A Complete Session Timer Popup using RadWindow
This is a user control for use in ASP.Net projects. Once you include this user control on a master page, then all content pages that use this master page will automatically show a popup when the user's session is about to expire.
· This is a very simple solution to the problem of displaying a session ending popup since it requires no knowledge or understanding or custom code on part of the developer.
· All that the developer needs to do is include following code in the master page. You don't need to understand any code to start using this. <uc1:SessionTimer runat="server" ID="SessionTimer" />
· Also, this control will work whether you have regular postbacks or ajax postbacks or calls to ajax-enabled webservice or PageMethods or Web API.
· Also, you can have forms authentication with sliding expiration or absolute expiration and this control will work with both.
· Actual login session expiration date time stamps coming from server-side are used. All solutions I came across use an initial value of session timeout and then start counting time, but this control will always use the last expiration time set by the forms authentication module in ASP.Net after a trip to the server is made as postback or ajax postback or web service call or PageMethod call or Web API call. So it's truly accurate and works in real-time.
This control will extend/preserve session variables as well as the login session of the user. You do not need to write any server-side or client-side code for extending user's session but just drop this user control into the master page. The popup looks like below.
[image:]
ASSUMPTIONS made by this control
· cookies need to be enabled on end user's browser
· your ASP.Net app should be using forms authentication
OPTIONAL REQUIREMENTS for this control
· jQuery needs to be included if Extended Animation Library is used
· jquery-ui needs to be included if animations from jquery-ui are being used
· Extended animation library
The scripts for jquery-ui and Extended Animation are under the 'Demo Files/Scripts' folder in attachment of this code library. jQuery script file is not needed since it is automatically made available by RadScriptManager if the jQuery reference is included.
Extended Animation Library offers a rich set of animations at opening as well as closing stages. The built-in animation of RadWindow is very limited and also it does not have built-in mechanism for showing animation at closing stages of RadWindow. So, it's best to include this library to provide a richer user experience. You can see a demo of Extended Animation Library at this URL: http://www.kandoodev.com/AutoSizeStandardDialogsWithServerSide.aspx
Richer animation not only makes your app look better but it also attracts user's attention when needed. For example, if you are using jquery-ui animations then by using any one of these animations: pulsate, bounce or shake you can easily draw the user's attention to the fact that session is about to expire. You need to set JqueryUIAnimationEnabled="true" to use jquery-ui animations.
DEMO Setup for this control
· The demo files are included in attachment under 'Demo Files' folder. You need to unzip the attachment first.
· Then create an Empty ASP.Net website project in Visual Studio 2013.
· Add references to Telerik.Web.UI.dll and Telerik.Web.UI.Skins.dll.
· Copy all the files/folders under 'Demo Files' folder to the website you have just created in Visual Studio 2013.
Build the website and run the demo by going to default.aspx. The login credentials for this app are user id: abc and password: 123. The demo uses a timeout value of 1 minute, so after 30 seconds the session timer popup will show.
The most important setting for this control
The most important setting is TimeBeforeSessionEndToShowPopup, which decides when the popup shows. For example, if TimeBeforeSessionEndToShowPopup="30000", then when 30 seconds are left for user session to expire the popup will automatically open. The time should always be in milliseconds.
STEPS needed to start using Session Timer control
The following 4 steps need to be done before using this control.
STEP 1: Include a RadScriptManager in the master page as shown below. jQuery is needed and also the Extended Animation Library about which you can read at this URL: http://www.telerik.com/support/code-library/extended-radwindow-animation-library-using-jquery-and-jquery-ui.
The reference to WebServices.asmx is not needed, but if you are extending the session by using ajax-enabled asmx web service then you need to include a reference to the appropriate webservice. Extending session can be done using AJAX postback or regular postback or calling an ajax-enabled webservice. The last option is good if you want good performance when refreshing session.
Also, make sure to include the sessionTimerScripts file.
 <telerik:RadScriptManager ID="RadScriptManager1" runat="server" EnablePageMethods="true">
 <Scripts>
 <asp:ScriptReference Assembly="Telerik.Web.UI" Name="Telerik.Web.UI.Common.Core.js"></asp:ScriptReference>
 <asp:ScriptReference Assembly="Telerik.Web.UI" Name="Telerik.Web.UI.Common.jQuery.js"></asp:ScriptReference>
 <asp:ScriptReference Assembly="Telerik.Web.UI" Name="Telerik.Web.UI.Common.jQueryInclude.js"></asp:ScriptReference>
 <asp:ScriptReference Path="~/Scripts/sessionTimerScripts.min.js" />
 <asp:ScriptReference Path="~/Scripts/ExtendedRadWindowAnimationPacked.js" />
 <asp:ScriptReference Path="~/Scripts/jquery-ui.min.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="~/WebService.asmx" />
 </Services>
 </telerik:RadScriptManager>
STEP 2: In your web config make sure two appsettings by the name of SessionTimerCookieName and TimeoutFactorCookieName are mentioned with an appropriate value. It’s best to give a different value in each app when using this control in multiple apps.
<appSettings>
 <add key="SessionTimerCookieName" value="aexp" />
 <add key="TimeoutFactorCookieName" value="aexp" />
</appSettings>
· Also, in your web config you need to correctly configure forms authentication as shown below. This is just an example configuration.
 <authentication mode="Forms">
 <forms name="ABCAuth" loginUrl="~/Login.aspx" protection="All" timeout="1" slidingExpiration="true" requireSSL="false" />
 </authentication>
 <sessionState timeout="1" />
· It’s important to note that the sessionState timeout value should be greater than or equal to forms authentication time out value, else the users of your ASP.Net app will lose their session variables in the middle of their login session. In example below, a time out of 1 minute is used. Normally it’s a good practice to have forms authentication timeout value to be same as sessionState timeout value which preserves user’s session variables and also does not cause unnecessary memory to be used by the ASP.Net application.
You can use sliding or absolute expiration according to your convenience since both are supported by this control.
STEP 3: In global.asax file make sure following code is included in the Application_AuthenticateRequest event.
void Application_AuthenticateRequest(object sender, EventArgs e)
{
 if (Context.Request.IsAuthenticated && Context.User.Identity.AuthenticationType == "Forms")
 {

 FormsIdentity identity = (FormsIdentity)Context.User.Identity;
 //only include below 2 lines if you are having calls to PageMethods or ajax-enabled web service
 DateTime utcDateTime = identity.Ticket.Expiration.ToUniversalTime();
 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 sb.Append(utcDateTime.Year);
 sb.Append(",");
 sb.Append(utcDateTime.Month - 1);//since JavaScript uses a 0 based index for month
 sb.Append(",");
 sb.Append(utcDateTime.Day);
 sb.Append(",");
 sb.Append(utcDateTime.Hour);
 sb.Append(",");
 sb.Append(utcDateTime.Minute);
 sb.Append(",");
 sb.Append(utcDateTime.Second);
 sb.Append(",");
 sb.Append(utcDateTime.Millisecond);
 HttpCookie cookie = new HttpCookie(System.Configuration.ConfigurationManager.AppSettings["SessionTimerCookieName"], sb.ToString());
 Response.Cookies.Add(cookie);
 }
 else
 {
 //always make sure session timer cookies are removed on logging out
 HttpCookie cookie = new HttpCookie(System.Configuration.ConfigurationManager.AppSettings["SessionTimerCookieName"]);
 cookie.Expires = DateTime.Now.AddDays(-1);
 Response.Cookies.Add(cookie);

 HttpCookie cookie2 = new HttpCookie(System.Configuration.ConfigurationManager.AppSettings["TimeoutFactorCookieName"]);
 cookie2.Expires = DateTime.Now.AddDays(-1);
 Response.Cookies.Add(cookie2);

 }
}

STEP 4: Include markup for user control in your master page. All behavior customization for this control is done through properties without writing any line of code. i.e. it’s a true codeless approach.
Make sure that user control html and code-behind files are included in your ASP.Net project, and also the user control is dropped onto the master page of your application. These files can be obtained from 'Demo Files' folder of the attachment.
Some examples of this markup are as given below.
SIMPLEST MARKUP
<uc1:SessionTimer runat="server" ID="SessionTimer" />
BEHAVIOR CUSTOMIZATION through Properties
 <uc1:SessionTimer runat="server" ID="SessionTimer" Skin="MetroTouch" SessionExtenderEnabled="true" UseAjaxToExtendSession="true" UseExtendedRadWindowLibrary="false" WebServiceMethodPath="WebService.ExtendSession" RedirectToLoginOnTimeoutAlways="true" LogInfo="false" Width="300" NativeAnimation="None" PopupAnchorPosition="bottomRight" JqueryUIAnimationEnabled="false" JqOpenAnimation="resize" JqCloseAnimation="resize" JqOpenAnimationDuration="400" JqCloseAnimationDuration="300" />
Using WEB SERVICE to extend user session
Session can be extended in three different ways as below. This relates to how the 'Extend my Session' button behaves when clicked.
· using regular postback, which is the default method
· using ajax postback if UseAjaxToExtendSession = true
· using ajax-enabled asmx web service if UseWebServiceToExtendSession = true
[bookmark: _GoBack]When using the first two approaches then you don’t need to write any extra code since it’s automatically handled by the user control. But if you are extending user session using ajax-enabled asmx web service then you should include the following method in an asmx web service as well as specify the path for the web service method using WebServiceMethodPath property. The path should include the full path to the method including the web service namespace as well as the method name.
This is the only code you need to write if you plan to use web service to extend session.
 [WebMethod]
public DateTime ExtendSession()
{
 if (!System.Web.Security.FormsAuthentication.SlidingExpiration && System.Web.HttpContext.Current.Request.IsAuthenticated)
 {
 FormsAuthenticationTicket ticket = null;
 FormsIdentity identity = (FormsIdentity)System.Web.HttpContext.Current.User.Identity;
 string userData = identity.Ticket.UserData;
 ticket = new FormsAuthenticationTicket(1, System.Web.HttpContext.Current.User.Identity.Name, DateTime.Now, DateTime.Now.AddMinutes(FormsAuthentication.Timeout.TotalMinutes), false, userData);
 string encryptedString = FormsAuthentication.Encrypt(ticket);

 HttpCookie cookie = new HttpCookie(FormsAuthentication.FormsCookieName, encryptedString);
 cookie.Secure = FormsAuthentication.RequireSSL;
 cookie.Path = FormsAuthentication.FormsCookiePath;
 cookie.HttpOnly = true;
 cookie.Domain = FormsAuthentication.CookieDomain;
 System.Web.HttpContext.Current.Response.Cookies.Add(cookie);
 //update expiration cookie
 DateTime utcDateTime = ticket.Expiration.ToUniversalTime();
 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 sb.Append(utcDateTime.Year);
 sb.Append(",");
 sb.Append(utcDateTime.Month - 1);//since JavaScript uses a 0 based index for month
 sb.Append(",");
 sb.Append(utcDateTime.Day);
 sb.Append(",");
 sb.Append(utcDateTime.Hour);
 sb.Append(",");
 sb.Append(utcDateTime.Minute);
 sb.Append(",");
 sb.Append(utcDateTime.Second);
 sb.Append(",");
 sb.Append(utcDateTime.Millisecond);
 HttpCookie cookie1 = new HttpCookie(System.Configuration.ConfigurationManager.AppSettings["SessionTimerCookieName"], sb.ToString());
 System.Web.HttpContext.Current.Response.Cookies.Add(cookie1);
 return ticket.Expiration;
 }
 if (System.Web.HttpContext.Current != null && System.Web.HttpContext.Current.Request.IsAuthenticated)
 {
 DateTime expiration = (System.Web.HttpContext.Current.User.Identity as System.Web.Security.FormsIdentity).Ticket.Expiration.ToUniversalTime();
 return expiration;
 }
 DateTime dt = new DateTime(1900, 1, 1);
 return dt;
}

Using WEB SERVICE to determine time difference between user’s computer and backend web server
Sometimes there is a time difference in the clock on user’s computer as compared to the clock of the backend web server computer even after both times are converted to UTC times. I never expected this to happen when I first wrote this control, but on deploying my solution I came to know that the times on my hosting provider’s computer was not the same as the time on my laptop even when they were both converted to UTC time.
There are two ways in which this time difference is determined by this control.
· Automatic Approach: The user control runs some client-side logic as soon as the user logs into the website to determine the time difference and you don’t need to set any property or write some code for this. So this is the easiest approach you can take.
· Code Approach: The second method involves setting a property and writing a web service asmx method as shown in snippets below. You can name the asmx web service to any name you like, but make sure you use the same name in the property for this.
Property to set
TimeDiffWebServiceMethodPath="WebService.GetMillisecondsSince1970"

Web Service Method to include
 [WebMethod]
public double GetMillisecondsSince1970()
{
 return DateTime.UtcNow.Subtract(new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
}

PROPERTIES for this control
You can use any of the following properties to customize the behavior of this session timer control. If you choose not to use any of these properties then that's perfectly fine too since all these properties have default values to make the control work in any scenario.
TimeBeforeSessionEndToShowPopup
Time left for expiration in milliseconds when the session timer popup should show. The default is 1 minute before expiration when forms authentication timeout value is 2 minutes or more, and 30 seconds when forms authentication timeout value is less than 2 minutes. Example: If this property value is 120000 then the session timer popup would show up exactly 2 minutes before expiration of user session.
UseAjaxToExtendSession
Whether to use Ajax postback to extend user's session. This property is false by default.
UseWebServiceToExtendSession
Whether to use an ajax-enabled asmx web service to extend user's session. This property is false by default.
WebServiceMethodPath
The path to the ajax-enabled asmx web service which will be called when user clicks on 'Extend my Session' button. This property is only useful if UseWebServiceToExtendSession property is set to true.
TimeDiffWebServiceMethodPath

This property is an optional property. The path to the ajax-enabled asmx web service which will be called at start of session to know the exact time difference between your computer time and the time on web server. These two times i.e. your computer’s local time and web server’s time, may not be exactly the same even when both are converted to UTC. NOTE: You can choose to omit this property from your control markup, in which case another approach that is 100% client-side will be used to calculate this time difference.
RedirectToLoginOnTimeoutAlways
Whether to redirect user to login page everytime the session ends. This property is false by default. Even if user is on a page that is accessible to unauthenticated users, still user would be redirected to login page if this property is set to true.
RedirectToLoginOnTimeoutIfNeeded
Whether to redirect user to login page only if the user was on a secured page. If the user was on a page that was accessible to unauthenticated users then user would not be redirected to login page if this property was set to true. This property is false by default.
SessionTimeoutWarningMessage
The message to show above the 'Extend my Session' button when session timer popup shows.
SessionTimedoutWarningMessage
The message to show above the 'Extend my Session' button when the user's session has timed out and popup is about to close.
SessionTimedoutMessage
The message to show below the 'Extend my Session' in session timer popup when the user's session has ended. So, if user does not take any action after the session timer popup shows then just before popup closes due to end of session, this message is shown below the 'Extend my Session' button.
Skin
The Telerik standard skin to be applied to the elements in session timer control. By default, the skin by the name of 'Default' is used.
PopupAnchorPosition
The anchor position of session timer popup. Possible values are: topRight, topLeft, bottomRight, bottomLeft, leftMiddle, rightMiddle, topMiddle and bottomMiddle. If this property is not set then the popup shows up as centered.
JqueryUIAnimationEnabled
Whether jquery-ui animation is enabled. If this property is set to true then the jquery-ui library needs to be included in the page. This is false by default.
JqOpenAnimation
The name of jQuery or jquery-ui animation to use when opening the session timer popup. The default value when JqueryUIAnimationEnabled = false is 'resize', and 'bounce' when JqueryUIAnimationEnabled = true.
JqCloseAnimation
The name of jQuery or jquery-ui animation to use when closing the session timer popup. The default value when JqueryUIAnimationEnabled = false is 'resize', and 'explode' when JqueryUIAnimationEnabled = true.
JqOpenAnimationDuration
The animation duration while opening the session timer popup when using jQuery or jquery-ui animation. The default value is 400 ms.
JqCloseAnimationDuration
The animation duration while closing the popup when using jQuery or jquery-ui animation. The default value is 400 ms.
NativeAnimation
The animation to use while opening the popup when jQuery or jquery-ui animation is not used. This is one of the built-in animations available with RadWindow. Possible values are: FlyIn, Resize, Slide, Fade or None. The default value is 'None'. If this property is set to a value other than 'None' then even though you have specified a jQuery or jquery-ui animation at opening stage of popup, the native animation will occur and not jQuery or jquery-ui animation.
NativeAnimationDuration
Animation duration when using NativeAnimation. The default value is 400 ms.
LogInfo
Whether to log information in browser's developer tool. This could be useful when you need to debug this user control. The default value is false, so no logs are written in browser.
SessionExtenderEnabled
Whether user should see a button for extending the session. The default value of this property is true. If this is set to false, then user will not see an 'Extend my Session' button when this popup opens.
UseExtendedRadWindowLibrary
Whether to use the Extended Animation Library. This value is true by default. If set to false, then you do not need to include the scripts for Extended Animation library nor jquery-ui. This library should be included since it provides animations that are not available in RadWindow.
LoginUrl
The Login URL. If you want to use the login URL that is in web config for forms authentication then you don’t need to do set this property as it’s automatically set by the user control. But if you would like to use another login URL then you can set this property in the user control markup in your master or content page.
Width
The width of the main div within the session timer popup. The server-side id of this div is 'sd'. The default value is 300px by default.
Height
The height of the main div within the session timer popup. The server-side id of this div is 'sd'. The default value is null by default i.e. height is auto-adjusted.
ShowLoginInPopupOnTimeout

Whether to show the login page in a popup. If set to false then the user would be redirected to login URL on session timeout.

SessionExtenderButtonText

The text of button used for extending/refreshing user’s session.

LoginPopupJqOpenAnimation

jQuery Animation when login popup opens. jQuery UI animation cannot be used for this, which means you must always include following in the user control markup: JqueryUIAnimationEnabled = “false”. When NativeAnimation=”None” then this property can take one of these values: slide, resize, fade or sizeUp. If this property is not set but NativeAnimation is set, then the native animation will apply to the login popup when it opens.

LoginPopupJqOpenAnimationDuration

The animation duration while opening the login popup when using jQuery animation. The default value is 400 ms.
LoginPopupWidth

The width of login popup in pixels. This should be an integer like 500 or 700 or any other appropriate value but not like 500px or 700px. This is necessary when displaying a login popup so that the login page appears nice when displayed in a popup.

LoginPopupHeight

The height of login popup in pixels. This should be an integer like 500 or 700 or any other appropriate value but not like 500px or 700px. This is necessary when displaying a login popup so that the login page appears nice when displayed in a popup.

LoginPopupIsMaximized

Whether the login popup is maximized

LoginPopupIsModal

Whether the login popup should be modal

LoginPopupIsPositionFixed

Whether the login popup should be fixed. If its fixed then the login popup will not move even when the page is scrolled horizontally or vertically.
 LoginPopupAnchorPosition

The anchor position of login popup

image1.png
Your session is about to end. If you do
not extend it, you will be automatically
logged out and lose unsaved changes

on this page.
[Extend My Session |
Time Left: 24 s

