
BUILDING A
DIAGRAMMING TOOL
WITH RADDIAGRAM
FOR ASP.NET AJAX

A publication of

CONTENTS
The Big Picture .. 3

Architecture of the App .. 4

Shapes Toolbox .. 7

Layout and Appearance ... 7

Interactive shapes ... 7

Server-side architecture ... 8

Properties Panels ... 10

 2

Canvas & Layout ... 10

Shape Properties .. 11

Align and Arrange ... 11

Connection Properties .. 12

General concept of the Toolbar ... 12

Save diagram ... 13

Open diagram from JSON file .. 14

Final thoughts .. 16

Feedback .. 17

About the Author .. 17

A publication of

THE BIG PICTURE

The making of an application is a challenging task with lots of difficult decisions to take. You should
always consider the scalability of the application, its ability to grow and become better and at the same
time performance should be top notch. The software architecture should have all these under
consideration.

At the same time creating a web application can be quite a rewarding activity. You create a system out
of simpler elements, you construct the complexity of the intercommunication and you are the one to
bring this all to life. It is more or less a great experience.

Overall this is how we feel when we are presented with the task of creating a sample application using
the Telerik UI for ASP.NET AJAX controls. The excitement is amplified when we are using a brand new
control and more so when that control presents us the wonderful universe of diagramming. That is why
we want to share this journey with you.

Here is a list of some of the cool things we will be discussing in the following pages:

• Extensive client-side development – the Diagram control is mainly managed on the client-side.

• Global JavaScript functions can be good.

• Communication across user controls on the client-side.

• OOP principles

• Separation and modularity of functionality. The proximity principle in action – similar features are

close to each other with higher cohesion.

• Fine-tuning the client-server communication for files over HTTP – or can we go without the

overhead

 3

A publication of

Architecture of the App

The Diagram sample app in its majority is a single page application built around the RadDiagram control.
It is only the “About” page that is a separate Page instance.

We intended this application as an example how to use the Diagram features, how to extend the control
and how to integrate it with other controls from the Telerik UI for ASP.NET AJAX suite.

The “Default.aspx” file contains the backbone of the HTML layout.

Figure1: Default.aspx with designated functionality areas: 1) Toolbar 2) Shapes toolbox 3) Diagram canvas 4) Properties panels

Every group of UI elements related to a specific functionality is separated in a user control. The intention
is to have each group of features in its own space.

The majority of the functionality and logic is implemented on the client-side and most of it is centered
on the Diagram control. In that regard understanding JavaScript is of great importance.

The Diagram control on the client-side is actually the Kendo UI Diagram widget. This is great news as

we can take full advantage of all its functionality and API.

 4

http://demos.telerik.com/kendo-ui/dataviz/diagram/index.html
http://docs.telerik.com/kendo-ui/api/dataviz/diagram

A publication of

function getDiagram() {

 return $find("<%= theDiagram.ClientID %>").kendoWidget;

}

Although not the best programming practice, this saves a lot of effort and proves that blindly following the

rules is not always the most optimal path.

There are a few very interesting cases, where communication between different user controls on the client-

side is needed. Running the sample app you will notice that when opening a diagram from a JSON file or

when loading a blank diagram, the properties panels are reset.

For the special case of properties handling we decided to implement this through a centralized

broadcaster class – PropertiesManager. Specific implementation objects from the properties user controls

register to it. Let’s call them Configurators.

Figure2: Configurators register to the PropertiesPanels Manager

It is important that the Configurator expose a predefined collection of methods. For our case it is pretty
simple – they only need the “reset” method. Finally the Toolbar user control uses an instance of the
PropertiesManager – PropertiesPanels, to call its “reset” method. It will invoke the reset on every
registered implementation, which results in all properties panels being reset.

PropertiesPanels

ConectionConfigurator ShapesConfigurator CanvasConfigurator

register register register

 5

Because we have a single diagram in the application we can create a shortcut as a convention to getting
a reference to the diagram widget through a global client-side method – getDiagram().

A publication of

Figure3: Configurators register to the PropertiesPanels Manager

Let’s investigate the different user controls in details, thus getting a better picture of the specifics in the

implementation.

PropertiesPanels

ConectionConfigurator ShapesConfigurator CanvasConfigurator

invoke invoke invoke

 6

A publication of

SHAPES TOOLBOX
Layout and Appearance

• RadPanelBar

• RadListView

The PanelBar is the main container in the “ShapesToolBox.ascx”. It gives us a flexible UI through the
collapsible panels and a clear separation between the different groups of shapes.

Within each PanelItem we have a ListView that iterates the different shapes within the group. All the
ListViews have the same ItemTemplate so it will be enough to investigate just one template:

<ItemTemplate>

<div class="item-container">

 <div class="item" data-item='<%# DataBinder.Eval(Container.DataItem, "Json") %>'

style="background-position: <%# DataBinder.Eval(Container.DataItem, "SpritePos") %>"></div>

 <%# DataBinder.Eval(Container.DataItem, "Name") %>

 </div>

</ItemTemplate>

From this template 3 properties show up as shape-defining.

The Json property contains the options that specify a shape in the Diagram widget. All the possible
properties can be seen in the Kendo UI documentation - http://docs.telerik.com/kendo-
ui/api/dataviz/diagram#configuration-shapes. This data is used by the built-in drop functionality of

the Diagram widget to create and add the new shape.

A shape item is visualized using a well-known technique - sprites. Therefore for every specific shape we

require the SpritePos property during data-binding to define the sprite position that corresponds to this
particular shape.

The Name property is self-explanatory – it specifies the name of the shape – circle, square, rectangle,
hexagon, arrows, etc.

Interactive shapes

The appearance of the shapes is irrelevant if they are not easy to use. For that we use the Kendo
UI draggable widget, because it integrates seamlessly with the Diagram widget and it being a drop

target.

 7

The Shapes Toolbox consists of shapes that can be dragged and dropped onto the diagram canvas. It is
divided into three groups – Basic Shapes, Polygon Shapes and Arrow Shapes.

Here are the controls from the UI for ASP.NET AJAX suite that we used:

http://docs.telerik.com/kendo-ui/api/dataviz/diagram#configuration-shapes
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#configuration-shapes
http://alistapart.com/article/sprites
http://demos.telerik.com/kendo-ui/web/dragdrop/index.html
http://demos.telerik.com/kendo-ui/web/dragdrop/index.html

A publication of

function enableDraggableShapeBox() {

 var draggables = $telerik.$("#<%= shapesPanels.ClientID %>");

 if (draggables.getKendoDraggable()) return;

 draggables.kendoDraggable({

 filter: "div.item",

 hint: function (draggable) {

 var hint = draggable.clone(true);

 return hint;

 }

 });

}

We make sure that only the shape items are by specifying the filter option of the kendoDraggable.
Furthermore we provide the hint – a clone of the shape HTML. This creates a nice illusion of taking a
shape and really dropping in the diagram surface.

Server-side architecture

The server-side implementation is there to support the complexity of shapes – rectangular, circular and
paths. At the same time we want to keep things simple. Evident from the ListView template the
information that we really need is a model with 3 properties – Name, Json and SpritePos. Therefore –
Interface!

Figure4: ToolboxShape interface exposing the minimal data model for a Toolbox shape

 8

A publication of

The common code is implemented in the ToolboxShape abstract class.

The specifics – more precisely the Json generation, are hidden in specific classes – Rectangle, Ellipse and
PathShape.

Figure5: Hierarchy of Shape primitives for the Shapes Toolbox

Here are examples how different shapes are created.

new Rectangle(120, 120) { Name = "Square", SpritePos = "0 0" };

new Ellipse(120, 120) { Name = "Circle", SpritePos = "-60px 0" };

new PathShape("m30,0 L90,0 L120,52 L90,104 L30,104 L0,52 z") { Name = "Hexagon", SpritePos = "-

300px 0" };

The whole architecture becomes obvious in the ToolboxShapesRepository, which serves as the provider
class for the different shape groups.

 9

A publication of

PROPERTIES PANELS

Each user control takes care of its own concrete relationship with the Diagram control. When necessary a
Configurator is registered in the PropertiesPanels manager class so that reset can be done on a
centralized level through a single method call.

Canvas & Layout

The Diagram control itself does not expose any API for changing the background color of the canvas.
Actually it does not need to – we use CSS to change the background-color of the diagram HTML
element.

The case with Diagram layouts is much more interesting. We use the RadComboBox control as a UI

element for choosing between different built-in layouts.

Notice that the combo box items are not standard text, but have icons in them. We use an ItemTemplate
to implement this appearance:

<ItemTemplate>

 <div class="ci-layout">

<span class="layoutIcon <%# Eval("CssClass") %>">

<%# Eval("Text") %>

 </div>

</ItemTemplate>

The CssClass property is needed because sprites are used for the layout icons.

The Value of the ComboBox items is a combination of layout types and subtypes separated by a dash:

tree-down, tree-tipover, tree-mindmaphorizontal, etc. Both values are necessary to best describe the
options when calling the diagram layout method.

Following is how we handle the OnClientSelectedIndexChanged event of the ComboBox with all the
considerations described above:

 10

The properties panels are user controls placed in a RadPanelBar. This gives the properties panel a nice
look and feel with clear separation of the different features and at the same time promotes a flexible
ways to handle the UI. This gives us the option to easily expand the options as new features in the
Diagram control appear.

There are no HTML tables used in the layout of the user controls. We tried to keep things simple here as
well.

http://www.telerik.com/help/aspnet-ajax/diagram-layout-algorithms.html
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#configuration-layout.type
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#configuration-layout.subtype
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#methods-layout

A publication of

function changeLayoutHandler(dropDown, args) {

 var diagram = getDiagram(),

 itemValue = args.get_item().get_value(),

 layoutType = parseLayoutType(itemValue);

 diagram.layout({

 type: layoutType.type,

 subtype: layoutType.subtype,

 animate: true

 });

}

function parseLayoutType(value) {

 var valueSplit = value.split('-');

 return {

 type: valueSplit[0],

 subtype: valueSplit[1]

 };

}

Shape Properties

The shapes properties panel appears huge in comparison with the rest, but there actually is quite simple.

As it should track changes in the selection of the diagram or changes in the shape bounds, in this user
control the select and itemBoundsChange events of the Diagram widget are handled.

At the same time any changes in the form elements should be reflected in the diagram selection. This
functionality is more or less a two-way binding to the Diagram widget.

This user control takes advantage the shape.bounds method and the shape.redraw methods of a Shape
object in the Diagram widget. The first method is to change the dimensions and position of the shape as
the name of the method suggests, whereas the second method is used to change the appearance – fill
and stroke.

Align and Arrange

Align and Arrange user controls are very similar in their implementation. In both RadButton controls are
used to provide an easy way to align shapes or arrange them in the canvas.

The Diagram widget methods that are used are alignShapes for aligning and toFront and toBack for

arranging.

 11

http://docs.telerik.com/kendo-ui/api/dataviz/diagram#events-change
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#events-itemBoundsChange
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#methods-alignShapes
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#methods-toFront
http://docs.telerik.com/kendo-ui/api/dataviz/diagram#methods-toBack

A publication of

Connection Properties

The connection properties user control works with the selected connections. It changes the start and
end caps of the connections through a predefined, built-in markers.

The implementation uses the redraw method of a Connection by defining the startCap or endCap option
in the options parameter.

function updateStartCap(sender, args) {

 updateSelectedConnections({ startCap: sender.get_value() });

}

function updateEndCap(sender, args) {

 updateSelectedConnections({ endCap: sender.get_value() });

}

function updateSelectedConnections(options) {

 var diagram = getDiagram(),

 selection = diagram.select();

 for (var i = 0; i < selection.length; i++)

 if (selection[i] instanceof Connection)

 selection[i].redraw(options);

}

General concept of the Toolbar

The implementation of the Toolbar at the top of the “Default.aspx” page is intended as a very thin layer
between the user and the Diagram control. As a first simple step we want to evade the common
switch/case approach in the event handler for the OnClientButtonClicked client-side event.

Here is the idea:

1. Create a JavaScript class that exposes methods with the same names as the CommandName of
the corresponding Toolbar buttons.

2. In those methods implement the specific logic for the command.

3. Provide the dependent diagram as a parameter through the constructor of the JavaScript class.

The name of the class is DiagramToolBarActionManager. Here are a couple of methods that are part of
it:

undo: function() {
 if(!this._diagram) return;
 this._diagram.undo();
},
redo: function() {
 if(!this._diagram) return;
 this._diagram.redo();
}

 12

A publication of

function toolBarClicked(sender, args) {

 var item = args.get_item(),

 action = item.get_commandName(),

 actionArgs = item.get_commandArgument();

 if (actionManager && action && actionManager[action])

 actionManager[action](actionArgs);

}

In the above code sample the responsibility for the handling of the specific command is relayed to the
ActionManager.

This described approach is a slightly more complex implementation of a well-known paradigm of
evading switch/case statements in JavaScript through the use of vanilla JS objects.

So far things look simple. However they get a bit complicated when client-server boundaries are crossed
as is the case with

• Saving the diagram to a JSON file

• Loading the diagram from a JSON file

• Loading a predefined diagram from a JSON file

Save diagram

You can use the save method of the Diagram widget to get the content in a JSON format. This JSON is
enough to recreate the same diagram through the load method.

As a next step that is not built-in in the Diagram widget, we need to implement saving of the JSON
content to a file. The traditional approach to provide a downloadable content in web applications is to
send the content to the server, where it is redirected back to the browser through HTTP as a file stream.

On the other hand the HTML5 standard comes with a specification for File API. This means that files

can be created and its content can be managed on the client-side without even touching the server. This
saves a lot of traffic and improves performance by eliminating the overhead of the client-server
communication.

Both approaches are implemented in this sample app. For brevity we will investigate only the steps in
the mentioned approaches skipping a lot of details. Remember that you can always download the
sample code and investigate the specifics.

In the first approach, when sending the content to the server, we should use these steps:

1. Create dynamically a form element

2. Add a hidden input to it

 13

This approach is straight-forward and results in a very clean implementation of the event handler.

http://james.padolsey.com/javascript/how-to-avoid-switch-case-syndrome/
http://james.padolsey.com/javascript/how-to-avoid-switch-case-syndrome/
http://dev.w3.org/2006/webapi/FileAPI/

A publication of

3. Set the JSON of the diagram as a value of the input

4. Submit the form to a specific generic handler – DownloadJSON.ashx

The server code is very simple:

var json = context.Request.Form["json"];

context.Response.AddHeader("content-disposition", "attachment; filename=diagram.json");

context.Response.ContentType = "application/json";

context.Response.Write(json);

The tricky part is specifying the content-disposition HTTP header as attachment.

For modern browsers that support the File API we don’t need to go to the server:

1. Create a Blob with the JSON content

2. Dynamically create an anchor tag

3. Set the download property of the anchor to the name of the file – diagram.json

4. Call the click method of the anchor to explicitly execute the default functionality.

Open diagram from JSON file

For opening a JSON file to load into the diagram we use RadAsyncUpload along with the
RadAjaxManager. The idea is to upload the JSON content to the server, store it temporarily in the HTTP
server cache and load it through an AJAX call.

The first step – uploading the file to the server, is easy. The functionality is already present in the
RadAsyncUpload. By positioning the control under the Open Toolbar button, a click of the mouse will
open the OS File chooser dialog and after choosing, will stream the content to the server.

In the OnFileUploaded server-side event handler we should store the content of the uploaded file to the
HTTP cache:

Context.Cache.Insert(GetCacheKey(), content, null, DateTime.Now.AddMinutes(20), TimeSpan.Zero);

At this point we still don’t have the content on the client-side, where we actually need it. Therefore in the
OnClientFileUploaded client-side event handler, that is raised when the file is already uploaded on the
server, we do an AJAX postback through the RadAjaxManager:

$find("<%=RadAjaxManager.GetCurrent(this.Page).ClientID%>").ajaxRequest("fileUploaded_trigger");

 14

A publication of

In the server-side event handler for the Ajax_Request, get the cached file content and if it still exists,
push it back as a parameter in a JavaScript method call:

 (sender as RadAjaxManager).ResponseScripts.Add(String.Format("loadDiagram({0})", json));

As a result the loadDiagram client-side method will be called with the JSON content as a parameter. In
that method just call the Diagram widget load method and, voilà, you have loaded the JSON file into the
diagram widget.

function loadDiagram(json) {

 if (actionManager) {

 actionManager.open(json);

 }

}

 15

A publication of

FINAL THOUGHTS

Feel free to download the code, try out the new Diagram control and let us know what you think about it.

 16

In this walkthrough of the diagram sample app, we got to know not only the RadDiagram control but a
whole range of other controls from the Telerik UI for ASP.NET AJAX. We learned how to use them in
respect to solving problems specific to the domain of web applications. What becomes obvious is that
the controls themselves are great, but being able to combine them in a coherent manner they show their
real power.

A publication of

FEEDBACK
The Diagramming control that is part of the
Telerik UI for ASP.NET AJAX offers even more
that what you can see in the sample app. Take
some time to check out its cool features and
the power it harness. Combined with the
perfomance and extensibility of the whole suite
you can feel more confident in a successful end
result.

In addition, the trial comes with 30 days of
dedicated technical support from the people
who build the controls.

Download a fully-functional trial of

Telerik’s more than 80 Telerik controls for

every project need. You will find controls for
data visualization and management, navigation
and layout, editing, interactivity and more.

The code for both samples is available
for download here.

 About the Author

Nikodim Lazarov is a Senior

Software Developer in the Telerik's

ASP.NET AJAX division. He has

years of experience building web

applications of various scales. Niko

is a strong advocate of Web

standards, TDD, Agile and basically

anything that makes every

developer a true craftsman.

You can find him on Twitter

at @nlazarov and can reach him

at nikodim.lazarov@telerik.com.

APPLICATION SOURCE CODE

 17

https://www.telerik.com/download-trial-file?pid=RCAJAX&lict=1
http://www.telerik.com/products/aspnet-ajax.aspx
http://demos.telerik.com/aspnet-ajax/sample-applications/diagram-app/DiagramAppSource.zip
https://twitter.com/nlazarov
mailto:nikodim.lazarov@telerik.com?subject=Diagram%20Sample%20App

With over 150 UI controls and thousands
of scenarios covered out-of-the-box, you
can leave the complexities of UI to us and
focus on the business logic of your apps.

This content is sponsored by
Telerik UI for ASP.NET AJAX
and
Telerik UI for ASP.NET MVC.

TRY ASP.NET AJAX CONTROLS

TRY ASP.NET MVC EXTENSIONS

	The Big Picture
	Shapes Toolbox
	Properties Panels
	Final thoughts
	Feedback

