all the
way from an attribute on the ASP.NET page back to a RadChart on the Silverlight user control.

The key steps are described in the diagram below where the ASP.NET page sets the "ChartTitle" property
of a web user control. The web user control uses a startup script to save the ChartTitle value, then, when
the Silverlight plugin loads, the saved value is passed to a "Scriptable" property in a Silverlight user control
("Scriptable" means that the Silverlight user control property is available to Javascript). The "Scriptable"
ChartTitle is then assigned when the RadChart first loads.

All the pieces described below have to be in place for the technique to work, but we will follow the process
sequentially from Silverlight page, through the web user control and finally, to the ASP.NET page.

Before getting started with the steps below, first create a Silverlight Application along with a host ASP.NET
application.

Silverlight Page

The Silverlight XAML page can be any arbitrary set of Silverlight elements. In this example we will re-use the
XAML from the RadChart Getting Started walk through.

1) In the code-behind for the page add a reference to the System.Windows.Browser namespace to
support HtmlPage and ScriptableMember objects.

Charting 881

© 2011 Telerik Inc.

2) In the constructor for the page, call HtmlPage.RegisterScriptableObject() and pass a string
"slChartPage" and a reference to the page. This line of code registers the page as an object that can be
accessed in Javascript. Also in the constructor, add a Loaded event handler to the RadChart.

3) In the Loaded event handler, assign the Content for the chart title. The content will come from a string
property of the page to be defined called "ChartTitle". Its important to put this assignment after the chart
has been loaded, and we can make that explicit by putting the assignment in the chart's Loaded event
handler.

4) Include a string property called "ChartTitle" and decorate it with the ScriptableMember attribute. The
combination of RegisterScriptableObject to surface the page and the ScriptableMember attribute to
expose the ChartTitle will make both objects accessible later in Javascript from the ASP.NET page.

The code for the page should look like the example below:

Partial Public Class MainPage
 Inherits UserControl
 Public Sub New()
 InitializeComponent()
 ' "slChartPage" makes ChartTitle availab le to script
 ' in the user control
 HtmlPage.RegisterScriptableObject("slChartPage", Me)
 AddHandler chart.Loaded, AddressOf chart_Loaded
 End Sub

 Private Sub chart_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 ' !! Gotcha: chart must be loaded before assigning content
 chart.DefaultView.ChartTitle.Content = Me.ChartTitle
 End Sub

 Private privateChartTitle As String
 <ScriptableMember> _
 Public Property ChartTitle() As String
 Get
 Return privateChartTitle
 End Get
 Set(ByVal value As String)
 privateChartTitle = value
 End Set
 End Property
End Class

RadControls for Silverlight882

© 2011 Telerik Inc.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 // "slChartPage" makes ChartTitle availab le to script
 // in the user control
 HtmlPage.RegisterScriptableObject("slChartPage", this);
 chart.Loaded += new RoutedEventHandler(chart_Loaded);
 }

 void chart_Loaded(object sender, RoutedEventArgs e)
 {
 // !! Gotcha: chart must be loaded before assigning content
 chart.DefaultView.ChartTitle.Content = this.ChartTitle;
 }

 [ScriptableMember]
 public string ChartTitle
 { get; set; }
}

User Control

1) In the Solution Explorer, References node of the ASP.NET application, add a reference to the System.
Web.Silverlight assembly.

2) In the host ASP.NET application, create a Web User Control.

3) Configure the web user control in the designer:

a) Add a reference to System.Web.Silverlight in the markup of the Web User Control.

<%@ Register Assembly="System.Web.Silverlight"
 Namespace="System.Web.UI.SilverlightControls"
 TagPrefix="asp" %>

b) Add a block of script to the user control with two functions. The global variable "chartTitle" at the top of
the script block is used by both functions.

The pluginLoaded() function is triggered from an event of the Silverlight plugin. "sender" is the
Silverlight control. The content for the Silverlight control holds a reference to the "slChartPage" object
we defined earlier and through that we can also reference the "ChartTitle" property. When we assign
the slChartPage.ChartTitle, we're actually setting the chart title of the RadChart back on the Silverlight
page.

The second function, setTitleValue(), will be called later from a startup script when the user control
first loads.

Charting 883

© 2011 Telerik Inc.

<script type="text/javascript">
 var chartTitle;

 function pluginLoaded(sender) {
 // get reference to the silverlight control on the page
 var silverlightControl = sender.get_element();

 // call scriptab le method in silverlight application
 // we call it here to ensure silverlight controls is fully loaded.
 if (chartTitle != null) {
 silverlightControl.content.slChartPage.ChartTitle = chartTitle;
 }
 }

 function setTitleValue(title) {
 chartTitle = title;
 }

</script>

c) Add a Silverlight server control inside the web user control. Point the Source property at the path of the
"xap" file in the ClientBin directory. Also be sure to hookup the OnPluginLoaded event to the
pluginLoaded() function you created in the last step.

<asp:Silverlight ID="Xaml1" runat="server"
 Source="~/ClientBin/02B_ControlDetails_Integration.xap"
 MinimumVersion="2.0.31005.0" OnPluginLoaded="pluginLoaded" />

4) Add the web user control code-behind.

a) Add a string property that surfaces ChartTitle. This property will be set later from the ASP.NET page
as an attribute of the web user control.

b) In Page_Load, if the ChartTitle property has been assigned a value, register a startup script that calls
the Javascript setTitleValue() function. The RegisterStartupScript takes the type of the page, an
arbitrary string that acts as a key for the script, the Javascript itself and a Boolean indicating that
Script tags should be included automatically.

RadControls for Silverlight884

© 2011 Telerik Inc.

Partial Public Class ChartUserControl
 Inherits System.Web.UI.UserControl
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' pass values to silverlight in HTML
 If (Not String.IsNullOrEmpty(Me.ChartTitle)) Then
 Dim script As String = _
String.Format("setTitleValue('{0}');", Me.ChartTitle)
 Page.ClientScript.RegisterStartupScript(GetType(Page), _
"SLPROXY_TITLE", script, True)
 End If
 End Sub

 Private privateChartTitle As String
 Public Property ChartTitle() As String
 Get
 Return privateChartTitle
 End Get
 Set(ByVal value As String)
 privateChartTitle = value
 End Set
 End Property
End Class

public partial class ChartUserControl : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // pass values to silverlight in HTML
 if (!string.IsNullOrEmpty(this.ChartTitle))
 {
 string script =
 string.Format("setTitleValue('{0}');", this.ChartTitle);
 Page.ClientScript.RegisterStartupScript(
 typeof(Page), "SLPROXY_TITLE", script, true);
 }
 }

 public string ChartTitle
 {
 get;
 set;
 }
}

ASP.NET Page

1) Add a reference to the web user control.

Charting 885

© 2011 Telerik Inc.

<%@ Register Src="ChartUserControl.ascx" TagName="ChartUserControl" TagPrefix="uc1" %>

2) Add a ScriptManager to the page if one doesn't already exist and add the web user control to the page.
Set the ChartTItle property of the web user control to "Category Sales".

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<div>
 <uc1:ChartUserControl ID="ChartUserControl1" runat="server"
 ChartTitle="Category Sales" />
</div>

Run the Application

Set the web application as the Startup Application and the ASP.NET page as the Start Page. When you
run the application, the RadChart should display the ChartTitle "Category Sales" assigned in the ASP.NET
markup.

Here's a summary of the sequence:

1. ASP.NET page markup sets the web user control ChartTitle property.

2. When the web user control page loads on the server, the startup script inserts Javascript to call
setTitleValue() and pass the web user control ChartTitle property value.

3. When the web user control loads on the client, the startup script stores the chart title in a global
chartTitle variable. Inside the web user control, the Silverlight control triggers the PluginLoaded event.
The PluginLoaded event handler gets a reference to the Silverlight control content, gets a reference to
the Silverlight user control ChartTitle and assigns the global chartTitle.

4. When the RadChart finishes loading, the Silverlight user control ChartTitle property is assigned to the
RadChart.

RadControls for Silverlight886

© 2011 Telerik Inc.

22.5 Binding

22.5.1 Binding Basics

Binding has several components:

1. How do I assign a data source?

2. What columns or properties from the data source should be used?

3. How do the properties from the data source relate to properties on the control being bound?

For a chart series the first question is answered by the ItemsSource property. Questions 2 & 3 are
answered using "Series Mapping" and "Item Mapping that define binding between data source properties,
the series and each data point.

Series mapping can be automatic if you don't need much control and just want to throw data onto the chart.
The numeric value properties in a data source are each displayed in their own series. The example below
uses a collection of "Product" objects. "Product" has numeric properties for "InStock", "OnOrder" and
"Cost". "Product" also has non-numeric columns that are ignored.

The example assigns the chart DefaultSeriesDefinition property. The assignment simply takes a specific
series definition type, in this case a Bar3DSeriesDefinition.

Charting 887

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim categories As New Categories()
 Dim kayaks As Category = _
categories.FirstOrDefault(Function(c) c.CategoryName.Equals("Kayak"))

 chart.ItemsSource = kayaks.Products
 chart.DefaultSeriesDefinition = New Bar3DSeriesDefinition()
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 Categories categories = new Categories();
 Category kayaks =
 categories.FirstOrDefault(c => c.CategoryName.Equals("Kayak"));

 chart.ItemsSource = kayaks.Products;
 chart.DefaultSeriesDefinition = new Bar3DSeriesDefinition();
}

Its more likely we will want control of where the data goes. Each SeriesMapping has an ItemMappings
collection that holds DataPoint objects. The relationship is roughly:

RadChart.SeriesMappings

 SeriesMapping

 ItemMappings

 ItemMapping

 DataPointMember

Now we can tell the chart to bind just the "InStock" data to the YValue property of each DataPoint and
the chart now looks something like the screenshot below.

RadControls for Silverlight888

© 2011 Telerik Inc.

chart.ItemsSource = kayaks.Products

Dim seriesMapping As New SeriesMapping() With { _
.SeriesDefinition = New Bar3DSeriesDefinition()}

seriesMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.LegendLabel, .FieldName = "ProductName"})

seriesMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.YValue, .FieldName = "InStock"})

chart.SeriesMappings.Add(seriesMapping)

Charting 889

© 2011 Telerik Inc.

chart.ItemsSource = kayaks.Products;

SeriesMapping seriesMapping = new SeriesMapping()
{
 SeriesDefinition = new Bar3DSeriesDefinition()
};

seriesMapping.ItemMappings.Add(new ItemMapping()
{
 DataPointMember = DataPointMember.LegendLabel,
 FieldName = "ProductName"
});

seriesMapping.ItemMappings.Add(new ItemMapping()
{
 DataPointMember = DataPointMember.YValue,
 FieldName = "InStock"
});

chart.SeriesMappings.Add(seriesMapping);

Notice that in the last bit of code we attempt to bind both "InStock" to the YValue property and
"ProductName" to the LegendLabel property. But LegendLabel doesn't show up in the running example.
To fix that, set the series definition LegendDisplayMode property to DataPointLabel instead of the
default SeriesLabel. Now, each element of the "Products" collection shows up both as a data point and a
legend element. Because we bound the "ProductName" to the LegendLabel, each legend element display
the appropriate product name.

We can polish the results by positioning the Header text to the top of the legend. You can access this
through the chart DefaultView.ChartLegend.Header property.

RadControls for Silverlight890

© 2011 Telerik Inc.

chart.ItemsSource = kayaks.Products
chart.DefaultView.ChartLegend.Header = "Products"

Dim seriesMapping As New SeriesMapping() With {. _
SeriesDefinition = New Bar3DSeriesDefinition() With { _
.LegendDisplayMode = LegendDisplayMode.DataPointLabel}}

chart.ItemsSource = kayaks.Products;
chart.DefaultView.ChartLegend.Header = "Products";

SeriesMapping seriesMapping = new SeriesMapping()
{
 SeriesDefinition = new Bar3DSeriesDefinition()
 {
 LegendDisplayMode = LegendDisplayMode.DataPointLabel,
 }
};

Charting 891

© 2011 Telerik Inc.

Let's look at three series together, displaying the "In Stock", "On Order" and "Cost" data. The example
below refactors the code involved with creating a series mapping to a new method "AddSeriesMapping()".
This new method also reverts to using the LegendLabel LegendDisplayMode instead of the DataPointLabel
because we're going to show multiple series of data and it will be easier to display in the legend this way, i.
e. one legend label per series.

RadControls for Silverlight892

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim categories As New Categories()
 Dim kayaks As Category = _
categories.FirstOrDefault(Function(c) c.CategoryName.Equals("Kayak"))

 chart.ItemsSource = kayaks.Products
 chart.DefaultView.ChartLegend.Header = "Products"
 chart.SeriesMappings.Add(AddSeriesMapping(_
New Bar3DSeriesDefinition(), "In Stock", "InStock"))
End Sub

Private Function AddSeriesMapping(_
ByVal seriesDefinition As ISeriesDefinition, _
ByVal legendLabel As String, ByVal fieldName As String) As SeriesMapping
 ' add mapping for the series
 Dim mapping As New SeriesMapping() With { _
.SeriesDefinition = seriesDefinition, _
.LegendLabel = legendLabel}

 ' add item mapping for each property in the item
 mapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.LegendLabel})

 mapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.YValue, _
.FieldName = fieldName})

 Return mapping
End Function

Charting 893

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 Categories categories = new Categories();
 Category kayaks =
 categories.FirstOrDefault(c => c.CategoryName.Equals("Kayak"));

 chart.ItemsSource = kayaks.Products;
 chart.DefaultView.ChartLegend.Header = "Products";
 chart.SeriesMappings.Add(
 AddSeriesMapping(new Bar3DSeriesDefinition(), "In Stock", "InStock"));
}

private SeriesMapping AddSeriesMapping(ISeriesDefinition seriesDefinition,
 string legendLabel, string fieldName)
{
 // add mapping for the series
 SeriesMapping mapping = new SeriesMapping()
 {
 SeriesDefinition = seriesDefinition,
 LegendLabel = legendLabel
 };

 // add item mapping for each property in the item
 mapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.LegendLabel
 });

 mapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.YValue,
 FieldName = fieldName
 });

 return mapping;
}

RadControls for Silverlight894

© 2011 Telerik Inc.

22.5.2 Binding Axis Labels

 From the Forums...

Question: I can get the data to appear as a bar series with the correct values but how do I put
labels on the x axis?

Answer: One of the DataPointMember enumeration values is XCategory. Bind the property that
you want to use for labels to the ItemMapping FieldName and set the DataPointMember to
DataPointMember.XCategory.

seriesMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.XCategory, .FieldName = "ProductName"})

seriesMapping.ItemMappings.Add(new ItemMapping()
{
 DataPointMember = DataPointMember.XCategory,
 FieldName = "ProductName"
});

Charting 895

© 2011 Telerik Inc.

22.5.3 Tooltips

There are several methods that populate tool tips, each with tradeoffs to consider. First, set the
SeriesDefinition ShowItemToolTips property "True" before any of the methods will work.

When you create ItemMappings, you can bind the DataPointMember to the DataPointMember.ToolTip
enumeration member. Assign FieldName to the name of the property that will supply the value.

mapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.Tooltip, _
.FieldName = "OnOrder"})

mapping.ItemMappings.Add(new ItemMapping()
{
 DataPointMember = DataPointMember.Tooltip,
 FieldName = "OnOrder"
});

Instead of using an ItemMapping, set the ItemToolTipFormat property to a Label Format Expression (see
the upcoming Label Format Expressions section for more detail on syntax). In the example below,
ItemToolTipFormat displays the "Y" value in a formatted string.

Dim definition As ISeriesDefinition = New BarSeriesDefinition() With { _
.LegendDisplayMode = LegendDisplayMode.DataPointLabel, _
.ShowItemLabels = False, _
.ShowItemToolTips = True, _
.ItemToolTipFormat = "Quantity: #Y{0}"}

RadControls for Silverlight896

© 2011 Telerik Inc.

ISeriesDefinition definition = new BarSeriesDefinition()
{
 LegendDisplayMode = LegendDisplayMode.DataPointLabel,
 ShowItemLabels = false,
 ShowItemToolTips = true,
 ItemToolTipFormat = "Quantity: #Y{0}"
};

To get fine-grained control over tool tips, handle the ItemToolTipOpening event. The event passes the
ItemToolTip2D that encapsulates the tool tip element and a ItemToolTipEventArgs that contains additional
information about where the tool tip opened from, including the DataPoint, DataSeries, ItemIndex and
MouseData. You have unlimited latitude to make tooltip Content be just about anything, from simple text to
complex layouts including grids or even other RadCharts. For example, you can display a drill down chart
showing detail for a data point under the mouse.

The example below displays a Border with a detail RadChart. You can see in the code that we can access
the bound data using the DataPoint.DataItem property. In this case, the DataItem is a "Category" object
that contains a "Products" collection that can then be bound to the detail chart. We can even apply the
same theme to the detail chart for a consistent look and feel. This example only shows a Border and chart,
but by adding any container, such as a Grid or StackPanel to the tooltip.Content, you can build tool tips of
arbitrary complexity.

Charting 897

© 2011 Telerik Inc.

Private Sub ChartArea_ItemToolTipOpening(_
ByVal tooltip As ItemToolTip2D, ByVal e As ItemToolTipEventArgs)
 Dim category As Category = TryCast(e.DataPoint.DataItem, Category)

 Dim detailChart As New RadChart()
 detailChart.SetValue(StyleManager.ThemeProperty, _
ThemeManager.FromName("Summer"))
 detailChart.Background = New SolidColorBrush(Colors.Transparent)
 detailChart.DefaultView.ChartTitle.Content = category.CategoryName
 detailChart.DefaultView.ChartLegend.Visibility = Visibility.Collapsed
 detailChart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 60
 detailChart.Width = 300
 detailChart.Height = 300
 detailChart.ItemsSource = category.Products

 Dim definition As ISeriesDefinition = New BarSeriesDefinition() With { _
.LegendDisplayMode = LegendDisplayMode.DataPointLabel, _
.ShowItemLabels = True, _
.ShowItemToolTips = True}

 Dim mapping As New SeriesMapping() With {.SeriesDefinition = definition}

 mapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.XCategory, _
.FieldName = "ProductName"})

 mapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.YValue, _
.FieldName = "Cost"})

 detailChart.SeriesMappings.Add(mapping)

 Dim border As New Border() With { _
.Background = chart.Background, _
.BorderBrush = New SolidColorBrush(Colors.Blue), _
.BorderThickness = New Thickness(1), _
.CornerRadius = New CornerRadius(20), _
.Padding = New Thickness(5)}
 border.Child = detailChart
 tooltip.Background = New SolidColorBrush(Colors.Transparent)
 tooltip.Content = border
End Sub

RadControls for Silverlight898

© 2011 Telerik Inc.

void ChartArea_ItemToolTipOpening(ItemToolTip2D tooltip, ItemToolTipEventArgs e)
{
 Category category = e.DataPoint.DataItem as Category;

 RadChart detailChart = new RadChart();
 detailChart.SetValue(StyleManager.ThemeProperty, ThemeManager.FromName("Summer"));
 detailChart.Background = new SolidColorBrush(Colors.Transparent);
 detailChart.DefaultView.ChartTitle.Content = category.CategoryName;
 detailChart.DefaultView.ChartLegend.Visibility = Visibility.Collapsed;
 detailChart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 60;
 detailChart.Width = 300;
 detailChart.Height = 300;
 detailChart.ItemsSource = category.Products;

 ISeriesDefinition definition = new BarSeriesDefinition()
 {
 LegendDisplayMode = LegendDisplayMode.DataPointLabel,
 ShowItemLabels = true,
 ShowItemToolTips = true
 };

 SeriesMapping mapping = new SeriesMapping()
 {
 SeriesDefinition = definition
 };

 mapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.XCategory,
 FieldName = "ProductName"
 });

 mapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.YValue,
 FieldName = "Cost"
 });

 detailChart.SeriesMappings.Add(mapping);

 Border border = new Border()
 {
 Background = chart.Background,
 BorderBrush = new SolidColorBrush(Colors.Blue),
 BorderThickness = new Thickness(1),
 CornerRadius = new CornerRadius(20),
 Padding = new Thickness(5)
 };
 border.Child = detailChart;
 tooltip.Background = new SolidColorBrush(Colors.Transparent);
 tooltip.Content = border;
}

Charting 899

© 2011 Telerik Inc.

22.5.4 Format Expressions

You can format an entire series by defining the SeriesDefinition ItemLabelFormat...

inStockMapping.SeriesDefinition.ItemLabelFormat = "#Y"

inStockMapping.SeriesDefinition.ItemLabelFormat = "#Y";

or you can set the label format for each DataPoint:

Dim point As New DataPoint()
point.LabelFormat = "#Y"

DataPoint point = new DataPoint();
point.LabelFormat = "#Y";

Formats are made up of a pound sign ("#") + a predefined token + an optional format string. Here are the
defined tokens and how they relate to DataPoint or TickPoint properties.

Token Use For Value

#Y Series Items Label,
Tooltip

DataPoint.YValue

#X Series Items Label,
Tooltip

DataPoint.XValue

#XCAT Series Items Label,
Tooltip

DataPoint.XCategory

#HIGH Series Items Label,
Tooltip

DataPoint.High

#LOW Series Items Label,
Tooltip

DataPoint.Low

#OPEN Series Items Label,
Tooltip

DataPoint.Open

RadControls for Silverlight900

© 2011 Telerik Inc.

#CLOSE Series Items Label,
Tooltip

DataPoint.Close

#BUBBLESIZE Series Items Label,
Tooltip

DataPoint.BubbleSize

#LABEL Series Items Label,
Tooltip

DataPoint.Label

#LEGENDLABEL Series Items Label,
Tooltip

DataPoint.LegendLabel

#TOOLTIP Series Items Label,
Tooltip

DataPoint.Tooltip

#SERIESLABEL Series Items Label,
Tooltip

DataSeries.LegendLabel

#% Series Items Label,
Tooltip

DataPoint.YValue / (The sum of all YValues in the current data
series)

#STSUM Series Items Label,
Tooltip

Represents the sum of all stacked items for a given index

#STPERCENT Series Items Label,
Tooltip

The percent representation of the value of a given item with
respect to all stacked items for the respective index.

#DATAITEM.
<PropertyName>

Series Items Label,
Tooltip

Used to access the DataPoint.DataItem and read the value from
a property of the underlying business object.

#VAL X-Axis, Y-Axis TickPoint.Value. This will work only when formatting axis labels.

.

Charting 901

© 2011 Telerik Inc.

Here's a slightly larger example that demonstrates several formatting expressions at once. Both the label
and the tool tip are formatted.

The example uses a "Sales" class that knows how to create a set of DateTime values and random
"Amounts".

Public Class Sales
 Private privateAmount As Double
 Public Property Amount() As Double
 Get
 Return privateAmount
 End Get
 Set(ByVal value As Double)
 privateAmount = value
 End Set
 End Property
 Private privateSalesDate As DateTime
 Public Property SalesDate() As DateTime
 Get
 Return privateSalesDate
 End Get
 Set(ByVal value As DateTime)
 privateSalesDate = value
 End Set
 End Property

 Public Shared Function Fill(ByVal count As Integer) _
As IEnumerable(Of Sales)
 Dim random As New Random()
 Dim now As DateTime = DateTime.Now
 Dim max As Integer = count * 100

 For i As Integer = 0 To count - 1
 Dim sales As New Sales() With { _
.Amount = random.Next(max), .SalesDate = now.AddDays(i)}
 Return sales
 Next i
 End Function
End Class

RadControls for Silverlight902

© 2011 Telerik Inc.

public class Sales
{
 public double Amount { get; set; }
 public DateTime SalesDate { get; set; }

 public static IEnumerable<Sales> Fill(int count)
 {
 Random random = new Random();
 DateTime now = DateTime.Now;
 int max = count * 100;

 for (int i = 0; i < count; i++)
 {
 Sales sales = new Sales()
 {
 Amount = random.Next(max),
 SalesDate = now.AddDays(i)
 };

 yield return sales;
 }
 }
}

While configuring the series mappings, the ItemToolTipFormat and the ItemLabelFormat are assigned.
The ItemToolTipFormat lets you try out several formats all at once. Here we're showing the "XCategory", the
"Y" value as a currency with zero decimal places and a percentage of the all the values with two decimal
places. The Item label format also displays the YValue as a currency with no decimal places.

Charting 903

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 chart.DefaultSeriesDefinition = New SplineSeriesDefinition()
 chart.DefaultSeriesDefinition.ShowItemToolTips = True
 chart.DefaultSeriesDefinition.ItemToolTipFormat = _
"Date: #XCAT" & Constants.vbCrLf & "Amount: #Y{C0}" & _
Constants.vbCrLf & "Percentage: #%{P2}"
 chart.DefaultSeriesDefinition.ItemLabelFormat = "#Y{C0}"
 chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45
 Dim mapping As New SeriesMapping()
 mapping.ItemMappings.Add(New ItemMapping("SalesDate", _
DataPointMember.XCategory))
 mapping.ItemMappings.Add(New ItemMapping("Amount", _
DataPointMember.YValue))
 chart.SeriesMappings.Add(mapping)
 chart.ItemsSource = Sales.Fill(10)
End Sub

RadControls for Silverlight904

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 chart.DefaultSeriesDefinition = new SplineSeriesDefinition();
 chart.DefaultSeriesDefinition.ShowItemToolTips = true;
 chart.DefaultSeriesDefinition.ItemToolTipFormat =
 "Date: #XCAT\r\nAmount: #Y{C0}\r\nPercentage: #%{P2}";
 chart.DefaultSeriesDefinition.ItemLabelFormat =
 "#Y{C0}";
 chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45;
 SeriesMapping mapping = new SeriesMapping();
 mapping.ItemMappings.Add(
 new ItemMapping("SalesDate", DataPointMember.XCategory));
 mapping.ItemMappings.Add(
 new ItemMapping("Amount", DataPointMember.YValue));
 chart.SeriesMappings.Add(mapping);
 chart.ItemsSource = Sales.Fill(10);
}

Charting 905

© 2011 Telerik Inc.

22.6 Customization

22.6.1 Coloring Chart Elements

A very common issue discussed in the forums is the need to color series items based on data values. The
recommended technique employs the MVVM pattern. The "View Model" layer translates some property of
the "Model" into a Brush. The chart as a whole is bound to the view model and a custom template element
for a given series item type, e.g. "Bar", is bound to the brush. For example, we can have a series of
"Pepper" objects that have a "Scoville" scale rating that measures relative spiciness. The
"PepperViewModel" object translates the scale rating into a brush that represents the Scoville scale rating.
The brush is used in the binding of the bar element in the template.

Let's take a look at the relevant pieces that make this work.

Model

The Model defines the data you want to see in the chart. This may be your own object or data returned by a
service. In this example we have the Pepper class that defines a name, a numeric "Scoville" scale rating
and a Spiciness enumeration value that tells us the range of the scale rating. The specifics of the class
implementation are less important than the fact that this model has a property that will be translated by the
view model into a visually relevant property.

RadControls for Silverlight906

© 2011 Telerik Inc.

Public Enum Spiciness
 Mild
 Medium
 Hot
 Extreme
End Enum

Public Class Pepper
 Private _name As String
 Private privateName As String
 Public Property Name() As String
 Get
 Return privateName
 End Get
 Set(ByVal value As String)
 privateName = value
 End Set
 End Property

 Private privateScovilleRating As Integer
 Public Property ScovilleRating() As Integer
 Get
 Return privateScovilleRating
 End Get
 Set(ByVal value As Integer)
 privateScovilleRating = value
 End Set
 End Property

 Public ReadOnly Property Spiciness() As Spiciness
 Get
 If (Me.ScovilleRating > 0) AndAlso _
(Me.ScovilleRating <= 500) Then
 Return Spiciness.Mild
 ElseIf (Me.ScovilleRating > 500) AndAlso _
(Me.ScovilleRating <= 2500) Then
 Return Spiciness.Medium
 ElseIf (Me.ScovilleRating > 2500) AndAlso _
(Me.ScovilleRating < 100000) Then
 Return Spiciness.Hot
 Else
 Return Spiciness.Extreme
 End If
 End Get
 End Property
End Class

Charting 907

© 2011 Telerik Inc.

public enum Spiciness { Mild, Medium, Hot, Extreme };

public class Pepper
{
 private string _name;
 public string Name
 {
 get; set;
 }

 public int ScovilleRating
 {
 get; set;
 }

 public Spiciness Spiciness
 {
 get
 {
 if ((this.ScovilleRating > 0) &&
 (this.ScovilleRating <= 500))
 return Spiciness.Mild;
 else if ((this.ScovilleRating > 500) &&
 (this.ScovilleRating <= 2500))
 return Spiciness.Medium;
 else if ((this.ScovilleRating > 2500) &&
 (this.ScovilleRating < 100000))
 return Spiciness.Hot;
 else return Spiciness.Extreme;
 }
 }
}

View Model

The view model wraps the model in a nice tidy package suitable for direct use by the view. The example
below defines a PepperViewModel class. Notice that the constructor takes an instance of the model.

The purpose of the view model here is to translate the Spiciness property value on the model to a Brush that
can be used in the View. Look at the implementation of the ScovilleColor Brush property. The Spiciness
property is used to return an appropriate Brush color.

RadControls for Silverlight908

© 2011 Telerik Inc.

Public Class PepperViewModel
 Public Sub New(ByVal pepper As Pepper)
 Me.Pepper = pepper
 End Sub

 Private privatePepper As Pepper
 Public Property Pepper() As Pepper
 Get
 Return privatePepper
 End Get
 Set(ByVal value As Pepper)
 privatePepper = value
 End Set
 End Property

 Public ReadOnly Property ScovilleColor() As Brush
 Get
 Dim lightYellow As New SolidColorBrush(Color.FromArgb(255, 255, 255, 100))
 Dim darkOrange As New SolidColorBrush(Color.FromArgb(255, 250, 175, 0))
 Dim darkRed As New SolidColorBrush(Color.FromArgb(255, 140, 0, 0))

 Select Case Me.Pepper.Spiciness
 Case Spiciness.Mild
 Return lightYellow
 Case Spiciness.Medium
 Return New SolidColorBrush(Colors.Orange)
 Case Spiciness.Hot
 Return New SolidColorBrush(Colors.Red)
 Case Else
 Return darkRed
 End Select
 End Get
 End Property
End Class

Charting 909

© 2011 Telerik Inc.

public class PepperViewModel
{
 public PepperViewModel(Pepper pepper)
 {
 this.Pepper = pepper;
 }

 public Pepper Pepper
 {
 get; set;
 }

 public Brush ScovilleColor
 {
 get
 {
 SolidColorBrush lightYellow =
 new SolidColorBrush(Color.FromArgb(255, 255, 255, 100));
 SolidColorBrush darkOrange =
 new SolidColorBrush(Color.FromArgb(255, 250, 175, 0));
 SolidColorBrush darkRed =
 new SolidColorBrush(Color.FromArgb(255, 140, 0, 0));

 switch (this.Pepper.Spiciness)
 {
 case Spiciness.Mild: return lightYellow;
 case Spiciness.Medium: return new SolidColorBrush(Colors.Orange);
 case Spiciness.Hot: return new SolidColorBrush(Colors.Red);
 default: return darkRed;
 }
 }
 }
}

Template

We use a custom template to allow binding view model properties to elements arranged in a container (e.g.
Canvas, Grid, etc). In this case we are templating the Bar series item. The Bar contains a Rectangle with a
Fill property that can be bound to DataItem.ScovilleColor. DataItem in this case is a PepperViewModel.
Remember that the style is called "ScovilleStyle". We will assign the style later in code.

RadControls for Silverlight910

© 2011 Telerik Inc.

<Style x:Name="ScovilleStyle" TargetType="chart:Bar">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="telerikCharting:Bar">
 <Canvas x:Name = "PART_MainContainer">
 <Rectangle x:Name="PART_DefiningGeometry"
 . . .
 Fill="{Binding DataItem.ScovilleColor}" />
 . . .
 </Canvas>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

For reference, here's the entire control template for the Bar series item. You can also get at this information
using Expression Blend.

Charting 911

© 2011 Telerik Inc.

<Style x:Name="ScovilleStyle"
 TargetType="telerikCharting:Bar">
 <Setter Property="Template" >
 <Setter.Value>
 <ControlTemplate TargetType="telerikCharting:Bar">
 <Canvas x:Name="PART_MainContainer">
 <Rectangle x:Name="PART_DefiningGeometry"

 Height="{TemplateBinding ItemActualHeight}"
 Width="{TemplateBinding ItemActualWidth}"
 Style="{TemplateBinding ItemStyle}"
 StrokeThickness="2"
 RadiusX="5"
 RadiusY="5"
 Fill="{Binding DataItem.ScovilleColor}" />
 <Canvas.RenderTransform>
 <ScaleTransform x:Name="PART_AnimationTransform" ScaleY="0" />
 </Canvas.RenderTransform>
 <Canvas.Triggers>
 <EventTrigger
 RoutedEvent="Rectangle.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard
 x:Name="PART_Storyboard"
 BeginTime="00:00:00.5">
 <DoubleAnimation
 To="1"
 Storyboard.TargetName="PART_AnimationTransform"
 Storyboard.TargetProperty="ScaleY"
 Duration="00:00:00.25"
 BeginTime="00:00:00.2">
 </DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Canvas.Triggers>
 </Canvas>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Code Behind

The first tasks is to create a collection of model "Pepper" objects. Then create a collection of matching view
model "PepperViewModel" objects. For your own purposes, the "model" objects may be coming from
another source, such as a web, RIA or REST service.

RadControls for Silverlight912

© 2011 Telerik Inc.

' create the model
Dim peppers As List(Of Pepper) = New List(Of Pepper) (New Pepper() { _
New Pepper() With {.Name = "Pimento", .ScovilleRating = 250}, _
New Pepper() With {.Name = "Poblano Pepper", .ScovilleRating = 500}, _
New Pepper() With {.Name = "Jalapeno Pepper", .ScovilleRating = 2500}, _
New Pepper() With {.Name = "Cayenne Pepper", .ScovilleRating = 10000}})

' create the view model and copy model into it
Dim viewModel As List(Of PepperViewModel) = New List(Of PepperViewModel)()
For Each pepper As Pepper In peppers
 viewModel.Add(New PepperViewModel(pepper))
Next pepper

// create the model
List<Pepper> peppers = new List<Pepper>()
{
 new Pepper() { Name = "Pimento", ScovilleRating = 250 },
 new Pepper() { Name = "Poblano Pepper", ScovilleRating = 500 },
 new Pepper() { Name = "Jalapeno Pepper", ScovilleRating = 2500 },
 new Pepper() { Name = "Cayenne Pepper", ScovilleRating = 10000 }
};

// create the view model and copy model into it
List<PepperViewModel> viewModel = new List<PepperViewModel>();
foreach (Pepper pepper in peppers)
{
 viewModel.Add(new PepperViewModel(pepper));
}

During assignment of the series definition and item mapping, you have the opportunity to assign ItemStyle
to "ScovilleStyle" and to tie view model properties to elements on the chart. In this example, the Pepper.
ScovilleRating is bound to the YValue and the Pepper.Name is bound to the XCategory that displays along
the X-Axis of the chart.

' setup the grid to display name and rating
chart.DefaultSeriesDefinition = New BarSeriesDefinition() With { _
.ItemStyle = Me.ScovilleStyle}
Dim mapping As New SeriesMapping()
mapping.ItemMappings.Add(_
New ItemMapping("Pepper.ScovilleRating", DataPointMember.YValue))
mapping.ItemMappings.Add(_
New ItemMapping("Pepper.Name", DataPointMember.XCategory))
chart.SeriesMappings.Add(mapping)
' b ind view model to chart
chart.ItemsSource = viewModel

Charting 913

© 2011 Telerik Inc.

// setup the grid to display name and rating
chart.DefaultSeriesDefinition = new BarSeriesDefinition()
{ ItemStyle = this.ScovilleStyle };
SeriesMapping mapping = new SeriesMapping();
mapping.ItemMappings.Add(
new ItemMapping("Pepper.ScovilleRating", DataPointMember.YValue));
mapping.ItemMappings.Add(
new ItemMapping("Pepper.Name", DataPointMember.XCategory));
chart.SeriesMappings.Add(mapping);
// b ind view model to chart
chart.ItemsSource = viewModel;

RadControls for Silverlight914

© 2011 Telerik Inc.

22.6.2 Styling the Chart

You may have noticed from the last example that the axis lines were red axis text has a larger-than-default
size. The chart surfaces many styles that make it possible to change the appearance of chart elements
without completely re-templating the entire control. The appearance of the chart below is disorganized. The
title is missing and legend text is not legible, the axis lines are barely visible and the X axis text is
horizontal.

There are a few tweaks you can make without having to style the chart. The code snippet below sets
properties for the ChartLegend, ChartTitle and ChartArea AxisX properties.

chart.DefaultView.ChartLegend.Visibility = Visibility.Collapsed
chart.DefaultView.ChartTitle.Content = "Scoville Scale"
chart.DefaultView.ChartTitle.Foreground = New SolidColorBrush(Colors.Red)
chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45

chart.DefaultView.ChartLegend.Visibility = Visibility.Collapsed;
chart.DefaultView.ChartTitle.Content = "Scoville Scale";
chart.DefaultView.ChartTitle.Foreground = new SolidColorBrush(Colors.Red);
chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45;

Charting 915

© 2011 Telerik Inc.

These changes go a long way to cleaning up the appearance. Removing the legend gets rid of the legend
key artifact and lets the chart take up more room. The X Axis labels are rotated and this also relieves
crowding on the page. But we still can't see the axis lines text or markings very well.

We can define styles that apply to elements of the chart and apply them in XAML or later, in code. Two
styles are defined below that set the look for an axis line and label text.

<Style x:Key="CustomAxisStyle" TargetType="Line">
 <Setter Property="Stroke" Value="Red" />
 <Setter Property="StrokeThickness" Value="1" />
</Style>

<Style x:Key="CustomItemLabelStyle" TargetType="TextBlock">
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="16" />
</Style>

 These can be applied against both X and Y axis elements as shown in the code snippet below.

RadControls for Silverlight916

© 2011 Telerik Inc.

chart.DefaultView.ChartArea.AxisY.AxisStyles.AxisLineStyle = _
TryCast(Me.Resources("CustomAxisStyle"), Style)
chart.DefaultView.ChartArea.AxisY.AxisStyles.ItemLabelStyle = _
TryCast(Me.Resources("CustomItemLabelStyle"), Style)
chart.DefaultView.ChartArea.AxisX.AxisStyles.AxisLineStyle = _
TryCast(Me.Resources("CustomAxisStyle"), Style)
chart.DefaultView.ChartArea.AxisX.AxisStyles.ItemLabelStyle = _
TryCast(Me.Resources("CustomItemLabelStyle"), Style)

chart.DefaultView.ChartArea.AxisY.AxisStyles.AxisLineStyle =
 this.Resources["CustomAxisStyle"] as Style;
chart.DefaultView.ChartArea.AxisY.AxisStyles.ItemLabelStyle =
 this.Resources["CustomItemLabelStyle"] as Style;
chart.DefaultView.ChartArea.AxisX.AxisStyles.AxisLineStyle =
 this.Resources["CustomAxisStyle"] as Style;
chart.DefaultView.ChartArea.AxisX.AxisStyles.ItemLabelStyle =
 this.Resources["CustomItemLabelStyle"] as Style;

Now all visual aspects of the chart are clear and legible.

Charting 917

© 2011 Telerik Inc.

22.7 Wrap Up

In this chapter you built a chart declaratively using default settings wherever possible. In the process you
learned the differences between default vs. custom layouts. You defined a series with individual data points
and specified the legend and chart title. You also learned about how the series definition displays the data
in a particular arrangement, i.e. bar, pie, 3D line, etc. You enabled the interactivity feature of the chart.

During the exploration of chart control details you toured chart series types that include the standard bar/
line/pie, stacked versions that compare contributions of values across categories, stacked bar 100% that
show the stacked values as percentages, special purpose charts like "candlestick" for showing stock price
and currency changes, and many 3D chart series types as well. You learned how to create chart series and
data points programmatically. The section on "Integration with ASP.NET" walked you through how to
include RadChart with existing ASP.NET applications.

As part of the binding chapter you first learned about series and item mappings that route data to various
elements in the chart, including the data point and axis labels. You displayed tool tips as simple text, used
special formatting tokens to show data as currency or as percentages of all categories and you learned how
to display a tool tip that shows another chart as a drill-down.

You applied styles to customize elements of the chart. You used the MVVM pattern to display chart
elements in colors corresponding to data in the model.

Part

XXIII
Docking

Docking 919

© 2011 Telerik Inc.

23 Docking

23.1 Objectives

In this chapter you will learn how to create flexible layouts using the RadDocking control. You will start by
creating a layout entirely in XAML. During this initial project you will learn how to control user interaction
with panes including floating, closing and pinning behaviors.

In the Control Details section of the chapter you will learn how to create split containers, groups and panes
all in code, how to size and position floating panes, how to save and load panes, how to control pinning
behavior, how to hide and show panes and how to use "Preview" events.

During the Binding section of this chapter you will learn how to build a Silverlight "mashup" client application
with docking that aggregates various REST services. The service output will be bound to both the pane
content and the pane title area.

During the Customization section of the chapter you will modify the pane title area to include a button and
image.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Dock\Dock.sln.

RadControls for Silverlight920

© 2011 Telerik Inc.

23.2 Overview

Handling multiple dockable windows is a no-hassle operation with the RadDocking control. Incorporate
splitters, tabbed documents, float and auto-hide panes to your application. RadDocking maintains a clear
separation between window management and content.

RadDocking includes these features:

Dockable Windows

Floating Windows

ToolWindow Control and Behavior

Pin, Unpin and Hide

Tabbed Documents

Docking 921

© 2011 Telerik Inc.

23.3 Getting Started

In this walk through you will build a page with multiple panes that can be floated, docked and pinned. The
example also includes a document area for tabbed documents.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Docking

c) Telerik.Windows.Controls.Navigation

XAML Editing

1) Open MainPage.xaml for editing.

2) Drag a RadDocking control from the Toolbox to a point between the "LayoutRoot" <Grid> and </Grid>
tags.

<Grid x:Name="LayoutRoot">
 <telerik:RadDocking>
 </telerik:RadDocking>
</Grid>

3) Drag a RadSplitContainer from the Toolbox to a point inside the RadDocking element. Name the
element "TopContainer". Set the InitialPosition property to "DockedTop".

<telerik:RadDocking>
 <telerik:RadSplitContainer x:Name="TopContainer"
 InitialPosition="DockedTop">
 </telerik:RadSplitContainer>
</telerik:RadDocking>

4) Create two more new RadSplitContainer elements just under the first RadSplitContainer. Name the
elements "LeftContainer" and "RightContainer" respectively. Set the InitialPosition properties to
"DockedLeft" and "DockedRight". The XAML should now look like the example below.

RadControls for Silverlight922

© 2011 Telerik Inc.

<telerik:RadDocking>

 <telerik:RadSplitContainer x:Name="TopContainer"
 InitialPosition="DockedTop">
 </telerik:RadSplitContainer>

 <telerik:RadSplitContainer x:Name="LeftContainer"
 InitialPosition="DockedLeft">
 </telerik:RadSplitContainer>

 <telerik:RadSplitContainer x:Name="RightContainer"
 InitialPosition="DockedRight">
 </telerik:RadSplitContainer>

</telerik:RadDocking>

5) Below the first three RadSplitContainer elements and within the RadDocking element, add a
RadDocking.DocumentHost element. Inside the DocumentHost element place one more
RadSplitContainer. Name the container "CenterContainer".

<telerik:RadDocking.DocumentHost>
 <telerik:RadSplitContainer x:Name="CenterContainer">
 </telerik:RadSplitContainer>
</telerik:RadDocking.DocumentHost>

If you were to run the application now, the page would look something like this screenshot:

6) Drag a new RadPaneGroup from the Toolbox to a point inside each of the RadSplitContainer elements.
The XAML should now look something like the example below.

Docking 923

© 2011 Telerik Inc.

<telerik:RadDocking>
 <telerik:RadSplitContainer x:Name="TopContainer"
 InitialPosition="DockedTop">
 <telerik:RadPaneGroup></telerik:RadPaneGroup>
 </telerik:RadSplitContainer>

 <telerik:RadSplitContainer x:Name="LeftContainer"
 InitialPosition="DockedLeft">
 <telerik:RadPaneGroup></telerik:RadPaneGroup>
 </telerik:RadSplitContainer>

 <telerik:RadSplitContainer x:Name="RightContainer"
 InitialPosition="DockedRight">
 <telerik:RadPaneGroup></telerik:RadPaneGroup>
 </telerik:RadSplitContainer>

 <telerik:RadDocking.DocumentHost>
 <telerik:RadSplitContainer x:Name="CenterContainer">
 <telerik:RadPaneGroup></telerik:RadPaneGroup>
 </telerik:RadSplitContainer>
 </telerik:RadDocking.DocumentHost>

</telerik:RadDocking>

7) Navigate back to the "TopContainer" element. Add a RadPane from the Toolbox to a point inside the
RadPaneGroup element. Set RadPane properties as follows:

a) Header="Powered by..."

b) CanUserClose="False"

c) CanUserPin="False"

d) CanFloat="False"

e) CanDockInDocumentHost="False"

The markup should now look like the example below:

<telerik:RadSplitContainer x:Name="TopContainer"
 InitialPosition="DockedTop">
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="Powered by..."
 CanUserClose="False" CanUserPin="False"
 CanFloat="False"
 CanDockInDocumentHost="False">
 </telerik:RadPane>
 </telerik:RadPaneGroup>
</telerik:RadSplitContainer>

8) Navigate to the "LeftContainer" element. Add a RadPane from the Toolbox to a point inside the
RadPaneGroup element. Set RadPane properties as follows:

RadControls for Silverlight924

© 2011 Telerik Inc.

a) Header="Search Criteria"

b) CanUserClose="False"

c) CanUserPin="True"

d) CanFloat="False"

e) CanDockInDocumentHost="False"

The markup should now look like the example below:

<telerik:RadSplitContainer x:Name="LeftContainer"
 InitialPosition="DockedLeft">
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="Search Criteria"
 CanDockInDocumentHost="False"
 CanFloat="False" CanUserClose="False"
 CanUserPin="True">
 </telerik:RadPane>
 </telerik:RadPaneGroup>
</telerik:RadSplitContainer>

9) Navigate to the "RightContainer" element. Add two RadPane controls from the Toolbox to the
RadPaneGroup element. Set RadPane Header properties to "Chart" and "Data" respectively.

The markup should now look like the example below:

<telerik:RadSplitContainer x:Name="RightContainer"
 InitialPosition="DockedRight">
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="Chart">
 </telerik:RadPane>
 <telerik:RadPane Header="Data">
 </telerik:RadPane>
 </telerik:RadPaneGroup>
</telerik:RadSplitContainer>

10)Navigate to the "CenterContainer" element. Add a RadDocumentPane from the Toolbox to a point
inside the RadPaneGroup element. Set RadDocumentPane Header property to "Top Stories" and
CanFloat to "False". Inside the RadDocumentPane add a TextBlock with some arbitrary text.

The markup should now be similar to the example below:

Docking 925

© 2011 Telerik Inc.

<telerik:RadDocking.DocumentHost>
 <telerik:RadSplitContainer
 x:Name="CenterContainer">
 <telerik:RadPaneGroup>
 <telerik:RadDocumentPane
 Header="Top Stories" CanFloat="False">
 <TextBlock
 Text="Place content between the RadDocumentPane tags"
 TextWrapping="Wrap" />
 </telerik:RadDocumentPane>
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>
</telerik:RadDocking.DocumentHost>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Try dragging each of the panels or tabbed documents. The "Powered by...", "Search Criteria" and "Top
Stories" should not allow dragging because their CanFloat properties are set to "False". The "Data" and
"Chart" panes can be dragged and docked with any other pane. Also notice that once docked, they can
be dragged back out to another location.

2) Test the behavior of each pane relative to its CanUserClose, CanUserPin and
CanDockInDocumentHost property settings.

RadControls for Silverlight926

© 2011 Telerik Inc.

3) Open the drop-down menus in the panes. The menus control the current state of the pane and also
reflect the property settings of each pane.

4) Find a pane with the "pin" icon and click it. The "pin" icon controls the "Auto hide" functionality and
causes the pane to become a button on the side of the RadDocking area.

Ideas for Extending This Example

Add content to each of the panes, either as text directly in the Content attribute, or within the RadPane
or RadDocumentPane element tags.

Change the CanFloat, CanUserClose, CanUserPin and CanDockInDocumentHost of a pane and
see how the behavior changes.

Docking 927

© 2011 Telerik Inc.

23.4 Control Details

23.4.1 Creating Containers in Code

The "Getting Started" example shows a RadDocking with both panes and tabbed documents. Using
RadPane inside RadDocking forms this basic hierarchy:

RadDocking
 RadSplitContainer
 RadPaneGroup
 RadPane
 RadPane
 RadPane
 <your content>

Tabbed documents have a similar structure, but are wrapped by a DocumentHost element and have a
RadDocumentPane instead of a RadPane.

RadDocking
 RadDocking.DocumentHost
 RadSplitContainer
 RadPaneGroup
 RadDocumentPane
 <your content>

Adding Panes Programmatically

RadDocking, RadSplitContainer and RadPaneGroup all have Items collections, so adding a pane to a
RadDocking control is as simple as creating instances of each and adding to the Items collection in order of
parentage, i.e. docking adds container, container adds group, group adds pane. The only other property set
in the following example is the InitialPosition that sets the state of the pane as FloatingDockable.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim container = New RadSplitContainer() With { _
.InitialPosition = DockState.FloatingDockable}

 Dim paneGroup = New RadPaneGroup()
 Dim pane = New RadPane() With { _
.Header = "Color Settings", _
.Content = New RadColorSelector()}

 paneGroup.Items.Add(pane)
 container.Items.Add(paneGroup)
 docking.Items.Add(container)
End Sub

RadControls for Silverlight928

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 var container = new RadSplitContainer()
 {
 InitialPosition = DockState.FloatingDockable
 };

 var paneGroup = new RadPaneGroup();
 var pane = new RadPane()
 {
 Header = "Color Settings",
 Content = new RadColorSelector()
 };

 paneGroup.Items.Add(pane);
 container.Items.Add(paneGroup);
 docking.Items.Add(container);
}

The example running in the browser looks like the screenshot below.

Add Tabbed Documents Programmatically

To add a tabbed document, the container isn't added to the Items collection but to the RadDocking control
DocumentHost property. The example below demonstrates creating a series of document panes for a
series of stock market symbols.

Docking 929

© 2011 Telerik Inc.

Dim symbols() As String = { "MSFT", "IBM", "ORCL", "SAP" }
Dim container = New RadSplitContainer()
Dim paneGroup = New RadPaneGroup()

For Each symbol As String In symbols
 Dim pane = New RadDocumentPane() With { .Header = symbol, _
.Content = "Some content for " & symbol}
 paneGroup.Items.Add(pane)
Next symbol

container.Items.Add(paneGroup)
docking.DocumentHost = container

string[] symbols = new string[] { "MSFT", "IBM", "ORCL", "SAP" };
var container = new RadSplitContainer();
var paneGroup = new RadPaneGroup();

foreach (string symbol in symbols)
{
 var pane = new RadDocumentPane()
 {
 Header = symbol,
 Content = "Some content for " + symbol
 };
 paneGroup.Items.Add(pane);
}

container.Items.Add(paneGroup);
docking.DocumentHost = container;

The example running in the browser looks like the screenshot below.

RadControls for Silverlight930

© 2011 Telerik Inc.

23.4.2 Sizing and Positioning

Relative Sizing

Docking panes sizes are dynamic and so its doesn't make sense to set absolute size. Instead, you can set
the RelativeSize attached property of any two RadSplitContainer or RadPaneGroup elements. The layout
in the screenshot below was achieved by setting RelativeSize of RadSplitContainer elements docked top
and bottom, and setting RelativeSize of RadPaneGroup elements docked side by side.

Examine the XAML below to see how the RelativeSize property of the ProportionalStackPanel is applied.
The relative vertical sizes for the containers are "70" and "30". Relative horizontal sizes for the two
RadPaneGroup elements are "20" and "80". You can use any set of numbers and the relative proportions
are calculated automatically.

<telerik:RadDocking x:Name="docking">

 <telerik:RadSplitContainer
 InitialPosition="DockedTop"
 telerikDocking:ProportionalStackPanel.RelativeSize="0, 70">
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="top" />
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>

 <telerik:RadSplitContainer
 InitialPosition="DockedBottom"
 telerikDocking:ProportionalStackPanel.RelativeSize="0, 30">
 <telerik:RadPaneGroup
 telerikDocking:ProportionalStackPanel.RelativeSize="20, 0">
 <telerik:RadPane Header="left" />
 </telerik:RadPaneGroup>
 <telerik:RadPaneGroup
 telerikDocking:ProportionalStackPanel.RelativeSize="80, 0">
 <telerik:RadPane Header="right" />
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>

</telerik:RadDocking>

Docking 931

© 2011 Telerik Inc.

Floating Pane Size and Position

A floating pane doesn't have to be proportionally sized to another window, so we should be able to assign a
specific size. While we're at it, can we place the pane in a specific location? The example below places a
floating pane 50 pixels from the top left of the page. The pane is sized 300x300 pixels.

Again, this is done through attached properties. See how the XAML below assigns the RadDocking
FloatingLocation and FloatingSize attached properties to a RadSplitContainer.

<telerik:RadDocking x:Name="docking">

 <telerik:RadSplitContainer
 InitialPosition="FloatingDockable"
 telerikDocking:RadDocking.FloatingLocation="50, 50"
 telerikDocking:RadDocking.FloatingSize="300, 300">
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="Floating Pane" />
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>

</telerik:RadDocking>

RadControls for Silverlight932

© 2011 Telerik Inc.

 From the Forums...

Question: The SizeChanged event is not raised, when a pane is resized while floating.

Answer:

Here are a few details about the architecture of the Docking control that will help you better
understand when each event is fired and why.

The Docking control contains SplitContainers and they contain PaneGroups. PaneGroups inherit
from TabControl and they contain Panes that inherit from TabControlItem. The Pane has Header
and Content part (like the TabControlItem) and the Header part is displayed in the TabStrip panel
at the top of the TabControl. The actual Content of the TabItem is displayed in an area in the
TabControl, because only one Pane's content is visible in any moment. As the TabControl hosts
the Content of the TabItem, it is in the TabControl's visual tree.

The TabItem's visual representation is only the button with the header. It is not resized with the
whole TabControl. This is the reason why the SizeChanged event of Pane is not fired when you
resize the PaneGroup (as the PaneGroup is a TabControl and the Pane is a TabItem). The
SizeChaged event is fired on the PaneGroup and on the Content of the currently selected Pane. If
you need to handle this event we would recommend you to use the event of the Content of the
Pane instead of the event of the PaneGroup as the groups are created and destroyed
dynamically.

Docking 933

© 2011 Telerik Inc.

23.4.3 Pane Pinning and Visibility

Pinning and Auto-Hide Behavior

Set the IsPinned property false to have the RadPane "Auto Hide" against one of the edges of the docking
area. The pane is collapsed to the side of the docking area where it is docked. The InitialPosition of the
RadPane in the screenshot below is DockedRight. When the mouse moves over the unpinned pane button,
the pane expands. Use the AutoHideHeight and AutoHideWidth properties to set the dimensions the
pane will occupy when the pane expands. Only the AutoHideWidth property will be taken into account if the
pane is docked right or left and only the AutoHideHeight will be taken into account if the pane is docked top
or bottom.

Hiding and Showing

Use the RadPane IsHidden property to toggle the pane's visibility. You can also use the RadPaneGroup
HideAllPanes() method to make the panes of the group invisible, all in one shot.

23.4.4 Prevent Docking

If you want to examine the conditions of the docking layout before an action occurs, use one of the
"Preview" events: PreviewShow, PreviewPin, PreviewClose, PreviewUnPin, PreviewCloseWindow
and PreviewShowCompass. You can set the Canceled property based on the arguments passed to the
event handler. The last event listed here, PreviewShowCompass, can be used to prevent docking in a
particular area. The example below checks if the group being dragged to has a SerializationTag property of
"DocumentGroup" and prevents the compass from showing.

Private Sub docking_PreviewShowCompass(ByVal sender As Object, ByVal e As PreviewShowCompassEventArgs)
 Dim tag As String = e.TargetGroup.GetValue(RadDocking.SerializationTagProperty).ToString()
 e.Canceled = tag.Equals("DocumentGroup")
End Sub

RadControls for Silverlight934

© 2011 Telerik Inc.

void docking_PreviewShowCompass(object sender,
 PreviewShowCompassEventArgs e)
{
 string tag =
 e.TargetGroup.GetValue(RadDocking.SerializationTagProperty).ToString();
 e.Canceled = tag.Equals("DocumentGroup");
}

23.4.5 Saving and Loading

Each docking group or pane can be identified with a SerializationTag property. You can persist the layout
using the RadDocking SaveLayout(stream) method. Only those panes and groups with the
SerializationTag will be saved. Later, when you want to restore the layout, call the LoadLayout(stream)
method.

The SerializationTag is an attached property that can be added to groups or panes as shown in the XAML
below:

<telerik:RadPaneGroup telerikDocking:RadDocking.SerializationTag="Group1">

Or you can assign the SerializationTag programmatically using the SetValue() method.

Dim symbols() As String = { "MSFT", "IBM", "ORCL", "SAP" }

Dim container = New RadSplitContainer()
Dim paneGroup = New RadPaneGroup()
paneGroup.SetValue(RadDocking.SerializationTagProperty, "DocumentGroup")

For Each symbol As String In symbols
 Dim pane = New RadDocumentPane() With { .Header = symbol, _
.Content = "Some content for " & symbol}
 pane.SetValue(RadDocking.SerializationTagProperty, symbol & "pane")
 paneGroup.Items.Add(pane)
Next symbol

container.Items.Add(paneGroup)
docking.DocumentHost = container

Docking 935

© 2011 Telerik Inc.

string[] symbols = new string[] { "MSFT", "IBM", "ORCL", "SAP" };

var container = new RadSplitContainer();
var paneGroup = new RadPaneGroup();
paneGroup.SetValue(RadDocking.SerializationTagProperty,
 "DocumentGroup");

foreach (string symbol in symbols)
{
 var pane = new RadDocumentPane()
 {
 Header = symbol, Content = "Some content for " + symbol
 };
 pane.SetValue(RadDocking.SerializationTagProperty, symbol + "pane");
 paneGroup.Items.Add(pane);
}

container.Items.Add(paneGroup);
docking.DocumentHost = container;

To use the SaveLayout() method, you need to pass it a stream that contains layout information. Any
accessible storage mechanism will do, but you may want to consider Isolated Storage. Isolated Storage is
a convenient bucket to drop user specific information that may be larger than cookie size. The example
below obtains a reference to a IsolatedStorageFileStream that's passed to the SaveLayout() and
LoadLayout() methods.

Private Const DockingLayoutFileName As String = "DockingLayout"

Private Sub btnSave_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Using isf As IsolatedStorageFile = _
IsolatedStorageFile.GetUserStoreForApplication()
 Using stream As New IsolatedStorageFileStream(_
DockingLayoutFileName, FileMode.Create, isf)
 docking.SaveLayout(stream)
 End Using
 End Using
End Sub

Private Sub btnLoad_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Using isf As IsolatedStorageFile = _
IsolatedStorageFile.GetUserStoreForApplication()
 Using stream As New IsolatedStorageFileStream(_
DockingLayoutFileName, FileMode.Open, isf)
 docking.LoadLayout(stream)
 End Using
 End Using
End Sub

RadControls for Silverlight936

© 2011 Telerik Inc.

private const string DockingLayoutFileName = "DockingLayout";

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream(
 DockingLayoutFileName, FileMode.Create, isf))
 {
 docking.SaveLayout(stream);
 }
 }
}

private void btnLoad_Click(object sender, RoutedEventArgs e)
{
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream(
 DockingLayoutFileName, FileMode.Open, isf))
 {
 docking.LoadLayout(stream);
 }
 }
}

 Notes

The isolated storage file is hidden deep within the local documents. You can find the actual path
for the document by setting a breakpoint and examining the IsolatedStorageFileStream object in
the QuickWatch window.

Docking 937

© 2011 Telerik Inc.

The actual saved layout is in XML form and looks something like the fragment below. Notice the
inclusion of the SerializationTag.

<?xml version="1.0" encoding="utf-8"?>
<RadDocking>
 <DocumentHost>
 <RadSplitContainer>
 <Items>
 <RadPaneGroup SerializationTag="DocumentGroup" SelectedIndex="0">
 <Items>
 <RadDocumentPane SerializationTag="MSFTpane" IsDockable="True" Title="MSFT" Header="MSFT" />
 . . .

RadControls for Silverlight938

© 2011 Telerik Inc.

23.5 Binding

RadDocking is a good fit where you are aggregating services from various sources. For example, you could
pull in data from related REST based services and display them as one coherent application. A real-estate
application can draw on data from sites that expose REST services such as zillow.com or trulia.com.
Google and Bing also provide REST API's that return articles about just about any subject. RadGridView
and RadChart can be placed in panes and tabbed documents to assemble a high-quality UI.

This section discusses the major tasks you would need to get this done, including:

Providing logos and links to service provider sites.

Working around security issues for otherwise "trustworthy" sites that do not have client access policy
files.

Binding to content controls within panes as well as binding to the panes themselves.

Re-using techniques from earlier chapters including "Input Controls", "ToolBar", "GridView" and
"Charting".

 Notes

Important note! You will need to visit the developer API sites for any services you use, read any
agreements and typically, apply for a user and application key. Many REST API's require the
application key to be sent with each call to the service. The application keys have been removed from
these examples. The configuration file for the WCF service in the sample solution has a "Mashups"
section ("Mashup" being a presentation of aggregate services) that has the developer site urls.

Also be aware that services can change their API without notice. You may need to research and alter
the code to keep up with these changes. The larger, more stable sites can be expected to keep their
API more consistent over time.

Docking 939

© 2011 Telerik Inc.

23.5.1 Building the WCF Service

What happens when a REST service or other external resource has information you need, but does not have
a ClientAccessPolicy.xml or Crossdomain.xml file? For example, the "Bing" web search API has a
ClientAccessPolicy.xml in place (as you might expect from a Microsoft site), but the "Trulia" real estate
search site does not have a client access file, so attempts to access from Silverlight fall in a hail of security
exceptions. You can step around the issue by wrapping all your REST calls in a WCF service and include
the policy file in the root of the service. By accessing external resources through WCF, even from sites
without policy files, security exceptions are avoided.

Our WCF service will have a series of calls that total no more than a page of code. The other pieces we
need to build to support the service calls are:

A set of web.config entries to describe the REST API's we intend to consume. The config entries will
hold the application keys, paths to logo images, paths to the main site and the developer API reference
site and a tool tip.

A custom ConfigurationSection object to parse the web.config entries. A custom ConfigurationSection
allows us to describe N number of services without having to add more code later.

A ClientAccessPolicy.xml file.

A set of objects to wrap various REST services: a "RestServiceBase" base class to handle tasks
common to all services, such as reading the configuration file and retaining the basic information about
the service, "Logo" to contain the services logo image and a link to the site and two RestServiceBase
implementations "Bing" and "Trulia".

 Notes

This section will not completely reiterate all details on how to build a WCF service. Please refer to the
"Data Binding" and "GridView chapters for more complete information.

1) Create a new ASP.NET web site to host the WCF service. Note: Remember that this project must be
in the same solution with the Silverlight client application that consumes it.

2) Add a "Silverlight-enabled WCF Service" item to the project. Note: Be sure to create a "Silverlight-
enabled" WCF service item and not a general "WCF service application". The "Silverlight-Enabled"
WCF item brings along the proper attributes and configuration entries to work with a Silverlight client
application.

3) Add a ClientAccessPolicy.xml file to the project and place the following XML in it:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

RadControls for Silverlight940

© 2011 Telerik Inc.

4) Add a new section to the web.config file (being sure not to overwrite any existing configuration
sections.

The "<section>" element describes the "mashupsSection" to follow and points to a class that will read
and parse the custom section. We will write the class in a following step. The format of the "type"
section attribute is "<name space>.<class name>, assembly name". Notice that the custom section,
"mashupsSection", contains a <services> element and N number of "<add>" elements. Each "<add>"
describes a single service.

<configuration>
 <configSections>
 <!--custom section-->
 <section
 name="mashupsSection"
 <!--name space + "." + custom section class name, assembly name-->
 type="_03_Binding_Service_Host.MashupsSection, 03_Binding_Service_Host"/>
 </configSections>

 <mashupsSection>
 <services>
 <add
 name="Trulia"
 applicationKey="yourapplicationkeyhere"
 logoUrl="http://images.trulia.com/images/logos/trulia_logo_100x60.jpg"
 linkUrl="http://www.trulia.com"
 developerUrl="http://developer.trulia.com/"
 toolTip="The best place to start your real estate search"
 />
 <add name="Bing"
 applicationKey="yourapplicationkeyhere"
 logoUrl="http://www.bing.com/siteowner/s/siteowner/Logo_63x23_Dark.png"
 linkUrl="http://www.live.com"
 developerUrl="http://www.bing.com/developers"
 toolTip="When it comes to decisions that matter, Bing and Decide"
 />
 </services>
 </mashupsSection>

5) Create a new class file called "MashupsSection.cs" and place the code below in it.

The file contains three class implementations: ConfigurationSection, ConfigurationElementCollection
and ConfigurationElement. The ConfigurationElement encapsulates an single "<add>" element. This is
a minimal custom configuration implementation that we're using to retrieve N number of services (as
opposed to application settings that work better for individual bits of information). Search the web on
"ConfigurationSection" for more details.

Public Class MashupsSection
 Inherits ConfigurationSection
 ' only use the static method GetSection()
 Private Sub New()
 End Sub

Docking 941

© 2011 Telerik Inc.

 Public Shared Function GetSection() As MashupsSection
 Return TryCast(ConfigurationManager.GetSection("mashupsSection"), _
MashupsSection)
 End Function

 <ConfigurationProperty("services", IsDefaultCollection := False), _
 ConfigurationCollection(GetType(ServiceCollection))> _
 Public ReadOnly Property Services() As ServiceCollection
 Get
 Dim services_Renamed As ServiceCollection = _
TryCast(MyBase.Item("services"), ServiceCollection)
 Return services_Renamed
 End Get
 End Property
End Class

Public Class ServiceCollection
 Inherits ConfigurationElementCollection
 Protected Overrides Function CreateNewElement() As ConfigurationElement
 Return New ServiceElement()
 End Function

 Protected Overrides Function GetElementKey(_
ByVal element As ConfigurationElement) As Object
 Return (CType(element, ServiceElement)).Name
 End Function
End Class

Public Class ServiceElement
 Inherits ConfigurationElement
 <ConfigurationProperty("name", IsRequired := True)> _
 Public ReadOnly Property Name() As String
 Get
 Return TryCast(Me("name"), String)
 End Get
 End Property

 <ConfigurationProperty("applicationKey", IsRequired := True)> _
 Public ReadOnly Property ApplicationKey() As String
 Get
 Return TryCast(Me("applicationKey"), String)
 End Get
 End Property

 <ConfigurationProperty("logoUrl", IsRequired := True)> _
 Public ReadOnly Property LogoUrl() As String
 Get
 Return TryCast(Me("logoUrl"), String)
 End Get
 End Property

 <ConfigurationProperty("linkUrl", IsRequired := True)> _
 Public ReadOnly Property LinkUrl() As String
 Get
 Return TryCast(Me("linkUrl"), String)

RadControls for Silverlight942

© 2011 Telerik Inc.

 End Get
 End Property

 <ConfigurationProperty("developerUrl", IsRequired := True)> _
 Public ReadOnly Property DeveloperUrl() As String
 Get
 Return TryCast(Me("developerUrl"), String)
 End Get
 End Property

 <ConfigurationProperty("toolTip", IsRequired := True)> _
 Public ReadOnly Property ToolTip() As String
 Get
 Return TryCast(Me("toolTip"), String)
 End Get
 End Property
End Class

public class MashupsSection : ConfigurationSection
{
 // only use the static method GetSection()
 private MashupsSection() { }

 public static MashupsSection GetSection()
 {
 return ConfigurationManager.GetSection("mashupsSection") as
 MashupsSection;
 }

 [ConfigurationProperty("services", IsDefaultCollection = false)]
 [ConfigurationCollection(typeof(ServiceCollection))]
 public ServiceCollection Services
 {
 get
 {
 ServiceCollection services = base["services"] as ServiceCollection;
 return services;
 }
 }
}

public class ServiceCollection : ConfigurationElementCollection
{
 protected override ConfigurationElement CreateNewElement()
 {
 return new ServiceElement();
 }

 protected override object GetElementKey(ConfigurationElement element)
 {
 return ((ServiceElement)element).Name;
 }

Docking 943

© 2011 Telerik Inc.

}

public class ServiceElement : ConfigurationElement
{
 [ConfigurationProperty("name", IsRequired = true)]
 public string Name { get { return this["name"] as string; } }

 [ConfigurationProperty("applicationKey", IsRequired = true)]
 public string ApplicationKey
 {
 get { return this["applicationKey"] as string; }
 }

 [ConfigurationProperty("logoUrl", IsRequired = true)]
 public string LogoUrl
 {
 get { return this["logoUrl"] as string; }
 }

 [ConfigurationProperty("linkUrl", IsRequired = true)]
 public string LinkUrl
 {
 get { return this["linkUrl"] as string; }
 }

 [ConfigurationProperty("developerUrl", IsRequired = true)]
 public string DeveloperUrl
 {
 get { return this["developerUrl"] as string; }
 }

 [ConfigurationProperty("toolTip", IsRequired = true)]
 public string ToolTip
 {
 get { return this["toolTip"] as string; }
 }
}

6) Create a "Logo.cs" class file and populate with the code below. The "Logo" class is used to pass the
service branding information back to the client application for display.

RadControls for Silverlight944

© 2011 Telerik Inc.

Public Class Logo
 Private privateName As String
 Public Property Name() As String
 Get
 Return privateName
 End Get
 Set(ByVal value As String)
 privateName = value
 End Set
 End Property
 Private privateImage As Byte()
 Public Property Image() As Byte()
 Get
 Return privateImage
 End Get
 Set(ByVal value As Byte())
 privateImage = value
 End Set
 End Property
 Private privateLinkUri As Uri
 Public Property LinkUri() As Uri
 Get
 Return privateLinkUri
 End Get
 Set(ByVal value As Uri)
 privateLinkUri = value
 End Set
 End Property
 Private privateLogoUri As Uri
 Public Property LogoUri() As Uri
 Get
 Return privateLogoUri
 End Get
 Set(ByVal value As Uri)
 privateLogoUri = value
 End Set
 End Property
 Private privateToolTip As String
 Public Property ToolTip() As String
 Get
 Return privateToolTip
 End Get
 Set(ByVal value As String)
 privateToolTip = value
 End Set
 End Property
End Class

Docking 945

© 2011 Telerik Inc.

public class Logo
{
 public string Name { get; set; }
 public byte[] Image { get; set; }
 public Uri LinkUri { get; set; }
 public Uri LogoUri { get; set; }
 public string ToolTip { get; set; }
}

7) Create a "RestServiceBase" class and populate it with the code below.

The class holds the basic service information consumed from the custom configuration section object.
The LINQ statement in the constructor filters for the "<add>" element that matches a service name, e.
g. "Trulia". The class also has a separate GetLogo() method that downloads the logo image byte array
on-demand.

RadControls for Silverlight946

© 2011 Telerik Inc.

Public Class RestServiceBase
 Public Sub New()
 End Sub

 Public Sub New(ByVal name As String)
 Dim mashupSection As MashupsSection = MashupsSection.GetSection()
 Dim element = (_
 From s As ServiceElement In mashupSection.Services _
 Where s.Name.Equals(name) _
 Select s).First()
 Me.Name = name
 Me.ApplicationKey = element.ApplicationKey
 Me.Logo = New Logo() With {.Name = name, .LinkUri = New Uri(element.LinkUrl), .LogoUri = New Uri(element.LogoUrl), .ToolTip = element.ToolTip}
 End Sub

 Private privateName As String
 Public Property Name() As String
 Get
 Return privateName
 End Get
 Set(ByVal value As String)
 privateName = value
 End Set
 End Property
 Private privateApplicationKey As String
 Protected Property ApplicationKey() As String
 Get
 Return privateApplicationKey
 End Get
 Set(ByVal value As String)
 privateApplicationKey = value
 End Set
 End Property
 Private privateLogo As Logo
 Private Property Logo() As Logo
 Get
 Return privateLogo
 End Get
 Set(ByVal value As Logo)
 privateLogo = value
 End Set
 End Property
 Public Function GetLogo() As Logo
 Using client As New WebClient()
 Me.Logo.Image = client.DownloadData(Me.Logo.LogoUri)
 End Using
 Return Me.Logo
 End Function
End Class

Docking 947

© 2011 Telerik Inc.

public class RestServiceBase
{
 public RestServiceBase() { }

 public RestServiceBase(string name)
 {
 MashupsSection mashupSection = MashupsSection.GetSection();
 var element = (from ServiceElement s in mashupSection.Services
 where s.Name.Equals(name)
 select s).First();
 this.Name = name;
 this.ApplicationKey = element.ApplicationKey;
 this.Logo = new Logo()
 {
 Name = name,
 LinkUri = new Uri(element.LinkUrl),
 LogoUri = new Uri(element.LogoUrl),
 ToolTip = element.ToolTip
 };
 }

 public string Name { get; set; }
 protected string ApplicationKey { get; set; }
 private Logo Logo { get; set; }
 public Logo GetLogo()
 {
 using (WebClient client = new WebClient())
 {
 this.Logo.Image = client.DownloadData(this.Logo.LogoUri);
 };
 return this.Logo;
 }
}

8) Create a "Bing" class and populate it with the code below.

The class descends from our RestServiceBase object and passes the name of the service, e.g.
"Bing", to the constructor. Much like the example in the "GridView" chapter section on "REST" binding,
this class sets up a URL used to make an API call to a REST service. A WebClient object is used to
download XML as a string, the results are parsed and returned from GetResults() as a collection of
XElement. The collection of XElement is filtered through a LINQ statement and output placed into new
"Result" objects, one for each search result.

RadControls for Silverlight948

© 2011 Telerik Inc.

 Notes

This set of tasks can be similar but not identical from one service to another. Many REST services
have a specific URL format published on their developer site that wants your application ID (you
need to apply for your own application ID from the vendor site), and some set of parameters. The
return value format for many sites usually includes XML but may also be ATOM, JSON, etc.. The
XDocument.Parse() method makes short work of converting raw XML into object form where
you can then divide and conquer. Typically the developer site will show sample XML output so
that you can make some intelligent guesses about what elements to access. Be aware that you
will need to see the actual data returned from the service to be sure of the format.

LINQ allows you to filter and convert collections of XElement objects output from the
XDocument Parse() into your own custom objects.

Public Class Bing
 Inherits RestServiceBase
 ' pass service name to constructor
 Public Sub New()
 MyBase.New("Bing")
 End Sub

 ' url for API calls
 Private Const urlFormat As String = "http://api.search.live.net/xml.aspx?Appid={0}&query={1}&sources={2}"

 ' namespace element for this particular XML
 Private nsWeb As XNamespace = "http://schemas.microsoft.com/LiveSearch/2008/04/XML/web"

 ' format the url, call the api, return "<results>" elements
 Private Function GetResults(ByVal searchString As String) As IEnumerable(Of XElement)
 Using webClient As New WebClient()
 Dim url As String = String.Format(urlFormat, Me.ApplicationKey, searchString, "web")
 Dim xml As String = webClient.DownloadString(New Uri(url))
 If (Not xml.Equals(String.Empty)) Then
 Dim document As XDocument = XDocument.Parse(xml)
 Dim webElement As XElement = document.Root.Element(nsWeb + "Web")
 Dim resultsElement As XElement = webElement.Element(nsWeb + "Results")
 If resultsElement IsNot Nothing Then
 Return resultsElement.Elements()
 End If
 End If
 End Using
 Return Nothing
 End Function

 ' filter and use result elements to return List of "Result"
 Public Function Search(ByVal searchString As String) As List(Of Bing.Result)
 Dim results = GetResults(searchString)
 If results IsNot Nothing Then
 Return (_

Docking 949

© 2011 Telerik Inc.

 From r In results _
 Select New Result() With {.Title = r.Element(nsWeb + "Title").Value, .Description = r.Element(nsWeb + "Title").Value, .Url = r.Element(nsWeb + "Url").Value, .DateTime = DateTime.Parse(r.Element(nsWeb + "DateTime").Value)}).ToList()
 End If
 Return Nothing
 End Function

 ' wraps a single search result
 Public Class Result
 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property
 Private privateDescription As String
 Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
 End Property
 Private privateUrl As String
 Public Property Url() As String
 Get
 Return privateUrl
 End Get
 Set(ByVal value As String)
 privateUrl = value
 End Set
 End Property
 Private privateDateTime As DateTime
 Public Property DateTime() As DateTime
 Get
 Return privateDateTime
 End Get
 Set(ByVal value As DateTime)
 privateDateTime = value
 End Set
 End Property
 End Class
End Class

public class Bing : RestServiceBase
{
 // pass service name to constructor
 public Bing() : base("Bing") { }

RadControls for Silverlight950

© 2011 Telerik Inc.

 // url for API calls
 private const string urlFormat =
 "http://api.search.live.net/xml.aspx?Appid={0}&query={1}&sources={2}";

 // namespace element for this particular XML
 private XNamespace nsWeb =
 "http://schemas.microsoft.com/LiveSearch/2008/04/XML/web";

 // format the url, call the api, return "<results>" elements
 private IEnumerable<XElement> GetResults(string searchString)
 {
 using (WebClient webClient = new WebClient())
 {
 string url = String.Format(
 urlFormat, this.ApplicationKey, searchString, "web");
 string xml = webClient.DownloadString(new Uri(url));
 if (!xml.Equals(String.Empty))
 {
 XDocument document = XDocument.Parse(xml);
 XElement webElement =
 document.Root.Element(nsWeb + "Web");
 XElement resultsElement =
 webElement.Element(nsWeb + "Results");
 if (resultsElement != null)
 {
 return resultsElement.Elements();
 }
 }
 }
 return null;
 }

 // filter and use result elements to return List of "Result"
 public List<Bing.Result> Search(string searchString)
 {
 var results = GetResults(searchString);
 if (results != null)
 {
 return (from r in results
 select new Result()
 {
 Title = r.Element(nsWeb + "Title").Value,
 Description = r.Element(nsWeb + "Title").Value,
 Url = r.Element(nsWeb + "Url").Value,
 DateTime =
 DateTime.Parse(r.Element(nsWeb + "DateTime").Value)
 }).ToList();
 }
 return null;
 }

 // wraps a single search result
 public class Result
 {
 public string Title { get; set; }

Docking 951

© 2011 Telerik Inc.

 public string Description { get; set; }
 public string Url { get; set; }
 public DateTime DateTime { get; set; }
 }
}

9) Create a "Trulia" class. The class file is available from the reference projects for this chapter and is
omitted here for the sake of brevity.

The Trulia class also descends from RestServiceBase. The class is slightly more involved than the
Bing class but performs the same basic steps, i.e. formats a URL that includes the application key
and some set of parameters. Trulia has two sets of API functions, one for "LocationInfo" that returns
US states and cities, and "Stats" that return statistics about a location. Again, the results are filtered
using LINQ and placed into generic lists of simple Location and Stat objects.

10)Implement the WCF service using the code below. Each method to be used by the Silverlight client is
surfaced by a method marked with the OperationContract attribute. Each contract simply surfaces Bing
or Trulia object functionality.

<ServiceContract(Namespace := ""), _
AspNetCompatibilityRequirements(RequirementsMode := _
AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class MashupService

 <OperationContract> _
 Public Function GetLogos() As List(Of Logo)
 Return New List(Of Logo)()
 CType(New Bing(), Bing).GetLogo(), New Trulia().GetLogo()
 End Function

 <OperationContract> _
 Public Function GetStates() As List(Of Trulia.Location)
 Return New Trulia().GetStates()
 End Function

 <OperationContract> _
 Public Function GetCities(ByVal state As String) As List(Of Trulia.Location)
 Return New Trulia().GetCities(state)
 End Function

 <OperationContract> _
 Public Function GetStateStats(ByVal state As String, _
ByVal start As DateTime, ByVal [end] As DateTime) As List(Of Trulia.Stat)
 Return New Trulia().GetStateStats(state, start, [end])
 End Function

 <OperationContract> _
 Public Function GetCityStats(ByVal state As String, _
ByVal city As String, ByVal start As DateTime, _
ByVal [end] As DateTime) As List(Of Trulia.Stat)
 Return New Trulia().GetCityStats(state, city, start, [end])
 End Function

RadControls for Silverlight952

© 2011 Telerik Inc.

 <OperationContract> _
 Public Function GetBingSearchResults(_
ByVal searchString As String) As List(Of Bing.Result)
 Return New Bing().Search(searchString)
 End Function
End Class

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class MashupService
{

 [OperationContract]
 public List<Logo> GetLogos()
 {
 return new List<Logo>()
 {
 new Bing().GetLogo(), new Trulia().GetLogo()
 };
 }

 [OperationContract]
 public List<Trulia.Location> GetStates()
 {
 return new Trulia().GetStates();
 }

 [OperationContract]
 public List<Trulia.Location> GetCities(string state)
 {
 return new Trulia().GetCities(state);
 }

 [OperationContract]
 public List<Trulia.Stat> GetStateStats(
 string state, DateTime start, DateTime end)
 {
 return new Trulia().GetStateStats(state, start, end);
 }

 [OperationContract]
 public List<Trulia.Stat> GetCityStats(
 string state, string city, DateTime start, DateTime end)
 {
 return new Trulia().GetCityStats(state, city, start, end);
 }

 [OperationContract]
 public List<Bing.Result> GetBingSearchResults(string searchString)
 {

Docking 953

© 2011 Telerik Inc.

 return new Bing().Search(searchString);
 }
}

23.5.2 Building the Docking Client Application

 Notes

This section will not completely reiterate all details on how to build a WCF Silverlight client. Please refer
back to the "Data Binding" and "GridView for more complete information.

23.5.2.1 Project Setup

1) Create a new Silverlight application.

2) Add a reference to the WCF service.

3) In the Solution Explorer, add references to the following assemblies:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Charting

c) Telerik.Windows.Controls.Docking

d) Telerik.Windows.Controls.GridView

e) Telerik.Windows.Controls.Input

f) Telerik.Windows.Controls.Navigation

g) Telerik.Windows.Data

h) Telerik.Windows.Themes.Summer

RadControls for Silverlight954

© 2011 Telerik Inc.

23.5.2.2 Silverlight Client Code Behind

1) Add an ImageConverter class. This is the same code used in the "GridView" chapter in the
"Customization" section. The converter will be used when binding the logo images.

Public Class ImageConverter
 Implements IValueConverter
 Public Function Convert(ByVal value As Object, _
ByVal targetType As Type, ByVal parameter As Object, _
ByVal culture As CultureInfo) As Object
 ' convert the "Picture" byte array to a memory stream
 Dim memoryStream As New MemoryStream((CType(value, Byte())))
 Dim image As New BitmapImage()
 Try
 image.SetSource(memoryStream)
 Catch ' ignore invalid arrays
 End Try
 Return image
 End Function

 Public Function ConvertBack(ByVal value As Object, _
ByVal targetType As Type, ByVal parameter As Object, _
ByVal culture As CultureInfo) As Object
 Throw New NotImplementedException()
 End Function
End Class

public class ImageConverter : IValueConverter
{
 public object Convert(
 object value, Type targetType, object parameter, CultureInfo culture)
 {
 // convert the "Picture" byte array to a memory stream
 MemoryStream memoryStream = new MemoryStream(((byte[])value));
 BitmapImage image = new BitmapImage();
 try { image.SetSource(memoryStream); }
 catch { } // ignore invalid arrays
 return image;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 { throw new NotImplementedException(); }
}

2) In the code behind for the page, add references to the following namespaces:

a) System.Windows.Media

b) System.Windows.Media.Imaging

c) Telerik.Windows.Controls

Docking 955

© 2011 Telerik Inc.

d) Telerik.Windows.Controls.Charting

3) Add a reference to the namespace for the WCF proxy client. This will be the name of the client
project + "." + the reference name for the proxy client. If you have trouble finding the name through
IntelliSense, be sure to rebuild the project.

4) Create a new SummerTheme object in the constructor before the call to InitializeComponent() and set
the IsApplicationTheme property to "True". This will apply the Summer theme to all RadControls in
the application. Note: Be sure to leave the call to InitializeComponent in the constructor.

Public Sub New()
 CType(New SummerTheme(), SummerTheme).IsApplicationTheme = True
 InitializeComponent()
End Sub

public MainPage()
{
 new SummerTheme().IsApplicationTheme = true;
 InitializeComponent();
}

5) Add a reference to the WCF client proxy object so that we can reference it throughout the code.

Private client As New MashupServiceClient()

private MashupServiceClient client = new MashupServiceClient();

6) Add a method to hook up all the WCF client proxy events and add the events handlers.

Notice that most of the "Completed" events simply assign the Result property of the event arguments
to the ItemsSource of a RadControl. The GetLogosCompleted() method uses LINQ to locate a Logo
object for one of the services, i.e. "Bing" or "Trulia", and assigns the object to the DataContext of a
RadPane where the service is being used. The asynchronous events that are used to retrieve data are
discussed in the "Data Binding" and "GridView" chapters.

Private Sub HookupServiceEvents()
 AddHandler client.GetLogosCompleted, AddressOf client_GetLogosCompleted
 AddHandler client.GetStatesCompleted, AddressOf client_GetStatesCompleted
 AddHandler client.GetCitiesCompleted, AddressOf client_GetCitiesCompleted
 AddHandler client.GetStateStatsCompleted,

RadControls for Silverlight956

© 2011 Telerik Inc.

AddressOf client_GetStateStatsCompleted
 AddHandler client.GetCityStatsCompleted, _
AddressOf client_GetCityStatsCompleted
 AddHandler client.GetBingSearchResultsCompleted, _
AddressOf client_GetBingSearchResultsCompleted
End Sub

Private Sub client_GetCityStatsCompleted(_
ByVal sender As Object, ByVal e As GetCityStatsCompletedEventArgs)
 chart.ItemsSource = e.Result
End Sub

Private Sub client_GetStateStatsCompleted(_
ByVal sender As Object, ByVal e As GetStateStatsCompletedEventArgs)
 chart.ItemsSource = e.Result
End Sub

Private Sub client_GetCitiesCompleted(_
ByVal sender As Object, ByVal e As GetCitiesCompletedEventArgs)
 cbCity.ItemsSource = e.Result
End Sub

Private Sub client_GetStatesCompleted(_
ByVal sender As Object, ByVal e As GetStatesCompletedEventArgs)
 cbState.ItemsSource = e.Result
End Sub

Private Sub client_GetBingSearchResultsCompleted(_
ByVal sender As Object, ByVal e As GetBingSearchResultsCompletedEventArgs)
 gvResults.ItemsSource = e.Result
End Sub

Private Sub client_GetLogosCompleted(_
ByVal sender As Object, ByVal e As GetLogosCompletedEventArgs)
 tbLogos.ItemsSource = e.Result
 paneChart.DataContext = _
e.Result.FirstOrDefault(Function(logo) logo.Name.Equals("Trulia"))
 paneTopStories.DataContext = _
e.Result.FirstOrDefault(Function(logo) logo.Name.Equals("Bing"))
End Sub

private void HookupServiceEvents()
{
 client.GetLogosCompleted += new EventHandler<GetLogosCompletedEventArgs>(
 client_GetLogosCompleted);
 client.GetStatesCompleted += new EventHandler<GetStatesCompletedEventArgs>(
 client_GetStatesCompleted);
 client.GetCitiesCompleted += new EventHandler<GetCitiesCompletedEventArgs>(
 client_GetCitiesCompleted);
 client.GetStateStatsCompleted +=
 new EventHandler<GetStateStatsCompletedEventArgs>(
 client_GetStateStatsCompleted);

Docking 957

© 2011 Telerik Inc.

 client.GetCityStatsCompleted +=
 new EventHandler<GetCityStatsCompletedEventArgs>(
 client_GetCityStatsCompleted);
 client.GetBingSearchResultsCompleted +=
 new EventHandler<GetBingSearchResultsCompletedEventArgs>(
 client_GetBingSearchResultsCompleted);
}

void client_GetCityStatsCompleted(object sender,
 GetCityStatsCompletedEventArgs e)
{
 chart.ItemsSource = e.Result;
}

void client_GetStateStatsCompleted(object sender,
 GetStateStatsCompletedEventArgs e)
{
 chart.ItemsSource = e.Result;
}

void client_GetCitiesCompleted(object sender,
GetCitiesCompletedEventArgs e)
{
 cbCity.ItemsSource = e.Result;
}

void client_GetStatesCompleted(object sender,
 GetStatesCompletedEventArgs e)
{
 cbState.ItemsSource = e.Result;
}

void client_GetBingSearchResultsCompleted(object sender,
 GetBingSearchResultsCompletedEventArgs e)
{
 gvResults.ItemsSource = e.Result;
}

void client_GetLogosCompleted(object sender,
 GetLogosCompletedEventArgs e)
{
 tbLogos.ItemsSource = e.Result;
 paneChart.DataContext =
 e.Result.FirstOrDefault(logo => logo.Name.Equals("Trulia"));
 paneTopStories.DataContext =
 e.Result.FirstOrDefault(logo => logo.Name.Equals("Bing"));
}

7) Add a private method to setup the chart.

The code is very similar to the code in the "Charting" chapter, "Binding" section dealing with "Binding
Basics". The code sets up two series mappings, one for "average listing price" and the second for
"median listing price". Notice that the "Week ending date" data is mapped to the XCategory data point
member so that the dates are listed along the bottom of the chart. See the "Charting" chapter for more
information on work ing with series mapping, axis and legends.

RadControls for Silverlight958

© 2011 Telerik Inc.

Private Sub SetupChart()

 ' format as currency
 Dim averageMapping As New SeriesMapping() With { _
.LegendLabel = "Average Listing Price", _
.SeriesDefinition = New BarSeriesDefinition() With { _
.DefaultLabelFormat = "#Y{C0}"}}

 averageMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.XCategory, _
.FieldName = "WeekEndingDate"})

 averageMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.YValue, _
.FieldName = "AverageListingPrice"})

 chart.SeriesMappings.Add(averageMapping)

 ' format as currency
 Dim medianMapping As New SeriesMapping() With { _
.LegendLabel = "Median Listing Price", _
.SeriesDefinition = New LineSeriesDefinition() With { _
.DefaultLabelFormat = "#Y{C0}"}}

 medianMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.XCategory, _
.FieldName = "WeekEndingDate"})

 medianMapping.ItemMappings.Add(New ItemMapping() With { _
.DataPointMember = DataPointMember.YValue, _
.FieldName = "MedianListingPrice"})

 chart.SeriesMappings.Add(medianMapping)

 chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45
 chart.DefaultView.ChartArea.AxisX.IsDateTime = True
 chart.DefaultView.ChartArea.AxisX.Title = "Properties Listing in Week Ending"
 chart.DefaultView.ChartArea.AxisX.DefaultLabelFormat = "d"
 chart.DefaultView.ChartLegend.Header = "Property Listings"
End Sub

private void SetupChart()
{
 SeriesMapping averageMapping = new SeriesMapping()
 {
 LegendLabel = "Average Listing Price",
 SeriesDefinition = new BarSeriesDefinition()
 { DefaultLabelFormat = "#Y{C0}" // format as currency }
 };

Docking 959

© 2011 Telerik Inc.

 averageMapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.XCategory,
 FieldName = "WeekEndingDate"
 });

 averageMapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.YValue,
 FieldName = "AverageListingPrice",
 });

 chart.SeriesMappings.Add(averageMapping);

 SeriesMapping medianMapping = new SeriesMapping()
 {
 LegendLabel = "Median Listing Price",
 SeriesDefinition = new LineSeriesDefinition()
 { DefaultLabelFormat = "#Y{C0}" // format as currency }
 };

 medianMapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.XCategory,
 FieldName = "WeekEndingDate"
 });

 medianMapping.ItemMappings.Add(new ItemMapping()
 {
 DataPointMember = DataPointMember.YValue,
 FieldName = "MedianListingPrice",
 });

 chart.SeriesMappings.Add(medianMapping);

 chart.DefaultView.ChartArea.AxisX.LabelRotationAngle = 45;
 chart.DefaultView.ChartArea.AxisX.IsDateTime = true;
 chart.DefaultView.ChartArea.AxisX.Title = "Properties Listing in Week Ending";
 chart.DefaultView.ChartArea.AxisX.DefaultLabelFormat = "d";
 chart.DefaultView.ChartLegend.Header = "Property Listings";
}

8) Add a private method to kick off the Bing search.

The method takes the state and city, formats a search string and calls the asynchronous Bing search
method. The search is hard coded to bring back results about "Real Estate" in a particular state and
city, i.e. "San Francisco, California Real Estate".

RadControls for Silverlight960

© 2011 Telerik Inc.

Private Sub BingSearch(ByVal state As TruliaLocation, ByVal city As TruliaLocation)
 Dim searchString As String = String.Empty
 Const RealEstate As String = " Real Estate"

 If city IsNot Nothing Then
 searchString = city.Name & "," & state.Name & " " & RealEstate
 ElseIf state IsNot Nothing Then
 searchString = state.Name & searchString
 End If

 client.GetBingSearchResultsAsync(searchString)
End Sub

private void BingSearch(TruliaLocation state, TruliaLocation city)
{
 string searchString = String.Empty;
 const string RealEstate = " Real Estate";

 if (city != null)
 {
 searchString =
 city.Name + "," + state.Name + " " + RealEstate;
 }
 else if (state != null)
 {
 searchString = state.Name + searchString;
 }

 client.GetBingSearchResultsAsync(searchString);
}

9) Handle the Loaded event of the page.

The event handler calls the HookupServiceEvents() method so that the WCF client proxy events will
fire, calls client proxy methods to get the logos and load up the "State" combo box. The selected dates
for the date picker controls are hard coded to a date range known to have data at the time of this
writing. Finally, the SetupChart() method is called to setup the series and items mappings.

Docking 961

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 HookupServiceEvents()

 client.GetLogosAsync()
 client.GetStatesAsync()

 dpStart.SelectedDate = New DateTime(DateTime.Today.Year, 1, 1)
 dpEnd.SelectedDate = dpStart.SelectedDate.Value.AddDays(30)

 SetupChart()
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 HookupServiceEvents();

 client.GetLogosAsync();
 client.GetStatesAsync();

 dpStart.SelectedDate = new DateTime(DateTime.Today.Year, 1, 1);
 dpEnd.SelectedDate = dpStart.SelectedDate.Value.AddDays(30);

 SetupChart();
}

10)Handle the Click event for the Search button.

This event handler starts the Bing search and calls a WCF client proxy method to get state or city
statistics depending on user selection in the state and city combo boxes.

Private Sub btnSearch_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim state = If(cbState.SelectedValue Is Nothing, Nothing, TryCast(cbState.SelectedValue, TruliaLocation))
 Dim city = If(cbCity.SelectedValue Is Nothing, Nothing, TryCast(cbCity.SelectedValue, TruliaLocation))

 BingSearch(state, city)

 If city IsNot Nothing Then
 client.GetCityStatsAsync(state.ID, city.Name, CDate(dpStart.SelectedDate), CDate(dpEnd.SelectedDate))
 ElseIf state IsNot Nothing Then
 client.GetStateStatsAsync(state.ID, CDate(dpStart.SelectedDate), CDate(dpEnd.SelectedDate))
 End If
End Sub

RadControls for Silverlight962

© 2011 Telerik Inc.

private void btnSearch_Click(object sender, RoutedEventArgs e)
{
 var state = cbState.SelectedValue == null ? null :
 cbState.SelectedValue as TruliaLocation;
 var city = cbCity.SelectedValue == null ? null :
 cbCity.SelectedValue as TruliaLocation;

 BingSearch(state, city);

 if (city != null)
 {
 client.GetCityStatsAsync(
 state.ID, city.Name,
 (DateTime)dpStart.SelectedDate, (DateTime)dpEnd.SelectedDate);
 }
 else if (state != null)
 {
 client.GetStateStatsAsync(
 state.ID, (DateTime)dpStart.SelectedDate, (DateTime)dpEnd.SelectedDate);
 }
}

11)Handle the SelectionChanged event for the state combo box.

This event handler calls a WCF client proxy method to get cities for the currently selected state.

Private Sub cbState_SelectionChanged(_
ByVal sender As Object, _
ByVal e As Telerik.Windows.Controls.SelectionChangedEventArgs)
 Dim state As TruliaLocation = _
TryCast(cbState.SelectedValue, TruliaLocation)
 client.GetCitiesAsync(state.ID)
End Sub

private void cbState_SelectionChanged(object sender,
 Telerik.Windows.Controls.SelectionChangedEventArgs e)
{
 TruliaLocation state = cbState.SelectedValue as TruliaLocation;
 client.GetCitiesAsync(state.ID);
}

Docking 963

© 2011 Telerik Inc.

23.5.2.3 Silverlight Client XAML

1) Add XML namespace references for

a) Telerik.Windows.Controls.Navigation

b) Telerik.Windows.Controls.GridView

c) Telerik.Windows.Controls.Charting

d) Telerik.Windows.Controls.Input

e) Telerik.Windows.Controls.Docking

f) A reference to the namespace where the image IValueConverter lives. The xmlns alias in this example
will be named "local".

xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"

2) Add a Loaded event handler to the UserControl that points at the Loaded event handler we added earlier
to the code behind.

3) Add a UserControl.Resources element with a style for the grid view and a reference to the
ImageConverter.

The grid view style uses the settings described in the "GridView" chapter "Control Details" section
dealing with "Grid View Elements Visibility". The style turns off the usual visual accoutrements of the
grid view so that we will only see a list of hyperlinks to search results.

<UserControl.Resources>
 <Style x:Key="GridlessStyle"
 TargetType="telerik:RadGridView">
 <Setter Property="Background" Value="Transparent" />
 <Setter Property="BorderBrush" Value="Transparent" />
 <Setter Property="CanUserFreezeColumns" Value="False" />
 <Setter Property="ShowColumnFooters" Value="False" />
 <Setter Property="ShowColumnHeaders" Value="False" />
 <Setter Property="ShowGroupPanel" Value="False" />
 <Setter Property="ShowGroupFooters" Value="False" />
 <Setter Property="RowIndicatorVisibility"
 Value="Collapsed" />
 <Setter Property="GridLinesVisibility" Value="None" />
 <Setter Property="ScrollMode" Value="RealTime" />
 <Setter Property="ColumnWidth" Value="SizeToHeader" />
 </Style>

 <local:ImageConverter x:Key="ImageConverter" />

</UserControl.Resources>

4) Add the XAML below to the main "LayoutRoot" grid element. This will setup the basic RadDocking
structure. The setup is similar to the "Getting Started" walk through. Take a minute to review the XAML
and locate the comments where RadControls will be placed, e.g. "<!--add tool bar here-->". Also notice
the RadPane settings.

RadControls for Silverlight964

© 2011 Telerik Inc.

<telerik:RadDocking>
 <!--top panel-->
 <telerik:RadSplitContainer
 InitialPosition="DockedTop" Orientation="Vertical"
 MaxHeight="100" MinHeight="100">
 <!--logo area-->
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="Powered by..."
 CanUserClose="False" CanUserPin="False"
 CanFloat="False"
 CanDockInDocumentHost="False">
 <!--add tool bar here-->
 </telerik:RadPane>
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>
 <!--search panel-->
 <telerik:RadSplitContainer
 InitialPosition="DockedLeft">
 <telerik:RadPaneGroup>
 <telerik:RadPane Header="Search Criteria"
 CanDockInDocumentHost="False"
 CanFloat="True" CanUserClose="False"
 CanUserPin="True">
 <!--add search controls here-->
 </telerik:RadPane>
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>
 <!--center, document area-->
 <telerik:RadDocking.DocumentHost>
 <telerik:RadSplitContainer>
 <telerik:RadPaneGroup>
 <telerik:RadPane
 x:Name="paneTopStories"
 Header="{Binding Name, Mode=OneTime }">
 <!--add grid view here-->
 </telerik:RadPane>
 <telerik:RadPane x:Name="paneChart"
 Header="{Binding Name, Mode=OneTime }">
 <!--add chart here-->
 </telerik:RadPane>
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>
 </telerik:RadDocking.DocumentHost>
</telerik:RadDocking>

5) Locate the "<!--add tool bar here-->" comment and add the following XAML to define a RadToolBar in
the top pane.

Here we define the RadToolBar ItemTemplate that contains a HyperlinkButton surrounding an Image for
each Logo we return from the WCF service. Notice the bindings for the NavigateUri, ToolTip and
Source. See the "ToolBar" Binding section for more information.

Docking 965

© 2011 Telerik Inc.

<telerik:RadToolBar x:Name="tbLogos">
 <telerik:RadToolBar.ItemTemplate>
 <DataTemplate>
 <HyperlinkButton
 NavigateUri="{Binding LinkUri, Mode=OneTime }"
 ToolTipService.ToolTip="{Binding ToolTip, Mode=OneTime }"
 TargetName="_blank"
 Margin="5">
 <Image
 Source="{Binding Image, Converter={StaticResource ImageConverter}}"
 Width="75" Height="75"
 Stretch="Uniform"></Image>
 </HyperlinkButton>
 </DataTemplate>
 </telerik:RadToolBar.ItemTemplate>
</telerik:RadToolBar>

6) Locate the "<!--add search controls here-->" comment and add the following XAML.

Here we define a series of input controls in a StackPanel that will allow the user to define search
criteria. Notice that the DisplayMemberPath for both combo boxes is the "Name" property of "Location"
objects returned from the WCF service. See the "HTMLPlaceholder", "Date, Time and Calendar" and
"ComboBox" chapters for more information.

<StackPanel Margin="5">
 <TextBlock Text="State"></TextBlock>
 <telerik:RadComboBox x:Name="cbState"
 DisplayMemberPath="Name"
 HorizontalAlignment="Stretch"
 SelectionChanged="cbState_SelectionChanged" />
 <TextBlock Text="City"></TextBlock>
 <telerik:RadComboBox x:Name="cbCity"
 DisplayMemberPath="Name"
 HorizontalAlignment="Stretch" />
 <TextBlock Text="Start Date"></TextBlock>
 <telerik:RadDatePicker
 x:Name="dpStart"
 HorizontalAlignment="Stretch" />
 <TextBlock Text="EndDate"></TextBlock>
 <telerik:RadDatePicker x:Name="dpEnd"
 HorizontalAlignment="Stretch" />
 <Button x:Name="btnSearch"
 HorizontalAlignment="Right"
 Margin="5" Content="Search"
 Click="btnSearch_Click" />
</StackPanel>

RadControls for Silverlight966

© 2011 Telerik Inc.

7) Locate the "<!--add grid view here-->" comment and add the following XAML.

The grid view uses the "GridlessStyle" defined in the UserControl Resources. AutoGenerateColumns is
turned off and a single hyperlink column is bound to the results of the Bing search where the link is to
the "Url" property and the visible content displays the "Title" property. See the "GridView" chapter
"Binding" section for more information.

<telerik:RadGridView
 x:Name="gvResults"
 Style="{StaticResource GridlessStyle}"
 AutoGenerateColumns="False">
 <telerik:RadGridView.Columns>
 <telerik:GridViewHyperlinkColumn
 DataMemberBinding="{Binding Url}"
 ContentBinding="{Binding Title}"
 TargetName="_blank" />
 </telerik:RadGridView.Columns>
</telerik:RadGridView>

8) Locate the "<!--add chart here-->" comment and add the following XAML.

The chart is named so we can access it and setup series mappings in code. See the "Charting"
chapter "Binding" section for more information.

<telerik:RadChart x:Name="chart"></telerik:RadChart>

Docking 967

© 2011 Telerik Inc.

23.5.2.4 Run and Test the Application

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) When you first run the application, the Bing and Trulia logos should appear. Tool tips for each logo
should appear as you pass the mouse over. Expect the tool tip text to match the WCF web.config file
entries for each service. Click each logo image. The web site for each service should appear in a
separate browser window.

2) Drop down the State combo box. The state names should appear there.

3) Select a state and click the "Search" button. The Trulia and Bing panes should populate with data. The
Trulia pane should display a chart with two series and the Bing pane should display a grid view list of
links.

Ideas for Extending This Example

Research and add a new service.

Read the Customization section of this chapter and customize the RadPane header to include the
service logo.

Define other attributes of each service. For example, you could extract the colors from the service
logos, e.g. the Bing blue color or the Trulia green color and add them to the configuration file. Add
plumbing to make the color available in the application and use it to color the custom RadPane header
background.

RadDocking is a ItemsControl descendant. Bind to the entire RadDocking control instead of individual
windows.

RadControls for Silverlight968

© 2011 Telerik Inc.

23.6 Customization

One question that comes up often in the forums is how to get a button in the title area of a pane. RadPane
has a number of templates that you can override to put your own stamp on the control. Depending on the
circumstances of the pane, different templates will be applied. For instance, the DocumentHostTemplate
is applied when the RadPane is placed in the DocumentHost. Depending on the docked position of the
pane, the BottomTemplate, LeftTemplate, RightTemplate or TopTemplate might be in play. We will
define the TitleTemplate and add a button that will act on the content of the pane.

Inside the RadPane element, place the TitleTemplate element followed by the DataTemplate element. Inside
that you can place whatever arbitrary markup suits your purpose. Here we add a StackPanel to contain a
Button, Image inside the button and a TextBlock for the title text. Notice the Click event handler hooked
up to the Button element.

Docking 969

© 2011 Telerik Inc.

<telerik:RadDocking>
 <telerik:RadSplitContainer>
 <telerik:RadPaneGroup>
 <telerik:RadPane x:Name="paneRSS">
 <telerik:RadPane.TitleTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Button Click="Button_Click"
 Width="16" Height="16">
 <Image Source="Rss.png"
 Stretch="Uniform" />
 </Button>
 <TextBlock Text="RSS Feeds" />
 </StackPanel>
 </DataTemplate>
 </telerik:RadPane.TitleTemplate>
 </telerik:RadPane>
 </telerik:RadPaneGroup>
 </telerik:RadSplitContainer>
</telerik:RadDocking>

The Click event handler simply assigns some test content to the panel Content property.

Private Sub Button_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 paneRSS.Content = "RSS Button was clicked"
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 paneRSS.Content = "RSS Button was clicked";
}

RadControls for Silverlight970

© 2011 Telerik Inc.

23.7 Wrap Up

In this chapter you learned how to create flexible layouts using the RadDocking control. You started by
creating a layout entirely in XAML. During the initial project you learned how to control user interaction with
panes including floating, closing and pinning behaviors.

In the Control Details section of the chapter you learned how to create split containers, groups and panes
all in code, how to size and position floating panes, how to save and load panes, how to control pinning
behavior, how to hide and show panes and how to use various "Preview" events.

During the Binding section of this chapter you learned how to build a Silverlight "mashup" client application
with docking that aggregated various REST services. The service output was bound to both the pane
content and the pane title area.

During the Customization section of the chapter you customized the pane title area to include a button and
image.

Part

XXIV
Windows

RadControls for Silverlight972

© 2011 Telerik Inc.

24 Windows

24.1 Objectives

In this chapter you will learn how to build RadWindows with free-form content and control them as a group
with RadWindowManager. You will work with predefined Alert, Confirm and Prompt dialogs. You will learn
how to control window appearance, both with simple background and title color modification as well as
customization using Expression Blend. You will react to windows opening, closing, state change and
moving using RadWindow events. You will learn how to alter the initial state of a window. You will also how
to bind data RadWindow properties.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Window\Window.sln.

24.2 Overview

Use RadWindow to frame important information or collect user input. RadWindow is a themed, floating
container that can be displayed free floating or as a modal dialog. The event model lets you keep track of
window movement and state changes, allowing you to intercede with custom logic. Alerts, Confirmation
dialogs and Prompts are all built in. The RadWindowManager provides access and control to all windows as
a collection and PopupManager can be used for special situations that require tweaking the Z-Order.

RadWindow includes these features:

Child Windows Across All Platforms and Scenarios

Predefined Dialogs

Styling and Appearance

Customizable Behavior: choose window size, state and position parameters

Customizable Content

Windows 973

© 2011 Telerik Inc.

24.3 Getting Started

You can define a window in XAML and open it from code or you may need to generate windows from
scratch dynamically. The following walk through shows you how to build windows on-the-fly, entirely in
code.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

c) Telerik.Windows.Themes.Summer

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags. This will define a RadToolBar with two buttons and their respective Click
handlers.

<telerik:RadToolBar VerticalAlignment="Top">
 <telerik:RadToolBar.Items>
 <Button x:Name="btnNewWindow" Content="New Window"
 Click="btnNewWindow_Click" />
 <Button x:Name="btnCloseAll" Content="Close All"
 Click="btnCloseAll_Click" />
 </telerik:RadToolBar.Items>
</telerik:RadToolBar>

Code Behind

1) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for the Telerik.Windows.Controls namespace.

2) In the constructor, create a new SummerTheme instance and set the IsApplicationTheme property
to "True". This will style both the tool bar and any windows that are created.

RadControls for Silverlight974

© 2011 Telerik Inc.

Public Sub New()
 CType(New SummerTheme(), SummerTheme).IsApplicationTheme = True
 InitializeComponent()
End Sub

public MainPage()
{
 new SummerTheme().IsApplicationTheme = true;
 InitializeComponent();
}

3) Handle the Click event for the "New Window" button.

The code creates a RadWindow instance and calls the Show() method. Here we also set the window
Header, Content, starting position and dimensions.

Private Sub btnNewWindow_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim window As New RadWindow()
 window.Header = "This is the header"
 window.Content = "Content goes here"
 window.SetValue(RadWindow.WidthProperty, 300R)
 window.SetValue(RadWindow.HeightProperty, 300R)
 window.WindowStartupLocation = WindowStartupLocation.CenterScreen
 window.Show()
End Sub

private void btnNewWindow_Click(object sender, RoutedEventArgs e)
{
 RadWindow window = new RadWindow();
 window.Header = "This is the header";
 window.Content = "Content goes here";
 window.SetValue(RadWindow.WidthProperty, 300d);
 window.SetValue(RadWindow.HeightProperty, 300d);
 window.WindowStartupLocation = WindowStartupLocation.CenterScreen;
 window.Show();
}

4) Handle the Click event for the "Close All" button. This event handler calls the RadWindowManager
CloseAllWindows() method of the singleton RadWindowManager.

Windows 975

© 2011 Telerik Inc.

Private Sub btnCloseAll_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 RadWindowManager.Current.CloseAllWindows()
End Sub

private void btnCloseAll_Click(object sender, RoutedEventArgs e)
{
 RadWindowManager.Current.CloseAllWindows();
}

 Gotcha!

RadWindowManager has several deprecated methods that are static. You may get a semi-cryptic
message to "use RadWindowManager instance methods". By this, the message means to use the
singleton "Current" property of the RadWindowManager as shown in the code snippet above.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Open multiple windows using the "New Window" button.

2) Close all the windows at once using the "Close All" button.

RadControls for Silverlight976

© 2011 Telerik Inc.

Ideas for Extending This Example

Add additional content to the windows.

Use the other methods of the RadWindowManager such as MaximizeAllWindows(),
MinimizeAllWindows() and NormalAllWindows().

24.4 Control Details

24.4.1 Predefined Dialogs

RadWindow comes with predefined Alert(), Prompt() and Confirm() dialog methods. These "workhorse"
static methods of RadWindow can be very simple or fully tailorable.

24.4.1.1 Alert

For quick-and-dirty alerts, simply call the the Alert() method and pass the content.

RadWindow.Alert("The server will shutdown for maintenance in 10 minutes")

RadWindow.Alert(
 "The server will shutdown for maintenance in 10 minutes");

To get specific control over all aspects of the dialog including the modal background, icon and content of
each part of the dialog, pass DialogParameters. This example changes the theme of the dialog, adds an
icon to the left corner of the header, adds text to the header and changes the content of the OK button and
handles the Opened and Closed events.

Windows 977

© 2011 Telerik Inc.

Private Sub btnAlert_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim icon As New Image() With { _
.Source = New BitmapImage(New Uri("VPN.png", UriKind.RelativeOrAbsolute)), _
.Margin = New Thickness(1)}

 Dim message As String = _
"The server will shutdown for maintenance in 10 minutes"

 RadWindow.Alert(New DialogParameters() With { _
.Content = message, _
.Theme = New SummerTheme(), _
.IconContent = icon, _
.OkButtonContent = "Proceed", _
.Header = "Maintenance Alert", _
.Closed = _
New EventHandler(Of WindowClosedEventArgs)(AddressOf OnDialogClosed), _
.Opened = New EventHandler(AddressOf OnDialogOpened)})
End Sub

Private Sub OnDialogOpened(_
ByVal sender As Object, ByVal e As EventArgs)
 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadAlert)
 tbStatus.Text = """" & _
dialog.Content.ToString() & _
"""" & " Delivered at " & _
DateTime.Now.ToLongTimeString()
End Sub

Private Sub OnDialogClosed(_
ByVal sender As Object, ByVal e As WindowClosedEventArgs)
 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadAlert)
 tbStatus.Text = tbStatus.Text _
& Environment.NewLine & _
"User acknowledges at " & _
DateTime.Now.ToLongTimeString()
End Sub

RadControls for Silverlight978

© 2011 Telerik Inc.

private void btnAlert_Click(object sender, RoutedEventArgs e)
{
 Image icon = new Image()
 {
 Source = new BitmapImage(new Uri("VPN.png", UriKind.RelativeOrAbsolute)),
 Margin = new Thickness(1)
 };

 string message = "The server will shutdown for maintenance in 10 minutes";

 RadWindow.Alert(new DialogParameters()
 {
 Content = message,
 Theme = new SummerTheme(),
 IconContent = icon,
 OkButtonContent = "Proceed",
 Header = "Maintenance Alert",
 Closed = new EventHandler<WindowClosedEventArgs>(OnDialogClosed),
 Opened = new EventHandler(OnDialogOpened)
 });
}

private void OnDialogOpened(Object sender, EventArgs e)
{
 var dialog = (sender as RadWindow).Content as RadAlert;
 tbStatus.Text =
 "\"" +
 dialog.Content.ToString() +
 "\"" +
 " Delivered at " +
 DateTime.Now.ToLongTimeString();
}

private void OnDialogClosed(object sender, WindowClosedEventArgs e)
{
 var dialog = (sender as RadWindow).Content as RadAlert;
 tbStatus.Text =
 tbStatus.Text +
 Environment.NewLine +
 "User acknowledges at " +
 DateTime.Now.ToLongTimeString();
}

Windows 979

© 2011 Telerik Inc.

 Notes

You can also set the DialogParameters ModalBackground property. ModalBackground is a Brush
that sets the background behind the dialog, not the background of the dialog itself.

RadWindow.Alert(New DialogParameters() With { _
.Content = "The background behind the dialog is light gray", _
.ModalBackground = New SolidColorBrush(Colors.LightGray)})

RadWindow.Alert(new DialogParameters()
{
 Content = "The background behind the dialog is light gray",
 ModalBackground = new SolidColorBrush(Colors.LightGray)
});

RadControls for Silverlight980

© 2011 Telerik Inc.

24.4.1.2 Confirm

The next step up is the static Confirm() method where we can find out if the user clicked the OK or Cancel
buttons. The code is very similar to the Alert() example except for the addition of assigning the
CancelButtonContent. Now the Closed event becomes much more important because the Boolean
DialogResult is assigned. Notice that DialogResult is a nullable value so you will have to cast it to
Boolean.

Windows 981

© 2011 Telerik Inc.

Private Sub btnConfirm_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim icon As New Image() With { _
.Source = New BitmapImage(New Uri("VPN.png", UriKind.RelativeOrAbsolute)), _
 .Margin = New Thickness(1)}

 Dim message As String = _
"The server is scheduled to shutdown for maintenance in 10 minutes" & _
Environment.NewLine & "Do you need to wait?"

 RadWindow.Confirm(New DialogParameters() With { _
.Content = message, _
.Theme = New SummerTheme(), _
.IconContent = icon, _
.OkButtonContent = "Proceed", _
.CancelButtonContent = "Please wait", _
.Header = "Maintenance", _
.Opened = New EventHandler(AddressOf OnConfirmOpened), _
.Closed = _
New EventHandler(Of WindowClosedEventArgs)(AddressOf OnConfirmClosed)})
End Sub

Private Sub OnConfirmOpened(_
ByVal sender As Object, ByVal e As EventArgs)
 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadConfirm)
 tbStatus.Text = """" & _
dialog.Content.ToString() & _
"""" & " Delivered at " & _
DateTime.Now.ToLongTimeString()
End Sub

Private Sub OnConfirmClosed(_
ByVal sender As Object, ByVal e As WindowClosedEventArgs)
 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadConfirm)
 tbStatus.Text = _
If(CBool(e.DialogResult), "User confirms", "User requests wait")
End Sub

RadControls for Silverlight982

© 2011 Telerik Inc.

private void btnConfirm_Click(object sender, RoutedEventArgs e)
{
 Image icon = new Image()
 {
 Source = new BitmapImage(
 new Uri("VPN.png", UriKind.RelativeOrAbsolute)),
 Margin = new Thickness(1)
 };

 string message =
 "The server is scheduled to shutdown for maintenance in 10 minutes" +
 Environment.NewLine +
 "Do you need to wait?";

 RadWindow.Confirm(new DialogParameters()
 {
 Content = message,
 Theme = new SummerTheme(),
 IconContent = icon,
 OkButtonContent = "Proceed",
 CancelButtonContent = "Please wait",
 Header = "Maintenance",
 Opened = new EventHandler(OnConfirmOpened),
 Closed = new EventHandler<WindowClosedEventArgs>(OnConfirmClosed)
 });
}

private void OnConfirmOpened(Object sender, EventArgs e)
{
 var dialog = (sender as RadWindow).Content as RadConfirm;
 tbStatus.Text =
 "\"" +
 dialog.Content.ToString() +
 "\"" +
 " Delivered at " +
 DateTime.Now.ToLongTimeString();
}

private void OnConfirmClosed(object sender, WindowClosedEventArgs e)
{
 var dialog = (sender as RadWindow).Content as RadConfirm;
 tbStatus.Text =
 (bool)e.DialogResult ? "User confirms" : "User requests wait";
}

Windows 983

© 2011 Telerik Inc.

24.4.1.3 Prompt

From Confirm() we move onto the static Prompt() method where the user enters some text. You can enter
a DefaultPromptResultValue that will appear in the text entry box when the dialog first shows. If the
DialogResult is true you can retrieve the user entry from the Closed event PromptResult argument

 Gotcha!

Be aware that PromptResult is only assigned when the DialogResult is true, i.e. when the user has
clicked the "OK" button. This is the observed behavior at the time of this writing. That is, if you
assigned the text "Shut Down" to the OkButtonContent, prompted the user to enter a shut down
reason, and the user clicked the "Shut Down", i.e. Cancel button, the PromptResult would be
empty. You will have to arrange your prompt to work with these semantics.

RadControls for Silverlight984

© 2011 Telerik Inc.

Private Sub btnPrompt_Click(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim icon As New Image() With { _
.Source = New BitmapImage(New Uri("VPN.png", UriKind.RelativeOrAbsolute)), _
.Margin = New Thickness(1)}

 Dim message As String = "Please enter a reason for shutting down: "

 RadWindow.Prompt(New DialogParameters() With {.Content = message, _
.Theme = New SummerTheme(), .IconContent = icon,
.OkButtonContent = "Shut Down", .CancelButtonContent = "Keep Running", _
.DefaultPromptResultValue = "Monthly Maintenance", .Header = "Maintenance", _
.Opened = New EventHandler(AddressOf OnPromptOpened), _
.Closed = New EventHandler(Of WindowClosedEventArgs)(AddressOf OnPromptClosed)})
End Sub

Private Sub OnPromptOpened(ByVal sender As Object, ByVal e As EventArgs)
 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadPrompt)
 tbStatus.Text = """" & dialog.Content.ToString() & _
"""" & " Delivered at " & DateTime.Now.ToLongTimeString()
End Sub

Private Sub OnPromptClosed(_
ByVal sender As Object, ByVal e As WindowClosedEventArgs)
 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadPrompt)
 tbStatus.Text = "Wait reason: " & e.PromptResult
End Sub

Windows 985

© 2011 Telerik Inc.

private void btnPrompt_Click(object sender, RoutedEventArgs e)
{
 Image icon = new Image()
 {
 Source = new BitmapImage(
 new Uri("VPN.png", UriKind.RelativeOrAbsolute)),
 Margin = new Thickness(1)
 };

 string message = "Please enter a reason for shutting down: ";

 RadWindow.Prompt(new DialogParameters()
 {
 Content = message,
 Theme = new SummerTheme(),
 IconContent = icon,
 OkButtonContent = "Shut Down",
 CancelButtonContent = "Keep Running",
 DefaultPromptResultValue = "Monthly Maintenance",
 Header = "Maintenance",
 Opened = new EventHandler(OnPromptOpened),
 Closed = new EventHandler<WindowClosedEventArgs>(OnPromptClosed)
 });
}

private void OnPromptOpened(Object sender, EventArgs e)
{
 var dialog = (sender as RadWindow).Content as RadPrompt;
 tbStatus.Text = "\"" + dialog.Content.ToString() +
 "\"" + " Delivered at " + DateTime.Now.ToLongTimeString();
}

private void OnPromptClosed(object sender, WindowClosedEventArgs e)
{
 var dialog = (sender as RadWindow).Content as RadPrompt;
 tbStatus.Text = "Wait reason: " + e.PromptResult;
}

RadControls for Silverlight986

© 2011 Telerik Inc.

24.4.2 Brushes

RadWindow surfaces three brushes to allow changing the basic dialog appearance easily:

Background: The background brush of the window.

ModalBackground: The background behind/underneath the window.

BorderBackground: The title area of the window.

The example shows the BorderBackground in a light gray, the ModalBackground in a darker gray and the
Background of the window as a linear gradient brush. This particular example uses code from within a
RadAlert Opened event handler, and gets a reference to the underlying RadWindow.

Private Sub OnDialogOpened(ByVal sender As Object, ByVal e As EventArgs)
 Dim backgroundBrush As New LinearGradientBrush() With { _
.StartPoint = New Point(0, 1), .EndPoint = New Point(0, 0)}
 backgroundBrush.GradientStops.Add(New GradientStop() With { _
.Color = Colors.White, .Offset = 0})
 backgroundBrush.GradientStops.Add(New GradientStop() With { _
.Color = Color.FromArgb(255, 255, 100, 100), .Offset = 0.8})
 backgroundBrush.GradientStops.Add(New GradientStop() With { _
.Color = Color.FromArgb(255, 200, 50, 50), .Offset = 1})

 Dim titleBrush As New SolidColorBrush(_
Color.FromArgb(255, 200, 200, 200))
 Dim modalBackgroundBrush As New SolidColorBrush(_
Color.FromArgb(255, 100, 100, 100))

 Dim window As RadWindow = TryCast(sender, RadWindow)
 window.Background = backgroundBrush
 window.BorderBackground = titleBrush
 window.ModalBackground = modalBackgroundBrush

 Dim dialog = TryCast((TryCast(sender, RadWindow)).Content, RadAlert)
 tbStatus.Text = """" & dialog.Content.ToString() & """" & _
" Delivered at " & DateTime.Now.ToLongTimeString()
End Sub

Windows 987

© 2011 Telerik Inc.

private void OnDialogOpened(Object sender, EventArgs e)
{
 LinearGradientBrush backgroundBrush = new LinearGradientBrush()
 {
 StartPoint = new Point(0, 1),
 EndPoint = new Point(0, 0)
 };
 backgroundBrush.GradientStops.Add(new GradientStop()
 {
 Color = Colors.White, Offset = 0
 });
 backgroundBrush.GradientStops.Add(new GradientStop()
 {
 Color = Color.FromArgb(255, 255, 100, 100), Offset = 0.8
 });
 backgroundBrush.GradientStops.Add(new GradientStop()
 {
 Color = Color.FromArgb(255, 200, 50, 50), Offset = 1
 });

 SolidColorBrush titleBrush =
 new SolidColorBrush(Color.FromArgb(255, 200, 200, 200));
 SolidColorBrush modalBackgroundBrush =
 new SolidColorBrush(Color.FromArgb(255, 100, 100, 100));

 RadWindow window = sender as RadWindow;
 window.Background = backgroundBrush;
 window.BorderBackground = titleBrush;
 window.ModalBackground = modalBackgroundBrush;

 var dialog = (sender as RadWindow).Content as RadAlert;
 tbStatus.Text = "\"" + dialog.Content.ToString() +
 "\"" + " Delivered at " + DateTime.Now.ToLongTimeString();
}

RadControls for Silverlight988

© 2011 Telerik Inc.

24.4.3 Events

You can monitor the state of your windows using events surfaced by RadWindow. We already worked
briefly with the Opened and Closed events. The Activated event fires when a window is brought to the front.
You can also use:

LocationChanged: Fires when the window Top or Left changes.

WindowStateChanged: Fires when WindowState changes between Normal, Minimized and
Maximized.

PreviewClosed: Fires just before the window closes.

The PreviewClosed event allows you to prevent a window from closing. In the example below, the Click event
for the "Search" button calls the window Close() method. The PreviewClosed event fires and Cancel is set
"True" if there is no value in either date picker.

Private Sub RadWindow_PreviewClosed(sender As Object, e As WindowPreviewClosedEventArgs)
e.Cancel = Not dpStart.SelectedDate.HasValue OrElse Not dpEnd.SelectedDate.HasValue

End Sub

Private Sub btnSearch_Click(sender As Object, e As RoutedEventArgs)
Me.Close()

End Sub

private void RadWindow_PreviewClosed(object sender, WindowPreviewClosedEventArgs e)
{
 e.Cancel =

!dpStart.SelectedDate.HasValue
|| !dpEnd.SelectedDate.HasValue;

}

private void btnSearch_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

Windows 989

© 2011 Telerik Inc.

24.4.4 Window State and Z-Order

Window State

The CanClose property when false removes the close button from the window but still allows the window to
be closed programmatically. Likewise, the CanMove can be set false to prevent the window from being
dragged. ResizeMode can be set to CanResize (the default), CanMinimize, CanMaximize or NoResize
.

Z-Order

 From the Forums...

Question: "How do I handle relative Z-Index positioning of windows and other controls that
popup?"

Answer: "We introduced a PopupManager that handles Z-Index on all popups (RadWindow,
RadWindows with TopMost=true, and RadPopup - used in combobox, menuitem, datepicker,
timepicker).The PopupManager exposes four zones: Window, TopWindow, Popup and
DockWindow (for future use). If you want your popup (not RadPopup) to show on top you can
set its Child Z-Index to be bigger then 300,000 (this is the starting Z-Index for Popup zone)."

PopupManager has static methods for setting Z-Index:

DockWindowStartingZIndex: starting index for RadDockWindow controls. Should be bigger than
Popups ZIndex and smaller then 1000000.

PopupStartingZIndex: starting index for Popup controls. Should be bigger then TopWindows ZIndex
and smaller than DockWinows ZIndex.

TopWindowStartingZIndex: starting index for TopMost RadWindow controls. Should be bigger then
Windows ZIndex and smaller than Popups ZIndex.

WindowStartingZIndex: starting index for RadWindow controls. Should be bigger then zero and
smaller then TopWindows ZIndex.

RadControls for Silverlight990

© 2011 Telerik Inc.

24.5 Binding

You can bind the properties of RadWindow in a similar manner to other Silverlight controls. The example
below binds the Header of each window to the "Title" property of a "NewsCategory" object. Each
RadWindow Activated event has a handler that assigns the DataContext of the top-most window to a
TextBox and also binds the "Title" property. Changes to the text box show up right away in the top window.
Bringing other windows to the top changes the title shown in the text box. The underlying NewsDataSource
object is an ObservableCollection<NewsCategory> where NewsCategory is an INotifyPropertyChanged
implementation with two properties: a "Title" and a List<string> of "Articles".

Windows 991

© 2011 Telerik Inc.

Private Sub UserControl_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim dataSource As New NewsDataSource()
 For Each category As NewsCategory In dataSource
 Dim window As New RadWindow()
 window.DataContext = category
 window.SetBinding(RadWindow.HeaderProperty, _
New Binding("Title") With {.Mode = BindingMode.TwoWay})
 Dim listBox As New Telerik.Windows.Controls.ListBox() With { _
.Margin = New Thickness(5)}
 listBox.ItemsSource = category.Articles
 window.Content = listBox
 window.WindowStartupLocation = WindowStartupLocation.CenterScreen
 window.SetValue(RadWindow.WidthProperty, 200R)
 window.SetValue(RadWindow.HeightProperty, 200R)
 AddHandler window.Activated, AddressOf window_Activated
 window.Show()
 Next category
End Sub

Private Sub window_Activated(ByVal sender As Object, ByVal e As EventArgs)
 tbTitle.DataContext = (TryCast(sender, RadWindow)).DataContext
 tbTitle.SetBinding(TextBox.TextProperty, New Binding("Title") With { _
.Mode = BindingMode.TwoWay})
End Sub

RadControls for Silverlight992

© 2011 Telerik Inc.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 NewsDataSource dataSource = new NewsDataSource();
 foreach (NewsCategory category in dataSource)
 {
 RadWindow window = new RadWindow();
 window.DataContext = category;
 window.SetBinding(RadWindow.HeaderProperty,
 new Binding("Title") { Mode = BindingMode.TwoWay });
 Telerik.Windows.Controls.ListBox listBox =
 new Telerik.Windows.Controls.ListBox()
 {
 Margin = new Thickness(5)
 };
 listBox.ItemsSource = category.Articles;
 window.Content = listBox;
 window.WindowStartupLocation = WindowStartupLocation.CenterScreen;
 window.SetValue(RadWindow.WidthProperty, 200d);
 window.SetValue(RadWindow.HeightProperty, 200d);
 window.Activated += new EventHandler(window_Activated);
 window.Show();
 }
}

void window_Activated(object sender, EventArgs e)
{
 tbTitle.DataContext = (sender as RadWindow).DataContext;
 tbTitle.SetBinding(TextBox.TextProperty,
 new Binding("Title") { Mode = BindingMode.TwoWay });
}

 Gotcha!

Are changes in the text box not showing up in the window? Be sure that you have implemented
INotifyPropertyChanged in the bound object and that the collection is ObservableCollection<>
and not List<>.

Windows 993

© 2011 Telerik Inc.

24.6 Customization

Walk Through

In this example we will customize the RadWindow control border and background.

Project Setup

1) Run Expression Blend.

2) From the File menu select New Project. Note: If you have an existing solution open, right-click the
solution and select Add New Project... from the context menu instead.

3) In the New Project dialog, select "Silverlight" from "Project types" and "Silverlight Application" from the
right-most list. Enter a unique name for the project and click OK.

Edit the Page in Expression Blend

1) MainPage.xaml should already be open for editing. If not, locate MainPage.xaml in the Projects pane
and double-click to open the page.

2) In the Projects pane, right-click the References node and select Add Reference... from the context
menu.

3) Add a reference to the Telerik.Windows.Controls.dll and Telerik.Windows.Controls.Navigation.dll
assemblies.

4) From the Project menu select Build Project.

5) Add a RadWindow to the page.

a) Open the Assets pane.

b) On the left side of the Assets pane is a tree view. Locate and select the "Controls" node.

c) In the Assets pane, just above the tree view is the Assets Find entry text box.

d) Type the first few characters of "RadWindow" into the Assets Find entry text box. A list of all matching
controls will show to the right of the tree view.

e) Locate the RadWindow control and drag it onto the MainPage.xaml Artboard.

6) In the Objects and Timeline pane, double-click "RadWindow" in the tree view. Enter a new name
"winInfo".

7) Optionally, you can add a TextBox or other controls to the content area of the window.

8) Right-click the RadWindow and select Edit Template > Edit a Copy from the context menu. In the
"Create Style Resource" dialog, set the Name (Key) to "ScovilleWindowStyle". Click OK to create the
style resource and close the dialog.

RadControls for Silverlight994

© 2011 Telerik Inc.

9) In the Objects and Timeline pane, locate the "MainBorder" node and click it.

Windows 995

© 2011 Telerik Inc.

10)In the Resources pane, locate the "RadWindow_Outerbackground" resource and click the drop down
arrow to edit the brush. Click each of the gradient stop indicators, then use the color editor above the
gradient stop indicators to change the color for each.

The window border may look something like the screenshot below. The actual colors chosen will
determine the final visual makeup of the outer window border area.

RadControls for Silverlight996

© 2011 Telerik Inc.

11)Also in the Resources pane, locate the "RadWindow_InnerBackground" resource and click the drop
down arrow to edit the brush.

12)Click the "Gradient Brush" button at the top of the editor. Click on both gradient stop indicators and
select a yellow and a red color, respectively. Click the "Radial Gradient" button at the bottom of the
editor.

In the Artboard, the window may look something like this, depending on your color choices.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Windows 997

© 2011 Telerik Inc.

24.7 Wrap Up

In this chapter you learned how to build RadWindows with free-form content and control them as a group
with RadWindowManager. You worked with the predefined dialogs Alert, Confirm and Prompt. You learned
how to control window appearance, both for simple modifications like background and title colors as well as
customization using Expression Blend. You worked with events that react to windows opening, closing,
state changes and moving. You learned how to alter the initial state of a window. You learned how to bind
data to a control.

Part

XXV
HTMLPlaceholder

HTMLPlaceholder 999

© 2011 Telerik Inc.

25 HTMLPlaceholder

25.1 Objectives

In this chapter you will learn how RadHtmlPlaceholder is used to host HTML content in Silverlight
applications. First you will add custom HTML content to a place holder to see how it renders, then you will
point to an external web page. You will learn how to host place holders in the page, in other controls and
within RadWindows. You will learn how to respond to events when the content page is loaded. You will learn
how to interact between Javascript and managed code behind. Finally, you will learn how to bind a series of
place holder controls within an ItemsControl to custom objects.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\HtmlPlaceholder\HtmlPlaceholder.sln.

25.2 Overview

RadHtmlPlaceholder is a powerful tool that lets you blend standard HTML, ASP.NET and Silverlight
elements. You can load content by assigning custom HTML or by loading external web pages.
RadHtmlPlaceholder can be added as content to standard Silverlight and RadControls including tab controls
and windows.

RadControls for Silverlight1000

© 2011 Telerik Inc.

25.3 Getting Started

In this walk through you will use two HTML place holder controls, one that renders a literal HTML string, and
a second place holder that points to an external URL. During this walk through you will learn about the
special conditions that govern use of the RadHtmlPlaceholder control.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

XAML Editing

1) Open MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags.

<StackPanel>
 <!--place holder that uses literal html-->

 <!--place holder that uses external site-->
</StackPanel>

3) Drag a RadHtmlPlaceholder from the Toolbox to a point just under the comment "<!--place holder that
uses literal html-->". Name the place holder "phHtml" so we can access it later in code.

<!--uses literal html-->
<telerik:RadHtmlPlaceholder x:Name="phHtml" />

4) Drag a RadHtmlPlaceholder from the Toolbox to a point just under the comment "<!--place holder that
uses external site-->". Name the place holder "phUrl". Set the SourceUrl property to "http://www.
telerik.com".

<!--uses external site-->
<telerik:RadHtmlPlaceholder x:Name="phUrl"
 SourceUrl="http://www.telerik.com" />

http://www.telerik.com"
http://www.telerik.com"

HTMLPlaceholder 1001

© 2011 Telerik Inc.

5) In the Solution Explorer, navigate to the host ASP.NET application and locate the startup page for the
project. Open the startup page for editing. Add a "windowless" parameter to the SilverlightControlHost
and set it to "true" (Look at the last parameter in the example below).

<body>
 <form id="form1" runat="server" style="height:100%">
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/01_GettingStarted.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="3.0.40624.0" />
 <param name="autoUpgrade" value="true" />
 <param name="windowless" value="true" />
 . . .

RadControls for Silverlight1002

© 2011 Telerik Inc.

 Gotcha!

"RadHtmlPlaceholder requires the "Windowless" parameter of the Silverlight application to be
True." This message is probably the most common question raised in the forums for this control.
The message appears if you don't set the "windowless" parameter as shown above.

Here's the gotcha: the key is to set the "windowless" parameter
in the silverlight control in the page that hosts the Silverlight
application. The hosting page may not always be consistent.
Consider the solution in this screenshot that has a host
application and several Silverlight projects. If you set the
"windowless" parameter in the "01_GettingStartedTestPage.
aspx" of the host project, set the host project to be the startup
project and set that page to be the startup page, the error
message will not appear.

But if you set the "01_GettingStarted" project to be the startup
project, a test page will be automatically generated that will not
contain the parameter. You can edit the TestPage.html and add
the "windowless" parameter there to prevent the error, but the
page will be regenerated.

The main point is to be aware of the origin of the hosting page and make sure the windowless
parameter exists there. If you're unsure of the host page origin, check the URL in the browser
when project runs.

Code Behind

1) Add the code below to the UserControl constructor that assigns the HtmlSource property. Optionally,
you can place some other arbitrary HTML here.

HTMLPlaceholder 1003

© 2011 Telerik Inc.

Public Sub New()
 InitializeComponent()
 phHtml.HtmlSource = "<div style=" & _
 """width:100%;height:100px;padding:10px;background-color:SkyBlue;""" & _
 ">Literal HTML here</div>"
End Sub

public MainPage()
{
 InitializeComponent();
 phHtml.HtmlSource =
 "<div style=" +
 "\"width:100%;height:100px;padding:10px;background-color:SkyBlue;\"" +
 ">Literal HTML here</div>";
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Ideas for Extending This Example

Change the HtmlSource of the html place holder control.

Change the SourceUrl of the html place holder control.

RadControls for Silverlight1004

© 2011 Telerik Inc.

25.4 Control Details

25.4.1 Loading Content

In a Silverlight Page

As you saw in the "Getting Started" walk through, you can assign markup directly to the HtmlSource
property. This might be useful if you have HTML content stored in a database returned from a service or
saved to isolated storage locally. The example below shows that as expected, divs, spans and styles can
be placed within the HTML.

Const tag As String = "<span style=" & _
"""width:100%height:100px;padding:10px;background-color:SkyBlue;"">" & _
"{0}"

phHtml.HtmlSource = _
"The HtmlSource property can contain" & _
String.Format(tag, "divs, spans and styles") & _
"and any other arbitrary markup"

const string tag = "<span style=" +
 "\"width:100%height:100px;padding:10px;background-color:SkyBlue;\">" +
 "{0}";

phHtml.HtmlSource = "The HtmlSource property can contain" +
 string.Format(tag, "divs, spans and styles") +
 "and any other arbitrary markup";

The alternative is to assign the SourceUrl property. SourceUrl takes a Uri object that can point to an
external site.

phHtml.SourceUrl = New System.Uri("http://www.telerik.com")

phHtml.SourceUrl = new System.Uri("http://www.telerik.com");

In RadTabControl

HTMLPlaceholder 1005

© 2011 Telerik Inc.

RadHtmlPlaceholder can be used as content for other Silverlight and RadControls, such as a RadTabItem.
In the example below, the place holder is included in the Content portion of the RadTabItem element.

<telerik:RadTabControl>
 <telerik:RadTabItem Header="Wiki">
 <telerik:RadHtmlPlaceholder
 SourceUrl="http://www.wikipedia.org" />
 </telerik:RadTabItem>
 <telerik:RadTabItem Header="Dictionary">
 <telerik:RadHtmlPlaceholder
 SourceUrl="http://www.dictionary.com" />
 </telerik:RadTabItem>
</telerik:RadTabControl>

In RadWindow

When RadHtmlPlaceholder is placed in a RadWindow, and the window is dragged, the RadHtmlPlaceholder
does not redraw quickly enough, showing an unpleasant artifact.

The solution is subscribe to the LocationChanged event of the window and call the RadHtmlPlaceholder
InvalidateArrange() method. The XAML for the sample below simply wraps the previous RadTabControl
example in a RadWindow, names it "winHtml" and hooks up a LocationChanged event handler. Notice that
the UrlLoaded event is used to notify us that all content is available in particular place holder.

RadControls for Silverlight1006

© 2011 Telerik Inc.

<telerik:RadWindow x:Name="winHtml"
 LocationChanged="winHtml_LocationChanged">
 <StackPanel>
 <telerik:RadTabControl>
 <telerik:RadTabItem Header="Wiki">
 <telerik:RadHtmlPlaceholder Tag="Wiki"
 SourceUrl="http://www.wikipedia.org"
 UrlLoaded="RadHtmlPlaceholder_UrlLoaded" />
 </telerik:RadTabItem>
 <telerik:RadTabItem Header="Dictionary">
 <telerik:RadHtmlPlaceholder Tag="Dictionary"
 SourceUrl="http://www.dictionary.com"
 UrlLoaded="RadHtmlPlaceholder_UrlLoaded" />
 </telerik:RadTabItem>
 </telerik:RadTabControl>
 <Border Background="WhiteSmoke" CornerRadius="5"
 Margin="5" Padding="5" BorderThickness="1"
 BorderBrush="LightGray">
 <TextBlock x:Name="tbStatus" FontSize="12" />
 </Border>
 </StackPanel>
</telerik:RadWindow>

In this example, the code-behind has to deal with multiple place holders, so a little extra code is required.
We first need to get a RadHtmlPlaceholder reference before calling InvalidateArrange(). The handler gets a
reference to the RadWindow, then drills down to its content (a StackPanel), then uses the ChildrenOfType()
extension method to get the RadTabControl. Then the event handler finally gets the RadHtmlPlaceholder
from the RadTabControl SelectedContent property. Your coding requirements may or may not be as
involved, but the key point is to get a reference to the place holder and call the InvalidateArrange() method.

Private Sub winHtml_LocationChanged(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim stackPanel As StackPanel = _
TryCast((TryCast(sender, RadWindow)).Content, StackPanel)
 Dim tabControl As RadTabControl = _
stackPanel.ChildrenOfType(Of RadTabControl)().FirstOrDefault()
 If tabControl IsNot Nothing Then
 Dim placeHolder As RadHtmlPlaceholder = _
TryCast(tabControl.SelectedContent, RadHtmlPlaceholder)
 placeHolder.InvalidateArrange()
 End If
End Sub

HTMLPlaceholder 1007

© 2011 Telerik Inc.

private void winHtml_LocationChanged(object sender, RoutedEventArgs e)
{
 StackPanel stackPanel = (sender as RadWindow).Content as StackPanel;
 RadTabControl tabControl =
 stackPanel.ChildrenOfType<RadTabControl>().FirstOrDefault();
 if (tabControl != null)
 {
 RadHtmlPlaceholder placeHolder = tabControl.SelectedContent as RadHtmlPlaceholder;
 placeHolder.InvalidateArrange();
 }
}

Now when you move the window, the contents appear to track correctly.

 From the Forums...

Question: The RadHtmlPlaceholder is always on top of everything. What problems might this
cause and can this be changed?

Answer: This question has multiple permutations, such as why doesn't the place holder follow
the window, or why doesn't the place holder handle z-order relative to other Silverlight controls
as I expect, or why doesn't a container for a place holder resize as expected. The cause for all of
these behaviors has the same root. The content of the RadHtmlPlaceholder is rendered in an
IFrame element, which floats above everything else on the page. If the RadHtmlPlaceholder
content overlaps with another element, that element will always be covered. The IFrame can also
prevent Silverlight controls that it covers from receiving mouse events.

RadControls for Silverlight1008

© 2011 Telerik Inc.

25.4.2 Events

RadHtmlPlaceholder has a single event, UrlLoaded that fires, not when the page first shows, but when all
the content has loaded to the page. The example below has two RadHtmlPlaceholder controls hooked up to
the same UrlLoaded event. Sender is the RadHtmlPlaceholder that triggered the event. In this example the
title is placed in the Tag property of the RadHtmlPlaceholder.

<StackPanel>
 <telerik:RadTabControl>
 <telerik:RadTabItem Header="Wiki">
 <telerik:RadHtmlPlaceholder Tag="Wiki"
 SourceUrl="http://www.wikipedia.org"
 UrlLoaded="RadHtmlPlaceholder_UrlLoaded" />
 </telerik:RadTabItem>
 <telerik:RadTabItem Header="Dictionary">
 <telerik:RadHtmlPlaceholder Tag="Dictionary"
 SourceUrl="http://www.dictionary.com"
 UrlLoaded="RadHtmlPlaceholder_UrlLoaded" />
 </telerik:RadTabItem>
 </telerik:RadTabControl>
 <Border Background="WhiteSmoke" CornerRadius="5" Margin="5" Padding="5"
 BorderThickness="1" BorderBrush="LightGray">
 <TextBlock x:Name="tbStatus" FontSize="12" />
 </Border>
</StackPanel>

HTMLPlaceholder 1009

© 2011 Telerik Inc.

Private Sub RadHtmlPlaceholder_UrlLoaded(_
ByVal sender As Object, ByVal e As EventArgs)
 Dim title As String = _
(TryCast(sender, RadHtmlPlaceholder)).Tag.ToString()
 tbStatus.Text = title & " has finished loading"
End Sub

private void RadHtmlPlaceholder_UrlLoaded(object sender, EventArgs e)
{
 string title = (sender as RadHtmlPlaceholder).Tag.ToString();
 tbStatus.Text = title + " has finished loading";
}

25.4.3 Sizing and Positioning

Use standard Silverlight properties to position and size the place holder control: Height, Width, MaxWidth,
MaxHeight, MinWidth, MinHeight, VerticalAlignment and HorizontalAlignment. Scrollbars are added
automatically for content that does not fit the control.

RadControls for Silverlight1010

© 2011 Telerik Inc.

25.4.4 Interaction with the Page

You can make calls in both directions between the page that hosts the Silverlight plugin and the Silverlight
code itself. From the Silverlight client you can trigger Javascript functions on a page from managed code.
Javascript functions can also call managed code in your Silverlight application. This is especially powerful
because you get the full might of managed code accessed from Javascript, without a trip to the server.

The example explained below has a Silverlight button "Call Javascript from Managed Code" at the top of the
page. Below that are two place holder controls. The top place holder, bordered in green in the screenshot
below, loads a local page "MyPage.htm" stored with the host ASP.NET application. It contains the banner
"Enter a new Url", a text input element and a button input element "Call Managed Code".

When the "Call Javascript from Managed Code" button is clicked, code from inside the Silverlight application
calls a Javascript function that sets the text input element. When the "Call Managed Code" button is
clicked, a Javascript function is fired that gets a reference to a "Scriptable" method in the Silverlight
application, that in turn sets the URL of the second place holder control (bordered in blue). Using these two
basic techniques you can interact between the page, the managed code and ultimately, between HTML
elements in multiple place holders.

HTMLPlaceholder 1011

© 2011 Telerik Inc.

25.4.4.1 Calling Javascript from Managed Code

The general steps to call Javascript from managed code in your Silverlight client application are:

1. Get the HtmlPresenter property from the place holder control and index into the first element of the
Children collection. This will be your reference to the "iframe" that contains the HTML displayed in the
place holder.

2. Set the Id attribute of the iframe element so we can get at it easily from a Javascript statement.

3. Use HtmlPage.Window.Eval() from managed code to call Javascript.

The "MyPage.html" file lives at the root of the host ASP.NET application. For the managed-code-to-
Javascript piece, we're interested in the setUrlText() Javascript method and the "tbUrl" input element. Walk
through this markup briefly before reading about how to call the Javscript function from managed code.

<html>
<head>
 <title>Test Page</title>

 <script type="text/javascript">
 function setUrlText(text) {
 var tbUrl = document.getElementById("tbUrl");
 if (tbUrl) {
 tbUrl.value = text;
 }
 }

 //. . .
 </script>

</head>
<body>
 <h1>
 Enter a new Url</h1>
 <input id="tbUrl" />
 . . .
</body>
</html>

The example below calls a custom Javascript method added to the page called "setUrlText()".

RadControls for Silverlight1012

© 2011 Telerik Inc.

' Get the IFrame from the HtmlPresenter
Dim iframe As HtmlElement = _
CType(phUrl.HtmlPresenter.Children(0), HtmlElement)
' Set an ID to the IFrame so that can be used when calling the javascript
iframe.Id = "myIFrame"
' Format the code to be executed, i.e. call javascript setUrlText()
' and pass the place holder source url
Dim format As String = _
"document.getElementById('myIFrame').contentWindow.{0}('{1}');"
Dim code As String = _
String.Format(format, "setUrlText", phTarget.SourceUrl.OriginalString)
' call the javascript code
HtmlPage.Window.Eval(code)

// Get the IFrame from the HtmlPresenter
HtmlElement iframe = (HtmlElement)phUrl.HtmlPresenter.Children[0];
// Set an ID to the IFrame so that can be used when calling the javascript
iframe.Id = "myIFrame";
// Format the code to be executed, i.e. call javascript setUrlText()
// and pass the place holder source url
string format =
 "document.getElementById('myIFrame').contentWindow.{0}('{1}');";
string code =
 String.Format(format, "setUrlText", phTarget.SourceUrl.OriginalString);
// call the javascript code
HtmlPage.Window.Eval(code);

HTMLPlaceholder 1013

© 2011 Telerik Inc.

 Notes

The "iframe" variable is an HtmlElement that represents an HTML element in the Document
Object Model (DOM) of the page. The HtmlElement class lets you get at the parent HtmlElement,
CssClass, Id, tag name, and has a series of methods that match counterparts you would normally
call from Javascript directly. SetAttribute() and SetStyleAttribute() methods are particularly
useful for setting all the properties of an element. For example, you could call SetStyleAttribute()
to set scroll bar settings for the place holder control:

' Get the IFrame from the HtmlPresenter
Dim iframe As HtmlElement = CType(phUrl.HtmlPresenter.Children(0), HtmlElement)

' set the style that controls scroll bar visib ility
iframe.SetStyleAttribute("overflow", "auto")

// Get the IFrame from the HtmlPresenter
HtmlElement iframe = (HtmlElement)phUrl.HtmlPresenter.Children[0];

// set the style that controls scroll bar visib ility
iframe.SetStyleAttribute("overflow", "auto");

RadControls for Silverlight1014

© 2011 Telerik Inc.

25.4.4.2 Calling Managed Code from Javascript

This second example reverses the direction of communication. Now we're going to kick off a managed
"Scriptable" method from Javascript. The basic steps are:

1) In managed code, identify one or more methods as "scriptable"

2) Register the managed object for access in Javascript.

3) In the ASP.NET host application, add an "id" attribute to the Silverlight host control object so we can
access it in Javascript.

4) Add a Javascript method that gets references to the Silverlight control and the registered managed
object. Use the Javascript managed object reference to call one of the Scriptable methods.

Mark Methods as Scriptable

Mark the methods you will need to access from Javascript with the ScriptableMember attribute. You will
need to add a reference to the System.Windows.Browser namespace to support ScriptableMember
usage. The method below takes a string and sets the SourceUrl of a place holder.

<ScriptableMember()> _
Public Sub SetPlaceholderUrl(ByVal url As String)
 phTarget.SourceUrl = New Uri(url, UriKind.RelativeOrAbsolute)
End Sub

[ScriptableMember()]
public void SetPlaceholderUrl(string url)
{
 phTarget.SourceUrl = new Uri(url, UriKind.RelativeOrAbsolute);
}

 Gotcha!

Don't forget to make your scriptable methods public or you will get the error "Object does not
have a ScriptableAttribute or any scriptable members".

Register the Managed Object for Access in Javascript

Call the HtmlPage.RegisterScriptableObject() method, pass it a name that can be used later in
Javascript and an instance of the object it represents. Note the "MySilverlightPage" name for use later in
Javascript.

HTMLPlaceholder 1015

© 2011 Telerik Inc.

Public Sub New()

InitializeComponent()

' register a managed object for access by javascript

HtmlPage.RegisterScriptableObject("MySilverlightPage", Me)
End Sub

public MainPage()
{
 InitializeComponent();
 // register a managed object for access by javascript
 HtmlPage.RegisterScriptableObject("MySilverlightPage", this);
}

Identify the Silverlight Control Object

Locate the host ASP.NET application (the same place where you set the "windowless" parameter that
enables place holders), and add an "id" attribute to the Silverlight control object. Here it's named
"silverlightControl".

<body>
 <form id="form1" runat="server" style="height:100%">
 <div id="silverlightControlHost">
 <object id="silverlightControl" <-- . . .

Use Javascript to Call Scriptable Methods

As demonstrated in the code below, create a Javascript function that uses the scriptable method.

Get a reference to the Silverlight control object, using the "id" attribute you set in the previous step. From
there, drill down through the content to get the object registered as "MySilverlightPage" and call the
scriptable method from it.

The example below also hooks up the Javascript function to the "onclick" event of a button.

RadControls for Silverlight1016

© 2011 Telerik Inc.

<html>
<head>
 <title>Test Page</title>

 <script type="text/javascript">
 //. . .
 function callManagedCode() {
 // get the textbox text from this page
 var tbUrl = document.getElementById("tbUrl");
 var text = tbUrl.value;

 // get the silverlight control ob ject from the host page
 // drill down through the content to get the registered object
 // "MySilverlightPage" and call its scriptab le methods
 var silverlightControl =
 parent.document.getElementById("silverlightControl");
 silverlightControl.Content.MySilverlightPage.SetPlaceholderUrl(text);
 }
 </script>

</head>
<body>
 <h1>
 Enter a new Url</h1>
 <input id="tbUrl" />
 <input id="btnUrl" type="button" onclick="javascript:callManagedCode()"
 value="Call Managed Code" />
</body>
</html>

HTMLPlaceholder 1017

© 2011 Telerik Inc.

25.5 Binding

In this walk through you will bind a RadTabControl to an ObservableCollection of "Article", where each
article will have a "Title" and "SourceUri". The content of each tab will contain a RadHtmlPlaceHolder bound
to "SourceUri".

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

c) Telerik.Windows.Themes.Vista

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references for Telerik.Windows.Controls and Telerik.Windows.Navigation
namespaces. Also add a "Loaded" event handler to the UserControl element.

xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"

3) Add a UserControl.Resources section that defines the RadTabControl layout so that each tab will
contain a bound RadHtmlPlaceholder. Name the resource "TabHtmlHolderStyle" so we can reference it
later from the RadTabControl definition.

Most of the work is in this style definition, so take a minute to review how this is assembled. The
HeaderTemplate contains only a text block bound to the "Title" property of our custom "Article" object.
The ContentTemplate is the area below the tab where the RadHtmlPlaceholder lives. The place holder
SourceUrl property is bound to the "Article" object "SourceUri" property.

RadControls for Silverlight1018

© 2011 Telerik Inc.

<UserControl.Resources>
 <Style x:Key="TabHtmlHolderStyle"
 TargetType="telerik:RadTabItem">
 <Setter Property="HeaderTemplate">
 <Setter.Value>
 <DataTemplate>
 <TextBlock Text="{Binding Title}" Margin="5" />
 </DataTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="ContentTemplate">
 <Setter.Value>
 <DataTemplate>
 <telerik:RadHtmlPlaceholder x:Name="phArticle"
 SourceUrl="{Binding SourceUri}" />
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</UserControl.Resources>

4) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags. The RadTabControl added to the grid should be named "tbArticles" so we can
reference it in code later when we want to assign data. Set the VerticalAlignment property to "Top" and
point the ItemContainerStyle back to our "TabHtmlHolderStyle".

<Grid x:Name="LayoutRoot">
 <telerik:RadTabControl x:Name="tbArticles"
 VerticalAlignment="Top"
 ItemContainerStyle="{StaticResource TabHtmlHolderStyle" />
</Grid>

Code Behind

1) In the Solution Explorer, add a new class file and populate it with the code below. This will define the
"Article" INotifyPropertyChanged implementation and the "Articles" ObservableCollection.

Public Class Articles
 Inherits ObservableCollection(Of Article)
 Public Sub New()
 Me.Add(New Article() With {.Title = "Wikipedia", .SourceUri = New Uri("http://www.wikipedia.org")})
 Me.Add(New Article() With {.Title = "Dictionary", .SourceUri = New Uri("http://www.dictionary.com")})
 Me.Add(New Article() With {.Title = "Google Translation Services", .SourceUri = New Uri("http://translate.google.com/?hl=en#")})
 Me.Add(New Article() With {.Title = "Thesaurus", .SourceUri = New Uri("http://thesaurus.reference.com/")})
 End Sub
End Class

HTMLPlaceholder 1019

© 2011 Telerik Inc.

Public Class Article
 Implements INotifyPropertyChanged
 Private title_Renamed As String
 Public Property Title() As String
 Get
 Return title_Renamed
 End Get

 Set(ByVal value As String)
 If title_Renamed <> value Then
 title_Renamed = value
 OnPropertyChanged("Title")
 End If
 End Set
 End Property

 Private sourceUri_Renamed As Uri
 Public Property SourceUri() As Uri
 Get
 Return sourceUri_Renamed
 End Get

 Set(ByVal value As Uri)
 If sourceUri_Renamed <> value Then
 sourceUri_Renamed = value
 OnPropertyChanged("SourceUri")
 End If
 End Set
 End Property

 Public Sub OnPropertyChanged(ByVal propertyName As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
 End Sub

 Public Event PropertyChanged As PropertyChangedEventHandler

End Class

public class Articles: ObservableCollection<Article>
{
 public Articles()
 {
 this.Add(new Article()
 {
 Title = "Wikipedia",
 SourceUri = new Uri("http://www.wikipedia.org")
 });
 this.Add(new Article()
 {
 Title = "Telerik",
 SourceUri = new Uri("http://www.telerik.com")

RadControls for Silverlight1020

© 2011 Telerik Inc.

 });
 this.Add(new Article()
 {
 Title = "Google Translation Services",
 SourceUri = new Uri("http://translate.google.com/?hl=en#")
 });
 this.Add(new Article()
 {
 Title = "Thesaurus",
 SourceUri = new Uri("http://thesaurus.reference.com/")
 });
 }
}

public class Article : INotifyPropertyChanged
{
 private string title;
 public string Title
 {
 get
 {
 return title;
 }

 set
 {
 if (title != value)
 {
 title = value;
 OnPropertyChanged("Title");
 }
 }
 }

 private Uri sourceUri;
 public Uri SourceUri
 {
 get
 {
 return sourceUri;
 }

 set
 {
 if (sourceUri != value)
 {
 sourceUri = value;
 OnPropertyChanged("SourceUri");
 }
 }
 }

 public void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)

HTMLPlaceholder 1021

© 2011 Telerik Inc.

 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

}

2) In the code-behind for the page, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) Telerik.Windows.Controls

3) In the constructor, before the InitializeComponent() method call, create a new VistaTheme instance
and set the IsApplicationTheme property to True. Be sure to leave the InitializeComponent() method
call in place.

Public Sub New()
 CType(New VistaTheme(), VistaTheme).IsApplicationTheme = True
 InitializeComponent()
End Sub

public MainPage()
{
 new VistaTheme().IsApplicationTheme = true;
 InitializeComponent();
}

4) In the UserControl Loaded event handler, create an instance of the Articles object and assign it to the
tab control ItemsSource property.

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 tbArticles.ItemsSource = New Articles()
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 tbArticles.ItemsSource = new Articles();
}

Run The Application

RadControls for Silverlight1022

© 2011 Telerik Inc.

Press F5 to run the application. The web page should look something like the screenshot below.

25.6 Wrap Up

In this chapter you learned how RadHtmlPlaceholder is used to host HTML content in Silverlight
applications. First you added custom HTML content to a place holder to see how it renders, then you used
an external web page. You learned how to host place holders in the page, in other controls and within
RadWindows. You also learned how to respond to events when a page loads into the place holder. You
learned about interaction between Javascript and managed code. Finally, you learned how to bind a series
of place holder controls within an ItemsControl to custom objects.

Part

XXVI
MediaPlayer

RadControls for Silverlight1024

© 2011 Telerik Inc.

26 MediaPlayer

26.1 Objectives

In this chapter you will learn how to incorporate media into your Silverlight applications. First you will build a
play list using static XAML and in the process learn how to define RadMediaItem elements. You will learn
about the media types supported by the media player, how to work with video size and full screen, how to
add chapters to a media item and about the available events for the media player. You will construct an
application where the media player consumes data from an RSS service including the titles, descriptions,
images and the video itself. Finally, you will learn how to create a play list with a unique appearance using a
custom template.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\MediaPlayer\MediaPlayer.sln.

26.2 Overview

RadMediaPlayer makes it easy to incorporate rich media content to your web site. Create your own fixed
play lists, create play lists in code or bind the play list for complete flexibility. You can set chapters at
custom intervals for intuitive navigation. Multiple size and stretch options let you control media proportions
while the built-in full-screen mode lets you make maximum use of the screen real-estate.

RadMediaPlayer features include:

Set Chapters

Create Playlists

Set Video Size

Full Screen Mode

MediaPlayer 1025

© 2011 Telerik Inc.

26.3 Getting Started

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.MediaPlayer

c) Telerik.Windows.Themes.Vista

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references to the Telerik.Windows.Controls namespace in both the Telerik.
Windows.Controls and Telerik.Windows.Controls.MediaPlayer assemblies.

<UserControl
xmlns:telerik="xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>

3) Add a RadMediaPlayer from the Toolbox to the main "LayoutRoot" Grid element. The XAML should be
added between the <Grid> and </Grid> tags. Set the StyleManager.Theme to "Vista" and the
IsPlaylistVisible to "True".

<telerik:RadMediaPlayer
 telerik:StyleManager.Theme="Vista"
 IsPlaylistVisible="True">
</telerik:RadMediaPlayer>

4) Add a RadMediaItem from the Toolbox to a point inside the RadMediaPlayer element begin and end
tags and set properties:

a) ImageSource = "http://neosmart.net/blog/wp-content/uploads/microsoft-silverlight.png"

b) Title = "Adding Instant Messaging to Any Site"

c) Source = "http://msstudios.vo.llnwd.net/o21/mix08/08_WMVs/T03.wmv"

RadControls for Silverlight1026

© 2011 Telerik Inc.

 Notes

The ImageSource is the path to the image on the left. Title and Description are the text labels
displayed top and bottom right, respectively. Source is the path to the video that will play when one of
the items is clicked.

5) Add a second RadMediaItem from the Toolbox to a point just below the first RadMediaItem.

a) ImageSource = "http://neosmart.net/blog/wp-content/uploads/microsoft-silverlight.png"

b) Title = "The Dynamics Duo talk about CRM and Silverlight"

c) Source = "http://mschnlnine.vo.llnwd.net/d1/ch9/7/1/5/1/2/4/DynamicsDuoCRMSilverlight_ch9.wmv"

The RadMediaPlayer and RadMediaItem elements together should now look like the example below.

<telerik:RadMediaPlayer x:Name="mediaPlayer"
 telerik:StyleManager.Theme="Vista"
 IsPlaylistVisible="True" >
 <telerik:RadMediaItem
 ImageSource="http://neosmart.net/blog/wp-content/uploads/microsoft-silverlight.png"
 Title="Adding Instant Messaging to Any Site"
 Source="http://msstudios.vo.llnwd.net/o21/mix08/08_WMVs/T03.wmv">
 </telerik:RadMediaItem>
 <telerik:RadMediaItem
 ImageSource="http://neosmart.net/blog/wp-content/uploads/microsoft-silverlight.png"
 Title="The Dynamics Duo talk about CRM and Silverlight"
 Source="http://mschnlnine.vo.llnwd.net/d1/ch9/7/1/5/1/2/4/DynamicsDuoCRMSilverlight_ch9.wmv">
 </telerik:RadMediaItem>
</telerik:RadMediaPlayer>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

MediaPlayer 1027

© 2011 Telerik Inc.

 Gotcha!

Be sure to run the application from the ASP.NET host application. In other words, the startup
project should be the ASP.NET host application, not the Silverlight application itself. If you run
with the Silverlight application, the application will run, but the images will not display and the
WMV files will not show.

Test Application Features

1. The play list should display automatically.

2. The images and titles should display in the play list.

3. Clicking an item in the play list should trigger the media player to stream and show the video.

RadControls for Silverlight1028

© 2011 Telerik Inc.

26.4 Control Details

Supported Media Types

RadMediaPlayer wraps the Silverlight MediaElement control. The following is a list of supported video media
types. See http://msdn.microsoft.com/en-us/library/cc189080(VS.95).aspx for more complete information.

Raw Video

YV12 - YCrCb(4:2:0)

RGBA - 32 bit Alpha Red, Green, Blue

WMV1: Windows Media Video 7

WMV2: Windows Media Video 8

WMV3: Windows Media Video 9

Supports Simple and Main Profiles.

Supports only progressive (non-interlaced) content.

WMVA: Windows Media Video Advanced Profile, non-VC-1

WVC1: Windows Media Video Advanced Profile, VC-1

Supports Advanced Profile.

Supports only progressive (non-interlaced) content.

H264 (ITU-T H.264 / ISO MPEG-4 AVC)

Chapters

Videos can be split up into arbitrary time periods called "Chapters". Each chapter has a Position and Title.
The position is a string property in the format of "00:10:00" in the format of hours : minutes : seconds. Title
is a string that is displayed to describe the chapter.

http://msdn.microsoft.com/en-us/library/cc189080(VS.95).aspx

MediaPlayer 1029

© 2011 Telerik Inc.

Moving the mouse over the timeline causes a panel with the chapter titles to display. Clicking on a title
moves the current marker on the timeline to the beginning of that chapter. You can also navigate chapters
by clicking the forward and back buttons.

The markup for chapters shown in the screenshots is defined below.

<telerik:RadMediaPlayer Width="600" Height="400"
 Margin="20" telerik:StyleManager.Theme="Office_Silver">
 <telerik:RadMediaItem
 Source="http://mschnlnine.vo.llnwd.net/d1/ch9/7/1/5/1/2/4/DynamicsDuoCRMSilverlight_ch9.wmv"
 ImageSource="http://mschnlnine.vo.llnwd.net/d1/ch9/7/1/5/1/2/4/DynamicsDuoCRMSilverlight_small_ch9.jpg"
 Title="The Dynamics Duo talk about CRM and Silverlight">
 <telerik:RadMediaChapter Position="00:05:00"
 Title="5 min. has elapsed" />
 <telerik:RadMediaChapter Position="00:10:00"
 Title="10 min. has elapsed" />
 <telerik:RadMediaChapter Position="00:15:00"
 Title="15 min. has elapsed" />
 </telerik:RadMediaItem>
</telerik:RadMediaPlayer>

Video Size and Proportion

RadMediaPlayer allows you to display the media content in fullscreen mode by internally changing the
application fullscreen mode. You can easily toggle the mode by pressing the FullScreen button or changing
the IsFullScreen property.

RadControls for Silverlight1030

© 2011 Telerik Inc.

 Gotcha!

The fullscreen mode can only be entered after a user triggered action.

Since the fullscreen functionality may be application dependant, you could customize it by handling the
FullScreenChanged event, that is raised when the RadMediaPlayer changes its fullscreen mode.

Another way to get at the dimensions of the area where the video plays is the VideoStretch, VideoWidth
and VideoHeight properties. Here are a few screenshots that will give you an idea of how these settings
interact. Be aware that these are properties of the RadMediaItem, not the player. You can use the
RadMediaPlayer.SelectedItem to get access to the selected MediaItem.

None

Fill

Uniform

MediaPlayer 1031

© 2011 Telerik Inc.

UniformToFill

Events

CurrentStateChanged: Use this event to find out when the media player CurrentState property
changes. CurrentState is a MediaElementState enumeration and can be Closed, Opening, Buffering,
Playing, Paused, Stopped, Individualizing or AquiringLicense.

ChapterReached: This event fires when the timeline progress to a new chapter. Use the ChapterTitle
property to get the text for the current media item and chapter. You can also use the
MediaElementTotalSeconds property to get the current progress through the timeline.

MediaOpened fires when the video first opens, DownloadProgressChanged then fires as the current
media item progressively downloads and finally, the MediaEnded event fires as the timeline completes.

RadControls for Silverlight1032

© 2011 Telerik Inc.

26.5 Binding

In this walk through we will use an RSS feed to populate screen elements, the play list text, images and the
individual videos. We will not need to provide any custom templating because we will transform our data to a
collection of RadMediaItem before binding to the media player ItemsSource property. This particular site,
HubbleSite.org, at the time of this writing has a Crossdomain.xml policy file in place, so we should be able
to access all media directly.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.MediaPlayer

c) Telerik.Windows.Themes.Vista

XAML Editing

1) Open MainPage.xaml for editing.

2) Add XML namespace references for the following assemblies to the UserControl element.

<UserControl
xmlns:telerik="http://schemas.telerik.com/2008/xaml/presentation"
. . .>

3) Locate the TwilightBlueTheme control from the "Silverlight XAML Controls" tab of the Toolbox and
drop it between the begin and end tags of the main "LayoutRoot" grid.

This will style the background and other elements with a gradient blue that should blend nicely with the
Telerik "Vista" theme of the media player to be added later.

<Grid x:Name="LayoutRoot">
 <twilightBlue:TwilightBlueTheme>
 </twilightBlue:TwilightBlueTheme>
</Grid>

4) Inside the "TwilightBlueTheme" element, add the XAML below. This XAML contains a stack panel
arranged vertically. We will use the XAML comments in following steps to include additional elements.

MediaPlayer 1033

© 2011 Telerik Inc.

<StackPanel>
 <!--logo and title-->
 <!--media player-->
</StackPanel>

5) Replace the "<!--logo and title-->" comment with the XAML below. The XAML includes a new
StackPanel element arranged horizontally. Inside the stack panel, is a HyperlinkButton that navigates
to the site and a tool tip that displays a short introduction to the site. Inside the HyperlinkButton, an
Image control displays the logo image for the site. Below the HyperlinkButton a text block displays the
title of the site.

<!--logo and title-->
<StackPanel x:Name="spTitle" Orientation="Horizontal">
 <HyperlinkButton Margin="10"
 NavigateUri="{Binding LinkUrl}"
 ToolTipService.ToolTip="{Binding Description}"
 TargetName="_blank">
 <Image Source="{Binding LogoUrl}"></Image>
 </HyperlinkButton>
 <TextBlock Text="{Binding Title}" FontSize="30"
 Margin="10" />
</StackPanel>

6) Drag a RadMediaPlayer control from the Toolbox to a point below the "<!--media player-->" comment.
Set the name to be "mediaPlayer" so that we can access the control later in code. Set the
IsPlaylistVisible property to "True" and Height to "500". Add an event handler for the Loaded event.

<!--media player-->
<telerik:RadMediaPlayer x:Name="mediaPlayer"
 Loaded="mediaPlayer_Loaded"
 IsPlaylistVisible="True" Height="500">
</telerik:RadMediaPlayer>

Understanding the RSS Data

1) To understand what's happening during the coding phase of this project, you should take a look at the
RSS feed XML and understand the structure of the data. Using Internet Explorer, navigate to the page
below and save the page as XML:

http://hubblesite.org/explore_astronomy/hubbles_universe/rss.php?feed=windows-320

RadControls for Silverlight1034

© 2011 Telerik Inc.

2) The screenshot below shows a small sample from the top of the file. There's a node at the top called
"channel" that contains a description for the site, a "title" and an "image" that contains a path to the logo
for the site. Below that are "N" number of "item" tags, each containing one article's worth of information in
a "description" tag. Each article has text describing the article, a link to an image and a link to a video in
"*.wmv" format.

The "gotcha" is that the description node contains "CDATA", i.e. free formatted data. In this case the
CDATA is HTML. We need to parse the html to get the description, image and video. We will use regular
expressions to make this job relatively painless, but will not go into detail on how regular expressions
work.

Extract RSS Data

1) Add a new class file to the project and name the file "HubbleItem.cs". Define the class using the code
below.

This class will be a simple container for each that will be shown later in the play list of the media player.

MediaPlayer 1035

© 2011 Telerik Inc.

Public Class HubbleItem
 Private privateTitle As String
 Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
 End Property
 Private privateVideoUri As Uri
 Public Property VideoUri() As Uri
 Get
 Return privateVideoUri
 End Get
 Set(ByVal value As Uri)
 privateVideoUri = value
 End Set
 End Property
 Private privateImageUri As Uri
 Public Property ImageUri() As Uri
 Get
 Return privateImageUri
 End Get
 Set(ByVal value As Uri)
 privateImageUri = value
 End Set
 End Property
End Class

public class HubbleItem
{
 public string Title { get; set; }
 public Uri VideoUri { get; set; }
 public Uri ImageUri { get; set; }
}

2) Add a new class file to the project and name the file "HubbleInfo.cs".

This class will contain header information about the Hubble site and a collection of "HubbleItem".

3) In the "HubbleInfo.cs" class file, add references to the "Imports" (VB) or "using" (C#) section of the code
for these namespaces:

a) System.Collections.Generic

b) System.Linq

c) System.Net

d) System.Text.RegularExpressions

RadControls for Silverlight1036

© 2011 Telerik Inc.

e) System.Xml.Linq (supports XDocument, XElement)

4) Add a delegate "LoadedEventHandler" to the top of the class file. This will be used later to define a
"Loaded" event.

Public Delegate Sub LoadedEventHandler(_
ByVal sender As Object, ByVal e As EventArgs)

public delegate void LoadedEventHandler(object sender, EventArgs e);

5) Add the code below to the "HubbleInfo" class to define a series of string constants.

The constants include a URL for the Hubble site, the Url for the RSS feed on the Hubble site and two
patterns to be used later in regular expressions.

Private Const hubbleUrl As String = "http://hubblesite.org"
Private Const feedUrl As String = hubbleUrl & _
"/explore_astronomy/hubbles_universe/rss.php?feed=windows-320"
Private Const urlTagPattern As String = _
"http://([\w+?\.\w+])+([a-zA-Z0-9\~\!\@\#\$\%\ \̂&" & _
"*\(\)_\-\=\+\\\/\?\.\:\;\'\,]*)?"
Private Const tagPattern As String = "<p>\s*(.+?)\s*</p>"

private const string hubbleUrl = "http://hubblesite.org";
private const string feedUrl = hubbleUrl +
 "/explore_astronomy/hubbles_universe/rss.php?feed=windows-320";
private const string urlTagPattern =
 "http://([\\w+?\\.\\w+])+([a-zA-Z0-9\\~\\!\\@\\#\\$\\%\\ \̂\&" +
 "*\\(\\)_\\-\\=\\+\\\\\\/\\?\\.\\:\\;\\'\\,]*)?";
private const string tagPattern = @"<p>\s*(.+?)\s*</p>";

6) Add the code below to the HubbleInfo class. It should include an IEnumerable collection of HubbleItem, a
title, description and Uri's to the site and site logo.

MediaPlayer 1037

© 2011 Telerik Inc.

Private privateItems As IEnumerable(Of HubbleItem)
Public Property Items() As IEnumerable(Of HubbleItem)
 Get
 Return privateItems
 End Get
 Set(ByVal value As IEnumerable(Of HubbleItem))
 privateItems = value
 End Set
End Property
Private privateTitle As String
Public Property Title() As String
 Get
 Return privateTitle
 End Get
 Set(ByVal value As String)
 privateTitle = value
 End Set
End Property
Private privateDescription As String
Public Property Description() As String
 Get
 Return privateDescription
 End Get
 Set(ByVal value As String)
 privateDescription = value
 End Set
End Property
Private privateLogoUrl As Uri
Public Property LogoUrl() As Uri
 Get
 Return privateLogoUrl
 End Get
 Set(ByVal value As Uri)
 privateLogoUrl = value
 End Set
End Property
Private privateLinkUrl As Uri
Public Property LinkUrl() As Uri
 Get
 Return privateLinkUrl
 End Get
 Set(ByVal value As Uri)
 privateLinkUrl = value
 End Set
End Property

RadControls for Silverlight1038

© 2011 Telerik Inc.

public IEnumerable<HubbleItem> Items { get; set; }
public string Title { get; set; }
public string Description { get; set; }
public Uri LogoUrl { get; set; }
public Uri LinkUrl { get; set; }

7) Declare a Loaded event and OnLoaded() method to trigger the event.

Public Event Loaded As LoadedEventHandler

Protected Overridable Sub OnLoaded()
 RaiseEvent Loaded(Me, New EventArgs())
End Sub

public event LoadedEventHandler Loaded;

protected virtual void OnLoaded()
{
 if (Loaded != null)
 Loaded(this, new EventArgs());
}

8) Define a Load() method using the code below. The method creates a WebClient instance, sets up a
DownloadStringCompleted event handler and calls the DownloadStringAsync() method. Pass the
"feedUrl" constant to the Uri constructor. The call will download the RSS XML from the Hubble site.

Public Sub Load()
 Dim client As New WebClient()
 AddHandler client.DownloadStringCompleted, _
AddressOf client_DownloadStringCompleted
 client.DownloadStringAsync(New Uri(feedUrl))
End Sub

MediaPlayer 1039

© 2011 Telerik Inc.

public void Load()
{
 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(feedUrl));
}

9) Define the DownloadStringCompleted event handler using the code below.

The "e.Result" here is the RSS feed as an XML string. Use the XDocument Parse() method to create an
XDocument. From there, get the top level elements "channel", "image" and "description". Populate
HubbleInfo properties using element values. Call the GetHubbleItems private method (to be written
later). Finally, trigger the Loaded event by calling the OnLoaded() method.

Private Sub client_DownloadStringCompleted(ByVal sender As Object, _
ByVal e As DownloadStringCompletedEventArgs)
 Dim document As XDocument = XDocument.Parse(e.Result)

 ' get the top level nodes of the document
 Dim channel = document.Root.Element("channel")
 Dim image = channel.Element("image")
 Dim description = channel.Element("description")

 ' populate HubbleInfo properties
 Me.LogoUrl = New Uri(image.Element("url").Value, UriKind.Absolute)
 Me.LinkUrl = New Uri(hubbleUrl, UriKind.Absolute)
 Me.Title = image.Element("title").Value.ToString()
 Me.Description = description.Value.Replace(".", "." + Environment.NewLine).Trim()

 ' populate items collection
 Me.Items = GetHubbleItems(channel)

 ' notify consumer that data is ready
 OnLoaded()

End Sub

RadControls for Silverlight1040

© 2011 Telerik Inc.

void client_DownloadStringCompleted(object sender,
DownloadStringCompletedEventArgs e)
{
 XDocument document = XDocument.Parse(e.Result);

 // get the top level nodes of the document
 var channel = document.Root.Element("channel");
 var image = channel.Element("image");
 var description = channel.Element("description");

 // populate HubbleInfo properties
 this.LogoUrl = new Uri(image.Element("url").Value, UriKind.Absolute);
 this.LinkUrl = new Uri(hubbleUrl, UriKind.Absolute);
 this.Title = image.Element("title").Value.ToString();
 this.Description = description.Value.Replace(".", "." + Environment.NewLine).Trim();

 // populate items collection
 this.Items = GetHubbleItems(channel);

 // notify consumer that data is ready
 OnLoaded();
}

10)Create a new method GetHubbleItems that takes an XElement as a parameter and returns an
IEnumerable of HubbleItem.

This method is primarily a LINQ expression that extracts "item" elements and populates HubbleItem
objects. The title is taken from the element value of the same name. A series of LINQ "let" statements
extract "CData" data from the "description" element, then uses Regex to get the remaining detail. Regex
returns the "<p>" tag if it exists and we also strip the tags themselves and assign it to the temporary
"description" variable. Regex is also used to get the image URL. The video url is taken from the
"<enclosure><url>" elements. Finally, all this data is used to populate new HubbleItem instances.

MediaPlayer 1041

© 2011 Telerik Inc.

Private Function GetHubbleItems(ByVal channel As XElement) _
As IEnumerable(Of HubbleItem)

 Dim regxUrls As New Regex(urlTagPattern, RegexOptions.IgnoreCase)
 Dim regxPTag As New Regex(tagPattern, RegexOptions.IgnoreCase)
 Dim items = _
 From i In channel.Elements("item")_
 Let title = i.Element("title").Value_
 Let cData = TryCast(i.Element("description").FirstNode, XCData).Value_
 Let tempMatches = regxPTag.Matches(cData)_
 Let descTags = If(tempMatches.Count > 0, tempMatches(0).ToString(), [String].Empty)_
 Let description = Regex.Replace(descTags, "<.*?>", String.Empty)_
 Let imageUri = New Uri(regxUrls.Matches(cData)(0).ToString())_
 Let videoUri = New Uri(i.Element("enclosure").Attribute("url").Value)_
 Select New HubbleItem() With { _

 .Title = title, _
 .VideoUri = videoUri, _
 .ImageUri = imageUri _

 Return items

End Function

RadControls for Silverlight1042

© 2011 Telerik Inc.

private IEnumerable<HubbleItem> GetHubbleItems(XElement channel)
{
 Regex regxUrls = new Regex(urlTagPattern, RegexOptions.IgnoreCase);

Regex regxPTag = new Regex(tagPattern, RegexOptions.IgnoreCase);
// populate HubbleInfo Items collection
var items =

from i in channel.Elements("item")
let title = i.Element("title").Value
// get the CData section of the xml
let cData = (i.Element("description").FirstNode as XCData).Value
// find the description "<p>" tag in the CData
let tempMatches = regxPTag.Matches(cData)
// only retain if there are "<p>" tags
let descTags =

tempMatches.Count > 0 ? tempMatches[0].ToString() : String.Empty
// remove the <p> tags from the description
let description = Regex.Replace(descTags, "<.*?>", string.Empty)
// find the image url in the CData
let imageUri = new Uri(regxUrls.Matches(cData)[0].ToString())
// get the image url that will appear in the playlist
let videoUri = new Uri(i.Element("enclosure").Attribute("url").Value)

// add the info to a RadMediaItem
select new HubbleItem()
{

Title = title,
VideoUri = videoUri,
ImageUri = imageUri

};
return items;

}

Code Behind

1) In the code behind for the main page, verify that these namespace references exist and add them if
necessary:

a) System.Linq

b) System.Windows

c) System.Windows.Controls

d) System.Windows.Media.Imaging

e) Telerik.Windows.Controls

2) In the constructor for the page, create a new VistaTheme instance and set its IsApplicationTheme
property to "True". This should be done before the InitializeComponent() method call.

MediaPlayer 1043

© 2011 Telerik Inc.

Public Sub New()
 CType(New VistaTheme(), VistaTheme).IsApplicationTheme = True
 InitializeComponent()
End Sub

public MainPage()
{
 new VistaTheme().IsApplicationTheme = true;
 InitializeComponent();
}

3) In the media player Loaded event, create a new HubbleInfo instance, hook up its Loaded event and
call the Load() method.

Indirectly, the Load() method call will k ick off an asynchronous call from WebClient to retrieve the RSS
XML and populate the HubbleInfo object. When that completes, the custom HubbleInfo Loaded event
will fire.

Private Sub mediaPlayer_Loaded(_
ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim hubbleInfo As New HubbleInfo()
 AddHandler hubbleInfo.Loaded, AddressOf hubbleInfo_Loaded
 hubbleInfo.Load()
End Sub

void mediaPlayer_Loaded(object sender, RoutedEventArgs e)
{
 HubbleInfo hubbleInfo = new HubbleInfo();
 hubbleInfo.Loaded += new LoadedEventHandler(hubbleInfo_Loaded);
 hubbleInfo.Load();
}

4) In the Loaded event handler of the HubbleInfo object set the DataContext of the title StackPanel to the
HubbleInfo instance. Use a LINQ statement to transform the collection of HubbleItem to a collection of
RadMenuItem and assign the lot to the media player ItemsSource property.

RadControls for Silverlight1044

© 2011 Telerik Inc.

Private Sub hubbleInfo_Loaded(ByVal sender As Object, ByVal e As EventArgs)
 Dim info As HubbleInfo = TryCast(sender, HubbleInfo)
 spTitle.DataContext = info
 mediaPlayer.ItemsSource = _
 From i In info.Items _
 Select New RadMediaItem()
 Dim TempBitmapImage As BitmapImage = _
New BitmapImage(i.ImageUri), Source = i.VideoUri, ImageSource = New BitmapImage(i.ImageUri), Title = i.Title,
End Sub

void hubbleInfo_Loaded(object sender, EventArgs e)
{
 HubbleInfo info = sender as HubbleInfo;
 spTitle.DataContext = info;
 mediaPlayer.ItemsSource =
 from i in info.Items
 select new RadMediaItem()
 {
 Title = i.Title,
 ImageSource = new BitmapImage(i.ImageUri),
 Source = i.VideoUri
 };
}

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

MediaPlayer 1045

© 2011 Telerik Inc.

1) Each of the play list items should display an image on the left, and a title to the right.

2) Clicking one of the play list entries should stream and play the video.

3) The site logo and title should appear at the head of the page. Passing the mouse over the logo image
should display a tool tip. Clicking the logo should bring up a separate browser with the Hubble site.

RadControls for Silverlight1046

© 2011 Telerik Inc.

26.6 Customization

You can customize the player list by overriding the ControlTemplate of the RadMediaItem. The screenshot
below shows a slightly different arrangement of elements with a triangular "Play" button at the right of each
item.

The XAML for the template can be defined in the User.Resources or other resource area. Here the template
is named "MediaItemTemplate" for reference later in the RadMediaItem itself. The ControlTemplate contains
a series of Grids that arrange bound elements. TextBlock elements are bound to the Title and Description.
The button is named "PlayButton" to correspond to the media player element of the same name. In its own
ControlTemplate, the ContentPresenter surfaces the original button functionality so that when its clicked,
the video plays. The Path element simply creates the triangular area for the button.

MediaPlayer 1047

© 2011 Telerik Inc.

<ControlTemplate TargetType="telerik:RadMediaItem"
 x:Key="MediaItemTemplate">
 <Grid x:Name="LayoutRoot"
 MinHeight="{TemplateBinding MinHeight}">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetProperty="(UIElement.Visibility)"
 Storyboard.TargetName="MouseOverVisual">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Visible" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled">
 <Storyboard Duration="0">
 <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="Visibility"
 Storyboard.TargetName="DisabledVisual">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Visible" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name="SelectionStates">
 <VisualState x:Name="NotSelected" />
 <VisualState x:Name="Selected">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetProperty="(UIElement.Visibility)"
 Storyboard.TargetName="SelectedVisual">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Visible" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <ItemsPresenter x:Name="itemsPresenter"
 Margin="10 0"
 Opacity="0" />
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{TemplateBinding Background}"
 CornerRadius="{StaticResource MediaItem_CornerRadius}" />
 <Border x:Name="MouseOverVisual"
 BorderBrush="{StaticResource MediaItem_Border_MouseOver}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{StaticResource MediaItem_Background_MouseOver}"
 CornerRadius="{StaticResource MediaItem_CornerRadius}"
 Visibility="Collapsed" />
 <Border x:Name="SelectedVisual"
 BorderBrush="{StaticResource MediaItem_Border_Selected}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{StaticResource MediaItem_Background_Selected}"
 CornerRadius="{StaticResource MediaItem_CornerRadius}"
 Visibility="Collapsed" />
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image MaxWidth="70"
 MaxHeight="40"
 Margin="5 10 10 10"
 Source="{TemplateBinding ImageSource}" />
 <ContentPresenter ContentTemplate="{TemplateBinding HeaderTemplate}"
 Content="{TemplateBinding Header}"
 Grid.Column="1"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />
 <Button x:Name="PlayButton"
 Grid.Column="2"
 Height="30"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 Width="25">
 <Button.Template>
 <ControlTemplate>
 <Grid>
 <ContentPresenter />
 </Grid>
 </ControlTemplate>
 </Button.Template>
 <Path Fill="#FFFFFFFF"
 Stretch="Fill"
 Data="M0,0 L50,25 L50,25 L0,50 z" />
 </Button>
 </Grid>
 <Border x:Name="DisabledVisual"
 Background="{StaticResource MediaPayer_DisabledBrush}"
 CornerRadius="{StaticResource MediaItem_CornerRadius}"
 Visibility="Collapsed" />
 </Grid>
</ControlTemplate>

RadControls for Silverlight1048

© 2011 Telerik Inc.

When declaring each of the RadMediaItem elements in the RadMediaPlayer, the Template property
simply needs to be pointed at the ControlTemplate "MediaItemTemplate" resource you declared earlier.

<telerik:RadMediaItem
 Template="{StaticResource MediaItemTemplate}"
. . ./>

You can also add new RadMediaItem instances to the collection. The additional step is to extract the
ControlTemplate from the resource file and assign it to the Template property in code, as shown below.

Private Sub Button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim mediaSource As String = "http://msstudios.vo.llnwd.net/o21/mix08/08_WMVs/BCT06.wmv"
 Dim mediaItemCustomTemplate As ControlTemplate = _
TryCast(Me.Resources("MediaItemTemplate"), ControlTemplate)
 Dim item = New RadMediaItem()
 item.Template = mediaItemCustomTemplate
 item.Source = New Uri(mediaSource, UriKind.RelativeOrAbsolute)
 item.Title = "Test added Item"
 item.Description = "Decription of the item"
 radMediaPlayer1.Items.Add(item)
End Sub

private void Button_Click(object sender, RoutedEventArgs e)
{
 string mediaSource = @"http://msstudios.vo.llnwd.net/o21/mix08/08_WMVs/BCT06.wmv";
 ControlTemplate mediaItemCustomTemplate = this.Resources["MediaItemTemplate"] as ControlTemplate;
 var item = new RadMediaItem();
 item.Template = mediaItemCustomTemplate;
 item.Source = new Uri(mediaSource, UriKind.RelativeOrAbsolute);
 item.Title = "Test added Item";
 item.Description = "Decription of the item";
 radMediaPlayer1.Items.Add(item);
}

26.7 Wrap Up

In this chapter you learned how to incorporate media into your Silverlight applications. You first built a play
list using static XAML and in the process learned how to define RadMediaItem elements. You learned about
the media types supported by the media player, how to work with video size and full screen, how to add
chapters to a media item and about the available events for the media player. You constructed an
application where the media player consumed data from an RSS service including the titles, descriptions,
images and the video itself. Finally, you learned how to create a play list with a unique appearance using a
custom template.

Part

XXVII
CoverFlow

RadControls for Silverlight1050

© 2011 Telerik Inc.

27 CoverFlow

27.1 Objectives

In this chapter you will learn how to configure RadCoverFlow to include a set of items. In the process you
will use properties to control the coverflow position, the position of the "camera" in relation to the items item
rotation and item scale. You will learn how to bind lists of images, videos and Silverlight elements to the
coverflow control. Finally, you will customize the coverflow navigation panel to display a RadSlider instead of
a scrollbar.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Coverflow\Coverflow.sln.

27.2 Overview

RadCoverFlow turns media navigation into a dazzling visual experience. RadCoverFlow uses real 3D
transitions to navigate through the items. Users can flip through the list of images intuitively by selecting
images with the mouse, rolling the mouse wheel or using arrow and page keys. RadCoverFlow can display
a series of images, videos or any Silverlight element. Feel free to configure camera position, item rotations
or position.

 RadCoverFlow features include:

Item Source and Databinding

Configure Items Reflection and Camera Position

Real 3D Rotation

Customizable Navigation Template

CoverFlow 1051

© 2011 Telerik Inc.

27.3 Getting Started

Although the visual effect is stunning, RadCoverFlow is essentially a ListBox with a special ItemsPanel.
RadCoverFlow can automatically handle a series of images or videos as well as any Silverlight element. In
this walk through we will add a series of images and set the camera viewpoint.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Navigation

4) From the Solution Explorer, right-click the project and select Add > New Folder from the context
menu. Name the folder "Images".

5) Add five images named "wave1.jpg", "wave2.jpg", "wave3.jpg", "wave4.jpg" and "wave5.jpg" to the
"Images" folder. These images can be found in the "\courseware\images" directory.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add a UserControl.Resources element with a Style defined against the Image type. The style will be
applied to all images within the cover flow.

<UserControl.Resources>
 <Style x:Key="ImageStyle" TargetType="Image">
 <Setter Property="Width" Value="150" />
 <Setter Property="Height" Value="100" />
 <Setter Property="Stretch" Value="Uniform" />
 </Style>
</UserControl.Resources>

3) From the Toolbox, drag a RadCoverFlow control to a point within the main "LayoutRoot" Grid element.
Set the CameraViewpoint property to "Top"

4) Inside the RadCoverFlow element tag, add five Image elements that use "ImageStyle" and with the
following Source paths:

a) "images/wave1.jpg"

b) "images/wave2.jpg"

c) "images/wave3.jpg"

d) "images/wave4.jpg"

e) "images/wave5.jpg"

RadControls for Silverlight1052

© 2011 Telerik Inc.

<telerik:RadCoverFlow CameraViewpoint="Top">
 <Image Source="images/wave1.jpg" Style="{StaticResource ImageStyle}" />
 <Image Source="images/wave2.jpg" Style="{StaticResource ImageStyle}" />
 <Image Source="images/wave3.jpg" Style="{StaticResource ImageStyle}" />
 <Image Source="images/wave4.jpg" Style="{StaticResource ImageStyle}" />
 <Image Source="images/wave5.jpg" Style="{StaticResource ImageStyle}" />
</telerik:RadCoverFlow>

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) All five photos should be displayed.

2) Click the background photos or use the mouse wheel to navigate between images.

27.4 Control Details

27.4.1 Items

RadCoverflowItem

RadCoverflowItem is a ListBoxItem descendant that has
Boolean properties that signal if the item IsLoading (animates
the image on the left in the screenshot) and IsContentValid
(displays the image on the right).

CoverFlow 1053

© 2011 Telerik Inc.

Other than that you can work with RadCoverflowItem in much the same way as
ListBoxItem including assigning content and binding to items. RadCoverFlowItem
content can contain arrangements of elements of any arbitrary complexity. The
example here has a single RadCoverFlowItem that contains a StackPanel in its
Content element. The StackPanel holds images, text blocks and hyperlinks.

Note that the styles for this example are not included in the listing. The idea here is to show the flexibility of
RadCoverFlowItem and that you're not limited as to amount or type of content.

<telerik:RadCoverFlow>
 <telerik:RadCoverFlowItem Width="200" Height="120"
 Background="{StaticResource BackgroundBrush}">
 <telerik:RadCoverFlowItem.Content>
 <StackPanel Margin="5" HorizontalAlignment="Center" VerticalAlignment="Center">
 <StackPanel Orientation="Horizontal">
 <Image Source="images/CoverFlow.png" Style="{StaticResource ImageStyle}"
 telerik:RadCoverFlow.EnableLoadNotification="True"/>
 <TextBlock Text="RadCoverFlow" Style="{StaticResource TitleStyle}" />
 </StackPanel>
 <HyperlinkButton Content="Help"
 NavigateUri="http://www.telerik.com/help/silverlight/introduction.html"
 Style="{StaticResource HyperlinkStyle}" />
 <HyperlinkButton Content="Forums"
 NavigateUri="http://www.telerik.com/community/forums"
 Style="{StaticResource HyperlinkStyle}" />
 <HyperlinkButton Content="Product Page"
 NavigateUri="http://www.telerik.com/products/silverlight"
 Style="{StaticResource HyperlinkStyle}" />
 </StackPanel>
 </telerik:RadCoverFlowItem.Content>
 </telerik:RadCoverFlowItem>
</telerik:RadCoverFlow>

What if I want to add items for "RadColorPicker" or "RadMediaPlayer" content? To scale this up nicely you
can bind data to the cover flow and use binding expressions in an ItemTemplate.

RadControls for Silverlight1054

© 2011 Telerik Inc.

The example uses a collection of "ControlInfo" objects that contain the name, help path, logo image path,
etc. and binds the collection to the RadCoverFlow ItemsSource. These are bound to the title TextBlock,
logo image and HyperlinkButton controls in the template. For a walk through on binding to the
RadCoverFlow, see the Binding section of this chapter.

<telerik:RadCoverFlow
 ItemsSource="{StaticResource ControlInfoList}">
 <telerik:RadCoverFlow.ItemTemplate>
 <DataTemplate>
 <Border BorderBrush="{StaticResource BorderBrush}" BorderThickness="2">
 <StackPanel Style="{StaticResource PanelStyle}">
 <StackPanel Orientation="Horizontal">
 <Image Source="{Binding Logo}" Style="{StaticResource ImageStyle}" />
 <TextBlock Text="{Binding Name}" Style="{StaticResource TitleStyle}" />
 </StackPanel>
 <HyperlinkButton Content="Help" NavigateUri="{Binding Help}"
 Style="{StaticResource HyperlinkStyle}" />
 <HyperlinkButton Content="Forums" NavigateUri="{Binding Forums}"
 Style="{StaticResource HyperlinkStyle}" />
 <HyperlinkButton Content="Product Page" NavigateUri="{Binding Product}"
 Style="{StaticResource HyperlinkStyle}" />
 </StackPanel>
 </Border>
 </DataTemplate>
 </telerik:RadCoverFlow.ItemTemplate>
</telerik:RadCoverFlow>

Video

In the Getting Started section you saw that images can be added as items in the RadCoverFlow markup.
You can also load video content using the standard MediaElement as items. The MediaElement can be
played in response to selecting the item. When the video plays, even the reflection stays in sync with the
content.

CoverFlow 1055

© 2011 Telerik Inc.

The example below includes several MediaElement items with AutoPlay properties turned off. Because
CoverFlow is a ListBox descendant, you can use the SelectionChanged event to know when the user
navigates through the items.

<UserControl.Resources>
 <Style x:Key="MediaElementStyle" TargetType="MediaElement" >
 <Setter Property="Width" Value="150" />
 <Setter Property="Height" Value="100" />
 <Setter Property="AutoPlay" Value="False" />
 </Style>
</UserControl.Resources>

<StackPanel x:Name="LayoutRoot">

 <telerik:RadCoverFlow x:Name="coverFlow"
 CameraViewpoint="Top" SelectionChanged="coverFlow_SelectionChanged">
 <MediaElement Style="{StaticResource MediaElementStyle}"
 Source="http://msstudios.vo.llnwd.net/o21/mix08/08_WMVs/T03.wmv" />
 <MediaElement Style="{StaticResource MediaElementStyle}"
 Source="http://mschnlnine.vo.llnwd.net/d1/ch9/7/1/5/1/2/4/DynamicsDuoCRMSilverlight_ch9.wmv" />
 <MediaElement Style="{StaticResource MediaElementStyle}"
 Source="http://mschnlnine.vo.llnwd.net/d1/ch9/6/7/3/8/1/4/BTCRebeccaNorlander_ch9.wmv" />
 </telerik:RadCoverFlow>

</StackPanel>

The SelectionChanged event handler stops any currently playing video, starts the currently selected item
and stores the current element so we can stop the video playing the next time the event fires.

RadControls for Silverlight1056

© 2011 Telerik Inc.

Private currentElement As MediaElement = Nothing

Private Sub coverFlow_SelectionChanged(ByVal sender As Object, _
 ByVal e As SelectionChangedEventArgs)
 ' stop the last video
 If currentElement IsNot Nothing Then
 currentElement.Stop()
 End If
 ' play the selected video
 currentElement = TryCast(coverFlow.SelectedItem, MediaElement)
 currentElement.Play()
End Sub

private MediaElement currentElement = null;

private void coverFlow_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 // stop the last video
 if (currentElement != null)
 {
 currentElement.Stop();
 }
 // play the selected video
 currentElement =
 coverFlow.SelectedItem as MediaElement;
 currentElement.Play();
}

CoverFlow 1057

© 2011 Telerik Inc.

27.4.2 Item Properties

The RotationY property rotates each non-selected item around the Y-axis.

The series of screenshots below show the effect of increasing RotationY values when there are several
items present.

RotationY = "0"

RotationY = "45"

RotationY = "85"

Use OffsetX and OffsetY properties to move cover flow items horizontally and vertically. OffsetX moves
cover flow items horizontally; with larger values shifting the items to the right. OffsetY moves items vertically
with larger values pushing the items down.

RadControls for Silverlight1058

© 2011 Telerik Inc.

ItemScale scales non-selected items. The screenshot shows the result when ItemScale is "0.5", i.e. 50%
of the original size.

CoverFlow 1059

© 2011 Telerik Inc.

27.4.3 Distance

Control the spacing between items using the DistanceFromSelectedItem (distance between the selected
item and non-selected items) and the DistanceBetweenItems properties.

The screenshot above was produced using the settings in the XAML below:

<telerik:RadCoverFlow DistanceBetweenItems="60" DistanceFromSelectedItem="30" . . ./>

RadControls for Silverlight1060

© 2011 Telerik Inc.

27.4.4 Camera

The "camera" is the viewpoint of the observer when looking at cover flow items in 3D space. The
CameraDistance is the simulated "Z" position of the camera where smaller values bring the camera closer
to the items and larger values move the camera farther away. As the camera draws closer to the cover flow,
the perspective effect on the items becomes more exaggerated. By default, the CameraDistance is
"1000" (at the time of this writing). The screenshot below actually has the same settings as the previous
example for "Distance" but where the CameraDistance property value is "100".

<telerik:RadCoverFlow CameraDistance="100" CameraViewpoint="Top" ... >

CameraRotation determines the view angle toward the control where a "0" angle represents the camera
pointed straight on and larger values roll the camera angle. The screenshots below should give you an idea
of how this works.

CameraRotation = "0"

CameraRotation = "45"

CoverFlow 1061

© 2011 Telerik Inc.

CameraRotation = "90"

27.4.5 Animation

When an item is selected in the coverflow, an animation plays that rearranges the items and the selected
item is moved to the front. The speed of the animation is controlled by the ItemChangeDelay, a TimeSpan
property that is currently "600" milliseconds by default. The EasingFunction provides a profile for the
animation to follow, giving the animation a more realistic feel. At the time of this writing, the EasingFunction
defaults to a "Circle".

27.4.6 Reflection

IsReflectionEnabled toggles the appearance of reflection below the cover flow items.

RadControls for Silverlight1062

© 2011 Telerik Inc.

27.5 Binding

This next walk through demonstrates retrieving a series of images from the "Flickr" REST API and binding
the images to the coverflow.

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Controls

b) Telerik.Controls.Navigation

4) Using the Solution Explorer, right-click the project and select Add > New Folder from the context
menu. Name the folder "Images".

5) Drag an image file "search.png" to the "Images" folder. You can find this file in the
"\courseware\images" directory.

XAML Editing

1) Open MainPage.xaml for editing.

2) Add a UserControl.Resources element just above the main "LayoutRoot" Grid element. These
resources style text, borders and panels, but are not central to learning about binding RadCoverFlow.
Feel free to copy and paste this XAML and review it at your leisure.

CoverFlow 1063

© 2011 Telerik Inc.

<UserControl.Resources>
 <!--colors-->
 <Color x:Key="FadedWhite">#AAFFFFFF</Color>
 <Color x:Key="FadedBlue">#AA0000FF</Color>
 <Color x:Key="FadedLightBlue">#AA000099</Color>
 <!--brushes-->
 <LinearGradientBrush x:Key="SkyBrush" StartPoint="0, 0"
 EndPoint="0, 1">
 <GradientStop Color="SkyBlue" Offset="0" />
 <GradientStop Color="{StaticResource FadedLightBlue}" Offset="1" />
 </LinearGradientBrush>
 <LinearGradientBrush x:Key="SkyBrushStreak">
 <GradientStop Color="SkyBlue" Offset="0" />
 <GradientStop Color="{StaticResource FadedWhite}" Offset="0.2" />
 <GradientStop Color="{StaticResource FadedBlue}" Offset=".5" />
 <GradientStop Color="{StaticResource FadedLightBlue}" Offset="1" />
 </LinearGradientBrush>
 <Style x:Key="CaptionStyle" TargetType="TextBlock">
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="FontFamily" Value="Comic Sans MS" />
 <Setter Property="FontSize" Value="12" />
 </Style>
 <!--styles-->
 <Style x:Key="HyperlinkStyle" TargetType="HyperlinkButton">
 <Setter Property="TargetName" Value="_blank" />
 <Setter Property="Foreground" Value="Blue" />
 </Style>
 <Style x:Key="ImageStyle" TargetType="Image">
 <Setter Property="Stretch" Value="Uniform" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Width" Value="150" />
 <Setter Property="Height" Value="150" />
 <Setter Property="Margin" Value="5" />
 </Style>
 <Style x:Key="PictureFrameStyle" TargetType="Border">
 <Setter Property="BorderBrush" Value="{StaticResource SkyBrush}" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="Background" Value="{StaticResource SkyBrushStreak}"/>
 <Setter Property="Padding" Value="10" />
 </Style>
</UserControl.Resources>

RadControls for Silverlight1064

© 2011 Telerik Inc.

3) Replace the main "LayoutRoot" Grid with the XAML below.

This will setup our basic layout. The main Grid has two rows configured so that the first row will size
itself to the elements it contains and the second row will expand to take any available space.

The top "tool bar" row will have its own grid with two columns. The first column on the left will size itself
to the elements it contains. This first column will hold a HyperlinkButton with an Image of the site logo.
The button will navigate to the main Flickr site and have a "powered by Flickr" tool tip. The rightmost
column will take up the remaining width that contains a TextBox for search criteria and a search button.
 Underneath the "tool bar, the RadCoverFlow will take must of the client area.

<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <!--top tool bar-->
 <Border Background="{StaticResource SkyBrush}" Padding="10"
 Grid.Row="0">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <!--flickr logo-->

 <!--search panel-->

 </Grid>
 </Border>

 <!--cover flow-->

</Grid>

CoverFlow 1065

© 2011 Telerik Inc.

4) Replace the "<!--flickr logo-->" comment with the XAML below.

<!--flickr logo-->
<HyperlinkButton Grid.Column="0" Margin="5 0 0 0"
 NavigateUri="http://www.flickr.com"
 ToolTipService.ToolTip="Powered by Flickr"
 TargetName="_blank">
 <Image Stretch="Uniform" Width="64"
 Source="http://l.yimg.com/g/images/logo_home.png.v2" />
</HyperlinkButton>

 Notes

The XAML defines a HyperlinkButton that in turn holds a logo image. The HyperlinkButton
NavigateUri points to the main Flickr site and will open in a new window by virtue of the
TargetName = "_blank" property setting. The HyperlinkButton also has the tooltip "Powered by
Flickr" defined. The Image Source is hard coded.

RadControls for Silverlight1066

© 2011 Telerik Inc.

5) Replace the "<!--search panel-->" comment with the XAML below.

<!--search panel-->
<StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right" Grid.Column="1">
 <TextBlock Text="Search On:"
 Style="{StaticResource CaptionStyle}"
 Foreground="Black" />
 <TextBox x:Name="tbSearch" MinWidth="200"
 Margin="5, 0, 5, 0" />
 <Button x:Name="btnGo" Click="btnGo_Click">
 <Button.Content>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Search" />
 <Image Source="images/search.png"
 Width="16" Height="16"></Image>
 </StackPanel>
 </Button.Content>
 </Button>
</StackPanel>

 Notes

The XAML defines a horizontal StackPanel with all the elements used for searching. Points to
notice: The "Search On" TextBlock uses one of the Styles we defined earlier. The magnifying glass
image uses "search.png" that we added to the project early on. A handler is defined for the
button's Click event where the main search logic takes place.

CoverFlow 1067

© 2011 Telerik Inc.

6) Replace the "<!--cover flow-->" comment with the XAML below.

<!--cover flow-->
<Border Background="{StaticResource SkyBrushStreak}"
 Grid.Row="1">
 <telerik:RadCoverFlow x:Name="coverFlow" OffsetY="60" RotationY="45"
 CameraRotation="30" DistanceBetweenItems="30">
 <telerik:RadCoverFlow.ItemTemplate>
 <DataTemplate>
 <Border Style="{StaticResource PictureFrameStyle}">
 <StackPanel>
 <Image Source="{Binding ImageUrl}" Style="{StaticResource ImageStyle}" />
 <TextBlock Text="{Binding ImageTitle}" Style="{StaticResource CaptionStyle}"
 Foreground="LightSkyBlue" />
 </StackPanel>
 </Border>
 </DataTemplate>
 </telerik:RadCoverFlow.ItemTemplate>
 </telerik:RadCoverFlow>
</Border>

 Notes

The coverflow is contained within a Border element to provide the gradient
background. The coverflow ItemTemplate provides the layout for coverflow
item. Each item is bounded by a slender border that contains a StackPanel. The
StackPanel holds the Flickr Image and the TextBlock below displays the Flickr
Title. We will take care of the binding in upcoming steps.

Code Behind

1) In the Solution Explorer, right-click the project and select Add > Class... from the context menu. Name
the class file "FlickrItem.cs". Replace the code for the Flickr class with the code below.

This class will encapsulate a single image returned from the Flickr REST service. The "ImageUrl" will
be added to a collection and assigned to the coverflow ItemsSource property.

RadControls for Silverlight1068

© 2011 Telerik Inc.

Public Class FlickrItem
 Implements INotifyPropertyChanged
 Public Event PropertyChanged As PropertyChangedEventHandler

 Private imageTitle_Renamed, imageUrl_Renamed As String

 Public Property ImageTitle() As String
 Get
 Return Me.imageTitle_Renamed
 End Get
 Set(ByVal value As String)
 If value <> Me.imageTitle_Renamed Then
 Me.imageTitle_Renamed = value
 Me.FirePropertyChanged("ImageTitle")
 End If
 End Set
 End Property

 Public Property ImageUrl() As String
 Get
 Return Me.imageUrl_Renamed
 End Get
 Set(ByVal value As String)
 If value <> Me.imageUrl_Renamed Then
 Me.imageUrl_Renamed = value
 Me.FirePropertyChanged("ImageUrl")
 End If
 End Set
 End Property

 Private Sub FirePropertyChanged(ByVal propertyName As String)
 If Me.PropertyChangedEvent IsNot Nothing Then
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(propertyName))
 End If
 End Sub
End Class

CoverFlow 1069

© 2011 Telerik Inc.

public class FlickrItem : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private string imageTitle, imageUrl;

 public string ImageTitle
 {
 get { return this.imageTitle; }
 set
 {
 if (value != this.imageTitle)
 {
 this.imageTitle = value;
 this.FirePropertyChanged("ImageTitle");
 }
 }
 }

 public string ImageUrl
 {
 get { return this.imageUrl; }
 set
 {
 if (value != this.imageUrl)
 {
 this.imageUrl = value;
 this.FirePropertyChanged("ImageUrl");
 }
 }
 }

 private void FirePropertyChanged(string propertyName)
 {
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

2) Add a second class file and name it "Flickr.cs". Add namespace references to the "Imports" (VB) or
"using" (C#) section of code for these assemblies:

a) System.Collections.Generic

b) System.Linq

c) System.Net

d) System.Xml.Linq

3) Replace the "Flickr.cs" class definition with the code below.

RadControls for Silverlight1070

© 2011 Telerik Inc.

Public Class Flickr
 Public Delegate Sub LoadedEventHandler(ByVal sender As Object, ByVal e As FlickrLoadedEventArgs)

 Public Event Loaded As LoadedEventHandler

 Public Sub Load(ByVal searchString As String)
 Const url As String = "http://api.flickr.com/services/feeds/photos_public.gne?tags="

 Dim client As New WebClient()
 AddHandler client.DownloadStringCompleted, AddressOf client_DownloadStringCompleted
 client.DownloadStringAsync(New Uri(url & searchString))
 End Sub

 Private Sub client_DownloadStringCompleted(_
ByVal sender As Object, ByVal e As DownloadStringCompletedEventArgs)
 RaiseEvent Loaded(Me, New FlickrLoadedEventArgs() With {.Items = GetFlickrItems(e.Result)})
 End Sub

 Public Function GetFlickrItems(ByVal xml As String) As IEnumerable(Of FlickrItem)
 Dim atomNameSpace As XNamespace = "http://www.w3.org/2005/Atom"
 Dim feed As XDocument = XDocument.Parse(xml)
 Dim result = _
 From e In feed.Root.Elements(atomNameSpace + "entry") _
 Let link = (_
 From l In e.Elements(atomNameSpace + "link") _
 Where l.Attribute("rel").Value.Equals("enclosure") _
 Select l).FirstOrDefault() _
 Select New FlickrItem()
 e.Element(atomNameSpace + "title").Value, ImageUrl = link.Attribute("href").Value
 ImageTitle = e.Element(atomNameSpace + "title").Value, ImageUrl
 Return result.Take(4)
 End Function
End Class

Public Class FlickrLoadedEventArgs
 Inherits EventArgs
 Private privateItems As IEnumerable(Of FlickrItem)
 Public Property Items() As IEnumerable(Of FlickrItem)
 Get
 Return privateItems
 End Get
 Set(ByVal value As IEnumerable(Of FlickrItem))
 privateItems = value
 End Set
 End Property
End Class

CoverFlow 1071

© 2011 Telerik Inc.

public class Flickr
{
 public delegate void LoadedEventHandler(object sender, FlickrLoadedEventArgs e);
 public event LoadedEventHandler Loaded;

 public void Load(string searchString)
 {
 const string url = "http://api.flickr.com/services/feeds/photos_public.gne?tags=";

 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(url + searchString));
 }

 void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 if (Loaded != null)
 {
 Loaded(this, new FlickrLoadedEventArgs()
 { Items = GetFlickrItems(e.Result) });
 }
 }

 private IEnumerable<FlickrItem> GetFlickrItems(string xml)
 {
 XNamespace atomNameSpace = "http://www.w3.org/2005/Atom";
 XDocument feed = XDocument.Parse(xml);
 var result =
 from e in feed.Root.Elements(atomNameSpace + "entry")
 let link =
 (from l in e.Elements(atomNameSpace + "link")
 where l.Attribute("rel").Value.Equals("enclosure")
 select l).FirstOrDefault()
 select new FlickrItem()
 {
 ImageTitle = e.Element(atomNameSpace + "title").Value,
 ImageUrl = link.Attribute("href").Value
 };
 return result.Take(4);
 }
}

public class FlickrLoadedEventArgs : EventArgs
{
 public IEnumerable<FlickrItem> Items {get; set;}
}

RadControls for Silverlight1072

© 2011 Telerik Inc.

 Notes

Most of the work is being done in the "Flickr" class. The point of entry for the Flickr class is the
Load() method where a WebClient downloads an XML string from the Flickr REST service. The
URL for the DownloadStringAsync() method call is formatted to include whatever search criteria
the user has entered. When the call returns in the DownloadStringCompleted event handler a
custom Loaded event is fired. The XML is converted to a collection of FlickrItem instances. We
have custom arguments, FlickrLoadedEventArgs, that have a single property that contains the
collection. The conversion from XML to collection occurs in the private GetFlickrItems() method
where the XDocument Parse() method converts the raw XML into objects that can be sliced-
and-diced in a LINQ statement. Notice that the Take() extension method returns just the top set
of items.

4) In the code-behind for the main page, add a namespace reference to Telerik.Windows.Controls.

5) In the code-behind for the main page add the code below.

The Click event for the Search button, "btnGo_Click", creates a new Flickr instance, hooks up the
custom Loaded event to a handler and calls Load(), passing the search text. After the Flickr class gets
done with retrieving XML from the REST service and converting to a collection of FlickrItem instances,
the Flickr class fires its Loaded event where the collection is assigned to the cover flow ItemsSource
property.

Private Sub btnGo_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)
 Dim flickr As New Flickr()
 AddHandler flickr.Loaded, AddressOf flickr_Loaded
 flickr.Load(tbSearch.Text)
End Sub

Private Sub flickr_Loaded(ByVal sender As Object, ByVal e As FlickrLoadedEventArgs)
 coverFlow.ItemsSource = e.Items
End Sub

private void btnGo_Click(object sender, RoutedEventArgs e)
{
 Flickr flickr = new Flickr();
 flickr.Loaded += new Flickr.LoadedEventHandler(flickr_Loaded);
 flickr.Load(tbSearch.Text);
}

void flickr_Loaded(object sender, FlickrLoadedEventArgs e)
{
 coverFlow.ItemsSource = e.Items;
}

CoverFlow 1073

© 2011 Telerik Inc.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Test Application Features

1) Enter search text and click the "Search" button.

2) Pass the mouse over the logo to see the tool tip and click to show the main site in a separate browser.

RadControls for Silverlight1074

© 2011 Telerik Inc.

27.6 Customization

27.6.1 Navigation

RadCoverFlow does not have built-in navigation controls, but using Silverlight 3 element binding you can
hook up your own using a slider, up-down, scroll bar or other element that navigates through a set of values.
The screenshot below shows a RadSlider bound two-way with RadCoverFlow so that clicking the slider
navigates the cover flow and clicking items in the cover flow reflects in the slider.

Navigation is implemented in the XAML below. Pay particular attention to the RadSlider Value and
Minimum and Maximum properties. The key is to bind the navigation Value property to the RadCoverFlow
SelectedIndex property. To completely "dial-in" the behavior you must set the Minimum and Maximum
properties to match the count of items in the cover flow. The Minimum should be "0" and Maximum should
be one less than the count of items in the cover flow. To assign the correct Maximum, you will need a
simple value converter that takes the Count of items in the cover flow and subtracts one (code for the
converter follows). To use the converter, be sure to add an XML namespace that references the assembly
that contains the converter, add a resource that points to the converter and finally, use the resource
reference in the binding statement for the Maximum attribute.

CoverFlow 1075

© 2011 Telerik Inc.

<UserControl x:Class="_02_ControlDetails.MainPage"
 xmlns:local="clr-namespace:<Your project assembly>" . . .>
 <UserControl.Resources>
 <local:IntToIntValueConverter x:Key="IntToIntValueConverter" /> . . .
 </UserControl.Resources>
 <StackPanel x:Name="LayoutRoot">
 <telerik:RadCoverFlow x:Name="coverFlow" >
 <telerik:RadCoverFlowItem . . ./>
 <telerik:RadCoverFlowItem . . ./>
 <telerik:RadCoverFlowItem . . ./>
 <telerik:RadCoverFlowItem . . ./>
 <telerik:RadCoverFlowItem . . ./>
 </telerik:RadCoverFlow>
 <telerik:RadSlider
 Value="{Binding SelectedIndex, ElementName=coverFlow, Mode=TwoWay}"
 Minimum="0"
 Maximum="{Binding Items.Count, ElementName=coverFlow,
 Converter={StaticResource IntToIntValueConverter}, ConverterParameter=-1}" />
 </StackPanel>
</UserControl>

The IValueConverter implementation code adds the parameter passed in ("-1") and returns the result.

Public Class IntToIntValueConverter
 Implements IValueConverter
 Private Function IValueConverter_Convert(ByVal value As Object, ByVal targetType As Type, _
ByVal parameter As Object, _
ByVal culture As System.Globalization.CultureInfo) _
As Object Implements IValueConverter.Convert
 Dim val As Integer
 Dim param As Integer
 If (Integer.TryParse(value.ToString(), val) AndAlso _
(Integer.TryParse(parameter.ToString(), param))) Then
 Return val + param
 End If
 Return value
 End Function
 '. . .
End Class

RadControls for Silverlight1076

© 2011 Telerik Inc.

public class IntToIntValueConverter : IValueConverter
{
 object IValueConverter.Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 int val;
 int param;
 if ((int.TryParse(value.ToString(), out val) && (int.TryParse(parameter.ToString(), out param))))
 {
 return val + param;
 }
 return value;
 }
 //. . .
}

See the article "Navigation for Coverflow" at http://blogs.telerik.com/hristoborisov/posts/09-10-06/
navigation_for_coverflow.aspx for more information.

27.7 Wrap Up

In this chapter you learned how to define RadCoverFlow to include a set of items. In the process you used
properties to control the coverflow position, the position of the "camera" in relation to the items and item
properties. You learned how to bind lists of images, videos and Silverlight elements to the coverflow control.
Finally, you customized the coverflow navigation panel to use a RadSlider for navigation.

http://blogs.telerik.com/hristoborisov/posts/09-10-06/navigation_for_coverflow.aspx
http://blogs.telerik.com/hristoborisov/posts/09-10-06/navigation_for_coverflow.aspx

Part

XXVIII
Upload

RadControls for Silverlight1078

© 2011 Telerik Inc.

28 Upload

28.1 Objectives

In this chapter you will learn the minimal configuration needed to upload files from a Silverlight client to a
server. You will learn the basics for creating the server upload handler along with some of the "Gotchas" that
could cause the upload to fail.

In the section on "Control Details" you will become familiar with controlling file access on the client,
including properties that limit file types and limiting the number of files and bytes allowed. You will also
learn about the properties that show or hide buttons in the UI. You will create your own custom upload
handler and learn how to pass parameters to and from the client. You will learn about the events that cover
the entire upload life-cycle and the methods that can be used to trigger the file operations.

During the "Customization" section you will walk through using Expression Blend to modify the RadUpload
dialog layout.

 Find the projects for this chapter at...

\Courseware\Projects\<CS|VB>\Upload\Upload.sln.

28.2 Overview

RadUpload saves end-user time and effort by allowing multiple files and automatic uploads. This dedicated
file-upload control is a fast performer that allocates a minimum of server memory, while enabling optimized
and fully configurable single and multi-file uploads. The server can automatically save to a folder in your
project, or customize the server handler for fine-grained control, allowing you to add compression, additional
security and saving to database or other persistence medium.

RadUpload includes the following features:

Multiple Files Upload

Styling and Appearance

Extension Filters

Automatic Upload

Files Count and Size Limitation

Upload 1079

© 2011 Telerik Inc.

Customizable Upload Handler

RadControls for Silverlight1080

© 2011 Telerik Inc.

28.3 Getting Started

Project Setup

1) From the Visual Studio menu choose File > New > Project..., select the Silverlight project type, then
select the Silverlight Application template. Provide a unique name for the project and click the OK
button.

2) In the "New Silverlight Application" dialog make sure that the "Host the Silverlight application in a new
Web site" option is checked, give the project a unique name and verify that the "ASP.NET Web
Application Project" New Web Project Type option is selected. Click OK to close the dialog and create
the project.

3) In the Solution Explorer, right-click the References node and select Add References... from the
context menu. Add Assembly references:

a) Telerik.Windows.Controls

b) Telerik.Windows.Controls.Input

Create Upload Handler

1) In Solution Explorer, navigate to the host application project.

2) In the Solution Explorer, right-click the references node and add a reference to the Telerik.Windows.
RadUploadHandler assembly.

3) In the Solution Explorer, right-click the project and select Add > New Folder from the context menu.
Name the folder "MyFolder".

4) In the Solution Explorer, right-click and Add > New Item... Select the "Generic Handler" template and
name it "EmptyHandler.asxh".

Upload 1081

© 2011 Telerik Inc.

5) Navigate to the code-behind for the handler and replace the class declaration with the example that
follows.

Be sure not to eliminate the namespace surrounding the class. The fully qualified class name must
match the markup for the handler. Accidentally deleting the namespace is one way to generate a
"Handler not found" error.

Public Class EmptyHandler
 Inherits Telerik.Windows.RadUploadHandler
End Class

public class EmptyHandler : Telerik.Windows.RadUploadHandler
{
}

 Notes

You can code the upload handler to perform more specific tasks later, but for now, descending
from RadUploadHandler is sufficient to get the base uploading functionality.

6) In the Solution Explorer, right-click the project node and select Properties. Select the Web tab. In the
Servers section, make sure the "Use Visual Studio Development Server" radio button is selected and
that the "Specific port" button is checked. Enter a specific port of "1234".

 Notes

You could also select the "Use Local IIS Web Server" or host the handler in some other web
server. The important point is to know the specific location of the handler so that we can refer to
it in XAML markup later when we define the RadUpload control.

7) Test the handler:

a) Set the host project to be the startup project and set the page to be the default page for the project.

b) Run the host project.

RadControls for Silverlight1082

© 2011 Telerik Inc.

c) In a new browser window, point the URL of another browser to "http://localhost:1234/EmptyHandler.
ashx". You should see a JSON string as shown in the screenshot below. If you see an error message,
you need to go back and check the steps leading up to this.

XAML Editing

1) Open the Silverlight project MainPage.xaml for editing.

2) Add the XAML below to the main "LayoutRoot" Grid element. The XAML should be added between the
<Grid> and </Grid> tags. The UploadServiceUrl must point to the exact path of the handler you
defined in previous steps. TargetFolder must point to the exact name of the folder in the project you
created earlier.

<telerik:RadUpload
 UploadServiceUrl="http://localhost:1234/EmptyHandler.ashx"
 TargetFolder="MyFolder"
 OverwriteExistingFiles="True"
 IsAutomaticUpload="false">
</telerik:RadUpload>

Run the Application

1) Press F5 to run the application. The web page should look something like the screenshot below.

http://localhost:1234/EmptyHandler.ashx"
http://localhost:1234/EmptyHandler.ashx"

Upload 1083

© 2011 Telerik Inc.

 Gotcha!

"Handler not found or execution of the handler failed!"

This error and errors with similar wording can occur if...

The handler address doesn't match the UploadServiceUrl

The class name of the handler in code doesn't match the class name described in the handler's
markup.

The host application housing the handler is not running.

Test Application Features

1) Click the "Browse" button and select a file to upload.

2) Click the "Upload" button and verify that the upload occurs without error.

3) Verify that the file you uploaded appears in "\MyFolder".

4) Click the "Add more files" button and add additional files.

5) Add a file, then click the "Cancel" button to return to the initial "Browse" state.

Ideas for Extending This Example

Set the theme for the application, e.g., add Telerik.Windows.Controls and Telerik.Windows.Controls.
<theme name>, then adding this code to the constructor:

Public Sub New()
 CType(New SummerTheme(), SummerTheme).IsApplicationTheme = True
 InitializeComponent()
End Sub

public MainPage()
{
 new SummerTheme().IsApplicationTheme = true;
 InitializeComponent();
}

RadControls for Silverlight1084

© 2011 Telerik Inc.

The upload dialog will be styled with the theme:

28.4 Control Details

28.4.1 Controlling Upload Access

You can limit the files being uploaded based on several criteria and also receive notification from events:

File Size: You can limit the size of a single file to a specific number of bytes by setting the
MaxFileSize property. If the size is exceeded, the FileTooLarge event fires. The FileTooLarge event
passes a parameter containing the name, size and all the file system information about the file in
question.

Total File Size: To limit the maximum total upload size in bytes, use the MaxUploadSize property. If
this size is exceeded, the UploadSizeExceeded event fires.

Number of Files: Limit the number of files using MaxFileCount properties. The FileCountExceeded
event fires when the user attempts to upload more than MaxFileCount files.

You can also limit what files can be sent to the server by defining extension filters. Filter is a string
property that determines the choices that appear in the "Open File Dialog" box. For each filtering option, the
filter string contains a description of the filter, followed by the vertical bar (|) and the filter pattern. The strings
for different filtering options are separated by the vertical bar. You can add several filter patterns to a filter
by separating the file types with semicolons. Use the FilterIndex property to set which filtering option is
shown first to the user. By default all file extensions are allowed.

Note: See http://msdn.microsoft.com/en-us/library/system.windows.controls.openfiledialog.filter(VS.95).
aspx for specifics on filter syntax.

Hide buttons in the UI by setting the IsAppendFilesEnabled, IsDeleteEnabled, and IsPauseEnabled
properties that control the corresponding named buttons. IsMultiselect, when true, allows more than one
file to be selected in the "Open File Dialog" box. Turn on the IsAutomaticUpload property if you want the
upload to begin immediately after the user selects a file.

http://msdn.microsoft.com/en-us/library/system.windows.controls.openfiledialog.filter(VS.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.openfiledialog.filter(VS.95).aspx

Upload 1085

© 2011 Telerik Inc.

28.4.2 Working with the Upload Handler

Even though the upload handler is an *.ashx and the RadUpload control is working from a Silverlight client,
you can communicate both ways. You can also add custom logic to the handler itself, allowing you an
opportunity to save files to a data base or other storage and to perform any other operations with the file
stream that suit your purpose.

Sending Parameters to the Upload Handler

You can send parameters that travel to the upload handler on every request and can also be sent along with
specific files. In both cases you can use Dictionaries made available by RadUpload to store keys and
values.

The example below adds a custom parameter called "CompanyID" that will be sent with every upload.
Custom parameters are added to the RadUpload AdditionalPostFields dictionary.

Use the FileUploadStarting event when you want to send parameters along with individual files. The
arguments to this event include a FileParameters dictionary. The example sends a parameter with key
"InvoiceNumber". For the sake of brevity, an invoice number is extracted from the file name where the format
is similar to "Invoice_12345.xml".

Private Sub UserControl_Loaded(ByVal sender As Object, ByVal e As RoutedEventArgs)
 InvoiceUploader.AdditionalPostFields.Add("CompanyID", "55892")
End Sub

Private Sub RadUpload_FileUploadStarting(ByVal sender As Object, _
 ByVal e As FileUploadStartingEventArgs)
 ' remove file extension
 Dim fileName As String = e.SelectedFile.Name.Split("."c)(0)
 'extract invoice number
 Dim invoiceNumber As String = fileName.Split("_"c)(1)
 e.FileParameters.Add("InvoiceNumber", invoiceNumber)
End Sub

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 InvoiceUploader.AdditionalPostFields.Add("CompanyID", "55892");
}

private void RadUpload_FileUploadStarting(object sender, FileUploadStartingEventArgs e)
{
 // remove file extension
 string fileName = e.SelectedFile.Name.Split('.')[0];
 //extract invoice number
 string invoiceNumber = fileName.Split('_')[1];
 e.FileParameters.Add("InvoiceNumber", invoiceNumber);
}

RadControls for Silverlight1086

© 2011 Telerik Inc.

Custom Processing in the Upload Handler

To perform your own custom processing in the upload handler, override the SaveChunkData() method. The
brief example below shows parameters from the Silverlight client being passed in, some mock processing,
then parameters are passed back. Parameters can be sent back to the client using one of two methods:

The AddReturnFileParam() method. The key to each Dictionary element is a predefined key from
RadUploadContants, e.g. RadUploadContants.ParamNameMessage. The AddReturnParam() method
can be called during the ProcessStream() method.

Overriding the GetAssociatedData() method. This method runs before the ProcessStream() method
and can contain sets of keys and values.

Here are some of the key points to the example below:

Parameters coming from the client "AdditionalPostFields" and "FileParameters" are retrieved by this.

GetQueryParameter().

A check against IsFinalFileRequest() lets us know that the entire file has been downloaded. Note:
Larger files are broken into "chunks", so the SaveChunkData() method may be called multiple times for
a single file.

After processing the file with custom logic, parameters are returned to the client using
AddReturnFileParam(). The predefined ParamNameMessage key has a value "Processed invoice
#12345" and the ParamNameSuccess value is "True". If our custom "IsAuthorized" member is false,
the ParamNameSuccess value is "False" and the ParamNameMessage value is "Not authorized". The
important issue here isn't the specific program logic, but how the RadUploadConstants are used along
with the AddReturnParam() method.

In the GetAssociatedData() method we get the "CompanyID" sent from the client with every request
and do a primitive check against a hard coded company number and store the result in a private
"IsAuthorized" member. "IsAuthorized" is included in the dictionary and passed back to the client.

Upload 1087

© 2011 Telerik Inc.

Private IsAuthorized As Boolean = False

Public Overrides Function SaveChunkData(filePath As String, position As Long, buffer As Byte(), contentLength As Integer, ByRef savedBytes As Integer) As Boolean
 Dim invoiceNumber As Integer = Integer.Parse(Me.GetQueryParameter("InvoiceNumber").ToString())
 Dim result As Boolean = False
 ' is entire file uploaded?
 If Me.IsFinalFileRequest() Then
 If IsAuthorized Then
 ' do some mock processing
 ProcessInvoice()
 Dim message As String = [String].Format("Processed invoice #{0}", invoiceNumber)
 Me.AddReturnFileParam(RadUploadConstants.ParamNameMessage, message)
 Me.AddReturnFileParam(RadUploadConstants.ParamNameSuccess, True)

 'return result;
 result = MyBase.SaveChunkData(filePath, position, buffer, contentLength, savedBytes)
 Else
 Me.AddReturnFileParam(RadUploadConstants.ParamNameMessage, "Not authorized")
 Me.AddReturnFileParam(RadUploadConstants.ParamNameSuccess, False)
 savedBytes = 0
 result = False
 End If
 End If

 savedBytes = 0
 Return result
End Function

Public Overrides Function GetAssociatedData() As Dictionary(Of String, Object)
 Dim companyID As Integer = Integer.Parse(Request.Form("CompanyID").ToString())
 IsAuthorized = companyID.Equals(55892)

 Dim dictionary As Dictionary(Of String, Object) = New Dictionary(Of String, Object)()
 dictionary.Add("IsAuthorized", IsAuthorized)
 Return dictionary
End Function

Public Sub ProcessInvoice()
 ' mock processing
End Sub

RadControls for Silverlight1088

© 2011 Telerik Inc.

bool IsAuthorized = false;

public override bool SaveChunkData(string filePath, long position, byte[] buffer, int contentLength, out int savedBytes)
{
 int invoiceNumber = int.Parse(this.GetQueryParameter("InvoiceNumber").ToString());
 bool result = false;
 // is entire file uploaded?
 if (this.IsFinalFileRequest())
 {
 if (IsAuthorized)
 {
 // do some mock processing
 ProcessInvoice();
 string message = String.Format("Processed invoice #{0}", invoiceNumber);
 this.AddReturnFileParam(RadUploadConstants.ParamNameMessage, message);
 this.AddReturnFileParam(RadUploadConstants.ParamNameSuccess, true);

 result = base.SaveChunkData(filePath, position, buffer, contentLength, out savedBytes);
 //return result;
 }
 else
 {
 this.AddReturnFileParam(RadUploadConstants.ParamNameMessage, "Not authorized");
 this.AddReturnFileParam(RadUploadConstants.ParamNameSuccess, false);
 savedBytes = 0;
 result = false;
 }
 }

 savedBytes=0;
 return result;
}

public override Dictionary<string, object> GetAssociatedData()
{
 int companyID = int.Parse(Request.Form["CompanyID"].ToString());
 IsAuthorized = companyID.Equals(55892);

 Dictionary<string, object> dictionary =
 new Dictionary<string, object>();
 dictionary.Add("IsAuthorized", IsAuthorized);
 return dictionary;
}

public void ProcessInvoice()
{
 // mock processing
}

If everything runs without exception, then the RadUpload control shows that all the selected files have been
uploaded.

Upload 1089

© 2011 Telerik Inc.

If we send the wrong company ID from the client, ParamNameSuccess gets a value of "False" and
ParamNameMessage is set to "Not authorized". As a result, RadUpload displays a warning icon and a tool
tip with the ParamNameMessage value.

 From the Forums...

Question: Is it possible to just have the byte array and not save the file to disk? Is there a switch
to turn off the save to disk?

Answer: Yes - it is possible. If you override the SaveChunkData() method but don't call the base.
SaveChunkData() method, you will have full control over the upload process. Please note that
this will not stop the upload by chunks. If you want to stop the upload by chunks you can set a
bigger BufferSize, and to set a MaxFileSize smaller than the BufferSize.

byte[] array = File.ReadAllBytes(filePath);

Returning Parameters from the Upload Handler

The parameters from the handler can be received during the FileUploaded event. Look for the arguments
HandlerData property. This will contain the IsSuccess and the Message from the handler. In HandlerData,
the CustomData property holds the values added during the GetAssociatedData() method. See the
screenshot below to see the data returned in FileUploadedEventArgs.

RadControls for Silverlight1090

© 2011 Telerik Inc.

Upload 1091

© 2011 Telerik Inc.

28.4.3 Events and Methods

The event model of RadUpload lets you track every phase of the selecting and uploading process. "Upload"
events track the state of the upload as a whole and include UploadStarted, UploadPaused,
UploadResumed and UploadCanceled and UploadFinished. UploadStarted passes an argument with
a SelectedFiles property that lists all the files being uploaded. You can also handle the FilesSelected
event when the user closes the "Open File" dialog and this will also pass back the SelectedFiles property.

When a file doesn't upload for some reason, FileUploadFailed will fire and pass back arguments that
include the error message and the selected file.

The ProgressChanged event doesn't pass any interesting arguments, but instead you can use the
RadUpload CurrentSession property to get the CurrentProgress for the entire session,
CurrentFileProgress for the progress of the file uploading and CurrentFile for all the information about the
file being uploaded. Note: CurrentSession also has collections of FailedFiles, SelectedFiles,
TooLargeFiles, UploadedFiles and ValidFiles.

RadUpload methods complement these events by letting you control the uploading process completely from
code-behind: ShowFileDialog(), StartUpload(), PauseUpload() and CancelUpload(). You can in fact
use the RadUpload as a "silent" control without the UI portion by following these steps:

1) Add reference to the Telerik.Windows.Controls.Input assembly;

2) Add a member of type RadUpload to your class. Do not initialize or create the RadUpload in XAML.

3) In the XAML code, add a place holder control to host the hidden RadUpload.

4) Initialize the upload control. The Page.Load event would be an appropriate spot for this logic.

a) Set the addresses for the TargetFolder and the UploadServiceUrl;

b) Set the values to determine RadUpload behavior, i.e. buffer, file and upload sizes, multi-selection,
etc.;

c) To allow interaction, implement handlers for FilesSelected, UploadStarted, UploadFinished,
UploadCanceled, UploadPaused and UploadResumed.

d) To hide the RadUpload, set the Opacity property to Zero.

5) Add the RadUpload control as a child of its place holder.

6) Add Browse and Upload buttons to the page. These buttons will be used to call ShowFileDialog() and
StartUpload() methods.

RadControls for Silverlight1092

© 2011 Telerik Inc.

28.5 Customization

In this example we will customize RadUpload to be more compact.

Project Setup

1) Run Expression Blend.

2) Open the "Getting Started" project or a copy.

Edit the Page in Expression Blend

1) Locate MainPage.xaml in the Projects pane and double-click to open the page.

2) Right-click the RadUpload control in the Objects and Timeline pane and select Edit Template > Edit a
Copy from the context menu. In the "Create Style Resource" dialog, set the Name (Key) to
"CompactUploadStyle". Click OK to create the style resource and close the dialog.

Upload 1093

© 2011 Telerik Inc.

3) In the Objects and Timeline pane, open the tree view and locate the "[ItemsPresenter]" and select it.
You should find it as a child of the ScrollViewer under the RootElement.

4) In the Properties pane, Layout section, set the Width of the ItemsPresenter to "220".

5) Select the ScrollViewer. Use the Properties pane to set the Width property at "230".

6) Select the "[Border]" node located just above the ScrollViewer. Use the Properties pane to set the
Width property at "230".

7) Selected the top "[Border]" element. Use the Properties pane to set the Width property at "280".

8) Below the ScrollViewer, find the "ProgressArea" and select it. Use the Properties pane to set the
Width property at "230".

RadControls for Silverlight1094

© 2011 Telerik Inc.

The RadUpload in the Artboard should look something like the screenshot below.

Run The Application

Press F5 to run the application. The web page should look something like the screenshot below.

Upload 1095

© 2011 Telerik Inc.

28.6 Wrap Up

In this chapter you used the minimal configuration required to upload files from a Silverlight client to a
server. You learned the basics for creating the server upload handler along with some of the "Gotchas" that
could cause an upload to fail.

In the section on "Control Details" you became familiar with how to control access to files during the upload
including properties that limit file types and limiting the number of files and bytes allowed. You also learned
about the properties that control the operations allowed by showing or hiding buttons in the UI. You created
your own upload handler and learned how to pass parameters to and from the client. You learned about the
events that cover the entire upload life-cycle and the methods that can be used to trigger the file
operations.

During the "Customization" section you walked through using Expression Blend to modify RadUpload into a
more compact dialog.

RadControls for Silverlight1096

© 2011 Telerik Inc.

Index
- " -
"Handler not found or execution of the handler failed!"
 1080

"Only a single enumeration is supported by this
IEnumerable" 116

"Pattern constraint failed" 116

"Sample" data 154

"Unable to start debugging" 67

- A -
Absolute 294

AcceleratorKey 207

accessible 204

AccessKey 207

Activated 988, 990

ActiveViewDefinition 737

Add sample data source 158

AddDragInfoHandler 448

AddDragQueryHandler 448

AddDropInfoHandler 448

AddDropQueryHandler 448

AddedItems 515, 568

AddHandler() 294, 577

AdditionalPostFields 1085

AddReturnParam(1085

ADO.NET Data Services 110, 121

ADO.NET Entity Data Model 110

Advanced Property Options button 138, 146

AggregateFunctions 657

Alert() 976

Align 344

AllowDrag 437, 445, 754

AllowDragReorder 344

AllowDrop 437, 446, 754

AllTabsEqualHeight 344

AlternationCount 665

AngleX 390

AngleY 390

Animation 424, 426, 808

AnimationManager 424, 587

Apply Resource 140

Applying Themes in Code 177

Appointment 733, 739, 775

AppointmentAdded 749

AppointmentAdding 749

AppointmentBase 739, 779

Appointments 733

AppointmentSaving 749

AppointmentsSource 775

AreWeekNamesVisible 479

AreWeekNumbersVisible 479

ArrowCue 447, 454

Artboard 37, 132, 140, 143, 146, 154, 163, 166, 190

Assets Find entry text box 37

Assets pane 37, 43, 132, 143, 146, 190

Assigning the Context Menu in Code 294

AsyncState 116

ATOM 86, 111, 939

AutoBringIntoView 447

AutoGenerateColumns 632, 678

AutoHideHeight 933

AutoHideWidth 933

Automation Elements Tree 204

AutomationPeer 212

AutomationProperties 207, 212

AutoPlay 1052

AutoReverse 243

Axis 877

AxisX 877

AxisY 877

- B -
Band 381

BandIndex 381

Bar3DSeriesDefinition 886

BasedOn 53

BaseItemsControl 665

BeginExecute() 116

Binding 63, 74

Bing 938, 939

BitmapImage 289, 291, 690

BottomTemplate 968

Boundary Detection 280

Braille 204

Bubbling 62

Index 1097

© 2011 Telerik Inc.

- C -
CameraDistance 1060

CameraExtension 859

CameraRotation 1060

CameraViewpoint 1051

CancelButtonContent 980

Canceled 933

CancelEdit() 583

CancelUpload() 1091

CanClose 989

CanDockInDocumentHost 921

CanFloat 921

CanMove 989

CanUserClose 921

CanUserPin 921

CellTemplate 724

ChangeAcceleration 243

ChapterReached 1028

Chapters 1028

ChapterTitle 1028

ChartArea 859, 874, 878

ChartDefaultView 859

ChartLegend 859, 874, 886

ChartTitle 859, 874, 880

Checkable Items 280

Checked 289

ChildTableDefinitions 632

ChildWindow 447

Click 289

ClickToOpen 280, 281, 287

ClientAccessPolicy.xml 86, 101, 102, 690, 704,
939

ClockItemSource 494

CloseAllWindows() 973

Closed 976

CollapseAll() 572

CollapseAllGroups() 657

Collapsed 358, 423, 572

CollapseGroup() 657

Columns 464, 479, 632, 678

ColumnWidth 670

CompositeFilterDescriptor 649

ConfigurationSection 939

Confirm() 980

ContentBinding 660

ContentControl 454

ContentPresenter 416

ContentTemplate 454, 457

ContentText 243

ContextMenu 294

ControlTemplate 60, 684, 1046

Convert to New Resource 138

CopyFrom() 779

Create Data Binding 166

Create Empty 140

CreatePeerForElement() 212

Creating a Simple Animation 146

Cross Domain 86

Crossdomain.xml 86, 939

Culture 199, 231, 479, 490, 768

CultureInfo 199, 479

CurrentCell 166

CurrentCellChanged 640

CurrentFileProgress 1091

CurrentItem 1028

CurrentProgress 1091

CurrentSession 1091

CurrentStateChanged 1028

Custom Processing in the Upload Handler 1085

CustomUnit 243

- D -
Data pane 132, 154, 160, 163, 166

Data Services Wizard 121, 124

DataContext 63, 70, 154, 163, 494

DataElement 669

DataFormatString 660

DataItem 895, 905

DataMemberBinding 660, 678

DataPager 672

DataPoint 859, 886, 895

DataPointLabel 886

DataPointMember 894, 895

DataSeries 859, 874

DataSeriesCollection 874

DataTemplate 60, 80, 81, 163, 261, 299, 390, 454,
591

DataTemplateSelector 609

Date/Time Masks 231

DayEndTime 737

DayHeaderFormat 771

DayStartTime 737

DefaultCulture 195, 199, 768

RadControls for Silverlight1098

© 2011 Telerik Inc.

DefaultImageSrc 566

DefaultLabelFormat 877, 899

DefaultPromptResultValue 983

DefaultResourceManager 195, 199, 771

DefaultSeriesDefinition 886

DefaultSeriesDelay 878

DefaultView 859, 886

Deferred 665

Define New Object Data Source... 160

Define New Sample Data 155

Defining Objects in XAML 47

Defining Properties in XAML 47

Definition 859

Delay 243

DELETE 110

DependencyProperty 70

Deployment.Parts 24

Description 1025

Details 163

Details Mode 166

DialogParameters 976

DialogResult 980

Direct 62

Direction 190

Discover 107, 116, 712

DisplayDateChanged 479

DisplayDateEnd 464, 479

DisplayDateStart 464, 479

DisplayMemberPath 74, 75, 80, 83, 515, 660

DisplayMode 479

DisplayModeChanged 479

DistanceBetweenItems 1059

DistanceFromSelectedItem 1059

DockWindowStartingZIndex 989

DocumentHost 921, 927, 963

DocumentHostTemplate 968

Domain Service Class 718

DownloadProgressChanged 1028

DownloadStringAsync() 86, 690, 1062

DownloadStringCompleted 86, 690, 1062

Drag-and-Drop 436, 588, 730, 754, 758

DragCue 437, 447, 454

DragDropOptions 447

DragInfo 448

DragInProgress 448

DragQuery 448

DragQueryEvent 437, 754

DragStartThreshold 447

DropCancel 448

DropComplete 448

DropDestinationQuery 448

DropDownClosed 515

DropDownOpened 515

DropExpandDelay 577

DropImpossible 448

DropInfo 448

DropInfoEvent 437, 754

DropPosition 577

DropPossible 448

DropQuery 448

DropQueryEvent 437, 754

DropShadowEffect 190

DropSourceQuery 448

- E -
EasingFunction 190, 1061

Edit a Copy 140, 143

Edit Recurrence 733

Edit Template 140, 143

EditableComboBox 540

EditAppointmentStyle 784

EditAppointmentTemplate 784

EditCanceled 583

Edited 583

EditStarted 583

Element() 83

ElementName 75

Elements() 83

EnableAnimations 878

EnableColumnVirtualization 671

EnableFullScreenIcon 1028

EnableRowVirtualization 671

EnableSideTicks 217, 261

EndExecute() 116

EndTime 490

EndWidth 808

EnterRange 808

Entity Data Model Wizard 718

EntryPointAssembly 24

EntryPointType 24

EventName 294

Events 37

Exit 26

ExpandAll() 572

ExpandAllGroups() 657

Index 1099

© 2011 Telerik Inc.

ExpandDirection 412, 416

Expanded 358, 423, 572

ExpandedImageSrc 566

ExpandGroup() 657

ExpandItemByPath() 563

ExportElement 677

ExportExtensions 673

ExtendDirection 877

Extensible Object Pattern 859

- F -
FailedFiles 1091

FieldName 894, 895

FileCountExceeded 1084

FileParameters 1085

FileTooLarge 1084

FileUploadFailed 1091

FileUploadStarting 1085

Filter 1084

FilterDescriptors 649

FilterIndex 1084

FilteringMode 515

Flicker 86

Flickr 1062

FrameworkElement 53, 63, 70, 207

FrameworkTemplate 60

FullScreenChanged 1028

- G -
Gauge 798

General Accessibility 204

GenerateArrowCue() 454

GenerateVisualCue() 454

GET 110

GetAssociatedData() 1085

GetContainerByItem() 587

GetDistinctValues() 649

GetItemByPath() 563

GetStringOverride() 200

Google 938

GridLinesVisibility 665

GridViewComboBoxColumn 660

GridViewDataColumn 660, 678, 724

GridViewDynamicHyperlinkColumn 660

GridViewExportEventArgs 677

GridViewHyperlinkColumn 660

GridViewRow 684

GridViewRowImage 724

GridViewTableDefinition 632

GroupDescriptor 657

GroupDescriptors 657

- H -
Handled 231, 358, 572

handledEventsToo 577

HandlesVisibility 217

HasOverflowItems 381

head tracking 204

Header 344

HeaderContent 490

HeaderedItemsControl 289

HeaderPaletteItemsSource 248

HeaderVisibility 464

HelpText 207

HideAllPanes() 933

HideDelay 287

Hierarchical Data Binding 280

HierarchicalDataTemplate 60, 81, 299

HierarchicalDataTemplates 591

HorizontalOffset 294

HtmlElement 1011

HtmlPage 880

HtmlPresenter 1011

HtmlSource 1000, 1004

- I -
IAppointment 739, 775

IAsyncResult 116

Icon 289

Identification 204

IEnumerable 588

IFilterDescriptor 649

IFrame 1004

IGroup 657

ImagesBaseDir 566

ImageSource 566, 1025

Import Sample Data From XML... 158, 166

Indicator 808

IndicatorBase 808

IndicatorList 800

RadControls for Silverlight1100

© 2011 Telerik Inc.

InitialPosition 921

INotifyPropertyChanged 75, 158, 494, 678

Internationalization 479

InvalidateArrange() 1004

IQueryable 718

IsAllDayEvent 779

IsAnimationEnabled 424, 587

IsAppendFilesEnabled 1084

IsApplicationTheme 177, 188

IsAutomaticUpload 1080, 1084

IsCheckable 281

IsChecked 289

IsContentElement 207

IsContentValid 1052

IsControlElement 207

IsDateTime 877

IsDeleteEnabled 1084

IsDisplayDateEndValid() 479

IsDisplayDateStartValid() 479

IsDisplayDateValid() 479

IsDragDropEnabled 577

IsDragPreviewEnabled 577

IsDragTooltipEnabled 577

IsDropAllowed 577

IsDropDownOpen 489

IsDropPreviewLineEnabled 577

IsEditable 243, 515, 540, 583

IsEnabled 390, 564

IsExpanded 416, 564, 572

IsExpandOnDblClickEnabled 572

IsExpandOnSingleClickEnabled 572

IsFilterable 649

IsFilteringAllowed 649

IsFinalFileRequest() 1085

IsFullScreen 1028

IsHidden 933

IsIndeterminate 848, 849

IsInEditMode 583

IsInteractive 808

IsLoading 1052

IsLoadOnDemandEnabled 613

IsLogarithmic 808

IsMultiselect 1084

Isolated Storage 934

IsolatedStorageFileStream 934

IsOptionElementsEnabled 573

IsOverflowOpen 381

IsPauseEnabled 1084

IsPinned 933

IsPlaylistVisible 1025

IsReadOnly 515

IsReflectionEnabled 1061

IsRequiredForForm 207

IsReversed 808

IsSelectableDateEndValid() 479

IsSelectableDateStartValid() 479

IsSelected 515, 564, 568

IsSelectionRangeEnabled 217, 261

IsSeparator 289

IsSingleExpandPath 572

IsSnapToTickEnabled 261

IsSortable 654

IsTriStateMode 573

IsVirtualizing 587

Item Mapping 886

ItemAnimationDuration 878

ItemChangeDelay 1061

ItemClick 287, 291

ItemCollection 560

ItemContainerStyle 617, 754, 758

ItemContainerStyleSelector 617

ItemDelay 878

ItemLabelFormat 899

ItemMapping 894

ItemMappings 886

ItemPrepared 613

Items 558

ItemScale 1057

ItemsControl 74, 287, 967

ItemsOptionListType 573

ItemsSource 74, 83, 107, 154, 163, 166, 299, 390,
494, 588, 613, 632, 712, 886

ItemStatus 207

ItemTemplate 80, 81, 299, 390, 532, 591, 609, 1062

ItemTemplateSelector 609

ItemToolTip2D 895

ItemToolTipEventArgs 895

ItemToolTipFormat 895, 899

ItemToolTipOpening 895

ItemType 207

IValueConverter 261, 591, 1074

- J -
JSON 939

Index 1101

© 2011 Telerik Inc.

- L -
Label 859

LabeledBy 207

LabelRotationAngle 877

LargeChange 243

LargeChangeInterval 737

LeaveRange 808

LeftTemplate 968

Legend 859

LegendDisplayMode 886

LegendLabel 886

LegendName 859, 874

Level 358

Line3DSeriesDefintion 859

LinearBar 800

LinearGauge 800, 808

LinearScale 800, 808

LINQ 83, 515

List 163

List Mode 166

ListBox 74

Load() 83, 99

Loaded 1062

LoadLayout(stream) 934

LoadOnDemand 613

LoadOperation<TEntity> 99

Localization 194

LocalizationManager 195, 198, 200, 768, 771

Location 808

LocationChanged 988, 1004

LogarithmicBase 808

LogicalOperator 649

- M -
MainPage.xaml 47

MainPaletteItemsSource 248

MajorTicks 808

Manager 199

Marker 808

Markup extensions 52

Mashup 938

Mask 231

MaskedText 231

MaskType 231

MaxFileCount 1084

MaxFileSize 1084

MaximizeAllWindows() 973

Maximum 243, 261, 848, 849, 1074

MaxUploadSize 1084

MediaElement 1028, 1052

MediaElementTotalSeconds 1028

MediaEnded 1028

MediaOpened 1028

MenuBase 287

MenuItem 299

MergedDictionaries 53

Merging Resources 53

MessageBox.Show() 31

Microsoft UI Automation 204

MiddleTicks 808

MinimizeAllWindows() 973

Minimum 243, 261, 848, 849, 1074

MinorTicks 808

ModalBackground 976

Mode 70

Model 66

ModifierKey 294

MouseOver 190

MouseOverVisual 617

MousePostion 294

MultiSelect 640

MVVM 66, 494, 905

- N -
Navigate to Event Handler 217

NavigateUrlFormatString 660

NavigateUrlMemberPaths 660

NavigationHeaderStyle 784

NewCell 640

NewSortingState 654

NewValue 231, 261

NonEditableComboBox 540

NormalAllWindows() 973

NotifyOnHeaderClick 287

NumberFormatInfo 243

Numeric Masks 231

NumericIndicator 808

RadControls for Silverlight1102

© 2011 Telerik Inc.

- O -
Object Relational Mapping 121

Objects and Timeline pane 37, 43, 132, 140, 143,
146, 190

ObservableCollection 494, 678, 712

ObservableCollection<> 158, 299

ObservableCollection<T> 75

Offset 808

OffsetX 1057

OffsetY 1057

OkButtonContent 983

OldCell 640

OldValue 261

OnDragInfo 454

OnDropInfo 437

OneTime 70

OneWay 70

Opacity 190

OpacityMask 416

OpenAccess 121

Opened 976

OpenReadAsync() 690

OpenReadCompleted 86, 690

Options 437, 447

Orientation 381, 808, 848

OriginalSource 358

Overflow 381

OverflowAreaClosed 381

OverflowAreaOpened 381

OverflowMode 381

OverwriteExistingFiles 1080

- P -
PageSize 672

ParamNameMessage 1085

Parse() 83, 1062

ParticipatingVisualRoots 447

Parts pane 132

Path 63, 70, 74

Patterns 204

PauseUpload() 1091

Payload 447

Placement 294

PlacementRectangle 294

PluginLoaded 880

PopupManager 972, 989

PopupStartingZIndex 989

Position 1028

POST 110

PreviewClose 933

PreviewClosed 988

PreviewCloseWindow 933

PreviewCollapsed 358, 572

PreviewEdited 583

PreviewEditStarted 583

PreviewExpand 572

PreviewExpanded 358

PreviewPin 933

PreviewSelected 568

PreviewShow 933

PreviewShowCompass 933

PreviewUnPin 933

PreviewUnselected 568

PrintExtensions 673

PrintToHtml() 677

Prism 66

ProcessStream() 1085

Projects pane 37, 132

Prompt() 983

PromptResult 983

Properties pane 37, 132, 143, 146

Property Paths 678

PropertyChanged() 75

PUT 110

- Q -
QueryableCollectionView 672

QueryResult 437

- R -
RadButton 143, 188

RadCalendar 59, 461, 464, 479, 490, 494, 501

RadChart 858, 859, 938

RadClock 461, 490

RadColorPaletteView 248

RadColorPicker 202, 217, 248

RadColorSelector 202, 248

RadComboBox 494, 511, 512, 515, 540

RadComboBoxAutomationPeer 212

Index 1103

© 2011 Telerik Inc.

RadComboBoxItem 512, 515

RadContextMenu 287, 289, 294

RadCoverFlow 1050, 1052

RadCoverflowItem 1052

RadDatePicker 461, 464, 489, 490, 494

RadDocking 920, 927, 963, 967

RadDocumentPane 921, 927

RadDragAndDropManager 436, 437, 444, 448, 577,
730, 754

RadDropDownButton 188

RadExpander 411, 416, 424, 426

RadGauge 800, 808, 842

RadGridView 91, 116, 126, 166, 202, 631, 632, 938

RadHtmlPlaceHolder 999, 1000, 1004, 1008, 1017

RadialGauge 808

RadialScale 808

Radius 808

RadMaskedTextBox 216, 217, 231, 271, 464

RadMediaItem 1025, 1028, 1046

RadMediaPlayer 202, 1024, 1028

RadMenu 81, 287, 289, 307

RadMenuItem 281, 289, 291, 307

RadNumericUpDown 204, 217, 243

RadPane 921, 927, 963, 967

RadPaneGroup 921, 927, 930, 963

RadPanelBar 81, 330, 332, 358

RadPanelBarItem 358

RadProgressBar 848, 849

RadRadioButton 188

RadRoutedEventArgs 281, 423

RadScheduler 194, 202, 730, 731

RadSchedulerCommands 750

RadSeparator 381

RadSlider 216, 217, 261, 271, 1074

RadSplitContainer 921, 927, 930, 963

RadTabControl 330, 332, 344, 1017

RadTabItem 344, 1004

RadTimePicker 461, 490

RadToggleButton 188

RadToolBar 373, 375, 381, 390, 400

RadToolBarSeparator 375, 400

RadToolBarTray 373, 375, 381, 390

RadTreeView 81, 202, 552, 555, 591, 617

RadTreeViewItem 555, 558, 588, 617

RadTreeViewItemEditedEventArgs 583

RadUpDown 243

RadUpload 202, 1078

RadUploadConstants 1085

RadUploadHandler 1080

RadWindow 447, 972, 973

RadWindowManager 972, 973

RadWrapPanel 416

RangeBase 243, 848

RangeList 808

RangeTimeout 808

RealTime 665

Recurrence 779

RecurrencePattern 730, 743

RecurrenceRule 730, 743

RefreshRate 808

RegisterScriptableObject() 880, 1014

RelativeHeight 808

RelativeSize 930

Remove() 565

RemoveAt() 565

RemovedItems 568

RenderSize 294

RenderTransform 390, 416

RenderTransformOrigin 390, 416

ReorderTabRows 344

RepeatInterval 243

ResizeMode 989

Resource 744

Resource Scope 53

ResourceDictionary 53, 177

ResourceKey 195, 201

ResourceManager 195, 199, 771

Resources 53, 138, 195

Resources pane 132, 138, 140, 190

REST 86, 110, 121, 683, 712, 938, 939, 1062

RESTful 86

Result 86

ResultFormatString 657

Results pane 132

Reverse Mapping 122

RIA 91, 716

RIA Services 27

RightTemplate 968

Role 289

RootVisual 26

RotationY 1057

routed events 62

RoutedCommand 750

RoutedEventArgs 281, 423

RowIndicatorVisibility 665

RowLoaded 683, 684

RadControls for Silverlight1104

© 2011 Telerik Inc.

Rows 479

RSS 86, 512, 515, 532, 1032

RuntimeVersion 24

- S -
SaveLayout(stream) 934

ScaleBase 808

Scope Up button 140

screen readers 204

ScriptableMember 1014

ScriptManager 880

ScrollIntoView() 640

ScrollMode 665

ScrollViewer 671

SelectableDateEnd 464, 479

SelectableDateStart 464, 479

SelectAll 640

Selected 358, 515, 555, 568

SelectedColor 248

SelectedColorChanged 217, 248

SelectedContainer 568

SelectedContent 344

SelectedDates 494

SelectedFiles 1091

SelectedImageSrc 566

SelectedIndex 344, 515, 1074

SelectedItem 344, 515, 568, 640

SelectedItems 568, 640

SelectedTimeSlot 736

SelectedValueMemberPath 660

SelectionBoxItemTemplate 515, 532

SelectionChanged 344, 464, 479, 512, 515, 555,
568, 640, 1052

SelectionChangedEventArgs 515, 568

SelectionEnd 217, 261

SelectionMode 479, 568

SelectionRangeChanged 217, 261

SelectionStart 217, 261

SelectionUnfocusedVisual 617

SelectTemplate() 609

Sending Parameters to the Upload Handler 1085

Separator 289

SerializationTag 934

Series Mapping 886

SeriesDefinition 895, 899

SeriesLabel 886

SeriesMapping 886

SetAllowDrag() 445

SetAllowDrop() 446

SetBinding() 70

SetContextMenu() 294

SetFirstVisibleDate() 739

SetIsAnimationEnabled() 424

SetOverflowMode() 381

SetResourceKey() 201

SetStyleAttribute() 1011

SetTheme() 177

ShadowDepth 190

Show Context Menu Using Right-Click 294

Show Timeline 190

ShowButtons 243

ShowColumnFooters 665

ShowColumnHeaders 665

ShowDelay 287

ShowFileDialog() 1091

ShowFirstLabel 808

ShowGroupPanel 665

ShowItemToolTips 895

ShowLastLabel 808

Silverlight Application 132

Silverlight Application template 31

Silverlight Class Library 181

Silverlight Control Library 132

Silverlight Life Cycle 26

Silverlight Plugin 26

Silverlight Resource Dictionary 181

Silverlight SDK 27

Silverlight Toolkit 27

Silverlight-enabled WCF Service template 102

sip & puff 204

SketchFlow 132

SkewTransform 390

SkipValue 848, 849

SmallChange 243

SnapInterval 808

SnapType 808

SOAP 86

SortDescriptor 654

SortDescriptors 654

SortDirection 654, 657

Source 70, 1025

SourceField 657

SourceUri 1017

SourceUrl 1000, 1004

SqlCommand 704

Index 1105

© 2011 Telerik Inc.

SqlDataReader 704

StackPanel 70

Standard Masks 231

StandardPaletteItemsSource 248

StartAngle 808

StartTickOffset 808

StartTime 490

Startup 26

StartUpload() 1091

StartWidth 808

State 204

State Changes 146

StateIndicator 808

States pane 132, 190

Status 447

StaysOpenOnClick 280, 281, 289

StyleManager 59, 177, 183, 375, 390

Styles 53, 177

Styling a RadControl 140

SubmenuClosed 289

SubMenuHeader 289

SubMenuItem 289

SubmenuOpened 289

Supported Media Types 1028

SupportedCultures 195, 199

SweepAngle 808

SyndicationFeed 532

System.Collections.ObjectModel 75

System.ComponentModel 75

System.Linq 560

System.Net 86

System.Reflection.TargetInvocationException 86

System.Security.SecurityException 86

System.ServiceModel.Syndication 515

System.XML.Linq 83

- T -
TabOrientation 344

TabStripPlacement 344, 365

Take() 1062

TargetFolder 1080, 1091

TargetInvocationException 86, 690

TargetType 53

Telerik Data Services Wizard 124

TemplateBinding 60

TextBlock 60

TextBox 70

TextDropAfter 577

TextDropBefore 577

TextDropIn 577

TextDropRoot 577

TextPath 515

TextSearch 515

Theme 59, 173, 177, 183, 375, 390

TickFrequency 217, 261

TickPlacement 217, 261

Ticks 261

TickTemplate 261

TimeInterval 490

Timeline 146, 190

Timeline marker 146, 190

Timeout 808

TimeRulerHostStyle 784

TimeSlot 736

TimeSlotLength 737

TimeSpan 494

TimeZone 779

Title 1025, 1028

TitleTemplate 968

ToCsv() 674

ToExcelML() 674

ToHtml() 674

ToList() 116

TooLargeFiles 1091

Toolbox 37, 195

Tools pane 132

ToolTip 52, 895

ToolTipService 52

TopLevelHeader 289

TopLevelItem 289

TopTemplate 365, 968

TopWindowStartingZIndex 989

TotalSeriesAnimationDuration 878

ToText() 674

TransformGroup 390

Trulia 939

trulia.com 938

Tunneling 62

Twitter 86, 690

TwitterAuthor 690

TwitterEntry 690

TwoWay 70

RadControls for Silverlight1106

© 2011 Telerik Inc.

- U -
UI Automation Verify 204

UI Automation Verify Tool 207

UI Virtualization 587

UIA 204

UIElement 294, 750

Unchecked 289

UnhandledException 26

UnselectAll 640

Unselected 568

UploadCanceled 1091

UploadedFiles 1091

UploadFinished 1091

UploadPaused 1091

UploadResumed 1091

UploadServiceUrl 1080

UploadSizeExceeded 1084

UploadStarted 1091

UrlLoaded 1004, 1008

UseAutoGeneratedItems 859

UseDefaultLayout 859

UserState 690

Using RadContextMenu 294

- V -
ValidFiles 1091

Value 243, 848, 1074

ValueChanged 217, 231, 243, 261, 848

ValueChanging 231

ValueFormat 217, 243

VerticalOffset 294

Video Size and Proportion 1028

VideoHeight 1028

VideoStretch 1028

VideoWidth 1028

View 66

ViewDefinitionBase 737

ViewMode 733, 737

ViewModel 66

ViewsHeaderVisibility 464

VirtualizationMode 587

Visibility 204

VisibleDays 737

- W -
WCF 101, 121, 703, 938

WebClient 86, 532, 683, 690, 712

Window State 989

Windowless 294, 1000

Windows Communication Foundation 101

WindowStartingZIndex 989

WindowStateChanged 988

WPF 132

- X -
x:Key 53

XAML 47

XCategory 894

XDocument 83, 86, 1062

XElement 939

XML 86

XMLParseException 53

- Y -
YouTube 86

YValue 859, 886

- Z -
zillow.com 938

Z-Order 989

	Introduction
	Who Should Read This Courseware
	What Do You Need to Have Before Reading This Courseware
	How This Courseware is Organized
	About Telerik
	About Falafel
	Introducing RadControls for Silverlight

	Silverlight Introduction
	Objectives
	Overview
	Silverlight Anatomy 101
	Silverlight Files
	The XAP FIle
	The Application Manifest
	Silverlight Applications in Visual Studio
	The Silverlight Life Cycle

	Silverlight Development Tools
	Wrap Up

	Working with Silverlight
	Objectives
	Getting Started
	Starting with Visual Studio
	Starting with Expression Blend
	Visual Studio With Expression Blend

	Working with XAML
	XAML Basics
	Attached Properties and Events
	Markup Extensions
	Resources and Styles
	Adding and Theming RadControls
	Templates

	Dependency Properties
	Routed Events
	Basic Databinding
	Best Practices
	Debugging
	Wrap Up

	Data Binding
	Objectives
	Binding Basics
	Binding Collections
	Change Notification
	Binding in Templates
	DataTemplate
	HierarchicalDataTemplate

	Data Sources
	XML
	REST
	RIA
	Project Setup
	Building the RIA Service
	Building the RIA Client

	WCF
	Building the WCF Service
	Building the WCF Client

	ADO.NET Data Services
	Building the Service
	Building the Client

	OpenAccess
	Building the Data Access Layer
	Building the Service
	Building the Silverlight Client

	Wrap Up

	Expression Blend
	Objectives
	Overview
	Expression Blend Project Types
	The Expression Blend Environment

	Resources
	Restyling RadControls for Silverlight
	Customizing RadControls Templates
	Bring RadControls to Life with Animations
	Binding
	Overview
	Create Sample Data Sources
	Define Sample Objects
	Import From XML

	Create Object Data Sources
	Drag and Drop Binding
	Binding RadControls Walk Through

	Wrap Up

	Theming and Skinning
	Objectives
	Overview
	Getting Started
	Applying Themes to RadControls
	Creating a Custom Theme
	Modifying themes in Expression Blend
	Overview
	Modifying the Theme Brushes
	Testing the Modified Theme
	Modifying Theme Styles

	Wrap Up

	Localization
	Objectives
	Overview
	Getting Started
	Control Details
	LocalizationManager
	Resource File Storage
	Custom Storage
	Assigning Resources to Elements
	Using Predefined Localization

	Wrap Up

	UI Automation Support
	Objectives
	Overview
	Getting Started
	Automating
	Wrap Up

	Input Controls
	Objectives
	Overview
	Getting Started
	Control Details
	Masked Text Box
	Up Down Controls
	Color Pickers
	Slider Control

	Customization
	Wrap Up

	Menu Controls
	Objectives
	Overview
	Getting Started
	Control Details
	RadMenu
	Items
	Walk Through: Creating Menu Items in Code
	RadContextMenu

	Binding
	Customization
	Wrap Up

	Tabbed Interfaces
	Objectives
	Overview
	Getting Started
	Control Details
	RadTabControl
	RadPanelBar

	Customization
	Wrap Up

	ToolBar
	Objectives
	Overview
	Getting Started
	Control Details
	Binding
	Customization
	Wrap Up

	Expander
	Objectives
	Overview
	Getting Started
	Control Details
	Populating RadExpander
	Events
	Animation

	Customization
	Wrap Up

	Drag and Drop.
	Objectives
	Overview
	Getting Started
	Control Details
	Overview.
	Make a Control Draggable
	Accept Dropped Controls
	RadDragAndDropManager
	Events.
	Visual Cues

	Binding
	Wrap Up

	Date, Time and Calendar
	Objectives
	Overview
	Getting Started
	Control Details
	Calendar
	Date Picker
	Time Picker
	DateTime Picker

	Binding
	Customization
	Wrap Up

	ComboBox
	Objectives
	Overview
	Getting Started
	Control Details
	Binding
	Customization
	Wrap Up

	TreeView
	Objectives
	Overview
	Getting Started
	Control Details
	Working with Nodes
	Adding Nodes
	Locating and Accessing Nodes
	Path Properties and Methods
	Node Properties
	Removing Nodes
	Node Images

	Selections
	Node Expansion
	Checkboxes and Radiobuttons
	Drag-and-Drop
	Editing
	Keyboard Support
	Performance

	Binding
	Basic Binding
	Hierarchical Templates
	Template Selectors
	Load-On-Demand

	Customization
	Wrap Up

	GridView
	Objectives
	Overview
	Getting Started
	Control Details
	Selections
	Filtering Sorting and Grouping
	Filtering
	Sorting
	Grouping

	Editing
	Grid View Elements Visibility
	Accessing Elements in a Grid Row Template
	Sizing
	Performance
	Virtualization
	Paging

	Print and Export
	Exporting
	Formatting
	Printing

	Binding
	.NET Objects
	REST
	Project Setup
	XAML Editing
	Code Behind

	WCF
	Building the WCF Service
	Building the WCF Silverlight Client

	WCF RIA Services
	Project Setup
	Building the RIA Service
	Building the RIA Client

	Customization
	Wrap Up

	Scheduler
	Objectives
	Overview
	Getting Started
	Control Details
	Time Slots
	Views
	Appointments
	Recurrence
	Resources
	Events
	Commands
	Drag-and-Drop
	Drag-and-Drop Overview
	Drag-and-Drop Walk Through

	Internationalization
	Using Predefined Cultures
	Custom Translations

	Binding
	Basic Binding
	Custom Appointments

	Customization
	Wrap Up

	Gauges
	Objectives
	Overview
	Getting Started
	Control Details
	Binding
	Customization
	Wrap Up

	ProgressBar
	Objectives
	Overview
	Getting Started
	Wrap Up

	Charting
	Objectives
	Overview
	Getting Started
	Control Details
	Chart Series Types
	Chart Elements
	Series and DataPoints
	Axis Elements

	Animations
	Integration with ASP.NET AJAX

	Binding
	Binding Basics
	Binding Axis Labels
	Tooltips
	Format Expressions

	Customization
	Coloring Chart Elements
	Styling the Chart

	Wrap Up

	Docking
	Objectives
	Overview
	Getting Started
	Control Details
	Creating Containers in Code
	Sizing and Positioning
	Pane Pinning and Visibility
	Prevent Docking
	Saving and Loading

	Binding
	Building the WCF Service
	Building the Docking Client Application
	Project Setup
	Silverlight Client Code Behind
	Silverlight Client XAML
	Run and Test the Application

	Customization
	Wrap Up

	Windows
	Objectives
	Overview
	Getting Started
	Control Details
	Predefined Dialogs
	Alert
	Confirm
	Prompt

	Brushes
	Events
	Window State and Z-Order

	Binding
	Customization
	Wrap Up

	HTMLPlaceholder
	Objectives
	Overview
	Getting Started
	Control Details
	Loading Content
	Events
	Sizing and Positioning
	Interaction with the Page
	Calling Javascript from Managed Code
	Calling Managed Code from Javascript

	Binding
	Wrap Up

	MediaPlayer
	Objectives
	Overview
	Getting Started
	Control Details
	Binding
	Customization
	Wrap Up

	CoverFlow
	Objectives
	Overview
	Getting Started
	Control Details
	Items
	Item Properties
	Distance
	Camera
	Animation
	Reflection

	Binding
	Customization
	Navigation

	Wrap Up

	Upload
	Objectives
	Overview
	Getting Started
	Control Details
	Controlling Upload Access
	Working with the Upload Handler
	Events and Methods

	Customization
	Wrap Up

