RadScheduleView data binding with RIA Services and EF

RadScheduleView types and sources.
The ScheduleView control exposes several Sources that enable data binding:
1. AppointmentsSource - gets or sets the data source (IEnumerable) used to generate the Appointments
2. ResourceTypesSource - gets or sets the data source (IEnumerable) used to generate the ResourceTypes
3. CategoriesSource - gets or sets the data source (IEnumerable) used to generate the Categories
4. TimeMarkersSource - gets or sets the data source (IEnumerable) used to generate the TimeMarkers
5. GroupDescriptionsSource - gets or sets the data source (IEnumerable<GroupDescription>) used to generate the GroupDescriptions
With its current version (Q1 2011) RadScheduleView exposes several important interfaces: ITimeMarker, IResourceType, IResource, IRecurrenceRule, IExceptionOccurrence, IAppointment, ICategory. Implementing these interfaces allows the developer to plug a custom objects and to not work with the default ones (Appointment, Resource, RecurrenceRule, ExceptionOccurrence, Category, TimeMarker). We are going to use these interfaces to plug the entities from the Entity Framework.
Here you could refer to the class diagram for more detailed information about the interfaces:
[image:]

Data tier – table definitions and relationships
The database diagram is very common to the diagram above:
[image:]

We have table definitions in the database according for the following types in the RadScheduleView:
IAppointment
	[image:]
	[image:]

IResource
	[image:]
	[image:]

IExceptionOccurrence
	[image:]
	[image:]

IResourceType
	[image:]
	[image:]

ICategory
	[image:]
	[image:]

	[image:]
	[image:]

ITimeMarker

Here are some explanation about the keys and the relationships in the data tables:
	Name
	Between
	Type
	Update/delete rule

	FK_SqlResources_SqlResourceTypes
	SqlResourceTypes - SqlResources
	One-to-many
	No Action

	FK_SqlAppointmentResources_SqlResource
	SqlResources - SqlAppointmentResources
	One-to-many
	Cascade

	FK_SqlExceptionResources_SqlResource
	SqlResources - SqlExceptionResources
	One-to-many
	Cascade

	FK_SqlExceptionOccurrences_SqlAppointments
	SqlAppointments - SqlExceptionOccurrences
	One-to-many
	Cascade

	FK_SqlExceptionAppointments_SqlExceptionOccurrences
	SqlExceptionOccurrences - SqlExceptionAppointments
	One-to-many
	Cascade

	FK_SqlAppointments_TimeMarkers
	TimeMarkers - SqlAppointments
	One-to-many
	No Action

	FK_SqlExceptionAppointments_TimeMarkers
	TimeMarkers - SqlExceptionAppointments
	One-to-many
	No Action

	FK_SqlAppointments_Categories
	Categories - SqlAppointments
	One-to-many
	No Action

	FK_SqlExceptionAppointments_Categories
	Categories - SqlExceptionAppointments
	One-to-many
	No Action

	FK_SqlExceptionResources_SqlExceptionAppointment
	SqlExceptionAppointment - SqlExceptionResources
	One-to-many
	Cascade

	FK_SqlAppointmentResources_SqlAppointment
	SqlAppointment - SqlAppointmentResources
	One-to-many
	Cascade

Notes:
· There is no table definition for the IRecurrenceRule type because we don’t need it. Storing the RecurrencePattern is enough to generate the recurrence rules at run-time.
· We cannot save the Brush type into the database directly, that’s why we can save a string that represents the color and convert the string to SolidColerBrush object when the TimeMarkers & Categories are loaded.
· The SqlAppointmentResource and SqlExceptionResources are cross-tables between:
· SqlAppointments & SqlResources
· SqlExceptionAppointments & SqlResources
Server side (Mid-tier) – Entity Model, DomainContext
Now, when we have the table definitions that match the types in the RadScheduleView control in a very common way, we can continue with generating the Entity Model:
[image:]
We will use the WCF RIA Service to generate the types on the client side (Silverlight) and to synchronize the objects in the client side and server side. So, we can focus on the business logic. Let’s add the GetSqlAppointmentsByRange(DateTime start, DateTime end) method to the DomainContext class because we want to load only the visible appointments:

public IQueryable<SqlAppointment> GetSqlAppointmentsByRange(DateTime start, DateTime end)
{
	var result = this.ObjectContext.SqlAppointments.Include("SqlResources").Include("SqlExceptionOccurrences")
				.Where(a => (a.Start >= start && a.End <= end && string.IsNullOrEmpty(a.RecurrencePattern))).ToList<SqlAppointment>();

			// Load the recurrent appointments
			foreach (var item in this.ObjectContext.SqlAppointments.Include("SqlResources").Include("SqlExceptionOccurrences").Where(a => !string.IsNullOrEmpty(a.RecurrencePattern)))
			{
				if (Helper.IsOccurrenceInRange(item.RecurrencePattern, start, end))
				{
					result.Add(item);
				}
			}

			// Load the exceptions
			foreach (var item in this.ObjectContext.SqlAppointments.Include("SqlResources").Include("SqlExceptionOccurrences").Where(a => a.Start < end && a.SqlExceptionOccurrences.Count != 0))
			{
				if (item.SqlExceptionOccurrences.Any(e => e.SqlExceptionAppointment != null && e.SqlExceptionAppointment.Start >= start && e.SqlExceptionAppointment.End <= end))
				{
					result.Add(item);
				}
			}

			return result.AsQueryable<SqlAppointment>();
		}

Silverlight (Mid-tier)
We are ready with the implementation on the service side and we can focus on the Silverlight project.
Important: With the current version (v1.0 SP2) WCR RIA Services doesn’t support Many-To-Many relationships between the Entities, but we have such ones in the Database. To work around this limitation, we use the following T4 templates - http://m2m4ria.codeplex.com/. We need the M2M4Ria.EntityCollection class to implement the IList interface. Fortunately, this is a partial class, so we can extend it – please, refer to the EntityCollection class in the Silverlight project.

All generated entities from the WCF RIA Services are partial classes and we could extend them to implement the ScheduleView interfaces:

· public partial class Category : ICategory
· public partial class SqlAppointment : IAppointment, IObjectGenerator<IRecurrenceRule>
· public partial class SqlExceptionAppointment : IEditableObject, IAppointment, IObjectGenerator<IRecurrenceRule>
· public partial class SqlExceptionOccurrence : IExceptionOccurrence
· public class SqlRecurrenceRule : ViewModelBase, IRecurrenceRule
· public partial class SqlResource : IResource
· public partial class SqlResourceType : IResourceType
· public partial class TimeMarker : ITimeMarker

Most of the properties are already implemented from the entity, so we need to add the others manually. The tricky part here is the IAppointment implementation (the SqlExceptionAppointment implementation is very similar to the IAppointment, the only difference is that the exceptions don’t have RecurrenceRule). Please, note that the Copy() method is called when the appointment is being copied (for example – when is dragging with ctrl control pressed). In this case, we need to copy all the properties form the original appointment to the copy.

Presentation tier (xaml)
When the models are defined, we need to create the ViewModel (refer to ScheduleViewViewModel class) and bind the ScheduleView control in the xaml:<telerik:RadScheduleView
x:Name="scheduleView" 					 EditAppointmentDialogStyle="{StaticResource EditAppointmentDialogStyle}"
AppointmentsSource="{Binding Appointments}"
ResourceTypesSource="{Binding ResourceTypes}"	
TimeMarkersSource="{Binding TimeMarkers}"
CategoriesSource="{Binding Categories}"
VisibleRangeChangedCommand="{Binding VisibleRangeChanged}"				 VisibleRangeChangedCommandParameter="{Binding VisibleRange, RelativeSource={RelativeSource Self}}">
……
</telerik:RadScheduleView>

[bookmark: _GoBack]Note: The appointments are loaded from the database when the VisibleRangeChanged command is executed.

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.png

