
HOW TO CREATE
A TWITTER APP FROM SCRATCH
USING RADCONTROLS FOR WP8
By: Michael Crump

A publication of

http://www.telerik.com/
http://www.telerik.com/whitepapers?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-asset-ungating

Table of Contents

THE RIGHT TOOLS FOR THE RIGHT JOB
Introduction
Windows Phone 8 SDK
RadControls for Windows Phone 8
Linq2Twitter OpenSource project

CONSTRUCTING OUR APP
Getting setup
Taking a look at the completed app
Defining our user interface
Using two controls to consolidate development time

EXAMINING THE TWITTER API 1.1
With the new Twitter API come new changes
Using Linq2Twitter to simplify the process

FINISHING UP
Understanding what we built and how we did it
Additional resources from Telerik to learn from

ABOUT THE
AUTHOR

Michael Crump is a Microsoft
MVP, INETA Community
Champion, and an author of
several .NET Framework eBooks.

He speaks at a variety of
conferences and has written
dozens of articles on .NET
development. He works at Telerik
with a focus on our XAML control
suite.

You can follow him on Twitter
at @mbcrump or keep up with
his various blogs by visiting his
Telerik Blog or his Personal Blog.

Michael
Crump

Share this whitepaper

https://twitter.com/mbcrump
http://blogs.telerik.com/michaelcrump/posts.aspx
http://michaelcrump.net/
http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w

3Back to Contents Share this whitepaper

In order to create any type of professional application, you need the right tools. Here, we are going to
write a Twitter app that allows the user to type in a twitter username and display the tweets from the
user. We will be using the new Twitter API v1.1 released late last year and a couple of excellent tools to
complete the project.

After all of these have been installed, you are ready to proceed to the next part.

1. The Windows Phone 8 SDK needs to be installed manually if you already
have a version of Visual Studio 2012 installed. You may use the web installer
or download the .ISO file found here:

2. Telerik’s RadControls for Windows Phone 8 contains over 60 controls
and components to cut your development time.

3. Finally, we need the ability to talk to Twitter’s API endpoint.
This is where Joe Mayo’s Linq2Twitter library will come in.

THE RIGHT TOOLS FOR THE RIGHT JOB

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
http://www.microsoft.com/en-us/download/details.aspx%3Fid%3D35471
http://www.telerik.com/products/windows-phone.aspx
http://tlrk.it/17ZXScn
http://linqtotwitter.codeplex.com/

4Back to Contents Share this whitepaper

Launch Visual Studio 2012 and select Visual C# | Windows Phone | RadControls for Windows Phone and
give it a meaningful name. On the project configuration wizard screen, leave the default component
selected as shown in Figure 1 and press next.

CONSTRUCTING OUR APP
GETTING SETUP

Figure 1:

The First Screen to
our RadControls for
Windows Phone 8 App.

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w

5Back to Contents Share this whitepaper

The second page in the project configuration wizard is shown in Figure 2.

Figure 2:

The Second Screen to

our RadControls for

Windows Phone 8 App.

As you can tell from Figure 2, not only can you change the default project type and add or
remove an application bar, but we have built into the wizard two of the most common pages in a
professional Windows Phone app.

•	 The	“About” and “How To” page.

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w

6Back to Contents Share this whitepaper

We have also added the ability to quickly add functionality such as error
diagnostics, trial and rate reminders, which allows us to add common functionality
that we typically code in every app with a single checkmark. Let’s examine each of
them briefly:

Diagnostics: If your application crashes, this control allows you to collect
the error information and email it to the author.

Trial application reminder: Will remind your user that the application is a
trial and prompt them to purchase it. You can specify when the reminder
will display in a variety of ways.

Rate application reminder: Will remind your user to rate the application
in the store marketplace. There are also many different configuration
options available. The error diagnostics will trap any unhandled exceptions
and the trial and rate reminders will prompt your users to either
purchase the app or rate the app depending on whether you desire this
functionality or not.

We are building a simple first app, so remove all the checkmarks except
Diagnostics.

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
http://tlrk.it/12lpGcq
http://tlrk.it/14fI6fZ
http://tlrk.it/14XGQAN
http://www.telerik.com/products/windows-phone/overview/all-controls/trialreminder.aspx%3Futm_source%3Dtelerik%26utm_medium%3Dwhitepaper%26utm_campaign%3Dtwitter-whitepaper-WP8
http://www.telerik.com/products/windows-phone/overview/all-controls/rateappreminder.aspx%3Futm_source%3Dtelerik%26utm_medium%3Dwhitepaper%26utm_campaign%3Dtwitter-whitepaper-WP8

7Back to Contents Share this whitepaper

GETTING SETUP

Our UI will consist of RadTextBox and
RadDataBoundListBox. Both of these
controls contain the needed functionality to
get started quickly. A screenshot of the final
app is shown in Figure 3.

Figure 3: Our Final Windows Phone 8 App.

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
http://tlrk.it/13OmN1A
http://tlrk.it/154TvPx

8Back to Contents Share this whitepaper

DEFINING OUR USER INTERFACE.

Now that we know how our final app will look,
let’s define our user interface in the ContentPanel
Grid in MainPage.xaml:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.RowDefinitions>
 <RowDefinition Height="80*" />
 <RowDefinition Height="533*" />
 </Grid.RowDefinitions>

<telerikPrimitives:RadTextBox x:Name="txtUserName" Watermark="Enter Twitter Us
erName" ActionButtonVisibility="Visible" ActionButtonTap="txtUserName_ActionBu
ttonTap" >
 <telerikPrimitives:RadTextBox.ActionButtonStyle>
 <Style TargetType="telerikPrimitives:RadImageButton">
 <Setter Property="ButtonShape" Value="Ellipse"/>
 </Style>
 </telerikPrimitives:RadTextBox.ActionButtonStyle>
 </telerikPrimitives:RadTextBox>

<telerikPrimitives:RadDataBoundListBox Grid.Row="1" Name="lstTwitter" IsPullTo
RefreshEnabled="True" RefreshRequested="lstTwitter_RefreshRequested">
 <telerikPrimitives:RadDataBoundListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal" Height="110" Margin="10">
 <Image Source="{Binding ImageSource}" Height="73" Width="7
3" VerticalAlignment="Top" Margin="10,10,8,10"/>
 <TextBlock Text="{Binding Message}" Margin="10" TextWrappi
ng="Wrap" FontSize="18" Width="320" />
 </StackPanel>
 </DataTemplate>
 </telerikPrimitives:RadDataBoundListBox.ItemTemplate>
 </telerikPrimitives:RadDataBoundListBox>

</Grid>

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w

9Back to Contents Share this whitepaper

1. RadTextBox allows us to gather data from the end user. By using this control
we can easily implement the following features without writing additional code or
adding additional buttons:

2. RadDataBoundListBox will allow our users to
have a powerful control that handles many items
as well as Pull-To-Refresh functionality. This allows
the end-user to request a data refresh by pulling
the top edge of the scrollable content down and
releasing it. Inside of the ItemTemplate, we are
going to create a DataTemplate that contains an
Image and a TextBlock. The Image will show the
user’s twitter avatar and the TextBlock will contain
the text of the tweet.

USING TWO CONTROLS TO CONSOLIDATE DEVELOPMENT TIME.

• We added a watermark so the user knows what data this field is expecting.

• There is a built in button that we can add by setting the ActionButtonVisibility to Visible and
adding an event handler on ActionButtonTap.

• We can easily style the ActionButton to have an Ellipse shape as shown above.

• After the user starts typing, they can quickly clear the contents by pressing the X in the left
hand corner, similar to Windows 8 Textbox fields. (This functionality occurs automatically.)

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
http://tlrk.it/13OmN1A
http://tlrk.it/154TvPx

10Back to Contents Share this whitepaper

We will be using the Linq2Twitter library using NuGet. Right-click
on references and select, “Manage NuGet References” then type in
linq2twitter and click install as shown in Figure 4.

Once installed, we can check “References” and should see
“LinqToTwitterWP” added to our project.

Figure 4: Adding Linq2Twitter to our
Windows Phone 8 App.

EXAMINING THE TWITTER API 1.1

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
http://linqtotwitter.codeplex.com/

11Back to Contents Share this whitepaper

Twitter API 1.1 requires authentication on every API endpoint. That means
that from now on you will need to create an app that contains your
Consumer Key, Consumer Secret, Access Token and Access Token Secret.
You can easily create an app by visiting https://dev.twitter.com. Once
that is in place, you can get your keys by visiting your apps page.

Note that the developer will have to manually create their access tokens
in the app’s settings page as shown in Figure 5.

Figure 5:

The OAuth Settings
Page.

WITH THE NEW TWITTER API COME NEW CHANGES

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com

12Back to Contents Share this whitepaper

Begin by creating a simple class called TwitterItem and adding the following two properties.
Make sure you mark the class as public as shown below:

Switch over to our MainPage.xaml.cs and before our MainPage
constructor, we will need to add in the following code:

In this snippet, we are using Linq2Twitter to authenticate with Twitter about who we are
and it will automatically determine what our permissions are. We can now drop in a method
to Load Tweets once the user presses the search button (included in the RadTextBox) or
refreshes the list with RadDataBoundListBox. The method is listed below:

SingleUserAuthorizer singleUserAuthorizer = new SingleUserAuthorizer()
{
 Credentials = new SingleUserInMemoryCredentials()
 {
 ConsumerKey = "YOUR_CONSUMER_KEY",
 ConsumerSecret = "YOUR_CONSUMER_SECRET",
 TwitterAccessToken = "YOUR_ACCESS_TOKEN",
 TwitterAccessTokenSecret = "YOUR_ACCESS_TOKEN_SECRET"
 }
};

USING LINQ2TWITTER TO SIMPLIFY THE PROCESS

public void LoadTweets()
{
 if (singleUserAuthorizer == null || !singleUserAuthorizer.IsAuthorized)
 {
 MessageBox.Show("Not Authorized!");
 }
 else
 {
 var twitterCtx = new TwitterContext(singleUserAuthorizer);

 (from tweet in twitterCtx.Status
 where tweet.Type == StatusType.User &&
 tweet.ScreenName == txtUserName.Text
 select tweet)
 .MaterializedAsyncCallback(asyncResponse =>
 Dispatcher.BeginInvoke(() =>
 {
 if (asyncResponse.Status == TwitterErrorStatus.Success)
 {

 lstTwitter.ItemsSource =
 (from Status tweet in asyncResponse.State
 select new TwitterItem
 {
 ImageSource = tweet.User.ProfileImageUrl,
 Message = tweet.Text
 })
 .ToList();

 }
 else
 {
 MessageBox.Show("Error: " + asyncResponse.Exception.
Message);
 }
 }));

 lstTwitter.StopPullToRefreshLoading(true);
 }
}

private void txtUserName_ActionButtonTap(object sender, EventArgs e)
{
 LoadTweets();
}

private void lstTwitter_RefreshRequested(object sender, EventArgs e)
{
 LoadTweets();
}

public class TwitterItem
{
 public string ImageSource { get; set; }
 public string Message { get; set; }
}

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w

13Back to Contents Share this whitepaper

public void LoadTweets()
{
 if (singleUserAuthorizer == null || !singleUserAuthorizer.IsAuthorized)
 {
 MessageBox.Show("Not Authorized!");
 }
 else
 {
 var twitterCtx = new TwitterContext(singleUserAuthorizer);

 (from tweet in twitterCtx.Status
 where tweet.Type == StatusType.User &&
 tweet.ScreenName == txtUserName.Text
 select tweet)
 .MaterializedAsyncCallback(asyncResponse =>
 Dispatcher.BeginInvoke(() =>
 {
 if (asyncResponse.Status == TwitterErrorStatus.Success)
 {

 lstTwitter.ItemsSource =
 (from Status tweet in asyncResponse.State
 select new TwitterItem
 {
 ImageSource = tweet.User.ProfileImageUrl,
 Message = tweet.Text
 })
 .ToList();

 }
 else
 {
 MessageBox.Show("Error: " + asyncResponse.Exception.
Message);
 }
 }));

 lstTwitter.StopPullToRefreshLoading(true);
 }
}

private void txtUserName_ActionButtonTap(object sender, EventArgs e)
{
 LoadTweets();
}

private void lstTwitter_RefreshRequested(object sender, EventArgs e)
{
 LoadTweets();
}

We first check to see if we have authenticated properly and if we aren’t then
inform the user. If we are authenticated then we are going to select the tweets
with the username typed into our TextBox with an Async callback and add the
results to our RadDataBoundListBox’s ItemSource property. Finally, we will turn
off the Refresh loading animation from our RadDataBoundListBox.

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w

14Back to Contents Share this whitepaper

FINISHING UP

We saw just how quickly you could get up and running with a new Windows
Phone 8 project by using a couple of controls and a great open-source library
called Linq2Twitter. We were able to complete this project in a fraction of the
time compared to using only standard Microsoft Controls and libraries.

Before we go, I’d like to share several other resources that may help you with your next Windows Phone 8
application.

ToDoList – Shows how we built our ToDoList application as well as a series on creating the
wireframes and building the actual app.

Picture Gallery – Demonstrates how to create a native Windows Phone client for Flickr or
another image service.

How to promote your Windows Phone app on a budget whitepaper – Once your app is
built, you will need to learn how to market it. This whitepaper offers tips and tricks from both
the developer and marketing perspective. It is something you will definitely want to read.

Check out our Showcase Gallery on other apps built with RadControls.

ADDITIONAL RESOURCES

UNDERSTANDING WHAT WE BUILT AND HOW WE DID IT

http://tlrk.it/13CaWsr
http://tlrk.it/1d2bV8w
http://tlrk.it/13QvYyo
http://tlrk.it/19IvuCr
http://tlrk.it/14ilhrW
http://www.telerik.com/products/windows-phone/getting-started/promote-your-wp7-app.aspx
http://tlrk.it/1drDFlA

