

CHRISTOPHER BRIAN EARGLE
 TELERIK | 201 Jones Rd, Waltham, MA 02451

Rough
Cut

Telerik
Q3

2012

The .NET Developer’s Guide
Memory and Performance
Profiling

The .NET Developer's Guide to Memory and Performance Profiling

by Christopher Brian Eargle

Copyright © 2012 Telerik, All rights reserved.

No part of this publication may be reproduced, distributed, or transmitted in any

form or by any means, including photocopying, recording, or other electronic or

mechanical methods, without the prior written permission of Telerik, except in the

case of brief quotations embodied in critical reviews and certain other

noncommercial uses permitted by copyright law.

Derivative works rights shared with Christopher Brian Eargle.

For inquiries regarding this work, such as to obtain reproduction permission, please

contact Telerik:

Telerik

201 Jones Rd

Waltham, MA 02451

email: media@telerik.com

phone: +1-888-365-2779

fax: +1-617-249-2116

Edition History

October 2012: Rough Cut, Telerik Q3 2012

ABOUT THE AUTHOR

Christopher Brian Eargle is a Telerik Technical

Evangelist with over a decade of experience

designing and developing enterprise

applications, and he runs the local .NET User

Group: the Columbia Enterprise Developers

Guild. He is a frequent guest of conferences and community events

promoting best practices and new technologies.

Chris is a native Carolinian; his family settled the Dutch Form region of

South Carolina in 1752. He currently resides in Columbia with his wife,

Binyue, his dog, Laika, and his three cats: Meeko, Tigger, and Sookie.

Amazingly, they all get along… except for Meeko, who is by no means

meek.

Chris is a Microsoft C# MVP currently serves on the INETA Board of

Directors. He is in charge of the Community Speakers Program, having

come from the program himself before he began working at Telerik. If

you are passionate about software development, you are encouraged

to join INETA to be connected to hundreds of groups. It is free to join,

and INETA helps cover your travel expenses for speaking.

Chris’ blog, kodefuguru.com, features content to guide you in

becoming a .NET Ninja!

ABOUT THIS EDITION

Telerik released its first .NET memory and performance profiler,

JustTrace, in 2011. Since then, we have published a lot of good material

on the product, and we felt like we should move beyond that by

providing general resources to our users.

Books take time to write, and this is especially true for technical books,

which may require intense research. Since this is to be published on

the web, we decided to start releasing material with cycles. You are

currently reading the very first rough cut coincides with the Telerik Q3

2012 product release. If significant time has passed, be sure to check

the site for an update.

This edition is released free of charge. If you paid for it, you paid too

much.

TABLE OF CONTENTS

About the Author .. 2

About This Edition ... 3

Getting Started .. 6

What is Profiling? .. 6

What is Optimization? ... 6

Optimizing Versus Tuning .. 7

When to Optimize ... 7

Four Steps .. 7

Assess .. 9

Comparative Assessment .. 9

Reactive Assessment ... 10

Proactive Assessment .. 11

Acquire .. 12

Obtain a Tool ... 12

Obtain Data ... 13

Analyze .. 15

Performance Snapshots .. 15

Memory Snapshots ... 16

Act ... 18

String Concatenation ... 18

Numeric Overflow ... 21

Collection Types... 23

Delayed Evaluation with Yield ... 27

Delegates ... 30

Fragmentation ... 35

Excessive Writes .. 36

Excessive References ... 37

Long Lived Objects... 37

Appendix ... 38

Table of Figures.. 38

Index .. 38

GETTING STARTED

WHAT IS PROFILING?

Profiling is a form of program analysis to collect metrics on properties

of software such as memory usage and execution time. Memory and

performance profiling is used to detect memory and performance

issues to optimize an application.

WHAT IS OPTIMIZATION?

Optimizing involves making small changes to code to improve

performance or memory management without changing the external

behavior. These goals can sometimes conflicts. For example, improving

performance may require loading a large amount of data in memory.

An optimization that does this is memoization, a form of caching that

stores results of a function call so subsequent calls receive it faster.

Both optimizations and refactorings have names and involve making

small changes. The example given is called MEMOIZE FUNCTION.

The primary difference is that refactorings address readability and

maintainability. Optimizations often negatively affect the goals of

refactoring.

OPTIMIZING VERSUS TUNING

Optimization can be considered part of performance tuning, which

addresses the system as a whole. I find it most useful to use tuning in

reference to environmental issues such as bottlenecks and solutions

such as load balancing.

WHEN TO OPTIMIZE

Life is rarely black and white, and choosing to optimize requires the

ability to see in shades of gray as well. Acceptable limits should be

established in the assessment phase, and the further it is outside of

limits, the more severe the issue is. There are other considerations for

severity; I would address a heavily used function that is moderately

outside the limit sooner than I would a function that is rarely called but

even less performant. It is also important to know if the necessary

optimization will negatively affect other non-functional requirements.

In software, compromises are necessary.

FOUR STEPS

Profiling and optimizing your application can be broken down into four

steps:

1. Assess
2. Acquire
3. Analyze

4. Act

The remainder of this book is divided into these steps. To summarize,

you must first assess your situation; determine what kind of problem

you are trying to solve and to ensure you are spending your time

wisely. The second step is to acquire memory and performance data

for your application. The third step is to analyze this data to determine

what actions should be taken to improve the application’s

performance. The final step is to act upon your analysis if necessary.

FIGURE 1: PROFILING FLOWCHART

ASSESS

COMPARATIVE ASSESSMENT

Comparative assessment is most commonly used when a developer is

attempting to determine a particular strategy in designing a piece of a

system. For example, many different search algorithms are more or less

efficient depending on the data structures used and the data these

structures contain. You may want to know which would be best for

data received from an external service. You can obtain a few data sets

and profile the application to determine which algorithm performs

best. It is essential to have test data that appropriately represents data

commonly retrieved by the system. However, testing unproven data

sets is better than making an arbitrary decision based on personal

preference.

This form of assessment can also aid an architect in deciding on

whether to use a particular component or service. Here is another

example: You are working for a corporation that is deciding on whether

a move to Oracle would be wise. They currently have data stored in

SQL Server. You can set up identical VMs for both servers and create

packages to copy the data into Oracle. The application uses Entity

Framework, so you first run integration tests to determine if there are

compatibility issues then profile the applications to determine which is

better from a performance perspective. In this situation, there may be

other factors at play, so the results are primarily to provide feedback

on potential issues or benefits gained by switching systems.

REACTIVE ASSESSMENT

Reactive assessments involve attention given to performance and

memory management when an issue surfaced.

Here is a scenario with which you may be familiar:

Multiple bug reports were received that the application was

unstable and caused the workstation to slow down. This was

never noticed by development or quality assurance. After

interviewing the users reporting the bugs, it was found that

these particular users very rarely closed their applications or

rebooted their workstations. Further investigation on their

stations revealed that the application was consuming several

gigs of RAM. When the application was first opened, it only

consumed a hundred MB of RAM. The application had a

memory leak.

Profiling the application was predicated upon an identified issue.

PROACTIVE ASSESSMENT

In contrast to reactive assessment, proactive assessment includes

profiling as part of the development process. There are many non-

functional requirements that are part of the system, and use cases

must be established for acceptable performance, or responsiveness,

and reliability, or probability of failure. To connect the last part to

JustTrace, consider the reactive scenario that was presented. The

software worked fine at first, but it caused issues over time. In other

words, its reliability was dependent on the length and frequency of its

usage.

Due to the growing complexity of maintaining software, it is often best

to write maintainable code first, then optimize as needed. Having

performance and reliability requirements documented enables this. A

danger some fall into is the desire to squeeze the most performance

out of a system. Oftentimes, this is a waste of time and may even cause

issues, as the application becomes a Byzantine mess of extremely

performant code.

We recommend that you establish your non-functional requirements

up-front and regularly profile your solution. When the metrics go

beyond the acceptable range, you should concern yourself with

optimizing a particular piece of the system.

ACQUIRE

This section will contain information on acquiring data that can be

analyzed to determine memory and performance issues. This is a rough

cut of the book and is not ready.

This book is meant to provide general information about memory and

performance profiling. Since this portion is not quite ready, we are

including product specific information from the author’s introductory

article on Telerik JustTrace. At the very least, it will be useful for Telerik

users seeking guidance.

OBTAIN A TOOL

To acquire performance and memory usage data, you will need a tool.

You can try Telerik JustTrace for 30 days by going to

http://www.telerik.com/justtrace. Best of all, it contains what you need

to determine both performance and reliability by including

performance and memory profilers. JustTrace is available as a

standalone tool, but it is also packaged with Visual Studio Integration

components. Which one you choose to run it depends on your

workflow and preference.

Run JustTrace to begin a new profiling session.

FIGURE 2: JUSTTRACE START SCREEN

OBTAIN DATA

Acquiring data is as simple as choosing your application type and

profiler. Using JustTrace from within Visual Studio will eliminate the

first option. The stand-alone version allows you to attach the profiler to

a local executable, a running application, Silverlight applications,

Windows Services, Windows Store Apps, and ASP.NET applications

hosted in IIS, IIS Express, or Windows Development Server.

JustTrace is packaged with two types of profilers: memory and

performance. The memory profiler collects information on the

application’s memory usage. The performance profiler collects

information on the amount of time spent in method calls. There are

two different flavors for the performance profiler. The performance

(sampling) profiler dumps the call stack at regular intervals, which has a

minimal impact on the application’s performance. The performance

(tracing) profiler reads all CLR events when entering and leaving

methods. This is extremely accurate, but the profiler will have an

increased impact on the real performance of the application.

FIGURE 3: APPLICATION TYPES

Run the profiler and use your application to obtain snapshots of the

application.

ANALYZE

This section will explain how to analyze profiling data to determine

potential memory and performance issues. This is a rough cut of the

book and is not ready.

This book is meant to provide general information about memory and

performance profiling. Since this portion is not quite ready, we are

including product specific information from the author’s introductory

article on Telerik JustTrace. At the very least, it will be useful for Telerik

users seeking guidance.

With the profile of your application on hand, the next step is to analyze

the data acquired to track down issues.

PERFORMANCE SNAPSHOTS

A performance snapshot contains a timeline, which allows you to view

the calls made in an application in a specific range of time. You can also

compare two different ranges. This profile allows you to see metric

overviews, the call tree, the method list, and hot spots.

FIGURE 4: CALL TREE

MEMORY SNAPSHOTS

Memory snapshots show the application’s state when the snapshot

was taken. You can view a list of all types with their memory

consumption, incoming type references, types that are retaining the

largest amount of memory, and view an instance’s path to the garbage

collection root.

FIGURE 5: MEMORY SNAPSHOT SUMMARY

ACT

This section consists of issues you may an encounter and potential

solutions. This is a rough cut and will contain more information in

future releases.

STRING CONCATENATION

A primary task when working with strings is adding them together. The

string class has an operator overload for + that converts the call to a

String.Concat. The C# compiler optimizes the code by concatenating

string literals.

Here is an example with string literals.

string panda = "bear" + "cat";

This line is converted to the following by the compiler.

string panda = "bearcat";

Here is an example using string variables.

string panda = "bear";
panda += "cat";

The compiler converts concatenation with variables and non-string

literals into a call to String.Concat.

string panda = "bear";
panda = String.Concat(panda, "cat");

Developers will often explicitly call the ToString method on an object

when concatenating its string representation with another string. This

is unnecessary as String.Concat has an overload for object and will call

ToString() for you, but calling ToString() on a value type is useful as it

prevents boxing. In any case, when implementing a class or struct it is a

good practice to override the ToString method and provide an

appropriate representation of the object in a string format.

public void LogAccess(Employee employee)
{
 Console.WriteLine(employee + " accessed the system at "
+ .Now.TimeOfDay);
}

The expected behavior would be a name or another identifier for the
employee would be written to the screen. Unless ToString is
overridden, the fully qualified class name is written instead:

“DevelopersGuide.Employee accessed the system at
17:41:05.4530627.”

Perhaps the most pervasive problem with string concatenation involves

building a large string composed of many known elements.

Approaching this problem with simple concatenation techniques leads

to the creation of many small objects that must be garbage collected.

public static string
SerializeGeometry(IEnumerable<GeographicPoint> points)
{
 Contract.Requires(points != null, "Points parameter must
not be null.");
 string result = "<Coordinates>";

 foreach (var point in points)
 {
 result += "\t<Coordinate>" + point +
"</Coordinate>";
 }

 result += "<Coordinate>";
 return result;
}

The SerializeGeometry method is creating an xml string based on an

IEnumerable of GeographicPoint. There are an unknown number of

elements in the sequence, so it is iterated appending as many strings

as needed to the result variable. Since string is immutable, this causes

a new string to be allocated every pass through the loop. This problem

can be prevented by using the StringBuilder class.

public static string
SerializeGeometry(IEnumerable<GeographicPoint> points)
{
 Contract.Requires(points != null, "Points parameter must
not be null.");
 StringBuilder result = new StringBuilder();
 result.AppendLine("<Coordinates>");

 foreach (var point in points)
 {
 result.AppendLine("\t<Coordinate>" + point +
"</Coordinate>");
 }

 result.AppendLine("<Coordinate>");
 return result.ToString();
}

NUMERIC OVERFLOW

It is tempting to use unsigned integers such as System.UInt32 when

requirements clearly call for a positive number. Although it may seem

like a good decision at first, it carries consequences that affect

language compatibility, performance, and memory usage.

public class TreeNode
{
 private List<TreeNode> children = new List<TreeNode>();

 public ICollection<TreeNode> Children
 {
 get
 {
 return children;
 }
 }

 public string Text { get; set; }

 public uint Count()
 {
 uint count = 1;

 foreach(var node in children)
 {
 count += node.Count();
 }

 return count;
 }
}

The Count method of this simple TreeNode class will never return a

negative number, but it is not CLS-compliant. Attempting to mark this

class as such will generate the following warning: “Return type of

'DevelopersGuide.TreeNode.Count()' is not CLS-compliant.”

Attempting to test this class causes further problems.

TreeNode tree = new TreeNode { Text = "Root" };
tree.Children.Add(new TreeNode { Text = "Child" });

Assert.AreEqual(2, tree.Count());

When Assert.AreEqual is called, an exception is thrown:

“Assert.AreEqual failed. Expected:<2 (System.Int32)>. Actual:<2

(System.UInt32)>.” The value 2 is interpreted by the CLR as an integer

since the AreEqual method takes it as a parameter. Literal conversions

are done in the following order: int, uint, long, ulong. In the above

example, the value 2 can be forced to be interpreted as a uint by using

the U suffix.

Implicit conversions exist for int from sbyte, byte, short, ushort, and

char. These conversions also exist for integral types to float types.

However, explicit conversions must be used for float to integral

conversion.

COLLECTION TYPES

Arrays and other collection types are reference types that act as

container objects. Arrays have not changed much in the past few years,

but the release of .NET 2.0 saw the rise in the popularity of the

generically typed List<T>.

Before the introduction of List<T>, ArrayList was prevalent, and can

found in codebases even today. The problem with ArrayList is that it is

not type-safe, and it therefore requires casting and causes boxing.

var list = new ArrayList
{
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
};

foreach (object fib in list)
{
 Console.WriteLine(fib);
}

List<T> is type-safe and more performant and it should replace

ArrayList in most circumstances.

var list = new List<int>
{
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
};

foreach (int fib in list)
{
 Console.WriteLine(fib);
}

There are common interfaces using and manipulating collections.

 IEnumerable & IEnumerable<T> - Iterating the sequence.

 ICollection & ICollection<T> - Adding and removing items.

 IList & IList<T> - Indexed access.

The interfaces implement each other, from the last to the top.

Suppose we would like to create a method that adds a number to the

sequence.

public void AddFibonacci(ICollection<int> collection)
{
 switch (collection.Count)
 {
 case (0):
 collection.Add(0);
 break;
 case (1):
 collection.Add(1);
 break;
 default:
 collection.Add(collection.Skip(collection.Count
- 2).Take(2).Sum());
 break;
 }
}

We can test this by calling it with our previous list method.

var list = new List<int>
{
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
};

AddFibonacci(list);
Assert.AreEqual(144, list.Last());

That works great. There is only one problem.

var array = new[]
{
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
};

AddFibonacci(array);
Assert.AreEqual(144, array.Last());

Arrays implement ICollection<T>, but they are of a fixed-size. This

throws a NotSupportedException. This is a common mistake when

accepting one of the collection or list interfaces as a method

parameter. Arrays are common constructs and could easily be passed

in if this were implemented in a public API. There are other collections

that can’t be written to either. To defend against this issue, the

ReadOnly property of ICollection must be checked. This is rather a

misnomer for arrays, as their memory is indeed writeable; only their

size can’t be modified. You can, however, write it as an extension

method and return an IEnumerable<int>.

public static IEnumerable<int> AddFibonacci(this
IEnumerable<int> source)
{
 int a = 0;
 int b = 0;

 foreach (int n in source)
 {

 a = b;
 b = n;
 yield return n;
 }

 yield return a + b;
}

If it is necessary to return the sequence to an array, using LINQ is the

most elegant solution.

array = array.AddFibonacci().ToArray();

Generic lists increase their size for you automatically, and many people

are content to let this happen. But is this really the best way?

When you add an item to a generic list, the size must be checked to

ensure that there is room. If there isn’t, the capacity is doubled by

instantiating a new array of its type and copying its contents into it.

Here’s the code from Telerik JustDecompile.

public void Add(T item)
{
 if (this._size == this._items.Length)
 {
 this.EnsureCapacity(this._size + 1);
 }
 this._items[this._size++] = item;
 this._version++;
}

private void EnsureCapacity(int min)
{
 if (this._items.Length < min)

 {
 int num = (this._items.Length == 0) ? 4 :
(this._items.Length * 2);
 if (num < min)
 {
 num = min;
 }
 this.Capacity = num;
 }
}

// Inside Capacity setter

T[] destinationArray = new T[value];
if (this._size > 0)
{
 Array.Copy(this._items, 0, destinationArray, 0,
this._size);
}
this._items = destinationArray;

DELAYED EVALUATION WITH YIELD

In C#, the yield keyword is used to generate an implementation of the

Iterator pattern, which in .NET is an implementation of IEnumerator. It

is a useful, and perhaps under-utilized, feature of the C# language that

can greatly reduce the complexity of iterating lazy or dynamic

collections of objects. Methods using the yield keyword must return

IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>. For

type-safety and semantics, it is often preferred to return

IEnumerable<T>.

public void ReturnTypes()
{
 foreach (var t in Enumerable())

 Console.WriteLine(t);

 foreach (var t in EnumerableT())
 Console.WriteLine(t);

 IEnumerator enumerator = Enumerator();

 while(enumerator.MoveNext())
 Console.WriteLine(enumerator.Current);

 IEnumerator<string> enumeratorT = EnumeratorT();

 while (enumeratorT.MoveNext())
 Console.WriteLine(enumeratorT.Current);
}

public IEnumerable Enumerable()
{
 yield return "a";
}

public IEnumerable<string> EnumerableT()
{
 yield return "b";
}

public IEnumerator Enumerator()
{
 yield return "c";
}

public IEnumerator<string> EnumeratorT()
{
 yield return "d";
}

The yield keyword is combined with one of two other keywords to

provide its semantics: return and break. As can be ascertained from the

example above, yield return causes the IEnumerator.Current property

to change. The example did not show yield break, but it causes control

to end. Here is an example with both.

public void WriteTilNull()
{
 foreach (var line in ArgsTilNull("Almost", "Midnight",
null, "end"))
 {
 Console.WriteLine(line);
 }

}

public IEnumerable<T> ArgsTilNull<T>(params T[] args)
{
 foreach (var t in args)
 {
 if (t == null)
 {
 yield break;
 }

 yield return t;
 }
}

The ArgsTilNull method will return values until null is reached, then

control is broken. The WriteTilNull method writes only the first two

strings to the screen. Recall the previous example and how the

IEnumerator versions called MoveNext and Current. The foreach

statement is essentially doing the same thing, lazily stepping through

the code. If you were to take this example and step through it, you will

find the debugger stepping into the ArgsTilNull method in each pass of

WriteTilNull’s foreach statement to retrieve the next value.

The largest impact the use of the Iterator pattern will have on memory

and performance is making the decision on whether it is more valuable

to lazily retrieve values or retain those values in memory. Lazy retrieval

ensures the data is current, keeps the heap clear, but could potentially

impact garbage collection with the creation of many small objects.

Maintaining the data in memory is better if it is unlikely to change, is

used more often, but it could move the larger object to a higher

generation.

My recommendation is to convert iterators to collection types at

application, framework, and layer boundaries.

DELEGATES

Executable code typically exists as a method belonging to a static or

instance of a struct or class. A delegate is another reference type that

represents a method, similar to a function pointer in other languages.

However, delegates are type-safe and secure, providing object-oriented

functions.

Although the CLR supports a simple delegate type, delegates in C# and

VB.NET inherit from System.MulticastDelegate (which inherits from

System.Delegate and in turn from System.Object). This type provides a

linked list of delegates, which are invoked synchronously in order.

public delegate void Function();

public void WriteInformation()
{
 Debug.WriteLine("Got Here");
}

public void CallFunction()
{
 Function function = new Function(WriteInformation);
 function();
}

Parameters can be added to a delegate, which are then necessary for

the method the delegate is instantiated with and the delegate’s

invocation.

public delegate void Function(string info);

public void WriteInformation(string info)
{
 Debug.WriteLine(info);
}

public void CallFunction()
{
 Function function = new Function(WriteInformation);
 function("function called");
}

Delegates can be combined by called the Delegate.Combine method.

The semantics of the delegate are then lost and it must be invoked

through the DynamicInvoke method.

public delegate void Function(string info);

public void WriteInformation(string info)
{
 Debug.WriteLine(info);
}

public void WriteToConsole(string info)
{
 Console.WriteLine(info);
}

public void CallFunction()
{
 Function function = new Function(WriteInformation);
 Function another = new Function(WriteToConsole);
 var del = Delegate.Combine(function, another);
 del.DynamicInvoke("multicast");
}

This is useful for writing reusable delegates, but oftentimes delegates

are scoped within a method. The concept of anonymous methods was

introduced as an alternative to named methods.

public delegate void Function(string info);

public void CallFunction()
{
 Function function = delegate(string info) {
Debug.WriteLine(info); };
 function("This method is anonymous");
}

More innovations in the .NET languages took place, and anonymous

functions were introduced. Lambda expressions further reduced the

amount of typing necessary to create a delegate. In addition,

standardized, generic delegate types were introduced to the .NET

framework allowing the creation of delegates without a user definition.

Delegates without return types are known as Actions, and those with

return types are known as Funcs. The last generic parameter of a Func

type is the return type.

Action<string> function = info => Debug.WriteLine(info);
function("Created from a lambda");

Despite the progression of delegate usage in the language, behind the

scenes the story remains largely the same. The compiler creates a

static delegate definition and a named method. It places the code

contained within the lambda expression inside of the named method.

It then creates the delegate, if it does not already exist, and calls it.

Anonymous methods and functions are syntactic sugar.

A common use of delegates is for event handlers, which allows you to

loosely couple functionality through an eventing model. The classic

example of this is performing an action when a button is clicked.

public MainWindow()
{
 InitializeComponent();
 button.Click += (sender, e) =>
MessageBox.Show("Developer’s Guide");
}

Notice the operator that adds the lambda expression to the Click

event. Events are added to an event list to be invoked. It is important to

release the delegates in the event list or set the event to null when

disposing of the object. Classes that implement events should

implement IDisposable. It is not so bad when only one object has a

reference to the delegate. However, if more than one object has a

reference to the same delegate, they will all be kept alive until all the

objects with a reference to the same delegate are released.

Variables that are created outside of the anonymous method but used

within it are captured in a closure. This allows the delegate to have

access to the value even when the variable goes out of scope.

string str = "Original";
Action writeLine = () => Console.WriteLine(str);
writeLine();

str = "Changed";
writeLine();

From reading the code, it is expected that it will first write ‘Original’ to

the screen then ‘Changed’. That is exactly how it works, which seems

odd in light of the fact that string is immutable and it has already been

passed into the delegate.

The compiler does the heavy lifting for you by creating a class and

assigning the values to it. This will affect you anytime you use an

outside variable inside of an anonymous method or function. Be aware

that in this particular context, even if a variable appears to be a value

type, you are actually assigning a property of a reference type.

foreach (string color in new[] { "Red", "Green", "Blue" })
{
 button.Click += (sender, e) =>
 stackPanel.Children.Add(new Label { Content = color
});
}

Although the color variable is changed during each iteration of the

loop, the variable is being assigned to the capture class before it is

being used in the lambda expression. To fix this problem, assign the

variable to a temporary variable.

foreach (string color in new[] { "Red", "Green", "Blue" })
{
 string c = color;
 button.Click += (sender, e) =>
 stackPanel.Children.Add(new Label { Content = c });
}

FRAGMENTATION

Heap fragmentation occurs when allocating new objects to the space

formerly occupied by objects collected from the large object heap.

Memory containing pinned objected is not compacted, leaving behind

gaps. In long running applications with large objects, this can result in

out of memory exceptions despite the availability of memory. There

just is not a large enough block of memory for an object to fit in. This is

typically a generation 2 problem, and you can detect it by comparing

free blocks of memory versus the total size of memory.

Some fragmentation will occur in the life of an application. Avoid

pinning to avoid this problem. Pinning occurs when using fixed

variables or fixed size buffers to create a guaranteed location and size

for a variable. You can then pass these variables to an external,

unmanaged DLL.

EXCESSIVE WRITES

Writing to a memory address by modifying an old object flags a range

of memory as modified. The garbage collector then treats these

objects as roots to analyze when determining if any objects need to be

collected. This is efficient in many programs, as older objects are less

likely to be modified. However, writing to longer-lived, complex object

models can cause the garbage collector to analyze the entire object

graph, affecting performance.

EXCESSIVE REFERENCES

The garbage collector must analyze the entire graph to discover which

objects can be collected. Complex models tax the collector, affecting

performance. The solution is to use architectural designs that load

information as needed and release it when it is no longer necessary to

maintain the reference.

LONG LIVED OBJECTS

Only a full garbage collection will take care of an object that has made

it to Gen 2, and these objects can possibly consume memory long after

they are dead. Therefore, it is best to make sure that these object sizes

are kept to a minimum.

Inefficient code can make objects live longer than they should,

reaching Gen 2 and wasting memory unnecessarily. Avoid this by only

allocating objects you need and letting go of references when they are

no longer necessary: references on the stack cause rooted objects for

the garbage collector. I sometimes review code that has been rewritten

several times without attention to cleanup.

Keep your methods small, create objects as close as possible to when

you’re going to use them, and always remember to call Dispose() on

your disposable objects.

APPENDIX

TABLE OF FIGURES

PROFILING FLOWCHART ...8

JUSTTRACE START SCREEN ..13

APPLICATION TYPES ...14

CALL TREE ...16

MEMORY SNAPSHOT SUMMARY ..17

INDEX

boxing ... 23

concatenation 18

event handler 33

heap fragmentation 35

Iterator pattern 27

MulticastDelegate30

optimizing ..6

StringBuilder20

tuning ...7

unsigned integers.............................21

	About the Author
	About This Edition
	Getting Started
	What is Profiling?
	What is Optimization?
	Optimizing Versus Tuning
	When to Optimize
	Four Steps

	Assess
	Comparative Assessment
	Reactive Assessment
	Proactive Assessment

	Acquire
	Obtain a Tool
	Obtain Data

	Analyze
	Performance Snapshots
	Memory Snapshots

	Act
	String Concatenation
	Numeric Overflow
	Collection Types
	Delayed Evaluation with Yield
	Delegates
	Fragmentation
	Excessive Writes
	Excessive References
	Long Lived Objects

	Appendix
	Table of Figures
	Index

