
Telerik skinning Tutorial       Page 1 

 

 
  

BASICS  OF  TELERIK  R.A.D.CONTROLS  
SKINNING 

 

PREFACE 
 

With the advent of the new trends and opportunities of Web 2.0, more and more 
developers and designers have realized that a successful web application should 
smoothly balance between server and client technology. That is why modern 
websites make heavy use of CSS and JavaScript, which were highly 
underestimated in the previous years. The new tendencies, as well the 
requirements of the W3C necessitated a clear division between functionality and 
presentation, which was the pathway to XHTML. The inevitable consequence 
was that many companies began to hire professionals with clearly divided 
spheres of expertise –  pure server-side developers and pure client-side ones. 

 

This tutorial is intended for intermediate / advanced developers from both groups, 
as we understand, that many of our customers are server- and client-side 
developers, and designers at the same time. We will try to explain the basics of 
creating successful skins for our r.a.d.controls components with a minimum of 
effort and expense of time. 

 

CREATING  CUSTOM  SKINS  FOR  R.A.D.CONTROLS 
 

Each distribution of r.a.d.controls includes the Quick Start Framework (QSF), 
which is also available online on our website. The QSF is a special tool, 
presenting a given component in a real-life environment –  application scenarios, 
functions, skins preview, client and server API, etc. 

 

1.  UNDERS TANDIN G T HE BROW SER  OUT PUT  CODE  
 

As r.a.d.controls are server controls, before starting the actual work on creating a 
custom skin, first of all the developer should be well-acquainted with the 
generated HTML output of the control, so make sure that you find the relevant 
article discussing this issue in the help file of the component you are about to 
skin. 



Telerik skinning Tutorial       Page 2 

 

 
  

 

Obviously, it is impossible to include everything in such static file, and you will 
notice, that parts of the code, especially the one, changed dynamically with 
JavaScript are not available there. Fortunately, there are a couple of really useful 
tools facilitating the task of viewing the browser-generated source code and 
making the life of the developer easier. You can use free of charge these two: 

 

Microsoft Internet Explorer Developer Toolbar (current version Beta 2) 

Mozilla Web Developer Extension (current version 1.0.2) 

 

These small apps provide a variety of useful tools, that are of extreme 
importance for creating custom skins for r.a.d.controls –  options for viewing the 
generated page source on the client, DOM-tree viewer, disable / enable 
JavaScript, CSS, images, forms, etc. 

 

Another cool way of viewing the current page source state is with JavaScript –  
you can create a small script of the type: 

 

Listing 1 

 

 // view generated page source 

function viewGeneratedPageSource() 

{ 

 f = window.open('', 'ViewSource', 'width=800, 
height=600'); 

 f.document.write('<xmp>' + 
document.documentElement.innerHTML + '</xmp>'); 

} 

 

That will show every dynamic change of the page each time you fire the function. 
You can easily extend it by adding formatting to the parsed code with regular 
expressions, replace(), split(), etc. 

 

2.  S I X  EASY  ST EP S TO  DESI GN  A SKI N ,  BAS ED O N AN  EXI STIN G  ON E  

http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en
http://chrispederick.com/work/webdeveloper/


Telerik skinning Tutorial       Page 3 

 

 
  

 

In order to make things easier, we will assume that we are creating a custom skin 
not from a scratch, but one based on an existing skin. Let’s take r.a.d.menu’s 
Inox skin. The first logical step is to find the Appearance / Skinning section of the 
control in the QSF and to select a skin, which resembles most the design of the 
skin we want to create. The main points of comparison should be: 

 

Listing 2 

1. Color 
2. Fonts 
3. Design parameters –  rounded corners, border-width, etc. 
4. Any other point of resemblance you could find useful –  this will save a lot 

of effort and time 
 

1. Make sure you remember the name of the chosen skin. All r.a.d.controls 
skins are CSS based, and include .css file, images, arrows, icons, buttons 
etc. These are stored in ~/RadControls/ControlName/Skins/SkinName, for 
example: 

 

The Inox skin of r.a.d.menu is stored in the 
~/RadControls/Menu/Skins/Inox folder. If you navigate there, you 
will find the Style.css file, containing the CSS definitions and the 
img/ folder with all necessary images for the skin. It is important to 
remember, that the folder, containing the skin has the same name 
of the skin itself. 

 

2. After you have found the skin you will modify (for example the Inox skin), 
copy it’s folder in the RadControls/Menu/Skins directory, and rename it. 
Make sure you give it a logical name, otherwise you risk finding it difficult 
to get back to it if needed. Let’s nam e it MyFirstSkin. 

 

3. One of the common things between the latest versions of r.a.d.controls is 
that we have tried to unify the skinning mechanism for most of our 
components and thus to make it easier to modify and understand. In 
order to go behind the logic of the r.a.d.controls CSS classes, please 
open Styles.css in the MyFirstSkin/ folder. You will notice that the 
name of the classes is formed by: theNameOfTheControl + 
underscore + theNameOfTheSkin, i.e.: 

 

Listing 3 

 

.RadMenu_Inox (if you had copied the Inox skin of r.a.d.menu) 



Telerik skinning Tutorial       Page 4 

 

 
  

 

Obviously, the next step we have to take is to give the correct name of 
the classes in our custom skin. The easiest way is with Find and 
Replace. Replace all instances of _Inox with _MyFirstSkin. Now, in the 
.aspx change the skin property to S kin=”M yFirstS kin” and hit F5. If the 
above steps were followed correctly, you will have an exact copy of the 
Inox skin but with a different name - MyFirstSkin. Now we are ready to 
modify the skin according to our new design. 

 

IMPORTANT: In order to avoid multiple class accumulation, 
r.a.d.controls skins make heavy use of CSS class inheritance, i.e. 
every class inherits the rules of the parent container. For example: 

 

 Listing 4 

.RadMenu_Inox .link 

 

This means that any .link, that is not within the .RadMenu_Inox 
will not apply in r.a.d.menu. 
  

4. Make sure you understand the output code, the responding CSS classes 
and the images contained inside the img/ folder. If you face difficulties, 
please, refer to chapter 1. Understanding B row ser’s  Output Code. A 
good way of debugging CSS is to set border: solid 1px red 
!important; to the classes you are not sure about, as this will override 
any other rules and will highlight them. 
 

5. Open your design file with Adobe© PhotoShop or with your favorite 
image software (You can also take a look at our skins library at 
http://www.telerik.com/skins where we have provided almost all 
r.a.d.controls skins along with the respective .psd files). Use the 
horizontal and vertical rulers to outline the different elements of your new 
skin. Make sure you preserve the original names of the image files 
(simply overwrite the current ones) –  this will help you avoid confusion 
with existing images. After reloading the page, you will see your new 
images on the place where they are supposed to be. Do not get 
frustrated if they look a little (or much) displaced. That is because you 
still haven’t set their proper dim ensions in the S tyles.css file. 
 

6. Find the image filenames in Styles.css and edit the correspondent css 
classes. Set new dimensions, borders, colors, backgrounds, 
background-repeats, fonts and any other property required by design. It 
is important to have in mind several points: 

 

Listing 5 

http://www.telerik.com/skins


Telerik skinning Tutorial       Page 5 

 

 
  

 

 The direction of the background-repeat, or is there a real need of 
using background images instead of solid colors; 

 Paddings and margins –  if not set properly, these behave slightly 
different in different browsers and you might get unexpected and 
unpleasant results; 

 Widths, heights, line-heights and displays; 
 Be aware of the browser-specific CSS properties we have used 

for some of the classes (-moz-propertyName: - Mozilla 
extensions, _propertyName: –  IE hacks, filter:, 
important!). 

 

CONCLUSION  
 

The correct understanding of the skinning logic, combined with the good notion of 
the HTML architecture of a particular component takes a great part in the 
process of designing custom skins for r.a.d.controls. 

 

In order to create a successful, useful and browser-compatible skin, please, feel 
free to examine the code in the existing skins, or make use of the tools we have 
described in the first chapter. 

 

 

Good luck! 

 


