Office 2007 Ribbon Bar
ASP.net controls

	1.0.0.0 (2007-03-12)
	1.1.0.0 (2007-04-16)

	· Initial release – Basic controls

· Application bar

· Customize menu support

· Minimize ribbon support

· Quick access button

· Ribbon group

· Large ribbon button

· Small ribbon button

· Layout helpers

· Examples
	· Added hover effect to Tabs

· Added hover effect to RibbonGroup

· Added Dialog Launcher to RibbonGroup

· Added LargeSplitRibbonButton

· Added SmallSplitRibbonButton

· Simplifies and clarified examples
· Removed unnecessary code from JavaScript (does not change published API)

· Minor CSS changes to improve formatting and cater for new controls

	
	

	
	

If you read nothing else, you must read (and agree to) these 3 sections:
Microsoft Office UI licensing

The technologies introduced by Microsoft in the Office 2007 user interface are the intellectual property of Microsoft. If you wish to use this style you must be licensed by Microsoft to do so. This license is free and you basically agree to stick to the guidelines they have produced. See http://msdn2.microsoft.com/en-us/office/aa973809.aspx for more details.

The open source license I provide does not mean you are licensed to use the Office 2007 user interface. It is also no guarantee of compliance. The full responsibility of whether your application meets the Microsoft guidelines lies with you.

Telerik licensing

The code in this project relies on Telerik‘s ASP.net controls (RadMenu, RadTabStrip, RadMultiPage, and PageView - the examples also use the RadGrid, RadToolbar, and RadComboBox controls). You must have a valid Telerik license to use their controls.
Open source license

In order to use the code/controls you must comply with the following license agreement:

1) You may use the code as is, or alter it, in any way you wish (subject to statement 3)
2) You may use the code in commercial and non-commercial applications (subject to statement 3)
3) You may not use the code as is, or altered, to create a commercially available set of controls

4) You may distribute the code as is

5) You may distribute altered code so long as you make it clear that the underlying code was written by Russell Mason. If you leave the assembly name and namespaces as RussellMason… that is sufficient. If you change the assembly name or namespaces then you must add a comment such as ‘Adapted from code created by Russell Mason’ to each of the source code files provided (you do not need to add any other details such as who Russell Mason is or any web site URLs)
There is only one principle behind this, to prevent someone touting this work as their own for financial gain. The use of the code/controls implies acceptance of this license. If you do not feel comfortable with this do not use the code/controls.
About Me

I’ve been developing one way or another for the last 20 years. My speciality is Windows Forms applications but find myself doing more ASP.net work. I have created some ASP.net applications in my job but they’ve tended to be fairly basic in appearance using the default set of Visual Studio controls. I have a variety of websites that you can take a look at to see some personal projects I’ve implemented, all of which have been done in my spare time.
www.killerbitesoftware.com
www.sqlvisualizer.com
www.mybrowserfavorites.com
www.russellmason.com
About the project

On the Telerik web site you can see an example of how some of their controls can be used to create an Office 2007 style UI. This is a great example and I thought it would be nice to have a set of controls that provided the Office 2007 style for use in web applications.

Having only a reasonable amount of experienced in ASP.net and wanting to learn more I decided to create these controls as an exercise, trying to understand more of the inner workings of ASP.net rather than just at a superficial level.
I have found developing these controls a challenge! There seems to be a gotcha around every corner with different things happening at run-time and design-time my particular nemesis. There seems to be a lack of good quality resources on server controls. It’s easy to find something that ends up like a Panel using a div, and then a big jump to very complex stuff which assumes you already know everything. I see a gap in the market for a good book that fills the middle ground.
Please note that this project is a work in progress!

Assumptions

This project uses ASP.net 2.0, there is no 1.x version, nor will there be. I assume you are familiar with ASP.net and will understand the issues involved in creating web pages and controls, and therefore understand why I have taken some ‘shortcuts’ or have not implemented bullet proof code. For example, some JavaScript methods assume you only call them under the correct conditions, if you call them inappropriately they may error as there may be no checks against the objects current state or for nulls. An example of this is if you set up a tab control for the Ribbon and do not add the associated PageView controls.
The project relies on Telerik ASP.net controls. There will be no variants for other control vendors.

Before using the code you should understand that it is not a commercial set of controls and as such does not come with the kind of support that you would get from companies such as Telerik. Whilst I will endeavour to keep them up to date and fix bugs, you should not rely on this. This project is something I have done in my spare time and so may be days, weeks, or even months before I can get round to making a fix/change no matter how important it may be.

These controls work together. They are not a single control that will handle everything for you. You will need to write code and JavaScript to get them to work as a whole.

I have tested the controls with IE6 (6.0.2900.2180), IE7 (7.0.5730.11), and FireFox 2 (2.0.0.1). Because there are so many versions, even for just these browsers I can only say the exact versions I have used. I also can’t say whether they will work in a Mac or Unix browser as I don’t have those facilities (nor will I).

Code has been written for clarity (I hope). The JavaScript and CSS use fully descriptive names and formatting. This obviously increases the size of these files. You are welcome to optimize them for your needs.
Examples

Again, this is not a commercial set of controls; you need to do some work to get them to work together.

I have created a set of examples that illustrate each of the controls and how they can be used. You may need to ‘play’ around with them to get a feel for the controls, and work out how the web page needs to be set up as a whole.

In addition to these examples there is a page ‘template’ which illustrates the basic layout required to get started. This template is for a MasterPage as that seems most appropriate for this style of application. However, this can easily be changed for a standard page.

The project is ‘ready to run’ and include the latest (at time of writing) Telerik RadControls folder (this makes the download larger but simplifies setup).

Setup
The controls use both CSS and JavaScript to function. The RussellMason.Web.Application project contains a folder called Office2007Client (under Web/UI/Office2007) containing all CSS, images, and scripts required. When you create an application copy this folder to the root of your web application, in much the same way you would the Telerik RadControls folder.

From your page reference the Office2007Client/Css/RibbonBar.css and Office2007Client/Scripts/RibbonBar.js files.

Infrastructure
Base classes
I have created a few base classes, WebPage, MasterWebPage, and WebControl that derive from Page, MasterPage and CompositeControl respectively. These currently have no additional functionality but are the base classes for all controls and pages. I find it easier to add common functionally to this type of structure rather than later trying to pull it up into a new base class after the fact.

SharedState
Shared state is similar to ViewState except it can be shared between the server and client. This is simply a set of functionality that uses a single hidden field associated with a control in a more structured way than having to do this for every control separately. In a control’s constructor the initial state can be set up and in the client the JavaScript eval function can be used to split the field into an array. On the server these values can be accessed by index or name, on the client by index only (as it’s a simple JavaScript array). This makes creating client-side properties a matter of just accessing the indexed array value. It also means that when the post back occurs any values changed on the client are updated back on the server.
The SharedStateWebControl class makes it simpler to use client-side JavaScript classes that map to server controls. The property GenerateClientMember specifies that an instance of a JavaScript class should be created. This JavaScript class name must match that used by the server class, e.g. both client and server classes for the large ribbon button are called LargeRibbonButton. The constructor for the JavaScript class always takes a single parameter, the ClientID of the control.
When GenerateClientMember is true the ClientMemberName determines the name of the variable created in JavaScript. This means all you need to do in your JavaScript is use the variable, e.g. _applicationBar1.setDocumentName(“My Document”). N.B. Many of the controls used in the Ribbon require GenerateClientMember to be set to true and will not allow the value to be changed.

N.B. When creating child controls you should always use the ClearControls method rather than Controls.Clear(). If you use Controls.Clear() you will remove the shared state control and the control will not function correctly and unexpected errors thrown.

StateTracePage

This adds the ability to show a page’s ViewState and ControlState. As it is difficult to tell how much view state is being written, beyond ‘not much’ or ‘a lot’, this page lists controls and the values each hold in state. To use this just change the page’s base class to be StateTracePage (or one of its descendents) and set the page’s Trace=”true”. This adds state to the standard trace output.
SqlPageStatePersister
This allows ViewState to be stored in an SQL Server database. The database scripts are included. Basically, it stores a GUID in the page which is looked up when page state is loaded/saved. This provides an alternative to storing ViewState in the page (which can cause download times to increase dramatically) or in Session state (which can consume excessive memory). Whether this is advantageous in your pages is for you to decide. To use this, uncomment and change the web.config file (which has the database connection string), and the Browser.browser file (which has the provider settings).
Surviving Response.Redirect and cross-page post backs

Because of the nature of the RibbonBar, it’s always available at the top of the page. Unless you decide to have a single page and replace the content of a central page area you need a way of maintaining the ribbons state between pages. On the same page, when a post back occurs, the state is maintained for you, however if you do a Response.Redirect or use a cross-page post back state would be lost because you end up on a different page. Instead of trying to recover state from the previous page you can use the RibbonSerializer to help. Before redirect you can serialize the state of the ribbon in to a session variable, and restore it in the target page.
Controls

The display of the application bar’s customize menu is not automatic, you must respond to the client-side onclick event to display the menu.

With button controls you must set the AutoPostBack property to true for a post back to occur even if you have a server-side event handler.

The display of a button’s drop down menu is not automatic, you must respond to the client-side onclick event to display the menu.

When the ribbon is shown and minimized, clicking away from the ribbon re-minimizes the bar. To prevent this when a group or the ribbon itself (i.e. a PageView) is clicked a check is made to see whether the clicked element uses a CSS class called ‘ribbonPart’. You must add this class to any element that needs to prevent the ribbon from being dismissed when clicked.

ApplicationBar
When adding quick access buttons through the designer these are added to the PlaceHolder template property. At runtime you can add them through the PlaceHolderControls property.
As the control relies on the use of additional Telerik controls, in order for it to function correctly you need to tell it the tab control and menus used for the application menu and customization menu (if required).

N.B. You must have a PageView for each Tab. If any of the tabs do not have a corresponding PageView the control will not work correctly when you click on the tabs and JavaScript errors will be thrown.

Note that the Application menu is a standard Telerik RadMenu control.
Note that the Ribbon tabs are a standard Telerik RadTabStrip control and each corresponding Ribbon a standard Telerik RadMultiPage and PageView set.

	JavaScript client-side members

	getApplicationName()

setApplicationName()
	Gets or sets the application name part of the title

	getDocumentName()

setDocumentName()
	Gets or sets the document name part of the title

	getApplicationMenuID()
	Gets the ID of the RadMenu control used for the application menu

	getRibbonTabStripID()
	Gets the ID of the RadTabStrip control that provides the Ribbon tabs

	getCustomizeMenuID()
	Gets the ID of the RadMenu used by the customize quick access toolbar button

	getMinimizeRibbon()

setMinimizeRibbon()
	Gets or sets whether the Ribbon in minimized or not. When minimized the Ribbon can be opened/closed with showRibbon and hideRibbon

	showRibbon()

hideRibbon()
	Shows or hides the Ribbon when minimized. When initially minimized the Ribbon is hidden. By default this is only shown when the user clicks a tab. If you try to hide the Ribbon when it is not minimized nothing will happen, you must minimize it first

	showCustomizeMenu()
	Displays the customize menu dictated by the CustomizeMenuID property

QuickAccessRibbonButton

	JavaScript client-side members

	getEnabled()

setEnabled()
	Gets or sets whether the button appears in an enabled or disabled state

	getChecked()

setChecked()
	Gets or sets whether the button appears in a checked state

	getEnabledImageUrl()
	Gets the URL of the button’s image when enabled

	getDisabledImageUrl()
	Gets the URL of the button’s image when disabled

RibbonGroup

When adding controls through the designer these are added to the PlaceHolder template property. At runtime you can add them through the PlaceHolderControls property.

	JavaScript client-side members

	getText()

setText()
	Gets or sets the text displayed in the bar at the bottom of the group

SmallRibbonButton

	JavaScript client-side members

	getEnabled()

setEnabled()
	Gets or sets whether the button appears in an enabled or disabled state

	getChecked()

setChecked()
	Gets or sets whether the button appears in a checked state

	getEnabledImageUrl()
	Gets the URL of the button’s image when enabled

	getDisabledImageUrl()
	Gets the URL of the button’s image when disabled

	getText()

setText()
	Gets or sets the button’s text

	getDropDownMenuID()
	Gets the ID of the RadMenu used by the button when a menu is displayed when the button is clicked

	showDropDownMenu()
	Displays the drop down menu dictated by the DropDownMenuID property

SmallSplitRibbonButton

	JavaScript client-side members

	getEnabled()

setEnabled()
	Gets or sets whether the button appears in an enabled or disabled state

	getChecked()
	Gets whether the button appears in a checked state (The split buttons do not support the Checked state so this is always false)

	getEnabledImageUrl()
	Gets the URL of the button’s image when enabled

	getDisabledImageUrl()
	Gets the URL of the button’s image when disabled

	getText()

setText()
	Gets or sets the button’s text

	getDropDownMenuID()
	Gets the ID of the RadMenu used by the button when a menu is displayed when the button is clicked

	showDropDownMenu()
	Displays the drop down menu dictated by the DropDownMenuID property

LargeRibbonButton

	JavaScript client-side members

	getEnabled()

setEnabled()
	Gets or sets whether the button appears in an enabled or disabled state

	getChecked()

setChecked()
	Gets or sets whether the button appears in a checked state

	getEnabledImageUrl()
	Gets the URL of the button’s image when enabled

	getDisabledImageUrl()
	Gets the URL of the button’s image when disabled

	getText()

setText()
	Gets or sets the button’s text

	getDropDownMenuID()
	Gets the ID of the RadMenu used by the button when a menu is displayed when the button is clicked

	showDropDownMenu()
	Displays the drop down menu dictated by the DropDownMenuID property

LargeSplitRibbonButton

	JavaScript client-side members

	getEnabled()

setEnabled()
	Gets or sets whether the button appears in an enabled or disabled state

	getChecked()
	Gets whether the button appears in a checked state (The split buttons do not support the Checked state so this is always false)

	getEnabledImageUrl()
	Gets the URL of the button’s image when enabled

	getDisabledImageUrl()
	Gets the URL of the button’s image when disabled

	getText()

setText()
	Gets or sets the button’s text

	getDropDownMenuID()
	Gets the ID of the RadMenu used by the button when a menu is displayed when the button is clicked

	showDropDownMenu()
	Displays the drop down menu dictated by the DropDownMenuID property

OneRowLayout, TwoRowLayout, ThreeRowLayout

The OneRowLayout control provides a simple way to provide consistent layout for non-standard Ribbon content. When adding controls through the designer these are added to the PlaceHolder template property. At runtime you can add them through the PlaceHolderControls property.

The TwoRowLayout control provides a simple way to provide consistent layout for toolbars. When adding controls through the designer these are added to the TopPlaceHolder and BottomPlaceHolder template properties. At runtime you can add them through the TopPlaceHolderControls and BottomPlaceHolderControls properties.

The ThreeRowLayout control provides a simple way to provide consistent layout for small Ribbon buttons, labels, check boxes, text boxes, and combo boxes. When adding controls through the designer these are added to the TopPlaceHolder, CenterPlaceHolder, and BottomPlaceHolder template properties. At runtime you can add them through the TopPlaceHolderControls, CenterPlaceHolderControls and BottomPlaceHolderControls properties.

Layout controls should always be added to a RibbonGroup. They just ensure that content will under-run and won’t cause Ribbon layout problems. The width of the control is dictated by its content. Firefox sometimes inappropriately wraps the layout within the group, in these situations you can just set the width of the layout control to match the content.

RibbonSeparator

The RibbonSeparator provides a way to add a vertical line break between un-related controls in the same group. This should always be added to a RibbonGroup.
RibbonMasterPage, RibbonContentPage, RibbonPage
These pages provide some simple additions to the base pages. To aid with programmatic AJAX settings there is a built in RadAjaxManger property and a RegisterAjaxSettings method. In your derived class just override the method and add all the AJAX control update dependencies. N.B. I prefer to programmatically add AJAX setting rather than through the designer. If you prefer the designer approach you can’t use these pages as you are not allowed to have 2 AJAX managers in the same naming container.
Another method, ConfigureRibbonControls, can be overridden so you can programmatically add ribbon controls dynamically.

Both of these methods are called when the page loads and are for convenience only.

These pages also have SaveRibbonStateToPersistenceMedium and LoadRibbonStateToPersistenceMedium methods. These must be called by you when required. See the section on surviving redirects and cross-page post backs for more details.
Design-time considerations

I have done my best at this stage to give a reasonable design-time experience. However, there are several issues I have not dealt with.
I haven’t entirely got my head around how to create templates properly so you will notice that the design-time templates for controls are called PlaceHolder (or derivative) and another property PlaceHolderControls (or derivative) handles adding controls at run-time. I will be investigating this further to provide a more consistent model.

RibbonButtons do not automatically size to their content at design time. The reason for this is partially by design, i.e. the LargeRibbon button allows a single line or two lines and it is up to the developer to determine which. If the text is too long the text will wrap and under-run the design area making it seem like it has ‘disappeared’. To work around this set the desired width at design-time or call AutoSizeWidth against the button at run-time. This method has several overloads for different situations.

The RibbonGroup control does not automatically size to its content at design time. If content is wider than the group it will wrap and under-run the control’s design area. Just make the group wider. At run-time the control will size itself to its content rather than the width you specify at design-time.

The layout controls use tables. By default, at design time tables provide a ‘new line’ area making it easy for you to add content via drag and drop. This causes the layout to be taller than it would appear at run-time and under-run the control making it impossible to get to the bottom cell. To work around this issue you can remove the newlines in the ASPX source, i.e. between the template’s start tag and the content, and the content and the template’s end tag.
I have experienced a strange lag when adding some controls to the design surface. When a control, e.g. a LargeRibbonButton is added to the design surface, if you click on other controls the property grid does not refresh. If I wait a few seconds the grid then updates correctly. This does not happen every time and does not always happen on different computers. I assume this is something to do with processing going on in the background but can look like something is wrong. All I can say is that if you experience it just be patient and wait a few seconds. I will look into this in the future to see if anything can be done about it.
Do you wish to contribute?
If you feel you would like to contribute to this project please contact me (ribboncontrols@russellmason.com). Please include ‘Ribbon Controls Project’ in the title as my junk email filter may otherwise delete your email.
Because the Microsoft guidelines are specific on how the Ribbon should function please don’t say ‘can you add this functionality?’ Also please don’t say ‘why don’t you change something to use this technique’. If you wish to contribute, please do so with code examples. As I have said I am not an ASP.net expert so may not know how to make such changes. Create a test client with the changes and let me know what you have done. If I feel happy with the change I will give you full credit (you must also agree to your code being subject to the open source agreement outlined previously).
