

Adding the Telerik ASP.NET 2.0 RadMenu
Control to MOSS 2007 Publishing Sites

Forward
With the release of Windows SharePoint Services (WSS) v3 and Microsoft Office SharePoint
Server (MOSS) 2007, Microsoft has implemented significant architectural changes to the
SharePoint platform which simplifies the task of customizing the user interface. Most of these
improvements are because WSS v3, unlike its predecessor, is built on top of the .NET 3.0
Framework bringing the native capabilities of ASP.NET 2.0 directly to the SharePoint platform.
One such ASP.NET 2.0 concept that is leveraged by WSS v3 is the navigation provider model.
The navigation provider model separates the navigation hierarchy (the data portion, otherwise
known as site-map data sources) from the rendering (the presentation portion, otherwise known
as navigation controls). The role of the site-map data source is to abstract the navigation
hierarchy from the underlying system (such as SharePoint) to make it transparent to the
navigation control. This allows developers to easily snap ASP.NET 2.0 navigation provider
model compatible controls into a SharePoint site by simply configuring them to receive the
navigation hierarchy from the provided SharePoint site-map data sources.

This white paper demonstrates how to incorporate the Telerik RadMenu navigation control in a
MOSS 2007 Publishing site. In order to leverage the Telerik RadMenu control, some required
files must be deployed to each SharePoint Web Front End (WFE) server. The deployment of the
files is conducted in one of two ways: (1) manual deployment of all necessary files using simple
file-copy operations or (2) leveraging the WSS solution framework for deployment. Once the
required files are deployed, the Telerik RadMenu is then added to the Publishing site by editing
the site’s master page(s).

While only the Telerik RadMenu navigation control is documented in this white paper, the same
steps can be used to incorporate other RadControls suite such as the RadTreeView and
RadTabStrip into WSS v2 or MOSS 2007 sites since they have existing default counterparts.
Other components in the RadControls suite such as RadRotator, RadSplitter and RadComboBox
do not have a direct comparable control in WSS v3 or MOSS 2007 sites can be used and
deployed using the steps outlined in this white paper, but additional custom code may be
required. In addition, the fully functional WYSIWYG RadEditor will be available within
Publishing sites via a Telerik supplied custom wrapper.

In addition, this white paper is written to work with the 2007 Q1 release of RadMenu, version
4.3.0.0. These same steps apply to prior and future versions of RadMenu, just make sure the
correct version is specified where appropriate (<SafeControl> entries, <%@Register %>
directives, etc.).

page 1 of 13

Deploying Telerik’s RadMenu Control Overview
The Telerik RadMenu navigation control, just like all the controls in the Telerik RadControls
suite, requires a few files to operate correctly:

• Assembly: All logic associated with the RadMenu is compiled into a single assembly:
RadMenu.Net2.dll. This assembly must be copied to the desired SharePoint site’s bin
directory located in the webroot of the SharePoint site. The assembly could also be
deployed to the GAC if the RadMenu is to be used across multiple SharePoint sites,
however in this white paper it’s assumed that it is to be used in a single SharePoint site.

• Skin files: The visual appearance of RadMenu is controlled using skins. Skins include
images and a single stylesheet (styles.css). All files included in the skin are contained in a
single folder. Just as other controls in the RadControls suite, multiple skins are supported
by the RadMenu. All skins are located in the skins directory. This directory must be
copied to the desired SharePoint site’s wpresources directory located in the webroot of
the SharePoint site. If the assembly is deployed to the GAC, the skin files can be deployed
to the C:\Program Files\Common Files\Microsoft Shared\web server
extensions\wpresources\ directory to be available to all Web Applications on the server.

Finally, the last step is to tell SharePoint that the RadMenu assembly is safe to invoke.
SharePoint’s collaborative nature allows users to create and upload ASPX pages into SharePoint
sites. However, in order to keep these untrusted users from adding malicious code in the ASPX
pages, Microsoft added a safe mode parser to SharePoint that requires code to be explicitly
designated as safe to invoke. The RadMenu assembly needs to be registered as a safe assembly,
or control, so it can execute correctly within SharePoint. This is done by registering the
RadMenu assembly as a safe control within the SharePoint site’s web.config file.

All these steps, from copying the files to the appropriate locations to registering the RadMenu
assembly as a safe control, can all be carried out in one of two ways. The first option is to
manually perform all the steps for each SharePoint site that will utilize the RadMenu. A section
option involves automating the deployment process by packaging all the RadMenu files up into a
WSS solution package and utilize the WSS solution infrastructure to deploy all the necessary
changes automatically.

The following two sections outline each deployment process (manual vs. automated). It is
recommended to review both processes, as even if the automated deployment process is favored,
developers should be very familiar with the manual process in the chance issues arise down the
road that requiring troubleshooting.

Both sections assume that a MOSS 2007 Publishing site has already been created in a new web
application within Internet Information Server (IIS) with the default settings, except for the
following exceptions:

• Site name of Telerik
• Port 80
• Host header specified as telerik

page 2 of 13

• Site template: Publishing Portal

Provided the default settings were used when the Publishing site was created, except where
otherwise noted above, SharePoint would have created the site with a webroot on the file system
in the following location: c:\inetpub\wwwroot\wss\VirtualDirectories\telerik80. It is not
important if different options were used… the instructions white paper simply assume the above
options as a point of reference.

Manual Deployment Process
The manual process of deploying the required files and making the necessary changes to existing
files is just that: a process that involves many steps that are performed one after another by a
developer or server administrator. This section outlines the required steps that need to be taken in
order to deploy the Telerik RadMenu prior to implementing it within an existing MOSS 2007
Publishing site.

1. Install the RadMenu assembly that contains all the logic for the control,
RadMenu.Net2.dll to the Global Assembly Cache (GAC).

2. Copy the RadMenu skins directory that contains the presentation templates,
RadControls\Menu\skins, to the following location: c:\Program Files\Common
Files\Microsoft Shared\web server
extensions\wpresources\RadMenu.Net2\4.3.0.0__bbe59a8ad3533e68\RadControls\M
enu\Skins.

Refer to Figure 1 for an example of the deployed files within the Publishing site’s web
root.

page 3 of 13

Figure 1 – Telerik skin files after copying the RadMenu skin files into the directory
structure

3. Next, tell SharePoint that the RadMenu is safe to execute. Register two namespaces and
all the classes within them as safe controls with the SharePoint Publishing site by opening
the web.config within the SharePoint Publishing site’s web root and add the following
two entries at the end of the <SafeControls> section, just before the closing
</SafeControls> tag:

<SafeControl Assembly="RadMenu.Net2, Version=4.3.0.0, Culture=neutral,
PublicKeyToken=bbe59a8ad3533e68" Namespace="Telerik.RadMenuUtils"
TypeName="*" Safe="True" />

<SafeControl Assembly="RadMenu.Net2, Version=4.3.0.0, Culture=neutral,
PublicKeyToken=bbe59a8ad3533e68" Namespace="Telerik.WebControls"
TypeName="*" Safe="True" />

Note that the version of the assembly is specified in each <SafeControl> tag. If deploying
a different version of the RadMenu, ensure that the version number is correct here.

To obtain the public key token for the RadMenu.Net2.dll, open a Visual Studio 2005
Command Prompt and enter the following (FYI: the sn.exe utility is case sensitive)
command which will return the public key blob and token, as shown in Figure 2:

sn.exe –Tp [full path to RadMenu.Net2.dll]\RadMenu.Net2.dll

page 4 of 13

Figure 2 – Using sn.exe to obtain the public key blob and public key token from the
RadMenu.Net2.dll assembly.

Save and close the file web.config.

If the control is going to be used within a SharePoint Publishing site that is duplicated on
multiple SharePoint WFE’s to implement load balancing then the manual deployment process
outlined above must happen on each WFE. This is just one of the many advantages that the
automated deployment process has over the manual process.

Automated Deployment Process
The automated process of deploying the required files and making the necessary changes to
existing files is intended to greatly reduce the number of steps when developers want to leverage
the RadMenu in a new or existing MOSS 2007 Publishing site. All the steps previously outlined
in the manual process can be automated using WSS solution packages, a new concept and
capability in the latest release of SharePoint, WSS v3.

WSS solution packages, or SharePoint packages for short, are Microsoft cabinet files with a
*.WSP filename extension that are used to deploy custom code, files, and configuration file
changes to a SharePoint environment. These SharePoint packages can deploy assemblies to sites
or the GAC, deploy files anywhere in the SharePoint [..]\12* directory structure and edit
web.config files among other things. Once a SharePoint package has been created, a farm
administrator adds it to the SharePoint farm’s solution store using STSADM.EXE where it can
then be deployed either using STSADM.EXE or through the SharePoint farm’s Central
Administration site. Conversely, the solution can also be retracted which will undo all the
changes that were implemented when it was deployed (such as remove safe control entries from

page 5 of 13

the web.config, remove the assembly from the bin (or GAC), and remove any resource files).
For more information on WSS solution packages, refer to the WSS v3 SDK:
http://msdn2.microsoft.com/en-us/library/aa543214.aspx.

Using a SharePoint package, the RadMenu files and necessary changes can be packaged into a
single *.WSP file that can be used to automate all necessary deployment steps of the control. But
first, developers need to create the SharePoint package that will be used for deployment. This
section outlines the steps necessary to create a WSS SharePoint package WSP file that can be
used to deploy the RadMenu control quickly to any MOSS 2007 Publishing site.

The following steps outline how to create a WSS solution package using Visual Studio 2005 and
MSBuild in an automated and easily repeatable process. Visual Studio 2005 and MSBuild are
not required to create WSS solution packages. For instructions on creating a WSS solution
package, refer to the WSS v3 SDK: http://msdn2.microsoft.com/en-us/library/aa543741.aspx.

1. Open Visual Studio 2005 and create a new Visual C# or Visual Basic project using the
Empty Project template and give it the name of Telerik.RadMenu. This will be used as
a container for the WSS solution package source files.

2. Copy the RadMenu assembly, RadMenu.Net2.dll, to the root of the project. Refer to
Figure 4 for an example of the project.

3. Copy the RadMenu provided skin files to the root of the project under the directory
structure [root]\RadControls\Menu\Skins. Refer to Figure 4 for an example of the
project.

4. Create a diamond directive file (*.ddf) that contains a manifest of all the files into include
in the WSS solution package. Due to the large number of files that make up the default
RadMenu skins (200+ files) this can be a tedious and significant task. To simplify this
task, copy the utility TelerikSkinDDFCreator.exe (available via download at the end of
this white paper) into the RadControls directory added to the Visual Studio project in the
previous step and execute it from Windows Explorer or the command line. It will
generate the file TelerikSkins.ddf that lists all files, preserving the folder structure,
within the RadControls directory. Copy this generated file to the root of the Visual
Studio 2005 project.

5. Once the TelerikSkins.ddf file has been created using the provided utility and added to
the project, the RadMenu assembly needs to be added to the diamond directive file. Just
after the comment in the TelerikSkins.ddf file, add an entry for the RadMenu.Net2.dll,
as shown in Figure 3:

page 6 of 13

http://msdn2.microsoft.com/en-us/library/aa543741.aspx

Figure 3 – TelerikSkins.ddf

At this point all necessary deployment files are in the Visual Studio project. Now the WSS
solution package manifest needs to be created and added to the project. This file,
manifest.xml, is used by SharePoint when adding the WSS solution package to the
SharePoint farm’s solution store as well as when the solution is deployed. The following
detail the creation of manifest.xml:

6. Create a new XML file in the root of the Visual Studio project with the name
manifest.xml. This file is used by SharePoint when the WSS solution package is added
to the SharePoint farm’s solution store and deployed; think of it as the instructions telling
SharePoint what to do with the WSS solution package and all files within the package.

Copy the code in Listing 3 into the manifest.xml file.

Listing 3
<?xml version="1.0" encoding="utf-8" ?>
<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
 SolutionId="DC821995-2B38-4c5c-813D-6FB092C5731F"
 DeploymentServerType="WebFrontEnd"
 ResetWebServer="TRUE">

 <Assemblies>
 <!-- deploy the assembly to the server’s bin directory -->
 <Assembly DeploymentTarget="GlobalAssemblyCache"
 Location="RadMenu.Net2.dll">

 <!-- add two safe control entries to the web.config -->
 <SafeControls>
 <SafeControl Namespace="Telerik.RadMenuUtils"
 TypeName="*" Safe="True" />
 <SafeControl Namespace="Telerik.WebControls"
 TypeName="*" Safe="True" />
 </SafeControls>

 <!-- deploy resources used by RadMenu to wpresources -->
 <ClassResources>
 <!-- INSERT skin files -->
 </ClassResources>

page 7 of 13

 </Assembly>
 </Assemblies>
</Solution>

Note: To obtain the public key for the RadMenu.Net2.dll assembly, refer to the end of
step 3 in the Manual Deployment Process section of this white paper.

7. Next, all the files making up the RadMenu skins need to be added to the manifest. Just
like in the case of the diamond directive file, this is daunting task with 200+ files to add
to add. Again, to simplify this task, copy the utility TelerikSkinManifextCreator.exe
(available via download at the end of this white paper) into the RadControls directory
added to the Visual Studio project in the previous step and execute it from Windows
Explorer or the command line. It will generate the file TelerikSkins.xml that contains a
long list of <ClassResource> nodes, each containing a reference to one of the files in the
skins directory. Copy all the <ClassResource> nodes and insert them in the
<ClassResources> node (replacing the comment) in the manifest.xml file created in the
last step.

Figure 4 – Visual Studio 2005 Project Created in the Automated Deployment Process

8. Once the manifest.xml file has been created using the provided utility and added to the
project, the manifest.xml needs to be added to the diamond directive file. Just after the
assembly entry previously added in the TelerikSkins.ddf file, add an entry for the
manifest.xml, as shown in Figure 5:

Figure 5 – TelerikSkins.ddf

page 8 of 13

9. At this point our WSS solution package is prepared, all necessary files have been created,
and it is ready to be packaged up into a *.WSP. The files will be packaged up using
makecab.exe, a utility included in the Microsoft Cabinet SDK (available from the
Microsoft Knowledge Base: http://support.microsoft.com/default.aspx/kb/310618).
Download the Microsoft Cabinet SDK and extract the contents. The recommended
location to extract the MSFT Cabinet SDK is c:\Program Files\Microsoft Cabinet SDK.

10. Now the Visual Studio 2005 project file needs to be configured so that when the project
is built, MSBuild will not compile anything, but rather call makecab.exe to create the
*.WSP file. One option is to edit the project file directly using Notepad or similar text
editor. The other option is to edit it directly in Visual Studio. To do this, right-click the
project name in the Solution Explorer tool window and select Unload Project. Next,
right-click the project name again in Solution Explorer and select Edit [project
name].csproj. Scroll down to the line where the C# MSBuild targets file is imported:

<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />

Delete that line down through the commented lines (including <Target
Name=”AfterBuild”></Target>). Add the following code to define a variable
MakeCabPath that references the full path to makecab.exe:

<PropertyGroup>
 <MakeCabPath>"C:\Program Files\Microsoft Cabinet
SDK\BIN\MAKECAB.EXE"</MakeCabPath>
</PropertyGroup>

Next, replace the Build target that was removed when the C# MSBuild targets file was
deleted. This MSBuild target executes makecab.exe from the command line passing in
the DDF file and creates a *.WSP with the Visual Studio 2005 project name as the
filename. This file is created in the wsp subdirectory within the project (parallel to where
bin and obj are typically found):

<Target Name="Build">
 <Exec Command="$(MakeCabPath) /F TelerikSkins.ddf /D
CabinetNameTemplate=$(MSBuildProjectName).wsp /D DiskDirectory1=wsp" />
</Target>

Save the changes and right-click the project name in the Solution Explorer tool window
and select Reload Project (if a warning pops up, simply OK though it… that is Visual
Studio warning that the project file does not look like one of the stock project files).

11. That’s it! Now build the project. Assuming a successful build, it is now time to add the
WSS solution package to the SharePoint farm’s solution store. Open a command project
and enter the following command (replacing file paths where necessary):

page 9 of 13

c:\>[path to stsadm.exe]\stsadm.exe -o addsolution -filename [path to
WSP]\telerik.radmenu.wsp

Figure 6 – Adding the telerik.radmenu.wsp WSS solution package to the SharePoint
farm’s solution store

12. With the solution added to the SharePoint farm’s solution store, it can now be deployed.
Before deploying, notice how the assembly is not in the target site’s bin directory, the
two safe control entries are not present in the web.config, and the skin files are not in
wpresources. Open Internet Explorer and navigate to the farm’s Central Administration
site. Select the Operations tab and then Solution Management under the Global
Configuration section. Select telerik.radmenu.wsp and click Deploy Solution. When
prompted where to deploy the solution, select the desired SharePoint Publishing site.

Figure 7 – Deploying the telerik.radmenu.wsp WSS solution package to the target
SharePoint site

That’s it! The best part is the telerik.radmenu.wsp file created by following these steps can be
used on other SharePoint servers and farms to deploy the Telerik RadMenu control! The only
reason that the package would need to be updated is if either the RadMenu assembly was
updated to a new version or a skin was added/updated.

page 10 of 13

In addition, if a SharePoint farm has multiple WFE’s load balanced and thus, running multiple
copies of the same site across multiple servers, the SharePoint will automatically deploy the
WSS solution package to each site on each server. If the manual deployment process was
elected, this would either have to be scripted, or each server would need to be manually updated
one-by-one.

Incorporating the RadMenu Control in Office SharePoint Server 2007
Publishing Sites
Regardless of the deployment process selected (manual or automated), all necessary files are
now in place and all required changes have been implemented. Now it the control can be added
to Publishing site master pages (and page layouts if necessary). This is a very easy and quick
two-step process. The following steps outline how to swap out the default SharePoint ASP.NET
Menu navigation control used within the default master page for a Publishing Portal site:
BlueBand.master.

1. Launch Office SharePoint Designer 2007 and open the desired Publishing site:
http://telerik.

2. Within the Folder List tool window, expand the tree to show the site’s Master Page
Gallery in the following location: http://telerik/_catalogs/masterpage.

3. Open BlueBand.master within the masterpage list. If prompted to check out the file,
select Yes.

4. Add the following register directive just before the <HTML> tag to register the RadMenu
assembly on the page:

<%@ Register TagPrefix="telerik" Namespace="Telerik.WebControls"
Assembly="RadMenu.Net2, Version=4.3.0.0, Culture=neutral,
PublicKeyToken=bbe59a8ad3533e68" %>

Note that the version of the assembly is specified in the <%@Register %> directive. If
deploying a different version of the RadMenu, ensure that the version number is correct
here.

5. Scroll down to around line #91, where the <SharePoint:AspMenu ID=”GlobalNav”
…> node is. Delete the entire <SharePoint:AspMenu> node and its contents (including
the closing node).

6. Add the following code just before the opening
<PublishingNavigation:PortalSiteMapDataSource> node:

<!-- fix for RadMenu CSS conflict when used in SharePoint -->
<style type="text/css">.radmenu ul li {margin:0px;}</style>
<telerik:RadMenu id="radMenu1" runat="server" Skin="Default"

page 11 of 13

 DataSourceId="siteMapDataSource1" CollapseDelay="0"
RadControlsDir="/_wpresources/RadMenu.Net2/4.3.0.0__bbe59a8ad3533e68/Ra
dControls">
 <ExpandAnimation Type="None" Duration="0"></ExpandAnimation>
 <CollapseAnimation Type="None" Duration="1000"></CollapseAnimation>
</telerik:RadMenu>

7. Verify the DataSourceId attribute in the <telerik.RadMenu> node contains the same
value specified in the ID attribute within the
<PublishingNavigation:PortalSiteMapDataSource> node immediately following the
control.

8. Save all changes and check in the file, publishing a new major version, followed by
approving the updated master page.

With the RadMenu deployed and incorporated into a MOSS Publishing site, open Internet
Explorer and browse to the Publishing site’s homepage. The top, horizontal navigation control
just below the site logo and title should display the rendered menu. However, instead of using the
default menu control, it is using the Telerik RadMenu as shown in Figure 8:

Figure 8 – RadMenu used to render the navigation in the default SharePoint Publishing
Portal site template

Conclusion
This white paper outlined the two options available for deploying the files required by the
Telerik RadMenu as well as making the appropriate changes to the necessary files. While the
manual deployment process may feel more familiar to traditional ASP.NET 2.0 developers, the
automated deployment process is much preferred as it utilizes the embedded installation
framework provided by SharePoint (specifically WSS v3): WSS solution packages.

Finally, two points made at the beginning of this white paper need to be reiterated:

page 12 of 13

page 13 of 13

 Other controls in the Telerik RadControls suite follow the same deployment model and
requirements. This white paper simply addressed one of the controls (RadMenu) within
the RadControls suite.

 While the demonstration site used in this white paper is a MOSS 2007 Publishing site,
these same steps apply to all WSS v3 based sites, including sites created using the Team
Site or Blank Site site template.

Downloads
 Microsoft Cabinet SDK: Microsoft Knowledge Base #Q310618
 DDF Builder Utility: TelerikSkinDDFcreator.exe
 Manifest ClassResource Utility: TelerikSkinManifextCreator.exe

Credits

Created by Andrew Connell, MVP Microsoft Office SharePoint Server
(http://www.andrewconnell.com) on behalf of Telerik (http://www.telerik.com).

http://www.andrewconnell.com/

	Forward
	Deploying Telerik’s RadMenu Control Overview
	Manual Deployment Process
	Automated Deployment Process
	Incorporating the RadMenu Control in Office SharePoint Server 2007 Publishing Sites
	Conclusion
	Downloads
	Credits

