
5 HIDDEN COSTS 
OF USING SELENIUM

www.telerik.com/teststudio


A publication of 2 Share this article

CONTENTS

Introduction ............................................................................................................................................3

Comparison chart ............................................................................................................................ 4

Comparison chart (continued) ..............................................................................................5

Hidden costs ........................................................................................................................................ 6

Multi-browser support .................................................................................................................7

Maintainability, the largest cost of automation..................................................... 8

Maintainability (continued): reuse of components ..........................................10

Customize in code .......................................................................................................................... 11

Setup and configuration    ......................................................................................................13

Setup and configuration: execution agents ........................................................... 15

Reporting .............................................................................................................................................. 16

Parallel execution ............................................................................................................................17

Training and consulting ............................................................................................................ 18

Dedicated support ........................................................................................................................ 19

Closing ...................................................................................................................................................... 21

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Teams starting functional user interface (UI) test automation often prioritize 
free tools—such as Selenium IDE or Selenium WebDriver—ahead of paid 
counterparts, presuming that open source software means a free project. While 
both Selenium IDE (SIDE) and WebDriver are indeed free to use, it’s a mistake 
to assume a free tool yields no additional adoption costs.

This whitepaper will provide insight into some of the hidden costs testers 
encounter when working with Selenium IDE or WebDriver. It will also offer 
comparisons with Telerik Test Studio to help you understand why upfront 
costs should not be your sole evaluation criteria.

What's Selenium IDE?

Selenium IDE (SIDE) is a tool for recording and playing back web automation 
tests. It’s a plugin for Firefox that enables users to capture actions in the 
browser, perform various actions and make assertions on the state of the       
web page.

SIDE saves tests in HTML files, and can export tests to a number of different 
languages, including Ruby, C#, Python and others. Selenium IDE only works in 
Firefox, so it’s a single-browser tool.

SeleniumHQ, the home organization for all things Selenium, specifically 
recommends SIDE as a tool for documenting bugs and handling one-off 
scripts as part of other manual test efforts. Unfortunately, its strengths and 
weaknesses are often misunderstood, leading to misuse in an effort to create 
large automation suites.

What's Webdriver?

Selenium WebDriver (often just “WebDriver”) is the latest incarnation of          
the open source Selenium web automation driver. WebDriver is explicitly a 
driver, not a framework. Automation drivers interface with browsers, while 
frameworks provide some form of grammar-based interface over the code used 
for the actual browser manipulation.

WebDriver is a 100% coded automation solution. It is available for many popular 
languages including Java, Ruby, C# and VB.NET, Python and others. WebDriver 
also supports playback on several different browser types.

What's Telerik Test Studio?

Telerik Test Studio is a set of tools to help teams quickly create stable, 
maintainable, high-value automated test suites. Test Studio provides recording 
and playback of scripts on Chrome, Safari, Firefox and Internet Explorer. 
Additionally, Test Studio allows testers to extend or customize tests with C# or 
VB.NET as desired.

Test Studio enables you to create automated tests for all web applications, 
Silverlight and desktop applications written in WPF. Additionally, mobile testing 
for iOS and Android is available through the Telerik Platform, a separate set of 
Telerik services.

3 Share this article

INTRODUCTION

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Selenium IDE                     
Free/Open Source

Selenium WebDriver               
Free/Open Source

Telerik Test Studio            
Starts at $119/month

Setup and Configuration

Build/Scheduling Server 3rd party integration 3rd party integration YES 
Out of the box

Execution agents 3rd party integration 3rd party integration YES 
Out of the box

Scheduling 3rd party integration 3rd party integration YES 
Out of the box

Reporting 3rd party integration 3rd party integration YES 
Out of the box

Creating and Running Tests

Multi-browser support
Record and playback in Firefox 

only

No recorder. Playing back on 
multiple browsers requires careful 

code constructs.

YES 
Out of the box

Customize and extend tests 
with code No

No recording. Customization/
extensibility by default since 

WebDriver is 100% code.

Start with a recording, customize 
and extend in C# or VB.NET (or 

write 100% code if you want!)

Parallel execution 3rd party integration 3rd party integration YES 
Out of the box

4 Share this article

COMPARISON CHART

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Selenium IDE                     
Free/Open Source

Selenium WebDriver               
Free/Open Source

Telerik Test Studio            
Starts at $119/month

Maintainability

Centralized storage of 
locators

No. Element locators duplicated 
in every test across the entire 

test suite.

Yes. Must write code that follows 
Page Object Pattern or similar 

approach.

Yes. Test Studio uses Page 
Object Pattern out of the box.

Reuse of tests/modules No Yes. Must design well-crafted tests 
and software.

Out of the box. Must design well-
crafted tests and software.

Training and Support

Adoption Training Through 3rd party providers Through 3rd party providers
Multiple options directly from 

Telerik

Support
Through community or 3rd 

party providers
Through community or 3rd party 

providers
Multiple options directly from 

Telerik

5 Share this article

COMPARISON CHART (CONTINUED)

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Open source software tools like SIDE or WebDriver are free; however, there are 
still costs associated with adopting “free” software. Make sure you understand 
what those hidden and not-so-hidden costs are, so you won’t be surprised later. 

6 Share this article

HIDDEN COSTS

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Selenium IDE only works in Firefox. If you’re using SIDE you’re strictly limited to 
that browser both for recording and playback.

WebDriver is a 100% coded automation tool, so there’s no recorder. 
Playback is a different matter, though. WebDriver has various browser 
implementations, including Internet Explorer, Firefox, Safari, Chrome and 
headless (no browser) through HtmlUnitDriver. There are also drivers for iOS 
and Android which enable both native application and mobile browser testing 
on those platforms.

One must follow careful software design practices when creating a WebDriver 
test suite supporting multiple browsers. Because WebDriver tests are 
implemented purely in code, you’ll need to handle proper levels of 
abstraction and interface implementation in your test suites. Generally, 
this is accomplished through some form of a factory helper with configuration 
options passed in through your build/execution environment. This isn’t as hard 
as handling multi-threading concurrent database transactions in code, but it’s 
not trivial. Your automation team may not have the appropriate skills to 
understand how to build this out in a flexible, maintainable fashion.

Telerik Test Studio

While Selenium IDE supports only Firefox, and WebDriver requires additional 
code to support multiple browsers, testing across Firefox, Safari, Chrome and 
IE in Test Studio is a snap. You can quickly record tests in any browser and 
playback tests across multiple browsers—either individually or in test lists—
by using easily accessible options. No need to dive into code to manage your 
browsers—although you certainly can if you want to.

Why do I need it?
GET BETTER TEST COVERAGE WITH SUPPORT FOR MULTIPLE BROWSERS

Gone are the days when web sites could, with a straight typeface, say “Best viewed in <fill 
in browser type here>.” If Internet Explorer had the lion share of internet users back in 2004 
(91.35% vs. 3.66% for Firefox, and 2.09% for Netscape), users these days feel free to bounce 
between Chrome (43.92%), Safari (9.14%), Firefox (18.95%), Internet Explorer (23.24%) and 
various mobile browsers (23.41%) [Source: NetMarketShare]. 

Moreover, your users will likely be spread across many versions of each of these browsers. 
Consequently, your test tool needs to help cover your browser test matrix as efficiently                   
as possible.

7 Share this article

MULTI-BROWSER SUPPORT

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Because Selenium IDE stores element locators in each step of the test, 
you must interact with the one element every time the locator is defined 
in a different place—if it’s 50, that’s 50 locations. This produces a serious 
maintainability issue because of the duplication involved.

WebDriver’s locator storage is completely up to the developer writing the 
tests. As with system software, you can get well-designed software that’s a joy 
to deal with, or a horrible mess of spaghetti code that’s impossible to unravel 
when it comes time to make changes.

Because WebDriver is 100% code, one should follow good development 
practices and implement the Page Object Pattern. The hard fact is that far too 
many workers in the UI automation space either don’t know about the Page 
Object Pattern, or are in environments where they’re not empowered to follow 
such an advantageous practice.

Why do I need it?
MAINTAINABILITY IS ESSENTIAL TO DELIVERING ON TIME                              
AND ON BUDGET

It’s critical to approach your automation efforts with maintainability in mind. Creating 20 
small tests is one thing, maintaining those 20 tests over time as your system changes is 
a horse of a different color. This is especially true as you grow your test suites through 
hundreds or thousands of tests. 

Automation tools should help you focus your valuable time and budget on creating valuable, 
scalable and maintainable test suites that don’t drain your team’s time and energy with 
constant maintenance. Understanding how your tools can keep your team focused on their 
best value contributions is a critical factor to consider when selecting a testing tool.

WHAT IS A CENTRALIZED ELEMENT STORAGE

Element locator definitions are the most critical aspect of a successful automation effort. 
You have to understand both how locators work in the system you’re building, and how the 
testing tools store those locators.

Careful storage of your element locator definitions is crucial to the maintainability of your 
test suites. Your system under test will change its UI. You’re in for a world of pain if your 
locator definitions are duplicated and scattered across each test as 60 or 300 duplicated 
definitions will need updating when two or three elements on a page change their location.

Several alternatives for good locator storage have evolved recently; however, the Page 
Object Pattern has been the clear winner for the last several years.

Abstracting locator definitions out to a single page object is a tremendous approach 
with huge benefits for test maintenance. When, not if, your application changes, you 
simply go to one place to fix your locators. Every test impacted by those UI changes is 
automatically updated since they don’t define those locators, but instead, refer to them via                        
the page object.

8 Share this article

MAINTAINABILITY, THE LARGEST COST OF AUTOMATION

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Test Studio

We’ve seen that SIDE duplicates your element definitions every time you 
reference an element, and we’ve also seen that keeping good definitions in 
WebDriver means you’ll need to carefully follow the Page Object Pattern 
or another design approach. On the other hand, the Test Studio element 
repository handles centralized storage of element locators for you right out-
of-the-box. The element repository is a variant of the Page Object Pattern 
previously mentioned. Locators are stored by page in the repository with no 
duplication at all. The repository is the single point for updating locators as 
your system evolves.

Test Studio recorders create the repository as you build your tests. You can 
easily update locator definitions if you need to adjust find logic. 

When your system’s UI changes, head to the element repository and update 
the impacted elements. You’ll see those updates reflected in every test that 
references that element—the beauty of centralized storage in action.

Another terrific benefit of the element repository is that it’s available for tests 
not only through the UI, but also directly in code. Extend tests while still 
making use of the centralized definitions in the element repository. Changes 
to elements in the repository updates regular steps, as well as actions and 
references in code.

9 Share this article

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Selenium IDE does not support reuse of tests as blocks. You can string 
things together in a series of small test cases, but you’re not able to do complex 
flows based on smaller modules.

Component reuse in WebDriver is completely dependent on following good 
design and construction principles as you evolve your suite. Because you’re 
writing 100% code, it will be up to you to compose a complex test scenario by 
pulling in modules, classes, methods and other constructs from other areas of 
your test suite.

Telerik Test Studio 

Unlike Selenium IDE, Test Studio supports reuse of tests across your test 
suite right out-of-the-box. You’re able to create small tests which can be data 
driven (parameterized) or otherwise flexibly configured. Pull those into larger 
tests to avoid duplicating functionality in multiple places.

With Test Studio, not only can you re-use recorded steps multiple times, you 
can also reuse any coded extensions or customizations you’ve created.

Why do I need it?
REUSE OF COMPONENTS

Now it’s time to turn to the structure of the tests themselves. Good software is based 
on eliminating duplication (see the DRY principle), eliminating complexity and carefully 
designing blocks of tests so they focus on doing one thing really well (see SRP).

All these design tenets ease your creation and maintenance costs, but also lead to something 
wonderful: reuse of components of your test suite. By building small, carefully crafted tests, 
you will be able to compose larger tests by reusing the small blocks already built. Avoid 
having to repeatedly duplicate functionality. 

Think of common tasks like logging onto a system or creating a blog post. Each of these can 
be used as a smaller part of a larger scenario. Reuse drastically cuts maintenance costs and 
improves the speed at which you create larger test suites. Having an automation test toolset 
that enables you to do this is critical to your long-term success—and sanity.

10 Share this article

MAINTAINABILITY (CONTINUED): 
REUSE OF COMPONENTS

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Those working with Selenium IDE, will not be able to leverage any code to 
help with the tasks listed above. SIDE does support invoking JavaScript, but 
it’s in the context of the page’s DOM and the current browser. Getting to your 
system for configuration, setup or test oracles will be a major challenge at best, 
impossible at worst.

WebDriver doesn’t give you the productivity benefits of a recorder, so 
you’re already in 100% code. Consequently, you’ll be able to create and use 
backing APIs, infrastructure, helper methods and all the other things that 
make great software so advantageous. Of course, you’ll need to follow solid 
software craftsmanship principles to ensure you’re creating all that code in a         
sustainable fashion.

Why do I need it?
EXTENDING TESTS WITH CODE FOR BETTER TEST COVERAGE

Test recorders provide a great productivity boost when creating your tests; however, every 
significant automation project will require some level of code-level effort. Stable, reliable, 
maintainable automation suites rely on code for a number of critical tasks:

• Set up and teardown tasks (creating new users, test data, etc.)

• System configuration (shut off unneeded features like CAPTCHA, rich text editors, etc.)

• Environmental tweaks (loading baseline data, flushing or loading cache, etc.)

Code isn’t just for major actions like these. You’ll also need to leverage code for situations 
unique to your own application. Do you have situations with multiple concurrent AJAX 
operations? One way to handle synchronizing or latching for those situations is a coded step 
dealing with your application’s particular needs.

Moreover, a good automated test will use some form of heuristic or test oracle to check a 
test’s true state. Simply checking that your UI reflects that you’ve created or updated an 
item is not a good enough test. You need to look at your system’s persistence layer to ensure 
the database (or whatever) was correctly updated. The only way to accomplish these oracles 
is to drop to code and talk directly to web services, stored procedures or internal APIs.

Finally, the ability to mix code together with your recorded steps enables your teams to 
work as efficiently as possible. Testers can quickly record tests, update locators if needed, 
and then collaborate with developers for creating code where needed. Developers can focus 
on writing APIs, configuration steps, etc., and testers can get great test cases designed and 
started. Both roles can leverage skills in areas playing to their strengths

QA Dev

11 Share this article

CUSTOMIZE IN CODE

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Test Studio

Selenium IDE doesn’t do code, WebDriver forces you to write all code. One of 
the major advantages of Test Studio is in bridging the gap between a pure 
test recorder like Selenium IDE and pure code solutions like WebDriver. 
Test Studio enables testers to quickly design and maintain tests through 
recording, then pass them over to developers via source control to assist with 
more complex, edge-case scenarios. Easily call out to a stored procedure 
or web service to initialize the system, invoke a helper method to shut off 
CAPTCHA or include a library of already built infrastructure features. Need to 
create a set of utility classes yourself? Do it right inside Test Studio standalone, 
or use the Visual Studio plugin. 

Dev

QA
Standalone

VS plug-in

12 Share this article

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

If you’re using SIDE or WebDriver, you’ll need to find your own build/scheduling 
server. If your organization has no build server, then you’ll need to begin the 
process to get one in place: authorization, evaluation, set up and configuration, 
gaining server proficiency, etc.

Why do I need it?
RUNNING YOUR TESTS

To run your automation suite, you’ll need some form of an execution environment.        
Execution environments are responsible for pulling your test suite out of source control, 
compiling it and invoking whatever routines are involved with making the test suite           
actually run.

Generally speaking an execution environment involves some form of a build or scheduling 
server to handle the steps above, as well as execution agents to run the test suites on       
target systems.

BUILD/SCHEDULING SERVER

Build servers are the task masters of your automated software delivery chain. They sit 
at the center of your execution environment and are responsible for triggering software 
builds or invoking test suite runs.  They of course do quite a bit more, but that’s a topic for                 
another whitepaper.

Build servers are usually able to interface with your organization’s source control repository 
to retrieve the latest version of your tests. They also handle test runs scheduled at specific 
intervals or times.

Requirements

Executional
Agent

Executional
Agent

Executional
Agent

Selenium IDE
WebDriver
Selenium RC
Java
Build Server
Reporting Database

Reporting Source Control

Build
Server

13 Share this article

SETUP AND CONFIGURATION   

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

If you already have a build server in place, then getting your automation suite 
running is a matter of coordination. You’ll need to work with the build server 
owners to get the right tools and frameworks in place, and then define your 
execution jobs. Note that few build server systems let end users create new 
tasks. That’s usually reserved for build server administrators.

One critical aspect to understand about running WebDriver tests: WebDriver 
will not run your tests automatically. It is a browser driver, and as such 
WebDriver only interacts with the browser. You’ll need to wrap all your 
WebDriver code in a separate framework that will manage test execution          
and output. 

Test Studio

With Test Studio, you don’t need to worry about finding or setting up other 
products to handle your execution. Test Studio ships with a completely 
integrated centralized storage and scheduling server that handles all build 
execution and scheduling chores for you. After installation, you can connect to 
the server and define your own execution/scheduling tasks. In fact, every tester 
can schedule their own test list runs, meaning no more bottlenecks waiting for 
the over-burdened build server admin.

Unlike WebDriver, with Test Studio you don’t need to worry about extra 
frameworks, plugins or complex configuration steps to get your test suites 
running. Just define the tests you want, and run when ready—voila! Plus, if 
you already have a build server in place, by all means keep it. Test Studio will 
integrate seamlessly with any Windows-based build server. 

14 Share this article

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

As mentioned in the section on build servers, Selenium IDE and WebDriver 
don’t run themselves. You need other toolsets to handle executing suites for 
those. This includes execution agents. Neither SIDE, WebDriver, nor the 
frameworks used to wrap them, offer any form of execution agent.

Telerik Test Studio

Test Studio offers execution agents with simple and complete integration. 
Runtime agents can be added into your environment as needed to help you 
scale test suites and address combinations of operating systems and browsers. 
Test Studio scheduling and storage services have out-of-the-box support for 
building substantial grids of execution agents to meet your testing needs.

Why do I need it?
EXECUTION AGENTS TO SCALE OUT AND SPEED UP YOUR TESTING

Execution agents work in conjunction with your build server to execute the tests you’ve 
created. Agents are installed on client systems and perform tasks for the build server. 
Execution agents help you scale your environment to speed up test execution, and are 
also used to help flesh out testing coverage on different operating systems, browsers                
and devices.

Often these client systems run in a virtualized environment, either at the organization, or 
hosted somewhere in the cloud. Agents may also run on mobile devices, such as phones or 
tablets. Execution agents receive tasking from the build server, perform those tasks, and 
then report status back to the build server.

Run-time

Visual Studio plug-in

15 Share this article

SETUP AND CONFIGURATION: EXECUTION AGENTS

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Neither Selenium IDE nor WebDriver offer any reporting features. To be 
fair, neither was intended to. Instead, the communities building those tools 
expect the toolset/environment executing your test automation suite to                          
handle reporting. 

If you want advanced reporting (trends, test state, archiving, etc.), you will either 
need your build/CI server to support it or find an additional system to provide 
the reporting you need.

With reporting in mind, you’ll need to get your build/CI server to recognize the 
output of the framework you’re executing WebDriver within. Most CI servers 
natively understand output from the most popular frameworks. However, on 
occasion you will need to create an intermediary transformation step between 
the framework and your server.

Why do I need it? 
REPORTING: SHARE STATUS AND SPOT ISSUES

How’s the state of your application? Are your tests passing or failing? What do the trends 
look like? Is there a particular configuration or environment causing your system not to 
fare well? You need reporting to answer these questions and provide stakeholders the 
information they’re looking for.

Telerik Test Studio

Test Studio has a rich reporting environment straight out-of-the-box. 
There’s no additional integration to configure between a framework, execution 
environment and the reporting components. Test suites run, you get 
reports—it’s that easy. You can even have summary information automatically                 
e-mailed out.

Current state, historical trends, and specific status details are all just a click or 
two away. It’s easy to get the information you need to convey to your projects’ 
stakeholders and customers.

16 Share this article

REPORTING

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Both Selenium IDE and WebDriver require careful set up to support parallel 
execution. First, you’ll have to use a testing framework that supports test suite 
parallelization. Some popular test frameworks such as NUnit flat don’t support 
parallel execution, so you may encounter some limitations.

Second, your build infrastructure will have to support distributing tests for 
parallel execution. Your build system has to be capable of splitting out a test 
suite, marshaling it amongst the various agents, receiving multiple status 
streams back and finally stitching results from those parallel streams back into 
one coherent report.

In short, parallel execution is less about SIDE and WebDriver, and more about 
the toolsets you’re using to run them in. As always, you still need well-designed 
tests for things to flow smoothly.

Telerik Test Studio

Distributing your test lists for parallel execution in Test Studio is simple: Install 
your execution agents, then check one box when running or scheduling your 
test lists. Test Studio will automatically split your tests across all available 
execution agents. Tests will run in parallel, and you’ll then get all status 
reports automatically stitched back together. Be sure to carefully construct your 
test lists so there are no dependencies or side effects.

Why do I need it? 
PARALLEL EXECUTION TO SPEED UP TEST CYCLES

Let’s face it: functional testing at the user interface layer is slow. It’s simply the nature of 
the beast—you’ve got to fire up a browser, feed it commands and wait for the browser to 
navigate and perform its actions. This will never be as fast as well-written unit tests. Ever. 

As a result, large UI automation suites can easily take tens of hours to run. It’s not uncommon 
to have huge suites that might take 15, 25 or more hours to finish executing in serial. 

This is a significant problem because teams should always strive for quick, short feedback 
loops. Waiting overnight or over the weekend to discover regressions has a serious impact 
on your team’s cost of delivery.

Splitting out test suites to run in parallel requires some careful work. First, you must ensure 
you have well-designed tests with no interdependencies or side effects. Since you can’t 
be sure what order your tests will run in, you’ve got to be sure tests won’t interfere with 
each other. Second, you need infrastructure that will handle splitting your test suites and 
distributing them across supported execution agents. That infrastructure must also handle 
monitoring the agents and assembling test status reported back from them.

17 Share this article

PARALLEL EXECUTION

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Finding trainers and coaches for SIDE and WebDriver can take some tricky 
searching. You’ll need to find training providers or consultants able to meet 
your needs, but securing qualified, experienced coaches can be difficult. Only 
engage trainers who’ve done practical field work, and have experience solving 
real problems on complex systems.

Telerik Test Studio

Telerik Test Studio trainers and consultants are test automation experts with 
a wide range of practical experience. As experts in several toolsets—not just 
Test Studio—you can get help transitioning away from SIDE or a struggling 
WebDriver effort into a solid, valuable path with Test Studio.

Moreover, Telerik has a number of helpful training offerings. Online training will 
help you quickly get rolling, while experts onsite at your organization can be 
part of a focused effort to get your automation smoothly integrated into your 
overall software development process.

We also can help get your implementation work done. Telerik experts can 
dive in to help you rectify struggling efforts, or simply assist in getting your 
automation scripts built and running smoothly.

Why do I need it?
TRAINING AND CONSULTING FOR SOLUTION ADOPTION

Even with great tooling, getting a great automation suite in place is a hard effort. That’s 
especially true with teams new to creating functional UI tests. It’s a difficult problem space, 
and lessons and approaches from one situation often don’t apply to the next.

Teams new to this sort of testing should be looking for some help and guidance. Inviting 
a qualified trainer and coach to help the team can be a tremendous boon, both to begin 
on the right foot, and later as a follow-up resource as the team works their way up the            
learning curve.

18 Share this article

TRAINING AND CONSULTING

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

SIDE and WebDriver

Because Selenium IDE and WebDriver are open source, there is no single 
authoritative organization to go to for help. The Selenium community is full of 
people with expert-level knowledge, but how do you engage them? How do 
you find them to have a conversation? How can you be sure you’re getting 
good information that will sustain you over time versus a hacked together 
“quick and dirty” solution that’s already falling apart at their organization?

There is deep expertise in the Selenium community, with conferences 
and mailing lists specific to SIDE and WebDriver. But will you be able to 
reach someone quickly when your delivery chain is falling apart due to                   
broken UI tests?

Why do I need it?
GET YOUR TESTING DIFFICULTIES RESOLVED IMMEDIATELY

Face it: you will need help at some point in your automation effort. You’ll be unable to         
figure out the proper element to latch onto during an asynchronous AJAX call, or get stuck 
solving how to find a node element in a dynamically generated tree control. Maybe it’s a 
larger problem, like trying to figure out why your build server isn’t pulling the latest versions 
from source control, or your test lists aren’t scaling out properly. 

At some point your new-to-automation team will need to track down experts. Guaranteed.  
So how do you go about that?

19 Share this article

DEDICATED SUPPORT

http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Test Studio

Telerik support is known, respected and outright loved across the industry. 
Telerik support teams regularly win awards for customer satisfaction, and are 
readily available to help you work through problems you encounter. Additionally, 
the guidance you’re getting is coming from product experts with years of 
experience working with the toolset in a number of complex environments.

Moreover, there are a number of support channels to get you the right help        
you need:

•	 Professional support channels with quick turnaround times. Open a ticket 

from your Telerik.com account—or directly from within Test Studio—and 

you’ll get speedy responses.

•	 Live, personal support calls. Telerik offers Test Studio customers direct, 

personalized support channels. You can arrange calls directly with our 

support staff for quick, expert help right away.

•	 Hosted forums where a vibrant community of Telerik users hang out and 

discuss issues. These forums are monitored by Telerik support staff who 

chime in daily with responses and guidance.

20 Share this article

http://www.telerik.com/
http://www.telerik.com/
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20


A publication of

Selenium IDE and WebDriver are tools for functional testing that are well-suited 
to specific cases and can help teams deliver good software.

While free, it’s important to remember there are still significant costs associated 
with using either as your solution for the critical functional testing required as 
part of your value delivery chain.

The Telerik Test Studio subscription pricing model offers an extremely cost-
effective solution to help you create powerful, low-maintenance test suites that 
will easily grow and adapt to changes in your system. You’ll deliver better tests 
more quickly, and with more value in the long run.

Ready to give Telerik Test Studio a try? Download your free 30-day evaluation 
copy now.

About the author

Jim Homes is the Developer Advocate for Telerik Test Studio, a complete 
testing solution that helps teams deliver better software. He is co-author of 
“Windows Developer Power Tools” and Chief Cat Herder of the CodeMash 
Conference. Find him as @aJimHolmes on Twitter. 

Download trial

21 Share this article

CLOSING

http://www.telerik.com/
https://plus.google.com/102803040683762260073
www.telerik.com/teststudio
https://twitter.com/aJimHolmes
http://www.telerik.com/download/teststudio
http://tlrk.it/1crLSU8%20
http://tlrk.it/1d1drXU%20

	CLOSING
	Dedicated Support
	Training and Consulting
	Parallel Execution
	Reporting
	Setup and Configuration: Execution agents
	Setup and Configuration   
	Maintainability (continued): Reuse of Components
	Maintainability, the largest cost of automation
	Multi-browser support
	Hidden Costs
	Comparison Chart (Continued)
	COMPARISON CHART
	introduction
	Customize in Code

