
Manipulating RadGrid on server side

There are some real–life requirements when we need to hide some columns and/or conditionally form ‘em or have to add links to the Gridview.

This article describes how we can:

1) Hide columns dynamically

2) Add dynamic controls (linkbuton etc) some provision for conditional formatting with client-side scripting and can make the things

really simple and also how can we hide columns from the grid that we need in the application; (E.g. the PK or FK etc.)

A bit custom, not very popular but interesting scenario that may add aesthetics to your web-application.

Hiding Columns

A column can be hidden from Gridview in a scenario where we need to query a particular column from the database, but not needed to be

displayed in the grid itself.

We can leverage the “OnItemDataBound” event and can change properties after casting e.Item to GridDataItem

protected void RadGrid1_ItemDataBound(object sender, GridItemEventArgs e)

{

GridDataItem thisGridDatatem = e.Item as GridDataItem;

if (thisGridDatatem["column_name"] != null)

 thisGridDatatem["id"].Visible = false;

 }

Of course in your application you may want to do this conditionally (role based and permission/access-rights bases scenarios). Checking a

column against null is a good practice. Sure, we can take it to the next level in the case when we just need to hide a column we may do something

like following:

GridDataItem thisGridDatatem = e.Item as GridDataItem;

if (e.Item.ItemType != GridItemType.Header)

 {

 if (thisGridDatatem["column_1"] != null)

 thisGridDatatem["column_1"].Visible = false;

 else if (thisGridDatatem["column_2"] != null)

 thisGridDatatem["column_2"].Visible = false;

 }

Adding (client-side ready) Controls Dynamically

This recipe is a best resource in the cases when users want to ‘click’ on a text and want to drill down the result. One possible approach here

would be to add links to the cell text and either, to query the database with appropriate parameters from the server-side or to call your

JavaScript function for Ajax-Call from client-side. Most commonly these parameters are the ‘text‘of adjacent cells in the same row.

Either way, we’d be needing to know what we need to use for parameters, here is a possible approach regardless the analogy being followed.

Let’s go back to OnItemDataBound event:

protected void RadGrid1_ItemDataBound(object sender, GridItemEventArgs e)

{

if (e.Item is GridDataItem && thisGridDatatem != null)

{

 if (thisGridDatatem["target_column"] != null)

 {

 thisGridDatatem["id"].Controls.Clear();

 LinkButton lb = new LinkButton();

 lb.Text = ((System.Data.DataRowView)(e.Item.DataItem)).Row[3].ToString();

 lb.Attributes.Add("attrib1", ((System.Data.DataRowView)(e.Item.DataItem)).Row[2].ToString());

 // Some Real Life Attribute

 lb.Attributes.Add("attrib2", ((System.Data.DataRowView)(e.Item.DataItem)).Row[4].ToString());

 // Some Real Life Attribute

 lb.Attributes.Add("attrib3", ((System.Data.DataRowView)(e.Item.DataItem)).Row[5].ToString());

 // Some Real Life Attribute

 lb.Command += new CommandEventHandler(lb_Command);

 lb.ID = "someConvenientName" + e.Item.RowIndex.ToString();

 TableCell c1 = new TableCell();

 c1.Controls.Add(lb);

 e.Item.Cells.RemoveAt(1);

 e.Item.Cells.AddAt(1, c1);

 }

}

}

void lb_Command(object sender, CommandEventArgs e)

{

 LinkButton lb = (LinkButton)sender;

 string

 casenum = lb.Text

 , attrib1 = (lb.Attributes["attrib1"] ?? "").ToString()

 , attrib2 = (lb.Attributes["attrib2"] ?? "").ToString()

 , attrib3 = (lb.Attributes["attrib3"] ?? "").ToString();

}

Now if you go back to your browser and look at the rendered code you may find something as following, attributes are also available there. Now

you may refer to this control by using selectors using javascript or javascript library like jQuery

