

page 1 of 9

Building a RibbonBar for Your Application

This article will discuss the Ribbon interface and techniques for effectively using a RadRibbonBar
in your applications. First, this article will discuss the Ribbon interface: a brief history of the
Ribbon, why the Ribbon is an effective interface for your applications, and what elements make
up a Ribbon. Next, this article will move onto strategies for creating an effective interface using
the Ribbon interface.

What Is the Ribbon?
For Microsoft Office 2007, the UI engineers at Microsoft created a new interface to replace the
existing menu structures in most of the Office applications; Outlook still uses the older menu
structures in the main Outlook application, but uses the new interface when the user is composing
e-mail. This new interface makes it possible to greatly reduce the number of mouse clicks, and
was the result of research to make mouse usage more effective. telerik’s RadRibbonBar is a
third-party control that lets you build your own Ribbon interface.

The RadRibbonBar is actually a single control area that is composed of numerous controls.

Figure 1. Anatomy of a ribbonbar

In the upper-left corner is the Start Menu, which is similar to the Windows Start menu and is an
area for placing the most common options (such as Save or Save As features). The Start Menu
can also contain separators, combo boxes, and programmer-created items.

To the right of the Start menu is the Quick Access Toolbar, which typically contains a number of
icons that are actually menu items to common features (Save, Undo, or Open are some examples
of things you might be able to launch from this area). Like the Start Menu, it can also contain
separators, combo boxes, and programmer-created items.

Just below the Quick Access Toolbar is the Tabs. Each Tab opens a set of Chunks, which are
regions that contain other controls. A developer typically groups related functions within a Chunk.
For instance, you may have a Tab group called Write, which contains a Chunk for controlling the
font settings of your document. Chunk controls are containers for other controls and can include
horizontal button groups, vertical button groups, combo boxes, check-box controls, drop-down
buttons, split buttons, repeat buttons, toggle buttons, and check-box buttons. Horizontal button
groups and vertical button groups are layout controls for grouping controls giving you the ability to
produce a UI with elements of different sizes in rows and columns.

Both drop-down buttons and split buttons display a menu when clicked, but the split button
includes an option for selecting a default item whose Click event fires when a user clicks the split
button. The repeat button is a special button that repeats the click event as the user holds the

page 2 of 9

mouse down (keeping the button pressed in). The check-box button provides a button that
represents two different states by showing a check box next to the option when the item is “on.” In
comparison, the toggle button also represents multiple states, but the entire visual presentation of
the button can change to indicate the current state.

Techniques for an Effective Ribbon UI using the RadRibbonBar
Designing an effective Ribbon is much like designing a menu with a toolbar. You will go through
many of the same steps, but there are also a few additional steps for making an effective interface
with a Ribbon.

Before continuing, I will describe the features of a fictional application, and then I will use this
fictional application to give you a practical way to see how to apply the concepts. The sample
application is a simple blog editor that has the major features of a word processor; it has a
spelling checker, formatting features like bold and italic, and features that are related to blog
publishing, such as blog categories, tagging, and publishing a post to the blog server.

Step 1: Break down your functions/features with categories
First, you will list the functions and features that you will expose to the end user and place
categories next to each one. To illustrate I will use a tabular format with five columns. I find that it
is best to list the features and functions first, and then to categorize them after you think you have
written down all the categories. I will cover the other columns in the next two steps.

Here is a sample table for some of the features of the blog publishing application:

Feature/Function Category
Insert Picture Insert
Bold text Style
Italic text Style
Underline text Style
Font name Fonts
Font size Fonts
Spelling Checker Grammar Tool
Grammar Checker Grammar Tool
Save to file system File operation
Publish to blog File operation
Manage Blog
Categories

Blog Categories

Apply Blog Category Blog Categories
Manage common
tags

Tagging

Apply common tag Tagging
Insert custom tag Tagging
Font color Fonts
Open from local
machine

File operation

Open previously
published document

File operation

Set attachment Blog Doc Settings
Insert table Insert
Copy Clipboard
Paste Clipboard
Cut Clipboard
Table 1: UI Design Table Step 1

page 3 of 9

You might conclude that the list in Step 1 does not seem organized. This is normal because you
will probably forget features as you are listing them, and then remember them later. Do not worry
about this. Just list all of the features that you want to expose to the end user.

The next thing you will notice is that there are some seemingly related items that are not in the
same category. For instance, Font Name and Insert Table seem related, since they are both
formatting functions; however, they are not really so closely related that you would always place
them in the same menu or right next to each other on a toolbar every time you designed an
interface. Your goal is to create as many categories as possible so that closely related functions
are grouped together.

Do not worry if you missed a few features. As you discover things that you have missed, you will
know exactly where the item should go in the UI or you will need to add it to the table you are
building (depending on where you are in the process).

Step 2: Determine Feature types, and note common functions
In step 2, you will group your categories together into Feature Types. For instance, the Fonts,
Insert, and Formatting categories will all end up in the same feature type. These types will
ultimately become your tabs in your Ribbon UI.

During this step, you should also note those features that are very commonly used and should be
quickly available to the user.

Table 2 shows the sample application with the next two columns filled in.

Feature Name Category Feature Type Common?
Insert Picture Insert Document
Bold text Style Document
Italicize text Style Document
Underline text Style Document
Font name Fonts Document
Font size Fonts Document
Spell Check Grammar Tool Document
Grammar check Grammar Tool Document
Save to file system File operation File **
Publish to blog File operation File *
Manage Blog
Categories

Blog Categories Blog

Apply Blog Category Blog Categories Blog
Manage common
tags

Tagging Blog

Apply common tag Tagging Blog
Insert custom tag Tagging Blog
Font color Fonts Document
Open from local
machine

File operation File **

Open previously
published document

File operation File *

Set attachment Blog Doc Settings Blog
Insert table Insert Document
Copy Clipboard Document **
Paste Clipboard Document **
Cut Clipboard Document
Table 2: UI Design Table Step 2

page 4 of 9

I have identified three feature types for this sample application: Blog, Document, and File. I also
identified six functions as being commonly used with four of these functions being very commonly
used (denoted by double asterisks). I will use this information for the next step (and the final
column in the table).

Step 3: Determine where each item will appear in the Ribbon UI
At this point, it should be easy to determine where things go in the interface. You should have a
Tab for each feature type and a Chunk for each category. If you have too many items within a
Chunk, you can always break down the items in that category into multiple categories. There
really is no maximum or minimum number of elements that you will want to put into a tab as the
space will expand to the right or down depending on the type of layout controls you are using.
Note that all the items in the File feature type appear to be commonly used functions. I will place
these items in the Start Menu instead of their own Tab/Chunk structure. Finally, I have identified
four items in the sample application as very commonly used functions; I will place buttons for
them on the Quick Access Toolbar where they will always be available to the end user. I will put
this information into the last column in the table and proceed to the next step.

See Appendix A for the completed table for the sample application.

Step 4: Create Your Interface
Tabs/Chunks
1. From within Visual Studio 2005, create a new Windows Forms project (or use an existing

project with either a new Form or an existing one).
2. Drop a standard ImageList onto your form and add standard icons for Copy, Paste, Cut,

Bold, Italic, Underline, or any icons you need for your buttons/menus.
3. Next, drag a radRibbonBar onto your form from the toolbox (it will automatically dock to

the top of the application window). Point the radRibbonBar’s ImageList property to the
ImageList you created in step 2.

4. Click Add New Tab, type the heading you want to use, and then click Enter (repeat for
each Tab). For the sample application, you will create a Blog Tab and a Document Tab.

5. Click the Blog Tab in the sample application and the Chunk area will open.
6. Create a new Chunk for each category, so for the sample application’s Blog Tab there will

be three Chunks: Categories, Tagging, and Settings.
7. Click the first Chunk and change its Text property to Categories. (You might also want to

change the (name) property to something like CategoriesChunk or ChunkCategories.)
Repeat this for the other two Chunks using their respective names. The UI for the form in
Visual Studio 2005 should look like this:

page 5 of 9

Figure 1: Sample App UI Design in Visual Studio 2005 after step 7

8. Next, add controls to each Chunk. Follow these steps for the Categories Tab for the

sample application:
a. Add a vertical button group by right-clicking the Chunk, selecting the Add an

Item submenu, and then choosing the Vertical Button Group item.
b. Add the RadButtonElement by right-clicking the vertical button group, selecting

the Edit Items submenu, and then choosing the RadButtonElement item from the
Add menu.

c. Change the new RadButtonElement’s properties as follows:
i. (name)  ManageCategoriesButton
ii. (optional) ImageIndex  [the image in your ImageList that applies to this

item]
iii. Text  Manage Categories
iv. TextAlignment MiddleRight
v. TextImageRelation  ImageBeforeText

d. Click OK.
e. Add a RadDropDownButton beneath Manage Categories by right-clicking the

Manage Categories button, selecting the Insert Adjacent submenu, and then
choosing the RadDropDownButton item.

f. Change the new RadDropDownButton’s properties as follows:
i. (name)  CategoriesDDButton
ii. (optional) ImageIndex  [the image in your ImageList that applies to this

item]
iii. Text  Categories
iv. TextAlignment MiddleRight
v. TextImageRelation  ImageBeforeText
vi. NOTE: You could add items to this RadDropDownButton by using the

Items property, but this type of feature normally would obtain the list of
categories programmatically from a blog server.

vii. If you get your items out of order you can simply drag one element until it
is above or below another element and that item will push the other
element over or down to make room for the element you drag/dropped.

g. At this point your UI will look like this:

page 6 of 9

 Figure 2: Sample App UI Design in Visual Studio 2005 after step 8

9. Repeat steps 5 through 8 for the other Chunks in the Blog Tab and also repeat for all the
Chunks in the Document Tab.

Start Menu/Quick Launch Toolbar
1. Next, you will add items to the Start Menu. Click the Ribbon control and set the

StartButton image in the properties grid.
2. Click the StartButton/Start Menu image and add items as you need them. Follow these

steps to create the Start Menu for the sample application:
a. Click Start Menu, select Add New and then select new RadMenuItem in the drop

down.
b. Click the newly created menu option and set its properties in the Properties pane

as follows:
i. (name)  OpenStartMenu
ii. Text  Open
iii. Optional: add an image and set the TextImageRelation and

TextAlignment properties or set the DisplayStyle property to Text.
c. Click the Start Menu, hover over the Open menu item, hover over the “Add new”

on the right and select the new RadMenuItem from the submenu
d. Click the new MenuItem you just created and set its properties as follows:

i. (name)  OpenFileStartMenu
ii. Text  File
iii. TextAlignment MiddleRight
iv. TextImageRelation  ImageBeforeText

e. Click the Start Menu, rest on the Open menu item, rest on Add New on the right
(below the File item), and then select the new RadMenuItem from the submenu.

f. Click the new MenuItem you just created and set its properties as follows:
i. (name)  OpenFromBlogStartMenu
ii. Text  From Blog
iii. DisplayStyle  Text

g. Click the Start Menu and add a new RadMenuItem by resting on the Add New
menu that appears just below the Open menu, and then selecting new
RadMenuItem from the submenu.

h. Click the newly created menu option and set its properties in the Properties
window as follows:

i. (name)  SaveStartMenu
ii. Text  Save
iii. Optional: add an image and set the TextImageRelation and

TextAlignment properties or set the DisplayStyle property to Text.

page 7 of 9

i. Click the Start Menu and add a new RadMenuItem by resting on the Add New
menu that appears just below the Save menu, and then selecting new
RadMenuItem from the submenu.

j. Click the newly created menu option and set its properties in the Properties
window as follows:

i. (name)  PublishStartMenu
ii. Text  Publish
iii. Optional: add an image and set the TextImageRelation and

TextAlignment properties or set the DisplayStyle property to Text.
k. Add a shortcut key to the Open File menu by selecting OpenFileStartMenu from

the drop-down of the Properties grid, clicking the ellipses in the CommandBinding
property, and then setting the shortcut key in the dialog box that appears.

l. Set the OpenFileStartMenu item’s Hint property to Ctrl+O. This will give the end
user a visual cue as to what the shortcut keys are.

m. Additional steps you might want to take are to assign more shortcut keys to each
item in the Start Menu and add text to the Hint property for each item you have
added a shortcut key assignment. You can also use this same method to assign
shortcut keys to any of the other controls you have created in previous steps
(including Tabs).

3. Create Quick Launch icons for the commonly used features of the application.
a. Click in the Quick Launch area where there is text that says “Type here.” Type

the text: “Open File”, and then press Enter. Repeat this for Save File, Copy, and
Paste.

b. Change those areas of text to simple icons.
i. Click the Open File item and change its properties as follows:

1. (name)  OpenFileQuickLaunchMenu
2. ToolTipText  Ctrl+O
3. ImageIndex  [Pick the icon that you used for creating the

OpenFileStartMenu]
4. DisplayStyle  Image
5. Note: if the Contextual Tab gets in your way simply Add a new

Tab which will move the Contextual Tab to the right (you can
always delete the Tab you created later)

c. Repeat these steps for the other QuickLaunch items.
d. Your app should look similar to this (in Visual Studio 2005):

Figure 4: Sample App UI Design after step 3 (Document Tab)

page 8 of 9

Step 5: Show the Interface to an End User
Now that you have created the interface, you should compile it and show it to an end user (or
someone else) because what you think is a good organization of your features may not make any
sense at all to a user. This really is the most important step of all. You want your UI to make
perfect sense to a user because they will ultimately use your application. If something does not
make sense to the user, you may want to tweak the placement of your controls to better organize
the functions so that all controls are in a place that your end users would logically expect them to
be. Ask the person giving you feedback to help you identify where your controls could be better
placed.

Dynamic Elements
One of the other things to consider is that you may have Tabs or Chunks that are based on some
application state. Building the table previously mentioned will help you to organize the UI and will
help you place these dynamic elements of your RadRibbonBar. The easiest solution for making
your Ribbon elements to be more dynamic would be to create the complete UI including optional
items and simply set the Visibility property to False for those items that rely on some application
state. When you need the optional element to appear you can simply set the Visibility property to
Visible in your code. The telerik r.a.d.controls for WinForms also includes functionality for
dynamically adding and removing elements from the RadRibbonBar’s UI also has Contextual
Tabs making a number of additional complex scenarios possible.

Summary
Many applications mimic the latest Microsoft Office Suite. With the advent of Office 2007, the new
Ribbon user interface will be a control that many users will come to expect. Because of this, you
need to be familiar with this new interface.

The most important thing to realize when designing a Ribbon user interface element is that
organizing your interface properly is essential for making your application easy for the end user to
use. By working through the steps this article has provided, you can use the Telerik
RadRibbonBar to build a modern UI in your applications - and one that makes sense to users, not
just one that “looks right.”

page 9 of 9

Appendix A—The Sample Applications Feature Matrix

Feature Name Category Feature Type Common? UI Location
Insert Picture Insert Document Document Tab’s

Insert Chunk
Bold text Style Document Document Tab’s

Style Chunk
Italicize text Style Document Document Tab’s

Style Chunk
Underline text Style Document Document Tab’s

Style Chunk
Font name Fonts Document Document Tab’s

Style Chunk
Font size Fonts Document Document Tab’s

Style Chunk
Spell Check Grammar Tool Document Document Tab’s

Style Chunk
Grammar check Grammar Tool Document Document Tab’s

Style Chunk
Save to file system File operation File ** Start Menu and

Quick Launch
Publish to blog File operation File * Start Menu
Manage Blog
Categories

Blog Categories Blog Blog Tab’s
Categories Chunk

Apply Blog Category Blog Categories Blog Blog Tab’s
Categories Chunk

Manage common
tags

Tagging Blog Blog Tab’s Tagging
Chunk

Apply common tag Tagging Blog Blog Tab’s Tagging
Chunk

Insert custom tag Tagging Blog Blog Tab’s Tagging
Chunk

Font color Fonts Document Document Tab’s Font
Chunk

Open from local
machine

File operation File ** Start Menu and
Quick Launch

Open previously
published doc

File operation File * Quick Launch

Set attachment Blog Doc
Settings

Blog Blog Tab’s Settings
Chunk

Insert table Insert Document Document Tab’s
Insert Chunk

Copy Clipboard Document ** Document Tab’s
Clipboard Chunk and
Quick Launch

Paste Clipboard Document ** Document Tab’s
Clipboard Chunk and
Quick Launch

Cut Clipboard Document Document Tab’s
Clipboard Chunk

