
OpenAccess Made Easy

by Telerik Inc.

Welcome to Telerik OpenAccess ORM Made Easy.

We hope you enjoy the book as much as we, at Falafel
Software, enjoyed creating it.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: March 2010

Telerik OpenAccess ORM

© 2010 Telerik Inc.

Publisher

Special thanks to:

All the team members at Telerik worldwide for creating a
magnificant piece of software in Telerik OpenAccess ORM. The
authors also would like to thank the Falafel team members in
Colorado, Texas and California for their feedback, guidance and
recommendations on the subjects of the manual.

Falafel would like to thank Vassil Terziev and Svetozar Georgiev for
their trust and belief in the quality of Falafel Software's work .

Falafel would like to thank Jan Blessenohl, Todd Anglin and Kevin
Babcock for their support. We would also like to thank Stephen
Forte for the use of his excellent white paper "Object Relational
Mapping 101" included in the "Introduction" section of this manual.

Last but not least, thank you to all our families for their support and
patience while we wrote the book.

Authors

Technical Editors

Cover Designer

Falafel Software Inc.

Noel Rice

Noel Rice

Matt Kurvin

Production

Falafel Software Inc.

Team Coordinator

Lino Tadros

3Contents

3

© 2010 Telerik Inc.

Table of Contents

Foreword 5

Part I Introduction 8

... 81 Who Should Read This Courseware

... 82 What Do You Need to Have Before Reading This Courseware

... 83 How This Courseware Is Organized

... 94 About Telerik

... 105 About Falafel

... 106 Introducing Telerik OpenAccess ORM

Part II Getting Started 22

... 221 ORM Enable Project

... 282 Forward Mapping (objects -> database)

... 373 Reverse Mapping (database -> objects)

.. 44Generated Class

... 474 Create, Read, Update, Delete (CRUD)

... 515 Wrap Up

Part III Design Environment 54

... 541 OpenAccess Menu

... 652 Project Context Menu

... 663 Wrap Up

Part IV Using OpenAccess in Applications 68

... 681 Building the "Model" Assembly

... 692 WinForms Example

... 863 ASP.NET Example

... 954 Telerik Reporting Example

... 1035 Multi-Tier Architecture

... 1056 Web Services Example

... 1357 N-Tier Example

... 1428 N-Tier With Business Rules

... 1529 Wrap Up

Part V References 154

... 1541 References

... 1612 Self Referencing

... 1653 Wrap Up

Telerik OpenAccess ORM4

© 2010 Telerik Inc.

Part VI Inheritance 168

... 1681 Inheritance Overview

... 1692 Flat Mapping

... 1713 Vertical Mapping

... 1724 Mixed Flat and Vertical Mapping

... 1765 Horizontal Mapping

... 1796 Configuration

... 1827 Mapping Walkthrough

... 1888 Wrap Up

Part VII Transactions 192

... 1921 Basics

... 1942 ITransaction

... 1953 TransactionProperties

... 2004 Threading

... 2065 Concurrency

... 2086 Wrap Up

Part VIII Database Access 210

... 2101 Using SQL with OpenAccess

.. 210LINQ

.. 215Object Query Language (OQL)

.. 219Native SQL

... 2222 Stored Procedures

... 2303 Wrap Up

Part IX Optimization 234

... 2341 Fetch Plans

... 2442 Caching

... 2543 Wrap Up

Index 255

Foreword

5Foreword

© 2010 Telerik Inc.

Jan Blessenohl
Product Manager Telerik OpenAccess ORM

It was always my dream that objects should persist themselves automatically.
Getting the persistence layer working has been a fulltime job for many people going
back to the first days of C++. My goal during the last decade was to make this
process easy.

As Java and .NET introduced integrated memory management and better IDEs, new
ideas about how objects could be persisted have popped up. Specifications from the
Java world, like JDO and JPA, tried to define an object persistence layer that is easy
to understand and to implement. But the presence of too many specifications and
proprietary products has kept the process complicated. The .Net world defines
comparable frameworks but these solutions are not proven or widely adopted.

With over 10 years of experience working with object persistence, the OpenAccess
team is taking the best ideas in the industry to provide the perfect solution for .NET
with seamless integration into Visual Studio using our many wizards and design
tools.

You as the developer should not have to think about how objects persist themselves.
As we get closer to making this dream real, we will work hard to make it easier for
you to understand and implement data access for your projects. This courseware is
an important part of learning to work with OpenAccess and discovering all it has to
offer. I hope you have a lot of fun with this courseware and OpenAccess.

Part

I
Introduction

Telerik OpenAccess ORM8

© 2010 Telerik Inc.

1 Introduction

1.1 Who Should Read This Courseware

The courseware assumes that you are familiar with either VB.NET or C# code. The courseware uses Visual
Studio 2008 and assumes you now your way around this environment. You should be able to navigate the
basic functional areas of the IDE (e.g. Solution Explorer, Properties, code/designer for windows forms, web
pages etc.) and be able to run and debug applications and class libraries. You should have background
working with databases, tables and stored procedures. Also you should be familiar with Microsoft
mechanisms for working with data, i.e. connections, datasets, tables, etc.

1.2 What Do You Need to Have Before Reading This Courseware

Computer Setup

Windows Vista Service Pack 2, Windows XP Professional .
Microsoft .NET Framework 3.5.
Microsoft Visual Studio 2008
MS SQL Express 2005 or 2008 (Express 2005 should install along with Visual Studio 2008)
Telerik OpenAccess ORM. You can purchase OpenAccess from:

http://www.telerik.com/purchase/individual/orm.aspx

or download the trial from:

http://www.telerik.com/account/free-trials.aspx

Learn more about System Requirements for Telerik OpenAccess ORM at:

http://www.telerik.com/products/orm/resources/system-requirements.aspx

Learn more about supported databases for Telerik OpenAccess ORM at:

http://www.telerik.com/products/orm/resources/supported-databases.aspx

1.3 How This Courseware Is Organized

Getting Started

This chapter demonstrates the basics for setting up your project to use OpenAccess ORM, transform .NET
objects to database tables and back again. The chapter provides several walk-through examples to give you
confidence using OpenAccess and a overall feel for how the product works.

Design Environment

Introduction 9

© 2010 Telerik Inc.

This chapter is a quick tour of the available tools that make working with OpenAccess easy. The tour
includes tools accessed from Visual Studio menus, context menus and wizards.

Using OpenAccess in Applications

This chapter shows how to integrate OpenAccess with a number of presentation platforms including ASP.
NET, ASP.NET/AJAX, WinForms, Telerik Reporting and using web services. The chapter also explores
some of the architectural possibilities for N-Tier applications that respect principles of multi-tiered
application design.

References

This chapter explores how OpenAccess handles references between objects including one-to-one, one-to-
many and many-to-many relationships. The chapter also shows how to handle self referential tables using
OpenAccess.

Inheritance

This chapter demonstrates how OpenAccess handles inheritance to get the best mix of performance, data
storage and conformity between the database and persistent objects. The chapter discusses the tradeoffs
involved for different strategies used to implement inheritance. The chapter uses the well-worn "Animal/Dog/
Breed" class example to make the point. The chapter finishes up with a walk-through example
demonstrating the techniques discussed.

Transactions

This chapter discusses how OpenAccess preserves data integrity by making transactions available in your
code. First, transaction basics are covered followed by a simple demonstration of a minimal transaction to
show how this is achieved in code. Then the chapter explores helpful properties and methods of
OpenAccess transaction objects. The chapter shows how to use OpenAccess transactions in multiple
threads. Finally, the chapter discusses how concurrency options can best fit your environment.

Database Access

This chapter explores how OpenAccess can access the database using LINQ, Object Query Language
(OQL) and native SQL. The chapter then explains how to hook up stored procedures using the OpenAccess
wizards.

Optimization

This chapter demonstrates techniques for improving performance. "Fetch Plans" are described to show how
they can fine-tune the number columns of data that are returned. The basics of the built-in caching system
are explained and a step-by-step walk through details the steps to configure caching for single process
access.

1.4 About Telerik

Telerik is a leading vendor of User Interface (UI) components for Microsoft .NET technologies – ASP.NET
AJAX, Silverlight, WinForms and WPF, and .NET Reporting and content management solutions. Building on
its expertise in interface development and Microsoft technologies, Telerik helps customers build
applications with unparalleled richness, responsiveness and interactivity. Created with passion, Telerik
products help thousands of developers every day to be more productive and deliver reliable applications
under budget and on time.

Telerik OpenAccess ORM10

© 2010 Telerik Inc.

1.5 About Falafel

Founded in 2003, Falafel Software, Inc. provides the highest quality software development, consultation, and
training services available. Starting initially with consulting and training, Falafel Software expanded rapidly
on the excellence of its engineers and the incredible sense of teamwork exhibited by everyone in the
company. Employees include best-selling authors, industry speakers, technology decision makers, and
former Microsoft and Borland engineers. All of Falafel engineers are Microsoft Certified Professionals,
Certified Application Developers, or Most Valuable Professionals.

Falafel has written the following Telerik courseware:

RadControls for ASP.NET

RadControls for ASP.NET AJAX

RadControls for Winforms

Telerik Reporting

Falafel is a Microsoft Gold Certified Partner focusing on the following technologies:

Microsoft .NET based web and windows development

Database design and implementation (SQL server and Oracle)

Implementation of large enterprise grade solutions based on Microsoft technology

Windows Communication Foundation

Windows Workflow Foundation

ASP.NET (AJAX)

Solutions based on DotNetNuke and SharePoint

Compact Framework and Mobile development for handheld devices.

1.6 Introducing Telerik OpenAccess ORM

When a relational database management system (RDMS) is used by a object-oriented programming (OOP)
language you run into a set of difficulties collectively termed "Object Relational Impedance Mismatch" where
concepts and techniques don't translate correctly between the two systems.

As the industry has moved from a three tier model to n-tier models, the object relational impedance
mismatch has become more prevalent. Object Relational Mappers (ORMs) exist to bridge this gap as best
as possible. Telerik’s OpenAccess ORM is an industrial strength ORM that will meet the needs of all
modern applications. It offers a wizard for both Forward and Reverse mapping to all major databases
including Microsoft SQL Server, tight Visual Studio integration, LINQ support, transparent persistence and
lazy loading, runs in medium trust, as well as a fully scalable architecture via its Fetch Plans and Level 2
cache.

The Three Tier Model

Business applications today all access data as part of their core functionality. As relational database
servers gained in popularity 20 years ago, the industry moved from a one tier (mainframe) model to a client
server model where we had a client performing the presentation logic and most of the business logic and the

Introduction 11

© 2010 Telerik Inc.

server with the data storage and some business logic in the form of stored queries. By the early 1990s this
model broke down due to high maintenance costs and a lack of a separation of concerns and we moved to
a three-tier architecture as shown in the figure below.

Figure 1

 A 3 tier architecture. (Source: Wikipedia)

A three-tier architecture enforces a logical (and sometimes physical) separation of three major concerns:

Presentation: the user interface components.

Business Logic: processes commands requested by the users, makes logical decisions such as
calculations and computations. Retrieves data from the data tier.

Data storage and retrieval: storage and retrieval of data for the system and passes the data to the
business layer for processing and ultimate rendering to the user by the presentation tier. In theory this
tier can be file storage, XML, or a relational database, however, a relational database is by far the most
common usage.

The goal of separating the logic is twofold. First there is a performance gain by having the database server
focus only on database storage and retrieval. Specific hardware and topologies (such as RAID) are used for
database storage and access that are different from an “application server” or middle tier of business objects

Telerik OpenAccess ORM12

© 2010 Telerik Inc.

and logic. In addition with powerful client machines it made sense to push UI processing down to the client.

Second was the separation of concerns principle. By separating out the logic of a system, you can easier
maintain the overall system, reuse code, and keep associated logic and code in one location.

The nTier Model

By the later 1990s, the industry extended the three-tier model to a multi-tier approach. The model is
logically the same but what forced it to change was that the Internet became an important part of many
applications.

Web services (and later REST data) have become more integrated into applications. As a consequence the
data tier usually became split into a data storage tier (database server) and a data access layer or tier
(DAL). In very sophisticated systems an additional wrapper tier is added to unify data access to both
databases and web services. Web browsers were far less powerful than a traditional client tier application
and the user interface logic became split across the browser with JavaScript and the server with web server
UI rendering logic such as ASP or PHP.

Tiers started to get blurred ever further with the addition of stored procedures by all the major database
vendors and open source databases. This spread some business logic from the business tier to the
database tier, creating tiers within tiers. For example a business component inside of Microsoft Transaction
Server (an Object Request Broker or ORB) is a logical business tier; however, it most likely calls a stored
procedure, which is a logical business tier inside of the database tier.

As tiers got more blurred due to the Internet, technology innovations and services, the three-tier model
evolved to the n-tier model as shown in an example in the figure below

Figure 2

 An n tier architecture. (Source MS Patterns and Practices)

The Problem with the nTier Architecture

The n-tier architecture has been very successful. Most sophisticated applications today use some form of

Introduction 13

© 2010 Telerik Inc.

the n-tier model. Years ago to support this model, enterprises would have as many as five different job titles
around the data centric business application. The job titles were:

Data Modeler

Database Administrator

SQL Programmer

Object Modeler

Application Developer

The data modeler would design the physical tables and relationships. The DBA would create the tables,
maintain them and come up with an index and physical disk strategy and maintenance plan. The object
modeler would build and object model (or API) and map behaviors to methods. The SQL programmer would
work with the object modeler and application developer and write stored procedures and views under the
guidance of the DBA. The application developer would use the object model components and would “glue”
the application together.

That was then. While some large organizations still develop this way the advent of RAD tools in the late
1990s, the agile/XP movement in the early part of this decade, the .com boom, and ultimately offshoring and
budget cuts, most firms do not organize this way anymore. Many smaller shops have one “database guy” (if
at all) and one “code guy.” Some only have one person in total. Companies then push most of the modeling
and procedure creation to the “db guy” and application developer.

With budget cuts, smaller teams, and the rise of cross-function teams there are not enough “database
guys” to go around. Developers complain that they spend over 30% of an application’s code on database
access code. This only exacerbates the object-relational impedance mismatch.

The ObjectRelational Impedance Mismatch

Database normalization theory, based on mathematics, encompasses different strategies than object
oriented theory, which is based on software engineering principles. Database tables model data and
prescribe storage techniques. Objects model data and behavior. The problem is that there are subtle
differences between the way a database is designed compared to the way an object model is designed. The
approach of doing straight mapping of database tables to objects leads to the famous “object-relational
impedance mismatch.”

To demonstrate the impedance mismatch let’s take a look at an example. This sample was designed by
Scott Ambler in a more detailed discussion of the impedance mismatch. Below in Figure 3 is a simple
database model diagram. There are four database tables: a Customer table, an Address table, and a many-
to-many table called CustomerAddress, linking them together, representing the notion that a customer can
have multiple addresses and addresses are reusable, even between customers. Finally, there is also a
support or “lookup” table for States, representing a one-to-many relationship between States and
Addresses.

Telerik OpenAccess ORM14

© 2010 Telerik Inc.

Figure 3

A database model. Source: http://www.agiledata.org/essays/impedanceMismatch.html

Now let’s consider an object model that would interact with this data. In the figure above, we have four
objects: a Customer object, an Address object and a supporting State object. Notice that there is no need
for the “many to many” database table to be modeled since there is a “lives in” and 1..* arrow notation
between the Customer and Address objects. This will indicate that you will have an Address collection
associated with the Customer. In addition we have a separate ZipCode Object that does not exist in the
database model. This object is used for validation and formatting, behaviors that are not necessary to model
in the database.

Figure 4

An object model. Source: http://www.agiledata.org/essays/impedanceMismatch.html

Notice the subtle difference between the figures representing the relational and object models? They each
have 4 objects, some are identically named (Customer, Address, and State) and look similar, but the
ZipCode object is quite different from the ZipCode represented in the database model. This is because
object models structure both data and behavior while the database model only models data. Triggers are not
considered a behavior, it is more about data updates and flow.

Data Access Layers (DALs)

Introduction 15

© 2010 Telerik Inc.

The impedance mismatch has no easy solution, there are fundamental differences in the database
normalization theory and object oriented theory. To bridge the gap as best as you can and to reduce the
amount of code you have to write for database access developers have taken to write data access layers
(DALs). The goal of a DAL is to decouple the data access code from the object model, allowing the object
model to evolve according to its behaviors and the database to evolve based on its specific needs. A DAL
should have these characteristics:

Be completely independent of the object model. In other words the DAL should place no constraints on
the object model.

The DAL should hide all the data access code from the object model. This is sometimes referred to as
persistence ignorance. Your object model should not care if you are using raw SQL, stored procedures,
or an ORM. If you have the name of a stored procedure or SQL inside of your business (domain) objects
then you violate this point.

The DAL should be able to be ripped out and replaced with minimal to no impact.

The problem with DALs is that they are time consuming to write and not easily reusable from application to
application. This is where ORMs come in.

Object Relational Mapping (ORM)

To overcome the impedance mismatch in a DAL you have to understand and implement the process of
mapping objects to relational database tables. Class attributes will map to zero, one, or many columns in a
database table. If there is proper mapping and persistence ignorance, the developer should only have to
worry about working with the objects in the domain model and the DAL takes care of the rest. One way to
facilitate this is to use an Object Relational Mapper or ORM.

An ORM is automated way to create your DAL based on your database and object model by mapping
domain objects to database tables. Wikipedia defines an ORM as: “a programming technique for converting
data between incompatible type systems in relational databases and object-oriented programming
languages. This creates, in effect, a "virtual object database," which can be used from within the
programming language.” An ORM has to provide a facility to map database tables to domain objects,
usually a design surface or wizard. This mapping is in-between your database and domain model,
independent from the source code and the database. The ORM runtime then converts the commands
issued by the domain model against the mapping into back end database retrieval and SQL statements.
Mapping allows an application to deal seamlessly with several different database models, or even
databases.

An ORM’s mapping eliminates the need for a developer to manually write an entire DAL. A good ORM will
eliminate 90% of the DAL code with its mapping and persistent objects. Since developers tend to focus
30% of their code on writing a DAL, an ORM will save over 25% of the total application code. Since the DAL
is generated by an ORM and not by hand, it will be error free and always conform to product standards,
standards that are easier to change in the future if products change.

When it comes to mapping there are two approaches that an ORM can take: forward mapping and reverse
mapping. Forward mapping will take your already existing object model and then create a database schema
out of it. Reverse mapping is the process of taking an already existing database and creating a set of
objects from the tables. Most ORMs will support either forward or reverse mapping, and some support both
methods. An automatic one-to-one mapping may not be preferred due to the differences between the object
model and an appropriate data model (as show in Figures 3 and 4), most ORMs will give the user the ability
to alter the mappings.

Besides mapping, an ORM has to provide a way for your domain objects to issue database agnostic
commands to the DAL, have the DAL translate that command to the appropriate SQL, and then return a
status (in the case of an update, etc), an object or object collection to the requesting domain object. This

Telerik OpenAccess ORM16

© 2010 Telerik Inc.

has to be done in a transparent way, the objects in your domain need to be ignorant of what happens
behind the scenes in the DAL (persistence ignorance). Popular ways to do this today are using an ORM
LINQ provider or an ORM specific object query language (OQL). The most important thing is that you are

querying your DAL in an agnostic way. For example consider this simple LINQ Query against a popular
ORM:

var result = from o in scope.Extent<Order>()
where o.Customer.CustomerID.Matches("ALFKI")
select o;

This code only concerns itself with the object model and more specifically with the Order object and returns
a collection of Orders filtered by the Customer ID “ALFKI”. Taking the example further, following code
demonstrates using an ORM to filter an ASP.NET GridView based on the results of the user input, notice
that we are querying objects (the Order again) and projecting the results into a new object, never worrying
about the database, connections, or any SQL code. That was handled by the ORM in the DAL.

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
 //get the selected customer id
 string customerid = DropDownList1.SelectedValue.ToString();
 //linq query
 IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope();
 var result = from o in scope.Extent<Order>()
 where o.Customer.CustomerID.Matches(customerid)
 select new { o.OrderID, o.ShipName, o.ShipCity, ShipCompany = o.Shipper.CompanyName };
 //databind the results
 GridView1.DataSource = result;
 GridView1.DataBind();
}

In addition to mapping and commands, ORMs should also integrate with development IDEs such as
Microsoft Visual Studio (or Eclipse), provide caching techniques, integrate with source code version control
software, and provide a testable framework. This will enable better developer productivity while saving the
developer from having to write the DAL from scratch.

Telerik OpenAccess ORM

In November 2008 Telerik released OpenAccess ORM to its customers. OpenAccess is a mature ORM that

was developed by Vanatec prior to its acquisition by Telerik in Autumn 2008.

Mapping

OpenAccess has deep integration with Microsoft Visual Studio and provides both forward and reverse
mapping to six major databases including Microsoft SQL Server and Oracle with an easy to use Wizard
shown in the figure below. As you can see, the wizard gives you full control over what to map and how to
map it (as a class or collection). OpenAccess gives the user complete control over the object and member
naming (or database field and table naming in the case of reverse mapping).

Introduction 17

© 2010 Telerik Inc.

Figure 5

OpenAccess (Reverse) Engineering Wizard.

OpenAccess also generates a DAL that is transparent persistence and mostly persistence ignorant and by
utilizing partial classes, generating very clean reflection free classes, allowing you to run in a medium trust
environment. If you need it, you have the ability to add your own additional logic to the DAL that will not be
overwritten if you need to regenerate the class. This also makes integration with source version control
software much easier as well as facilitates testability and TDD. Here is a class generated by OpenAccess,
it is just like a normal class that you would create:

using System;
using System.Collections.Generic;
namespace ConsoleApplication1
{
 //Generated by Telerik OpenAccess
 //NOTE: Field declarations and 'Object ID' class
 // implementation are added to the 'designer' file.
 // Changes made to the 'designer' file will be
 // overwritten by the wizard.
 public partial class Region
 {

Telerik OpenAccess ORM18

© 2010 Telerik Inc.

 //The 'no-args' constructor required by OpenAccess.
 public Region()
 {
 }
 [Telerik.OpenAccess.FieldAlias("regionID")]
 public int RegionID
 {
 get { return regionID; }
 set { this.regionID = value; }
 }
 [Telerik.OpenAccess.FieldAlias("regionDescription")]
 public string RegionDescription
 {
 get { return regionDescription; }
 set { this.regionDescription = value; }
 }
 }
}

Data Access

You can query the objects in the DAL using standard Object Query Language (OQL) and OpenAccess
provides an OQL explorer tool shown in the figure below where you can test your OQL and even see what
SQL OpenAccess generates against the backend datasource.

Figure 6

The OQL Query Browser

OpenAccess has first class LINQ support through its automatically generated ObjectScopeProvider. The
LINQ support is specific to OpenAccess, not the backend database. An example is shown here, after you

Introduction 19

© 2010 Telerik Inc.

get a reference to the ObjectScopeProvider provided by your DAL, you can use the standard LINQ query
operators on that reference.

IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope();
var result = from o in scope.Extent<Order>()
where o.Customer.CustomerID.Matches("ALFKI")
select o;

If you are not satisfied with the SQL that OpenAccess generated via LINQ or OQL, you can optimize the
query that OpenAccess will generate by defining a fetch plan. You can graphically define a fetch plan using
the fetch plan browser as shown in the figure below

Figure 7

The Fetch Plan Browser

Lazy Loading and Level 2 Cache

Telerik OpenAccess ORM20

© 2010 Telerik Inc.

OpenAccess also uses “lazy loading” or the ability to load resources as they are needed, increasing
performance. OpenAccess also has a very unique caching mechanism, the 2nd level (L2) cache, which
reduces the calls made to the backend database server. Database access is therefore necessary only
when the retrieving data that is currently not available in the cache. This increases the efficiency and
performance of your application and enables you to move effortlessly to a multi-tier application or web-farm
environment.

The cache is even more scalable via the 2nd Level Cache Cluster. In an application server farm scenario
where more than one application is using the L2 cache for the same database, OpenAccess synchronizes
the various caches, even preserving transactional integrity. Every modifying transaction sends its eviction
requests to all participants in the L2 cache cluster asynchronously, ensuring that the modified data will be

expired and preventing both incorrect and dirty reads.

Distributed Applications

Applications today need to work across multiple tiers even if they are not always connected. Service
oriented architectures via WCF, Web applications, mobile application and asynchronous applications still
need to deal directly with persistent objects. OpenAccess supports distributed environments by allowing
you to work with portions of your data in a disconnected mode via the OpenAccess Object Container. In
addition OpenAccess integrates with client side technology such as Silverlight, allowing you to spread your
processing across multiple tiers.

Conclusion

If you are looking to bridge the object-relational impedance mismatch and increase your productivity and
data access performance, you should consider the Telerik OpenAccess ORM. It offers a wizard for both
forward and reverse mapping to all major databases including Microsoft SQL Server, tight Visual Studio
integration, LINQ support, transparent persistence and lazy loading, runs in medium trust, as well as a fully
scalable architecture via its fetch plans and level 2 cache.

For more information please visit: http://www.telerik.com/products/orm.aspx

Part

II
Getting Started

Telerik OpenAccess ORM22

© 2010 Telerik Inc.

2 Getting Started

This chapter demonstrates the basics for setting up your project to use OpenAccess ORM, transform .NET
objects to database tables and back again. We won't get into too much depth yet, but instead use the walk-
through examples to get confidence using OpenAccess and a overall feel for how the product works.

In this chapter you will learn:

How to ORM-enable your project.

The purpose and use of the ObjectScope.

How to use the Persistent attribute.

The concept of "persistence by reachability".

How to map your .NET objects automatically to database tables.

How to map your database tables to .NET objects.

How to perform Create-Read-Update-Delete (CRUD) and the role of transactions in these operations.

Find the source projects for this chapter at Projects\ORM\<CS\VB>\Made_Easy

2.1 ORM Enable Project

Before you can move data between .NET objects and databases you must "ORM-enable" the project.

A Visual Studio menu option displays a wizard that performs the following:

Gathers connection information

Writes to the project configuration file

Creates a helper class for getting at the connection

Adds relevant assembly references

While you're getting used to OpenAccess you can use the defaults, and "dial in" project specific
requirements later.

In this example we will configure OpenAccess to use a SQL Express database in a minimal number of
steps.

1) In Visual Studio, create a new Console application and name it "1_ORM_Enable".

2) From the Visual Studio menu, select Telerik > OpenAccess > Enable Project to use ORM...

This step will display the OpenAccess Enable Project Wizard.

Getting Started 23

© 2010 Telerik Inc.

Figure 8

3) The Prerequisites page of the wizard lists the actions to be performed. Click the Next button.

Figure 9

4) The second page of the wizard allows you to enable persistent classes and to automatically create a
data access layer. Leave both options checked and click the Next button.

Telerik OpenAccess ORM24

© 2010 Telerik Inc.

Figure 10

5) The third page of the wizard lets you create a data connection. Enter the following:

a) Connection Id: "MyDatabaseConnection

b) Backend: Microsoft SQL Server

c) Server Name: "(LOCAL)\SQLEXPRESS"

d) Use integrated security: checked

e) Database Name: "MyDatabase"

Getting Started 25

© 2010 Telerik Inc.

Figure 11

Notice that above there are two options for the database connection. There is a choice to
"Use standard connection strings (Web.config or App.config)" or a choice to "Use
OpenAccess connection settings" In this example we are going to select "Use
OpenAccess connection settings" but from a functionality standpoint either one will work
equally well.

f) Click the Next button.

6) The last page of the wizard summarizes the actions that will be performed. Click the Finish button to
complete the wizard.

Telerik OpenAccess ORM26

© 2010 Telerik Inc.

Figure 12

Take a look at your project in the Solution Explorer and notice that:

The references now include Telerik .OpenAccess and Telerik .OpenAccess.Query.

The wizard also added a "ObjectScopeProvider1.cs" if using C# or "ObjectScopeProvider1.vb" if
using Visual Basic to the project. This key object manages the database connection. The
ObjectScopeProvider provides access to an IObjectScope instance. The "ObjectScope" tracks
changes to your persistent objects, introduces the ability to query data, update data and controls
database transactions.

The App.Config has a openaccess section that defines connections and can store mappings
between objects and database tables.

Getting Started 27

© 2010 Telerik Inc.

Figure 13

7) In the Solution Explorer, right-click the project and select Add->Class... from the context menu. Mark
the class using the "Persistent" attribute.

OpenAccess requires that at least one class be marked as Persistent.

<Telerik.OpenAccess.Persistent()> _
Class Class1
End Class

[Telerik.OpenAccess.Persistent]
class Class1
{
}

Now your project is ORM-enabled and ready to be mapped.

Telerik OpenAccess ORM28

© 2010 Telerik Inc.

2.2 Forward Mapping (objects -> database)

The beauty of OpenAccess is that you can work with the model you're most comfortable with: objects and .
NET code or tables with SQL. For example, you can create a simple "Customer" object and OpenAccess
creates a database and table automatically. This process of representing an object model in database form
is called "Forward Mapping". All that is needed, once you have ORM-enabled the project, is to decorate
your classes with the Persistent attribute. In this walk-through we will set the Persistent attribute by hand,
while in later exercises we'll use the OpenAccess wizards to do that for us.

The example below will create Customer and Order classes, populate them with data, add them to the
"scope" and persist the data to the database.

Be aware that all changes that impact the database must be made within the context of a
transaction. This is implemented in OpenAccess using the IObjectScope.Transaction object and
three key methods Begin(), Commit() and Rollback().

The general steps in the example code are:

Define a persistent class, i.e. define a class to suit your business purpose, then mark the class with
the Telerik.OpenAccess.Persistent attribute.

Get an IObjectScope instance. We will use the "ObjectScopeProvider" created in the previous "ORM
Enable Project" step to create an IObjectScope instance for us.

Start a transaction using the IObjectScope.Transaction.Begin() method.

Create and populate instances of your persistent class.

Commit the transaction using the IObjectScope.Transaction.Commit() method.

Here's an example of what that might look like:

Dim scope As IObjectScope = ObjectScopeProvider1.ObjectScope()

scope.Transaction.Begin()

Dim _customer As New Customer()
_customer.CustomerName = "Bob"
_customer.CustomerNumber = 123

scope.Add(_customer)

scope.Transaction.Commit()

IObjectScope scope = ObjectScopeProvider1.ObjectScope();

scope.Transaction.Begin();

Customer _customer = new Customer();
_customer.CustomerName = "Bob";
_customer.CustomerNumber = 123;

scope.Add(_customer);

scope.Transaction.Commit();

Getting Started 29

© 2010 Telerik Inc.

Forward Mapping Walk-Through

1) Create a new Console application and call it 1_ORM_Forward_Mapping.

2) ORM-enable the project (see the previous "ORM Enable Project" section for details on how to do this).

3) In the Solution Explorer, right-click the project and select Add->Class... from the context menu. Mark
the class using the "Persistent" attribute

4) Rename the new Class (should be called Class1) "Class1" file to "Customer". When prompted to
rename the other references, click the Yes button.

5) Open the "Customer" to edit the class. Make it a public class and add an integer "CustomerNumber"
property and a string "CustomerName" property.

<Telerik.OpenAccess.Persistent()> _
Public Class Customer

 Private _customerNumber As Integer
 Private _customerName As String

 Public Property CustomerNumber() As Integer
 Get
 Return _customerNumber
 End Get
 Set(ByVal value As Integer)
 _customerNumber = value
 End Set
 End Property

 Public Property CustomerName() As String
 Get
 Return _customerName
 End Get
 Set(ByVal value As String)
 _customerName = value
 End Set
 End Property

End Class

Please take note that in the VB.NET code the Properties have fully defined Get and Set
statements. Unlike C# in the current release, VB9 does not support Auto Implemented
Properties. In the next release of VB (version 10), they will be supported. Until then if using
VB.NET these properties will need to be fully defined when used with ORM.

Telerik OpenAccess ORM30

© 2010 Telerik Inc.

namespace _1_ORM_Forward_Mapping
{
 [Telerik.OpenAccess.Persistent]
 public class Customer
 {
 public int CustomerNumber
 {
 get;
 set;
 }
 public string CustomerName
 {
 get;
 set;
 }
 }
}

G
o
t
c
h
a
!

Be aware that as of this writing, OpenAccess does not yet fully support "Automatic Properties", i.
e. the notation that has no specific internal fields, just the "get" and "set" without arguments.
OpenAccess persists against fields, not properties. So in this example, the field names will be
created automatically by OpenAccess and will be a little ugly, e.g.
"<_my_number>k___backing_field". If you decide to reverse map, you will have an opportunity to
rename the field back to the original property name. To avoid this issue altogether, fully define
each property.

6) Open the "Program.cs" (C#) or the "Module1.vb" (VB) file for editing and add a reference to Telerik.
OpenAccess in the "Imports" (VB) or "using" (C#) section of code.

7) Add the following code to the Main() method of the Program class.

The code will use the ObjectScopeProvider created automatically when you ORM-enabled the project.
The IObjectScope retrieved from the ObjectScope() method provides access to the underlying
database connection, the transaction object and the ability to query your "Customer" object using SQL
expressions.

Getting Started 31

© 2010 Telerik Inc.

Imports Telerik.OpenAccess

Module Module1

 Sub Main()
 Dim scope As IObjectScope = ObjectScopeProvider1.ObjectScope()
 scope.Transaction.Begin()

 Dim _customer As New Customer()
 _customer.CustomerName = "Bob"
 _customer.CustomerNumber = 123

 scope.Add(_customer)
 scope.Transaction.Commit()
 End Sub

End Module

using Telerik.OpenAccess;

namespace _1_ORM_Forward_Mapping
{
 class Program
 {
 static void Main(string[] args)
 {
 IObjectScope scope = ObjectScopeProvider1.ObjectScope();
 scope.Transaction.Begin();

 Customer _customer = new Customer();
 _customer.CustomerName = "Bob";
 _customer.CustomerNumber = 123;

 scope.Add(_customer);
 scope.Transaction.Commit();
 }
 }
}

8) Run the application.

Because it is a console application, the console will flash briefly on the screen. The database
"MyDatabase" will be created in your local SQL express, a "Customer" table will be created and
populated with a single row.

9) Use the Server Explorer, SQL Server Management Studio or database tool of your choose to view the
new database, table and data. The figure below shows the data as it appears in Server Explorer.

OpenAccess automatically creates a primary key field "customer_id", backing fields for each property
in the Customer object and a column to track the versioning of the record.

Telerik OpenAccess ORM32

© 2010 Telerik Inc.

Figure 14

Now Lets see how you can update the object model and have the meta-data propagate to the
database.

10)Add a new class to the project "Order". Add code for a single integer "OrderNumber" property so the
code looks like the example below.

<Telerik.OpenAccess.Persistent()> _
Public Class Order

 Private _orderNumber As Integer

 Public Property OrderNumber() As Integer
 Get
 Return _orderNumber
 End Get
 Set(ByVal value As Integer)
 _orderNumber = value
 End Set
 End Property

End Class

Getting Started 33

© 2010 Telerik Inc.

namespace _1_ORM_Forward_Mapping
{
 [Telerik.OpenAccess.Persistent]
 public class Order
 {
 public int OrderNumber
 {
 get;
 set;
 }
 }
}

11) Add a collection of Orders to the Customer object. The completed Customer class should now look
like the example below. Use the IList for the Orders property type. Create the Orders instance in the
constructor using a generic List of Order.

Telerik OpenAccess ORM34

© 2010 Telerik Inc.

<Telerik.OpenAccess.Persistent()> _
Public Class Customer

 ' Create private variables to hold the data values used
 ' by the public properties
 Private _customerNumber As Integer
 Private _customerName As String
 Private _orders As IList(Of Order)

 ' Class constructor
 Public Sub New()
 Me.Orders = New List(Of Order)
 End Sub

 Public Property CustomerNumber() As Integer
 Get
 Return _customerNumber
 End Get
 Set(ByVal value As Integer)
 _customerNumber = value
 End Set
 End Property

 Public Property CustomerName() As String
 Get
 Return _customerName
 End Get
 Set(ByVal value As String)
 _customerName = value
 End Set
 End Property

 Public Property Orders() As IList(Of Order)
 Get
 Return _orders
 End Get
 Set(ByVal value As IList(Of Order))
 _orders = value
 End Set
 End Property

End Class

Getting Started 35

© 2010 Telerik Inc.

using System.Collections.Generic;

namespace _1_ORM_Forward_Mapping
{
 [Telerik.OpenAccess.Persistent]
 public class Customer
 {
 // Class constructor
 public Customer()
 {
 this.Orders = new List<Order>();
 }

 public int CustomerNumber
 {
 get;
 set;
 }
 public string CustomerName
 {
 get;
 set;
 }

 // Create a New Generlic List of Order
 public IList<Order> Orders
 {
 get;
 set;
 }
 }
}

12) Add a single order to the Customer Orders collection. The code for the Main() method should look like
the example below.

Telerik OpenAccess ORM36

© 2010 Telerik Inc.

Imports Telerik.OpenAccess

Module Module1

 Sub Main()
 Dim scope As IObjectScope = ObjectScopeProvider1.ObjectScope()
 scope.Transaction.Begin() 'Here is where the Transaction Starts

 Dim _customer As New Customer()
 _customer.CustomerName = "Bob"
 _customer.CustomerNumber = 123

 Dim _order As New Order()
 _order.OrderNumber = 1
 _customer.Orders.Add(_order)

 scope.Add(_customer)
 scope.Transaction.Commit() 'Here is where the Transaction is committed

 End Sub
End Module

static void Main(string[] args)
{
 IObjectScope scope = ObjectScopeProvider1.ObjectScope();
 scope.Transaction.Begin();

 Customer _customer = new Customer();
 _customer.CustomerName = "Bob";
 _customer.CustomerNumber = 123;

 Order order = new Order();
 order.OrderNumber = 1;
 _customer.Orders.Add(order);

 scope.Add(_customer);
 scope.Transaction.Commit();
}

13) Run the application. Look at the changes to the database.

OpenAccess creates a "join" table called "customer_ordr" that allows the most flexible combination of
customers and orders. The new table for "Order" is automatically named "ordr" by OpenAccess to
avoid naming conflicts.

Getting Started 37

© 2010 Telerik Inc.

Figure 15

Did you notice that the Orders are never explicitly added to the Scope? This feature is called
"persistence by reachability". All persistent objects that are reachable from an object added to
the scope are automatically stored in the database.

2.3 Reverse Mapping (database -> objects)

In a more traditional scenario, the database already exists and a data access layer needs to be created to
work with the data programmatically. This next walk-through uses Customer, Orders and OrderDetails
tables of the installed NorthwindOA SQL Express database.

1) Create a new Console application called 1_ORM_Reverse_Mapping.

2) ORM-enable the project (see the previous "ORM Enable Project" - this time, however click the option
to "Use standard connection strings (Web.config or App.config) when the screen comes up to configure
the connection.

 Figure 16

Telerik OpenAccess ORM38

© 2010 Telerik Inc.

3) Name the Connection Id: NorthwindOAConnection

4) Click on the New Connection command button

 Figure 17

5) Click Continue

6) Enter the information as shown below and click OK:

a) Server name: (local)\SQLEXPRESS

b) Select or enter a database name: NorthindOA

Getting Started 39

© 2010 Telerik Inc.

 Figure 18

7) Click Next and then Click Finish

8) From the Visual Studio menu, select Telerik > OpenAccess > Reverse Mapping (Tables to Classes)...

Telerik OpenAccess ORM40

© 2010 Telerik Inc.

 Figure 19

This step will load meta-data describing the tables from the connection defined when you ORM-enabled
the project. The meta-data is displayed in the Reverse Engineering wizard dialog.

9) Select the Advanced Tab of the Reverse Engineering Wizard to display a tree view of all NorthwindOA
tables. Configure the tables:

a) Click each table and select the Ignore radio button for each table except "Customer", "Orders", "Order
Details" and "Products". The wizard should look something like the screenshot below.

Getting Started 41

© 2010 Telerik Inc.

Figure 20

b) Open up "Orders" table node in the Tables tree. Select the "shipper" reference and then click the
Remove button.

We don't need any of the Shippers table information, so removing the reference will prevent an
error later on

Telerik OpenAccess ORM42

© 2010 Telerik Inc.

Figure 21

c) Select the "employee" reference and remove that as well.

d) Select the "customer" reference and select the "Create one-to-many list" checkbox.

Figure 22

Note that in C# the field name will show as above, but in VB the field name gets an _ in front of it
so that order will show as _order in the Inverse Field Name when using VB.NET.

Getting Started 43

© 2010 Telerik Inc.

e) Open the "OrderDetails" node in the tree. Select the "order" reference and click the "Create one-to-
many list" checkbox.

f) Click the Generate & Save Config button to close the dialog and create the classes. Click the Yes
button to confirm generating source.

10) Add code to the Program Main() method that retrieves all customers, orders and order details.

The ObjectScopeProvider passes back a IObjectScope. IObjectScope has several methods for
querying data using straight SQL or the OpenAccess variety of SQL called OQL. In this case we
call the GetSqlQuery() method and receive a Query object in return. The Query object has
methods for returning several different flavors of collections including IEnumerable, IList and
IBindingList. Once you have the collection of Customer objects you can iterate them, drill down
and iterate the collection of orders and for each order, navigate through the collection of order
details. Notice that you can also traverse back up from the order detail and get it's associated
Product and from there get the ProductName. This last is possible because you selected the
Products table in the Reverse Mapping wizard tree, and so that information is automatically
included.

Shared Sub Main(args As String())
 Using scope As IObjectScope = ObjectScopeProvider1.ObjectScope()
 Dim query As Query(Of Customer) = _
 scope.GetSqlQuery(Of Customer)("select * from Customers", "")
 Dim customers As QueryResultList(Of Customer) = query.ExecuteList()
 For Each customer As Customer In customers
 Console.WriteLine("Customer: {0}:", customer.CompanyName)
 For Each order As Order In customer.Orders
 Console.WriteLine(vbTab & "Order: {0}:", order.OrderID)
 For Each orderDetail As OrderDetail In order.OrderDetails
 Console.WriteLine(vbTab & vbTab & "Product: {0}:", _
 orderDetail.Product.ProductName)
 Next
 Next
 Next
 End Using

 Console.ReadLine()
End Sub

Telerik OpenAccess ORM44

© 2010 Telerik Inc.

using System;
using Telerik.OpenAccess;

namespace _1_ORM_Reverse_Mapping
{
 class Program
 {
 static void Main(string[] args)
 {
 using (IObjectScope scope = ObjectScopeProvider1.ObjectScope())
 {
 Query<Customer> query =
 scope.GetSqlQuery<Customer>("select * from Customers", "");
 QueryResultList<Customer> customers = query.ExecuteList();
 foreach (Customer customer in customers)
 {
 Console.WriteLine("Customer: {0}:", customer.CompanyName);
 foreach (Order order in customer.Orders)
 {
 Console.WriteLine("\tOrder: {0}:", order.OrderID);
 foreach (OrderDetail orderDetail in order.OrderDetails)
 {
 Console.WriteLine("\t\tProduct: {0}:",
 orderDetail.Product.ProductName);
 }
 }
 }
 }
 Console.ReadLine();
 }
 }
}

11) Run the application. The complete list of customers, orders and products will be dumped to the console
window.

Notice that we didn't have to explicitly join the orders, details or product information. We asked
for the top-level data and everything else came along for the ride.

2.3.1 Generated Class

Partial Classes

When OpenAccess generates a class by reverse mapping from the database, a partial class is created with
two files that define the object. The screenshot below shows a customer object defined in the two class
files.

Getting Started 45

© 2010 Telerik Inc.

Figure 23

The partial class files that represent the object are:

The main "Customer.cs" class represents the developer modifiable code and contains public properties
for the class. By design, once this code is initially generated, OpenAccess never modifies this class file
for fear of overwriting your code. The figure below shows the general appearance of the file:

Figure 24

If a change is made (such as adding a new field to a table in the database where a class file has
already been generated, then to utilize that changed field, code will have to be manually added to
the main class file. This is by design to prevent custom code from being overwritten if a table is
updated and the class regenerated. Fortunately as shown below, the changed code is in the
other class file so it can be easily pasted into the main file if needed.

The other class file has the naming convention "Customer.Telerik.OpenAccess.cs" and can be
overwritten multiple times. This file contains the private members of the class.

Telerik OpenAccess ORM46

© 2010 Telerik Inc.

Figure 25

The file also contains a commented out section at the bottom of the file with a #region block labeled
"main class file contents". While OpenAccess doesn't automatically write this in your main class, you
can copy this section back into the main class to synchronize the two files.

Figure 26

G
o
t
c
h
a
!

As of this writing, the partial class that is regenerated when rerunning the Reverse Mapping
Wizard only has the the changed code (shown above) that can be copied back into the main class
file when using C#. In VB.NET this functionality is not currently available. When making changes
to the fields in the database and re-running the mapping wizard, the code in the main class will
need to be added by hand.

Getting Started 47

© 2010 Telerik Inc.

Templates

Be aware that when OpenAccess generates a class file it uses a template to define the layout of the code.
The generated class includes a comment that gives the path to the template file. You can change the
template to make the generated code better fit your company standards and requirements. The following
"PartialUserDefault.vm" is the template for the main code in a partial class:

using System;
using System.Collections.Generic;
#foreach($import in $imports)${import}#end
#if(${hasPackage})namespace ${classPackage}
{#end
 // Generated by Telerik OpenAccess
 // Used template: $usedTemplate
 // NOTE: Field declarations and 'Object ID' class
 // implementation are added to the 'designer' file.
 // Changes made to the 'designer' file will
 // be overwritten by the wizard.
 public partial class $className
 {
 //The 'no-args' constructor required by OpenAccess.
 public $className()
 {
 }

#foreach($variableAccess in $allVariableAccess)$variableAccess #end
 }
#if(${hasPackage})}#end

See the topic "Using Reverse Engineering Templates" in the programming guide for a complete list of
template files and available variables.

G
o
t
c
h
a
!

It is possible to change everything in the templates, however please keep in mind that this could
result in the code not being compilable any more. Also some variables should be there, for e.g., a
field without a type and a name variable would be incomplete. You need to keep these things in
mind before making changes to the templates.

2.4 Create, Read, Update, Delete (CRUD)

You're not "cooking with gas" until you can persist changes to the database. To update data using
OpenAccess, you only need to modify the state of an object, you don't need to know any of the SQL
performed on the back end. If your database happens to be Oracle or MS SQL or Firebird, the programming
model does not change. The basic CRUD operations from a .NET and OpenAccess perspective are:

Create: Instantiate a .NET object and add it to the object scope.

Read: You have several alternatives here: use the scope Extent<>() method to return a LINQ queryable
object, use a standard SQL query, or use an OQL query. OQL is similar to standard SQL but is not
database specific.

Telerik OpenAccess ORM48

© 2010 Telerik Inc.

Update: Once you have a reference to a persistent object, you simply make changes to the object
state and add the object to the scope.

Delete: Pass the object to be deleted to the scope Remove() method.

This next example demonstrates each of the CRUD operations using the NorthwindOA database.

1) Follow the Steps in the "Reverse Mapping" project and create a new project called
1_ORM_Crud_Operations.

2) Replace the Main() method with the code shown below.

In the forward mapping example you created a new Customer object by instantiating and adding it to
the object scope. In this example we also use LINQ to retrieve and modify the first customer. We also
use LINQ to get all customers with a CompanyName that starts with "E" and delete those records from
the database.

The deletion portion of the code example traverses collections of Customer/Order/OrderDetails
and removes each. We can also modify the configuration file to allow cascading deletes.

Getting Started 49

© 2010 Telerik Inc.

Imports Telerik.OpenAccess

Module Module1

 Sub Main()
 Using scope As IObjectScope = ObjectScopeProvider1.ObjectScope()
 scope.Transaction.Begin()

 ' add a new customer
 Dim newCustomer As New Customer()
 newCustomer.CustomerID = "A" + System.DateTime.Now.ToString("hmsfff"
)
 newCustomer.CompanyName = "New Customer"
 scope.Add(newCustomer)

 ' get first customer using LINQ and modify
 Dim firstCustomer As Customer = _
 scope.Extent(Of Customer)().Take(1).[Single]()
 firstCustomer.CompanyName = _
 "Company " + DateTime.Now.ToString("hmsfff")
 scope.Add(firstCustomer)

 ' use LINQ to retrieve customer ID's starting with 'E'
 Dim results = From c In scope.Extent(Of Customer)() _
 Where c.CompanyName.StartsWith("E") _
 Select c

 ' delete 'E' customers from the database
 For Each cust As Customer In results
 For Each order As Order In cust.Orders
 For Each detail As OrderDetail In order.OrderDetails
 scope.Remove(detail)
 Next
 scope.Remove(order)
 Next
 scope.Remove(cust)
 Next

 scope.Transaction.Commit()
 End Using
 Console.ReadLine()
 End Sub

End Module

Telerik OpenAccess ORM50

© 2010 Telerik Inc.

using System;
using System.Linq;
using Telerik.OpenAccess;

namespace _1_ORM_CRUD_Operations
{
 class Program
 {
 static void Main(string[] args)
 {
 using (IObjectScope scope = ObjectScopeProvider1.ObjectScope())
 {
 scope.Transaction.Begin();

 // add a new customer
 Customer newCustomer = new Customer();
 newCustomer.CustomerID = "A" + System.DateTime.Now.ToString(
"hmsfff");
 newCustomer.CompanyName = "New Customer";
 scope.Add(newCustomer);

 // get first customer using LINQ and modify
 Customer firstCustomer =
 scope.Extent<Customer>().Take(1).Single();
 firstCustomer.CompanyName =
 "Company " + DateTime.Now.ToString("hmsfff");
 scope.Add(firstCustomer);

 // use LINQ to retrieve customer ID's starting with "E"
 var results =
 from c in scope.Extent<Customer>()
 where c.CompanyName.StartsWith("E")
 select c;

 // delete "E" customers from the database
 foreach (Customer cust in results)
 {
 foreach (Order order in cust.Orders)
 {
 foreach (OrderDetail detail in order.OrderDetails)
 {
 scope.Remove(detail);
 }
 scope.Remove(order);
 }
 scope.Remove(cust);
 }
 scope.Transaction.Commit();
 }

 Console.ReadLine();
 }
 }
}

Getting Started 51

© 2010 Telerik Inc.

2.5 Wrap Up

This chapter provided basic skills for translating .NET objects into database tables and back again. You
learned how to ORM-enable a project as a pre-requisite for any OpenAccess functionality. Then you
transformed some basic .NET objects into database table form using forward mapping. As part of
configuring a .NET object you decorated the class with the Persistent attribute. You were introduced to the
ObjectScope class as the focal point for major OpenAccess functionality including handling database
connections, transactions and retrieving data. You were introduced to the concept of "persistence by
rechability". You used the OpenAccess Reverse mapping wizard to create persistent .NET objects using an
existing database schema. You also performed basic (C)reate, (R)ead, (U)pdate and (D)elete operations
within the context of a transaction.

Part

III
Design Environment

Telerik OpenAccess ORM54

© 2010 Telerik Inc.

3 Design Environment

This chapter is a tour of the available tools that make working with OpenAccess easy. The tour includes
tools accessed from Visual Studio menus, context menus and wizards.

In this chapter you will:

Work with the Visual Studio Telerik OpenAccess menu.

Become familiar with the Visual Studio Solution Explorer OpenAccess context menu.

Find the source projects for this chapter
at \Projects\ORM\CS\2_DesignEnvironment\2_DesignEnvironment.sln

3.1 OpenAccess Menu

The majority of OpenAccess functionality can be accessed through the Visual Studio menu. This will be
your central control panel for ORM related activities.

Figure 27

Use the menu options to...

Launch the Telerik ORM Wizard. This is a central jumping off point that takes you through all phases of
using ORM in your application. The ORM wizard is especially helpful if you're new to OpenAccess.

Prepare your project for mapping.

Forward map.

Reverse map.

Edit application configuration settings.

Edit server configuration, including specifying the server backend, caching, connection details, how
class names are generated and logging. Also validate and update settings.

Design Environment 55

© 2010 Telerik Inc.

Browse and configure "fetch plans". Fetch plans let you tailor the most efficient retrieval from the server.

Create and test OQL queries.

Add data forms to your project. The OpenAccess Data Form Wizard lets you select the persistent
object to use, the fields to display and the controls used to display the data.

Use the Database Operations option to create a new database based off your connection settings or
update an existing database. Classes marked with the Persistent attribute will have tables created.
Additions and changes to persistent class properties show up as changes to table properties.

Set Options for where "Persistent" and "Fetch Group" notations are found, i.e. as attributes or in the
config file.

OpenAccess Menu Walk-Through

We've already used the menu to ORM-enable projects and to reverse map. In this next walk-through we will
take a tour of menu options and use them to fine-tune existing projects and make changes on-the-fly.

1) Create a new Console application.

2) ORM-enable the project (See the Getting Started, "ORM Enable Project" section for detailed steps).
Select both the Persistent Classes and the Data access code options. Set the Connection Id to
"MyDatabaseConnection" and the Database Name to "MyDatabase".

3) Add a class "MyClass.cs" to the project. Add two properties to the class, "MyString" and "MyNumber"
as shown in the class declaration below.

Telerik OpenAccess ORM56

© 2010 Telerik Inc.

Public Class MyClass

 Private _myString As String
 Private _myNumber As Integer

 Public Property MyString() As String
 Get
 Return _myString
 End Get
 Set(ByVal value As String)
 _myString = value
 End Set
 End Property
 Public Property MyNumber() As Integer
 Get
 Return _myNumber
 End Get
 Set(ByVal value As Integer)
 _myNumber = value
 End Set
 End Property
End Class

class MyClass
{
 public string MyString { get; set; }
 public int MyNumber { get; set; }
}

4) Forward map "MyClass".

a) From the Visual Studio menu Telerik > OpenAccess > Forward Mapping (Classes to Tables)....
This step will display the Mapping Wizard.

b) Make sure the "Non-Persistent" node of the tree is selected.

c) Check the Make Persistent checkbox next to "MyClass".

d) Check the Mark selected classes as 'Persistent' checkbox. This last step will decorate "MyClass"
with the Persistent attribute.

e) Click the Done button to close the dialog.

Design Environment 57

© 2010 Telerik Inc.

5) From the Visual Studio menu select Telerik > OpenAccess > Database Operations > Create
Database. A dialog will display when the database is created.

Figure 28

6) Also from the Visual Studio menu select View > Server Explorer and add a connection to your new
database.

a) Right-click the Data Connections node and select Add Connection... This step will display the Add
Connection dialog.

b) In the Add Connection dialog, verify that the Data source is "Microsoft SQL Server (MS SQL)", and if it
is not, click the Change... button and select "Microsoft SQL Server" from the list.

c) For the 'Server Name' enter ".\SQLEXPRESS".

d) For the 'Select or enter a database name' drop down the list and select "MyDatabase".

e) Click OK to close the dialog and return to Server Explorer.

Telerik OpenAccess ORM58

© 2010 Telerik Inc.

Figure 29

7) In Server Explorer expand and explore your new "MyDatabase" connection.

a) Expand the Tables node

b) Expand the node for the "my_class" table. The table will contain the automatically created id field,
columns for "MyString" and "MyNumber", and a column for versioning.

Design Environment 59

© 2010 Telerik Inc.

Figure 30

c) Select the "_my_number" column node and look at the Properties Window. Notice that the Data Type
property is "int".

Figure 31

8) Go back to the MyClass definition and change the MyNumber property from an "int" to a "double" type.

9) Build the project. This step will actually update the database structure, assuming that configuration
settings allow it.

10)In the Server Explorer, right-click the "my_class" node and select the Refresh option from the context
menu.

11)Select the "_my_number" column node again and look at the Properties Window. Notice that the Data
Type property is now "double".

What if you want to make sure that your database schema doesn't change accidentally? OpenAccess
configuration options let you prevent database update.

Telerik OpenAccess ORM60

© 2010 Telerik Inc.

12)Select Telerik > OpenAccess > Configuration > Connection Settings. The Enable Project (Expert
Mode) dialog displays. The dialog allows you to change the database connection information, change
project level properties and generate helper classes.

The "Enable Project (Expert Mode)" is the "expert" version of a dialog you used earlier to "ORM-
Enable" the project. Buttons on the dialog allow you to toggle between "Wizard" and "Expert"
modes.

13)Locate the "Update Database" property and set it to False.

Figure 32

14)From the Visual Studio menu select Telerik > OpenAccess > Database Operations > Create
Database. This will trigger an exception and prevent the database update.

Design Environment 61

© 2010 Telerik Inc.

 Figure 33

15)Now go back to the Select Telerik > OpenAccess > Configuration > Connection Settings option
and change the Update Database option back to True.

16)Open the Program class for editing.

17)Add a reference to Telerik.OpenAccess in "Imports" (VB) or "using" (C#) section of the code.

18)Add code to the Main() method to create a single MyClass instance and commit it to the database.

Shared Sub Main(args As String())
 Dim scope As IObjectScope = ObjectScopeProvider1.ObjectScope()
 scope.Transaction.Begin()
 Dim [myClass] As New [MyClass]()
 [myClass].MyString = "Howdy World"
 [myClass].MyNumber = 123
 scope.Add([myClass])
 scope.Transaction.Commit()

 Console.ReadLine()
End Sub

static void Main(string[] args)
{
 IObjectScope scope = ObjectScopeProvider1.ObjectScope();
 scope.Transaction.Begin();
 MyClass myClass = new MyClass();
 myClass.MyString = "Howdy World";
 myClass.MyNumber = 123;
 scope.Add(myClass);
 scope.Transaction.Commit();

 Console.ReadLine();
}

Before we run the code, let's turn on logging and find out everything that's happening on the database
backend.

19)Select the Telerik > OpenAccess > Configuration > Backend Configuration Settings... option to
display the Backend Configuration dialog. Locate the Logging section and change the following
properties:

Telerik OpenAccess ORM62

© 2010 Telerik Inc.

a) Event Tracing = True

b) Log Level = Normal

c) Write Log Output to Console = True

Figure 34

20)Run the application and take a look at the Console window. Using the logging to the console window or
the same information redirected to a file, we can see what connection string is being used, how SQL
statements are being generated and what kind of additional housekeeping OpenAccess is doing for us
in the background.

Design Environment 63

© 2010 Telerik Inc.

Figure 35

Telerik OpenAccess ORM64

© 2010 Telerik Inc.

You may have noticed when you selected the Connection Settings menu item to set the Update
Database property that the Project Properties also include an "Enhancing" property. This is an
important feature of OpenAccess that happens completely in the background. When mapping
between .NET objects and database tables, you don't see a lot of generated code that handles
communication with the database. The design reason for that is that generated code could be
broken by later modification. Another reason is that you as the developer don't really need a lot of
generated code, only the code that is business critical.

Figure 36

To get around these issues, OpenAccess "enhances" your assembly by injecting methods during
the compilation process. If we open up Red Gate's ".NET Reflector" application to explore the
assembly we see a series of OpenAccessEnhancedxxx methods have been added to handle the
database communication plumbing.

Design Environment 65

© 2010 Telerik Inc.

Figure 37

You should also be aware that OpenAccess includes a command-line tool, VEnhance, that
performs the same 'enhancing' functionality in case you have a batch process where enhancing
within Visual Studio would be impractical.

3.2 Project Context Menu

Some of the same options available from the main Telerik > OpenAccess menu can be found in the Solution
Explorer when you right-click the project.here you can ORM-enable the project, display the OpenAccess
Dataform Wizard, create a new scope provider object or update the application configuration references.

Telerik OpenAccess ORM66

© 2010 Telerik Inc.

Figure 38

3.3 Wrap Up

This chapter toured some of the tools that make working with OpenAccess easy, mainly centered around
the Visual Studio OpenAccess menu, the Solution Explorer context menu and some of the wizards
available from these menus. You used OpenAccess menu items to ORM-enable your project, mark existing
.NET classes as persistent, create a new database, prevent updating the database schema and turn on
logging of server backend activities.

Part

IV
Using OpenAccess in Applications

Telerik OpenAccess ORM68

© 2010 Telerik Inc.

4 Using OpenAccess in Applications

This chapter demonstrates how to build applications with several types of presentation using OpenAccess
to provide the data.

In this chapter you will learn:

How to build an assembly containing only the persistent objects and no data access code.

How to build a WinForms application with grid and combo box that consumes data from OpenAccess..

How to build an ASP.NET application with grid and combo box that consumes data from OpenAccess..

How to build a Web Services application that consumes data from OpenAccess.

How to build a Telerik Reporting module that consumes data from OpenAccess.

How to construct N-Tier applications using OpenAccess.

4.1 Building the "Model" Assembly

In this walk-through we will create a class library that contains our persistent objects only. The applications
that follow will reference this class library.

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "2_ORM_Model"

1) Create a new Class Library project called "2_ORM_Model". This will be used in most of the following
projects as well.

2) ORM-enable the project. Specify the following:

a) The Persistent classes option should be checked.

b) The Data Access Code option should not be checked.

c) The database connection ID should be "NorthwindOAConnection"

d) The database should be "NorthwindOA".

Feel free to use either of the "Connection Strings" options. Because the standard connection
string option was used previously in previous chapter under "Reverse Mapping) the standard
connection will likely already show up and will be configured to use the NorthwindOA database.

* Please review the previous two chapters if further clarification is needed to complete the above
steps.

3) From the Telerik > OpenAccess menu, select the Reverse Mapping option.

4) In the Simple View tab of the Reverse Engineering Wizard, de-select the Generate checkbox for all but
the "Categories" and "Products" tables.

Using OpenAccess in Applications 69

© 2010 Telerik Inc.

Figure 39

5) Select the Advanced View tab.

6) Expand the Tables node and Select the "Products" node.

7) Click the Create Ref button and configure the reference:

a) In the Field Name entry add "Category".

b) From the Type drop down list select "Category".

(Note: If using VB.NET the field name will automatically change to _category)

c) Click the Create one-to-many list checkbox.

8) Click the Generate & Save Config button.

9) Click Yes to confirm the Generate Sources dialog.

10)Build the project.

4.2 WinForms Example

In this project we will consume the persistent classes contained in the "2_ORM_Model" class library,
enable the project to access the database data, and bind a combo box and grid to the "Categories" and
"Products" data.

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "2_ORM_MyWinFormApp"

1) Create a new Windows Forms Application project called "2_ORM_MyWinFormApp".

Telerik OpenAccess ORM70

© 2010 Telerik Inc.

2) ORM-enable the project. Specify the following:

a) The Persistent classes option should be disabled.

b) the Data Access Code option should be enabled.

c) The database connection ID should be "NorthwindOAConnection"

d) The database should be "NorthwindOA".

3) In the Solution Explorer, add a reference to the "2_ORM_Model" class library.

4) In the Solution Explorer, rename "ObjectScopeProvider1.cs" to "NorthwindProvider.cs" (for VB change it
to NortwhindProvider.vb). When prompted, click the Yes button to rename all references.

5) Build the project. You may see an OpenAccess error "No persistent class could be found". To fix this,
navigate to the Solution Explorer, right-click the "MyWinFormApp" and select Open Access > Update
Config References from the context menu.

G
o
t
c
h
a
!

Why do I get an error even though the "2_ORM_Model" assembly has been added as a reference?
OpenAccess has its own set of consistency checks it performs during compilation. Although the
project knows about the "Model" assembly, OpenAccess does not. Running the Update Config
References option adds an assembly reference within the <openaccess> element of the config file,
allowing the project to build correctly.

6) Build the application. The compilation should complete without errors.

7) From the Toolbox, drop a ObjectProvider component to the default windows form. This will display the
ObjectProvider dialog. Configure the ObjectProvider as follows:

a) Context Provider = _2_ORM_MyWinFormApp.NorthwindProvider, 2_ORM_MyWinFormApp

b) Persistent Class = _2_ORM_Model.Category

c) Result Method = Query

d) Query Condition = leave as default "SELECT * FROM CategoryExtent AS x". This is an OQL query,
the native SQL for OpenAccess.

e) Click the Finish button to create the object provider "objectProvider1".

Using OpenAccess in Applications 71

© 2010 Telerik Inc.

Figure 40

8) From the ToolBox, drag a ObjectView component to the form. This will display the ObjectView Wizard
dialog. Configure the dialog as follows:

a) Point the ObjectProvider at "objectProvider1" using the drop down list. At this point in the example,
only "objectProvider1" should be in the list, so it should already be selected.

b) Leave the Root Type setting pointed at "_2_ORM_Model.Category".

c) Click the Finish button to create "objectView1".

Figure 41

9) From the ToolBox, drag a standard Windows Forms ComboBox to the form and set properties:

a) From the Properties Window, set the Name property to "cbCategories".

b) Set the DataSource property of "cbCategories" using the drop down list to select "objectView1"

Telerik OpenAccess ORM72

© 2010 Telerik Inc.

Figure 42

c) Set the DisplayMember property to "CategoryName"

Figure 43

d) Set the ValueMember property to "CategoryID".

10) Optionally, you can add a label "Category" next to the combo box.

11) Add a SelectedIndexChanged event handler for the ComboBox. This will display the "CategoryID" in the
form caption.

 Private Sub cbCategories_SelectedIndexChanged(ByVal sender As System.Object,
_
 ByVal e As System.EventArgs) Handles cbCategories.SelectedIndexChanged

 If (TryCast(sender, ComboBox)).SelectedValue <> Nothing Then
 Me.Text = (TryCast(sender, ComboBox)).SelectedValue.ToString()
 End If
 End Sub

Using OpenAccess in Applications 73

© 2010 Telerik Inc.

private void cbCategories_SelectedIndexChanged(
 object sender, EventArgs e)
{
 if ((sender as ComboBox).SelectedValue != null)
 {
 this.Text = (sender as ComboBox).SelectedValue.ToString();
 }
}

12) Set this project to be the "Startup Project" (note: in all of the following sections, ensure the proper
project is the current startup project before running the application) and run the application. Drop down
the list to see categories retrieved from the database. Click a category to see the CategoryID displayed
in the form caption.

Figure 44

Next we will add a grid to display products filtered by the category combo box. Instead of using a
ObjectProvider and ObjectView we will use LINQ instead to make filtering and reformatting the data an
easy task.

13) From the ToolBox add a standard DataGridView to the form just below the category combo box. Set
the Name property to "gvProducts".

14) Add Telerik.OpenAccess.Query to the "Imports" (VB) or "using" (C#) section of code to support LINQ.

15) Add _2_ORM_Model to the "Imports" (VB) or "using" (C#) section of code to specify that the Reference
to "Products" resolves to the proper namespace (there is a System.Deployment.Application.
PlatformDetector.Products as well).

16) Change the code for the category combo box SelectedIndexChanged event handler. In the event
handler, retrieve the selected "CategoryID" value. Then perform a LINQ query against the "scope"
Extent<>() method, selecting only those products that have the same category id as the selected
combo box value. The "select product" portion of the LINQ query indicates that we will use all the
Product columns. Once you have the selection performed, call the ToList() method to return a generic
list that can be bound to the grid.

Telerik OpenAccess ORM74

© 2010 Telerik Inc.

Private Sub cbCategories_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cbCategories.SelectedIndexChanged

 If (TryCast(sender, ComboBox)).SelectedValue <> Nothing Then
 Dim scope As IObjectScope = NorthwindProvider.ObjectScope()

 Dim selectValue As System.Nullable(Of Integer) = _
 DirectCast((TryCast(sender, ComboBox)).SelectedValue, _
 System.Nullable(Of Integer))

 Dim filteredData = _
 From product In scope.Extent(Of Product)() _
 Where product.CategoryID = selectValue _
 Select product
 gvProducts.DataSource = filteredData.ToList()
 End If

End Sub

private void cbCategories_SelectedIndexChanged(
 object sender, EventArgs e)
{
 if ((sender as ComboBox).SelectedValue != null)
 {
 IObjectScope scope = NorthwindProvider.ObjectScope();

 int? selectValue = (int?)(sender as ComboBox).SelectedValue;
 var filteredData = from product in scope.Extent<Product>()
 where product.CategoryID == selectValue
 select product;
 gvProducts.DataSource = filteredData.ToList();
 }
}

G
o
t
c
h
a
!

If you forget to add Telerik.OpenAccess.Query as a reference, the Extent<>() extension method
will not be available. In fact, none of the LINQ extensions will show up in Intellisense and
compilation will fail.

17) In the form's constructor, set the categories combo box SelectedIndex to the first item in the list. This
will cause the SelectedIndexChanged event to fire and the grid will be filtered against the first category
in the list.

Using OpenAccess in Applications 75

© 2010 Telerik Inc.

Public Sub New()
 InitializeComponent()
 cbCategories.SelectedIndex = 0
End Sub

public Form1()
{
 InitializeComponent();
 cbCategories.SelectedIndex = 0;
}

18) Run the application. Select categories from the list and observe the filtered list of bound products
displayed in the DataGridView.

Figure 45

19) In this last example we get a number of columns we could do without. Using the LINQ "projection"
capability we can construct a new column structure on-the-fly and fill our grid with it. We will show only
the product name, category name and 'quantity per unit'. We're including category name here so you
can see how a field from a subordinate object can be projected. Replace the SelectedIndexChanged
event handling code with the example below.

Telerik OpenAccess ORM76

© 2010 Telerik Inc.

Private Sub cbCategories_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As EventArgs)
 If (TryCast(sender, ComboBox)).SelectedValue IsNot Nothing Then
 Dim scope As IObjectScope = NorthwindProvider.ObjectScope()

 Dim selectValue As Nullable(Of Integer) = _
 CType((TryCast(sender, ComboBox)).SelectedValue, Nullable(Of Integer))

 Dim filteredData = _
 From product In scope.Extent(Of Product)() _
 Where product.CategoryID.Equals(selectValue) _
 Select _
 ProductName = product.ProductName, _
 QuantityPerUnit = product.QuantityPerUnit, _
 CategoryName = product.Category.CategoryName
 gvProducts.DataSource = filteredData.ToList()

 End If

End Sub

private void cbCategories_SelectedIndexChanged(object sender, EventArgs e)
{
 if ((sender as ComboBox).SelectedValue != null)
 {
 IObjectScope scope = NorthwindProvider.ObjectScope();

 int? selectValue = (int?)(sender as ComboBox).SelectedValue;
 var filteredData = from product in scope.Extent<Product>()
 where product.CategoryID == selectValue
 select new
 {
 Product = product.ProductName,
 QuantityPerUnit = product.QuantityPerUnit,
 Category = product.Category.CategoryName
 };
 gvProducts.DataSource = filteredData.ToList();
 }
}

Notice that instead of "select product", there is a select clause that lists the columns we want returned
and optionally lets you rename the columns. In particular, you should notice how the "Category"
actually uses the Product Category property to get at the CategoryName.

Using OpenAccess in Applications 77

© 2010 Telerik Inc.

Figure 46

G
o
t
c
h
a
!

Using projection works only if you want to view the grid in read-only mode. The reason: using
projection results in a collection of anonymous types. Because anonymous types are immutable,
the grid will open in read-only mode. To get the same columns but still allow update, bind to
collections of actual objects and hide unused columns.

Using OpenAccess with RadControls for WinForms

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "2_ORM_MyWinFormAppRad"

1) In the Solution Explorer, add references to Telerik.WinControls and Telerik.WinControls.UI to the
project.

2) In the code-behind for the form, set the Inheritance class from "Form" to "RadForm". This will allow us
to style the form in concert with the other controls.

Public Partial Class Form1
 Inherits Telerik.WinControls.UI.RadForm

public partial class Form1 : Telerik.WinControls.UI.RadForm

3) Delete the ComboBox and DataGridView controls from the page.

Telerik OpenAccess ORM78

© 2010 Telerik Inc.

4) From the ToolBox add a RadComboBox to the form. Set the Name property to "cbCategories".

a) Set the DataSource property of "cbCategories" using the drop down list to select "objectView1"

b) Set the DisplayMember property to "CategoryName"

c) Set the ValueMember property to "CategoryID".

5) From the ToolBox drop a RadGridView control to the form. Set the Name property to "gvProducts".

6) From the ToolBox, drop a BreezeTheme component on the form.

7) Set the ThemeName of the form, RadComboBox and RadGridView to "Breeze".

8) In the constructor for the form, replace the code with the code below. We will be displaying the grid in
read-only mode, so set the AllowAddNewRow property to False. Using RadComboBox, the
SelectedIndex will already be "0" during the form constructor, so work around this by first setting the
SelectedIndex to "no selection", i.e. "-1", then to the first item in the list.

Public Sub New()
 InitializeComponent()

 ' hide the 'Add new row' button
 gvProducts.MasterGridViewTemplate.AllowAddNewRow = False
 ' SelectedIndex is already '0', so work around by setting to
 ' 'no selection', i.e. '-1', then first item '0'
 cbCategories.SelectedIndex = -1
 cbCategories.SelectedIndex = 0

End Sub

public Form1()
{
 InitializeComponent();

 // hide the "Add new row" button
 gvProducts.MasterGridViewTemplate.AllowAddNewRow = false;
 // SelectedIndex is already "0", so work around by setting to
 // "no selection", i.e. "-1", then first item "0"
 cbCategories.SelectedIndex = -1;
 cbCategories.SelectedIndex = 0;

}

9) Create a new SelectedIndexChanged event handler for the RadComboBox and add the code below.
The code is substantially the same as the standard WinForms example shown previously but
references the RadComboBox. At the end of the method we call the RadGrid MasterGridViewTemplate
BestFitColumns() method to get the optimum layout for column headings and data..

* You will need to also add the following Imports or Using Statements:

Telerik.OpenAccess

Telerik.Wincontrols.UI

_2_ORM_Model

Using OpenAccess in Applications 79

© 2010 Telerik Inc.

Private Sub cbCategories_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cbCategories.SelectedIndexChanged
 If (TryCast(sender, RadComboBox)).SelectedValue <> Nothing Then
 Dim scope As IObjectScope = NorthwindProvider.ObjectScope()

 Dim selectValue As System.Nullable(Of Integer) = _
 DirectCast((TryCast(sender, RadComboBox)).SelectedValue, _
 System.Nullable(Of Integer))

 Dim filteredData = _
 From product In scope.Extent(Of Product)() _
 Where product.CategoryID = selectValue

 gvProducts.DataSource = filteredData.ToList()
 gvProducts.MasterGridViewTemplate.BestFitColumns()

 End If
End Sub

private void cbCategories_SelectedIndexChanged(object sender, EventArgs e)
{
 if ((sender as RadComboBox).SelectedValue != null)
 {
 IObjectScope scope = NorthwindProvider.ObjectScope();

 int? selectValue = (int?)(sender as RadComboBox).SelectedValue;
 var filteredData = from product in scope.Extent<Product>()
 where product.CategoryID == selectValue
 select new
 {
 Product = product.ProductName,
 QuantityPerUnit = product.QuantityPerUnit,
 Category = product.Category.CategoryName
 };

 gvProducts.DataSource = filteredData.ToList();
 gvProducts.MasterGridViewTemplate.BestFitColumns();
 }
}

10) Run the application.

Telerik OpenAccess ORM80

© 2010 Telerik Inc.

Figure 47

CRUD Operations

To support CRUD (create, read, update, delete) operations on the Products grid and still have filter
capability, we will use an ObjectView to work with both the Category and Product tables. We will create a
LINQ query that selects products for a given category and assign the results to the ObjectView.Datasource.
ObjectView descends from BindingSource and as such handles many background tasks, even creating an
internal IBindingList implementation and populating it if no binding list exists.

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "2_ORM_MyWindFormCrud"

We will use a transaction to commit or rollback changes. Transaction properties are encapsulated with
ObjectScope.TransactionProperties. The TransactionProperties.AutomaticBegin property when true
automatically starts a new transaction when the previous transaction completes.

1) Create a new project "2_ORM_MyWindFormCrud".

2) ORM-enable the project with both DAL Access Code and Persistent classes checked and include the
connection to "NorthwindOA".

3) Select the Visual Studio menu Telerik > OpenAccess > Reverse Mapping (Tables to Classes). In
the Forward Mapping Wizard include the "Categories" and "Products" tables and finish the Wizard.
Rename the ObjectScopeProvider to "NorthwindProvider".

4) In the Solution Explorer add references to Telerik.OpenAccess and Telerik.OpenAccess.Query.

5) Using the Solution Explorer delete the default form from the project.

6) Using the Solution Explorer, right-click the project and select Add > New Item... > Telerik RadForm
from the context menu.

Using OpenAccess in Applications 81

© 2010 Telerik Inc.

7) Change the initial startup form to be "RadForm1". If you're working in VB.NET, select from the project
properties sheet "Startup Form" drop down list. For C#, change the name in Program.cs manually.

8) Build the Application.

9) Add an ObjectProvider, Context Provider = "_2_ORM_MyWindFormCrud.NorthwindProvider,
2_ORM_MyWindFormCrud", Persistent Class = "_2_ORM_MyWindFormCrud.Category", Name
property = "opCategory".

10) Add an ObjectProvider, Context Provider = "_2_ORM_MyWindFormCrud.NorthwindProvider,
2_ORM_MyWindFormCrud", Persistent Class = "._2_ORM_MyWindFormCrud.Product", Name
property = "opProduct".

11) Add an ObjectView, ObjectProvider = "opCategory", Root Type = "_2_ORM_MyWindFormCrud.
Category", Name property = "ovCategory".

12) Add an ObjectView, ObjectProvider = "opProduct", Root Type = "_2_ORM_MyWindFormCrud.
Product", Name property = "ovProduct".

13) From the ToolBox add a standard Label and change the Text property to "Category:".

14) From the ToolBox add a RadComboBox and set properties:

a) Name = "cbCategories"

b) DataSource = "ovCategory"

c) DisplayMember = "CategoryName"

d) ValueMember = "CategoryID"

15)From the ToolBox add a RadGridView and set properties:

a) Name = "gvProducts"

b) DataSource = "ovProduct"

16)Drop three RadButtons to the bottom of the form and set properties:

a) Name = "btnClose", Text = "Close"

b) Name = "btnCancel", Text = "Cancel Changes"

c) Name = "btnSave", Text = "Save Changes"

17)From the ToolBox drop a BreezeTheme component on the form. Set all RadControls on the form
including the form itself to use the "Breeze" theme. The form should look something like the example
below:

Telerik OpenAccess ORM82

© 2010 Telerik Inc.

18) Add System.Linq, Telerik.OpenAccess,Telerik.Wincontrols.UI, and Telerik.Wincontrols to the Imports
(VB) or using (C#) statements at top of the RadForm1 code-behind file.

19) In the code-behind add a private variable that holds the object scope.

Private _scope As IObjectScope = NorthwindProvider.ObjectScope()

private IObjectScope _scope = NorthwindProvider.ObjectScope();

20) Add code to the constructor. This is similiar to previous examples except that the transaction property
AutomaticBegin is set here and the AutoSizeColumnsMode is set to fill to make best use of screen
real estate.

Public Sub New()
 InitializeComponent()

 cbCategories.SelectedIndex = -1
 cbCategories.SelectedIndex = 0

 _scope.TransactionProperties.AutomaticBegin = True
 gvProducts.MasterGridViewTemplate.AutoSizeColumnsMode = _
 GridViewAutoSizeColumnsMode.Fill
End Sub

Using OpenAccess in Applications 83

© 2010 Telerik Inc.

public RadForm1()
{
 InitializeComponent();

 cbCategories.SelectedIndex = -1;
 cbCategories.SelectedIndex = 0;

 _scope.TransactionProperties.AutomaticBegin = true;
 gvProducts.MasterGridViewTemplate.AutoSizeColumnsMode =
 GridViewAutoSizeColumnsMode.Fill;
}

21)Add a SelectedIndexChanged event handler and add the code below. This code is also very similar to
previous examples except that the result of the LINQ select is assigned not to the DataSource of the
RadComboBox, but to the DataSource of the ObjectView. Also, two text box columns for the
RadGridView are defined here.

 Private Sub cbCategories_SelectedIndexChanged(ByVal sender As System.Object,
_
 ByVal e As System.EventArgs) Handles cbCategories.SelectedIndexChanged

 If (TryCast(sender, RadComboBox)).SelectedValue <> Nothing Then

 Dim selectValue As System.Nullable(Of Integer) = _
 DirectCast((TryCast(sender, RadComboBox)).SelectedValue, _
 System.Nullable(Of Integer))
 ' select only products for this category and assign to the
 ' ObjectView DataSource
 opProduct.ObjectSource = From product In _scope.Extent(Of Product)()
_
 Where product.CategoryID = selectValue _
 Select product

 ' display only these three columns
 gvProducts.Columns.Clear()
 gvProducts.Columns.Add(New GridViewTextBoxColumn("CategoryID"))
 gvProducts.Columns.Add(New GridViewTextBoxColumn("ProductName"))
 gvProducts.Columns.Add(New GridViewTextBoxColumn("QuantityPerUnit"))
 End If
 End Sub

Telerik OpenAccess ORM84

© 2010 Telerik Inc.

private void cbCategories_SelectedIndexChanged(object sender,
 EventArgs e)
{
 if ((sender as RadComboBox).SelectedValue != null)
 {

 int? selectValue = (int?)(sender as RadComboBox).SelectedValue;
 // select only products for this category and assign to the
 // ObjectView DataSource
 opProduct.ObjectSource = from product in _scope.Extent<Product>()
 where product.CategoryID == selectValue
 select product;

 // display only these three columns
 gvProducts.Columns.Clear();
 gvProducts.Columns.Add(
 new GridViewTextBoxColumn("CategoryID"));
 gvProducts.Columns.Add(
 new GridViewTextBoxColumn("ProductName"));
 gvProducts.Columns.Add(
 new GridViewTextBoxColumn("QuantityPerUnit"));
 }
}

22)Create Click event handlers for all three buttons and add the code below. The Cancel and Save buttons
call the scope's Transaction Commit() and Rollback() methods. The Close button simply calls the
Close() method of the form.

Private Sub btnCancel_Click(sender As Object, e As EventArgs)
 _scope.Transaction.Rollback()
End Sub

Private Sub btnSave_Click(sender As Object, e As EventArgs)
 opProduct.SaveAll()
 _scope.Transaction.Commit()
End Sub

Private Sub btnClose_Click(sender As Object, e As EventArgs)
 Me.Close()
End Sub

Using OpenAccess in Applications 85

© 2010 Telerik Inc.

private void btnCancel_Click(object sender, EventArgs e)
{
 _scope.Transaction.Rollback();
}

private void btnSave_Click(object sender, EventArgs e)
{
 opProduct.SaveAll();
 _scope.Transaction.Commit();
}

private void btnClose_Click(object sender, EventArgs e)
{
 this.Close();
}

23)Add a FormClosing event handler and add the code shown below. The scope's Transaction IsDirty
property tells us that some data has been modified. A RadMessageBox displays a confirmation
message ask ing if the changes should be committed or rolled back .

Private Sub RadForm1_FormClosing(sender As Object, _
e As FormClosingEventArgs)
 RadMessageBox.SetThemeName(Me.ThemeName)

 If _scope.Transaction.IsDirty Then
 If RadMessageBox.Show("Save all changes?", _
"Pending Changes", MessageBoxButtons.OKCancel)_
 = DialogResult.OK Then
 opProduct.SaveAll()
 _scope.Transaction.Commit()
 Else
 _scope.Transaction.Rollback()
 End If
 End If
End Sub

Telerik OpenAccess ORM86

© 2010 Telerik Inc.

private void RadForm1_FormClosing(object sender, FormClosingEventArgs e)
{
 RadMessageBox.SetThemeName(this.ThemeName);

 if (_scope.Transaction.IsDirty)
 {
 if (RadMessageBox.Show("Save all changes?", "Pending Changes",
 MessageBoxButtons.OKCancel) == DialogResult.OK)
 {
 opProduct.SaveAll();
 _scope.Transaction.Commit();
 }
 else
 {
 _scope.Transaction.Rollback();
 }
 }
}

24) Run the application. Make additions, deletions and modifications, save the changes and restart the
application. Verify that changes persist and that the filtering by category works. Make changes to the
data and close the form to make sure that the IsDirty flag works as expected.

Figure 48

4.3 ASP.NET Example

In this project we will consume the persistent classes contained in the "2_ORM_Model" class library,
enable the project to access the database data, and bind a combo box and grid to the "Categories" and

Using OpenAccess in Applications 87

© 2010 Telerik Inc.

"Products" data.

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "3_ORM_MyWebApp"

1) Create a new ASP.NET Web Application project called "3_ORM_MyWebApp".

2) ORM-enable the project. Specify the following:

a) The Persistent classes option should be disabled.

b) the Data Access Code option should be enabled.

c) In the Dropdown for Select Connection, select the "2_ORM_Model \ NorthwindConnection"

3) In the Solution Explorer, rename "ObjectScopeProvider1.cs or ObjectScopeProvider1.vb" to
"NorthwindProvider.cs or NorthwindProvider.vb". When prompted, click the Yes button to rename all
references.

4) In the Solution Explorer, add a reference to the "2_ORM_Model" class library.

5) Navigate to the Solution Explorer, right-click the "_3_ORM_MyWebApp" and select Open Access >
Update Config References from the context menu.

6) From the ToolBox drop a OpenAccessDataSource, a standard DropDownList and a GridView to the
default page and set properties:

a) Set the DropDownList ID property to "ddlCategory" and set the AutoPostBack property to True.

b) Set the GridView ID property to "gvProducts".

7) Build the Project (This allows ORM to see the new Data Context for this Project)

8) Click the OpenAccessDataSource Smart Tag and select Configure Data Source... This will display the
OpenAccess Data Source Wizard. On the first page of the wizard, select the "_3_ORM_MyWebApp.
NorthwindProvider, 3_ORM_MyWebApp" from the drop down list. Click the Next button. On the second
page, Select "_2_ORM_Model.Category" from the drop down list. Click Finish to close the Wizard.

9) In the code-behind for the default form, add references to _2_ORM_Model, Telerik.OpenAccess and
Telerik.OpenAccess.Query to the "Imports" (VB) or "using" (C#) section of code.

10) Add properties and methods to handle the object scope. The Scope property holds the IObjectScope
reference throughout the life of the page and is disposed along with the page.

Telerik OpenAccess ORM88

© 2010 Telerik Inc.

Private _scope As IObjectScope = NorthwindProvider.GetNewObjectScope()

Public Property Scope() As IObjectScope
 Get
 Return _scope
 End Get
 Set(ByVal value As IObjectScope)
 _scope = value
 End Set
End Property

Public Overloads Overrides Sub Dispose()
 scope.Dispose()
 MyBase.Dispose()
End Sub

private IObjectScope scope = NorthwindProvider.GetNewObjectScope();

public IObjectScope Scope
{
 get { return scope; }
 set { scope = value; }
}

public override void Dispose()
{
 scope.Dispose();
 base.Dispose();
}

11) In the Page_Load event handler, assign properties for the DropDownList:

a) Assign the OpenAccessDataSource to the DataSource property.

b) Assign "CategoryName" to the DataTextField.

c) Assign "CategoryID" to the DataValueField.

d) Call the DropDownList DataBind() method.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not IsPostBack Then
 ddlCategory.DataSource = OpenAccessDataSource1
 ddlCategory.DataTextField = "CategoryName"
 ddlCategory.DataValueField = "CategoryID"
 ddlCategory.DataBind()
 End If
End Sub

Using OpenAccess in Applications 89

© 2010 Telerik Inc.

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 ddlCategory.DataSource = OpenAccessDataSource1;
 ddlCategory.DataTextField = "CategoryName";
 ddlCategory.DataValueField = "CategoryID";
 ddlCategory.DataBind();
 }
}

12) Create a SelectedIndexChanged event handler for the DropDownList and add code to get the selected
CategoryID, filter the Products data on CategoryID, assign the filtered data to the GridView and finally to
bind it. The code is essentially the same as we used in the WinForms example.

Protected Sub ddlCategory_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles ddlCategory.SelectedIndexChanged

 If (TryCast(sender, DropDownList)).SelectedValue <> Nothing Then

 Dim selectValue As System.Nullable(Of Integer) = _
 Int32.Parse((TryCast(sender, DropDownList)).SelectedValue)

 Dim filteredData = _
 From product In Scope.Extent(Of Product)() _
 Where product.CategoryID.Equals(selectValue) _
 Select _
 ProductName = product.ProductName, _
 QuantityPerUnit = product.QuantityPerUnit, _
 CategoryName = product.Category.CategoryName
 gvProducts.DataSource = filteredData.ToList()
 gvProducts.DataBind()

 End If
End Sub

Telerik OpenAccess ORM90

© 2010 Telerik Inc.

protected void ddlCategory_SelectedIndexChanged(object sender, EventArgs e)
{
 if ((sender as DropDownList).SelectedValue != null)
 {
 int? selectValue =
 (int?)Int32.Parse((sender as DropDownList).SelectedValue);

 var filteredData = from product in scope.Extent<Product>()
 where product.CategoryID == selectValue
 select new
 {
 Product = product.ProductName,
 QuantityPerUnit = product.QuantityPerUnit,
 Category = product.Category.CategoryName
 };
 gvProducts.DataSource = filteredData.ToList();
 gvProducts.DataBind();
 }
}

13) Run the application. Click the categories in the drop down list and view the data in the GridView.

Figure 49

Using OpenAccess and RadControls for ASP.NET AJAX

Using OpenAccess in Applications 91

© 2010 Telerik Inc.

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "3_ORM_MyWebAppAJAX"

1) Create a New Project called "3_ORM_MyWebAppAJAX"

2) Follow the Steps in the Previous section (up to Step 5 - Except substitute 3_ORM_MyWebAppAJAX in
place of 3_ORM_MyWebApp)

3) From the ToolBox drop a OpenAccessDataSource.

4) Build the Project (This allows ORM to see the new Data Context for this Project)

5) Add a RadComboBox. Open the Smart Tag and select the "Forest" skin. In the Properties Window set
the Name property to "ddlCategory" and the AutoPostBack property to True.

6) Add a RadGrid to the form. Open the Smart Tag and set the Skin to "Forest". In the Properties Window,
set the Name property to "gvProducts"

7) Click the OpenAccessDataSource Smart Tag and select Configure Data Source... This will display
the OpenAccess Data Source Wizard. On the first page of the wizard, select the
"_3_ORM_MyWebAppAJAX.NorthwindProvider, 3_ORM_MyWebAppAJAX" from the drop down list.
Click the Next button. On the second page, Select "_2_ORM_Model.Category" from the drop down list.
Click Finish to close the Wizard.

8) Add Telerik.Web.UI, Telerik.OpenAccess, and _2_ORM_Model to the using (C#) or Imports (VB) of the
code behind file

9) Add the following to the code-behind file to manage the ObjectScope

Private _scope As IObjectScope = NorthwindProvider.GetNewObjectScope()

Public Property Scope() As IObjectScope
 Get
 Return _scope
 End Get
 Set(ByVal value As IObjectScope)
 _scope = value
 End Set
End Property

Public Overloads Overrides Sub Dispose()
 scope.Dispose()
 MyBase.Dispose()
End Sub

Telerik OpenAccess ORM92

© 2010 Telerik Inc.

private IObjectScope scope = NorthwindProvider.GetNewObjectScope();

public IObjectScope Scope
{
 get { return scope; }
 set { scope = value; }
}

public override void Dispose()
{
 scope.Dispose();
 base.Dispose();
}

10) Add the following to the Page_Load Event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If Not IsPostBack Then
 ddlCategory.DataSource = OpenAccessDataSource1
 ddlCategory.DataTextField = "CategoryName"
 ddlCategory.DataValueField = "CategoryID"
 ddlCategory.DataBind()
 End If
End Sub

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 ddlCategory.DataSource = OpenAccessDataSource1;
 ddlCategory.DataTextField = "CategoryName";
 ddlCategory.DataValueField = "CategoryID";
 ddlCategory.DataBind();
 }
}

11) In the Events tab of the Properties Window, navigate to the SelectedIndexChanged event and double-
click it to create a new event handler. Add the code below to slightly change the previous event handler
to match the current parameter and object naming conventions.

Using OpenAccess in Applications 93

© 2010 Telerik Inc.

 Protected Sub ddlCategory_SelectedIndexChanged(ByVal o As Object, _
 ByVal e As Telerik.Web.UI.RadComboBoxSelectedIndexChangedEventArgs) _
 Handles ddlCategory.SelectedIndexChanged

 If (TryCast(o, RadComboBox)).SelectedValue <> Nothing Then
 Dim selectValue As System.Nullable(Of Integer) = _
 Int32.Parse((TryCast(o, RadComboBox)).SelectedValue)

 Dim filteredData = From product In Scope.Extent(Of Product)() _
 Where product.CategoryID = selectValue

 gvProducts.DataSource = filteredData.ToList()
 gvProducts.DataBind()
 End If
 End Sub

protected void ddlCategory_SelectedIndexChanged1(object o,
Telerik.Web.UI.RadComboBoxSelectedIndexChangedEventArgs e)
{
 if ((o as RadComboBox).SelectedValue != null)
 {
 int? selectValue =
 (int?)Int32.Parse((o as RadComboBox).SelectedValue);

 var filteredData = from product in scope.Extent<Product>()
 where product.CategoryID == selectValue
 select new
 {
 Product = product.ProductName,
 QuantityPerUnit = product.QuantityPerUnit,
 Category = product.Category.CategoryName
 };
 gvProducts.DataSource = filteredData.ToList();
 gvProducts.DataBind();
 }
}

12) Add a RadAjaxManager to the webform

13) From the RadAjaxManager Smart Tag select the Add ScriptManager link.

14) Also from the Smart Tag select the Configure AJAX Manager link. Configure AJAX with the
RadAjaxManager Property Builder.

15) In the left most pane of controls that will initiate AJAX requests, select the checkbox next to
"ddlCategory".

16) In the middle panel of controls to update, select "gvProducts". The dialog should look like the
screenshot below:

Telerik OpenAccess ORM94

© 2010 Telerik Inc.

Figure 50

17) Click the OK button to close the dialog.

18) Run the application. The application should look similar to below.

Using OpenAccess in Applications 95

© 2010 Telerik Inc.

Figure 51

4.4 Telerik Reporting Example

This next example presents our Model data in Telerik Report format and is quite similar to the WinForms
sample in some ways. We will use a ObjectProvider and ObjectView components to access the data, but
will use a Telerik Report and SubReport for presentation. We will use the Preview window inside the Telerik
Report design environment. See the Online Help or Telerik Reporting Step by Step Learning guide for more
information on displaying reports in web and WinForms applications.

Find the source projects for this chapter at \Projects\ORM\<CS\VB>\Made_Easy\ORM_Projects.sln,
project "5_ORM_MyReports"

1) Create a new class library project "5_ORM_MyReports".

2) Delete the automatically created default "class1" from the project.

Telerik OpenAccess ORM96

© 2010 Telerik Inc.

3) ORM-enable the project. Specify the following:

a) The Persistent classes option should be disabled.

b) The Data Access Code option should be enabled.

c) The database connection ID should be "NorthwindOAConnection"

d) The database should be "NorthwindOA".

4) In the Solution Explorer, add a reference to the "2_ORM_Model" class library.

5) In the Solution Explorer, rename "ObjectScopeProvider1.cs or ObjectScopeProvider1.vb" to
"NorthwindProvider.cs or NorthwindProvider.vb". When prompted, click the Yes button to rename all
references.

6) Right Click on the 5_ORM_MyReports project and Update the Config References.

7) Build the application.

8) In the Solution Explorer, right-click the project and select Add > New Item... from the context menu.
Select the Reporting > Telerik Report template, name it "CategoryReport" and click the Add button
to close the dialog and create the report.

Figure 52

9) If the Telerik Report Wizard dialog displays, cancel it.

10) From the Toolbox, drop a ObjectProvider component to the form. This will display the ObjectProvider
dialog. Configure the ObjectProvider as follows:

a) Context Provider = _5_ORM_MyReports.NorthwindProvider, 5_ORM_MyReports

b) Persistent Class = _2_ORM_Model.Category

c) Result Method = Query

d) Query Condition = leave as default "SELECT * FROM CategoryExtent AS x".

e) Click the Finish button to create the object provider "objectProvider1".

Using OpenAccess in Applications 97

© 2010 Telerik Inc.

Figure 53

11) From the ToolBox, drag a ObjectView component to the form. This will display the ObjectView
Wizard dialog. Configure the dialog as follows:

a) Point the ObjectProvider at "objectProvider1" using the drop down list.

b) Leave the Root Type setting pointed at "Model.Category".

c) Click the Finish button to create "objectView1".

Figure 54

12) Rename "objectProvider1" to "opCategory" and "objectView1" to "ovCategory".

13) In the report design surface, select the report. You can do this by finding it in the Properties window
drop down list, clicking the gray gutter area around the report bands, or clicking the button in the upper
left hand side of the design surface.

Telerik OpenAccess ORM98

© 2010 Telerik Inc.

Figure 55

14) In the Properties Window, locate the DataSource property, drop down the list for the property and
select "ovCategory".

Figure 56

15) Save and build the project.

16) Select the "detail" section of the report (the middle band in the report designer).

17) From the Toolbox drop a TextBox reporting item in the Detail section of the report. Using the drag
handles on the text box, drag the TextBox out to take up the width of the detail section. Double-click
the TextBox and enter the following expression:

Using OpenAccess in Applications 99

© 2010 Telerik Inc.

="Products for " + Fields.CategoryName + " (" + Fields.Description + ")"

18) From the Toolbox drop a TextBox reporting item in the page header section of the report. Double-click
the TextBox and enter "Products by Category". In the Properties window, set the Style.Font.Bold
property to True.

The report designer should look something like the screenshot below:

Figure 57

19) Create a new Telerik Report and name it "ProductReport.cs" or "ProductReport.vb" depending on
which language you are using.

20) Select the PageHeaderSection, right-click and select Delete from the context menu to remove the
section.

21) Select the PageFooterSection, right-click and select Delete from the context menu to remove the
section. Only the detail section should remain.

22) Add ObjectProvider and ObjectView components to the form and configure them as you did earlier but
point the provider at the "Products" table.

Figure 58

Telerik OpenAccess ORM100

© 2010 Telerik Inc.

23) Set the Name property of the ObjectProvider "opProduct" and the ObjectView to "ovProduct".

24) Select the Report in the designer, navigate to the Properties window and set the following properties:

a) Set the report DataSource property to "ovProduct".

b) Locate the ReportParameters property and click the ellipses. This will display the Report
Parameter Collection editor. Click the Add button to create a new parameter. In the properties for the
parameter set the Name property to "CategoryID", the Type property to "Integer" and the Value
property to "0". Click the OK button to close the dialog.

Figure 59

G
o
t
c
h
a
!

If you receive an error later when attempting to preview the report that says there's a mismatch
between an integer and a string type, double-check that you have set the Value property to a zero
value.

c) Locate the Filters property and click the ellipses. This will display the Edit Filters dialog. Click the
New button to create a new filter. Drop down the list in the Expression column and select "=Fields.
CategoryID" from the list. Leave the Operator column "=" selection. In the Value column, drop down
the list and select "=Parameters.CategoryID". Click the OK button to close the dialog.

Using OpenAccess in Applications 101

© 2010 Telerik Inc.

Figure 60

25) Select the detail section of the report.

26) Go to the Visual Studio menu and select Telerik > Reporting > Data Explorer.

27) From the Data Explorer drag the ProductName and QuantityPerUnit fields to the detail section of the
report. Use the drag handles to resize both items to each take roughly half the width of the detail
section.

Figure 61

28) Navigate back to the "Category" report. From the Toolbox drop a SubReport item in the detail section
just below the TextBox and indented slightly to the right. Set the SubReport properties:

a) Set the ReportSource property using the drop down list to "ProductReport".

** If you do not see ProductReport as an option, Build the Project and it should be available

Telerik OpenAccess ORM102

© 2010 Telerik Inc.

Figure 62

b) Navigate to the Parameters property and click the ellipses. This will display the Edit Parameters
dialog. Click the New button to create a new parameter. In the Parameter column enter "CategoryID"
or select it from the drop down list. In the Parameter Value column, drop down the list and select
"=Fields.CategoryID". Click the OK button to close the dialog.

Figure 63

The "Category" report should now look something like this in the designer:

Figure 64

29) Click the Preview tab of the CategoryReport to see the finished report output.

Using OpenAccess in Applications 103

© 2010 Telerik Inc.

Figure 65

4.5 Multi-Tier Architecture

Our previous examples have been minimal by design and thoroughly unsuited for production. To begin
building "industrial strength" applications we need a clean "separation of concerns", i.e. a more granular
layering of functionality that respects principles of multi-tiered application design. Exactly how you separate
these layers in your application will need to reflect the standards for your particular organization.

A “typical” production multi-tier application built with OpenAccess might have the structure below:

Entities (or Model): Contains your persistent classes. The project for this layer is “OpenAccess
Enabled” to define Persistent Classes (PCs) and includes database mapping info in the config file. The
persistent classes in this project can be created via the Forward or Reverse Mapping OpenAccess
wizards.

Data Layer (Optional): This layer is optional since the actual “data plumbing” is handled
“automatically” inside OpenAccess. You can skip this layer or use it for storing your LINQ queries and
returning data to your business layer.

Business Layer: Provides “Repository” (or “Manager”) classes that define operations on the data model

Telerik OpenAccess ORM104

© 2010 Telerik Inc.

(such as FindAll, FindById, Insert, etc.). This layer may aquire an ObjectScope used to manipulate
objects in the database. This layer is also “OA Enabled” to consume persistent classes, which adds an
ObjectScopeProvider to the project (but does not add database mapping info to project)

Service Layer (Optional): To build an application that is ready for client-oriented technology (like
Silverlight and ASP.NET AJAX 4.0), it is usually smart to build a service layer on top of your business
logic. The service layer consumes your business layer “data manager” classes and exposes the
operations as service endpoints.

Presentation Layer: Consumes business layer repositories (if no service layer) or consumes services.
The presentation layer can be completely ignorant of OpenAccess and it has no need to be “OA
Enabled.”

The figure below demonstrates the relationship of architectural layers in diagram form:

Figure 66

The only time you might “break” this direct inheritance tree is if you want to re-use your model
classes in your other tiers for easier data binding (i.e. I want to bind to return a List<ModelType>
vs. some intermediate class type). Still, in that case, you’re only using the class model for
binding- you’re not doing any data access outside of your data access tier.

What Projects Need to be OpenAccess Enabled?

Using OpenAccess in Applications 105

© 2010 Telerik Inc.

One of the bigger points of confusion when it comes to using OpenAccess in n-tier applications seems to
be which layers require you to run the “OpenAccess Enable” wizards. To be clear, there are two types of
OpenAccess enabling provided by the wizard in Visual Studio:

1. Project Defines Persistent Classes: Adds database mapping information to the configuration file and
adds references to OpenAccess assemblies.

2. Project Consumes Persistent Classes/Connects to the Database: Adds references to OpenAccess
assemblies, adds an ObjectScopeProvider class (for help managing ObjectScope) and adds connection
information to the project configuration file.

In general, the only layers that need OpenAccess enabling are your Model (where your persistent classes
are defined) and your Data access or Business layer (or whichever layer you’re using to actually execute
queries against the database). Other layers, like your Presentation layer, do not need to be enabled. And in
all cases, when you run the wizard, you’re not adding references to other projects in your solution, just to
the OpenAccess assemblies.

4.6 Web Services Example

This next example begins to go in the direction of N-Tier but only has three parts. A later sample project will
show these three parts exploded out into layers that resemble the Multi-Tier archicture diagram from the
previous section.

The Data Model class library: This will contain two simple classes Contact and ContactGroup that will
be forward mapped into a new database.

A Windows Communication Foundation (WCF) service: This project will combine data access, business
logic and service layers (although this application really has no business logic to speak of). The service
will have methods to get contact groups, contacts and to save changes.

The presentation layer in the form of a WinForms application.

Find the source at \Projects\ORM\<CS\VB>\Webservice\Webservice.sln

The Data Model

1) Create a new class library project "Model".

2) Delete the default Class1.cs or Module1.vb file

3) Add a new class to the project named "Contact.cs" or "Contact.vb". Add the code below:

Telerik OpenAccess ORM106

© 2010 Telerik Inc.

Public Class Contact
 Private _contactName As String
 Private _phone As String
 Private _contactGroup As ContactGroup

 Public Property ContactName() As String
 Get
 Return _contactName
 End Get
 Set
 _contactName = value
 End Set
 End Property

 Public Property Phone() As String
 Get
 Return _phone
 End Get
 Set
 _phone = value
 End Set
 End Property

 Public Property ContactGroup() As ContactGroup
 Get
 Return _contactGroup
 End Get
 Set
 _contactGroup = value
 End Set
 End Property
End Class

Using OpenAccess in Applications 107

© 2010 Telerik Inc.

public class Contact
{
 private string _contactName;
 private string _phone;
 private ContactGroup _contactGroup;

 public string ContactName
 {
 get { return _contactName; }
 set { _contactName = value; }
 }

 public string Phone
 {
 get { return _phone; }
 set { _phone = value; }
 }

 public ContactGroup ContactGroup
 {
 get { return _contactGroup; }
 set { _contactGroup = value; }
 }
}

3) Add a new class to the project named "ContactGroup.cs" or "ContactGroup.vb". Add the code below:

Public Class ContactGroup
 Private _contactGroupName As String

 Public Property ContactGroupName() As String
 Get
 Return _contactGroupName
 End Get
 Set
 _contactGroupName = value
 End Set
 End Property
End Class

public class ContactGroup
{
 private string _contactGroupName;

 public string ContactGroupName
 {
 get { return _contactGroupName; }
 set { _contactGroupName = value; }
 }
}

Telerik OpenAccess ORM108

© 2010 Telerik Inc.

4) ORM-enable the project. Specify the following:

a) The Persistent classes option should be enabled.

b) The Data Access Code option should be disabled.

c) The database connection ID should be "MyDatabaseConnection"'.

d) The Server Name should be "(LOCAL)\SQLEXPRESS".

e) The database should be "MyDatabase".

5) Forward map the classes to the database. Using the Forward Mapping Wizard, mark both "Contact"
and "ContactGroup" as Persistent.

6) To send these objects "over the wire" using WCF we need to mark the classes with DataContract and
DataMember attributes.

a) Add a reference to System.Runtime.Serialization to your project

b) Open "Contact.cs" in the editor. Add the System.Runtime.Serialization namespace to the
"Imports" (VB) or "using" (C#) section of the code. Mark the class with the DataContract atribute.
Mark the "ContactName", "Phone" and "ContactGroup" properties with the DataMember attribute.
The class should now look something like the code example below.

Using OpenAccess in Applications 109

© 2010 Telerik Inc.

Imports System.Runtime.Serialization
 <DataContract()> _
 <Telerik.OpenAccess.Persistent()> _
 Public Class Contact
 Private _contactName As String
 Private _phone As String
 Private _contactGroup As ContactGroup

 <DataMember()> _
 Public Property ContactName() As String
 Get
 Return _contactName
 End Get
 Set(ByVal value As String)
 _contactName = value
 End Set
 End Property

 <DataMember()> _
 Public Property Phone() As String
 Get
 Return _phone
 End Get
 Set(ByVal value As String)
 _phone = value
 End Set
 End Property

 <DataMember()> _
 Public Property ContactGroup() As ContactGroup
 Get
 Return _contactGroup
 End Get
 Set(ByVal value As ContactGroup)
 _contactGroup = value
 End Set
 End Property
 End Class

Telerik OpenAccess ORM110

© 2010 Telerik Inc.

using System.Runtime.Serialization;

namespace Model
{
 [DataContract]
 [Telerik.OpenAccess.Persistent()]
 public class Contact
 {
 private string _contactName;
 private string _phone;
 private ContactGroup _contactGroup;

 [DataMember]
 public string ContactName
 {
 get { return _contactName; }
 set { _contactName = value; }
 }

 [DataMember]
 public string Phone
 {
 get { return _phone; }
 set { _phone = value; }
 }

 [DataMember]
 public ContactGroup ContactGroup
 {
 get { return _contactGroup; }
 set { _contactGroup = value; }
 }
 }
}

c) Open "ContactGroup.cs" in the editor. Add the System.Runtime.Serializable namespace to the
"Imports" (VB) or "using" (C#) section of the code. Mark the class with the DataContract atribute.
Mark the "ContactName", "Phone" and "ContactGroup" properties with the DataMember attribute.
The class should now look something like the code example below.

Using OpenAccess in Applications 111

© 2010 Telerik Inc.

Imports System.Runtime.Serialization

 <DataContract()> _
 <Telerik.OpenAccess.Persistent()> _
 Public Class ContactGroup
 Private _contactGroupName As String

 <DataMember()> _
 Public Property ContactGroupName() As String
 Get
 Return _contactGroupName
 End Get
 Set(ByVal value As String)
 _contactGroupName = value
 End Set
 End Property
 End Class

using System.Runtime.Serialization;

namespace Model
{
 [DataContract]
 [Telerik.OpenAccess.Persistent()]
 public class ContactGroup
 {
 private string _contactGroupName;

 [DataMember]
 public string ContactGroupName
 {
 get { return _contactGroupName; }
 set { _contactGroupName = value; }
 }
 }
}

7) Click on the Model Project in the Solution Explorer and set the "Update Database" property to True.

8) From the Visual Studio menu select Telerik > Open Access > Database Operations > Create
Database.

** You may have to delete the exisitng MyDatabase created in the "Getting Started Section" first.

9) In the Visual Studio Server Explorer, open the new database. Locate the Contact_Group table, right-
click and select Show Table Data from the context menu. Add several records by hand to the table,
e.g. "Vendor", "Partner", "Customer".

Telerik OpenAccess ORM112

© 2010 Telerik Inc.

Figure 67

The WCF Service

1) In the Solution Explorer, right-click the solution and select Add > New Project from the context menu.
Select the WCF Service Library template type, name it "Service" and click the OK button to close the
dialog and create the service project.

Figure 68

2) In the Solution Explorer, add a reference to the "Model" assembly.

Using OpenAccess in Applications 113

© 2010 Telerik Inc.

3) ORM-enable the project. Specify the following:

a) The Persistent classes option should be disabled.

b) the Data Access Code option should be enabled.

c) The database connection ID should be "MyDatabaseConnection"'.

d) The Server Name should be "(LOCAL)\SQLEXPRESS".

e) The database should be "MyDatabase".

4) Rename the default "ObjectScopeProvider1.cs" to "ServiceScopeProvider.cs" or
"ObjectScopeProvider1.vb" to "ServiceScopeProvider.vb". Confirm the dialog to rename the other
instances of the object in the project.

5) Edit the service interface:

a) Open "IService1.cs" in the editor.

b) Add Telerik.OpenAccess and System.ServiceModel namespaces to the "Imports" (VB) or "using"
(C#) portion of the code.

c) Replace the body of the Service1 class with the three methods GetContactGroups(), GetContacts()
and SaveContacts().

<OperationContract()> _
 Function GetContactGroups() As ObjectContainer.ChangeSet

<OperationContract()> _
 Function GetContacts() As ObjectContainer.ChangeSet

<OperationContract()> _
 Function SaveContacts(ByVal changeset As ObjectContainer.ChangeSet) As
ObjectContainer.ChangeSet

Telerik OpenAccess ORM114

© 2010 Telerik Inc.

[OperationContract]
ObjectContainer.ChangeSet GetContactGroups();

[OperationContract]
ObjectContainer.ChangeSet GetContacts();

[OperationContract]
ObjectContainer.ChangeSet SaveContacts(ObjectContainer.ChangeSet changeSet);

This code introduces the Telerik.OpenAccess ObjectContainer and ChangeSet classes. These
important classes make disconnected database operations possible. The ObjectContainer is a
client-side "stand-in" for the ObjectScope. The ObjectContainer has transaction and tracking
capabilities like ObjectScope. But instead of methods to query the backend database,
ObjectContainer methods copy objects into the container, create "ChangeSets" and apply
ChangeSets. The ChangeSet object encapsulates a simple array of bytes and is used as a
general purpose bucket to pass over the wire during WCF requests.

6) Open the "Service1.cs" class and implement the interface.

a) Add Telerik.OpenAccess, Model and System.ServiceModel namespaces to the "Imports" (VB) or
"using" (C#) portion of the code.

b) Add a helper method "GetChangeSet" to the Service1 class that will copy data retrieved from the
ObjectScope into the ChangeSet.

Notice in particular the CopyFrom() method that copies data from an object passed in to the
container. The CopyFrom() method takes an IObjectScope, a "list name" (that can be used later to
retrieve objects), an object to copy from and a IObjectCollector that defines what columns will be
fetched from the database (by default, all columns).

Also notice the following call to Container.GetContent(). This returns a ChangeSet object populated
with the current content of the container.

Private Shared Function GetChangeSet(listName As String, _
scope As IObjectScope, _
 queryable As Object) As ObjectContainer.ChangeSet
 Dim container As New ObjectContainer()

 ' define the fetch groups used in the copy, by default all columns
 Dim collector As IObjectCollector = _
New FetchGroupCollector(FetchGroupCollector.DefaultFetchGroup)

 container.CopyFrom(scope, queryable.[GetType]().Name, _
queryable, collector)

 ' get everything in the container as a changeset
 Dim changeSet As ObjectContainer.ChangeSet = container.GetContent()

 Return changeSet
End Function

Using OpenAccess in Applications 115

© 2010 Telerik Inc.

private static ObjectContainer.ChangeSet GetChangeSet(string listName,
 IObjectScope scope, object queryable)
{
 ObjectContainer container = new ObjectContainer();

 // define the fetch groups used in the copy, by default all columns
 IObjectCollector collector =
 new FetchGroupCollector(FetchGroupCollector.DefaultFetchGroup);

 container.CopyFrom(scope, queryable.GetType().Name, queryable, collector);

 // get everything in the container as a changeset
 ObjectContainer.ChangeSet changeSet = container.GetContent();

 return changeSet;
}

c) Add the implementations for all three methods.

Both the GetContactGroups() and GetContacts() methods follow the same pattern. The Extent method
of the object scope returns the actual database records for the corresponding object type and places
them into a "Var", i.e. an inferred but strongly-typed variable. This is passed to the helper
GetChangeSet() method that returns the ChangeSet populated with Contact or ContactGroup data.

The SaveContacts() method takes the data in the other direction. ChangeSets sent from the client are
added back into the container and committed to the database.

That's all we need to get Contact and ContactGroup information to and from the client.

Telerik OpenAccess ORM116

© 2010 Telerik Inc.

 Public Function IService1_GetContacts() As ObjectContainer.ChangeSet
Implements IService1.GetContacts
 Dim changeSet As ObjectContainer.ChangeSet = Nothing
 Using scope As IObjectScope = ServiceScopeProvider.GetNewObjectScope()
 Dim queryable = _
 From q In scope.Extent(Of Contact)() _
 Select q

 changeSet = GetChangeSet("Contacts", scope, queryable)

 End Using
 Return changeSet
 End Function

 Public Function IService1_GetContactGroups() As ObjectContainer.ChangeSet
Implements IService1.GetContactGroups
 Dim changeSet As ObjectContainer.ChangeSet = Nothing
 Using scope As IObjectScope = ServiceScopeProvider.GetNewObjectScope()
 Dim queryable = _
 From q In scope.Extent(Of ContactGroup)() _
 Select q

 changeSet = GetChangeSet("ContactGroups", scope, queryable)
 End Using
 Return changeSet
 End Function

 Public Function IService1_SaveContacts(ByVal changeset As ObjectContainer.
ChangeSet) As ObjectContainer.ChangeSet Implements IService1.SaveContacts
 Dim result As ObjectContainer.ChangeSet = Nothing

 Using scope As IObjectScope = _
 ServiceScopeProvider.GetNewObjectScope()
 ' commit the changeset from the client and return the updated set
 ' commits entire transaction?
 result = ObjectContainer.CommitChanges(changeset, _
 ObjectContainer.Verify.All, scope, True, True)
 End Using
 Return result
 End Function

Using OpenAccess in Applications 117

© 2010 Telerik Inc.

public ObjectContainer.ChangeSet GetContactGroups()
{
 ObjectContainer.ChangeSet changeSet = null;
 using (IObjectScope scope = ServiceScopeProvider.GetNewObjectScope())
 {
 var queryable =
 from q
 in scope.Extent<ContactGroup>()
 select q;

 changeSet = GetChangeSet("ContactGroups", scope, queryable);
 }
 return changeSet;
}

public ObjectContainer.ChangeSet GetContacts()
{
 ObjectContainer.ChangeSet changeSet = null;
 using (IObjectScope scope = ServiceScopeProvider.GetNewObjectScope())
 {
 var queryable =
 from q
 in scope.Extent<Contact>()
 select q;

 changeSet = GetChangeSet("Contacts", scope, queryable);

 }
 return changeSet;
}

public ObjectContainer.ChangeSet SaveContacts(
 ObjectContainer.ChangeSet changeSet)
{
 ObjectContainer.ChangeSet result = null;

 using (IObjectScope scope = ServiceScopeProvider.GetNewObjectScope())
 {
 // commit the changeset from the client and return the updated set
 // commits entire transaction?
 result = ObjectContainer.CommitChanges(changeSet,
 ObjectContainer.Verify.All, scope, true, true);
 }
 return result;
}

7) Test the WCF service.

a) Right-click the WCF service project and set it to be the startup project using the context menu.

b) Run the application. A WCF Test Client will automatically start, let you see your service methods
and run them.

c) Double-click the GetContactGroups() method in the left side tree view.

d) Click the Invoke button.

Telerik OpenAccess ORM118

© 2010 Telerik Inc.

e) Observe the returned byte[] data.

Figure 69

The WinForms Client

1) Add a new WinForms project to the solution and name it "WinFormClient".

2) From the ToolBox add a RadComboBox, RadGridView and a RadButton controls and set
properties:

a) RadComboBox: Name = "cbContactGroups", Text = "".

b) RadGridView: Name = "gvContacts".

c) RadButton: Name = "btnSave", Text = "Save".

Using OpenAccess in Applications 119

© 2010 Telerik Inc.

Figure 70

3) In the Solution Explorer, add a reference to the "Model" assembly.

4) In the Solution Explorer, add a reference to the Telerik.OpenAccess and Telerik.OpenAccess.Query
assemblies.

5) Configure the project to use the WCF service.

a) In the Solution Explorer, right-click the References node a second time and select Add Service
Reference... from the context menu.

b) Click the Discover button.

c) Select the IService1 node of the tree and click the OK button to automatically create a service client
wrapper object.

Telerik OpenAccess ORM120

© 2010 Telerik Inc.

6) If you expand the Solution explorer, you should see a new Project DataSource show up in your
WinFormClient project (see image below).

7) Create a new class for the WinForms project and name it "ContainerHelper.cs" or "ContainerHelper.

Using OpenAccess in Applications 121

© 2010 Telerik Inc.

vb". This class will manage the activity that needs the Telerik .OpenAccess namespace, i.e. loading
and saving ChangeSets on the client.

a) Add references to System.Collections.Generic and Telerik.OpenAccess namespaces to the
"Imports" (VB) or "using" (C#) section of code.

b) Add a private ObjectContainer variable:

Private _container As New ObjectContainer()

private ObjectContainer _container = new ObjectContainer();

c) Add a generic Load<T>() method that takes a ChangeSet and returns an IList of type T. Any existing
transaction has to be committed and inactive before applying the ChangSet into the container. The
container Extent<T>() method returns a strongly typed IList.

Why is the "changeSet" parameter fed to a ObjectContainer.ChangeSet constructor in the
example below?

If you've worked with web or WCF services, you may have had compatibility issues when using a
type from another assembly that is also returned in the service, i.e. "Cannot convert 'Service.
ChangeSet' to 'Telerik.OpenAccess.ObjectContainer.ChangeSet'". A proxy object is created
automatically when you reference the service. The ChangeSet constructor takes care of the type
mismatch for you by accepting an untyped object -- a ChangeSet passed in from the client.

Public Function Load(Of T)(_
ByVal changeSet As ObjectContainer.ChangeSet) As IList(Of T)
 ' ChangeSet contstructor morphs
 ' webservice changeset to application changeset type
 Dim tempChangeSet As New ObjectContainer.ChangeSet(changeSet)

 ' transaction must not be active before call to Apply()
 If _container.Transaction.IsActive Then
 _container.Transaction.Commit()
 End If

 ' apply service changeset to local container
 ' transaction must not be active
 _container.Apply(tempChangeSet)

 ' start transaction for new add/edit/delete in the bound controls
 _container.Transaction.Begin()

 Return _container.Extent(Of T)()
End Function

Telerik OpenAccess ORM122

© 2010 Telerik Inc.

public IList<T> Load<T>(ObjectContainer.ChangeSet changeSet)
{
 // ChangeSet contstructor morphs
 // webservice changeset to application changeset type
 ObjectContainer.ChangeSet tempChangeSet =
 new ObjectContainer.ChangeSet(changeSet);

 // transaction must not be active before call to Apply()
 if (_container.Transaction.IsActive)
 _container.Transaction.Commit();

 // apply service changeset to local container
 // transaction must not be active
 _container.Apply(tempChangeSet);

 // start transaction for new add/edit/delete in the bound controls
 _container.Transaction.Begin();

 return _container.Extent<T>();
}

d) Add a delegate "SynchronizeDelegate" that will allow the caller to pass in a WCF service method to
the ContainerHelper class. The delegate is used so the ContainerHelper class doesn't need to know
about the service or have any direct information about the client code.

Public Delegate Function SynchronizeDelegate(_
ByVal changeSet As ObjectContainer.ChangeSet) _
As ObjectContainer.ChangeSet

public delegate ObjectContainer.ChangeSet
 SynchronizeDelegate(ObjectContainer.ChangeSet changeSet);

e) Add a Save() method to send changes on the client back to the service for committing to the
database.

The container's GetChanges() method returns a ChangeSet called "localChangeSet" with only
changed data from the client. The ChangeSet is sent to the service by way of the Synchronize
delegate where the client ChangeSet is applied to a Container in the service and a ChangeSet from
the service is returned and applied back again to the local container. The return trip part of this
voyage may not be necessary in this cut-down example where the data for the service isn't changing
and isn't being re-queried from the database.

Using OpenAccess in Applications 123

© 2010 Telerik Inc.

Public Sub Save(ByVal synchronize As SynchronizeDelegate)
 ' transactions cannot be active for GetChanges() or Apply()
 If _container.Transaction.IsActive Then
 _container.Transaction.Commit()
 End If

 ' get the changes from the client
 Dim localChangeSet As ObjectContainer.ChangeSet = _
_container.GetChanges(ObjectContainer.Verify.Changed)

 ' send changes to the service, apply and return new
 ' changeset
 Dim serviceChangeSet As ObjectContainer.ChangeSet = _
synchronize(localChangeSet)

 ' apply synchronized changeset
 If serviceChangeSet IsNot Nothing Then
 _container.Apply(serviceChangeSet)
 End If

 ' start transaction for new add/edit/delete in the bound controls
 _container.Transaction.Begin()
End Sub

public void Save(SynchronizeDelegate synchronize)
{
 // transactions cannot be active for GetChanges() or Apply()
 if (_container.Transaction.IsActive)
 _container.Transaction.Commit();

 // get the changes from the client
 ObjectContainer.ChangeSet localChangeSet =
 _container.GetChanges(ObjectContainer.Verify.Changed);

 // send changes to the service, apply and return new
 // changeset
 ObjectContainer.ChangeSet serviceChangeSet =
 synchronize(localChangeSet);

 // apply synchronized changeset
 if (serviceChangeSet != null)
 _container.Apply(serviceChangeSet);

 // start transaction for new add/edit/delete in the bound controls
 _container.Transaction.Begin();
}

f) Include methods to add and remove objects from the container.

Telerik OpenAccess ORM124

© 2010 Telerik Inc.

Public Sub Add(ByVal obj As Object)
 _container.Add(obj)
End Sub

Public Sub Remove(ByVal obj As Object)
 _container.Remove(obj)
End Sub

public void Add(object obj)
{
 _container.Add(obj);
}

public void Remove(object obj)
{
 _container.Remove(obj);
}

8) Now open the code-behind for the form Form1, add references for the following namespaces:

a) System.Collections.Generic (supports generic IList)

b) System.ComponentModel (supports "AddingNewEventArgs")

c) System.Linq (supports LINQ query for contacts)

d) System.Reflection (supports "Assembly" class)

e) Model

f) Telerik.WinControls.UI

9) Add private variables for the service client and the ContainerHelper.

' reference to our WCF service client
Private _client As New ServiceReference1.Service1Client()

' wrapper for OpenAccess Container and ChangeSets
Private _containerHelper As New ContainerHelper()

// reference to our WCF service client
private ServiceReference1.Service1Client _client =
 new ServiceReference1.Service1Client();

// wrapper for OpenAccess Container and ChangeSets
private ContainerHelper _containerHelper = new ContainerHelper();

10) Add a property to provide easy access to the currently selected ContactGroup in the combo box.

Using OpenAccess in Applications 125

© 2010 Telerik Inc.

' currently selected group name
Private ReadOnly Property CurrentGroupName() As String
 Get
 Dim index As Integer = cbContactGroups.SelectedIndex
 If index <> -1 Then
 Return cbContactGroups.Items(index).Text
 End If
 Return [String].Empty
 End Get
End Property

// currently selected group name
private string CurrentGroupName
{
 get
 {
 int index = cbContactGroups.SelectedIndex;
 if (index != -1)
 {
 return cbContactGroups.Items[index].Text;
 }
 return String.Empty;
 }
}

11) Add a helper method to load the combo box.

The service client method GetContactGroups() returns a ChangeSet from the service. The ChangeSet
is fed into the ContainerHelper Load<T>() method which in turn returns an IList of type T. The IList is
assigned to the DataSource of the combo box.

' load contact groups to combo
Private Sub LoadCombo()
 ' get all contact groups as a ChangeSet from the service,
 ' load the ChangeSet to the container and return an
 ' IList of ContactGroup
 Dim contactGroups As IList(Of ContactGroup) = _
_containerHelper.Load(Of ContactGroup)(_client.GetContactGroups())

 ' bind to the grid and display the ContactGroupName
 ' in the combo
 cbContactGroups.DataSource = contactGroups
 cbContactGroups.DisplayMember = "ContactGroupName"
End Sub

Telerik OpenAccess ORM126

© 2010 Telerik Inc.

// load contact groups to combo
private void LoadCombo()
{
 // get all contact groups as a ChangeSet from the service,
 // load the ChangeSet to the container and return an
 // IList of ContactGroup
 IList<ContactGroup> contactGroups =
 _containerHelper.Load<ContactGroup>(_client.GetContactGroups());

 // bind to the grid and display the ContactGroupName
 // in the combo
 cbContactGroups.DataSource = contactGroups;
 cbContactGroups.DisplayMember = "ContactGroupName";
}

G
o
t
c
h
a
!

BindingList is useful for many scenarios but doesn't have an event that tells you that an item has
been deleted and what the object to be removed is. The ListChanged event, for example, lets
you know when an item is removed, but fires after the object is gone. To get around this we will
descend from BindingList, override the RemoveItem() method and raise our own "RemovingItem"
event.

12) Add a new class "RemovingItemEventArgs.cs" or "RemovingItemEventArgs.vb" to the project. This
class encapsulates the object to be passed to our new RemovingItem event handler. In the convention
of how Telerik codes events, the event will be cancelable.

Using OpenAccess in Applications 127

© 2010 Telerik Inc.

Imports System

Public Class RemovingItemEventArgs
 Inherits EventArgs
 Public Sub New()
 End Sub
 Public Sub New(ByVal cancel As Boolean, ByVal item As Object)
 Me.Cancel = cancel
 Me.Item = item
 End Sub

 Private privateCancel As Boolean
 Public Property Cancel() As Boolean
 Get
 Return privateCancel
 End Get
 Set(ByVal value As Boolean)
 privateCancel = value
 End Set
 End Property

 Private privateItem As Object
 Public Property Item() As Object
 Get
 Return privateItem
 End Get
 Set(ByVal value As Object)
 privateItem = value
 End Set
 End Property
End Class

using System;

namespace WinFormClient
{
 public class RemovingItemEventArgs : EventArgs
 {
 public RemovingItemEventArgs() { }
 public RemovingItemEventArgs(bool cancel, object item)
 {
 this.Cancel = cancel;
 this.Item = item;
 }

 public bool Cancel { get; set; }
 public object Item { get; set; }
 }
}

13) Add a new class "RemovableBindingList.cs" or "RemovableBindingList.vb".

This class will inherit from BindingList and override the RemoveItem method. If the RemovingItem

Telerik OpenAccess ORM128

© 2010 Telerik Inc.

event is assigned, we create a RemovingItemEventArgs, set its Cancel property to False and the Item
property to the object in the list pointed to by the "index" parameter. If the Cancel property has not
been set to True, the base RemoveItem method is called.

Imports System
Imports System.Collections.Generic
Imports System.ComponentModel
 Public Class RemovableBindingList(Of T)
 Inherits BindingList(Of T)
 Public Event RemovingItem As EventHandler(Of RemovingItemEventArgs)

 Protected Overrides Sub RemoveItem(ByVal index As Integer)
 ' load up the item to be removed to args and fire event if assigned
 Dim args As RemovingItemEventArgs = Nothing
 If RemovingItemEvent IsNot Nothing Then
 args = New RemovingItemEventArgs(False, Me(index))
 Dim removingItem As EventHandler(Of RemovingItemEventArgs) = _
 RemovingItemEvent
 If RemovingItemEvent IsNot Nothing Then
 RemovingItemEvent(Me, args)
 End If
 End If

 If (Not args.Cancel) Then
 MyBase.RemoveItem(index)
 End If
 End Sub

#Region "constructors"

 Public Sub New(ByVal list As IList(Of T))
 MyBase.New(list)
 End Sub

 Public Sub New()
 MyBase.New()
 End Sub

#End Region

End Class

Using OpenAccess in Applications 129

© 2010 Telerik Inc.

using System;
using System.Collections.Generic;
using System.ComponentModel;

namespace WinFormClient
{
 public class RemovableBindingList<T> : BindingList<T>
 {
 public event EventHandler<RemovingItemEventArgs> RemovingItem;

 protected override void RemoveItem(int index)
 {
 // load up the item to be removed to args and fire event if assigned
 RemovingItemEventArgs args = null;
 if (RemovingItem != null)
 {
 args = new RemovingItemEventArgs(false, this[index]);
 EventHandler<RemovingItemEventArgs> removingItem =
 RemovingItem;
 if (removingItem != null)
 {
 removingItem(this, args);
 }
 }

 if (!args.Cancel)
 base.RemoveItem(index);
 }

 #region constructors

 public RemovableBindingList(IList<T> list)
 : base(list) { }

 public RemovableBindingList() : base() { }

 #endregion
 }
}

14) Now back to the form Form1 - Add a helper method to load the grid.

The LoadGrid() method needs to filter the Contacts based on group. We use a LINQ query here that
drills down to the contact's group and compares the group name against the current selection in the
combo box. The call to ToList() causes the data to be loaded immediately and is stored in a generic
List of Contact. This list is fed into the constructor for our RemovableBindingList.

Then we hook up the RemovableBindingList AddingNew and the new RemovingItem event so that we
can add and remove items from the container.

Telerik OpenAccess ORM130

© 2010 Telerik Inc.

' load all contacts for a group to grid
Private Sub LoadGrid()
 ' get all Contacts as a ChangeSet from the service,
 ' load the ChangeSet to the container and return
 ' an IList of Contacts
 Dim contacts As IList(Of Contact) = _
_containerHelper.Load(Of Contact)(_client.GetContacts())

 ' filter the contacts for only those with the currently selected
 ' group name
 Dim filteredContacts As List(_
Of Contact) = contacts.Where(Function(c) _
c.ContactGroup.ContactGroupName.Equals(Me.CurrentGroupName)).ToList()

 Dim bindingList As RemovableBindingList(Of Contact) = _
New RemovableBindingList(Of Contact)(filteredContacts)
 AddHandler bindingList.AddingNew, AddressOf bindingList_AddingNew
 AddHandler bindingList.RemovingItem, AddressOf bindingList_RemovingItem

 ' bind to the grid
 gvContacts.DataSource = bindingList

 ' hide the contact group column and fit the remaining columns
 If gvContacts.MasterGridViewTemplate.Columns.Count > 1 Then
 gvContacts.MasterGridViewTemplate.Columns(2).IsVisible = False
 End If
 gvContacts.MasterGridViewTemplate.BestFitColumns()
End Sub

Using OpenAccess in Applications 131

© 2010 Telerik Inc.

// load all contacts for a group to grid
private void LoadGrid()
{
 // get all Contacts as a ChangeSet from the service,
 // load the ChangeSet to the container and return
 // an IList of Contacts
 IList<Contact> contacts =
 _containerHelper.Load<Contact>(_client.GetContacts());

 // filter the contacts for only those with the currently selected
 // group name
 List<Contact> filteredContacts =
 contacts.Where(c => c.ContactGroup.ContactGroupName.Equals(
 this.CurrentGroupName)).ToList();

 RemovableBindingList<Contact> bindingList =
 new RemovableBindingList<Contact>(filteredContacts);
 bindingList.AddingNew +=
 new AddingNewEventHandler(bindingList_AddingNew);
 bindingList.RemovingItem += new
 EventHandler<RemovingItemEventArgs>(bindingList_RemovingItem);

 // bind to the grid
 gvContacts.DataSource = bindingList;

 // hide the contact group column and fit the remaining columns
 if (gvContacts.MasterGridViewTemplate.Columns.Count > 1)
 gvContacts.MasterGridViewTemplate.Columns[2].IsVisible = false;
 gvContacts.MasterGridViewTemplate.BestFitColumns();
}

15) Handle the AddNew and RemoveItem events.

Both events keep the container up-to-date by adding or deleting the current list item. The AddingNew
event handler has an additional task , to assign a new Contact object to the NewObject parameter
property. Assigning NewObject simply lets us see the Contact in a new row of the grid before its added
or canceled as shown in the figure below.

Figure 71

Also notice that the ContactGroupName uses a ContactGroup reference stored in the combo box item
Tag property. We'll write code to populate the Tag property in the following step of this example.

Telerik OpenAccess ORM132

© 2010 Telerik Inc.

Private Sub bindingList_RemovingItem(ByVal sender As Object, _
ByVal args As RemovingItemEventArgs)
 _containerHelper.Remove(args.Item)
End Sub

' create a new contact and add to the grid and to the container.
' Note: e.NewObject shows up in the 'add new row' before being added
' to the grid data.
Private Sub bindingList_AddingNew(_
ByVal sender As Object, _
ByVal e As AddingNewEventArgs)
 Dim contactGroup As ContactGroup = _
TryCast((TryCast(cbContactGroups.SelectedItem, RadComboBoxItem)).Tag, _
ContactGroup)

 e.NewObject = New Contact With { _
.ContactName = "New " & _
contactGroup.ContactGroupName, _
.ContactGroup = contactGroup, _
.Phone = String.Empty}
 _containerHelper.Add(e.NewObject)
End Sub

void bindingList_RemovingItem(object sender, RemovingItemEventArgs args)
{
 _containerHelper.Remove(args.Item);
}

// create a new contact and add to the grid and to the container.
// Note: e.NewObject shows up in the "add new row" before being added
// to the grid data.
void bindingList_AddingNew(object sender, AddingNewEventArgs e)
{
 ContactGroup contactGroup =
 (cbContactGroups.SelectedItem as RadComboBoxItem).Tag as ContactGroup;

 e.NewObject = new Contact
 {
 ContactName = "New " + contactGroup.ContactGroupName,
 ContactGroup = contactGroup,
 Phone = String.Empty
 };
 _containerHelper.Add(e.NewObject);
}

16)Create event handlers for the combo box SelectedIndexChanged and ItemDataBound events.

The SelectedIndexChanged event simply triggers the LoadGrid() call.

Use the ItemDataBound to populate the Tag of each item in the combo box with the corresponding
ContactGroup.

Using OpenAccess in Applications 133

© 2010 Telerik Inc.

Private Sub cbContactGroups_SelectedIndexChanged_1(ByVal sender As System.
Object, _
 ByVal e As System.EventArgs) Handles cbContactGroups.
SelectedIndexChanged
 LoadGrid()
End Sub

' save off currently selected ContactGroup
Private Sub cbContactGroups_ItemDataBound_1(ByVal sender As System.Object, _
 ByVal e As Telerik.WinControls.UI.ItemDataBoundEventArgs) Handles
cbContactGroups.ItemDataBound
 e.DataBoundItem.Tag = TryCast(e.DataItem, ContactGroup)
End Sub

private void cbContactGroups_SelectedIndexChanged(
 object sender, EventArgs e)
{
 LoadGrid();
}

// save off currently selected ContactGroup
private void cbContactGroups_ItemDataBound(object sender,
 ItemDataBoundEventArgs e)
{
 e.DataBoundItem.Tag = e.DataItem as ContactGroup;
}

17) Handle the Form Load event. This handler simply calls the LoadCombo() and then the LoadGrid()
method.

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 LoadCombo()
 LoadGrid()
End Sub

private void Form1_Load(object sender, EventArgs e)
{
 LoadCombo();
 LoadGrid();
}

18) Create an event handler for the "Save" button.

Telerik OpenAccess ORM134

© 2010 Telerik Inc.

' send current changes to service
 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 ' pass SaveContacts as a delegate
 _containerHelper.Save(AddressOf _client.SaveContacts)
 End Sub

// send current changes to service
private void btnSave_Click(object sender, EventArgs e)
{
 // pass SaveContacts as a delegate
 _containerHelper.Save(_client.SaveContacts);
}

20) Set the WinForms project as the startup application and run the project.

a) Try selecting different groups from the combo box.

b) Add new contacts by clicking the top row prompt in the grid.

c) Double-click grid cells to edit existing Contacts. Delete Contacts in the grid by selecting the row;
click to the left of the row and hit the Delete key.

d) Click the Save button to save changes to the database.

e) Also make changes and switch between groups using the combo box to see that changes are not
persisted in this case.

Using OpenAccess in Applications 135

© 2010 Telerik Inc.

4.7 N-Tier Example

This next solution will break out the Service layer into Data Access, Business Logic and service layers. You
wont need to change the data model or presentation layer (WinFormClient) at all. The service interface
signature will remain unchanged, so we can make our modifications behind the scenes. The general game
plan here is to:

Create a ORM-enabled data access layer. This assemby will have an ObjectScopeProvider and
knowledge of a database connection.

Create a business logic layer. This assembly will reference the data access layer and will not be ORM-
enabled and will not have its own ObjectScopeProvider. This business layer will not have any direct data
access knowledge. Because we are passing around ChangeSet objects, it will have a reference to
Telerik.OpenAccess. In a later example we'll add a single token business rule that validates contact
phone numbers, but for now the business logic methods will simply consume the data access methods
on a one-to-one basis.

Modify the service layer to remove data access and instead consume the business layer methods. The
service layer will reference the business layer, will not be ORM-enabled and will have not logic of its own
other than to call business layer methods. Again, this assembly will have a reference to Telerik.
OpenAccess only because we're using ChangeSet objects.

Find the source at \Projects\ORM\<CS\VB>\NTierExample\NTierExample.sln

Adding the Data Access Layer

1) Create a new Class Library project named "DataAccess".

2) In the Solution Explorer, add a reference to the "Model" assembly.

3) ORM-enable the project. Specify the following:

a) The Persistent classes option should be disabled.

b) the Data Access Code option should be enabled.

c) The database connection ID should be "MyDatabaseConnection"'.

d) The Server Name should be "(LOCAL)\SQLEXPRESS".

e) The database should be "MyDatabase".

4) Rename "ObjectScopeProvider1.cs" to "DataAccessScopeProvider.cs" or if using VB change the
names "ObjectScopeProvider1.vb" to "DataAccessScopeProvider.vb". Confirm the dialog to rename the
other instances of the object in the project.

5) Delete the Class1.cs or Class1.vb file from the project.

6) Add a new class to the project named "ContainerManager.cs" or "ContainerManager.vb" and add the
code below to the class.

The code should look familiar because its derived from code used in the service of the previous
example. The logic is more generic where there is a static method to LoadChangeSet<T> instead of
separate methods to GetContacts() or GetContactGroups(). LoadChangeSet is a generic method that
gets an IQueryable from the object scope for objects of type "T". Those objects are copied into the
container, the GetContent() method gets a ChangeSet of everything in the container and the ChangeSet
is returned to the caller. Note that the IObjectScope provides access to the database.

SaveChangeSet() performs the same purpose as SaveContacts in the service, but again is generic.

Telerik OpenAccess ORM136

© 2010 Telerik Inc.

SaveChangeSet() takes a ChangeSet as a parameter, copies the contents into a container, then
commits the container contents into the database. Again note that the IObjectScope provides access
to the database.

This is the last point in the stack of architectural layers where we need a database connection.

Imports System.Linq
Imports Telerik.OpenAccess
Imports Telerik.OpenAccess.Query

 Public Class ContainerManager
 ' return a ChangeSet loaded with objects populated from the database
 Public Shared Function LoadChangeSet(Of T)() _
As ObjectContainer.ChangeSet
 Dim changeSet As ObjectContainer.ChangeSet = Nothing

 ' get a new object scope for data access in this method
 Using scope As IObjectScope = _
DataAccessScopeProvider.GetNewObjectScope()
 ' extract data for <T> and place in an IQueryable
 Dim queryable As IQueryable(Of T) = _
 From q In scope.Extent(Of T)() _
 Select q

 ' create a container to hold the data
 Dim container As New ObjectContainer()

 ' define the FetchGroup as default for the copy (fetches all fields)
 Dim collector As IObjectCollector = _
New FetchGroupCollector(FetchGroupCollector.DefaultFetchGroup)

 ' copy everything from the IQueryable, and name the list as the
 ' <T> type name
 container.CopyFrom(scope, GetType(T).Name, queryable, collector)

 ' save the current container content in a ChangeSet
 changeSet = container.GetContent()
 End Using

 Return changeSet
 End Function

 Public Shared Function SaveChangeSet(_
ByVal changeSet As ObjectContainer.ChangeSet) As ObjectContainer.ChangeSet
 Dim result As ObjectContainer.ChangeSet = Nothing

 Using scope As IObjectScope = _
DataAccessScopeProvider.GetNewObjectScope()
 ' commit the changeset from the client and return the updated set
 result = ObjectContainer.CommitChanges(_
changeSet, ObjectContainer.Verify.All, scope, True, True)
 End Using
 Return result
 End Function

Using OpenAccess in Applications 137

© 2010 Telerik Inc.

 End Class

using System.Linq;
using Telerik.OpenAccess;
using Telerik.OpenAccess.Query;

namespace DataAccess
{
 public class ContainerManager
 {
 // return a ChangeSet loaded with objects populated from the database
 public static ObjectContainer.ChangeSet LoadChangeSet<T>()
 {
 ObjectContainer.ChangeSet changeSet = null;

 // get a new object scope for data access in this method
 using (IObjectScope scope =
 DataAccessScopeProvider.GetNewObjectScope())
 {
 // extract data for <T> and place in an IQueryable
 IQueryable<T> queryable =
 from q
 in scope.Extent<T>()
 select q;

 // create a container to hold the data
 ObjectContainer container = new ObjectContainer();

 // define the FetchGroup as default for the copy
 // (fetches all fields)
 IObjectCollector collector =
 new FetchGroupCollector(FetchGroupCollector.DefaultFetchGroup);

 // copy everything from the IQueryable, and name the list as the
 // <T> type name
 container.CopyFrom(scope, typeof(T).Name, queryable, collector);

 // save the current container content in a ChangeSet
 changeSet = container.GetContent();
 }

 return changeSet;
 }

 public static ObjectContainer.ChangeSet SaveChangeSet(
 ObjectContainer.ChangeSet changeSet)
 {
 ObjectContainer.ChangeSet result = null;

 using (IObjectScope scope =
 DataAccessScopeProvider.GetNewObjectScope())
 {
 // commit the changeset from the client and return the
 // updated set

Telerik OpenAccess ORM138

© 2010 Telerik Inc.

 result = ObjectContainer.CommitChanges(changeSet,
 ObjectContainer.Verify.All, scope, true, true);
 }
 return result;
 }

 }
}

7) The project in the Solution Explorer should look something like the figure below:

Figure 72

Adding the Business Layer

1) Create a new Class Library project named "Business".

2) In the Solution Explorer add references to the Model, DataAccess and Telerik.OpenAccess
assemblies.

3) Add a new class to the project named "ContactBO.cs" or if using VB "ContactBO.vb" and add the code
below to the class.

This class will reference the Model, DataAccess and Telerik .OpenAccess namespaces and only
contain methods GetContactGroups(), GetContacts() and SaveContacts(). We will include additional
business logic later but for now just add calls to GetContactGroups(), GetContacts() and SaveContacts
() using the data layer ContainerManager LoadChangeSet() an SaveChangeSet() methods.

Using OpenAccess in Applications 139

© 2010 Telerik Inc.

Imports DataAccess
Imports Model
Imports Telerik.OpenAccess

 Public Class ContactBO
 Public Shared Function GetContactGroups() As ObjectContainer.ChangeSet
 Return ContainerManager.LoadChangeSet(Of ContactGroup)()
 End Function

 Public Shared Function GetContacts() As ObjectContainer.ChangeSet
 Return ContainerManager.LoadChangeSet(Of Contact)()
 End Function

 Public Shared Function SaveContacts(_
ByVal changeSet As ObjectContainer.ChangeSet) _
As ObjectContainer.ChangeSet
 Return ContainerManager.SaveChangeSet(changeSet)
 End Function
 End Class

using DataAccess;
using Model;
using Telerik.OpenAccess;

namespace Business
{
 public class ContactBO
 {
 public static ObjectContainer.ChangeSet GetContactGroups()
 {
 return ContainerManager.LoadChangeSet<ContactGroup>();
 }

 public static ObjectContainer.ChangeSet GetContacts()
 {
 return ContainerManager.LoadChangeSet<Contact>();
 }

 public static ObjectContainer.ChangeSet SaveContacts(
 ObjectContainer.ChangeSet changeSet)
 {
 return ContainerManager.SaveChangeSet(changeSet);
 }
 }
}

Changing the Service

We have gutted the service and don't really need to keep much in it. Only a few calls to the business layer
are really required.

1) In the Solution Explorer add a reference to the Business and DataAccess assembly. You can remove
the unnecessary Telerik.OpenAccess.Query reference. The services references in the Solution Explorer
should look like the screenshot below:

Telerik OpenAccess ORM140

© 2010 Telerik Inc.

2) Change the Service1.cs or Service1.vb file's code to call the ContactBO class.

Have each service call the corresponding method on the business layer ContactBO object.

Using OpenAccess in Applications 141

© 2010 Telerik Inc.

Imports Business
Imports Model
Imports Telerik.OpenAccess

Public Class Service1
 Implements IService1

 Public Function IService1_GetContacts() As ObjectContainer.ChangeSet
Implements IService1.GetContacts
 Return ContactBO.GetContacts()
 End Function

 Public Function IService1_GetContactGroups() As ObjectContainer.ChangeSet
Implements IService1.GetContactGroups
 Return ContactBO.GetContactGroups()
 End Function

 Public Function IService1_SaveContacts(ByVal changeset As ObjectContainer.
ChangeSet) As ObjectContainer.ChangeSet Implements IService1.SaveContacts
 Return ContactBO.SaveContacts(changeset)
 End Function

 Private Shared Function GetChangeSet(ByVal listName As String, _
 ByVal scope As IObjectScope, _
 ByVal queryable As Object) As ObjectContainer.ChangeSet

 Dim container As New ObjectContainer()

 ' define the fetch groups used in the copy, by default all columns
 Dim collector As IObjectCollector = _
 New FetchGroupCollector(FetchGroupCollector.DefaultFetchGroup)

 container.CopyFrom(scope, queryable.[GetType]().Name, _
 queryable, collector)

 ' get everything in the container as a changeset
 Dim changeSet As ObjectContainer.ChangeSet = container.GetContent()

 Return changeSet
 End Function

End Class

Telerik OpenAccess ORM142

© 2010 Telerik Inc.

using Business;
using Telerik.OpenAccess;

namespace Service
{
 public class Service1 : IService1
 {
 public ObjectContainer.ChangeSet GetContactGroups()
 {
 return ContactBO.GetContactGroups();
 }

 public ObjectContainer.ChangeSet GetContacts()
 {
 return ContactBO.GetContacts();
 }

 public ObjectContainer.ChangeSet SaveContacts(
 ObjectContainer.ChangeSet changeSet)
 {
 return ContactBO.SaveContacts(changeSet);
 }

 }
}

3) Right click on the ServiceReference1 Service Reference and select "Update Service Reference" to
pick up the changes to the Service1 service

4) Run the application. Re-test the functionality by adding, editing and deleting contacts. Also try clicking
the asterisked row labeled "Click here to add new row", then press ESC to cancel the add. Also try all
the above with and without clicking the Save button.

4.8 N-Tier With Business Rules

Adding Business Rules

Now that the N-Tier framework is set up let's slip in a token business rule. In addition, we'll raise an
exception in the Business layer and use the WCF "fault" mechanism to communicate the problem back to
the presentation layer. We will need to change the following layers:

Data Access: A new method LoadQueryable<T>() that will return an IQueryable given a ChangeSet. This
will be used in the business layer to convert a ChangeSet to an IQueryable<Contact> that can be
validated for phone numbers with a given format.

Business: The SaveContacts() method will no longer just save without checking the incoming data. A new
method InvalidPhoneContacts() will use a LINQ query to check the phone number format against a regular
expression. The SaveContacts() method will throw an exception if the check fails on one or more phone
numbers.

Service: The service SaveContacts() method will trap exceptions thrown by the business layer.
SaveContracts() will forward the exception by way of throwing a new FaultException. FaultException

Using OpenAccess in Applications 143

© 2010 Telerik Inc.

allows us to serialize exceptions for sending over the wire during WCF requests.

Presentation Layer: The WinForm client will catch the FaultException returned from the service client
proxy. The form will display a meaningful error message to the user and will roll back changes to the last
known good state.

Find the source at \Projects\ORM\<CS\VB>\NTierExampleBR\NTierExampleBR.sln

Changing the Data Access Layer

1) In the DataAccess assembly, ContainerManager.cs class, add a reference to the System.Linq
namespace in your "Imports" (VB) or "using" (C#) section of code.

2) Add a new LoadQueryable<T>() method to the ContainerManager class.

The method should take a ChangeSet and return an IQueryable<T>. Do this by creating an
ObjectContainer, calling the Apply() method to add the ChangeSet data to the container and finally
calling the Extent<T>() method

Public Shared Function LoadQueryable(Of T)(_
ByVal changeSet As ObjectContainer.ChangeSet) _
As IQueryable(Of T)
 Dim container As New ObjectContainer()
 container.Apply(changeSet)
 Return container.Extent(Of T)().AsQueryable(Of T)()
End Function

Public Shared Function LoadQueryable(Of T)(_
ByVal changeSet As ObjectContainer.ChangeSet) _
As IQueryable(Of T)
 Dim container As New ObjectContainer()
 container.Apply(changeSet)
 Return container.Extent(Of T)().AsQueryable()
End Function

public static IQueryable<T> LoadQueryable<T>(
 ObjectContainer.ChangeSet changeSet)
{
 ObjectContainer container = new ObjectContainer();
 container.Apply(changeSet);
 return container.Extent<T>().AsQueryable<T>();
}

Changing the Business Layer

When changes are sent to the business layer for saving, the Contacts phone numbers are validated against
a regular expression. If any are invalid, an exception is thrown.

1) In the Business project, open the Properties node using the Solution Explorer. Click on Settings. Add a
new String setting "RegExPhone" with a value of " (̂\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}$" w/o the
quotes.

Telerik OpenAccess ORM144

© 2010 Telerik Inc.

This will validate phone numbers to the format "(999)999-9999". Your production application would likely
require a more complete regular expression to handle international codes, other punctuation and layout,
etc. We're using this very specific format to demonstrate validation and communication back to the
client.

Figure 73

2) In the Business project, add a new class "ContactException.cs" or "ContactException.vb"

ContactException should inherit from ApplicationException. Override the constructor to accept a
message and a generic List of Contact. Include properties for a generic List of Contact, and a read-only
property to retrieve the list of contact names with invalid phone numbers.

We're not sending back a List of Contact to the client from the service because Contact is marked with
attribute Telerik .OpenAccess.Persistent and must be part of an ObjectScope or ObjectContainer.
Instead, we will send back a simple array of string containing the contact names.

Imports System
Imports System.Collections.Generic
Imports Model

Public Class ContactException
 Inherits ApplicationException
 Public Sub New(ByVal message As String, ByVal contacts As List(Of Contact))
 MyBase.New(message)
 Me.Contacts = contacts
 End Sub
 Private privateContacts As List(Of Contact)
 Public Property Contacts() As List(Of Contact)
 Get
 Return privateContacts
 End Get
 Set(ByVal value As List(Of Contact))
 privateContacts = value
 End Set
 End Property

 Public ReadOnly Property NameList() As List(Of String)
 Get
 Dim names As List(Of String) = New List(Of String)()
 For Each contact As Contact In Me.Contacts
 names.Add(contact.ContactName)
 Next contact
 Return names
 End Get
 End Property
End Class

Using OpenAccess in Applications 145

© 2010 Telerik Inc.

using System;
using System.Collections.Generic;
using Model;

namespace Business
{
 public class ContactException : ApplicationException
 {
 public ContactException(string message, List<Contact> contacts)
 : base(message)
 {
 this.Contacts = contacts;
 }
 public List<Contact> Contacts { get; set; }

 public List<string> NameList
 {
 get
 {
 List<string> names = new List<string>();
 foreach (Contact contact in this.Contacts)
 {
 names.Add(contact.ContactName);
 }
 return names;
 }
 }

 }
}

3) Open ContactBO.cs in the editor and add the business rule logic.

a) Add the Sytem.Linq namespace to the "Imports" (VB) or "using" (C#) section of code.

b) Add a InvalidPhoneContacts() method that accepts an IQueryable of Contact, constructs a LINQ
query to select only those where the Phone fails the regular expression validation.

Private Shared Function InvalidPhoneContacts(_
ByVal queryable As IQueryable(Of Contact)) _
As IQueryable(Of Contact)
 Dim regexPhone As New System.Text.RegularExpressions.Regex(_
My.Settings.Default.RegExPhone)

 Dim invalidContacts As IQueryable(Of Contact) = _
 From q In queryable _
 Where regexPhone.Matches(q.Phone).Count = 0 _
 Select q

 Return invalidContacts
End Function

Telerik OpenAccess ORM146

© 2010 Telerik Inc.

private static IQueryable<Contact> InvalidPhoneContacts(
IQueryable<Contact> queryable)
{
 System.Text.RegularExpressions.Regex regexPhone =
 new System.Text.RegularExpressions.Regex(
 Properties.Settings.Default.RegExPhone);

 IQueryable<Contact> invalidContacts =
 from q
 in queryable
 where regexPhone.Matches(q.Phone).Count == 0
 select q;

 return invalidContacts;
}

c) Re-write the SaveContacts() method to test for valid phone numbers and throw a ContactException if
any fail the validation.

This method uses the new data access ContainerManager method LoadQueryable<T> to get an
IQueryable<Contact>, suitable for LINQ queries. The IQuerable is passed to the
InvalidPhoneContacts() method and any contacts with invalid phone numbers are returned in
"invalidContacts". If there are one or more invalid phone numbers, we throw a ContactException.

Note: you will not be able to send a list of Contact objects back to the client directly because they are
marked with the Telerik .OpenAccess.Persistent attribute and would need to be part of a container or
ObjectScope.

Public Shared Function SaveContacts(_
ByVal changeSet As ObjectContainer.ChangeSet) _
As ObjectContainer.ChangeSet
 Dim contacts As IQueryable(Of Contact) = _
 ContainerManager.LoadQueryable(Of Contact)(changeSet)
 Dim invalidContacts As IQueryable(Of Contact) = _
 InvalidPhoneContacts(contacts)
 If invalidContacts.Count() > 0 Then
 Dim message As String = "Invalid phone numbers"
 Dim businessException As New ContactException(message, _
 invalidContacts.ToList())
 Throw businessException
 End If

Return ContainerManager.SaveChangeSet(changeSet)
End Function

Using OpenAccess in Applications 147

© 2010 Telerik Inc.

public static ObjectContainer.ChangeSet SaveContacts(
 ObjectContainer.ChangeSet changeSet)
{
 IQueryable<Contact> contacts =
 ContainerManager.LoadQueryable<Contact>(changeSet);

 IQueryable<Contact> invalidContacts =
 InvalidPhoneContacts(contacts);
 if (invalidContacts.Count() > 0)
 {
 string message = "Invalid phone numbers";

 ContactException businessException =
 new ContactException(message,
 invalidContacts.ToList<Contact>());
 throw businessException;
 }

 return ContainerManager.SaveChangeSet(changeSet);
}

Changing the Service

The service layer catches exceptions from the business layer and forwards them to the client as WCF
FaultExceptions.

1) In the Service project, add a new class "ContactFault.cs"or "ContactFault.vb". The class will need a
reference to the System.Runtime.Serialization namespace to support the DataContract attribute so
the fault can be sent like any other piece of WCF data. Also reference the System.Collections.
Generic namespace to support generics. Mark the ContactFault class with the DataContract attribute.
Add a generic List of string property "ContactNames" and mark the property with the DataMember
attribute. Add a constructor that accepts a generic List of string.

You can add other information to properties of this class to suit your purpose and mark each property
with the DataMember attribute.

Telerik OpenAccess ORM148

© 2010 Telerik Inc.

Imports System.Runtime.Serialization
Imports System.Collections.Generic

<DataContract()> _
 Public Class ContactFault
 Public Sub New(ByVal contactNames As List(Of String))
 Me.ContactNames = contactNames
 End Sub

 Private privateContactNames As List(Of String)
 <DataMember()> _
 Public Property ContactNames() As List(Of String)
 Get
 Return privateContactNames
 End Get
 Set(ByVal value As List(Of String))
 privateContactNames = value
 End Set
 End Property
End Class

using System.Runtime.Serialization;
using System.Collections.Generic;

namespace Service
{
 [DataContract]
 public class ContactFault
 {
 public ContactFault(List<string> contactNames)
 {
 this.ContactNames = contactNames;
 }

 [DataMember]
 public List<string> ContactNames { get; set; }
 }
}

2) Open the "IService1.cs" or "IService1.vb" interface file for editing and add a FaultContract attribute to
the SaveContacts() method.

This allows ContactFault to be used to communicate exception information in the context of a WCF
method.

 <OperationContract(), FaultContract(GetType(ContactFault))> _
 Function SaveContacts(ByVal changeSet As ObjectContainer.ChangeSet) _
 As ObjectContainer.ChangeSet

[OperationContract]
[FaultContract(typeof(ContactFault))]
ObjectContainer.ChangeSet SaveContacts(ObjectContainer.ChangeSet changeSet);

Using OpenAccess in Applications 149

© 2010 Telerik Inc.

3) Open "Service1.cs" or "Service1.vb" and change the SaveContacts() method implementation to catch
ContactException and respond by throwing a FaultException of ContactFault. The ContactException
NameList property can be passed directly to the ContactFault constructor. To provide other information
about the fault, include a FaultReason and FaultCode in the FaultException constructor.

* Make sure the System.ServiceModel is referenced in the Service1.cs code file

 Be aware that the generic List of string "NameList" will be converted automatically by the service to a
more interoperable-happy array of string.

Public Function IService1_SaveContacts(ByVal changeset As ObjectContainer.
ChangeSet) _
 As ObjectContainer.ChangeSet Implements IService1.SaveContacts
 Try
 Return ContactBO.SaveContacts(changeset)
 Catch ex As ContactException
 Throw New FaultException(Of ContactFault) _
 (New ContactFault(ex.NameList), _
 New FaultReason(ex.Message), New FaultCode("Invalid phone"))
 End Try
End Function

public ObjectContainer.ChangeSet SaveContacts(
 ObjectContainer.ChangeSet changeSet)
{
 try
 {
 return ContactBO.SaveContacts(changeSet);
 }
 catch (ContactException ex)
 {
 throw new FaultException<ContactFault>(new ContactFault(ex.NameList),
 new FaultReason(ex.Message), new FaultCode("Invalid phone"));
 }
}

Changing the Presentation Layer (WinForm Client)

All that remains to do is to catch the FaultException on the client, display a message for the user and to
clean up invalid data. In this example we will simply roll back the bad data to a known good state.

1) First open ContainerHelper.cs or "ContainerHelper.vb" for editing and add a Reset() method to remove
any new Contact objects from the container.

ObjectContainer has several handy methods for determining the state of contained objects including
IsDirty(), IsRemoved() and IsReadOnly().

Telerik OpenAccess ORM150

© 2010 Telerik Inc.

' Remove 'new' objects of type T
Public Sub Reset(Of T)()
 _container.Transaction.Begin()
 Dim list As IList(Of T) = _container.Extent(Of T)()
 For Each obj As Object In list
 If _container.IsNew(obj) Then
 _container.Remove(obj)
 End If
 Next obj
End Sub

// Remove "new" objects of type T
public void Reset<T>()
{
 _container.Transaction.Begin();
 IList<T> list = _container.Extent<T>();
 foreach (object obj in list)
 {
 if (_container.IsNew(obj))
 _container.Remove(obj);
 }
}

2) Make sure System.ServiceModel and WinformClient.ServiceReference1 are in the using or
Imports of the Form1 class.

3) Change the "Save" button click event handler to catch the FaultException of ContactFault. Construct a
helpful error message using the exception instance ContactNames property. Notice that you can get at
the ContactFault using the Exception.Detail and casting to the appropriate type. Display the error in a
MessageBox, then call ContainerHelper.Reset() to remove the new items. Finally, call LoadGrid() to
refresh the grid.

Using OpenAccess in Applications 151

© 2010 Telerik Inc.

Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 Try
 ' pass SaveContacts as a delegate
 _containerHelper.Save(AddressOf _client.SaveContacts)
 ' Catch FaultException ex As FaultException(Of ContactFault)
 Catch ex As FaultException(Of ContactFault)
 ' construct an error message that lists the invalid
 ' contact names
 Const format As String = "{0}. Rolling back changes for ""{1}"""
 Dim contactNames As String = _
 String.Join(",", (TryCast(ex.Detail, ContactFault)).ContactNames)
 Dim message As String = _
 String.Format(format, ex.Reason.GetMatchingTranslation().Text, _
 contactNames)

 ' use the FaultException to get the reason, code, subcode and respond.
 MessageBox.Show(ex.Reason.GetMatchingTranslation().Text & _
 ". Rolling back changes for " & contactNames)

 ' remove 'new' Contact objects and reload grid
 _containerHelper.Reset(Of Contact)()
 LoadGrid()
 End Try
End Sub

// send current changes to service
private void btnSave_Click(object sender, EventArgs e)
{
 try
 {
 // pass SaveContacts as a delegate
 _containerHelper.Save(_client.SaveContacts);
 }
 catch (FaultException<ContactFault> ex)
 {
 // construct an error message that lists the invalid
 // contact names
 const string format = "{0}. Rolling back changes for \"{1}\"";
 string contactNames =
 string.Join(",", (ex.Detail as ContactFault).ContactNames);
 string message = String.Format(format,
 ex.Reason.GetMatchingTranslation().Text, contactNames);

 // use the FaultException to get the reason, code, subcode and respond.
 MessageBox.Show(ex.Reason.GetMatchingTranslation().Text +
 ". Rolling back changes for " + contactNames);

 // remove "new" Contact objects and reload grid
 _containerHelper.Reset<Contact>();
 LoadGrid();
 }
}

Telerik OpenAccess ORM152

© 2010 Telerik Inc.

4) Before Running the application, in the Visual Studio IDE, Click on Debug->Exceptions->Expand the
Common Language Runtime Exceptions and find System.ServiceModel in the List.Uncheck the Box
under the User-unhandled column. This needs to be done or the debugger will assume that the
exception thrown by the service is not handled and will break when trying to test the service. If you
prefer not to uncheck the box, you can let the debugger break and then simply click continue and you
should see a result similar to below,

5) Run the application. Try entering both valid phone numbers of the format "(999)999-9999" and invalid
phone numbers.

4.9 Wrap Up

In this section you learned how to integrate OpenAccess with a number of presentation platforms including
ASP.NET, ASP.NET/AJAX, WinForms, Telerik Reporting and using web services. You became familiar with
some of the architectural possibilities for N-Tier applications that respect principles of multi-tiered
application design.

Part

V
References

Telerik OpenAccess ORM154

© 2010 Telerik Inc.

5 References

This chapter explores how OpenAccess handles references between objects including one-to-one, one-to-
many and many-to-many relationships. The chapter also shows how to handle self referential tables using
OpenAccess.

In this chapter you will learn:

How to create a reference from one object to another.

How to transform a reference into a one-to-many relationship.

How to use OpenAccess to map "join" table, many-to-many relationships.

How to map a self referencing table.

Find the source projects for this chapter at \Projects\ORM\CS\7_References\7_References.sln

5.1 References

OpenAccess allows you to setup references in one object to other objects. Let's use the Northwind Orders
and Order Details tables to create an example. In the Reverse Mapping Wizard, the two tables look
something like the example below. The two tables have been prepared for this example to only show data
fields and have been stripped of any references.

References 155

© 2010 Telerik Inc.

Figure 74

If you click the OrderID column of the Order Details table you will see a "Create Ref" button.

Telerik OpenAccess ORM156

© 2010 Telerik Inc.

Figure 75

Clicking Create Ref adds a new node to the tree. Once the reference is created you can rename it using the
"Field Name" entry. Use the "Type" drop down list to choose a class name. Instead of the Type being the
default "object", in the figure below we're indicating that the reference points to an Order type. The figure
below is a one-to-one reference which means that you can access the one order for that order detail using
syntax similiar to "OrderDetails.Order".

References 157

© 2010 Telerik Inc.

Figure 76

The reference node icon indicates the type of relationship, i.e. one-to-one, one-to-many or many-
to-many:

Figure 77

G
o
t
c
h
a
!

In the "Field to Column Mapping" entry the object Field is mapped to the database Column; the
column entry includes the column name followed by its database type. In some cases you may
need to enter the column name and type by hand. As of this writing, failing to include the column
name and type may cause some hard-to-track-down exceptions at run time.

You can select the "Create one-to-many list" check box to place a new reference in the Orders table.

Telerik OpenAccess ORM158

© 2010 Telerik Inc.

Figure 78

This creates an IList in the Orders property so that you can use syntax similar to "Order.OrderDetails"
when you want to iterate or bind all the order details for a given order.

Public ReadOnly Property OrderDetails() As IList(Of OrderDetail)
 Get
 Return orderDetail
 End Get
End Property

public IList<OrderDetail> OrderDetails
{
 get { return orderDetail; }
}

Join Tables

For situations where you have a join table, for example the "Employees" and "Territories" tables are joined
by "EmployeeTerritories". This configuration of data allows employees to have multiple territories and
territories to have multiple employees. This data structure is mirrored by OpenAccess. The figure below
shows the EmployeeTerritories with the Many-to-many check box unselected. At this point the Employees
table has a one-to-many reference that allows you to use syntax similar to "Employee.
EmployeeTerritories" which returns an IList of Territory objects for a given employee. The Territory object
has no such reference back to employees.

References 159

© 2010 Telerik Inc.

Figure 79

Once you click the "Many-to-many" check box, OpenAccess places a new reference to Employee in
Territories. With this reference, you can access "Territory. Now you have data structures that with all the
territories for a given employee and all the employees for a given territory.

Figure 80

The code snippet below iterates all employees, lists each territory for each employee, then lists other
employees in each territory.

Telerik OpenAccess ORM160

© 2010 Telerik Inc.

Dim employees As List(Of Employee) = _
scope.Extent(Of Employee)().ToList()
For Each employee As Employee In employees
 Console.WriteLine(employee.FirstName & " " & _
employee.LastName)
 For Each territory As Territory In _
employee.EmployeeTerritories
 Console.WriteLine(Constants.vbTab & _
"Employees for territory: " & _
territory.TerritoryDescription)
 For Each emp As Employee In territory.Employees
 Console.WriteLine(_
Constants.vbTab + Constants.vbTab + _
emp.FirstName & _
" " & emp.LastName)
 Next emp
 Next territory
Next employee

List<Employee> employees = scope.Extent<Employee>().ToList();
foreach (Employee employee in employees)
{
 Console.WriteLine(employee.FirstName + " " + employee.LastName);
 foreach (Territory territory in employee.EmployeeTerritories)
 {
 Console.WriteLine("\tEmployees for territory: " +
 territory.TerritoryDescription);
 foreach (Employee emp in territory.Employees)
 {
 Console.WriteLine("\t\t" + emp.FirstName + " " + emp.LastName);
 }
 }
}

Part of the console output is shown in the figure below. Be aware that the NorthwindOA database has only
a single employee for each territory. Additional employees have been added to the join table to give the
result for "Minneapolis" in this example.

References 161

© 2010 Telerik Inc.

Figure 81

5.2 Self Referencing

Self referencing is a special case where one of the columns references the primary key. For example, we
have the Employee table again where EmployeeID is the primary key. The ReportsTo column for every
employee (except the employee highest in the hierarchy) points to the EmployeeID in another record of the
same table. Select the ReportsTo column and click the Create Ref button to create a new reference. We
can rename this reference to something more meaningful ("ReportsToEmployee" in this case) and set its
Type to be Employee.

If the Field to Column Mapping is not complete you may need to set the Column to "ReportsTo int" to
indicate that the ReportsTo column is an "int" type in the database and maps to the Employee.employeeID
field.

Telerik OpenAccess ORM162

© 2010 Telerik Inc.

Figure 82

With this mapping we can find out who each employee reports to. The example below lists all the
employees and who each employee directly reports to. The ReportsToEmployee property may be null in the
case of a CEO who doesn't report to anyone.

Dim employees As List(Of Employee) = _
scope.Extent(Of Employee)().ToList()
For Each employee As Employee In employees
 Console.Write(employee.FirstName & " " & _
employee.LastName)
 If employee.ReportsToEmployee IsNot Nothing Then
 Console.WriteLine(" reports to " & _
employee.ReportsToEmployee.FirstName & " " & _
employee.ReportsToEmployee.LastName)
 End If
Next employee

References 163

© 2010 Telerik Inc.

List<Employee> employees =
 scope.Extent<Employee>().ToList();
foreach (Employee employee in employees)
{
 Console.Write(employee.FirstName + " " +
 employee.LastName);
 if (employee.ReportsToEmployee != null)
 {
 Console.WriteLine(" reports to " +
 employee.ReportsToEmployee.FirstName + " " +
 employee.ReportsToEmployee.LastName);
 }
}

Click the "Create one-to-many list" check box to create a second collection. Name this collection using the
"Inverse Field Name" entry. In the example below we're naming the collection "subordinates" as it contains
all the employees that have a ReportsTo that points to a given employee.

Figure 83

Now we can access the Employee.Subordinates collection as demonstrated in the example below.

Telerik OpenAccess ORM164

© 2010 Telerik Inc.

For Each employee As Employee In employees
 Console.Write(employee.FirstName & " " & _
employee.LastName)
 If employee.ReportsToEmployee IsNot Nothing Then
 Console.WriteLine(" reports to " & _
employee.ReportsToEmployee.FirstName & _
" " & employee.ReportsToEmployee.LastName)
 End If
 If employee.Subordinates.Count > 0 Then
 Console.WriteLine(Constants.vbTab & "Employees:")
 For Each emp As Employee In employee.Subordinates
 Console.WriteLine(Constants.vbTab + _
Constants.vbTab +
emp.FirstName & " " & emp.LastName)
 Next emp
 End If
Next employee

foreach (Employee employee in employees)
{
 Console.Write(employee.FirstName + " " +
 employee.LastName);
 if (employee.ReportsToEmployee != null)
 {
 Console.WriteLine(" reports to " +
 employee.ReportsToEmployee.FirstName + " " +
 employee.ReportsToEmployee.LastName);
 }
 if (employee.Subordinates.Count > 0)
 {
 Console.WriteLine("\tEmployees:");
 foreach (Employee emp in employee.Subordinates)
 {
 Console.WriteLine("\t\t" + emp.FirstName + " " + emp.LastName);
 }
 }
}

The output looks something like the figure below where "Steven Buchanan" reports to "Andrew Fuller",
"Michael Suyama", "Robert King" and "Anne Dodsworth" report to Steven.

References 165

© 2010 Telerik Inc.

Figure 84

5.3 Wrap Up

In this chapter you learned how OpenAccess handles references between objects. You learned how to
create a simple reference from one object to another and how to transform that reference into a one-to-many
relationship. You also learned how OpenAccess can be used to map "join" tables that represent many-to-
many relationships. Finally, you learned how to map a self referencing table.

Part

VI
Inheritance

Telerik OpenAccess ORM168

© 2010 Telerik Inc.

6 Inheritance

This chapter demonstrates how OpenAccess handles inheritance to get the best mix of performance, data
storage and conformity between the database and persistent objects.

In this chapter you will learn:

The multiple strategies employed by OpenAccess to map inherited classes to tables including Flat,
Vertical, Horizontal and Mixed mapping.

You will learn about the tradeoffs involved when implementing each kind of strategy.

You will learn how to configure for each strategy using the Forward Mapping Wizard.

Find the source at:

\Projects\ORM\CS\8A_Inheritance\8_Inheritance.sln (Starting point project with classes but no
configuration set)

and

 \Projects\ORM\CS\8B_Inheritance\8_Inheritance.sln (configured project)

6.1 Inheritance Overview

The "impedance mismatch" between database tables and objects shows up clearly when trying to map
inherited classes. Suppose you have an "Animal" class with "Bird" and "Dog" descendants and further
suppose there are base properties and methods as well as descendant specific properties and methods,
how is this represented in relational table form? OpenAccess supports four inheritance mapping strategies:

1. Flat mapping: All properties for all classes are mapped to a single table. A "discriminator" column
identifies the class type for each row. This strategy provides good performance at the cost of consuming
extra space in the database. This is the default mapping strategy. Pros: No extra joins are required.
Insert/update/delete operations are performed against the single table. Cons: The extra columns are not
always used and the extra discriminator column also takes up space.

2. Vertical mapping: Each class has its own table with only the fields for that class. In this strategy the
database is more closely aligned with the class model its imitating. A discriminator column is still
required, but only for the base class. Pros: the database is better normalized, subclasses can be added
easily and a discriminator column is not required. Cons: Database operations for this strategy require
multiple joins and multiple insert/update/delete statements are required.

3. Mixed (flat and vertical) mapping: OpenAccess allows a different strategy for each class. You can
mix any combination of flat and vertical mapping to achieve the maximum performance and database
space usage. For example, you can put often used data in a base class and rarely used data in a
descendant class.

4. Horizontal mapping: In this strategy the base class is marked as abstract and is not represented in the
database. Each derived class is stored in its own table with a copy of the fields in the base class. Pros:
joins are not required so you can expect performance to be as fast as flat mapping. Common attributes
can all be defined in the base class. Cons: each derived class starts a new hierarchy and the database
is de-normalized.

Let's look at a often-used example inheritance chain where a base class of "Animal" inherits to "Dog" and
"Bird" classes. "Bird" will also have a "Parrot" descendant. The figure below shows a diagram of these

Inheritance 169

© 2010 Telerik Inc.

classes, their properties and methods.

Figure 85

6.2 Flat Mapping

The default mapping strategy is "Flat", is the most efficient in terms of database processing and is more
closely allied with the relational model than the object oriented way of looking at the world. If we use the
"Flat" strategy against the objects and create the database, we get a single "Animal" table with all the data
properties from all the classes as shown in the figure below. Notice particularly the "voa_class" column,
known as a "discriminator" column that identifies which class is actually being stored.

Telerik OpenAccess ORM170

© 2010 Telerik Inc.

Figure 86

Also notice that only properties are saved and that metadata about methods is lost in translation.
If you were to forward map a set of classes, then reverse map the tables to reconstitute the
classes, the class methods would be gone.

Let's say that Animal has a voa_class = "111" and voa_class for Dog is "222". You populate one Animal
and one Dog object and persist them to the database using OpenAccess.

Shared Sub Main(ByVal args() As String)
 Using scope As IObjectScope = _
ObjectScopeProvider1.GetNewObjectScope()
 scope.Transaction.Begin()

 Dim animal As New Animal()
 animal.Name = "Bob"
 scope.Add(animal)

 Dim dog As New Dog()
 dog.Name = "Fluffy"
 dog.Breed = "Mutt"
 dog.Speak()
 scope.Add(dog)

 scope.Transaction.Commit()
 Console.ReadKey()
 End Using
End Sub

Inheritance 171

© 2010 Telerik Inc.

static void Main(string[] args)
{
 using (IObjectScope scope =
ObjectScopeProvider1.GetNewObjectScope())
 {
 scope.Transaction.Begin();

 Animal animal = new Animal();
 animal.Name = "Bob";
 scope.Add(animal);

 Dog dog = new Dog();
 dog.Name = "Fluffy";
 dog.Breed = "Mutt";
 dog.Speak();
 scope.Add(dog);

 scope.Transaction.Commit();
 Console.ReadKey();
 }
}

The first record of this table will have a voa_class = "111", Breed, WingSpan and HasWonderfulPlumage will
all be null. The second record will have a voa_class = "222", Breed will be populated but WingSpan and
HasWonderfulPlumage will be null.

Figure 87

6.3 Vertical Mapping

A vertical mapping of this same class hierarchy will look much more like its object oriented counterpart.
Now the database diagram looks almost identical to the class diagram shown earlier.

Telerik OpenAccess ORM172

© 2010 Telerik Inc.

Figure 88

Using the same code snippet that persists an Animal and Dog, the resulting records look like the series of
screenshots below. The database is more normalized where the Animal table only has data specific to the
base class, i.e. "Name"

Figure 89

The Dog table has a AnimalID column (a foreign key back to the Animal table), and a dog-specific Breed
column.

Figure 90

6.4 Mixed Flat and Vertical Mapping

Using a mixed mapping strategy we can use vertical mapping for parts of the hierarchy that should stay
normalized and other objects can be flattened into their ancestor classes. For example, if we keep Dog and
Bird classes using the vertical strategy and the seldom-used Parrot class using the flat strategy, the
database diagram looks like the example below. The Parrot HasWonderfulPlumage property has been
flattened into the Bird ancestor class.

Inheritance 173

© 2010 Telerik Inc.

Figure 91

You can balance database access and storage by tweaking mapping strategies. Vertical mapping
= less storage + slower access, Flat mapping = more storage + faster access.

To see the effect of the mixed mapping described above, let's look at another code example that populates
all of our objects.

Telerik OpenAccess ORM174

© 2010 Telerik Inc.

Shared Sub Main(ByVal args() As String)
 Using scope As IObjectScope = ObjectScopeProvider1.GetNewObjectScope()
 scope.Transaction.Begin()

 Dim animal As New Animal()
 animal.Name = "Bob"
 scope.Add(animal)

 Dim dog As New Dog()
 dog.Name = "Fluffy"
 dog.Breed = "Mutt"
 scope.Add(dog)

 Dim bird As New Bird()
 bird.Name = "Tweety"
 bird.WingSpan = 10
 scope.Add(bird)

 Dim parrot As New Parrot()
 parrot.Name = "Polly"
 parrot.WingSpan = 12
 parrot.HasWonderfulPlumage = True
 scope.Add(parrot)

 scope.Transaction.Commit()
 Console.ReadKey()
 End Using
End Sub

Inheritance 175

© 2010 Telerik Inc.

static void Main(string[] args)
{
 using (IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope())
 {
 scope.Transaction.Begin();

 Animal animal = new Animal();
 animal.Name = "Bob";
 scope.Add(animal);

 Dog dog = new Dog();
 dog.Name = "Fluffy";
 dog.Breed = "Mutt";
 scope.Add(dog);

 Bird bird = new Bird();
 bird.Name = "Tweety";
 bird.WingSpan = 10;
 scope.Add(bird);

 Parrot parrot = new Parrot();
 parrot.Name = "Polly";
 parrot.WingSpan = 12;
 parrot.HasWonderfulPlumage = true;
 scope.Add(parrot);

 scope.Transaction.Commit();
 Console.ReadKey();
 }
}

In both code examples shown so far, only the mapping strategy changes in the OpenAccess
configuration. The code for working with objects and storing them is exactly the same in all
cases.

The series of screenshots that follow show how the data is distributed. The Animal table again has a
column for the base class Name property and a voa_class column to discriminate which class this record
belongs to.

Figure 92

Once again the Dog table has a AnimalID column that refers back to the Animal table and a Breed column.

Figure 93

Telerik OpenAccess ORM176

© 2010 Telerik Inc.

The Parrot table mapping strategy is "Flat" so both Bird and Parrot objects are stored in the Bird table. We
don't lose much space here, only the HasWonderfulPlumage boolean column is wasted when storing a
Bird.

Figure 94

6.5 Horizontal Mapping

Using a Horizontal mapping strategy you use an abstract base class as a template for your descendant
class. The base class is marked with the Abstract keyword and only descendant classes are actually
persisted. To adapt our Animal example to a Horizontal mapping strategy, the Animal class is marked as
MustInherit (VB.NET) or abstract (C#).

<Telerik.OpenAccess.Persistent()> _
Public MustInherit Class Animal
'...
End Class

[Telerik.OpenAccess.Persistent()]
public abstract class Animal
{
//...
}

In the code example we remove the Animal class references. Otherwise the code remains the same.

Inheritance 177

© 2010 Telerik Inc.

Shared Sub Main(ByVal args() As String)
 Using scope As IObjectScope = ObjectScopeProvider1.GetNewObjectScope()
 scope.Transaction.Begin()

 'Animal animal = new Animal();
 'animal.Name = 'Bob';
 'scope.Add(animal);

 Dim dog As New Dog()
 dog.Name = "Fluffy"
 dog.Breed = "Mutt"
 scope.Add(dog)

 Dim bird As New Bird()
 bird.Name = "Tweety"
 bird.WingSpan = 10
 scope.Add(bird)

 Dim parrot As New Parrot()
 parrot.Name = "Polly"
 parrot.WingSpan = 12
 parrot.HasWonderfulPlumage = True
 scope.Add(parrot)

 scope.Transaction.Commit()
 Console.ReadKey()
 End Using
End Sub

Telerik OpenAccess ORM178

© 2010 Telerik Inc.

static void Main(string[] args)
{
 using (IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope())
 {
 scope.Transaction.Begin();

 //Animal animal = new Animal();
 //animal.Name = "Bob";
 //scope.Add(animal);

 Dog dog = new Dog();
 dog.Name = "Fluffy";
 dog.Breed = "Mutt";
 scope.Add(dog);

 Bird bird = new Bird();
 bird.Name = "Tweety";
 bird.WingSpan = 10;
 scope.Add(bird);

 Parrot parrot = new Parrot();
 parrot.Name = "Polly";
 parrot.WingSpan = 12;
 parrot.HasWonderfulPlumage = true;
 scope.Add(parrot);

 scope.Transaction.Commit();
 Console.ReadKey();
 }
}

The resulting database looks like the diagram below. The AnimalID and Name fields from the Animal
class are "copied" into the Bird and Dog tables. The AnimalID from the base class is reused as the
primary key for tables. The AnimalID field was marked with "protected" scope so that it would be
accessible for assignment in the ancestor class.

 You could also have used another field, e.g. BirdID as the primary key and removed the AnimalID
from the base class. There are a number of options for setting the primary key that will be
discussed when we look at how inheritance is configured.

Inheritance 179

© 2010 Telerik Inc.

Figure 95

The Dog table has the AnimalID and Name columns from the Animal table.

Figure 96

The Bird table also has AnimalID and Name columns.

Figure 97

Note that in this particular example we left the Parrot table mapped as "Flat", so the Bird table will
include columns for "voa_class" and "HasWonderfulPlumage".

6.6 Configuration

So how do we get all this magic to happen? Mapping strategies are configured using the Forward Mapping
wizard. After the classes are marked as persistent in the wizard, and the Persistent node of the tree is
selected, notice that Bird, Dog and Parrot classes are shaded in gray to indicate they are inherited.

Telerik OpenAccess ORM180

© 2010 Telerik Inc.

Figure 98

Mapping Strategy

Each persistent class has inheritance settings that include a Strategy drop down list. This list will include
differing options depending on the position of the class within the hierarchy. The base class will include
"<default>" and "horizontal". Descendant class will have "flat" and "vertical" in the list.

Inheritance 181

© 2010 Telerik Inc.

Figure 99

To configure mapping strategy for example "Animal" classes:

Flat: Set the Animal base class Strategy to "<default>" and the descendant Bird, Dog and Parrot
classes to "flat".

Vertical: Set the Animal base class Strategy to "<default>" and the descendant Bird, Dog and Parrot
classes to "vertical".

Mixed: Set the Animal base class Strategy to "<default>" and the descendant Bird, Dog and Parrot
classes to "flat" or "vertical". For example, set the Bird and Dog classes to "vertical" and the Parrot class
to "flat".

Horizontal: Set the Animal base class Strategy to "horizontal". Once the ancestor object has the
"horizontal" strategy configured, the strategy for immediate ancestor objects Dog and Bird cannot be
altered.

Identity

Persistant classes can be configured to use one of several identity types. The default "Internal" handles all
the plumbing for you and stores the identity in an automatically created and maintained field in the database
table. You can also choose "Single Field" as the identity field. This is the technique we have been using in
the inheritance "Animals" example up to now. When you choose the "Single Field" you need to assign the
"ID Field" from one of the fields in your object. A "Multiple Field" type lets you adapt to legacy systems
when you need to create a composite key.

Depending on the type of field you're storing the identity in, the "Key Generator" provides an identity value. If
you're already using auto-incrementing identity fields where the database generates new identity values,

Telerik OpenAccess ORM182

© 2010 Telerik Inc.

then the "AUTOINC" choice should work well for you.

Figure 100

Other Key Geneartor possibilities:

The HIGHLOW key Generator employs a "last-used" table to generate new identity values. This table is
automatically created and maintained.

"None" means that the application will have to provide a key.

"Verify" checks that a key field has been specified and contains a non-default value.

In some cases the HIGHLOW key generator may lock fewer tables than AUTOINC.

6.7 Mapping Walkthrough

This walk through demonstrates mapping the Animal class hierarchy to the database using the flat mapping
strategy.

Configuring the Data Model Project for Flat Mapping

1) Use the solution at \Projects\<CS|VB>\8A_Inheritance\8_Inheritance.sln as a starting point.
The solution contains two projects Animals and ConsoleTest. Neither project has been ORM enabled
or has references added to it. The Animals project has Animal, Dog, Bird and Parrot classes already
added to it.

2) ORM-enable the project. Specify the following:

a) The Persistent classes option should be enabled.

b) The Data Access Code option should be disabled.

c) The Database Connection ID should be "AnimalsConnection"

d) The Database should be "Animals".

3) From the Visual Studio menu select Telerik > Open Access > Forward Mapping. Note, but sure to
select the Animals project in the Solution Explorer before selecting the menu option.

4) In the Telerik.OpenAccess Mapping dialog, select the Make Persistent checkboxes for all four classes.

Inheritance 183

© 2010 Telerik Inc.

Figure 101

5) In the tree view on the left locate the Animal class, select it and configure the Class Mappings tab (on
the right of the dialog).

a) The Identity group settings should be Type = "Single Field", ID Field = "_animalID", Key Generator =
"AUTOINC".

Figure 102

b) In the Inheritance group of fields the Strategy should be "<default>" and Class ID = "111".

The Class ID is usually auto generated by OpenAccess but we're changing it here just so we can
easily see where this number comes from.

6) Locate the Animal node in the tree view, open the node and configure the Animal class fields.

a) Select the "_animalID" field. In the DB Column section on the right, change the name to "AnimalID".

Telerik OpenAccess ORM184

© 2010 Telerik Inc.

This will name the corresponding column in the "Animal" database table "AnimalID". This shows that
you have complete control over the naming conventions in your database.

b) Select the "_name" field. In the DB Column section, change the name to "Name"

7) Select and map the Bird class:

a) Set the Mapping strategy to "flat".

b) Set the Class ID to "222".

c) Set the "_birdID" column name to "BirdID"

d) Set the "_wingSpan" column name to "WingSpan".

8) Select and map the Dog class:

a) Set the Mapping strategy to "flat".

b) Set the Class ID to "333".

c) Set the "_dogD" column name to "DogID"

d) Set the "_breed" column name to "Breed".

9) Select and map the Parrot class:

a) Set the Mapping strategy to "flat".

b) Set the Class ID to "444".

c) Set the "_hasWonderfulPlumage" column name to "HasWonderfulPlumage".

10)Click the Done button to close the dialog.

11)In the Visual Studio menu, select the Telerik > Open Access > Configuration > Connection
Settings option. Locate the Project Properties group of settings and change the Update Database
setting to True.

Inheritance 185

© 2010 Telerik Inc.

12) Build the Animals project. This will also create the database.

13) Using Microsoft SQL Server Management Studio or the Server Explorer that comes with Visual Studio
2008, open the new "Animals" database and review the new "Animal" table there and its columns.
Because you selected "_animalID" as the identity field, and provided a new column name of "AnimalID",
"AnimalID" will be the primary key in the table. Once again, all the fields for all descendant classes
have been flattened out to this one base class table. The "voa_class" column will store the class ID's
that tell us what kind of class is being stored there. For example we should expect to see a "111" in
this column if we persist an "Animal" class.

Telerik OpenAccess ORM186

© 2010 Telerik Inc.

Persisting Objects

1) Moving on to the "ConsoleTest" project, ORM-enable the project using the following settings:

a) The Persistent classes option should be disabled.

b) The Data Access Code option should be enabled.

c) The Database Connection ID should be "AnimalsConnection"

d) The Database should be "Animals".

2) Add a reference to the "Animals" assembly.

3) Open "Program.cs" for editing.

4) Add references to Telerik.OpenAccess and Animals namespace in the "Imports" (VB) or "using" (C#)
section of code.

5) Select the Telerik > Open Access > Configuration > Update Config References menu to update
the configuration to match the OpenAccess information coming from the "Animals" assembly.

6) Add the code below to the Main() method.

Inheritance 187

© 2010 Telerik Inc.

Shared Sub Main(ByVal args() As String)
 Using scope As IObjectScope = _
ObjectScopeProvider1.GetNewObjectScope()
 scope.Transaction.Begin()

 Dim animal As New Animal()
 animal.Name = "Bob"
 scope.Add(animal)

 Dim dog As New Dog()
 dog.Name = "Fluffy"
 dog.Breed = "Mutt"
 scope.Add(dog)

 Dim bird As New Bird()
 bird.Name = "Tweety"
 bird.WingSpan = 10
 scope.Add(bird)

 Dim parrot As New Parrot()
 parrot.Name = "Polly"
 parrot.WingSpan = 12
 parrot.HasWonderfulPlumage = True
 scope.Add(parrot)

 scope.Transaction.Commit()
 End Using
End Sub

Telerik OpenAccess ORM188

© 2010 Telerik Inc.

static void Main(string[] args)
{
 using (IObjectScope scope =
ObjectScopeProvider1.GetNewObjectScope())
 {
 scope.Transaction.Begin();

 Animal animal = new Animal();
 animal.Name = "Bob";
 scope.Add(animal);

 Dog dog = new Dog();
 dog.Name = "Fluffy";
 dog.Breed = "Mutt";
 scope.Add(dog);

 Bird bird = new Bird();
 bird.Name = "Tweety";
 bird.WingSpan = 10;
 scope.Add(bird);

 Parrot parrot = new Parrot();
 parrot.Name = "Polly";
 parrot.WingSpan = 12;
 parrot.HasWonderfulPlumage = true;
 scope.Add(parrot);

 scope.Transaction.Commit();
 }
}

7) Set the ConsoleTest project as the Startup project and run it.

8) Open the Animals table in MS SQL Server Management Studio, Server Explorer or similar tool and
check out the data.

To extend this example...

Try switching the mapping strategy for Dog, Bird and Parrot to Vertical.

Set the mapping strategy for the Parrot class to Flat, while leaving Dog and Bird as Vertical.

6.8 Wrap Up

In this chapter you learned how OpenAccess translates data from objects in an inheritance chain to
database tables. You learned about strategies employed by OpenAccess to map inherited classes to
tables including Flat, Vertical, Horizontal and Mixed mapping. You learned about the tradeoffs involved with

Inheritance 189

© 2010 Telerik Inc.

implementing each kind of strategy. Finally you learned the practical steps required to configure
OpenAccess to use each kind of strategy.

Part

VII
Transactions

Telerik OpenAccess ORM192

© 2010 Telerik Inc.

7 Transactions

This chapter discusses how OpenAccess preserves data integrity by making transactions available in your
code.

In this chapter you will learn:

Transaction basics including a simple demonstration of a minimal transaction to show how this is
achieved in code.

Some of the helpful properties and methods of OpenAccess transaction objects.

How to use OpenAccess transactions in multiple threads.

How to set concurrency options to best fit your environment.

Find the source projects for this chapter at \Projects\ORM\CS\9_Transactions\9_Transactions.sln

7.1 Basics

Operations that make database changes are encapsulated within a transaction. This ensures that all
changes are committed at once to the database. It also provides the ability to rollback changes if something
bad happens, so the database will not be polluted. Transactions are managed by the ObjectScope.
Transaction property and its Begin(), Commit() and Rollback() methods. Note that only one transaction can
be active at the same time for each object scope instance.

Data is maintained in a consistent state by OpenAccess in concert with ACID principles

A)tomicity: Transactions are atomic, that is, they are the smallest, indivisible unit of processing and are
guaranteed to complete successfully in their entirety or not at all.

C)onsistency: The database is in a consistent state before the start of a transaction and after either a
rollback or commit. The database is never left in an intermediate state, even when errors occur.

I)solation: Changes to objects within a transaction are isolated from the same object in other
transactions. Each transaction should appear to run independently from all other transactions associated
with a database.

D)urability: Changes to the database must be durable, i.e. data within transactions committed to the
database will not be lost.

OpenAccess transactions are handled in code using the IObjectScope.ITransaction property. ITransaction
comes with the three methods expected of a transaction, Begin(), Commit() and Rollback(). For example:

Transactions 193

© 2010 Telerik Inc.

Using scope As IObjectScope = ObjectScopeProvider1.GetNewObjectScope()
 scope.Transaction.Begin()
 Try

 Dim order As New Order()
 order.CustomerID = "ANTON"
 order.OrderDate = DateTime.Today
 order.EmployeeID = 1
 order.RequiredDate = DateTime.Today.AddDays(14)
 order.ShippedDate = DateTime.Today.AddDays(5)
 order.ShipVia = 1
 order.Freight = 5.53D
 order.ShipName = "Antonio Moreno Taquería"
 order.ShipAddress = "Mataderos 2312"
 order.ShipCity = "México D.F."
 order.ShipCountry = "Mexico"
 order.ShipPostalCode = "05023"

 scope.Add(order)
 scope.Transaction.Commit()
 Catch
 ' transaction may be closed if failing during commit,
 ' so check for active
 If scope.Transaction.IsActive Then
 scope.Transaction.Rollback()
 End If
 End Try
End Using

Telerik OpenAccess ORM194

© 2010 Telerik Inc.

using (IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope())
{
 scope.Transaction.Begin();
 try
 {

 Order order = new Order();
 order.CustomerID = "ANTON";
 order.OrderDate = DateTime.Today;
 order.EmployeeID = 1;
 order.RequiredDate = DateTime.Today.AddDays(14);
 order.ShippedDate = DateTime.Today.AddDays(5);
 order.ShipVia = 1;
 order.Freight = 5.53m;
 order.ShipName = "Antonio Moreno Taquería";
 order.ShipAddress = "Mataderos 2312";
 order.ShipCity = "México D.F.";
 order.ShipCountry = "Mexico";
 order.ShipPostalCode = "05023";

 scope.Add(order);
 scope.Transaction.Commit();
 }
 catch
 {
 // transaction may be closed if failing during commit,
 // so check for active
 if (scope.Transaction.IsActive)
 scope.Transaction.Rollback();
 }
}

7.2 ITransaction

ITransaction is packed with handy methods and properties. Here are some example code snippets showing
how you might use them.

Objects: Returns an IList of all objects of a given type and state.

For Each mutt As Dog In scope.Transaction.Objects(Of Dog)(ObjectState.New)
 If dog.Breed.Equals("Mutt") Then
 scope.Remove(mutt)
 End If
Next mutt

foreach (Dog mutt in scope.Transaction.Objects<Dog>(ObjectState.New))
{
 if (dog.Breed.Equals("Mutt"))
 {
 scope.Remove(mutt);
 }
}

DirtyObjects: Is an IList of all modified objects in the transaction.

Transactions 195

© 2010 Telerik Inc.

For Each critter As Animal In scope.Transaction.DirtyObjects
 If (Not scope.IsRemoved(critter)) Then
 Console.WriteLine(critter.Name)
 End If
Next critter

foreach (Animal critter in scope.Transaction.DirtyObjects)
{
 if (!scope.IsRemoved(critter))
 Console.WriteLine(critter.Name);
}

Flush(): Flushes all dirty and new object instances to the database and evicts all instances from the local
cache. This method allows unreferenced instances to be garbage collected making it easier to write loops
that update millions of instances in a single transaction.

For i As Integer = 0 To 9999
 Dim newBird As New Bird()
 newBird.Name = "Bird" & i.ToString()
 scope.Add(newBird)
 If (i Mod 100) = 0 Then
 Console.WriteLine("Flush " & i.ToString())
 scope.Transaction.Flush()
 End If
Next i

for (int i = 0; i < 10000; i++)
{
 Bird newBird = new Bird();
 newBird.Name = "Bird" + i.ToString();
 scope.Add(newBird);
 if ((i % 100) == 0)
 {
 Console.WriteLine("Flush " + i.ToString());
 scope.Transaction.Flush();
 }
}

7.3 TransactionProperties

You can fine tune transaction behavior using the scope.Transaction.TransactionProperties object.

AutomaticBegin: This handy property when true means that transactions are always started for you
automatically. You can Commit the current transaction at any time and the next new transaction will be
started for you. This property can be especially helpful when working with bound controls.

Telerik OpenAccess ORM196

© 2010 Telerik Inc.

Using scope As IObjectScope = ObjectScopeProvider1.GetNewObjectScope()
 scope.TransactionProperties.AutomaticBegin = True
 Try
 Dim order As New Order()
 order.CustomerID = "ANTON"
 order.OrderDate = DateTime.Today
 scope.Add(order)
 scope.Transaction.Commit()

 Dim order2 As New Order()
 order2.CustomerID = "FRANK"
 order2.OrderDate = DateTime.Today
 scope.Add(order2)
 scope.Transaction.Commit()
 Catch
 scope.Transaction.Rollback()
 End Try
End Using

using (IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope())
{
 scope.TransactionProperties.AutomaticBegin = true;
 try
 {
 Order order = new Order();
 order.CustomerID = "ANTON";
 order.OrderDate = DateTime.Today;
 scope.Add(order);
 scope.Transaction.Commit();

 Order order2 = new Order();
 order2.CustomerID = "FRANK";
 order2.OrderDate = DateTime.Today;
 scope.Add(order2);
 scope.Transaction.Commit();
 }
 catch
 {
 scope.Transaction.Rollback();
 }
}

RefreshReadObjectsInNewTransaction: By default, OpenAccess refreshes persistent objects at the
start of each new transaction. Set the RefreshReadObjectsInNewTransaction property to false if you want
to control the refreshing behavior. You will be responsible for calling IObjectScope.Refresh() to re-read a
given object or IObjectScope.Evict() to remove a given object from the cache.

Transactions 197

© 2010 Telerik Inc.

scope.TransactionProperties.RefreshReadObjectsInNewTransaction = False
scope.Transaction.Begin()

' Freight = value in database, for example '10'
Dim orders As Query(Of Order) = _
scope.GetSqlQuery(Of Order)(_
"select * from orders where orderid = 11079", String.Empty)
Dim order As Order = orders.ExecuteList()(0)
Debug.WriteLine(order.Freight)

scope.Transaction.Commit()

' breakpoint here and change freight manually in the database,
' to '99'

scope.Transaction.Begin()

' Freight still is '10' and does not match the database
orders = scope.GetSqlQuery(Of Order)(_
"select * from orders where orderid = 11079", String.Empty)
order = orders.ExecuteList()(0)
Debug.WriteLine(order.Freight)

' call Refresh() explicitly
scope.Refresh(order)

' Freight is now '99' and matches the database
orders = scope.GetSqlQuery(Of Order)(_
"select * from orders where orderid = 11079", String.Empty)
order = orders.ExecuteList()(0)
Debug.WriteLine(order.Freight)

scope.Transaction.Commit()

Telerik OpenAccess ORM198

© 2010 Telerik Inc.

scope.TransactionProperties.RefreshReadObjectsInNewTransaction =
 false;
scope.Transaction.Begin();

// Freight = value in database, for example "10"
Query<Order> orders = scope.GetSqlQuery<Order>(
 "select * from orders where orderid = 11079", String.Empty);
Order order = orders.ExecuteList()[0];
Debug.WriteLine(order.Freight);

scope.Transaction.Commit();

// breakpoint here and change freight manually in the database,
// to "99"

scope.Transaction.Begin();

// Freight still is "10" and does not match the database
orders = scope.GetSqlQuery<Order>(
 "select * from orders where orderid = 11079",
 String.Empty);
order = orders.ExecuteList()[0];
Debug.WriteLine(order.Freight);

// call Refresh() explicitly
scope.Refresh(order);

// Freight is now "99" and matches the database
orders = scope.GetSqlQuery<Order>(
 "select * from orders where orderid = 11079",
 String.Empty);
order = orders.ExecuteList()[0];
Debug.WriteLine(order.Freight);

scope.Transaction.Commit();

FailFast: This property is true by default and determines that the entire transaction fails on the first failure
in the transaction. Set this property false if you need to collect information about failing objects. To
reproduce the behavior, set FailFast to false, then put a breakpoint at the Commit(), change the Freight
amounts in the database directly using SQL Server Management Studio or other utility. You will also have
to change the order id's involved. With FailFast = False, the NumberOfConflicts shown in the catch block
show the error for each order. With FailFast = True, the loop only executes one time.

Transactions 199

© 2010 Telerik Inc.

Using scope As IObjectScope = _
ObjectScopeProvider1.GetNewObjectScope()
 Try
 ' gather all conflicts
 scope.TransactionProperties.FailFast = False
 scope.Transaction.Begin()

 Dim orders As Query(Of Order) = _
scope.GetSqlQuery(Of Order)(_
"select * from orders where orderid in (11079, 11080, 11081)", _
String.Empty)

 For Each order As Order In orders.ExecuteList()
 order.Freight = 123
 Next order

 ' place break point here and manually
 ' change the same order listed above
 scope.Transaction.Commit()

 Catch ex As OptimisticVerificationException
 ' write out each conflict
 For i As Integer = 0 To ex.NumberOfConflicts - 1
 Debug.WriteLine(ex.Conflict(i).Message)
 Next i
 If scope.Transaction.IsActive Then
 scope.Transaction.Rollback()
 End If
 End Try
End Using

Telerik OpenAccess ORM200

© 2010 Telerik Inc.

using (IObjectScope scope =
ObjectScopeProvider1.GetNewObjectScope())
{
 try
 {
 // gather all conflicts
 scope.TransactionProperties.FailFast = false;
 scope.Transaction.Begin();

 Query<Order> orders = scope.GetSqlQuery<Order>(
 "select * from orders where orderid in (11079, 11080, 11081)",
 String.Empty);

 foreach (Order order in orders.ExecuteList())
 {
 order.Freight = 123;
 }

 // place break point here and manually
 // change the same order listed above
 scope.Transaction.Commit();

 }
 catch (OptimisticVerificationException ex)
 {
 // write out each conflict
 for (int i = 0; i < ex.NumberOfConflicts; i++)
 {
 Debug.WriteLine(ex.Conflict(i).Message);
 }
 if (scope.Transaction.IsActive)
 scope.Transaction.Rollback();
 }
}

7.4 Threading

Each thread must have its own scope in a multi-threaded application. Here's an example that creates a new
Thread object inside of a button click event handler. After getting an IObjectScope instance, a transaction is
started and all records are queried from the Orders table. The records are processed by changing some
arbitrary data (Freight and ShippedDate) and the transaction is commited.

A button click event kicks off a new thread to begin processing. Because the keyword "lock" is invoked
within the thread start procedure, the procedure completes before another thread starts in.

Transactions 201

© 2010 Telerik Inc.

Private Shared lockObject As Object = New Object()

Public Shared Sub ThreadProc()
 SyncLock lockObject

 Const sql As String = "select * from orders"
 Dim random As New Random()

 ' each thread must have its own object scope
 Using scope As IObjectScope = _
Database.Get("NorthwindConnection").GetObjectScope()
 scope.Transaction.Begin()

 ' do some work...
 Dim orders As Query(Of Order) = _
scope.GetSqlQuery(Of Order)(sql, String.Empty)
 For Each order As Order In orders.ExecuteList()
 ' change some arbitrary data
 order.Freight = random.Next(1, 100)
 order.ShippedDate = DateTime.Now
 Next order

 scope.Transaction.Commit()
 End Using
 End SyncLock
End Sub

Private Sub btnStartThread_Click(_
ByVal sender As Object, ByVal e As EventArgs)
 Dim thread As New Thread(_
New ThreadStart(AddressOf ThreadProc))
 thread.Start()
End Sub

Telerik OpenAccess ORM202

© 2010 Telerik Inc.

private static object lockObject = new object();

public static void ThreadProc()
{
 lock (lockObject)
 {
 const string sql =
 "select * from orders";
 Random random = new Random();

 // each thread must have its own object scope
 using (IObjectScope scope =
 Database.Get("NorthwindConnection").GetObjectScope())
 {
 scope.Transaction.Begin();

 // do some work...
 Query<Order> orders =
scope.GetSqlQuery<Order>(sql, String.Empty);
 foreach (Order order in orders.ExecuteList())
 {
 // change some arbitrary data
 order.Freight = random.Next(1, 100);
 order.ShippedDate = DateTime.Now;
 }

 scope.Transaction.Commit();
 }
 }
}

private void btnStartThread_Click(
object sender, EventArgs e)
{
 Thread thread =
new Thread(new ThreadStart(ThreadProc));
 thread.Start();
}

In this second sample we want to add some requirements. The threads should process nearly
simultaneously, interleaving the processing. And second, we should see some feedback to show what's
happening during processing.

To get the feedback we declare a delegate ListBoxUpdateHandler that takes a message. We
implement a method UpdateListBox with the same signature as the delegate and within the method add
a message to a RadListBox on the form.

The thread procedure in this example now takes a single object as a parameter. Instead of selecting all
records, this time we select only 5 orders and use a "like" statement against the argument passed to
the method. This allows us to process different parts of the table. Inside the order updating loop we call
the Invoke() method of the list box, passing the UpdateListBox() method to call and a status message.
Note that Invoke() lets us call a method that executes in the control's thread context. If two threads try
to update the same record, an OptimisticVerificationException is thrown. The exception is handled
simply by displaying the error message in the list box.

Transactions 203

© 2010 Telerik Inc.

The button click event handler starts three threads with different filter strings.

Private Delegate Sub ListBoxUpdateHandler(ByVal message As String)

Private Sub UpdateListBox(ByVal message As String)
 lbStatus.Items.Insert(0, New RadListBoxItem(message))
End Sub

Public Sub ThreadProc(ByVal argument As Object)
 Dim sql As String = _
"select top 5 * from orders where customerid like '%" & _
argument.ToString() & "'"
 Dim random As New Random()

 ' each thread must have its own object scope
 Using scope As IObjectScope = _
Database.Get("NorthwindConnection").GetObjectScope()
 scope.Transaction.Begin()

 ' do some work...
 Dim orders As Query(Of Order) = _
scope.GetSqlQuery(Of Order)(sql, String.Empty)

 For Each order As Order In orders.ExecuteList()
 Dim message As String = "Thread: " & _
Thread.CurrentThread.ManagedThreadId.ToString() & " Order: " & _
order.OrderID.ToString()

 lbStatus.Invoke(New ListBoxUpdateHandler(AddressOf UpdateListBox), _
New Object() { message })

 ' change some arbitrary data
 order.Freight = random.Next(1, 100)
 order.ShippedDate = DateTime.Now
 Next order
 Try
 scope.Transaction.Commit()
 Catch ex As OptimisticVerificationException
 lbStatus.Invoke(New ListBoxUpdateHandler(AddressOf UpdateListBox), _
New Object() { ex.Message })

 If scope.Transaction.IsActive Then
 scope.Transaction.Rollback()
 End If
 End Try
 End Using
End Sub

Private Sub btnStartThread_Click(ByVal sender As Object, ByVal e As EventArgs)
 Dim thread As New Thread(New ParameterizedThreadStart(AddressOf ThreadProc))
 thread.Start("A")
 Dim thread2 As New Thread(New ParameterizedThreadStart(AddressOf ThreadProc))
 thread2.Start("B")
 Dim thread3 As New Thread(New ParameterizedThreadStart(AddressOf ThreadProc))
 thread3.Start("C")

Telerik OpenAccess ORM204

© 2010 Telerik Inc.

End Sub

private delegate void ListBoxUpdateHandler(string message);

private void UpdateListBox(string message)
{
 lbStatus.Items.Insert(0, new RadListBoxItem(message));
}

public void ThreadProc(object argument)
{
 string sql =
 "select top 5 * from orders where customerid like '%" +
 argument.ToString() +
 "'";
 Random random = new Random();

 // each thread must have its own object scope
 using (IObjectScope scope =
 Database.Get("NorthwindConnection").GetObjectScope())
 {
 scope.Transaction.Begin();

 // do some work...
 Query<Order> orders =
 scope.GetSqlQuery<Order>(sql, String.Empty);

 foreach (Order order in orders.ExecuteList())
 {
 string message = "Thread: " +
 Thread.CurrentThread.ManagedThreadId.ToString() +
 " Order: " +
 order.OrderID.ToString();

 lbStatus.Invoke(new ListBoxUpdateHandler(UpdateListBox),
 new object[] { message });

 // change some arbitrary data
 order.Freight = random.Next(1, 100);
 order.ShippedDate = DateTime.Now;
 }
 try
 {
 scope.Transaction.Commit();
 }
 catch (OptimisticVerificationException ex)
 {
 lbStatus.Invoke(new ListBoxUpdateHandler(UpdateListBox),
 new object[] { ex.Message });

 if (scope.Transaction.IsActive)
 scope.Transaction.Rollback();
 }
 }

Transactions 205

© 2010 Telerik Inc.

}

private void btnStartThread_Click(object sender, EventArgs e)
{
 Thread thread = new Thread(new ParameterizedThreadStart(ThreadProc));
 thread.Start("A");
 Thread thread2 = new Thread(new ParameterizedThreadStart(ThreadProc));
 thread2.Start("B");
 Thread thread3 = new Thread(new ParameterizedThreadStart(ThreadProc));
 thread3.Start("C");

}

When the example is run and the button is clicked several times, the threads begin to interleave,
showing that processing is concurrent.

Figure 103

If you click the button enough times, eventually a clash will occur where the same record is updated
from more than one thread at one time.

Telerik OpenAccess ORM206

© 2010 Telerik Inc.

Figure 104

7.5 Concurrency

Before talking about how OpenAccess controls concurrency behavior, lets look at how things can go wrong.
 We saw in the threading example how concurrent access to the same object caused an exception. Much
more subtle errors can occur when multiple transaction read and write to the same objects. Depending on
the type of operations and the order they are executed, various kinds of concurrency anomalies can occur.

Dirty Read occurs when a transaction changes a value and a second transactions reads the value before
the first transaction is committed or rolled back. If the first transaction rolls back the transaction, then the
second transaction contains an unintended value.

Lost Update occurs when two transactions read the same record then modify the object independently.
The transaction that is committed last overwrites the earlier transaction values.

Non-Repeatable Read occurs when a transaction reads an object, a second transaction writes to the
object and the first transaction reads a second time. Because the second read receives a different set of
values the read is said to be "non-repeatable". This issue can also cause inconsistent states between
objects that should have some relationship based on reading both objects at one time.

Phantom Read occurs when a transaction queries a range of data, a second transaction changes this
range of data (either adding or deleting), and the first transaction reads the same range of data a second
time. The second read will produce data different from the first read.

Isolation

The isolation property of the ACID principle demands that every transaction should appear as though it is
running all by itself on the database. Complete isolation is not practical, so Isolation Levels define the
degree of relaxation of this principle:

Read Committed isolation does not prevent modification of by other transactions.

Transactions 207

© 2010 Telerik Inc.

No Lost Updates isolation is introduced by OpenAccess as a level of isolation between Read Committed
and Repeatable Read. Repeatable reads and phantom reads are allowed, but lost updates are not
allowed.

Repeatable Read isolation prevents modification to any retrieved data, but does not prevent
modifications to ranges of data.

The effects of these isolation levels on the concurrency problems listed earlier are shown in the table below.

Isolation Level Dirty read Lost updates Non-Repeatable Read Phantom Read

Read Committed not possible possible possible possible

No Lost Updates not possible not possible possible possible

Repeatable Read not possible not possible not possible possible

Isolation is handled in OpenAccess by

Configuring the backend database.

Setting the transaction properties.

Setting mapping properties that determine how objects are versioned.

Isolation levels for the database can be defined in the "backendconfiguration" section of the application
configuration file and can be one of the following: READ_COMMITTED, READ_UNCOMMITTED,
REPEATABLE_READ and SERIALIZABLE. The following is an abbreviated version of the configuration file.

<openaccess>
 <backendconfigurations>
 <backendconfiguration>
 <isolationLevel>REPEATABLE_READ</isolationLevel>

 </backendconfiguration>
 </backendconfigurations>
 </openaccess>

The Concurrency transaction property discussed previous determine if the locking scheme will be
optimistic, pessimistic where write locks are obtained in code or pessimistic where write locks are obtained
automatically from the database.

The last part of the equation is how the mapping properties determine how objects have changed. The
Forward Mapping Wizard Concurrency Control section lets you select how changes are detected.

Telerik OpenAccess ORM208

© 2010 Telerik Inc.

7.6 Wrap Up

In this chapter you learned how transactions are handled using OpenAccess scope objects. You learned
transaction basics along with a simple demonstration of a minimal transaction achieved in code. You
explored the helpful properties and methods of ITransaction and TransactionProperties. You learned how to
use transactions in a multi-threaded scenario. Finally, you learned how concurrency is handled by
OpenAccess and how to configure concurrency options to best fit your environment.

Part

VIII
Database Access

Telerik OpenAccess ORM210

© 2010 Telerik Inc.

8 Database Access

This chapter explores how OpenAccess can access the database using LINQ, Object Query Language
(OQL) and native SQL. The chapter then explains how to hook up stored procedures using the OpenAccess
wizards.

In this chapter you will learn:

The options available for accessing data and the tradeoffs involved for each choice.

How to retrieve and manipulate source data using LINQ along with the scope Extent<T>() method.

How to perform "joins" using LINQ.

How to perform string operations with LINQ.

How to use the Object Query Language (OQL) to perform object-oriented queries.

How to use parameters in OQL queries.

How to use the OQL Query Browser to audition OQL statements.

How to use OQL to perform CRUD operations.

How to run native SQL statements directly against the database backend.

How to use Forward and Reverse mapping to configure OpenAccess to use stored procedures.

8.1 Using SQL with OpenAccess

There are three basic flavors of SQL queries you can run using OpenAccess: LINQ, OpenAccess Object
Query Language (OQL) and native SQL. The short story is that LINQ is the most powerful option and the
preferred choice, OQL comes in second because it is still an object oriented language and native SQL is
the most limited option, but still necessary in some cases.

Find the source projects for this chapter
at \Projects\ORM\CS\10_DatabaseAccess\10_DirectDatabaseAccess.sln

8.1.1 LINQ

LINQ (Language Integrated Query) is a programming model that lets you perform operations using a SQL-
like syntax against all kinds of data. The problem with writing this one-liner description of LINQ is that LINQ
is such a meaty subject, the definition is inevitably too narrow. For our purposes in OpenAccess we will use
LINQ to query persistent objects. For more background information on LINQ:

Essential LINQ (Calvert and Kulkarni, ISBN 978-0-321-56416-0, Addison Wesley)

OpenAccess Programmers Guide topics "Introduction to LINQ" and "LINQ Building Blocks".

For a handy cheat sheet of LINQ against OpenAccess data examples see the OpenAccess
Programmers Guide topic "Using LINQ with OpenAccess ORM".

Database Access 211

© 2010 Telerik Inc.

For another handy cheat sheet of LINQ examples that are not OpenAccess specific see the "LINQ 101
Samples" at http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx.

To use LINQ you must add a System.Linq namespace reference to access important classes that make
LINQ possible. To get integration between LINQ and OpenAccess you need to add a Telerik.
OpenAccess.Query namespace reference as well. This namespace surfaces the core extension method
that lets your data interoperate with LINQ: IObjectScope.Extent<T>().

Getting Source Data with Extent<T>()

Extent<T>() returns an IObjectScopeQuery, a gateway interface to LINQ functionality.

IObjectScopeQuery descends from IQueryable. IQueryable is a LINQ interface that has an
Expression, a type that the expression returns and a provider that knows how to execute the query.
IObjectScopeQuery adds properties and methods specific to OpenAccess. In particular you may want
to use the BackendQuery property to see the actual SQL statement being run against the database
server back end (you can actually copy this string and run it in a SQL utility). Also the ToList()
method executes the query and returns a typed list. IObjectScopeQuery also ultimately inherits from
IEnumerable, so we can return all the objects for a given collection in the database and iterate them:

Dim result = scope.Extent(Of Employee)()
For Each employee As Employee In result
 Console.WriteLine(employee.LastName)
Next employee

var result = scope.Extent<Employee>();
foreach (Employee employee in result)
{
 Console.WriteLine(employee.LastName);
}

Notice the var keyword in the snippet above. "var" is denotes a strongly typed variable where the type
is inferred from the compiler. In this case if you were to place a breakpoint after Extent() returns, you
would see that "result" is an IObjectScopeQuery. So we can follow up by using the BackendQuery
property.

Console.WriteLine(result.BackendQuery)

Console.WriteLine(result.BackendQuery);

The output looks like this in the console window where the Employee LastNames are listed followed by
the back end query.

Telerik OpenAccess ORM212

© 2010 Telerik Inc.

Figure 105

Using LINQ Against Source Data

Once Extent() has been called and you have the IObjectScopeQuery you can really "go to town" with
LINQ methods and expressions. Here is a series of statements that gets the Employee object that has
the maximum employee id for employees hired in 1993. Where() and Max() are extension methods.

Dim employeeResult = scope.Extent(Of Employee)()
Dim employeeLastYear = _
employeeResult.Where(Function(emp) emp.HireDate.Value.Year = 1993)
Dim max As Long = employeeLastYear.Max(Function(emp) emp.EmployeeID)
Console.WriteLine(max)

var employeeResult = scope.Extent<Employee>();
var employeeLastYear =
 employeeResult.Where(emp => emp.HireDate.Value.Year == 1993);
long max = employeeLastYear.Max(emp => emp.EmployeeID);
Console.WriteLine(max);

We can also use LINQ expressions (as opposed to methods) for a more SQL-like programming
experience.

Dim expressionResult = (_
From emp In (scope.Extent(Of Employee)()) _
Where emp.HireDate.Value.Year = 1993 _
Select emp).Max(Function(emp) emp.EmployeeID)

Console.WriteLine(expressionResult)

var expressionResult =
 (from emp in (scope.Extent<Employee>())
 where emp.HireDate.Value.Year == 1993
 select emp).Max(emp => emp.EmployeeID);
Console.WriteLine(expressionResult);

As you might expect from a language styled after SQL you can order your results on any property. The
example below sorts by LastName in descending order, then on FirstName within LastName in
ascending order.

Database Access 213

© 2010 Telerik Inc.

Dim sortedResult = _
 From emp In (scope.Extent(Of Employee)()) _
 Order By emp.LastName Descending, emp.FirstName Ascending _
 Select emp
For Each employee As Employee In sortedResult
 Console.WriteLine(employee.LastName)
Next employee

var sortedResult =
 from emp in (scope.Extent<Employee>())
 orderby emp.LastName descending, emp.FirstName ascending
 select emp;
foreach (Employee employee in sortedResult)
{
 Console.WriteLine(employee.LastName);
}

The results in the console window look like the figure below:

Figure 106

Joins

You can also join the data from one class to another. The most straight forward way is to use the
relationship between collections that already exist like this sample below. For this example the Product
object has a relationship to Category so that simple dot notation "product.Category" becomes possible.
The code below also happens to be an example of "projection" where instead of selecting the entire
Product object we can "project" fields out of the object we're selecting from into a new anonymous
object and we can also rename the two projected fields as "Product" and "Category". When the results
are iterated, the projected fields can be accessed by their new names.

Dim query = _
 From p In scope.Extent(Of Product)() _
 Select New
 p.ProductName, Category = p.Category.CategoryName
 Product = p.ProductName, Category

For Each pc In query
 Console.WriteLine(pc.Product & " - " & pc.Category)
Next pc

Telerik OpenAccess ORM214

© 2010 Telerik Inc.

var query =
 from p in scope.Extent<Product>()
 select new
 {
 Product = p.ProductName,
 Category = p.Category.CategoryName
 };

foreach (var pc in query)
{
 Console.WriteLine(pc.Product + " - " + pc.Category);
}

If there doesn't happen to be a built-in relationship between two objects, a LINQ "join" clause will create
the relationship. The example below returns the same results as the first but doesn't require that
Product have a Category property.

Dim query = _
 From c In scope.Extent(Of Category)() _
 Join p In scope.Extent(Of Product)() _
 On c.CategoryID Equals p.CategoryID _
 Select New With {Key .Product = p.ProductName, _
 Key .Category = c.CategoryName}

var query =
 from c in scope.Extent<Category>()
 join p in scope.Extent<Product>()
 on c.CategoryID equals p.CategoryID
 select new { Product = p.ProductName, Category = c.CategoryName };

String Methods

Here are some examples of using string related methods in the "where" clause of a LINQ expression.

Console.WriteLine("String methods")
 ' tests for equality
 ' finds Great Lakes Food Market,…
 ' finds The Big Cheese,…
 ' finds The Cracker Box,…
 ' finds Wilman Kala using wildcards,…
Dim stringResult = _
 From cust In scope.Extent(Of Customer)() _
 Where cust.CompanyName = "Island Trading" OrElse _
cust.CompanyName.StartsWith("Great") OrElse _
cust.CompanyName.EndsWith("Cheese") OrElse _
cust.CompanyName.Contains("rac") OrElse _
cust.CompanyName.Matches("*lma?") _
 Select cust
For Each customer In stringResult
 Console.WriteLine(customer.CompanyName)
Next customer

Database Access 215

© 2010 Telerik Inc.

Console.WriteLine("String methods");
var stringResult = from cust in scope.Extent<Customer>()
 where
 // tests for equality
 cust.CompanyName == "Island Trading"
 // finds Great Lakes Food Market,…
 || cust.CompanyName.StartsWith("Great")
 // finds The Big Cheese,…
 || cust.CompanyName.EndsWith("Cheese")
 // finds The Cracker Box,…
 || cust.CompanyName.Contains("rac")
 // finds Wilman Kala using wildcards,…
 || cust.CompanyName.Matches("*lma?")
 select cust;
foreach (var customer in stringResult)
{
 Console.WriteLine(customer.CompanyName);
}

8.1.2 Object Query Language (OQL)

OQL is an object oriented query language based off a standard published at www.ODBMS.org (Object
Database Management Systems). OQL has the advantage of being database backend agnostic. OQL
references classes and field names, not tables and column names.

The syntax contains one difference that frequently throws people. Instead of selecting from a table name,
e.g. "select * from Employee", you append the word "Extent" to the table name, e.g. "select * from
EmployeeExtent". "Extent" signifies all objects of a given persistence capable class. For example,
"Employee" is a class name and a collection of all objects of that type is called "EmployeeExtent".

Dim sql As String = "select * FROM EmployeeExtent"
Dim result = scope.GetOqlQuery(sql).Execute()
For Each emp As Employee In result
 Console.WriteLine(emp.Country)
Next emp

string sql = "select * FROM EmployeeExtent";
var result = scope.GetOqlQuery(sql).Execute();
foreach (Employee emp in result)
{
 Console.WriteLine(emp.Country);
}

Parameters

Unlike GetSqlQuery() you don't need to pass the parameter types. Notice that the parameters in the
SQL statement are prepended with a "$" not "?". Again the actual parameter values are passed in the

Telerik OpenAccess ORM216

© 2010 Telerik Inc.

Execute() method.

Dim sql As String = _
"select emp FROM EmployeeExtent AS emp " & _
"WHERE emp.EmployeeID = $1 AND emp.Country= $2"
Dim result = scope.GetOqlQuery(sql).Execute(1, "USA")
For Each emp As Employee In result
 Console.WriteLine(emp.Country)
Next emp

string sql = "select emp FROM EmployeeExtent AS emp " +
 "WHERE emp.EmployeeID = $1 AND emp.Country= $2";
var result = scope.GetOqlQuery(sql).Execute(1, "USA");
foreach (Employee emp in result)
{
 Console.WriteLine(emp.Country);
}

Wildcard Searches

If you need to perform wildcard queries, the wildcard needs to be part of the parameter, not the SQL
statement. The SQL statement here compares where the employee LastName is LIKE whatever is
passed in as the parameter. In this example we're passing a "D*" to the Execute() method where the
asterisk "*" is the wildcard.

Console.WriteLine("Employees with last name starting with D")
Dim sqlWithWildCard As String = _
"select emp FROM EmployeeExtent AS emp " & _
"WHERE emp.LastName LIKE $1"
Dim result3 = scope.GetOqlQuery(sqlWithWildCard).Execute("D*")
For Each emp As Employee In result3
 Console.WriteLine(emp.LastName)
Next emp

Console.WriteLine("Employees with last name starting with D");
string sqlWithWildCard = "select emp FROM EmployeeExtent AS emp " +
 "WHERE emp.LastName LIKE $1";
var result3 = scope.GetOqlQuery(sqlWithWildCard).Execute("D*");
foreach (Employee emp in result3)
{
 Console.WriteLine(emp.LastName);
}

Case Insensitive Comparisons

To make your OQL query comparison case insensitive prepend "<ci>" just prior to the part of the query
where case should be ignored.

select * from EmployeeExtent as e where e.Country = <ci> "usa"

Joins

You can perform joins in OQL but the syntax is slightly different because we're joining objects, not

Database Access 217

© 2010 Telerik Inc.

tables. Pay special attention to the 'FROM' clause of the SQL statement where the "CustomerExtent
as c" gets the customer data and creates an alias "c", then "c.Orders as o" gets the orders collection
and creates alias "o", then finally the "o.OrderDetails" gets the OrderDetails collection and creates alias
"od". In this way the FROM clause allows us to define the sequence of joins between Customer/Order/
OrderDetail.

Console.WriteLine("Employees with last name starting with D")
Dim sqlWithJoin As String = _
"SELECT c.CustomerID, o.OrderID, od.ProductID " & _
"FROM CustomerExtent as c, c.Orders as o, o.OrderDetails as od " & _
"WHERE o.OrderID == 10285"
Dim result4 = scope.GetOqlQuery(sqlWithJoin).Execute()
Const format As String = "Customer: {0} Order: {1} Product: {2}"
For Each obj As Object() In result4
 Console.WriteLine(String.Format(format, obj(0), obj(1), obj(2)))
Next obj

Console.WriteLine("Employees with last name starting with D");
string sqlWithJoin = "SELECT c.CustomerID, o.OrderID, od.ProductID " +
 "FROM CustomerExtent as c, c.Orders as o, o.OrderDetails as od " +
 "WHERE o.OrderID == 10285";
var result4 = scope.GetOqlQuery(sqlWithJoin).Execute();
const string format = "Customer: {0} Order: {1} Product: {2}";
foreach (object[] obj in result4)
{
 Console.WriteLine(String.Format(format, obj[0], obj[1], obj[2]));
}

The output for the above query looks something like the console output below.

Telerik OpenAccess ORM218

© 2010 Telerik Inc.

To audition OQL statements, try using the OQL Query Browser via the Visual Studio Telerik menu
option, Telerik > OpenAccess > OQL Query Browser... Type the OQL statement into the
topmost window. The equivalent SQL statement will show in the window immediately below the
OQL window and the data results can be displayed in the bottommost window after hitting the
"Execute OQL" button.

Why is the retrieved data a single column labeled "Content"? When you select a subset of
individual fields, they no longer constitute a "Customer" object. If you enter "select * from
CustomerExtent" the entire Customer object will display in the Retrieved Data window.

CRUD Operations

There is no "UPDATE" statement in OQL. Because OQL is an object-oriented language, you can only
retrieve data. Once the data is retrieved you can make modifications to the objects and then store the
objects back to the database.

Database Access 219

© 2010 Telerik Inc.

Console.WriteLine("Update")
Const sqlForUpdate As String = _
"Select * from OrderExtent Where OrderID = 10248"

scope.Transaction.Begin()

'retrieve an object using its id
Dim order As Order = _
CType(scope.GetOqlQuery(sqlForUpdate).Execute()(0), Order)

'make some modifications to the object
order.Freight += 1

'store the modified object
scope.Transaction.Commit()

Console.WriteLine("Update");
const string sqlForUpdate =
 "Select * from OrderExtent Where OrderID = 10248";

scope.Transaction.Begin();

//retrieve an object using its id
Order order = (Order)scope.GetOqlQuery(sqlForUpdate).Execute()[0];

//make some modifications to the object
order.Freight++;

//store the modified object
scope.Transaction.Commit();

8.1.3 Native SQL

This option is database backend specific. Native SQL glues the syntax and types you're using to the
database. You should rarely need to use direct SQL to perform tasks that can't be handled by other
options such as LINQ or OQL.

To find the type of database being used at any one time, use the Database.ConnectionURL
property that contains a series of semi-colon delimited name/value pairs. The "Backend" setting
contains the name of the database, e.g. "Backend=mssql".

To run SQL queries against the database and return them as a series of persistent objects, call the
IObjectScope.GetSqlQuery() method. It takes a SQL statement, the type of object you expect to
return and any parameters you might have. GetSqlQuery() returns an IQuery. Call the IQuery Execute
() method to return an IQueryResult. IQueryResult implements IEnumerable and IList so it can be
iterated or indexed into.

Telerik OpenAccess ORM220

© 2010 Telerik Inc.

Using scope As IObjectScope = _
ObjectScopeProvider1.GetNewObjectScope()
 Dim query As IQuery = _
scope.GetSqlQuery(_
"select * from categories", GetType(Category), String.Empty)
 Dim result As IQueryResult = query.Execute()
 For Each category As Category In result
 Console.WriteLine(category.CategoryName)
 Next category

 Console.WriteLine(scope.Database.ConnectionURL)
 Console.ReadKey()
End Using

using (IObjectScope scope =
ObjectScopeProvider1.GetNewObjectScope())
{
 IQuery query =
 scope.GetSqlQuery("select * from categories",
typeof(Category),
 String.Empty);
 IQueryResult result = query.Execute();
 foreach (Category category in result)
 {
 Console.WriteLine(category.CategoryName);
 }

 Console.WriteLine(scope.Database.ConnectionURL);
 Console.ReadKey();
}

Parameterized Queries

Here's another example showing a parameterized query against an MS SQL database. Notice the last
parameter to GetSqlQuery() is a string representation of the parameter type followed by the parameter
name. Also notice that the parameter type is a valid SQL type for the database backend (MSSQL in
this case). The actual parameter values are passed in an array of object fed to the IQuery Execute()
method.

Dim query As IQuery = _
scope.GetSqlQuery(_
"select * from categories where CategoryID = ?", _
GetType(Category), "integer CategoryIDParameter")
Dim result As IQueryResult = _
query.Execute(New Object() { 8 })

IQuery query =
 scope.GetSqlQuery(
 "select * from categories where CategoryID = ?",
 typeof(Category),
 "integer CategoryIDParameter");
IQueryResult result = query.Execute(new object[] { 8 });

Database Access 221

© 2010 Telerik Inc.

Generic Methods

Instead of using GetSqlQuery() you should use the generic GetSqlQuery<T>() that returns a Query<T>.
Query<T> has a number of methods for executing the query and returning the results as enumerable,
list or binding list. For example, ExecuteBindingList() returns a BindingList that can be bound directly to
UI controls. The example below is similar to the last example but uses the generic form of GetSqlQuery
() and calls ExecuteList() from the Query<T>.

Dim query As Query(Of Category) = _
scope.GetSqlQuery(Of Category)(_
"select * from categories where CategoryID = ?", _
"integer CategoryIDParameter")

Dim result As QueryResultList(Of Category) = _
query.ExecuteList(New Object() { 8 })
Object() { 8 })

Query<Category> query =
scope.GetSqlQuery<Category>(
 "select * from categories where CategoryID = ?",
 "integer CategoryIDParameter");

QueryResultList<Category> result =
 query.ExecuteList(new object[] { 8 });

Query<T> also has an ExecuteDirect() method that doesn't return results, but is just meant to
run a SQL statement on the server.

Yet another example shows a parameterized query using a DateTime parameter. Notice how the result
is stored in a var. Because we're only retrieving BirthDate and EmployeeID in the query, the results
cannot be reconstituted as an Employee object. Instead the results are an array of object

Dim sql As String = _
"select emp.BirthDate, emp.EmployeeID " & _
"from Employees as emp where emp.BirthDate > ?"
Dim dateQuery As IQuery = _
scope.GetSqlQuery(sql, Nothing, "timestamp myDate")
Dim employeeResult = _
dateQuery.Execute(DateTime.Parse("1/1/1960"))
For Each obj As Object() In employeeResult
 ' Prints the Birth Date since it was
 ' selected first in the query
 Console.WriteLine(obj(0))
 ' Prints the Employee ID
 Console.WriteLine(obj(1))
Next obj

Telerik OpenAccess ORM222

© 2010 Telerik Inc.

string sql =
 "select emp.BirthDate, emp.EmployeeID " +
 "from Employees as emp where emp.BirthDate > ?";
IQuery dateQuery =
 scope.GetSqlQuery(sql, null, "timestamp myDate");
var employeeResult = dateQuery.Execute(DateTime.Parse("1/1/1960"));
foreach (object[] obj in employeeResult)
{
 // Prints the Birth Date since it was selected first in the query
 Console.WriteLine(obj[0]);
 // Prints the Employee ID
 Console.WriteLine(obj[1]);
}

The results look like the screenshot of the console window below:

Figure 107

8.2 Stored Procedures

Creating Stored Procedures Using Forward Mapping

Find the source projects for this chapter
at \Projects\ORM\CS\11_StoredProcedures\11_StoredProcedures.sln

Starting from scratch where we have a single "ContactGroup" class in a class library, here is how you can
create the database table and stored procedures using forward mapping.

1) In Visual Studio create a new class library project called "Model".

2) Add a single "ContactGroup" class with a ContactGroupName property.

Public Class ContactGroup
 Private contactGroupName_Renamed As String
 Public Property ContactGroupName() As String
 Get
 Return contactGroupName_Renamed
 End Get
 Set(ByVal value As String)
 Me.contactGroupName_Renamed = value
 End Set
 End Property
End Class

Database Access 223

© 2010 Telerik Inc.

public class ContactGroup
{
 private string contactGroupName;
 public string ContactGroupName
 {
 get { return contactGroupName; }
 set { this.contactGroupName = value; }
 }
}

3) ORM-enable the "Model" project. Specify the following: .

3) The Persistent classes option should be enabled.

4) The Data Access Code option should be disabled.

5) The database connection ID should be "MyStoredProcDBConnection"

6) The database should be "MyStoredProcDB".

7) In the Visual Studio Telerik menu select OpenAccess > Configuration > Connection Settings...
Locate the Project Properties and set the Update Database property to True.

Figure 108

Telerik OpenAccess ORM224

© 2010 Telerik Inc.

8) In the Visual Studio Telerik menu select OpenAccess > Configuration > Backend Configuration
Settings... In the Backend Configuration dialog locate the Stored Procedures section and set the
following options

a) Use Stored Procedures for Delete Operations = True

b) Use Stored Procedures for Insert Operations = True

c) Use Stored Procedures for Update Operations = True

Figure 109

9) In the Visual Studio Telerik menu select OpenAccess > Forward Mapping (Classes to Tables)

10)In the Forward Mapping Wizard, click the "Make Persistent" checkbox next to the "ContactGroup"
table.

Figure 110

11)Click the Done button to close the Forward Mapping Wizard.

12)Build the project. The Output window should show that the database has been updated:

Database Access 225

© 2010 Telerik Inc.

Figure 111

13)Now if you look at your "MyStoredProcDB" database in Server Explorer or SQL Server Management
Studio you will see your table created and also three stored procedures:

Figure 112

Where the stored procedures follow the naming convention specified by Backend Configuration options
under "Name Generation":

Telerik OpenAccess ORM226

© 2010 Telerik Inc.

Figure 113

Here's an example of the automatically generated stored procedure for deletion:

-- Generating stored procedure for OpenAccess

ALTER PROCEDURE [sp_oa_del_contact_group]

(@contact_group_id INT) AS

DELETE FROM [contact_group]

WHERE ([contact_group_id] = @contact_group_id);

RETURN

Stored Procedures Using Reverse Mapping

Reverse mapping is a little different because we may already have stored procedures. If we were to run the
Reverse Mapping Wizard against the tables and stored procedures created in the previous walk-through, the
Advanced View tree view would look something like the figure below. Notice that the Stored Procedures
node already recognizes the stored procedures we created previously. Also notice the naming convention
that starts with "sp_oa", then adds the name of the operation e.g. "del", then the name of the table.

Figure 114

Database Access 227

© 2010 Telerik Inc.

G
o
t
c
h
a
!

If you receive error "Missing partial modifier on declaration of type 'Model.ContactGroup'; another
partial declaration of this type exists", when reverse engineering remember that OpenAccess will leave
your existing ContactGroup.cs class alone by default. You will have to open the Contact.Telerik.
OpenAccess.cs file and copy the commented code at the bottom of the file to overwrite Contact.cs.

By clicking the table name within the Tables node of the tree you will see a number of options for
configuring the reverse engineered classes. When the Stored Procedure checkbox is enabled, a new
Stored Procedure Mapping area displays:

Figure 115

Each possible operation (Delete, Insert, Update) has a drop down that lets you select how the operation will
be performed. You can have OpenAccess automatically generate Dynamic SQL, create a new stored
procedure in the database or point to one of the existing stored procedures in the database.

If you elect the "<Create Stored Procedure>" option, be sure the project "Update Database"
configuration setting is set to True.

Telerik OpenAccess ORM228

© 2010 Telerik Inc.

Figure 116

Also notice the set of parameters required by each operation. You can choose from a drop down list of
parameters available in the stored procedure.

Figure 117

Executing Stored Procedures

Once the stored procedures are defined in the database you need a way to call them. The IObjectScope.
GetSqlQuery() method lets you set up parameters and call a stored procedure. As shown in the previous
section "Using SQL with OpenAccess", the GetSqlQuery() method takes the SQL to be executed, i.e. the
name of the stored procedure followed by "?" for each parameter. The second parameter is the Type for the
result and the third is a list of parameter types and names. The example below executes the delete stored
procedure and takes a single integer parameter that denotes the contact group id.

Public Shared Function spOaDelContactGroup(_
ByVal scope As IObjectScope, _
ByVal contactgroupid As Integer) As IQueryResult
 Dim query As IQuery = _
scope.GetSqlQuery("sp_oa_del_contact_group ?", _
Nothing, "INTEGER contact_group_id")

 Dim res As IQueryResult = _
query.Execute(New Object() { contactgroupid })
'Actually executes the query
 Dim a As Integer = res.Count

 Return res
End Function

Database Access 229

© 2010 Telerik Inc.

public static IQueryResult spOaDelContactGroup(
 IObjectScope scope, int contactgroupid)
{
 IQuery query =
 scope.GetSqlQuery("sp_oa_del_contact_group ?",
 null, "INTEGER contact_group_id");

 IQueryResult res =
 query.Execute(new object[] { contactgroupid });
 int a = res.Count;//Actually executes the query

 return res;
}

To make this even easier, the Reverse Mapping Wizard will generate all the code you need to execute
stored procedures. In the Reverse Mapping Wizard, Advanced View tab, select one of the Stored
Procedures in the tree view.

Figure 118

To the right of the tree view a panel with stored procedure information and configuration displays. The top of
the panel shows the stored procedure SQL. Below that the properties let you configure a .NET method to
operate on the stored procedure. The key property "Generate method" needs to be set to True so that
OpenAccess will automatically generate a StoredProcedures class with static methods for each of your
stored procedures. The bottom of the panel shows the code that will be generated.

Telerik OpenAccess ORM230

© 2010 Telerik Inc.

Figure 119

With the StoredProcedure class you can simply call the corresponding static method and pass parameters.
The example below calls the sp_oa_ins_contact_group stored procedure and passes the version of the
record, the name and ID of the group. The second stored procedure "spOaUpdContactGroup" updates the
record passing in a new GroupName and sets the version to "2".

Using scope As IObjectScope = ObjectScopeProvider1.GetNewObjectScope()
 StoredProcedure.spOaInsContactGroup(scope, 1, "New Group", 1)
 StoredProcedure.spOaUpdContactGroup(scope, 2, "New Group Revised", 1, 1)
 StoredProcedure.spOaDelContactGroup(scope, 1)
End Using

using (IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope())
{
 StoredProcedure.spOaInsContactGroup(scope, 1, "New Group", 1);
 StoredProcedure.spOaUpdContactGroup(scope, 2, "New Group Revised", 1, 1);
 StoredProcedure.spOaDelContactGroup(scope, 1);
}

8.3 Wrap Up

In this chapter you explored how OpenAccess accesses the database using LINQ, Object Query Language
(OQL) and native SQL, and the tradeoffs involved with each choice. You used the scope Extent<T>()
method to retrieve source data and then manipulated the data in several ways using LINQ expressions and

Database Access 231

© 2010 Telerik Inc.

methods. You used OQL queries to perform simple object-oriented queries, parameterized queries and
CRUD operations. You saw how the OQL Query Browser can be used to audition OQL statements. Finally
you learned how to run native SQL statements against the database backend as well as use native stored
procedures to perform CRUD operations.

Part

IX
Optimization

Telerik OpenAccess ORM234

© 2010 Telerik Inc.

9 Optimization

This chapter demonstrates how to use Fetch Plans and caching to improve performance.

In this chapter you will learn:

How to configure Fetch Plans to reduce the number of columns of data retrieved.

How to configure the built-in caching system to quickly improve performance for single process access.

9.1 Fetch Plans

Tour of Fetch Plans

Find the source projects for this section at \Projects\ORM\CS\12_FetchPlans\12_FetchPlans.sln

By default OpenAccess implements "Lazy Loading" where data is loaded on demand when referenced. For
example, if you are loading products and each product has a product category, a category is not loaded
until its referenced. Fetch Plans allow you to achieve more optimized database queries by specifying fields
that are retrieved from the database immediately. Using fetch plans can result in huge performance
increases where the number of records that would need to be retrieved individually are brought back all at
one time.

To create a fetch plan you first mark individual fields with the FetchField attribute. The FetchField attribute
takes the name of a "fetch group". Fetch groups are collections of fields that should be retrieved together.
The example snippet below shows "_contactName" and "contactGroup" marked with the FetchField
attribute. Both fields will be part of the "ContactFetch" fetch group. "_phone" will be "lazy loaded" and will
not be retrieved until requested.

<Telerik.OpenAccess.FetchField("ContactFetch")> _
Private _contactName As String

Private _phone As String

<Telerik.OpenAccess.FetchField("ContactFetch")> _
Private _contactGroup As ContactGroup

[Telerik.OpenAccess.FetchField("ContactFetch")]
private string _contactName;

private string _phone;

[Telerik.OpenAccess.FetchField("ContactFetch")]
private ContactGroup _contactGroup;

Then, in code, you add the name of your fetch group to the IObjectScope FetchPlan before retrieving any
data.

scope.FetchPlan.Clear()
scope.FetchPlan.Add("ContactFetch")

Optimization 235

© 2010 Telerik Inc.

scope.FetchPlan.Clear();
scope.FetchPlan.Add("ContactFetch");

You can use the "OpenAccessTracer" object to trace database calls made by OpenAccess. This allows
you to see how changes in your fetch plan help or hinder the number of calls made to the database.

You can find OpenAccessTracer.cs in the "OpenAccess VB/C# Examples" project. There are two
versions, one for web applications and one for WinForms. You can copy this object into your project. .

Figure 120

Create an instance of the tracer and pass a text box and label in the constructor.

Private tracer As OpenAccessTracer = Nothing

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs)
 tracer = New OpenAccessTracer(textBoxStatus, labelStatus)
 '...
End Sub

private OpenAccessTracer tracer = null;

private void Form1_Load(object sender, EventArgs e)
{
 tracer = new OpenAccessTracer(textBoxStatus, labelStatus);
 //...
}

Telerik OpenAccess ORM236

© 2010 Telerik Inc.

The number of database calls will display in the label and each query will be listed in the text box.

Figure 121

Let's look at an example using the ContactGroup and Contact objects and see how each change in the
fetch plan changes the resulting traffic to the database. To start with, the ContactGroup and Contact objects
are not decorated with any FetchField attributes. The object scope Extent<Contact>() method retrieves all
the contacts in the table. A grid displays ContactName and ContactGroup.ContactGroupName columns.

Figure 122

The trace shows the queries sent to the database:

1: select @@version

2: SELECT [contact_id] AS COL1

 FROM [contact]

3: SELECT [contact_group_id], [contact_name], [phone], [voa_version]

 FROM [contact] WHERE [contact_id] = ?

4: SELECT [contact_group_name], [voa_version]

 FROM [contact_group] WHERE [contact_group_id] = ?

5: SELECT [contact_group_id], [contact_name], [phone], [voa_version]

 FROM [contact] WHERE [contact_id] = ?

6: SELECT [contact_group_name], [voa_version]

 FROM [contact_group] WHERE [contact_group_id] = ?

7: SELECT [contact_group_id], [contact_name], [phone], [voa_version]

 FROM [contact] WHERE [contact_id] = ?

8: SELECT [contact_group_id], [contact_name], [phone], [voa_version]

 FROM [contact] WHERE [contact_id] = ?

Even though we're only after four contacts and two contact groups ("Partner" and "Customer"), eight queries

Optimization 237

© 2010 Telerik Inc.

are generated! OpenAccess first retrieves the version of the database for its own internal use in line #1.
Then OpenAccess selects all the contact_id's from the Contact table in line #2. In lines #3, #5, #7 and #8
the ContactName is retrieved for each contact. In lines #4 and #6 "contact_group_name" is pulled from the
database. That's a ton of traffic for so small a result set.

Now if we add a FetchField attribute to the _contactName field we can see some improvement right away.
The top of the Contact class now looks like the example below:

<Telerik.OpenAccess.Persistent()> _
Public Class Contact
 <Telerik.OpenAccess.FetchField("ContactFetch")> _
 Private _contactName As String

 Private _phone As String
 Private _contactGroup As ContactGroup
'...
End Class

[Telerik.OpenAccess.Persistent()]
public class Contact
{
 [Telerik.OpenAccess.FetchField("ContactFetch")]
 private string _contactName;

 private string _phone;
 private ContactGroup _contactGroup;
//...
}

The form Load event handler sets up the fetch plan, configures and binds the grid:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs)
 tracer = New OpenAccessTracer(tbStatus, lblStatus)

 Dim scope As IObjectScope = ObjectScopeProvider1.GetNewObjectScope()

 scope.FetchPlan.Clear()
 scope.FetchPlan.Add("ContactFetch")

 Dim list As List(Of Contact) = scope.Extent(Of Contact)().ToList()

 radGridView1.MasterGridViewTemplate.AutoGenerateColumns = False
 radGridView1.ReadOnly = True
 radGridView1.Columns.Add(New GridViewTextBoxColumn("ContactName"))
 radGridView1.Columns.Add(_
New GridViewTextBoxColumn("ContactGroup.ContactGroupName"))
 radGridView1.Columns(0).HeaderText = "Contact"
 radGridView1.Columns(1).HeaderText = "Group"
 radGridView1.DataSource = list
 radGridView1.MasterGridViewTemplate.BestFitColumns()
End Sub

Telerik OpenAccess ORM238

© 2010 Telerik Inc.

private void Form1_Load(object sender, EventArgs e)
{
 tracer = new OpenAccessTracer(tbStatus, lblStatus);

 IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope();

 scope.FetchPlan.Clear();
 scope.FetchPlan.Add("ContactFetch");

 List<Contact> list = scope.Extent<Contact>().ToList();

 radGridView1.MasterGridViewTemplate.AutoGenerateColumns = false;
 radGridView1.ReadOnly = true;
 radGridView1.Columns.Add(new GridViewTextBoxColumn("ContactName"));
 radGridView1.Columns.Add(
 new GridViewTextBoxColumn("ContactGroup.ContactGroupName"));
 radGridView1.Columns[0].HeaderText = "Contact";
 radGridView1.Columns[1].HeaderText = "Group";
 radGridView1.DataSource = list;
 radGridView1.MasterGridViewTemplate.BestFitColumns();
}

After running this example with "_contactName" included in the fetch plan we're down to six statements.
Now we're getting all the contact name data in a single call on line #2.

1: select @@version

2: SELECT [contact_id] AS COL1, [contact_name] AS COL2, [voa_version] AS COL3

 FROM [contact]

3: SELECT a.[contact_group_id], a.[voa_version], b.[contact_group_id],

 b.[contact_group_name], b.[voa_version]
 FROM [contact] a LEFT JOIN [contact_group] AS b

 ON (a.[contact_group_id] = b.[contact_group_id])

 WHERE a.[contact_id] = ?

4: SELECT a.[contact_group_id], a.[voa_version], b.[contact_group_id],

 b.[contact_group_name], b.[voa_version]
 FROM [contact] a LEFT JOIN [contact_group] AS b

 ON (a.[contact_group_id] = b.[contact_group_id])

 WHERE a.[contact_id] = ?

5: SELECT a.[contact_group_id], a.[voa_version], b.[contact_group_id],

 b.[contact_group_name], b.[voa_version]
 FROM [contact] a LEFT JOIN [contact_group] AS b

 ON (a.[contact_group_id] = b.[contact_group_id])

 WHERE a.[contact_id] = ?

6: SELECT a.[contact_group_id], a.[voa_version], b.[contact_group_id],

 b.[contact_group_name], b.[voa_version]
 FROM [contact] a LEFT JOIN [contact_group] AS b

 ON (a.[contact_group_id] = b.[contact_group_id])

 WHERE a.[contact_id] = ?

This is certainly an improvement but we're still retrieving the contact_group_name columns four times in
lines #3 - #6, even though there's only two contact groups to worry about. By specifying "_contactGroup" as
a FetchField we are able to cut this down to only two additional calls.

Optimization 239

© 2010 Telerik Inc.

1: select @@version

2: SELECT a.[contact_id] AS COL1, a.[contact_name] AS COL2,

 a.[contact_group_id] AS COL3, a.[voa_version] AS COL4,

 b.[contact_group_id] AS COL5

 FROM [contact] a

 LEFT JOIN [contact_group] AS b

 ON (a.[contact_group_id] = b.[contact_group_id])

3: SELECT [contact_group_name], [voa_version]

 FROM [contact_group]

 WHERE [contact_group_id] = ?

4: SELECT [contact_group_name], [voa_version]

 FROM [contact_group]

 WHERE [contact_group_id] = ?

But the statement in #2 already joins to the contact_group table so we really don't want even those two
calls. The FetchField attribute has a "Path" parameter that can be used to get specific fields in a referenced
object. We can use this to tell OpenAccess that we will be needing the "contact_group_name" column. The
attribute will look like this in code when we decorate the _contactGroup field.

<Telerik.OpenAccess.FetchField(_
"ContactFetch", Path := "_contactGroupName")> _
Private _contactGroup As ContactGroup

[Telerik.OpenAccess.FetchField("ContactFetch",
 Path = "_contactGroupName")]
private ContactGroup _contactGroup;

G
o
t
c
h
a
!

This last step may not always prevent the last two queries. Why? The garbage collector
sometimes removes referenced data before you access it. This is because weak references to the
data are kept only if referenced directly. To avoid this behavior you can set weak references to
strong by adding this node to the backend configuration section in your app.config file:

<pmCacheRefType>STRONG</pmCacheRefType>

Using strong references, all objects are kept in memory until the ObjectScope is disposed.

From the Programmers Guide topic "Caching Optimization":

"Each objectscope maintains a dictionary of object identity to in-memory objects, these
references are of type System.WeakReference. Additionally the objectscope keeps strong
references to all inserted, updated and deleted objects for as long as the transaction lasts.

By default, the reference type is set to "Weak". In case of weak references, unreferenced
instances are garbage collected very quick ly. Weak references are useful for applications with
generally short lived objectscopes and large heaps (e.g. web applications). Less objects on the
heap will reduce garbage collection time. In case of "Strong" references, unreferenced instances
are only garbage collected when they are manually evicted by the application or when the
objectscope is closed. Strong references are useful for applications that always have short lived
objectscopes (e.g. applications using the "one objectscope per request" model)."

Fetch Plans Using The Forward Mapping Wizard

Telerik OpenAccess ORM240

© 2010 Telerik Inc.

You can use the Forward Mapping Wizard to specify fetch fields and groups. Using the wizard simply adds
the FetchField attributes to the appropriate fields. The steps are:

1) Select an object from the Persistent node of the tree view found on the left side of the wizard.

2) Select the "Fetch Group" tab found on the right side of the wizard.

3) Click the Add/Remove button to display the "Add/Remove FetchGroup" dialog.

4) Click the Add button and enter a name for the fetch group. Click the Ok button to close the "Add/
Remove FetchGroup" dialog. This will add a new column in the "Class Fetch Groups" list found in the
Fetch Group tab.

5) Click one or more fields to include in the fetch group.

Figure 123

Notice the wizard "Reference Field Settings" area where you can tailor FetchField attribute parameters.

Optimization 241

© 2010 Telerik Inc.

Figure 124

Next Fetch Group takes the name of a fetch group that should used for the currently selected referenced
object.

Path is the name of a field in a referenced object that should be loaded. In the snippet below,
"_contactGroupName" from the ContactGroup object is loaded with the other fields of the "ContactFetch"
group. You can add the FetchField attribute multiple times with the Path parameter to specify individual
fields in a referenced object.

<Telerik.OpenAccess.FetchField("ContactFetch", Path := "_contactGroupName")> _
Private _contactGroup As ContactGroup

[Telerik.OpenAccess.FetchField("ContactFetch", Path = "_contactGroupName")]
private ContactGroup _contactGroup;

Fetch Depth: This parameter is used while defining the depth of references, in cases where an object of
a particular type refers to objects of the same type or results in a circular reference. For example, if you
have an employees table and want to retrieve a clerk and his manager you could indicate a recursion
depth of 1. If you want the clerk, manager and all managers up to the CEO you could leave the Depth
parameter out.

Using the Fetch Plan Browser

From the Telerik, OpenAccess menu you can select the Fetch Plan Browser... option to manage fetch
plans at a higher level and to create an object to store all the fetch plans in your project. The dialog looks
like the screenshot below and can generally be worked with in a top-to-bottom manner.

Telerik OpenAccess ORM242

© 2010 Telerik Inc.

Figure 125

1) Click the Add New button to create a new FetchPlan instance. Use the drop down list to the left of this
button to select existing FetchPlans.

2) Enter the Maximum Depth of levels to be fetched and the Maximum Objects Fetched to control the
total number of objects that can be retrieved.

3) Click the Add/Remove button to add or remove existing fetch groups from the fetch plan. Clicking the
button displays the Edit FetchPlan dialog showing all possible fetch groups on the left and allowing you
to move one or more groups to the fetch plan you're currently editing.

Optimization 243

© 2010 Telerik Inc.

Figure 126

4) The section collectively titled Fields Fetched Together can select fetch groups from the drop down
list and see how they affect selected persistent objects in the treeview on the left. Notice that the fields
that will be fetched are highlighted in red.

5) The FetchPlan Generated code section shows what the relevant portion of code will look like when you
click the Ok button.

Clicking the Ok button will generate a new FetchPlans.cs class with your plans predefined as static
members.

Public Class FetchPlans
 Public Shared ContactFetchPlan As New FetchPlan(New String() _
{ "ContactFetch" }, FetchPlan.DefaultMaxDepth, FetchPlan.NoLimit)
End Class

public class FetchPlans
{
 public static FetchPlan ContactFetchPlan =
 new FetchPlan(
 new string[] { "ContactFetch" },
 FetchPlan.DefaultMaxDepth,
 FetchPlan.NoLimit);
}

Now you can use the new FetchPlans object in place of your existing code:

'scope.FetchPlan.Clear();
'scope.FetchPlan.Add('ContactFetch');
scope.FetchPlan = FetchPlans.ContactFetchPlan

Telerik OpenAccess ORM244

© 2010 Telerik Inc.

//scope.FetchPlan.Clear();
//scope.FetchPlan.Add("ContactFetch");
scope.FetchPlan = FetchPlans.ContactFetchPlan;

9.2 Caching

Caching Overview

Not only is rewriting a data layer a prime example of "re-inventing the wheel", re-writing your own caching
mechanism is another big time consumer with little payoff. OpenAccess supplies a "2nd level" cache that
automatically bypasses trips to the database. The cache is a container for object and query data. The
cache is filled only by read access, which means the content will be whatever the application demands from
the database. When the application updates or deletes persistent objects, the entries that depend on them
are evicted from the cache. This means, that if you change the name of a persistent Person instance, the
corresponding entry is removed from the data cache, but also all query cache entries depending on the
class Person are removed.

All this happens in the process memory space, as the 2nd level cache is an in-process cache.

When there is a need for multiple processes or applications to use the 2nd level cache, we need a way to
evict changed and deleted entries. Currently, OpenAccess provides an implementation using MSMQ as the
transport vehicle for eviction messages. Why MSMQ? Because MSMQ supplies a reliable multicasting
mechanism to send eviction messages to many participants. Again, we are only evicting entries from the
various participants. New and updated data is never pushed directly to the 2nd level caches and local
reading is still the only way to populate the local cache instance.

Single Process Caching Walk Through

In this next walk-through we will load different sets of data with tracing viewable in the form to see what
query statements are sent to the database. Then, we turn on caching and observe how the data comes
back immediately without sending a query request to the database.

Find the source at \Projects\ORM\CS\13_Caching\13_Caching.sln

Build the Data Model Project

1) Create a new Class Library project called "Model".

2) ORM-enable the project. Specify the following:

a) The Persistent classes option should be enabled.

b) The Data Access Code option should be disabled.

c) The database connection ID should be "NorthwindConnection"

d) The database should be "NorthwindOA".

3) From the Telerik > OpenAccess menu, select the Reverse Mapping option.

4) In the Simple View tab of the Reverse Engineering Wizard, de-select the Generate checkbox for all but

Optimization 245

© 2010 Telerik Inc.

the "Customers", "Orders", and "Products" tables.

5) Select the Advanced View tab.

6) Open the "Orders" node, select the "employee" reference and click the Remove button. Also click the
"shipper" reference and click the Remove button.

7) Click the Generate & Save Config button.

8) Click Yes to confirm the Generate Sources dialog.

9) Build the project.

Build the Windows Form Application

1) Create a new Windows Forms application called "WinApp".

2) ORM-enable the project. Specify the following:

a) The Persistent classes option should be disabled.

b) the Data Access Code option should be enabled.

c) The database connection ID should be "NorthwindConnection"

d) The database should be "NorthwindOA".

3) In the Solution Explorer, add a reference to the "Model" class library.

4) Add references to the System.Reflection, Telerik.OpenAccess and Telerik.WinControls.UI
namespaces.

5) Add a new class OpenAccessTracer.cs. This class is available in the example projects that ship with
OpenAccess but for now you can copy in the class code:

Imports Microsoft.VisualBasic
Imports System
Imports System.Diagnostics
Imports System.Threading
Imports Telerik.WinControls.UI

Public Class OpenAccessTracer
 Inherits TraceListener
 Private id As Integer
 Private count As Integer
 Private textBox As RadTextBox
 Private label As RadLabel
 Private myThread As Thread

 Public Sub New(ByVal textBox As RadTextBox)
 MyBase.New("OpenAccess")

 myThread = Thread.CurrentThread

 Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Level = "4"
 id = _
Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Listeners.Add(Me)
 Me.textBox = textBox

 count = 0
 End Sub

Telerik OpenAccess ORM246

© 2010 Telerik Inc.

 Public Sub New(ByVal textBox As RadTextBox, ByVal label As RadLabel)
 MyBase.New("OpenAccess")

 myThread = Thread.CurrentThread

 Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Level = "4"
 id = _
Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Listeners.Add(Me)
 Me.textBox = textBox
 Me.label = label
 count = 0
 End Sub

 Protected Overrides Overloads Sub Dispose(ByVal disposing As Boolean)
 Me.textBox.Text += count.ToString() & " queries executed."
 Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Listeners.RemoveAt(id)
 MyBase.Dispose(disposing)
 End Sub

 Public Sub Reset()
 textBox.Text = String.Empty
 label.Text = String.Empty
 count = 0
 End Sub

 Public Overrides Overloads Sub Write(ByVal message As String)

 End Sub

 Public Overrides Overloads Sub WriteLine(_
ByVal message As String)
 If (Not myThread.Equals(Thread.CurrentThread)) Then
 Return
 End If

 If label IsNot Nothing Then
 label.Text = count.ToString() & " queries executed."
 End If

 If message.StartsWith("driver.stat.execQuery") Then
 count += 1
 textBox.Text += String.Format("{0}: {1}" & _
Constants.vbCrLf, count.ToString(), _
message.ToString().Substring(32).Trim())
 End If
 End Sub

End Class

using System;
using System.Diagnostics;
using System.Threading;
using Telerik.WinControls.UI;

public class OpenAccessTracer : TraceListener

Optimization 247

© 2010 Telerik Inc.

{
 int id;
 int count;
 RadTextBox textBox;
 RadLabel label;
 Thread myThread;

 public OpenAccessTracer(RadTextBox textBox)
 : base("OpenAccess")
 {

 myThread = Thread.CurrentThread;

 Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Level = "4";
 id =
Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Listeners.Add(this);
 this.textBox = textBox;

 count = 0;
 }

 public OpenAccessTracer(RadTextBox textBox, RadLabel label)
 : base("OpenAccess")
 {

 myThread = Thread.CurrentThread;

 Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Level = "4";
 id =
Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Listeners.Add(this);
 this.textBox = textBox;
 this.label = label;
 count = 0;
 }

 protected override void Dispose(bool disposing)
 {
 this.textBox.Text += count.ToString() + " queries executed.";
Telerik.OpenAccess.Diagnostics.TraceAdapter.Instance.Listeners.RemoveAt(
id);
 base.Dispose(disposing);
 }

 public void Reset()
 {
 textBox.Text = String.Empty;
 label.Text = String.Empty;
 count = 0;
 }

 public override void Write(string message)
 {

 }

Telerik OpenAccess ORM248

© 2010 Telerik Inc.

 public override void WriteLine(string message)
 {
 if (!myThread.Equals(Thread.CurrentThread))
 return;

 if (label != null)
 {
 label.Text = count.ToString() + " queries executed.";
 }

 if (message.StartsWith("driver.stat.execQuery"))
 {
 count++;
 textBox.Text += string.Format("{0}: {1}\r\n", count.ToString(),
 message.ToString().Substring(32).Trim());
 }
 }

}

6) Add controls to the form and set properties:

a) RadComboBox: Name = "cbSelect", Anchor = "Top, Right". From the Smart Tag open the Edit
Items link. Use the Add button to create three items and change the item Text properties to "Select
all products", "Select all customers" and "Select all Orders"

b) RadGridView: Name = "gvMain", Anchor = "Top, Bottom, Left, Right".

c) RadLabel: Name = "lblStatus", Anchor = "Top, Left".

d) RadButton: Name = "btnReset", Anchor = "Bottom, Right".

e) RadTextBox: Name = "tbStatus", Anchor = "Bottom, Left, Right".

The form should look something like this:

Optimization 249

© 2010 Telerik Inc.

Figure 127

7) In the code behind for the form add a private member for the OpenAccessTracer.

Dim tracer As OpenAccessTracer = Nothing

OpenAccessTracer tracer = null;

8) Create a Load event handler for the form and add code.

This will create the tracer object and make sure that the compiler knows we're using Model classes.

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs)
 tracer = New OpenAccessTracer(tbStatus, lblStatus)
 System.Reflection.Assembly.GetAssembly(GetType(Customer))
End Sub

Telerik OpenAccess ORM250

© 2010 Telerik Inc.

private void Form1_Load(object sender, EventArgs e)
{
 tracer = new OpenAccessTracer(tbStatus, lblStatus);
 Assembly.GetAssembly(typeof(Customer));
}

9) Handle the RadComboBox SelectedIndexChanged event and add code to get the current selection and
create a corresponding query.

Private Sub cbSelect_SelectedIndexChanged(_
ByVal sender As Object, ByVal e As EventArgs)
 Dim selectedQuery As String = _
(CType(Me.cbSelect.SelectedItem, RadComboBoxItem)).Text
 Dim query As String = String.Empty

 Select Case selectedQuery
 Case "Select all products"
 query = "select * from ProductExtent as p"
 Exit Select
 Case "Select all customers"
 query = "select * from CustomerExtent as c"
 Exit Select
 Case "Select all orders"
 query = "select * from OrderExtent as o"
 Exit Select
 End Select

 Dim scope As IObjectScope = _
ObjectScopeProvider1.GetNewObjectScope()
 Dim result As IQueryResult = _
scope.GetOqlQuery(query).Execute()
 Me.gvMain.DataSource = result
End Sub

Optimization 251

© 2010 Telerik Inc.

private void cbSelect_SelectedIndexChanged(object sender, EventArgs e)
{
 string selectedQuery =
 ((RadComboBoxItem)this.cbSelect.SelectedItem).Text;
 string query = string.Empty;

 switch (selectedQuery)
 {
 case "Select all products":
 {
 query = "select * from ProductExtent as p";
 break;
 }
 case "Select all customers":
 {
 query = "select * from CustomerExtent as c";
 break;
 }
 case "Select all orders":
 {
 query = "select * from OrderExtent as o";
 break;
 }
 }

 IObjectScope scope = ObjectScopeProvider1.GetNewObjectScope();
 IQueryResult result = scope.GetOqlQuery(query).Execute();
 this.gvMain.DataSource = result;
}

10)Add a Click event handler for the "Reset" button and add code to call the OpenAccessTracer Reset()
method:

Private Sub btnReset_Click(_
ByVal sender As Object, ByVal e As EventArgs)
 tracer.Reset()
End Sub

private void btnReset_Click(object sender, EventArgs e)
{
 tracer.Reset();
}

11)Run the application. Use the drop down list to select all products, customers and orders. Then go back
and reselect the same items. Notice the queries logged into the trace textbox at the bottom of the form.

Telerik OpenAccess ORM252

© 2010 Telerik Inc.

Figure 128

The figure above shows that new queries are sent to the database every time a new selection is made,
even for a previous selection.

12)Close the application.

13)In the Telerik menu choose the OpenAccess > Configuration > Backend Configuration Settings...
option. In the Caching section of the Backend Configuration dialog, turn on the 2nd Level Cache and
Cache Query Results options. Leave the Maximum Objects in Cache and Maximum Queries in Cache
settings at their defaults. Click Ok to write the settings to the configuration file and close the dialog.

Optimization 253

© 2010 Telerik Inc.

Figure 129

14)Run the application. Use the drop down list to select all products, customers and orders.

Once you select an option once and the query is run on the database, repeated selections use the
cache and no further hit to the database is reported in the trace text box. The maximum number of
entries in the trace text box will be four: one for OpenAccess to get the database version and one for
each select statement.

Telerik OpenAccess ORM254

© 2010 Telerik Inc.

Figure 130

9.3 Wrap Up

In this chapter you learned how Fetch Plans and caching can be used to improve performance. You learned
how fetch plans contain fetch groups made of fields marked with the FetchField attribute. You saw how
small changes to the fetch plan could result in a reduction in the number of columns of data retrieved. You
learned how to configure the built-in caching system to quickly improve performance for single process
access.

Index 255

© 2010 Telerik Inc.

Index
- . -
.Refresh() 195

- 2 -
2nd level cache 244

- A -
A)tomicity 192

abstract 176

ACID 192

Add New 234

Add Service Reference... 105

Add/Remove 234

Advanced View 222

AllowAddNewRow 69

ApplicationException 142

AUTOINC 179, 182

auto-incrementing 179

Automatic Properties 28

AutomaticBegin 69, 195

AutoPostBack 86

AutoSizeColumnsMode 69

- B -
BackColor 69

Backend 219

Backend Configuration 222

Backend Configuration Settings... 54, 222, 244

BackendQuery 210

Begin() 192

BestFitColumns() 69

BindingList 105, 219

BreezeTheme 69

Business Layer 103

- C -
C)onsistency 192

Cache Query Results 244

Caching Optimization 234

Calvert 210

ChangeSet 105

Class Mappings 182

ClientFillPrimitive 69

Close() 69

ComboBox 69

Commit() 69, 192, 195

concurrency 206

Concurrency Control 206

Configure Data Source... 86

Connection Settings 54, 182

Connection Settings... 222

ConnectionURL 219

CopyFrom() 105

Create Database 54, 105

Create Ref 161

CRUD 47, 215

- D -
D)urability 192

Data Access Code 68, 69, 222, 244

Data Layer 103

Database Operations 54, 105

DataGridView 69

delegate 105

Dirty Read 206

DirtyObjects 194

DropDownList 86

- E -
Enable Project 22

Entities 103

Essential LINQ 210

Event Tracing 54

Evict() 195

Execute() 219

ExecuteBindingList() 219

ExecuteList() 219

Extent<>() 47, 69

Extent<T>() 210

Telerik OpenAccess ORM256

© 2010 Telerik Inc.

- F -
FailFast 195

FaultCode 142

FaultException 142

FaultReason 142

Fetch Depth 234

Fetch Group 54

Fetch Plan Browser... 234

Fetch Plans 234

FetchField 234

Field to Column Mapping 161

Fields Fetched Together 234

Firebird 47

Flat mapping 168

Flush() 194

FormClosing 69

FormElement 69

Forward Mapping 54, 182, 222

Forward Mapping (Classes to Tables) 222

Forward Mapping Wizard 105, 206, 222, 234

- G -
garbage collector 234

Generate 244

GetChanges() 105

GetContent() 135

GetSqlQuery() 37, 215, 219, 222

GradientStye 69

GridView 86

- H -
HIGHLOW 179

Horizontal mapping 168, 176

- I -
I)solation 192

IBindingList 37

IEnumerable 37, 219

IList 37, 105, 154, 194

impedance mismatch 168

inheritance 168

Internal 179

Introduction to LINQ 210

IObjectCollector 105

IObjectScope 28, 37, 86, 135, 192, 200, 210, 222,
234

IObjectScopeQuery 210

IQueryable 135, 142, 210

IQueryResult 219

IsDirty 69

IsDirty() 142

Isolation 206

IsReadOnly() 142

IsRemoved() 142

ItemDataBound 105

ITransaction 192, 194

- K -
Key Generator 179

Kulkarni 210

- L -
Language Integrated Query 210

LINQ 47, 69, 210, 219

LINQ 101 Samples 210

LINQ Building Blocks 210

ListChanged 105

Log Level 54

Lost Update 206

- M -
Make Persistent 182

MasterGridViewTemplate 69

Maximum Depth 234

Maximum Objects Fetched 234

Maximum Objects in Cache 244

Maximum Queries in Cache 244

Microsoft SQL Server Management Studio 182

Missing partial modifier 222

Mixed (flat and vertical) mapping 168

MS SQL 47

MSMQ 244

Multiple Field 179

multi-tier 103

MustInherit 176

Index 257

© 2010 Telerik Inc.

- N -
Next Fetch Group 234

No Lost Updates 206

Non-Repeatable Read 206

- O -
Object Database Management Systems 215

Object Query Language 215

ObjectContainer 105, 142

ObjectProvider 69, 95

Objects 194

ObjectScope 69, 142, 234

ObjectScope() 28

ObjectScopeProvider 37, 135

ObjectView 69, 95

OpenAccess Data Form Wizard 54

OpenAccess Dataform Wizard 65

OpenAccess Enable Project Wizard 22

OpenAccess Programmers Guide 210

OpenAccessDataSource 86

OpenAccessTracer 234, 244

OptimisticVerificationException 200

OQL 47, 215, 219

OQL Query Browser... 215

Oracle 47

ORM Enable Project 28, 37, 54

ORM-enable 68, 135

- P -
partial class 44

PartialUserDefault.vm 44

Path 234

Persistent 22, 28, 54, 68, 69, 179, 222

Persistent classes 222, 244

Phantom Read 206

pmCacheRefType 234

Presentation Layer 103

Project Properties 54

projection 69

- Q -
Query<T> 219

- R -
RadAjaxManager 86

RadComboBox 69, 244

RadForm 69

RadListBox 200

RadMessageBox 69

Read Committed 206

READ_COMMITTED 206

READ_UNCOMMITTED 206

Reflector 54

RefreshReadObjectsInNewTransaction 195

Remove 244

Remove() 47

RemoveItem() 105

RemovingItemEventArgs 105

Repeatable Read 206

REPEATABLE_READ 206

Report 95

ReportParameters 95

Reset() 244

Reverse Engineering Wizard 37, 68, 244

Reverse Mapping 37, 68, 69, 244

Reverse Mapping Wizard 154, 222

Rollback() 69, 192

- S -
SelectedIndexChanged 69, 105, 244

Self referencing 161

SERIALIZABLE 206

Server Explorer 28, 182

Service Layer 103

Single Field 179

SQL Server Management Studio 28, 195, 222

Stored Procedure 222

Stored Procedure Mapping 222

Stored Procedures 222

STRONG 234

SubReport 95

System.Collections.Generic 105, 142

System.ComponentModel 105

System.Linq 105, 142, 210

System.Reflection 105, 244

System.Runtime.Serializable 105

System.Runtime.Serialization 142

Telerik OpenAccess ORM258

© 2010 Telerik Inc.

System.ServiceModel 105

Sytem.Linq 142

- T -
Telerik ORM Wizard 54

Telerik.OpenAccess 22, 54, 69, 86, 105, 182, 244

Telerik.OpenAccess.Query 22, 69, 86, 210

Telerik.WinControls 69

Telerik.WinControls.UI 69, 105, 244

Templates 44

ThemeName 69

Thread 200

ToList() 210

Transaction 28, 69, 192, 195

TransactionProperties 69, 195

- U -
UPDATE 215

Update Config References 69, 86, 182

Update Database 54, 222

Using LINQ with OpenAccess ORM 210

- V -
VEnhance 54

Verify 179

Vertical mapping 168

- W -
WCF 105

Weak 234

Windows Communication Foundation 105

Write Log Output to Console 54

	Introduction
	Who Should Read This Courseware
	What Do You Need to Have Before Reading This Courseware
	How This Courseware Is Organized
	About Telerik
	About Falafel
	Introducing Telerik OpenAccess ORM

	Getting Started
	ORM Enable Project
	Forward Mapping (objects -> database)
	Reverse Mapping (database -> objects)
	Generated Class

	Create, Read, Update, Delete (CRUD)
	Wrap Up

	Design Environment
	OpenAccess Menu
	Project Context Menu
	Wrap Up

	Using OpenAccess in Applications
	Building the "Model" Assembly
	WinForms Example
	ASP.NET Example
	Telerik Reporting Example
	Multi-Tier Architecture
	Web Services Example
	N-Tier Example
	N-Tier With Business Rules
	Wrap Up

	References
	References
	Self Referencing
	Wrap Up

	Inheritance
	Inheritance Overview
	Flat Mapping
	Vertical Mapping
	Mixed Flat and Vertical Mapping
	Horizontal Mapping
	Configuration
	Mapping Walkthrough
	Wrap Up

	Transactions
	Basics
	ITransaction
	TransactionProperties
	Threading
	Concurrency
	Wrap Up

	Database Access
	Using SQL with OpenAccess
	LINQ
	Object Query Language (OQL)
	Native SQL

	Stored Procedures
	Wrap Up

	Optimization
	Fetch Plans
	Caching
	Wrap Up

