
MASTER THE ESSENTIALS OF
UI TEST AUTOMATION
Automation in the real world: a walk-through the most critical aspects
of getting a successful, maintainable, valuable automation in place

2 A PUBLICATION OF CONTENTS

Chapter One: Introduction 3

Chapter Two: Before You Start 5
Why Automate? 5

Do You Have the Environment to be Successful? 6

Chapter Three: People 9
Getting or Growing the Right People 9

Building UI Automation Skills 10

Your Team's Worth the Investment 11

Chapter Four: Resources 12
Development/Test Systems 13

Build/CI Server 13

Execution Agents 14

System Under Test 14

Leveraging Resources to Their Utmost 14

Moving Forward 15

Chapter Five : Look Before You Jump 16
How's Your Process? 16

Clarify Expectations 16

Start With a Pilot 16

Practical Flow: Putting Concepts to Work 17

Learning from the Pilot 20

Chapter Six : Automation in the Real World 21
Developer Tester Pairing 21

Maintainable Tests 22

Backing APIs 23

Testable UI 24

Surviving Legacy UIs 26

Remember: Take the Long View! 27

Chapter Seven : Improving on Your Success 28
Are You Solving The Right Problems? 28

Gathering on Feedback 28

Retrospectives 28

Sharing Feedback 29

Team Lunches 29

Build a Knowledge Base 29

Trumpet Your Successes 29

Are the Stakeholders Happy? 30

Keep Working, Keep Learning 30

CONTENTS

http://www.telerik.com

3 A PUBLICATION OF CONTENTS

The goal of this handbook is to help you understand the right

questions to ask of you, your team and your organization. There

won't be any Best Practices; there won't be any silver bullets. What

we hope is to convey the right information to help you get started on

the right foot and get through some of the most common problems

teams hit when starting out with UI test automation.

This handbook will walk you through what we think are the most

critical aspects of getting a successful, maintainable, valuable

automation effort in place. The chapters will include:

• Before You Start: What are the most critical things you need

to think about before starting? We'll walk you through some of

the questions to answer as you head off on this journey.

• People: You need a great team with specific skills to succeed.

We'll help you understand how to build that team.

• Resources: Automation requires tools and infrastructure. We'll

help you identify things to address as you move forward.

• Look Before You Jump: Test the assumptions you made

Chapter One

INTRODUCTION

during your planning phase by working a prototype, spike or

pilot project. Make sure the toolset, skills and process are close

to what you need--and adjust.

• Automation in the Real World: Now it's time to put things

into your real delivery pipeline. You'll read tips for easing your

testing process, learn how to really collaborate with developers,

and find how backing APIs and creating testable UIs can head

off long-term pain.

• Improving Your Success: You've headed off on your effort.

Now, how can you make it even better and guarantee your

long-term success? We'll walk through how to create useful

feedback loops that will help you smooth out any rough spots

and leverage what’s going well.

http://www.telerik.com

4 A PUBLICATION OF CONTENTS

Here’s a mind map of the chapter sequence including some of the topics discussed in each.

We hope this handbook will help you plan for your own UI automation projects, or potentially help you identify ways to improve

projects on which you're currently working.

Before you start

Skills, mindset

If not, what will take

What tools match up with biz problem you’re solving?

What skills does team have, or can learn?

Commercial

Open Source

Do you have the team
to be succesfull?

Why automate? What is the BUSINESS problem to solve?

What tools to evaluate?

Tools

Look Before You Jump
Cost: People, velocity, infrastructure

Time ON THE SCHEDULE

Do a spike

Constant feedback

Velocity impact

Setting Expectations

Think about your process

Build skills

People
Test engineers

Devs cooperation

Bring Support in the loop!

People

Goals

Topics
Intro

Is business getting the value? The right metrics

Retrospectives

How’s Support feeling?

Improving on Your Success

Build server

Agents
Resources Infrastructure

Dev-Tester pairing

Backing APIs

Testable UI

Legacy UI

Automation in the Real World

Early conversations

True collaboration

Mechanics of automation

Success with
UI Automation

http://www.telerik.com

5 A PUBLICATION OF CONTENTS

“Plans are useless, but planning is indispensable.” This quote from

American President Dwight Eisenhower is one of my favorite quotes.

Sure, he's talking about the run up to D-Day in World War II, but it's

applicable to so many things in life—especially software development.

You need to ensure you're spending your time and effort wisely

before you jump in and start hacking away at automated tests. Here

are a few things I've found helpful to work through as part of the

planning process.

Why Automate?

Why are you considering bringing in test automation to your delivery

process? Take some time to get very specific about the problem

you're trying to solve. More importantly, make sure you're tackling a

concrete business problem. UI automation's a nifty tool, but it's an

expensive one to get adept with, and it's a very costly tool to deal

with if you use it badly. It's also only one form of test automation,

and by itself it's not going to solve much of any delivery “challenges”

you're having.

Chapter Two
BEFORE YOU START

Here are a few business-related areas in which UI automation

may be helpful:

• Long release cycles due to time required for manual regression

testing

• Testing falling behind development during release cycles/

iterations/sprints

• Rework costs due to regressions of high-value features

• High support costs due to escaped bugs around high-value

features

• High cost of testing high-value features against multiple

browsers and operating systems

• Exploding cost of testing against multiple mobile platforms

and browsers

Worst of all, here are two areas that trump all other concerns:

• Loss of executive-level trust in the team's ability to deliver

good software

• Loss of trust and business from your end users or customers

http://www.telerik.com

6 A PUBLICATION OF CONTENTS

The last two, especially the last one, should concern every team

member. It's really bad if you've lost higher-level management's trust.

It's potentially disastrous if you're losing customers.

There are some areas for which you should not consider UI

automation as a solution:

• Validating cross-browser look and feel

• Guarding against layout and style regressions

• Saving money by cutting number of manual testers

UI test automation may help you solve technical or process problems,

but ensure you're first asking why and focusing on solving business

problems first.

Do You Have the Environment to be
Successful?

Once you've decided that UI test automation is a good choice for you,

the next critical factor is whether your team is able to be successful

at UI automation. Several different aspects come into play:

Do You Have Stakeholder and Sponsor Buy-In?

Adopting UI automation will require significant changes to how you work.

You'll need team members with the right skills, you'll need resources (no,

“resources” are not people), and you'll need additional time.

Adding UI automation into your delivery process will decrease your

velocity. You have to make sure your stakeholders and sponsors truly

understand that. They have to support the decrease in velocity for

the improvement in delivered business value.

“Decrease in velocity” is always something that concerns the business

side of the organization. I've found it very helpful to tie back to the

specific business-level issues discussed earlier in this post. Say this:

This links your efforts back to the things the stakeholders really care

about: the organization's mission and bottom line.

Do You Have the Right Communication?

Good communication is the foundation of every successful human

effort, software notwithstanding.

• Are your teams able to get good information about features in

a timely fashion?

• Do designers, developers and testers all talk regularly about

how UX/UI work is accomplished? Can your testers get early

input on UI design to help make testable screens?

• Do your testers understand what the stakeholders' highest

priorities are for each feature, and do they understand the

business value behind those features?

“Yes, we're going to slow down a bit, but the goal is to cut the support

costs we're incurring through escaped bugs. We're also hoping to gain back

revenue we've lost from the decline in license and service renewals.”

http://www.telerik.com

7 A PUBLICATION OF CONTENTS

If the answers to any of those questions are “No,” you will need to

address those issues as you move forward with your automation—or

suffer the friction and stress that falls out.

Great communication helps ensure everyone involved in UI

automation knows the priorities before they start their work. It helps

everyone understand how to balance automation work with focused

manual testing, and it helps focus automation work on the right parts

of the system.

Do You Have the Right Team Structure?

UI automation rarely succeeds when testers are expected to create

all automation in a silo or walled-off room. I already mentioned the

importance of early, frequent communication between developers,

stakeholders, testers—basically the entire team.

If your teams are fragmented into highly constrictive silos, you will

likely see additional friction and difficulties when trying to clear

up basic fundamentals such as getting good locators on elements

around which you’re building automation scripts.

The best structure for any team is an open environment that

empowers frequent communication directly between concerned

team members. Co-located teams always function the best; however,

geographic dispersion can't be an excuse for poor communication.

Clearing communication problems can often be difficult; however,

two steps can often reap huge benefits. First, get communication

bottlenecks out of the way. Guide project managers and other mid-

level management to avoid requiring communication to flow through

them. Communication should be as direct between people as

possible. The wheel/spoke communication model is long outdated…

Second, encourage your testers to reach out directly to developers

whenever possible. Breaking down this wall is critical for seeing

smoother automation in the long-run.

Setting up a team's structure for success means as few roadblocks

and walls to frequent, candid discussions.

What Tools Can You Use?

Notice I've left the actual tooling for last. Yes, yes: the toolset you use

is critical, but it doesn't matter what tools you select for automation

if you haven't answered the harder questions first.

You can finally jump into tool selection once you've addressed that

you've got a clear case for why you're going to use automation, and

what problems you're trying to solve.

There are a huge range of UI automation test tools available. Some

are open-source, some are free and some are commercial. There are

also many types of tools, from drivers to frameworks to entire suites.1

http://www.telerik.com

8 A PUBLICATION OF CONTENTS

Selecting the right toolset for your team means answering a few

more questions:

• What communication mechanisms will you use for tests?

Do you need a grammar-based specification? Will recorded

tests with coded steps be clear enough? Are 100-percent

coded tests clear enough for everyone?

• Who writes the tests? Will testers be solely responsible for

test creation? Or, will developers have a hand in it, as well?

• Who maintains tests? Will the team that writes the tests

maintain them, or do you have an outside contractor writing

tests and handing them off to an internal team? If you have

two (or more) different teams, make sure the teams have the

skills, aptitude and time to take on the selected tool.

• Who uses the tests? How will you run your tests? Will the

suites be triggered manually? Will they be part of a scheduled

suite to be run via a Jenkins CI server or Team Foundation

Server build? You'll need people who can handle the care

and feeding of those environments, and you'll need the

infrastructure required, too.

• Who uses test results? Who in your organization needs what

level of information about your tests? Keep in mind that your

stakeholders often need one set of data, while your team

needs another.

• Do we have the skills? Lastly, you'll need team members

with the right skillset to build, manage and maintain all the

pieces necessary for a successful automation effort. Your team

doesn't need those skills right now, but they'll need support to

develop those skills in a timely fashion.

Telerik put out a “Buyer’s Guide” in 2014 that answers these and

other questions.

1An automation driver is responsible for driving the UI application around. Think of Selenium WebDriver or the Telerik driver. An automation framework sits atop the driver and normally
gives teams a grammar-based approach for writing tests (think Cucumber, Fitness, SpecFlow and so on).

http://www.telerik.com
http://jenkins-ci.org/
http://www.telerik.com/campaigns/teststudio/qa-test-automation-buyers-guide

9 A PUBLICATION OF CONTENTS

As with everything else in software development, success comes

through getting good people and giving them the tools they need to

succeed. Lining up the right people for your successful project means

finding ones with the right skills, or giving them time and support to

grow those skills.

Getting or Growing the Right People

Please get this clear in your mind immediately: you can't take

developers with no UI automation background and expect them

to succeed at test automation without help. You can't take manual

testers and expect them to succeed at test automation without help.

You can't take non-testers, give them a fancy tool and expect them

to succeed at test automation without a lot of help. Ensure you're

setting your organization up for success by ensuring you're able to

get or grow the right team members.

UI automation requires a specialized set of skills to be effective.

Becoming adept at UI automation requires time and mindful practice.

(“Mindful practice” is a term used for carefully chosen work/study/

practice meant specifically to improve one's skills or knowledge. You

Chapter Three

PEOPLE

can't just “go through the motions” and expect to improve. You need

to dedicate yourself to improvement. Read more in Andy Hunt's

Pragmatic Thinking and Learning.)

Keep in mind that it's not enough to simply learn UI automation

skills—just as you want developers who write great maintainable

code, you also want people who understand how to write great

maintainable automation scripts.

Finding great people in any corner of the software development

domain is hard; finding people with great UI automation skills is much

harder. It's a specialty that's underappreciated and not practiced widely

enough. Make sure you have your time frame and budget expectations

properly set if you're looking to expand your team by hiring.

What I've found more effective in my experience is to find current

team members, or people elsewhere in my organization, and bring

them to my team, then develop their skills. Poaching from other

teams (“stealing” is such a harsh word!) can be politically tricky at

times, so make sure you're not sawing off the branch you're standing

on, metaphorically speaking.

http://www.telerik.com
http://www.amazon.com/gp/product/1934356050/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1934356050&linkCode=as2&tag=frazzleddadco-20&linkId=3JGFNY6SCQCNSCJ7

10 A PUBLICATION OF CONTENTS

Building UI Automation Skills

You'll need to work hard at building up your team's skills. This means

you'll need both resources to learn from, plus a plan on how to learn.

Resources for Learning

Thankfully, there are a lot of great resources around to help you

learn UI test automation. Better yet, many of the fundamental

concepts are the same, regardless of the specific toolset you're

working with, so you can look to industry experts rather than just

tool experts.

Of course Telerik offers training specific for Telerik Test Studio, but

you can also look to some of these resources to help you build your

domain-level knowledge of UI automation.

• Dave Haeffner's Elemental Selenium newsletter.

• Dave's The Internet project on GitHub and Heroku is a

set of common automation problems like forms-based

authentication, asynchronous actions, drag and drop and so

on. It's great for learning fundamentals.

• Marcel de Vries' Pluralsight course on Coded UI (subscription

required).

• Richard Bradshaw is prolific both on Twitter and his blog. His

post on handling setup and configuration for WebDriver is full

of great ideas.

Getting Your Team Learning

Coaches, trainers, and consultants in the testing domain commonly

echo a similar refrain: teams need directed, thoughtful practice to

become adept at testing automation. Often that “practice” can be

directly related to the work that’s being done, but the crux of the

matter is your teams will need time to master this tricky domain.

Remember: as you get to this point, it's critical that you've got

support from stakeholders and your team. That support is key to

getting through the learning process.

Here's an outline of a process that may be useful to you:

1. Find a guide: Look for someone with UI automation

experience to help you and your team. Is there someone on a

different team in your organization? See about getting them

on your team, at least part-time. If not, hire an external guide

to come in and help. Regardless of whether your guide is

internal or external, this has to be a long-term commitment.

You'll need more than a 2-day workshop; you'll need a

relationship that will be highly involved for weeks, then ramp

down over several months.

2. Make a plan: Lay out a roadmap for your team's learning

experience. You'll need to think of things like general tool

competency, creating backing APIs/helpers and, of course,

creating the actual tests. Ensure all this work is in your backlog,

http://www.telerik.com
http://www.telerik.com/teststudio/training
http://elementalselenium.com/
http://the-internet.herokuapp.com/
http://the-internet.herokuapp.com/
http://www.pluralsight.com/courses/codedui-test-automation
http://twitter.com/friendlytester
http://www.thefriendlytester.co.uk/
http://www.thefriendlytester.co.uk/

11 A PUBLICATION OF CONTENTS

work item tracker, Kanban board and so on. No training, skills

building or actual automation work gets hidden!

3. Pair up: Pairing isn't just for developers. Pair less-adept

team members with those who have more experience. You'll

see benefits even if your team has no experience—putting

two novices together, with frequent oversight and constant

encouragement, can result in those two talking through

problems and coming up with solid responses. (NOTE: This

doesn't mean you can skip getting good guides for your team.)

4. Focus on value: You'll need to start with automation scripts

that focus on small, “low-hanging fruit” features with which

your team can be successful. That said, focus on scripts that

will check honest business value for your stakeholders. Avoid

wasting time on things like look and feel.

5. Trumpet successes: Make sure the team sees successes,

especially as they're struggling to get up the learning curve.

Figure out what metrics make sense to monitor for your team,

and then get those up on a Big Visible Chart that everyone

can see.

6. Share knowledge: Make sure that your team has the tools

in place to share knowledge. Lessons learned, both positive

and negative, are a huge help in the team's climb up the

learning curve. Get some form of a knowledge base in place via

Evernote, a wiki, or similar tools. Make sure it's easy to edit and

search. Add “lunch and learn” brown bag sessions for the group

to demonstrate concepts. Whatever you do, create the mindset

that knowledge sharing isn't an option; it's expected.

7. Constant feedback: Software delivery benefits tremendously

from constant feedback. Successful UI test automation projects,

especially so. Prompt members to discuss automation during

the teams' daily standup. Ensure your team retrospectives

bring up good and bad points of your automation efforts.

Most importantly, get stakeholder feedback on how they

feel the effort is helping them: do the business owners feel

they're getting better information to help them make informed

decisions?

Your Team's Worth the Investment

Getting the right people lined up and empowered to succeed is

crucial. Learning to master automation takes a long time, but the

payoff is worth it: better value and higher-quality software delivered

to your users.

http://www.telerik.com
http://www.extremeprogramming.org/rules/pair.html
http://dictionary.reference.com/browse/low-hanging+fruit
http://c2.com/cgi/wiki?BigVisibleChart
http://en.wikipedia.org/wiki/Brown-bag_seminar
http://guide.agilealliance.org/guide/daily.html
http://www.retrospectives.com/

12 A PUBLICATION OF CONTENTS

We've walked through getting a plan in place for having your team

build their automation skills. Now you've got to consider another

aspect of the team's success: proper tools and infrastructure to help

them get their work done. Your team will need a number of pieces to

create, execute and maintain your UI automation suites effectively.

The diagram on the right shows what a typical infrastructure looks

like. Obviously, some environments have many more moving parts.

Members writing automation scripts will generally build their scripts and

check them into a source control system such as Team Foundation

Server, Git or SVN (see flow #1 on the diagram). Source control

systems are a repository that holds software changes in a fashion that

each change can be separately identified and managed if needed.

Build servers handle tasks like building/assembling software. Build

servers generally link to source control and also enable other tasks

such as automated testing to be performed. A build server will pull

the latest version of tests as a suite from source control (flow #2).

The suite is compiled (if necessary), then the build server hands

actual test execution off to one or more agents (flow #3). This test

Chapter Four

RESOURCES

<GO>

Devs & Testers

Source Control

System Under Test

Agents

1

2

3

4

Build/ CI Server

http://www.telerik.com

13 A PUBLICATION OF CONTENTS

pass, or job, is generally scheduled rather than running on a constant

basis in a continuous integration model—UI automation tests are

simply too slow and long-running to have them blocking other

continuous integration builds and tasks.

Continuous Integration is an extension of build services and also

encompasses team processes. CI normally builds a system, then

deploys it to a specific environment where automated and manual

tests are executed against it.

Test agents for UI testing can be very lightweight systems, often

virtualized, that handle executing tests against the system under

test (SUT) (flow #4). The agents can be a mix of different operating

systems with different browsers. This helps to ensure you’re getting

proper OS and browser coverage. Agents can also run on mobile

devices if the organization needs mobile coverage too.

Agents report test results back to the build/CI server, which then

makes reports and notifications available to the team.

Let's dive further into each component of this diagram.

Development/Test Systems

Your team needs adequate systems to create the automation suites.

There is plenty of evidence that team productivity is enhanced when

they have access to solid, well-powered systems. Most developers

end up with very high-performance systems.

Testers, or those mainly responsible for your automation scripts

don’t need quite that amount of power. Test automation projects

shouldn't take much horsepower to build, but you do need to ensure

slow systems won't leave your team hanging in the air while tests are

compiling or running.

Your team will be using these systems to write, troubleshoot, execute

and maintain your test suites. These systems will need access

to the source control repository, build/CI server, SUT host(s) and

agent systems.

(In these systems is where Telerik Test Studio, either standalone or

Visual Studio version, live.)

Build/CI Server

Build servers come in many shapes and flavors. Team Foundation

Server, Team City and Jenkins are just three of the most popular

systems; there are many others.

The basic advantage of CI is, at a bare minimum, team members

know if commits from multiple members have somehow broken the

system—the infamous “builds on my system, but fails on someone

else's” scenario. CI servers are generally configured to run additional

tasks after the basic build, such as executing unit tests. (Remember

from above that build servers can and often do a lot more than just

unit tests.)

http://www.telerik.com
http://martinfowler.com/tags/continuous integration.html

14 A PUBLICATION OF CONTENTS

Execution Agents

Agents are small(ish) executable components hosted on one or more

systems, separate from the build/CI and SUT servers. The build/CI

server creates a job and dispatches it to the agent.

In the case of UI tests, the agents will spawn the system's application,

either a desktop app or web browser, and navigate through the

automated scripts. From there, the agent executes the task and

reports back to the build server.

Agents give organizations the ability to scale out the coverage matrix.

Agents can also run tasks in parallel, enabling large, long-running test

suites to execute much faster.

(Telerik Test Studio Runtime Edition fills the “agent” role.)

System Under Test

The final piece in the diagram is the system under test (SUT). This

very simplified diagram shows one unit; however, often, there are many

components involved: web front ends, application servers, middleware

such as Tibco or BizTalk, database servers and so on.

The SUT may be updated as part of the CI or scheduled build/execution

process, or it may be a simpler model in which other team members

update the SUT, as needed. Moreover, sometimes SUTs are in a shared

environment, which causes additional complications for test data.

Leveraging Resources to Their Utmost

Getting to success in your test automation projects means getting

all these components working well together, the earlier the better.

Your team should view the automated deployment and execution of

the tests, and everything around that process, as the highest-value

feature for the organization. Being able to build, deploy, test and

release your software with a metaphorical push of a button is an

incredibly powerful concept!

You don't need to piece everything together at once. Start small and

work from there. Here's one route you might take to get from zero to

awesome:

1. Get tester/developer systems up and running: You can write

and run test suites locally as you build out the rest of your

system.

2. Get your source control running: This isn't optional. Period.

3. Get your SUT running: Get a separate environment where

you can totally control your SUT, even if it's a small VM to

start with.

4. Get your build/CI running: Use whatever tools with which

your organization is already competent—don't try to reinvent

the wheel. If the organization's not using a build/CI server, pick

one that meets your needs. Start small with a simple build

script, then wire up deployment of your SUT.

http://www.telerik.com

15 A PUBLICATION OF CONTENTS

5. Create agents for execution: Now find small VMs or

old unused desktop systems and bring them into your

environment as agents.

6. Create test jobs as necessary: Configure scheduled jobs that

pull the latest SUT and test suites, deploy as necessary and

execute tests.

7. Rinse, lather, repeat: Continue to evolve your tests and

smooth out your automated build, deploy and execute

processes.

Moving Forward

Infrastructure and the build/deploy/execute pipeline is critical to get

in place as early as possible. Having the right environment in place

lets you focus on the harder testing and domain problems.

Now that all the tools and people are in place, we'll next look at the

practical aspects of getting rolling with your automation efforts.

http://www.telerik.com

16 A PUBLICATION OF CONTENTS

By this point you should have a clear picture on the business-level

problems you're hoping to solve, the team you'll need to build and

the tools/infrastructure you'll need in place. Now it's time to stitch

everything together and build some tests.

How's Your Process?

Before you jump, think carefully about your delivery process. I've

already laid out a number of things about communication, tooling

and infrastructure. Now's the time for you to sit back, as a team, and

get serious about how your workflow will run.

Take the time to sit as a group and actually walk a feature through

your flow. Figure out where you will include discussions about testing.

Use a white board, Post-Its, notepads—whatever it takes to diagram

the flow and all the discussions that should happen.

Chapter Five
LOOK BEFORE YOU JUMP

Clarify Expectations

As you walk through those discussions, see if there are any

clarifications or modifications to expectations you've already

worked on. Are there any new conversations you need to have with

stakeholders and sponsors? Does your team have a good grasp on

what's expected of them?

Make sure everyone's on the same page regarding initial

expectations. Also, ensure everyone knows the expectations will likely

be tweaked as you actually roll in to your work.

Start With a Pilot

If at all possible, teams should start automation efforts with a pilot,

prototype or spike. Regardless of what you call it, carve out an area

you can focus on for two weeks of full-time work. The goal of this

pilot is to identify and resolve any problems your team may run into

in the “regular” work. You'll be getting a feel for where you need to

http://www.telerik.com

17 A PUBLICATION OF CONTENTS

have conversations, what the initial impact on velocity might be and

places to tweak your infrastructure.

As with all pilots, setting the scope is critical. You can't bite off a huge

amount of work. The pilot has to be small enough in scope that you

can get work done, while discovering whether or not your tooling,

process and communication will be effective.

Practical Flow: Putting Concepts
to Work

Let's take a proposed feature addition as our pilot. We'll work it

through our process and see where things work out or don't. We'll

use adding in a feature that recommends additional related or

interesting products to you as you're checking out in your shopping

cart. The cart's built already; we're extending it to include the

recommendations as part of the checkout flow.

Disclaimer: Of course this example will have lots of holes in it. It's not

fleshed out; it's simplistic. Please cut me some slack here and focus in

on the conversations around testing.

1. Envisioning:
Stakeholders need to understand the costs around testing,

both manual and automated. Testers should be giving a high-

level, rough idea of what the impacts of testing would be, so

that stakeholders can make an informed decision of the total

cost of the feature.

Things you might discover at this point:

a. You don't have the right people in the conversations

b. You're spending too much time getting too much detail and

too many edge cases

c. You may not be able to get as much support from your

infrastructure folks as you thought

2. Early UX Design:
Testers should work with the UI/UX members to ensure

everyone knows how to keep the UI as testable as possible.

“We'll need additional datasets, we'll have to modify the build flow to

handle those, we'll need a modest number of new automated scripts,

and we'll need to do quite a bit of exploratory testing. I'd guess we'll

need two weeks' time, plus support from the DevOps folks for the

data work.”

“I'll need good IDs on these four areas of this screen so I can write

good locators. What asynchronous actions will be happening on this

page so that I can figure out the right conditional waits?”

http://www.telerik.com

18 A PUBLICATION OF CONTENTS

Things you might discover at this point:

a. Your UI may have technical limitations on what you can

do to make it testable

b. You may not have access to all the UI (think legacy or

third-party systems)

3. Early Architecture Design:
Testers need to understand the high-level architecture to

test effectively. This is also a great time to start discussions

with developers around what testing will happen at the unit

or integration level, and what tests will happen at the UI level.

Discussions are generally still high-level and conceptual.

Things you might discover at this point:

a. Parts of the system may not adapt easily to automated testing.

You may be relying on more UI tests than you would prefer—

but you do what you can with the tools you have at hand.

4. Starting Work on the Feature:
Now's the time for the team to get into details. Discuss the

specifics of the data you'll need. Talk about any backing APIs

you will require. What edge cases and combinations get tested

at which levels? Also, this is the time that you're able to start

writing the scaffold of your tests, even before the UI is built—

you can do that because you talked with the UX/UI people

early in the game, remember?

Things you might discover at this point:

a. Time constraints may force you to make hard choices about

what parts of the feature to work on

b. Code and architecture constraints may force you to do more

UI testing than you'd prefer

c. You may not have easy access to helper APIs, which may

mean more UI code than you'd prefer

“The recommendation engine is a separate component that handles

determining recommendations. It is sending results back to the cart

via web services, right? Will you be testing the recommendation logic

via those services? If so, then I can just write tests to ensure we're

getting recommendations pulled back and rendered on the UI. I won't

have to write tests to check that all the various combinations are

creating the proper recommendations. I can also help you with those

web service tests!”

“Can we work together to build a method to help me set parameters

for recommendations? I could then use that as a setup for UI

tests. I'll need some way to load these specific products into the

recommendation database. Can I help you build up combinatorial/

pairwise tests to run through the web service tests you're building?

That way, we could cut the number of iterations you'd need to write,

and I'd be able to focus on the main flows with the UI tests.”

http://www.telerik.com

19 A PUBLICATION OF CONTENTS

5. Working the Feature, Iterating on Feedback:
Hopefully you're at a point where development and testing

is happening nearly concurrently. This means testers can get

feedback to the developers very, very quickly. This enables teams

to quickly fix issues EARLY in the game. This feedback happens

best when teams are communicating directly to each other, not

just relying on bug reports to percolate through the process.

Things you might discover at this point:

a. Your team's skills may not be at the level you need for

effective automation. Take a tangent to shore up skills

as needed. Additionally, make sure you're adjusting

schedule/velocity predictions as needed to account for

the slower learning.

b. It's often hard for testers to keep pace with developers. You

may need more testers, or you may need more collaboration

between your developers and testers.

c. Some members of the team may not value the fast feedback

and increased collaboration. It's a culture change that's hard

to adapt to, but it's worth the effort.

6. Rolling Test Suites into the Build Process:
You should be adding all your automated tests (unit, integration,

UI) into your build process. This means configuring your CI

builds and scheduled jobs to run your tests, as appropriate.

Ensure your team has access to the reports they need.

Things you might discover at this point:

a. You may need to expand your infrastructure to support the

additional testing. More VMs, bigger build servers and so on

b. You will likely need to adapt reports for all your data

consumers—stakeholders, business sponsors, PMs

and others

“Hey, I realized we'd missed a couple edge cases with our test data.

When I added them in, I found we're recommending motor oil instead

of cooking oil when someone's buying a stir fry kit. I don't think that's

what we meant. We need to modify the recommendation logic to pay

better attention to an item's category.”

“OK, so we're ready to add our integration and UI tests to the regularly

scheduled jobs. All the UI and most of the integration tests are too

slow to add to the CI build, but I think we should add these two

relatively fast integration tests to the CI build to ensure we've got this

part locked down. These five UI tests should go in the hourly UI job,

and the remainder need to get added to the nightly job. Jane the

stakeholder will see them showing up in her overall trend report, and

we team members will see them in our detailed reports.”

http://www.telerik.com

20 A PUBLICATION OF CONTENTS

7. Maintaining the Suites:
Your automated test suites are a metaphorical living, breathing

creation. You're going to have to spend time in the care and

feeding of them. You'll need to fix them when the tests

break (and take away lessons learned), update them with the

systems change, and refactor or outright re-architect them

on occasion.

Things you might discover at this point:

a. Your system may be more brittle than you expected—small

changes may break multiple tests

b. Your test suites may be brittle; learn to keep them as flexible

and concise as possible

Learning from the Pilot

A pilot project is a gift—seriously! Dedicating time to trying out

significant changes ensures you'll have the best possible chance

to succeed.

Step back and have the entire team evaluate how things went. Some

questions you might consider:

• Did the pilot appear useful to helping solve the business

problems you identified up-front?

• Does the team have the right skills and ability to become adept

at the technical aspects of the tools?

• Can your build/deploy process support the automation toolset?

• Does the increased communication help with the process, or is

it too much of a cultural hindrance?

These are hard questions, but they're critical. Asking these gives your

team the best chance to figure out if you're on the wrong track and

need to completely re-assess; or if you're on the right track that can

be adjusted to make everyone successful.

“We've had two tests break last night due to changes in the helper APIs.

That's roughly four hours to fix. We also had another four tests break

due to changes in the checkout workflow. We think that's a day's work.

Finally, we think we've got some duplication in a number of tests around

the cart and recommendation engine. We want to take a half-day to

pore over the tests and weed out any that are unnecessary.”

http://www.telerik.com

21 A PUBLICATION OF CONTENTS

So here you are: ready and raring to get real work done. Hopefully, at

this point, you're feeling excited about what you've accomplished so

far. Your team has set itself up for success through the right amount

of planning, learning and prototyping.

Now it's time to execute on what you've laid out. Remember:

your best chance for success is focusing on early conversations

to eliminate rework or waste, and being passionate about true

collaboration. Break down the walls wherever possible to make the

mechanics of automation all that much easier.

In the previous chapter, I tried hard to really hit the importance of

collaboration and early communication as fundamental pieces of a

successful project. Now it's time to focus on the actual mechanics of

the work.

The next few sections dive in to areas I've found to be critical for

pain-free, successful automation.

Chapter Six
AUTOMATION IN THE REAL WORLD

Developer Tester Pairing

Although discussion around pair programming has always focused

on developers, pairing is a wonderful tool that can be used by all

members of a team! 2

Developers and testers should work together on UI automation for a

number of reasons, including:

• Developers know the ins and outs of the system. They can

head off wasted efforts by the testers.

• Developers know what asynchronous or disconnected

operations are taking place behind the UI.

• Testers can help identify valuable edge cases, environmental

concerns or data combinations a developer might miss.

• Developers can handle the more complex coding issues while

testers focus on high-value test problems.

Far too many people think pairing means working side-by-side

for eight hours a day. NO! Pairing doesn't have to be high-stress,

2Read more about pair programming on its page at the Extreme Programming site.

http://www.telerik.com
http://www.extremeprogramming.org/rules/pair.html

22 A PUBLICATION OF CONTENTS

full-time effort. Spend as little time together as needed to solve a

particular problem, or spend as much time together as the members

feel comfortable with.

Also, pairing shouldn't be dismissed because teams aren't co-located.

Technology such as Skype, Join.me, GoToMeeting and others have

allowed me to pair with team members in different cities, states and

continents. It's a matter of the team members committing to working

hard toward great communication.

Pairing at its root is knowledge sharing. Investing to encourage and

expect the team to pair up reaps rewards over the long run.

Maintainable Tests

Perhaps the most crucial concept to get straight at the start is the

need to treat your test code like production code—because test

code IS production code!

Delivery teams absolutely have to invest time in creating

maintainable system code through well-established conventions like

low complexity, readability, carefully thought dependencies, etc.

UI test automation code needs to be treated exactly the same way.

You need to take the same approaches to simplicity, clarity and so

on, regardless if you're writing browser tests in WebDriver or creating

them in Telerik® Test Studio®.

Teams that don't approach their test suites (or system code) this way

are doomed to suffer lost time due to brittle suites. Those teams are

also going to pay a heavy price when trying to fix brittle tests, due to

their complexity. It's easier to be successful when you start out right

by giving your test suites some love and maintainability.

Three great principles I've made use of over the years have helped

me keep my UI tests as maintainable as possible.

1. DRY: Don't repeat yourself. Copy/Paste development means

you've got duplication of effort scattered all over the place. One

thing changes, and you're forced to fix that change in multiple

places. Pay attention to these areas in particular:

a. Locator definition: Ensure your find logic, or element

locators, are defined in one place and one place only. Either

use the Page Object Pattern3 or a tool such as Telerik Test

Studio that centralizes those definitions in some form of

repository.

b. Actions: Don't repeat actions or workflows. Move those into

a reusable test or method. Think about a logon example:

you want it defined one place and called from many.

3Martin Fowler has a nice write up on the Page Object Pattern.

http://www.telerik.com
http://martinfowler.com/bliki/PageObject.html

23 A PUBLICATION OF CONTENTS

2. SRP: Single responsibility principle: tests need to be granular

and concise. They should test one thing. Scripts shouldn't

conflate multiple test cases—something that's often abused

in data-driven scenarios. For example, don't mix checking if

products can successfully be added to a shopping cart with

checking if those products also get correct recommendations.

Those are two separate tests.

3. Abstraction: Abstraction4 is a programming idiom that

enables you to push common or complex actions to another

unit of code. A logon operation is the classic example for this.

Many tests will need to log on to your system; however, you

should write this action only once in a separate test or method,

then call that test/method from all other tests to perform

the action. Abstraction is also helpful because it hides the

implementation details from the calling test or method. With

the logon example, each test doesn't know how the logon

occurs, only that it's successful or not. If the system changes

the logon workflow, say from username/password to username/

password/PIN, no other test would need to be updated—only

the logon method.

You'll save your team tremendous amounts of time, frustration and

grief if you focus on maintainability at the start of your UI test

automation projects.

Backing APIs

Backing APIs, sometimes referred to as test infrastructure, are

abstraction tools. They're perfect examples of how testers and

developers can collaborate to leverage each other's best skills.

I've found not many testers have deep programming backgrounds,

which is absolutely fine. Few testers understand how to create

authentication headers to successfully call web service endpoints.

Nor do many testers understand how to create secure, performant,

reusable connection pools to a database.

That's all fine, because testers' skills lie in testing. Developers, on the

other hand, generally do those tasks on a frequent basis.

Working together, teams can build an abstraction layer of a backing API

that enables testers to very easily call methods for setting up prerequisite

data or turning off features to make the system more testable.

The great thing about abstraction is you don’t have to know (or care)

how the API does its work. Are new users created via a web service,

or direct insertion to the database? Don't know, don't care. Backing

APIs let you abstract all that away so you don't worry.

Moreover, if the developers create better methods for accessing the

system, say moving from a stored procedure call to a web service, the

tests won't be affected at all.

4See Wikipedia's definition of abstraction.

http://www.telerik.com
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29

24 A PUBLICATION OF CONTENTS

That's all fine and dandy, but what practical things should you look

to do with a backing API? Here are a few things I use in every project

I've worked on:

• Data and Prerequisite Setup: Don't use the UI to create data

you need for tests. Hand that off to a backing API. (Starting out

using the UI, then transitioning to a backing API is just fine.)

• System Configuration: How do you test CAPTCHA or other

complex third-party controls? Don't. Work with the developers

to create system-wide configuration switches that will let you

shut these things off, or swap them out for simpler components.

• Test Oracles/Heuristics: It isn't enough to check the UI. You

also need to check the layer where things are really happening:

the database, file system and so on. Backing APIs are a great

way to abstract out calls to the database for verifying records

were created, updated or deleted.

Backing APIs don't have to be complex, and you should only build

them out as you need them. Be very lean as you create them

Testable UI

Far too many systems are built without testability in mind.

Architecture and coding design decisions impact testing at both

the system and UI layers. System-level testability requires specific

architecture and design decisions. Testability at the UI layer can be a

much simpler matter of adding in good element IDs where possible.

Some web technologies such as Ruby on Rails add ID attributes to

elements by convention. Nearly every web stack from Rails to ASP.

NET WebForms makes adding IDs to regular elements a snap.

Additionally, developers and testers working closely together can

easily solve problems such as dynamically generated IDs that hinder

testability—or don't render them at all.

For example, Telerik® Kendo UI® has a Grid control that doesn't

include IDs by default:

http://www.telerik.com

25 A PUBLICATION OF CONTENTS

It's easy to add a bit of JavaScript to the Grid's definition, to create

useful IDs that include data unique to each record:

dataBound: function(dataBoundEvent) {

var gridWidget = dataBoundEvent.sender;

var dataSource = gridWidget.dataSource;

$.each(gridWidget.items(), function(index, item) {

 //use next three lines for html ID attrib

 // with custom ID of database ID + lname

 var uid = $(item).data("uid");

 var dataItem = dataSource.getByUid(uid);

 $(item).attr("id", dataItem.Id + "-" + dataItem.LName);

 //Use this line to show html ID attrib with row #

 //$(item).attr("id", index);

});

$(".k-grid-add").attr("id", "create_btn");

},

Now the Grid's records each have a unique ID composed of the

identifier from the database, plus the last name of the person

on the row.

This approach is obviously specific to this example; however, that's

the beauty of this approach. Use your tools at hand to solve the

specifics of the situation you're encountering. Maybe your IDs need

part numbers, zip codes or something else. That's fine! Construct

them as needed to get testable pieces in place.

A final piece about testable UI: You're not limited to just ID or other

attributes. There are all sorts of things you can add to the UI to help

testing. Think of flags you can add to handle complex asynchronous

or queuing actions.

http://www.telerik.com

26 A PUBLICATION OF CONTENTS

For example, the image below shows a new element being added to

the page after a Create action completes. This gives you something

additional to “latch” onto when an action is complete.

This particular example is again in Kendo UI as a new method in the

control's DataSource definition:

requestEnd: function (e) {

 var node = document.getElementById('flags');

 while (node.firstChild) {

 node.removeChild(node.firstChild);

 }

 var type = e.type;

 $('#flags').append('<div responseType=\'' + type + '\'/>');

},

While this example is specific to Kendo UI suite, again the underlying

concept is the same regardless of the technology stack you're using.

Surviving Legacy UIs

All this discussion about modifying the UI to be more testable is

wonderful, but what about when you're stuck with a UI that can't be

changed? Maybe it's a legacy system that's got limited maintenance.

Perhaps it's something built on top of a third-party system or

platform, say SharePoint, Sitecore, or Orchard.

In those cases, you'll need to work hard to learn flexible approaches for

building locators that work with the system/stack/platform you're using.

In many cases, you'll find yourself having to fall back to locators based

on convoluted XPath or JQuery selectors. Evaluate those locators as

carefully as possible to ensure you're using the best locator possible.

Please note I specifically said “...the best locator possible.” In many

situations you won't be able to get a perfect selector. In those cases,

you'll need to become adept at using combinations of things such

as IDs, CSS classes, name and other attributes, plus some XPath to

scope down to what you need.

InnerText remains one of my favorite locator strategies, because it

enables you to find things such as table rows using data that should

be in that row. It's also very handy when you're simply not able to find

other usable locator strategies.

http://www.telerik.com

27 A PUBLICATION OF CONTENTS

Remember: Take the Long View!

Success in software, regardless of whether you're writing

multithreaded database transactions or user interface functional

automated tests, is all about the long view. Of course you have to

write tests that are solid, high-value and correct, but you absolutely

have to keep your eye on how useful those tests will be over time,

and how costly they'll be to maintain.

Work hard to keep your tests simple, concise and flexible. Make use

of the suggestions we've laid out here.

http://www.telerik.com

28 A PUBLICATION OF CONTENTS

As you move through (or finish!) your first project, you should be

looking to get as much feedback as possible. Constant feedback and

learning is vital to any organization. It's especially important when

you're diving into a brand-new approach to delivering your software.

Are You Solving The Right Problems?

First and foremost, go back and ensure you're actually contributing

value to solving the problems you decided you needed to address.

Have your automated tests help shorten your release cycle? Are you

better able to handle your cross-browser/cross-device testing?

Most importantly, do your stakeholders and sponsors feel they're

getting better information that helps them make more informed

decisions? Remember: your automation work (all work, really) should

be tied directly back to concrete business value in some form

or another.

Chapter Seven
IMPROVING ON YOUR SUCCESS

Gathering on Feedback

There are many ways to gather feedback. I've found retrospectives

are the best, easiest method to implement.

Retrospectives

Retrospectives take many forms and can be run many different ways.

Esther Derby's and Diana Larsen's Agile Retrospectives is a great

resource on how to run retrospectives. The Art of Agile Development

from James Shore and Shane Warden has a terrific section on

retrospectives we've used as a template for many organizations.

Regardless of how you run your retrospectives, you'll be gathering

up concrete, actionable topics to address. Many of those may be

negative issues; that's fine. Of course you'll find things to improve

upon. Hopefully, you'll also find positive things you can do more of.

Make Sure Support is in the Loop

Early on I mentioned the importance of involving your support

team in identifying addressable problems. Keep them looped in!

http://www.telerik.com
http://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=sr_1_1?ie=UTF8&qid=1427817430&sr=8-1&keywords=agile+retrospectives
http://www.amazon.com/Art-Agile-Development-James-Shore/dp/0596527675/ref=sr_1_1?ie=UTF8&qid=1427817458&sr=8-1&keywords=art+of+agile+development

29 A PUBLICATION OF CONTENTS

Make sure you're talking regularly with your support team, to see if

there are aspects of your system you need to shore up with other

UI automation. (The best thing, frankly, would be to have support in

your retrospectives.)

Take advantage of your support team’s role as the frontline contact

with disgruntled, upset customers having problems with your system.

Not only will you get great information from them to put back into

your feedback loops, you'll also help ensure they're feeling validated

and understood.

Sharing Feedback

It's not enough to simply identify what you should be doing more

or less of; you need to share lessons learned as widely as possible.

Getting information out to various teams can be challenging, no

matter the organization's size. Look to leverage as many different

communications channels as possible.

Team Lunches

If your team isn't already, start regular “lunch-and-learn” or "brown

bag" sessions during which your team can discuss problems, share

resolutions they've learned or simply brainstorm different approaches.

These shouldn't be overly formal meetings. Keep them casual, but try

to get some rough agenda a day or two ahead—asking participants to

put Post-It notes on a board to share their ideas is perfect.

Build a Knowledge Base

Get your lessons learned, code snippets and solutions to problems

in some form of searchable, preferably editable online system. Use

a Wiki or an organizational Evernote account, but use something!

Don't spend your time building something custom—there are far too

many products already available.

These knowledge-base articles should cover topics such as how your

UI automation project is set up, what it takes to build/run/maintain tests

and how to solve particular challenges in your system. Have some tricky

asynchronous actions? Write an article explaining how you resolved

that. Did your developers build an API helper to handle custom queuing

that locks the UI? Write an article talking about how to use that method.

Trumpet Your Successes

At this point, you’ve likely made some significant progress toward

solving the problems you identified at the start of your effort.

Don't sit on those successes; spread the word to the rest of your

organization so they'll adopt and adapt the approaches you've used.

Get five or ten minutes on the agenda at organizational and cross-

departmental meetings. Or, write some short articles for a company

newsletter. Don't dive too far into the weeds; just set the hook. Your

true purpose is to get people outside your team coming to visit or

talk with you. You want curious co-workers to see the improvements

you've made, as well as some of the struggles you've gotten through.

http://www.telerik.com

30 A PUBLICATION OF CONTENTS

Are the Stakeholders Happy?

It's important to make sure your stakeholders approve of the time,

effort and money you're investing in your UI automation suites.

Are they seeing more useful information regarding the state of the

system? Are they able to make better decisions about when to

release and when to hold back?

If the answer's “yes,” your effort has been well placed!

Keep Working, Keep Learning

We hope you've found this handbook helpful and a great use of

your time. Our intent hasn't been to lay out “best practices” (THERE

ARE NONE!) or specific answers to specific problems. Every team's

situation is different environmentally, technically and culturally.

Instead, we've tried to lay out broad guidelines that are common

across every UI automation project we've worked on:

• Be positive about your work: invest the time to clearly state the

problems you're trying to solve

• Do the hard up-front work of planning and setting

expectations

• Use pilots or spikes to quickly validate and adjust your plan

• Jump in and get building your tests, focusing on high-value

cases

• Be disciplined about constantly refining your approaches

through constant feedback

• Most of all, never stop learning and adjusting

Teams all over the globe have had tremendous success in UI

automation, despite its myriad challenges. Your team certainly can be

among those!

http://www.telerik.com

31 A PUBLICATION OF CONTENTS

Jim Holmes
Executive Consultant at Pillar Technology

Jim is an Executive Consultant for Pillar Technology. He’s also

the owner/principal of Guidepost Systems. He has spent time

in LAN/WAN and server management roles, as well as many

years helping teams and customers deliver great systems.

Jim has worked with organizations ranging from startups to

Fortune 100 companies, to help them deliver better value to

their customers. Jim has been in many different environments

but greatly prefers those adopting practices from Lean and

Agile communities.

Telerik Test Studio

Test Studio is a powerful test automation tool that helps you

create maintainable test suites for a wide range of platforms and

browsers. It inspires testers and developers to collaborate on

building high-value test automation and increase team velocity.

www.telerik.com/teststudio

ABOUT THE AUTHOR

Watch video

http://www.telerik.com
https://www.youtube.com/watch?v=TcX-wJSl0IU

	Chapter Two
Before You Start
	Chapter One
Introduction
	Why Automate?
	Do You Have the Environment to be Successful?
	Chapter Three
People

	Getting or Growing the Right People
	Building UI Automation Skills
	Your Team's Worth the Investment
	Chapter Four
Resources

	Development/Test Systems
	Build/CI Server
	Execution Agents
	System Under Test
	Leveraging Resources to Their Utmost
	Moving Forward
	Chapter Five
Look Before You Jump

	How's Your Process?
	Clarify Expectations
	Start With a Pilot
	Practical Flow: Putting Concepts
to Work
	Learning from the Pilot
	Chapter Six
Automation in the Real World

	Developer Tester Pairing
	Maintainable Tests
	Backing APIs
	Testable UI
	Surviving Legacy UIs
	Remember: Take the Long View!
	Chapter Seven
Improving on Your Success

	Are You Solving The Right Problems?
	Gathering on Feedback
	Retrospectives
Retrospectives take many forms and can be run many different ways. Esther Derby's and Diana Larsen's Agile Retrospectives is a great resource on how to run retrospectives. The Art of Agile Development from James Shore and Shane Warden has
	Make Sure Support is in the Loop
Early on I mentioned the importance of involving your support team in identifying addressable problems. Keep them looped in! Make sure you're talking regularly with your support team, to see if there are aspects of your sy

	Sharing Feedback
	Team Lunches
If your team isn't already, start regular “lunch-and-learn” or "brown bag" sessions during which your team can discuss problems, share resolutions they've learned or simply brainstorm different approaches. These shouldn't be overly formal mee
	Build a Knowledge Base
Get your lessons learned, code snippets and solutions to problems in some form of searchable, preferably editable online system. Use a Wiki or an organizational Evernote account, but use something! Don't spend your time building som
	Trumpet Your Successes
At this point, you’ve likely made some significant progress toward solving the problems you identified at the start of your effort. Don't sit on those successes; spread the word to the rest of your organization so they'll adopt and
	Are the Stakeholders Happy?
It's important to make sure your stakeholders approve of the time, effort and money you're investing in your UI automation suites. Are they seeing more useful information regarding the state of the system? Are they able to make

	Keep Working, Keep Learning

