Team Development with
Visual Studio Team
Foundation Server

F ,i' v ."\\'\ I ‘. '
- \ 2 o
:

0
B
g
i "u‘“ﬁf.
11, "

(0p)
D
O
)
O
©
—
Q.
oJ
(dp)
-
. -
D
)
)
©
O

0 T —
0 ¢
' E‘

Team Development with Visual
Studio Team Foundation
Server

patterns & practices

J.D. Meier

Jason Taylor

Alex Mackman
Prashant Bansode
Kevin Jones

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
MSDN, Visual Basic, Visual C++, Visual C#, Visual Studio, and Win32 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of
their respective owners.

Foreword By Jeff Beehler

Foreword

Before we released Microsoft® Visual Studio® 2005 Team Foundation Server (TFS), we
first used it to develop TFS. For the final 18 months of the project, we used it extensively
to manage the development life cycle of our project, a practice commonly known as
“dogfooding.” Through this dogfooding, we learned a lot about the powerful system that
we were creating. We certainly found and fixed many quality issues so that the resulting
product was much more stable and performed better than we could have achieved
otherwise. But perhaps more importantly, we learned about ways to best use (and not use)
the tools we were creating. This experience, in conjunction with feedback from our
customers on their practices, forms the basis for this guide.

At first glance, one might expect this information to be included with or to replace the
product documentation. In fact, at one time, I held that belief as well. However, as I've
worked closely with J.D. Meier and the other authors of this guide, it’s become clear to
me that this split is both natural and important. I think the best way to describe it is to
compare the two guides to your car’s owner's manual and a driver's guide — you need
both, but for different reasons. Traditionally, the product team has focused on product
documentation and left the guidance aspect to others. While we still depend on others to
help us out here, we're starting to invest more of our time and energy in the guidance
portion because we realize how important it is to the successful adoption of our product
and its role in increasing overall customer satisfaction.

Like a car, TFS is a powerful tool that can take you and your team nearly anywhere you
want to go; this guide can help you get there. Every team approaches TFS somewhat
differently depending on its particular needs and history. For this reason, we’ve written
this guide in such a way as to allow you either to read it from cover to cover if you want
the full picture, or to dive into specific topics as your needs dictate.

Customer feedback led us to write this guide in the first place, and it continues to play an
important role in helping set our direction and how we achieve our objectives. We’re
convinced that close community involvement in projects such as these helps make the
content more useful and ultimately more successful than if we wrote it in a vacuum. With
this in mind, real users helped us determine what to write about, what best practices to
recommend, and how to organize the content. However, our collective job is not finished.
Please help us continue to improve this guide, and let us know what else needs to be
covered. The surface area of TFS is so broad that sometimes it’s overwhelming even for
us. With your input, we can help our customers make the best use of the tools we’ve
developed.

We designed TFS to bring teams together to deliver great software. By dogfooding TFS,
we brought our teams together and I hope you’ll agree that the result is a great product.
This guide can help you and your team to also realize this vision with your next project.

All the best!

Jeff Beehler
Chief of Staff, Visual Studio Team System
July, 2007

Jeff Beehler is the Team System Chief of Staff. After graduating from the University of
Colorado, he began his career at Microsoft in 1990, working on early versions of Visual
C++. In 1996, he left Microsoft to pursue other interests including consulting, teaching
elementary school and starting a family. He returned to Microsoft in 2003 to work on
Visual Studio Team System where he is involved with many aspects of the project from
planning to execution to release. He’s an avid dogfooder of all parts of Team System to
help him do his job better. Outside of work, Jeff enjoys spending time with his family,
taking pictures and playing outdoors in the great Northwest.

Foreword By Rob Caron

Foreword

Ever since the early days of Visual Studio Team System, we knew software development
teams would need more content than we could possibly provide prior to shipping. In
particular, we knew they would need proven guidance and best practices; however, that
knowledge wouldn’t be known until the product was put through its paces by a variety of
teams in a diverse array of environments, projects and scenarios to prove what works, and
what doesn’t.

Unfortunately, the identification and development of proven guidance and best practices
takes time. Over the last few years, we have learned a great deal about the use of Team
System in general, and Team Foundation Server in particular. But that knowledge wasn’t
always easy to find and digest. It would take the dedicated and methodical work of
patterns & practices veteran J.D. Meier and his team months to make sense of it all.

Finally, the wait is over! Team Development with Visual Studio Team Foundation Server
represents the collective wisdom of innumerable people who contributed directly, and
indirectly, to this project. The team that assembled this content didn’t ignore the
experience of those who went before them. They culled through a scattered collection of
blog posts, forum threads, articles, and more to better understand how teams are adopting
and using Team System “in the wild.”

Along the way, they examined the key areas that impact software development teams,
and identified which practices were responsible for predictable and repeatable success.
Some of the most informative content explains a number of Team Foundation Server
feature areas, such as work item tracking, reporting, and process templates.

In retrospect, | am thankful that as a documentation team we had the presence of mind to
defer this work instead of trying to provide best-guess filler content. I apologize to all of
those who suffered without this content, and | thank those who persevered and pioneered
the use of Team System.

Rob Caron

Lead Product Manager
Microsoft Corporation
July, 2007

Rob Caron is the Lead Product Manager for Developer Content Strategy at Microsoft.
Rob started at Microsoft in 1999 as a writer for Visual Studio product documentation.
Over the years, he contributed content for Visual Studio .NET 2002, Visual Studio .NET
2003, and Visual Studio Team System. In mid-2004, he started a blog that became the
nexus for information on Team System. After seven years of creating content, Rob moved
to the Developer Marketing team in the fall of 2006. He now leads a group that is focused

on the increasingly complex developer story at Microsoft with a goal of making it
simpler.

Introduction

This guide shows you how to get the most out of Visual Studio 2005 Team Foundation
Server to help improve the effectiveness of your team-based software development.
Whether you are already using Team Foundation Server or adopting from scratch, you’ll
find guidance and insights you can tailor for your specific scenarios.

The information in this guide is based on practices learned from customer feedback and
product support, as well as experience from the field and in the trenches. The guidance is
task-based and presented in the following parts.

e Part I, “Fundamentals,” gives you a quick overview of team development with
Team Foundation Server. You’ll see the big picture in terms of your software
development environment, including the development and test environment. You’ll
also learn the basic architecture of Team Foundation Server.

e Part I, “Source Control,” shows you how to structure your source code and
manage dependencies. It also shows you how to determine a branching and merging
strategy if you need isolation for your development efforts.

e Part I, “Builds,” shows you how to set up team builds, how to produce continuous
integration builds for your development team, and how to drop scheduled builds to
your test team. It also discusses common problems and how to work around them.

e Part 1V, “Large Project Considerations,” show you additional considerations you
need to deal with when working with large projects.

e PartV, “Project Management,” shows you how to use Team Foundation Server
work items, areas and iterations to streamline your development process regardless of
what project management approach you use.

e Part VI, “Process Templates,” shows you how to get the most out of the process
templates and process guidance that is supplied with Team Foundation Server out of
the box. It also shows how you can customize the process templates, and make
modifications to work items and workflow to map to the software engineering process
your team is already using.

e Part VII, “Reporting,” shows you how all of the other Team Foundation Server
components integrate their data store into a common reporting mechanism. You’ll
learn how to use the default reports as well as how to build your own custom reports.

e Part VIII, “Setting Up and Maintaining the Team Environment,” removes the
mystery from Team Foundation Server deployment. You’ll learn how to choose
between a single server and multiple server deployment. You’ll also learn how to
support remote development teams and how to maximize Team Foundation Server
performance.

e Part IX, “Visual Studio 2008 Team Foundation Server”, shows the changes that
are coming in the next version of Team Foundation Server. You’ll learn what new
features are planned as well as what features are going to be significantly improved.
Some of the changes impact the guidance we give elsewhere in this guide, so use this
section to improve your Team Foundation Server upgrade planning.

e Guidelines, provide concise recommendations for Team Server Build, Project
Management, Reporting and Source Control. Each guideline tells you what to do,
why and how to follow the guideline.

e Practices, provide a set of best practices based on the lessons development teams
have learned when using Team Foundation Server in the field and within Microsoft.
Each practice focuses on how to accomplish a task that is important for team
effectiveness with Team Foundation Server.

e Questions and Answers, provide answers to common questions on Team Foundation
Source Control.

e How Tos, give step-by-step in depth guidance on how to accomplish specific tasks
with Team Foundation Server.

e Resources, are a compendium of web sites, service providers, forums and blogs that
you can use to learn more about Team Foundation Server and stay on top of latest
developments in the toolset.

Team Development

There are many elements, processes, and roles that combine to enable successful team-
based software development projects. This guide focuses on:

e The development process

e The build process

e The project management process

The following diagram illustrates the relationship between typical software development
processes relating to team development and how Team Foundation Server can be
leveraged to provide horizontal foundational support for these initiatives.

Team Development

Project Management

Development
Process

Build Process

Team Foundation
Server

\ersion
Control

Project\ Analytics

Scope of This Guide

This guide is focused on deploying Team Foundation Server and using it effectively for
source control, build automation, work item management, and process management.

The following diagram outlines a sample logical implementation of Team Foundation
Server as it relates to the roles most common to the software engineering and
development lifecycle.

Team Foundation

Teams
Server
App Tier Data Tier
Project _
Managers * Project Portal
9 * Source Control -
™4 *Build Automation Database
* Work Items -
Developers -t * Project Management
* Reporting
/ * Integration Services

0

/Team Build

Server

Team Foundation
Server Proxy

\

Remote Team)«

Why We Wrote This Guide

From our own experience with Team Foundation Server and through conversations with
customers and Microsoft employees who work in the field, we determined there was
demand for a guide that would show how to use Team Foundation in the real world.
While there is information in the product documentation, in blog posts and in forums,
there has been no single place to find proven practices for the effective use of Team
Foundation Server in the context of a development project under real world constraints.

Who Should Read This Guide

This guide is targeted at providing individuals involved in the software development
process with the resources, patterns and practices for creating an effective team

development environment. The following are examples of roles that would benefit from
this guidance:

e A development team that wants to adopt Team Foundation.

e A project manager looking to get the most out of Team Foundation, with regard to
managing projects and development efforts, providing status of software development
initiatives and providing feedback to business stakeholders.

e Interested parties investigating the use of Team Foundation but don’t know how well
it would work for their development scenarios and team constraints.

e Individuals tasked with planning a deployment and installing Team Foundation.

How To Use This Guide

The guide is divided into parts based on the order we see most teams think about and
adopt Team Foundation. If you are in the process of adopting Team Foundation you’ll
probably want to read the entire guide from start to finish. If you are interested in using
Team Foundation for a particular use, such as Source Control or Team Build, you can
restrict your reading to just those sections. Use the main chapters to learn concepts and
guiding principles. Use the appendix of “Guidelines”, “Practices”, “How To” articles and
“Questions and Answers” to dive into implementation details. This separation allows
you to understand the topics first and then dive into details as you see fit.

Organization of This Guide

You can read this guide from end to end, or you can read the chapters you need for your
job.

Parts

The guide is divided into nine parts:

e Part I, Fundamentals

e Part 11, Source Control

e Part Il Builds

Part IV, Large Project Considerations

Part V, Project Management

Part VI, Process Guidance

Part V11, Reporting

Part V111, Setting Up and Maintaining the Team Environment
Part IX, Visual Studio 2008 Team Foundation Server

Part I, Fundamentals
e Ch 01 - Introducing the Team Environment
e (Ch 02 - Team Foundation Server Architecture

Part 11, Source Control
e Ch 03 - Structuring Projects and Solutions in Source Control
e Ch 04 - Structuring Projects and Solutions in Team Foundation Source Control

Ch 05 - Defining Your Branching and Merging Strategy
Ch 06 — Managing Source Control Dependencies in Visual Studio Team System

Part 111, Builds

Ch 07 — Team Build Explained
Ch 08 — Setting Up Continuous Integration with Team Build
Ch 09 — Setting Up Scheduled Builds with Team Build

Part IV, Large Project Considerations

Ch 10 - Large Project Considerations

Part V, Project Management

Ch 11 — Project Management Explained
Ch 12 — Work Items Explained

Part VI, Process Templates

Ch 13 — Process Templates Explained
Ch 14 — MSF for Agile Software Development Projects

Part VII, Reporting

Ch 15 — Reporting Explained

Part VIII, Setting Up and Maintaining the Team Environment

Ch 16 — Team Foundation Server Deployment
Ch 17 — Providing Internet Access to Team Foundation Server

Part 1X, Visual Studio 2008 Team Foundation Server

Ch 18 — What’s New in Visual Studio 2008 Team Foundation Server

Guidelines

Guidelines: Team Build
Guidelines: Source Control
Guidelines: Reporting
Guidelines: Project Management

Practices

e Practices at a Glance: Team Build

e Practices at a Glance: Source Control

e Practices at a Glance: Reporting

e Practices at a Glance: Project Management

Questions and Answers

Questions and Answers: Team Foundation Server Source Control and Versioning

“How To” Articles

e How To: Add a New Developer To Your Project in Visual Studio Team Foundation
Server

e How To: Automatically Run Code Analysis with Team Build in Visual Studio Team

Foundation Server

How To: Create a Custom Report for Visual Studio Team Foundation Server

How To: Create a Risk Over Time Report for Visual Studio Team Foundation Server

How To: Create Custom Check-in Policies in Visual Studio Team Foundation Server

How To: Create Your Source Tree in Visual Studio Team Foundation Server

How To: Customize a Process Template in Visual Studio Team Foundation Server

How To: Customize a Report in Visual Studio Team Foundation Server

How To: Manage Projects in Visual Studio Team Foundation Server

How To: Migrate Source code to Team Foundation Server from Visual Source Safe

How To: Perform a Baseless Merge in Visual Studio Team Foundation Server

How To: Set Up a Continuous Integration Build in Visual Studio Team Foundation

Server

How To: Set Up a Scheduled Build in Visual Studio Team Foundation Server

How To: Structure ASP.NET Applications in Visual Studio Team Foundation Server

How To: Structure Windows Applications in Visual Studio Team Foundation Server

How To: Structure Your Source Control Folders in Visual Studio Team Foundation

Server

Resources
e Team Foundation Server Resources

Feedback and Support

We have made every effort to ensure the accuracy of this guide and its companion
content.

Feedback on the Guide

If you have comments on this guide, send e-mail to
TESquide@microsoft.com.

We are particularly interested in feedback regarding the following:
e Technical issues specific to recommendations
e Usefulness and usability issues

Technical Support

Technical support for the Microsoft products and technologies referenced in this guide is
provided by Microsoft Product Support Services (PSS). For product support information,
please visit the Microsoft Product Support Web site at http://support.microsoft.com .

mailto:TFSguide@microsoft.com
http://support.microsoft.com/

Community Support

MSDN Newsgroups:
http://forums.microsoft.com/MSDN/default.aspx?ForumGrouplD=5&SitelD=1

Forum Address

Team http://[forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=22&Sit
Foundation elD=1

Server -

General

Team http://[forums.microsoft.com/MSDN/ShowForum.aspx?ForumlD=68&Sit
Foundation elD=1

Server -

Setup

Team http://[forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=477&Si
Foundation telD=1

Server -

Administrati

on

Team http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=481&Si
Foundation telD=1

Server -

Build

Automation

Team http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&Si
Foundation telD=1

Server -

Power Toys

Team http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=482&Si
Foundation telD=1

Server -

Process

Templates

Team http://[forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=480&Si
Foundation telD=1

Server -

Reporting &

Warehouse

Team http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=1466&
Foundation SitelD=1

Server -

Team

System Web

Access

Team http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=478&Si
Foundation telD=1

Server -

http://forums.microsoft.com/MSDN/default.aspx?ForumGroupID=5&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=22&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=22&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=68&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=68&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=477&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=477&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=481&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=481&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=930&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=482&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=482&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=480&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=480&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=1466&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=1466&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=478&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=478&SiteID=1

Version
Control

Team http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=479&Si
Foundation telD=1

Server -
Work Item
Tracking

The Team Who Brought You This Guide

This guide was created by the following team members:

J.D. Meier

Jason Taylor
Alex Mackman
Prashant Bansode
Kevin Jones

Contributors and Reviewers

External Contributors/Reviewers. David P. Romig, Sr; Dennis Rea; Eugene
Zakhareyev; Leon Langleyben; Martin Woodward; Michael Rummier; Miguel
Mendoza ; Mike Fourie; Quang Tran; Sarit Tamir; Tushar More; Vaughn Hughes
Microsoft Contributors / Reviewers. Aaron Hallberg; Ahmed Salijee; Ajay Sudan;
Ajoy Krishnamoorthy; Alan Ridlehoover; Alik Levin; Ameya Bhatawdekar; Bijan
Javidi; Bill Essary; Brett Keown; Brian Harry; Brian Moor; Brian Keller; Buck
Hodges; Burt Harris; Conor Morrison; David Caufield; David Lemphers; Doug
Neumann; Edward Jezierski; Eric Blanchet; Eric Charran; Graham Barry; Gregg
Boer; Janet Williams Hepler; Jeff Beehler; Jose Parra; Julie MacAller; Ken Perilman;
Lenny Fenster; Marc Kuperstein; Mario Rodriguez; Matthew Mitrik; Michael Puleio;
Nobuyuki Akama; Paul Goring; Pete Coupland; Peter Provost; Granville (Randy)
Miller; Rob Caron; Robert Horvick; Rohit Sharma; Ryley Taketa; Sajee Mathew;
Siddharth Bhatia; Tom Hollander; Tom Marsh; Venky Veeraraghavan

Tell Us About Your Success

If this guide helps you, we would like to know. Tell us by writing a short summary of the
problems you faced and how this guide helped you out. Submit your summary to:
MyStory@Microsoft.com .

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=479&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=479&SiteID=1
mailto:MyStory@Microsoft.com

PART |

Fundamentals

In This Part:

» Introducing the Team Environment

P Team Foundation Server Architecture

Chapter 1 - Introducing the Team Environment

Objectives

e Describe how Microsoft® Visual Studio® Team Foundation Server supports the
software development lifecycle.

e Describe how a typical development team uses Team Foundation Server.

e Describe how a typical test team uses Team Foundation Server.

e Describe the development and test team’s physical environment.

Overview

This chapter describes how Team Foundation Server (TFS) and Microsoft Visual Studio
Team System (VSTS) are used in a team-based software development environment. It
introduces the core features of TFS and VVSTS and describes the workflow between
development and test teams during a software development project. Because TFS
integrates source control, work tracking, reporting, project management and an
automated build process, it enables a development team to work together more
effectively.

A successful team-based software development project has many processes that must
work together smoothly to ensure an efficient working environment. The core processes
include:

e Development

o Test

e Build

e Deployment
e Release

This chapter introduces you to typical functions that the development and test teams can
perform with TFS and describes how you can use TFS to manage the workflow to
support efficient collaboration across teams.

How to Use This Chapter

Use this chapter to learn how TFS is designed to support the software development
lifecycle. By reading this chapter, you will also learn about the TFS workflow and how
TFS enables you to improve team collaboration.

For more detailed information about TFS architecture and the TFS core components, see
“Chapter 2 - Team Foundation Server Architecture.”

Logical Workflow of Team Foundation Server

TFS enables a development team to store code in a centrally managed source code
repository. You can create builds from this repository by using the build server and you
can then distribute these builds to your test team.

Figure 1.1 shows the logical workflow of TFS and how the development and test
environments are connected.

Project

Leader
% Data
ag Analysis

F ——— e AL e, — — - -
[Development Environment } ————————————— o 1 -B,LﬁkiNumber Selekt Test Environment]
: . . P ! '
| : DropPoint | ...y - [_g = 10507120 _ .
) @/! 3’@ R S . 1 Functional Test
+ & e System Test i
G BDev + Unit Testin . e SR + 5. | Build Number's |
& g = ! . :
"\ b | ?Eﬂ = 10.60713.0 a :
&Q A = El: ». | Build Number Test :
_ . =1 | =1.0.60714.0 Client | |
& — : . ", |
S [TFssouee| TFS g - @D
Repository . Build System ! " ulld Number i
DevPC] | = [fg =1.0.60715.0 S
___ I S R —
Test Result . Test Result
& Database pload
*
...
SN WB_IUE ‘e, Bug Tracking
TYefen v, Database

.
.
.)
- .
. .
raaa L S

Figure 1.1 Team Foundation Server Logical Workflow

The test team picks up builds from a drop location and runs them through its testing
environment by performing a combination of manual and automated tests. Test results are
stored by TFS and are used to provide feedback on the build quality. The test team can
also create work items and bugs (a specific type of work item) on which the development
team needs to take action. These work items allow the test team to track the work of the
development team.

Logical Workflow of Development, Test, and Production

Environments

In larger organizations with multiple development teams, each development team
maintains a separate TFS including separate source code repositories and team build
servers. Figure 1.2 shows an example of the logical workflow that results from two
development teams delivering application builds to an integration test team.

_| Dev Team X

Dev

Drop F'omt

Staging [Froduction]
Dew Drop Paint - : - - - -
ata ase Server ’ Stahle - = [Enwronment i Environment
Build | QA Final Check |
=] :
T 82 | 8¢]
C) %, = _'l / Daploy o Releage
Source Code Automated
Dev EC Repository Build g
Resource Staging F'roductlon
] Repository Server Server
_| Dey Team Y 1 o N

_______________ { Test Env I
) est Resul

-y
03

Functional Test

y
A

Test Result
Repository

ata ase Server Sﬁ
I System Test
&-—-—-"" Buy Tracking
%y Register Database |
&Qir o "' _'l T T T Test Bugs
SoruceCode Automated r Client PC | E&%
Dev BC Repository Build a =
EV‘ SIS Bug Feedback

[
Figure 1.2 Logical Workflow Showing Two Development Teams and an Integration Test

Team

Each development team delivers scheduled builds to a drop point such as a network
share. These builds are picked up by the test team and tested to measure the quality of the
build. When test quality gates are passed the applications are deployed to a staging server
for final checks and user acceptance before ultimately being deployed to a production
server.

Development Processes

Developers perform a number of key interactions with TFS throughout the duration of a
software development project. For example, as a developer you interact with TFS in the
following ways:

e You access bugs and task work items from TFS to determine what work you need to
do. For example, work items might have been assigned by your project manager, by
another developer, or by the test team.

e You use the VSTS Source Control Explorer to access the TFS source control
repository and pull the latest source code into a local workspace or your development
compulter.

e After performing the work identified by the work item, you check your code back
into the source control database.

e The check-in event might trigger a continuous integration build that uses Team Build.

e If the build fails a new work item is created to track the build break.

Test Processes
As a member of a test team, you might interact with TFS in the following ways:

e You pick up the output of a scheduled build from a specific drop location.

e You perform manual and automated testing including security testing, performance
testing, and Web testing by using various VSTS tools.

e You upload the results from the tests to the TFS Test Result database for future
reference.

e You log bugs identified by your testing into TFS as new work items.

e You resolve existing bugs, if the latest build fixes previously logged bugs.

Development and Test Physical Environments

The size and number of computers associated with your development and test
environments varies depending upon the size of your teams and projects. Figure 1.3
shows a typical development and test physical environment.

& P —
Dev Domain - Test Domain
1 Active Directory | 1 Active Directory
& & e
Bizx e Test Team |

i ository™ I
== | EBE\EV“"_Y i i Controller
! L i
' — L
/ : H . N \
b A | >
E Manual Tes
Test Script Dey Dacuments
Web Server
Test
i Results
| I Deployment
o€
Foint || ‘
| {5 ver 1 .0B0T130 |

.

Deployment "—

L {5 ver1.0L60714.0

D@@t Froduction Domain
A Active Directory |
Figure 1.3 Development and Test Physical Environment

Development Environment

The development environment supports your development and build processes. The
development environment contains the following computers:

= A Team Foundation Server.

= A build server.

= A server to store the drops from the build server.
= Developer workstations.

If your development team accesses TFS remotely, or you have a particularly large team
that causes performance issues on your central TFS server, you can also set up a TFS
proxy to help improve performance.

Test Environment

The test environment consists of one or more test workstations with Visual Studio Team
Edition for Software Testers installed. This is used to manage the test life cycle and to
perform functional testing, system testing, security testing, performance testing, and Web
testing. Team members use TFS to manage work items, bugs, and test results.

The test environment might also include Visual Studio Team Test Load for performance
testing.

Summary

VSTS and TFS are designed to support the software development life cycle by
integrating various aspects of software development such as source control, work
tracking, reporting, project management, and automated build process.

TFS plays a vital role in collaboration between the test and development teams. A
development team interacts with TFS throughout the development cycle, accessing bugs
and work items to determine what work needs to be done and accessing source control to
enable development. A test team interacts with TFS to run tests, upload test results, and
log bugs.

Additional Resources

e For more information on TFS fundamentals, see “Team Foundation Server
Fundamentals: A Look at the Capabilities and Architecture” at
http://msdn2.microsoft.com/en-us/library/ms364062(vs.80).aspx

e For an overview of Team Foundation, see the Team Foundation production
documentation on the Microsoft MSDN® Web site at http://msdn2.microsoft.com/en-
us/library/ms181232(vs.80).aspx

http://msdn2.microsoft.com/en-us/library/ms364062(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181232(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181232(vs.80).aspx

Chapter 2 - Team Foundation Server Architecture

Objectives

e Describe Microsoft® Visual Studio® Team System (VSTS) and Team Foundation
Server (TFS) architecture.

e ldentify the components that make up the client, application and data tiers.

e Highlight the differences between a single-server and multi-server deployment.

Overview

This chapter introduces you to TFS architecture and basic deployment topologies. TFS
has a logical three-tiered architecture that includes a client tier, an application tier, and a
data tier. TFS clients interact with the application tier through various Web services, and
the application tier uses various Microsoft SQL Server™ databases in the data tier.

You can choose to install the application tier and data tier on the same physical server or
on separate servers. Your choice depends largely on the size of your team. A single-
server deployment works best for teams with fewer than 50 team members, but with a
sufficiently powerful server can support up to 400 users. A dual-server deployment can
scale up to around 2000 users.

How to Use This Chapter

Use this chapter to learn about the core TFS components and how they interact with one
another. By reading this chapter, you will also learn the purpose of each of these
components and how they are most commonly deployed.

If you are new to TFS, you should first read “Chapter 1 - Introducing the Team
Environment”, to learn how development and test teams interact with TFS and use it to
improve collaboration and the overall efficiency of their software development efforts.

Team Foundation Server Architecture

TFS employs a logical three-tiered architecture, including client, application, and data
tiers. TFS clients interact with the application tier through various Web services; the
application tier is in turn supported by various databases in the data tier. Figure 2.1 shows
the components of each TFS tier as well as their interactions.

Client Tier

Visual Studio Office Command

2005 (Plug-ins) Line Others Internet

Explorer

Team Foundation Client API (Object Model) y

. . . WSS
Application Tier ASP.NET L v
Team Foundation Server Web Services API ‘ Team Project Portal Site ‘
Web Parts
Team Foundation Integration Services Team Foundation Data Services

EV?'.“ apd Linking Registration Work Item Source Code Build Data
Notification

. Service Service Service Control Service Services
Services Reports

SQL Reporting Services

‘ SQL Server 2005 ‘

. Data Source
Methodology Build Data Repository

Figure 2.1 TFS Components and Tiers

Data Tier

Client Tier
The client tier contains the following important components

e Team Foundation Server object model. This is the public API used to interact with
TFS. You can use the object model to create your own client-side applications that
interact with TFS.

e Visual Studio Industry Partners (VSIP) components. These are third-party tools,
add-ins and languages for use within Visual Studio.

e Microsoft Office integration. This consists of a set of add-ins for Microsoft Office
Excel® and Microsoft Office Project that enables you to query and update work items
in the TFS Work Item Tracking database. This is particularly useful for project
managers who already use these tools extensively.

e Command-line tools. These are the tools that enable you to interact with TFS from
the command line. The majority of these tools provide source control functionality
and they are useful for automating repetitive tasks and for scheduling tasks.

e Check-in policy framework. This supports the check-in policy feature, which is an
extensible mechanism that enables you to validate code during the check-in process.

Application Tier

The application tier exposes the following ASP.NET Web services accessed by the client
tier. These Web services are not intended for third-party integrators to program against,
but are described here for completeness. Web services are grouped into the following
collections:

Team Foundation Data Services
Team Foundation Integration Services

Team Foundation Data Services

This set of Web services is primarily concerned with manipulating data in the data tier.
These services include:

Version Control Web service. The client tier uses this Web service to execute
various TFS source control features and to interact with the source control database.
Work Item Tracking Web service. The client tier uses this Web service to create,
update and query work items in the Work Item Tracking database.

Team Foundation Build Web service. The client tier and the MSBuild framework
use this Web service to execute build processes.

Team Foundation Integration Services

This set of Web services provides integration and automation functionality. These
services do not interact with the data tier. The Team Foundation Integration services
include:

Registration Web service. This service is used to register various other TFS
services. It maintains information in a registration database. The information is used
by the services to discover and determine how to interact with one another.
Security Web service. This service consists of the Group Security Service and the
Authorization Service. The Group Security Service is used to manage all TFS users
and groups. The Authorization Service provides an access control system for TFS.
Linking Web service. This service enables tools to establish loosely coupled
relationships (or "links™) between the data elements they hold. For example, the
relationship between a defect work item and the source code that was changed to fix
the defect is held by TFS using a link.

Eventing Web service. This service enables a tool or service to register event types.
Users can subscribe to those events and receive notification through e-mail or by
invocation of a Web service. For example, you can use a check-in event to trigger a
continuous integration build.

Classification Web service. This service works together with the Linking Web
service to enable TFS artifacts to be classified according to predefined taxonomies.
This helps support cross-tool reporting even for artifacts that do not share a common
taxonomy to organize their data. For example, if work items are normally organized
by team, while tests are normally organized by component, you can also organize
tests by team so that they can be reported alongside work items.

Data Tier

TFS does not support direct access to data stored on the data tier from client applications.
Instead, all requests for data must be made through the Web services on the application
tier. The TFS data tier consists of the following data stores corresponding to data services
on the application tier.

e Work item tracking. This stores all the data related to work items.

e Version control. This stores all the data related to source control.

e Team Foundation Build. This stores all the information related to the TFS Team
Build feature.

e Reporting warehouse. This stores information related to all the TFS tools and
features. The reporting warehouse simplifies the creation of reports that combine data
from multiple tools.

Deployment Topology

You can deploy TFS by using a variety of different topologies ranging from single-server
installations to more complex multiple-server topologies. Regardless of which topology
you use, you need to be aware of a number of key requirements.

Key Requirements

Regardless of your selected deployment topology:

e You must install the application tier and the data tier in the same domain, although
they can be on the same or separate server nodes.

e You must install TFS computers with Microsoft Windows Server™ 2003 with

Service Pack 1 (SP1) or later.

You must install all TFS application-tier Web services to the same server.

You must install single TFS instances on a single physical computer.

You cannot install more than one instance of TFS per physical server.

You cannot distribute TFS databases across multiple database servers. All projects

must reside on one Team Foundation server group, and cannot be deployed across

groups.

e You cannot use an existing Microsoft SharePoint® Portal Server infrastructure to
host the team project portal. Consider using a dedicated server to host TFS SharePoint
portals.

e You should not install TFS on a server configured as a domain controller because this
is not supported.

e For dual-server deployments, you must prepare some domain accounts to use when
running TFS services. For example, you need to create accounts such as
DOMAIN\TFSSERVICE and DOMAIN\TFSREPORTS.

Single-Server Deployment

A single-server deployment is the simplest topology and is appropriate for development
teams or pilot projects with up to 400 users. With this approach, you install all of the
application tier and data tier components on a single server and access them from the
same domain.

If you need to install test rig components for performance testing, you can install them on
the server node or on one or more clients. Figure 2.2 shows the single-server topology.

VSTF App Server

Workstation (Windows 2003, ASP NET, WSS, S0L Server 2005)
Visual Studio Team Foundation
2005 Integration Sarvices
ASP NET
Team Foundation Data
Office Services
{Plug-ins) IH'""F{EIE
Command Line Wss Team Project Portal Site
| | B
| Others | Operational Store
——————— 0L Server
2005 Data Warehouse

Figure 2.2 Single Server Topology

Dual-Server Deployment

The dual-server deployment topology is useful for large development teams in the range
of 2000 users. In this deployment topology you install the application tier on a separate
server node from the data tier.

You can install Team Foundation Build Services on the application tier, but you are
recommended to set up one or more dedicated build servers for large teams. If your
project needs performance testing, you can deploy the test rig (controller and agents) to
additional sever nodes. Figure 2.3 shows the dual-server topology.

. WSTF Database Server
Workstation -VSTF App Server Windows Server 2003, SOL Server 2005
{Windows 2003, ASP.NET, WSS) (Windows Server 2003, 0L Server 2005)
Visual Studio Team Foundation 5
2005 j
poorer | esorsee
Offica Sarvices g - Operational Store
i HTTF(s SCL Servar
(Plug-ins) Pl Y - Data Warehouse
Cormrrand Line WsSs Team Project Portal Site

Figure 2.3 Dual Server Topology

Summary

Team Foundation Server architecture consists of three tiers: a client-tier, an application-
tier and a data-tier.

The client-tier contains client components such as Team Explorer in Visual Studio
2005, Microsoft Office integration, and command-line tools.

The application-tier contains components such as Team Foundation version control
services, work item tracking services, and build services.

The data-tier contains the databases to store data necessary for work item tracking,
version control, team build, and the reporting warehouse.

TFS supports single-server and dual-server deployment topologies. In a single-server
deployment the application-tier and data-tier are installed on the same machine. A single-
server deployment is useful for smaller teams or when conducting pilot projects. In a
dual-server deployment, the application-tier and data-tier are installed on separate
servers. A dual-server deployment is useful for larger teams that need to scale to a large
number of users.

Additional Resources

For more information about Team Foundation fundamentals, see “Team Foundation
Server Fundamentals: A Look at the Capabilities and Architecture” at
http://msdn2.microsoft.com/en-us/library/ms364062(vs.80).aspx

For an overview of Team Foundation, see the Team Foundation production
documentation on the Microsoft MSDN® Web site at http://msdn2.microsoft.com/en-
us/library/ms181232(vs.80).aspx

For more information about Team Foundation Server scalability limits, see “Team
Foundation Server Capacity Planning” at
http://blogs.msdn.com/bharry/archive/2006/01/04/509314.aspx

http://msdn2.microsoft.com/en-us/library/ms364062(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181232(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181232(vs.80).aspx
http://blogs.msdn.com/bharry/archive/2006/01/04/509314.aspx

PART |l

Source Control

In This Part:

P Structuring Projects and Solutions in Source Control

P Structuring Projects and Solutions in Team Foundation
Source Control

» Defining Your Branching and Merging Strategy

» Managing Source Control Dependencies in Visual
Studio Team System

Chapter 3 - Structuring Projects and Solutions in Source
Control

Objectives

e Structure your Microsoft® Visual Studio® Team System solutions and projects
appropriately.

e Know when to use multiple solutions and when to use a single solution.

o ldentify appropriate structures for small, medium-size and very large teams.

Overview

This chapter explains various options for structuring Visual Studio solution and project
files in a manner appropriate for team development. Visual Studio uses solution (.sIn)
files to group together related Visual Studio project (.csproj and .vbproj) files. Deciding
how to structure your projects and solutions is an important decision because the pattern
you choose has a number of consequences. For example, it impacts how easily members
of your development teams can push and pull solutions and projects to and from source
control, the mechanism you use to reference dependencies, and also your build processes.

If you are working on a small project you can use a single solution to contain all of your
project files. If you are working on a software development project with a large number
of project files, you should use multiple solution files to group related projects that
correspond to subsets of functionality within your overall team project. Depending on
your specific scenario you may also need a single solution file to group together all of
your project files.

How to Use This Chapter

Use this chapter to select an approach for structuring your Visual Studio solutions and
projects. To gain the greatest benefits from this chapter, you should:

e Use the strategies list. Use the initial list of strategies: single solution, partitioned
solution, and multiple solutions to quickly evaluate the best approach for your
scenario.

e Read the scenario section that is most relevant to your needs. Read the section
describing how to implement the option you have chosen.

e Read Chapter 4, “Structuring Projects and Solutions in Team Foundation
Server Source Control” next. Chapter 4 introduces you to important considerations
to keep in mind when storing your code in Team Foundation Server (TFS) source
control.

e Read Chapter 6, “Managing Source Control Dependencies in Visual Studio
Team System”. Project structure impacts the strategies available to you when
managing dependencies across projects and solutions. For more information about
how to manage dependencies, read Chapter 6.

Read the companion How To articles. Read the following companion How To
articles for a step-by-step walkthroughs of various procedures discussed in this
chapter.
= How To: Structure ASP.NET Applications in Visual Studio Team
Foundation Server.
= How To: Structure Windows Applications in Visual Studio Team
Foundation Server.
= How To: Structure Your Source Control Folders in Visual Studio Team
Foundation Server.

Strategies for Solution and Project Structure
The three most common strategies used to structure solution and project files are:

Single solution. If you work on a small system, create a single solution and place all
of your projects within it.

Partitioned solution. If you work on a large system, use multiple solutions to group
related projects together. Create solutions to logically group subsets of projects that a
developer would be most likely to modify as a set, and then create one master
solution to contain all of your projects. This approach reduces the amount of data that
needs to be pulled from source control when you only need to work on specific
projects.

Multiple solutions. If you are working on a very large system that requires dozens of
projects or more, use multiple solutions to work on sub-systems but for dependency
mapping and performance reasons do not create a master solution that contains all
projects.

In general you should:

Use a single solution strategy unless the resulting solution is too large to load into
Visual Studio.

Use multiple solutions to create specific views on sub-systems of your application.
Use multiple solutions to reduce the time it takes to load a solution and to reduce
build time for developers.

Keep the following considerations in mind when designing a project and solution
structure:

Each project generates an assembly at build time. Start by determining what
assemblies you want to create and then use this to decide what projects you need. Use
this to determine how to factor your codebase into projects.
Start with the simplest single solution structure. Only add complexity to your
structure when it is really necessary.
When designing a multi-solution structure:
= Consider project dependencies. Try to group those projects that have
dependencies on one another as part of the same solution. This enables you to
use project references within your solution. By using project references
instead of file references, you enable Visual Studio to keep build

configurations (debug/release) synchronized, and to track versioning to
determine when projects need to be rebuilt. Try to minimize the number of
cross-solution project references.
= Consider source sharing. Place projects that share the same source in the same
solution.
= Consider team structure. Structure your solutions to make it easy for teams to
work on a set of related projects together.
e Keep a flat project structure so that it is easy for you to group projects into solutions
without needing to make file system or source control folder structure changes.

Single Solution

If you work on a small system, consider using a single Visual Studio solution to contain
all of your projects. This structure simplifies development because all of the code is
available when you open the solution. This strategy also makes it easy to set up
references, because all references are between projects in your solution. You might still
need to use file references to reference third-party assemblies, such as purchased
components, that are outside your solution. Figure 3.1 shows the single solution
approach.

File Releranca e .
Froject Ref Al //' - .
mjest Refarsnca 2o luli
. ution 1 . -
— = .-'/// .-//. . b \\'
Project Project ".,_
[| Innar System | Extamal
| Bounda | Aesamblics
| Projeat Projeat uncary | Third Party |
.II - rl:,léﬂl:l il rﬂéﬂﬂ || Gl’-‘mrflrﬂnls
b .."'-._h . Project 4
\\ b E /
- X \ -~

Figure 3.1 Single Solution Apprc;za-ch_

The main reasons to choose this structure include:
e You can keep build scripts simple.
e You can easily map dependencies across projects within the solution.

You should use this structure if all developers use the same solution and have the same
set of projects. This could be a problem for large systems where you want to organize
projects by sub-system or feature.

Partitioned Solution

If you work on a large system, consider using multiple solutions, each representing a sub-
system in your application. These solutions can be used by developers in order to work

on smaller parts of the system without having to load all code across all projects. Design
your solution structure so any projects that have dependencies are grouped together. This
enables you to use project references rather than file references. Also consider creating a
master solution file that contains all of the projects. You can use this to build your entire
application.

Note: Unlike previous versions of Visual Studio, Visual Studio 2005 relies upon
MSBuild. It is now possible to create solution structures that do not include all referenced
projects and still build without errors. As long as the master solution has been built first,
generating the binary output from each project, MSBuild is able to follow project
references outside the bounds of your solution and build successfully. This only works if
you use project references, not file references. You can successfully build solutions
created this way from the Visual Studio build command line and from the IDE, but not
with Team Build by default. In order to build successfully with Team Build use the
master solution that includes all of the projects and dependencies.

Figure 3.2 shows the partitioned solution approach.

Quigr Eysﬁfﬁ"

.-"- .'\-\._\l. '\"\.._
z__.--’ s b
g Projest . \'\\ k
/’/;’ 4 A . \
F b s
;L

1 1

Praject | Projact
B

LY » 4

Froject Project Praject Preject
E F G

Exlirrasl]
Assamblias

Third Parly
Companants

o]

Project
H

Lot
L ¥
L Y
b

-

Filka Bedaranca ™, \‘-__

.
_.- Sl

Master Solution _

Inmar Systam Boundary .-.’____,
Frojact Aelerance T i

Figure 3.2 Partitioned Solution Approach

When working with multiple solutions, use a flat file structure for all of your projects. A
typical example is an application that has a Microsoft Windows® Forms project, an
ASP.NET project, a Windows service, and a set of class library projects shared by some
or all of those projects.

You can use the following flat structure for all projects:

e /Source
e /WinFormsProject
e /WebProject
o /WindowsServiceProject
e /ClassLibraryl
e /ClassLibrary2
e /ClassLibrary3

e Web.sin
e Service.sin
e Allsln

Keeping the structure flat provides a lot of flexibility and the ability to use solutions for
presenting different views on the projects. The physical folder structure around solution
files is very hard to change, especially if you realize that you need to reuse a class library
from another solution.

Reasons to use this structure include:

e Performance is improved when loading and building application sub-solutions.

e Sub-solutions can be used to create views on sets of projects based on development
sub-teams or boundaries of code sharing.

e You can use the master solution to build the entire application.

e You can easily map dependencies across projects in each sub-solution.

e It reduces overall complexity if the solutions are broken up logically. For example
breaking up the solution along technology or feature lines makes it easier for new
developers to understand which solution to work on.

The main reason not to use this structure is:
¢ Increased solution maintenance costs. Adding a new project might require multiple
solution file changes.

Multiple Solutions

If you work on a very large solution requiring many dozens of projects, you may
encounter solution scalability limits. In this scenario, break your application into multiple
solutions but do not create a master solution for the entire application because all
references inside each solution are project references. References to projects outside of
each solution (for example to third-party libraries or projects in another sub-solution) are
file references. This means that there can be no “master” solution.

Instead, you must use a script that understands the order in which the solutions need to be
built. One of the maintenance tasks associated with a multiple-solution structure is
ensuring that developers do not inadvertently create circular references between
solutions. This structure requires complex build scripts and explicit mapping of
dependency relationships. In this structure it is not possible to build the application in its
entirety within Visual Studio. Instead, you can use TFS Team Build or MSBuild directly.

Figure 3.3 shows the multiple solutions approach.

Al

,/ Selubioh 1 <7 Belution 2

.-,’z_,/ Prajeot Projeat Project N
F 4 A B b .
Praject Project L Extamal 4
. , Ll o i \ (8 5 | . |
< \ ’ | Third Party
; - g - ’ | Componenls
I'. I|_ " I_'. .I-
%4 Inner System
% % Boundary P'rﬁ:_mﬂ 4
-.-,__\:-\ y. /;_
'\\\ 4
'__ .)
o %, .
i :
File Relerence i Salution 3 P
Praoject Rederence ' -
e — p—

Figure 3.3 Multiple Solution Approach

You should use this structure to work around Visual Studio IDE performance and
scalability limits for very large applications.

One reason not to use this structure is that it requires a complex build script to handle
dependencies across the sub-solutions by building solutions in the right order.

Large Project Considerations

Large development teams are likely to distinguish themselves from smaller teams in the
following ways:

e They require a more complex branching and merging structure.
e They are more likely to manage dependencies across solutions and team projects.
e They are more likely to maintain multiple builds for components and teams.

A partitioned solution approach works well for most large projects because it provides
solution flexibility while maintaining a single solution that you can use to build the
application. If your application is large enough that you hit solution scalability limits, use
the multiple solutions approach.

Summary

Use a single solution for small projects in which it is not necessary to partition your
source into separate sub-solutions.

Use a partitioned solution for logically grouping subsets of projects that a developer
would be most likely to modify as a set, and then create one master solution that contains
all of your projects.

Use multiple solutions to create specific views on subsystems and to reduce the load and
build time of your application.

A partitioned solution works well for most large projects because it provides solution
flexibility while maintaining a single solution that can be used to build the application.

Additional Resources

e For more information about project and solution structure (though not directly applied
to Team Foundation Server), see “Team Development with Visual Studio .NET and
Visual SourceSafe” at http://msdn2.microsoft.com/en-us/library/ms998208.aspx

http://msdn2.microsoft.com/en-us/library/ms998208.aspx

Chapter 4 - Structuring Projects and Solutions in Team
Foundation Source Control

Objectives

e Structure projects for effective team development in Microsoft® Visual Studio®
Team Foundation Server (TFS) source control.

Keep server-side and client-side folder structures synchronized.

Choose a strategy for unit test structure.

Create a folder structure that supports various branching scenarios.

Learn what a workspace is and how it maps local files to source control.
Understand what files are added to source control.

Overview

Many of the default folder conventions used by Visual Studio when creating new
solutions and projects are not optimized for team development and for use with TFS
source control. Rather than accepting the defaults when you create new Visual Studio
projects and solutions, you should give careful consideration to your local and server-
based folder structure.

This chapter starts by explaining how you should structure solutions and projects on your
development computer (the client-side) and how you should structure your folders within
TFS source control (the server-side). It provides example folder structures for a variety of
application types including Microsoft Windows® Forms, smart clients, and Web
applications. The chapter then explains how workspaces are used to manage the
mappings between client and server folder structures.

How to Use This Chapter

Use this chapter to learn about sample folder structures suitable for team development
projects of various sizes and complexity. To gain the greatest benefits from this chapter,
you should:

e Use the server-side structure suggestions. Use the suggested server-side folder
structures to organize your project source code within TFS source control.

e Use the client-side structure suggestions. Use the suggested client-side folder
structures to organize your project source code in your local development
workspace.

= Read the companion How To articles. These articles provide a step-by-step
walkthroughs of some of the processes discussed in this chapter:

How To: Create Your Source Tree in Team Foundation Server.

How To: Structure ASP.NET Applications in Team Foundation Server.

How To: Structure Windows Applications in Team Foundation Server.

How To: Structure Your Source Control Folders in Team Foundation Server.

Server-Side Structure

Most team projects contain one or more Visual Studio solutions, each of which contains
one or more Visual Studio projects. When you require branching to support isolated
development paths, you use a root level folder named Main (on both client and server) to
group together your Visual Studio projects. The following is a sample folder structure
within TFS source control:

$MyTeamProjectl
/Main -> Can contain solution (.sIn) files
/Source
IMyAppl —> Contains MyApp1.sin file
/Source —> Contain folder for all source
[/ClassLibraryl —> Contains ClassLibraryl.csproj
IMyAppl1Web -> Contains Default.aspx
/UnitTests —> Container folder for unit tests
/ClassLibrarylTests -> Contains test project and code
IMyApplWebTests -> Contains test project and code
/SharedBinaries -> Shared binaries e.g. libraries
/SharedSource -> Shared source code
/Docs —> Contains product documentation
[Tests —> Container for tests
[Functional Tests
/PerformanceTests
/SecurityTests
/TeamBuildTypes -> Created automatically by Team
Build.
/BuildTypel
/BuildType2

Main is a container folder for the source files and other related artifacts such as build
output, design documentation, and test cases. An application folder (such as MyApp1l in
the preceding example) contains the Visual Studio solution (.sIn) file used to group
together a related set of Visual Studio projects. Each project file (.vcproj or .vbproj) is
contained in a dedicated project folder, located beneath /Main/Source/MyAppl/Source.
Unit tests that accompany each source project are located beneath the UnitTests folder.
You can place additional Visual Studio solution (.sIn) files in the Main folder to allow
you to work with multiple different groupings of projects.

The Docs and Test folders are used to hold additional artifacts associated with the team
project including product documentation and automated tests.

The TeamBuildTypes folder is automatically created for you when you generate your
first Team Build. If you want to manually check in a team build type you can create this
folder by hand, add your Team Build files, and TFS recognizes this folder for you
automatically.

For more information about project groupings and solution structure, see “Chapter 3 -
Structuring Projects and Solutions in Source Control.”

Storing Unit Tests

You can store unit tests beneath a folder named UnitTests at the same level as Source as
shown here.

IMyAppl - Contains MyApp1.sin file
/Source - Contain folder for all source
/ClassLibraryl -> Contains ClassLibraryl.csproj
IMyAppl1Web —> Contains Default.aspx
/UnitTests —-> Container folder for unit tests

/ClassLibrarylTests -> Contains test project and code
IMyApplWebTests - Contains test project and code

This scenario treats unit tests as first-class citizens. However, it does so at the expense of
project level branching compatibility. An alternate structure is shown here:

IMyAppl
/Source
[/ClassLibraryl
/ClassLibrary1Tests
IMyAppl1Web
IMyAppl1WebTests

The following pros and cons apply to each approach:

UnitTests as a Peer to the Source folder

Pro: You can find unit tests in one place.

Pro: You separate shipping code from non-shipping code.

Pro: Your build process can easily run all unit tests across all projects.
Con: It is harder for developers to run unit tests for their project only.
Con: When you branch source, it will not include unit tests.

UnitTests in Each Project

e Pro: Developers can easily run unit tests on a single project.

e Pro: When you branch, your branched folders include unit tests, so they can stay
tightly bound to the source in each branch.

e Con: You mix shipping with non-shipping code in the source folder.

e Con: It is generally harder to run all unit tests at once at build time across all projects.

Storing Documents

The Documentation folder is for product related documentation. To help determine what
documents to store in TFS source control and what to store in a document library on your
Microsoft Windows SharePoint® team site, consider the following:

e Use SharePoint for internal team documents such as use cases, scenario and
requirements documentation, and design documentation.

e Use TFS source control for product-related documentation that you ship to your
customers. This could include installation and deployment guides, operations guides,
and Help files.

Most documents are binary files, so consider using exclusive locks to avoid manual
merges. By doing so, you get notified when a file is in use and you help avoid having to
perform manual merges.

Use caution when using SharePoint because strict management of document versions is
required. It is easier to overwrite changes in SharePoint compared to TFS source control.
By default, SharePoint enables the "overwrite existing file" option selected when files are
uploaded.

Client-Side Structure

The local folder structure on your development workstations should be identical to the
server folder structure. Keep source artifacts well organized on your workstations by

placing all source from all team projects together beneath a single root folder, such as
C:\DevProjects. Create one sub-folder for each team project as shown in this example:

C:\DevProjects —> Root container folder for all team
projects
\MyTeamProjectl —> Container folder for TeamProjectl
\MyTeamProject2 -> Container folder for TeamProject2

Beneath each team project folder, use a copy of the application folder structure used on
the source control server as shown in the following example:

\MyTeamProjectl —> Container folder for TeamProjectl
\Main -> Contains .sln files that span projects
\Source
\MyApp 1 -> Contains MyApp1.sin
\Source
\ClassLibraryl -> Contains ClassLibraryl.csproj
\MyApplWeb —> Contains Default.aspx
\UnitTests -> Contains unit test projects and source
\ClassLibraryl1Tests
\MyWinApplTests
\SharedBinaries —> Shared binaries e.g. libraries
\SharedSource —> Shared source code
\Docs -> Contains product documentation
\Tests —> Container for tests

\Functional Tests
\PerformanceTests

\SecurityTests

Note: The client-side structure automatically mirrors the server-side structure if you
create a workspace mapping from the application root to your local computer. However,
in very large projects this can result in slow workspace load times. To optimize your
approach for very large projects, create workspace mappings below the root to only
retrieve the files you need for development.

Branched Folders

To support development isolation with branches, create additional folders as siblings of
Main. You can also place additional Visual Studio solution (.sIn) files in Main to enable
developers to work with various groupings of projects. Branches created from the Main
source folders can be used to support ongoing maintenance of product releases or parallel
streams of development.

In the following sample structure, in addition to the Main root folder, a Development
folder (branched from Main) is used to provide isolation for features or for teams. A
Releases folder which is a container for release branches (again branched from Main)
provides isolation for released builds that require ongoing maintenance and current
release lockdown.

$MyTeamProjectl
/Development
[FeatureBranchl
/Source
IMyApp
[FeatureBranch2
/Source
IMyApp
/Main
/Source
/Releases
/Releasel — Maintenance
/Source
IMyApp
/Release2 — Maintenance
/Source
IMyApp
/Release3 — Current release lockdown
/Source
IMyApp

Note: Do not branch unless you need to. If required, you can label a release and branch at
a later time.

For more information about project groupings and solution structure, see “Chapter 03,
Structuring Projects and Solutions in Source Control.”

For more information about branching scenarios and related folder structures, see
“Chapter 5, Defining Your Branching and Merging Strategy.”

Workspaces Explained

A TFS workspace is a client-side copy of the files and folders in TFS source control. A
workspace maps source control folders to local file system directories. When you make
changes to files within the workspace on your local computer, the local changes, referred
to as pending changes, are isolated in your workspace until you check them into the
server as an atomic unit. The collective set of changes, checked in as a batch is referred to
as a changeset.

A single workspace can contain references to multiple team projects. You can also use
multiple workspaces to isolate files or versions for your use only. Workspaces are per
computer, per user account. Therefore, you can have different workspace definitions for
each computer you use. Also, as a single user, you can have multiple workspaces on a
single computer.

Note: You can only map each physical location on the local file system by using a single
workspace. However, you can map each server directory to entirely different local
directories by using different workspaces.

Creating a New Workspace Mapping

Because mappings are recursive, when you create a new workspace mapping and you
perform a Get Latest Version operation at the root of that workspace, the entire local
folder structure is created automatically. The newly created local folder structure matches
the server structure.

Keep the following recommendations in mind when you create new workspace
mappings:

e The project owner must ensure that the correct folder structure is used locally prior to
adding the solution to source control for the first time.

e When establishing a workspace mapping for a team project for the first time and
performing a Get Latest operation, be sure to map the root team project folder into an
appropriate local folder such as C:\DevProjects\TeamProjectl.

Where Are Workspace Mappings Stored?

Workspace information is maintained on both the client and the server. On the client,
workspace information is held in VersionControl.config which is located in the following
folder:

\Documents and Settings\[user]\Local Settings\Application Data\Microsoft\Team
Foundation\1.0\Cache.

The VersionControl.config file maps the name of the workspace to a local directory on
your computer. It does not hold the mapping between individual source control folders
and your local directories. That information is held on the server in several tables
(including tbl_Workspace and tbl_workingfolder) in the TfsVersionControl database.

Cloaking

You can use cloaking as a performance optimization when you want to prevent a part of
the source control tree from being retrieved. The following are typical scenarios for using
cloaking:

e You want to build the project locally and a folder is not needed for the build, for
example a documentation folder.

e You are part of a large team project and you only want to retrieve part of the
project.

For either of the above scenarios you can cloak folders to stop the client retrieving those
folders. You cloak folders on the client by editing the workspace and changing the status
of the working folder from active to cloak.

Keep the following recommendations in mind when you cloak:

e Do not cloak individual files. This is likely lead to maintenance problems later in
the project.

e [For a large project, map out the root folder and cloak sub folders rather than
creating multiple workspaces for the project.

What Files Should Be Version Controlled?

The following list identifies the key file types that you should add to source control.
These are the file types that are added when you click Add Solution to Source Control.

e Solution files (*.sIn). Solution files maintain a list of constituent projects,
dependencies information, build configuration details, and source control provider
details.

e Project files (*.csproj or *.vbproj). Project files include assembly build settings,
referenced assemblies (by name and path), and a file inventory.

e Visual Studio Source Control Project Metadata (*.vspscc). These files maintain
project bindings, exclusion lists, source control provider names and other source
control metadata.

e Application configuration files (*.config). Extensible Markup Language (XML)
configuration files contain project and application specific details used to control your
application’s run-time behavior. Web applications use files named Web.config. Non-
Web applications use files named App.config.

Note: At run time, the Visual Studio build system copies App.config to your
project’s Bin folder and renames it as <YourAppName>.exe.config. For non-web
applications, a configuration file is not automatically added to a new project. If you
require one, add it manually. Make sure you name it App.config and locate it within
the project folder.

e Source files (*.aspx, *.asmx, *.cs, *.vb, ...). These are source code files, depending
on application type and language.

e Binary dependencies (*.dll). If your project relies on binary dependencies such as
third—party dynamic-link libraries (DLLSs), you should also add these to your project
within source control. For more information about managing dependencies, see
Chapter 6, “Managing Source Control Dependencies in Visual Studio Team System.”

What Files Should Not Be Source Controlled?

The following files are specific to each developer and therefore should not be added to
version control:

e Solution user option files (*.suo). These contain personalized customizations made
to the Visual Studio IDE by an individual developer.

e Project user option files (*.csproj.user or *.vbproj.user). These files contain
developer specific project options and an optional reference path that is used by
Visual Studio to locate referenced assemblies.

e Weblnfo files (*.csproj.webinfo or *.vbproj.webinfo). This file keeps track of a
project's virtual root location. This is not added to source control, to allow individual
developers to specify different virtual roots for their own working copy of the project.
While this capability exists, it is recommended that all team members use a consistent
(local) virtual root location when developing Web applications.

e Build outputs. These include assembly DLLs, interop assembly DLLs and
executable files (EXEs). (However, note that assemblies such as third-party binaries
that are not built as part of the build process should be placed under version control as
described above).

Summary

Structure projects in TFS source control for effective team development. Use a root-level
folder called Main to group together your Visual Studio projects. The Main folder
should contain child folders to store various project assets such as source code, tests,
documents, and team build types.

Use SharePoint for internal team documents such as use cases and design documentation.
Use TFS source control for product-related documentation that you plan to ship to your
customers. This might include installation and deployment guides, operations guides, and
Help files.

Keep the server-side and client-side folder structures synchronized in order to reduce
confusion caused by differences in folder organization. To optimize your approach for

very large projects, create workspace mappings below the root to ensure that you only
retrieve the files you need for development.

Additional Resources

e For more information about Team Foundation Source Control, see “Using Source
Code Control in Team Foundation” at http://msdn2.microsoft.com/en-
us/library/ms364074(\VS.80).aspx

e For more information about creating a workspace, see “How to: Create a Workspace”
at http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms364074(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms364074(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181384(VS.80).aspx

Chapter 5 - Defining Your Branching and Merging Strategy
Objectives

e Know when and when not to branch.

e Choose a branching and merging strategy for your project.

e Describe how normal branching strategy needs to be adapted to support very large
teams.

e Identify appropriate folder structures for different branching scenarios.

Overview

This chapter introduces branching and merging strategies for a range of common
scenarios. Usually, you need branches to support either releases or parallel development.

For many simple scenarios, you do not need to branch and labeling your builds is
sufficient. For example, by using labels you can re-create a build at any point in the
future or find out which versions of a source file were used to create a particular build.
You should consider branching if you need isolation for parallel teams, either to work on
separate but overlapping features or to support a release.

How to Use This Chapter

Use this chapter to learn when and when not to branch. If you decide that branching is
appropriate for your situation, use this chapter to learn how to branch and merge
effectively.

If you want an overview of branching and merging, then read the chapter from start to
finish to learn about the different strategies for branching and the different scenarios
where branching is appropriate. If you are interested in a particular scenario, go directly
to the relevant section. To gain the greatest benefits from this chapter, you should:

e Use the scenarios list. Use the scenarios list to locate the scenario closest to your
own. Read the recommendations to create a branched folder structure appropriate
for your needs.

e Use the companion guidance. Refer to the branching and merging guidelines in
“Source Control Guidelines” in this guide for a summary of branching and merging
guidelines.

Scenarios for Branching and Merging

The following are examples of scenarios where you might need to create branches and
perform merges:

e If you are having regular problems with broken builds, you should create a
development branch to isolate parallel development efforts.

e If you have features that are causing stability issues, or teams causing stability issues
among each other, create separate feature or team branches beneath a development
container folder in source control.

Do not branch unless it becomes necessary for your development team. Branching
introduces additional source tree maintenance and merging tasks. Most development
teams such as those building line of business applications, working on short release
cycles do not need to branch. Development teams working on longer release cycles such
as Independent Software Vendors (ISVs) building packaged applications are more likely
to need branching as part of the development process.

If you have one stream of development, or are performing incremental and continuous
releases, you might not need to create branches unless you frequently experience
breaking changes that are destabilizing your development efforts.

Common Scenarios in Practice
The following are the most common branching scenarios:

e Scenario 1 — No Branches. Your team works only from the main source tree. In this
case, you do not create branches and you do not need isolation. This scenario is
generally for small or medium size teams that do not require isolation for teams or for
features, and do not need the isolation for releases.

e Scenario 2 — Branch for Release. Your team creates branches to support an ongoing
release. This is the next most common case where you need to create a branch to
stabilize for a release. In this case, your team creates a branch before release time to
stabilize the release and then merges changes from the release branch back into the
main source tree after the software is released.

e Scenario 3 — Branch for Maintenance. Your team creates a branch to maintain an
old build. In this case, you create a branch for your maintenance efforts, so that you
do not destabilize your current production builds. You may or may not merge changes
from the maintenance branch back into the main tree. For example, you might work
on a quick fix for a subset of customers that you do not want to include in the main
build.

e Scenario 4 — Branch for Feature. Your team creates branches based on features. In
this case, you create a development branch, perform work in the development branch,
and then merge back into your main source tree. You can create separate branches for
work on specific features to be completed in parallel.

e Scenario 5 - Branch for Team. You branch to isolate sub-teams so they can work
without being subject to breaking changes, or can work in parallel towards unique
milestones.

You may encounter one or more of these scenarios. Use these scenarios as a reference
point to see what guidance may or may not apply to you.

Example Folders and Their Purpose

The following folders are examples of folders you might create in
Microsoft® Visual Studio® Team Foundation Server (TFS) source control when
structuring your source tree for branching and merging scenarios.

e Development is branched from Main and used to isolate active development.
Development branches may be temporary, in order to develop risky changes without
impacting Main.

e Main contains your main source tree. Changes from other branches are integrated
here.

e Releases contains branches you have already shipped but now need to maintain for
customers. This provides isolation from the active development occurring in your
development branch. It also contains a current release branch which is branched from
Main and contains the version you are currently locking down prior to release. You
work in this branch to prepare your software for release, while others continue to
work in the Development branch working on new features.

The following sections show the use of branching in each of the preceding scenarios with
concrete examples.

Scenario 1 — No Branches

This scenario generally applies to smaller teams for whom isolated development is not a
concern. By labeling builds, you are able to retrieve the source corresponding to a
particular build. There is no need to introduce branching complexity because you can
work directly from Main folder. The following is a view depicting the no-branch
scenario:

My Team Project
Main
Source

Scenario 2 — Branch for Release

In this scenario your team creates a branch to stabilize the release and then merges the
release branch back into the main source tree after the software is released. The following
is a view showing branching for releases:

My Team Project

Main —> Main integration branch
Source

Releases
Release 1 - Release branch

Source

Scenario 3 — Branch for Maintenance

In this scenario, you create a branch for your maintenance efforts, so that you do not
destabilize your current production builds. The following is a view showing maintenance
branches. This is very similar to branch for release, however at this point the branch is
maintained over time in order to support the release:

My Team Project

Main —>Main integration branch
Source
Releases ->Maintenance branch container
Release 1 - Maintenance branch
Source
Other Asset Folders
Release 2 - Maintenance branch
Source

Other Asset Folders

Scenario 4 — Branch for Feature

In this scenario, you create a development branch, perform work in that branch, and then
merge your work back into your main source tree. You organize your development
branches based on product features. The following is a physical view showing branching
for feature development:

My Team Project

Development -> Isolated development branch container
Feature A -> Feature branch
Source
Feature B - Feature branch
Source
Feature C -> Feature branch
Source
Main —> Main Integration branch
Source

Scenario 5 — Branch for Team

This scenario is similar to the preceding branch-by-feature scenario, except that you
organize your development branches according to sub-team rather than product feature.
There might be a one-to-one correspondence between team and feature, but in some cases
a team might work on multiple features. The following is a physical view showing
branching for sub-team development:

My Team Project
Development —> Isolated development branch container
Team 1 —> Team branch

Feature A -> Isolated branch for development

Source

Feature B - Isolated branch for development
Source

Team 2 - Team branch

Feature A -> Isolated branch for development
Source

Feature B -> Isolated branch for development
Source

Main —> Main Integration branch

Source

Logical Structure

The logical structure consists of the parent/child relationships for each branch. This may
be different from the physical structure you can see in the Source Control Explorer. For
example, in the preceding physical structure, Development and Main appear to be peers,
when Development is actually a child of Main.

Figure 5.1 shows an example of a logical relationship and how branches and merges flow
through the structure.

Legend

®
Release 1 Release 2 : l

Branch Merge

Figure 5.1 Logical Relationship Showing Branch and Merge Flow

Release Scenario
Figure 5.2 shows a typical timeline when branching for a release:

Release 1 ,RTM SP1 Legend
¢ 4 4 > ’

RTM : l
’Release 2 > :

Branch Merge

Main \ 4 Yy \ 4

Figure 5.2 Branching for Release Timeline
The sequence of events is as follows:

1. The Release 1 branch is created from Main once the release is ready to be locked
down.

2. Periodic merges into Main ensure bug fixes from the release are moved into the main
integration branch.

3. The release build is labeled in the RTM branch and merged back into Main.

4. A service pack, SP1, is released. The build is labeled and changes are merged into
Main.

5. The Release 1 branch lives on in support of SP1 and to enable future service packs.

This process repeats for future releases.

Note: Successful use of release branches requires you to identify which branch the fix
should be applied to before implementing it. If you release a fix as a hotfix or service
pack, you should make the change first on the appropriate Release branch, and then
merge it into Main to ensure it gets applied to future releases.

Isolated Development Scenario

Figure 5.3 shows a typical timeline when branching for development isolation.
Main

A - Legend
Feature A E > Branch Merge
Feature B é y >

Figure 5.3 Branching for Development Isolation TimeLine

The sequence of events is as follows:

™=

A feature branch is created to isolate development for Feature A.

A feature branch is created to isolate development for Feature B.

Each team merges its changes into Main as feature milestones are completed, so that
they can be integrated into the main build and picked up by other teams.

On a periodic schedule, each team merges the latest changes from Main in order to
remain synchronized with the work of other teams and to reduce the number of
conflicts per merge.

When the feature is complete, the changes are fully merged back to Main and the
feature branch is removed.

Branching Considerations
When branching, consider the following:

Do not branch unless your development team needs to work on the same set of files
concurrently. If you are unsure about this, you can label a build and create a branch
from that build at a later point. Merging branches can be time consuming and
complex, especially if there are significant changes between them.

Structure your branch trees so that you only need to merge along the hierarchy (up
and down the branch tree) rather than across the hierarchy. Branching across the
hierarchy requires that you use a baseless merge, which requires more manual
conflict resolution.

The branch hierarchy is based on the branch parent and branch child, which may be
different than the physical structure of the source code on disk. When planning your
merges, keep in mind the logical branch structure rather than the physical structure on
disk.

Do not branch too deeply. Because it takes time to execute each merge and resolve
conflicts, a deep branching structure can mean that changes in a child branch may
take a very long time to propagate to the main branch. This can negatively impact
project schedules and increase the time to fix bugs.

Branch at a high-level and include configuration and source files.

Evolve your branching structure over time.

Merging requires one or more developers to execute the merge and resolve conflicts.
The merged source must be thoroughly tested because it is not uncommon to make
bad merge decisions that can destabilize the build.

Merging across the branch hierarchy is especially difficult and requires you to
manually handle many conflicts that could otherwise be handled automatically.

The decision whether to create a branch can be reduced to whether the cost of merging
conflicts in real time is higher than the overhead cost of merging conflicts between
branches.

Large Project Considerations

Large development teams with long development cycles are likely to distinguish
themselves from smaller teams in the following ways:

e They require a more complex branching and merging structure.
e They are more likely to manage dependencies across solutions and team projects.
e They are more likely to maintain multiple builds for components and teams.

Large teams are likely to branch both by team and by feature and are also more likely to
have one or more branches designed to integrate external dependencies. Because the
branching structure is deeper there is more lag between a change in a development branch
and merging that change into the main integration branch. For this reason, you should
carefully consider your merging strategy when creating branches.

For example, consider the following when determining whether your merges will be
scheduled or event driven:

e Reverse integration is generally scheduled, for example merging from a development
branch to the main integration branch.

e Forward integration, such as merging from the main integration branch to a
development branch, is generally based on an event, such as a feature milestone being
completed. This event occurs when the team responsible for the development branch
feels they are ready to merge changes from their parent branch.

Rationalize your branch/merge strategy with the frequency with which you want to
produce builds. A deeper branching structure results in more time to merge from child
branches to the main integration branch. Symptoms of this causing a problem for your
development team include:

e Broken builds where the fix takes too long to propagate up to the main integration
branch.

e Missed milestones because features take too long to propagate up to the main branch.

e Large amounts of time are spent merging changes between various branches.

If this becomes a problem for your team, consider reducing the depth of your branching
structure.

The following is an example of a complex branching structure:
e My Team Project

o0 Development — Container to isolate active development branches
= Feature A - Isolated branch for development

e Source
= Feature B - Isolated branch for development
e Source
0 Main - Main integration and build branch. All changes come together
here.
= Source

= Other Asset Folders
0 Releases — Container for current release and maintenance branches

= Release 2— Active maintenance branch
e Source
e Other Asset Folders

= Release 3 — Active maintenance branch
e Source
e Other Asset Folders

= Release 4 — Branch containing the code currently being locked

down to release
e Source
e Other Asset Folders
o0 Safe Keeping

= Release 1 - Old release in safe keeping
e Source
e Other Asset Folders

This structure includes:

e Feature branches for multiple teams to work in isolation.

e A main branch to gather changes by all teams as well as bug fixes from the
release branches.

e A release branch used to lockdown the current release.

e A maintenance branch for an old release that is being actively maintained and
supported.

e Safekeeping branches for older releases that are no longer being maintained.

Summary

Branches are usually created to lock down a release, to maintain a previous release, or to
support isolated parallel development. You should not branch unless you have good
reason to do so.

When creating branches, you should logically structure your branch trees so that you only
need to merge along the hierarchy (up and down the branch tree) rather than across the
hierarchy. Merging across the hierarchy is time-consuming and error-prone.

For large teams, the branching structure is deeper, so you should be prepared for more lag
time between a change occurring in a development branch and that change being merged
back into the main integration branch.

Additional Resources

e For an introduction to branching and merging, see “Branching and Merging Primer”
at http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx

e For more information about branching, see “How to: Branch Files and Folders” at
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

e For more information about merging, see “How to: Merge Files and Folders” at
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/aa730834(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181428(VS.80).aspx

e For additional descriptions of how to branch and merge in Visual Studio 2005, see
“Branching and Merging Team Foundation Source Control” at
http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ms181423(VS.80).aspx

Chapter 6 - Managing Source Control Dependencies in Visual
Studio Team System

Objectives

Manage source control dependencies in Microsoft® Visual Studio Team System.
Reference projects and assemblies from different solutions in the same team project.
Reference projects and assemblies from other team projects.

Reference third-party assemblies.

Manage Web service references in a team environment.

e Manage database references in a team environment.

Overview

This chapter explains how you should handle source control dependencies both within
and across Visual Studio solutions. A consistent approach to managing dependencies in a
team environment is necessary in order to reduce build instability and ongoing source
control maintenance costs.

Dependencies include other projects, external assemblies, Web services, and databases.
Dependencies inevitably change over time and as a result they impact the build process
and the build order of your application. A good dependency management approach
improves the integration process while making builds as seamless as possible.

How to Use This Chapter

Use this chapter to learn about managing dependencies in a team environment. You can
either read this chapter from start to finish or read the section that addresses your specific
dependency management requirement. Use the “Scenarios and Solutions” section to
understand the general dependency management scenarios in a team environment. This
section serves as a jumping-off point to following sections that describe each dependency
scenario in detail.

= Use the “Referencing Projects” section to learn how to manage dependencies on
other projects both inside and outside of your current team project.

= Use the “Referencing Third-Party Assemblies” section to learn how to manage
dependencies on third-party assemblies for which you do not own the source.

= Use the “Referencing Web Services” section to learn how to reference shared Web
services in a team environment.

= Use the “Referencing Databases” section to learn how to reference and connect to
shared databases in a team environment.

Scenarios and Solutions
The following scenarios are common when managing dependencies:

1. You want to reference an assembly generated by another project in the same
solution.

2. 'You want to reference an assembly generated by another project in a separate
solution.

3. You want to reference an assembly contained in another team project.

4. You want to reference a third-party assembly.

Referencing Assemblies Generated by another Project in the Same
Solution

If you need to reference another assembly in the same Visual Studio solution, use a
Visual Studio project reference. By using project references, you enable Visual Studio to
do a few things automatically for you, such as keeping build configuration
(debug/release) synchronized and tracking versioning and rebuilding of components as
necessary when assembly versions change.

Referencing Assemblies Generated by Projects in a Separate Solution

If you need to reference an assembly generated by a project in a different Visual Studio
solution, you have two choices:

= Use a file reference to point to the binary assembly.
= Add the Visual Studio project (project and source files) to your solution and then use
a project reference.

File references are more fragile than project references, do not adhere to your build
configuration, and are not tracked by Visual Studio build dependencies. Therefore, if the
assemblies that you have referenced changes, the Visual Studio build system does not
automatically know that a rebuild is required.

Alternatively you can branch the external project into your solution, build the binary and
then use a project reference. The reference will be more robust, although you need to
merge from the source branch regularly in order to pick up changes.

Referencing an Assembly from another Team Project
If you share source or binaries across team projects, you have two options:

= Branching. With this approach, you branch the source from the other team project
into your current solution. This creates a configuration that unifies the source from
the shared location and your project on the server-side.

= Workspace Mapping. With this approach, you map the source from the other team
project into a workspace on your development computer. This creates a configuration
that unifies the source from the other team project and your project on the client-side.

Branching is the preferred approach because it stores the dependency relationship on the
source control server. Workspace mapping is a client-side-only approach, which means
that you and every developer must create the mapping on your own computers and also
on the build server in order to successfully build the application.

Branching adds additional merge overhead but it enables you to make the decision to pick
up updated binaries or source more explicitly.

Referencing a Third-Party Assembly

This scenario is very similar to referencing across team projects except that you only
share binaries, not source code. The choice between branching and workspaces is very
similar, with the added caveat that the overhead is likely to be lower because third-party
assemblies are less likely to change as frequently.

Referencing Projects

If you have a Visual Studio project, for example a team project containing shared library
code that is used by multiple team projects, you can either manage the project within the
owning team’s project or you can create a separate team project specifically for the
shared project.

If you choose the latter approach and use a common shared project, the folder structure in
Microsoft Visual Studio Team Foundation Server (TFS) source control looks like Figure
6.1.

Shared project referenced by
multiple other team projects

s Meeds to reference CommonProj
+ Appl
\ R o from Common team project

N
\ B g3 MyTeamProject2

B1-Cl Devel '
BB Main
B Ly Source
U 53 Myaep
-3 MyAppl
- MyWebappSin
- Mantenance
-3 Production
@+ Safekeeping

Meeds to referance CommaonProj
from Commaon team project

Figure 6.1 Using a Common, Shared Project Folder Structure

To consume the common shared project from your own team project you have two
options:

= Branching
= Workspace mapping

Branching

Branching is the preferred method for most shared-source scenarios. It enables you to
pull the shared source into your project and check it into your team project’s source
control. In this scenario, you branch the source from the common shared location into
your team project. This creates a configuration that unifies the source from the shared
location and your project on the server-side.

Shared source changes are picked up as part of a merge process between the branches.
This makes the decision to pick up changes in the shared source more explicit and easier
to test, but it also adds some overhead. Additionally, this process makes the use of Team
Build much simpler because the mapping is done on the server side; there is no client-
side mapping that needs to be duplicated on the build server.

For example, if you have two team projects named $TeamProjectl and $Common, and
Common is the shared project source, you create a branch from the shared location to the
project that references it. The TFS folder structure should resemble the one shown in
Figure 6.2.

Branched from
Common

Branched from
Common

Figure 6.2 Using Branches

Your workspace mapping should resemble the following:

Source Control Folder Local Folder
$/MyTeamProjectl/Main/Source/ C:\MyTeamProject\Main\Source

The client side workspace folder structure should resemble the one shown in Figure 6.3.

= e Local Disk ()
[= |.2) DevProjects
= Iy Myapp
=l |2 MyTeamProjectz
[+ | 2) Development

= 1 Main
(=1 0 ey
= 1) Common
=l i) source
) CommonProi Branched from
= =efmaneal Common
B i3 Myapp
=l) source

[# [MyClassLibrary
[[MyiControlLibrarsy
F [MyWindpp
) Maintenance
[+) Production
[+) safekeeping
[#) MyTestl
2 MyWebsppsin

Figure 6.3 Client Side Workspace Mapping

Workspace Mapping

If you want your developers to instantly pick up any code changes from the shared source
without incurring the overhead of branching and merging, you can map the shared source
from the common project into the workspace on your development computer. This
creates a configuration that unifies the source from the shared location and your project
on the client-side.

The advantage of this approach is that shared project changes are picked up every time
you retrieve the latest source into your workspace. However, this makes the use of Team
Build more complex since the workspace mapping is a client-side construct.

For example if you have two team projects named $MyTeamProject and $Common, and
Common is the shared project source, for referencing the code from the shared location,
these projects share a common path on the client’s hard drive. The client side workspace
folder structure should resemble the one shown in Figure 6.4.

[=] %e# Local Disk {C:)
= i) DevProjects
=) Myapp
[= [0 MyTeamProject?
[+) Development

[=1 1) Main
B I Source Unified configuration. Workspace
=1 0 iy mapping used to map Common
= |3 Source project into client-side source tree.
() Commonlibrary
=1 1) Mydpp

= I2) source
[# [2) MyClasslibrary
2 My ControlLibrary
[MyWinapp
[+) Maintenance
[+ |7) Production
[+ | safekeeping

Figure 6.4 Using Workspace Mapping

The workspace mappings should resemble the following:

Source Control Folder Local Folder
$/MyTeamProject2/Main/Source/ C:\DevProjects\MyTeamProject2\Main\Source\

C:\DevProjects\MyTeamProject2\Main\Source\

$/Common Common

For more information, see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

Referencing Third-Party Assemblies

If you cannot use a project reference and you need to reference an assembly outside of
your current solution's project set, such as a third-party library, and you do not want to or
cannot create a branch from the originating project into your project, you must set a file
reference.

Managing shared binaries is similar to managing shared project source, and you must
decide where you want to store the binaries and how you want your team to access the
binaries. If you have binaries that are used by multiple team projects, you can either
manage the binaries within the team project of the owning team or create a team project
specifically for the shared binaries.

For the teams consuming the shared binaries, the same two options available for
referencing projects are available for binaries.

e Branching

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

e Workspace Mapping

Branching

In this scenario, you branch the binaries from the common shared location into your team
project. This creates a configuration that unifies the binaries from the shared location and
their project on the server-side.

The difference is that any changes to the binaries, such as new versions are picked up as
part of a merge process between the branches. This makes the decision to pick up
changed shared binaries much more explicit.

For example if you have two team projects named $TeamProjectl and $Common, and
Common contains the shared binaries, you create a branch from the shared location to the
project that references it. The TFS folder structure should resemble the one shown in
Figure 6.5.

i
L

8- [3) MioratedSecurityCode
= gy MyTeamProjectt N,/

=i Main ‘.I Branched from
{1 Docs r | Commaon

+] TestCases
#-{_J Maintenance
= (g3 MyTeamProject2

+-{_J Development /
=5y Main /{f
EHSr Source ¢
-3 CommonBin 4
=-ZF MyWebApp
- Source
+-1_J ClassLibrary
+- {3 WebApp
+ 1 3 Maintenance

Figure 6.5 Branching from Common

Your workspace mapping should resemble the following:

Source Control Folder Local Folder
$/MyTeamProjectl/Main C:\MyTeamProject1\Main

The client side workspace folder structure should resemble the one shown in Figure 6.6.

[=] %e® Local Disk (C:)
[= |.2) DevProjects
Iy Myapp
=l |2 MyTeamProjectz
[+ |7y Development
=l I3 Main
B I Source
(SR § o onBin
=1 Mydapp
=l I2) source
[#) MyClassLibrary
[# 2 My ControlLibrary
) MyWindpp
| [Maintenance
| 7)) Production
) Safekesping
[# 1) MyTestl
I MyWebsppsin

Figure 6.6 Client-Side Workspace Folder Structure

+ [+

[+

Workspace Mapping

In your team project that consumes the shared binaries, you reference the binaries from
the shared location into your workspace on your development computer. This creates a
configuration that unifies the binaries from the shared location and your project on the
client-side.

The advantage of this approach is that changes to shared binaries are picked up every
time you retrieve the latest source into your workspace.

For example if you have two team projects named $TeamProjectland $Common, and
TeamProjectl references the binaries available in Common, then the client side
workspace folder structure should resemble the one shown in Figure 6.7.

=] e Local Disk {C:)
[= |J) DevProjects
= 1) Myapp
=1 1) MyTeamProject?
[+ [T} Development
[=1 123 Main

= 1) Source)
B 3 '::I:IFI'IFI'II:IFIEiiFI; 4{ El’?;rlear:lnﬁbf:’:ﬁen; on
=12 MyApp

[=1) Source
[# 2 MyClassLibrary
[# 2 My ControlLibrary
=) My WinApp
[+) Maintenance
+) Production
+) Safekeeping
+) MyTestl
+ 1) MyWebsppsin

Figure 6.7 Storing Common Shared Libraries

The workspace mappings should resemble the following:

Source Control Folder Local Folder
$/MyTeamProject2/Main/ C:\DevProjects\MyTeamProject2\Main\
$/Common/Main/Bin C:\DevProjects\MyTeamProject2\Main\Source\CommonBin

For more information, see “Working with multiple team projects in Team Build” at
http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

Guidelines for Referencing Projects and Assemblies
You can set a file reference in one of two ways:

e To reference a .NET Framework assembly, you select the assembly from the list
displayed on the .NET tab of the Add References dialog box.
e You can use the Browse button in the Add Reference dialog box.

Assemblies such as System.XML.dll are located in the Global Assembly Cache (GAC).
However, you never directly refer to an assembly within the GAC. Instead, when you
select an assembly on the .NET tab of the Add References dialog box, you actually
reference a copy of the assembly, located within the

%windir%\Microsoft. NET\Framework\<version>\ folder.

Project references are preferable to file references. Keep the following guidelines in mind
when managing assembly references:

http://blogs.msdn.com/manishagarwal/archive/2005/12/22/506635.aspx

e Use project references whenever possible.
e Use file references only where necessary.
e Use Copy Local = True for project and file references.

For more information, see “Source Control Guidelines” in this guide.

Automated Dependency Tracking

Each time you build your local project, the build system compares the date and time of
the referenced assembly file with the working copy on your development workstation. If
the referenced assembly is more recent, the new version is copied to the local folder. One
of the benefits of this approach is that a project reference established by a developer does
not lock the assembly dynamic-link library (DLL) on the server and does not interfere in
any way with the build process.

Referencing Web Services

In simpler systems where all of the projects for the system are contained within the same
team project, all developers end up with local working copies of all Web services because
they are defined by Visual Studio projects within the team project. When you open a
solution from source control for the first time, all projects (including any Web services)
are installed locally. Similarly, if a Web service is added to the solution by another
developer, you install the Web service the next time you refresh your solution from
source control. In this scenario, there is no need to publish Web services on a central Web
server within your team environment.

For larger systems, Web services can be published through Internet Information Server
(11S) on a centrally accessed Web server and not all developers need to locally install the
Web service. Instead developers can access the Web service from their client projects,
although you need to reference the Web service appropriately as discussed below.

For more information, see “Source Control Guidelines” and “Source Control Practices”
in this guide.

Use Dynamic URLs When Referencing Web Services

If you want to call a Web service, you must first add a Web reference to your project.
This generates a proxy class through which you interact with the Web service. The proxy
code initially contains a static Uniform Resource Locator (URL) for the Web service, for
example http://localhost or http://SomeWebServer.

Important: For Web services in your current solution that execute on your computer,
always use http://localhost rather than http://MyComputerName to ensure the reference
remains valid on all computers.

The static URL that is embedded within the proxy is usually not the URL that you require
in either the production or test environment. Typically, the required URL varies as your

application moves from development to test to production. You have three options to
address this issue:

e You can programmatically set the Web service URL when you create an instance of
the proxy class.

e A more flexible approach that avoids a hard coded URL in the proxy is to set the
URL Behavior property of the Web service reference to Dynamic. This is the
preferred approach. When you set the property to Dynamic, code is added to the
proxy class to retrieve the Web service URL from a custom configuration section of
the application configuration file, Web.config for a Web application or
SomeApp.exe.config for a Windows application.

e You can also generate the proxy by using the WSDL.exe command line tool and
specifying the /urlkey switch. This works in a similar way to setting the URL
Behavior property in that it adds code to the proxy to retrieve the Web service URL,
but in this case the URL is stored in the <applicationSettings> section of the
application configuration file.

The dynamic URL approach also lets you provide a user configuration file, which can
override the main application configuration file. This enables separate developers and
members of the test team to temporarily redirect a Web service reference to an alternate
location.

How to Use Dynamic URLs and a User Configuration File

Set the URL Behavior property of your Web service reference to Dynamic to gain
maximum configuration flexibility within both the development and production
environments. By default, Visual Studio sets the value of this property to Dynamic when
you add a Web reference. To check that this value is still set to Dynamic:

1. Inthe Solution Explorer, expand the list of Web references.

2. Select each Web reference in the list.

3. For each Web reference, check that the value of the URL Behavior property is set to
Dynamic.

To specify a Web Service URL in a user configuration file

1. When you first add a Web reference, Visual Studio automatically generates the
App.config file for you. This file contains the Web service reference and the
configuration setting in the App.config file looks like the following:

<configuration>
<configSections>
<sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >
<section name=" YourProject.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />
</sectionGroup>
</configSections>

<applicationSettings>
<YourProject.Properties.Settings>
<setting name="SomeService_ localhost _Service" serializeAs="String">
<value>http://localhost/someservice/Service.asmx</value>
</setting>
</ YourProject.Properties.Settings>
</applicationSettings>
</configuration>

This file contains a new configuration section that is used by the generated proxy. This
configuration section contains the address of the Web service that Visual Studio found
when generating this proxy.

Visual Studio also places the default value of the URL into the code generated for this
proxy. This value lives in a file named Settings.Designer.cs. To see this file,

1. In the Solution Explorer, right-click on the Web service.

2. Select View in Object Browser. In the Object Browser look for the entry that says
YourProject.Properties entry, where YourProject is the project name that contains
Web service reference.

3. Expand YourProject.Properties and you then double-click Settings. This opens the
Settings.Designer.cs file that contains a line similar to the following:

[global::System.Configuration.DefaultSettingVValueAttribute("http://localhost:/webservice/Service.asmx™)]

This is the default value used for the URL of the Web service if no configuration
information is found.

You often need to change the URL of the Web service you are calling. For example you
might want to test against the Web service running locally on your computer or against a
version of the Web service running in a test environment. It is also highly likely that the
URL of the production Web service is not the same as the URL used during development.
To manage each of these URLs the URL value should be specified in a user configuration
file, which is referenced from the main App.config file. The name of the user
configuration file is arbitrary. The following example uses User.config as the file name to
make clear that this is where the user’s configuration would go.

To create a User.config file perform the following steps

1. In Solution Explorer, right-click the project that contains the Web service reference,
point to Add and then click New Item.

2. Select Application Configuration File, change the name to User.config and then
click Add.

3. Copy the <YourProject.Properties.Settings> element setting from your application
configuration file (App.config) to the User.config file. This file should contain only
the element for which the runtime is redirected. Delete the <?xml> directive and the
<configuration> element if present, as shown in the following example

<YourProject.Properties.Settings>
<setting name="SomeService_localhost_Service" serializeAs="String">
<value>http://localhost/someservice/Service.asmx</value>
</setting>
</YourProject.Properties.Settings>

Individual developers should set the contents of their User.config file as needed to
reference the appropriate URL. You now need to specify that the configuration system
should use this User.config file for this configuration data rather than the App.config file.
To do this you must update the App.config file as follows:

1. Add a configSource=""user.config" attribute to the
<YourProject.Properties.Settings> element of your main application configuration
file. This silently redirects the runtime to the named user configuration file when it
accesses information from this section.

2. Delete the content of the <YourProject.Properties.Settings> element.

Your App.config should now look like the following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5¢c561934e089" >
<section name="YourProject.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />
</sectionGroup>
</configSections>
<applicationSettings>
<yourProject.Properties.Settings configSource="user.config">
</YourProject.Properties.Settings>
</applicationSettings>
</configuration>

In the preceding example, YourProject is the name of the project that contains the Web
service reference.

Important: If you use the configSource attribute, then the user configuration file must
be present, with only the <YourProject.Properties.Service> element. You must also
ensure that when you add the configSource="user.config” attribute you remove the
Extensible Markup Language (XML) content from the <YourProject.Properties.Service>
element.

When you use the User.config approach:
e Make sure that you deploy your User.config file along with the application code. To

do this in Solution Explorer, right click the User.config file, click Properties option
and then set the Copy To Output Directory property to Copy if newer.

e Do not add your User.config file to source control. In this way, each developer and
the test team can explicitly bind to specific URLs by using their own User.config
files. Source control may contain other User.config files, for example, for testing and
for production. These files should be managed by the users responsible for managing
the testing and production environments. These test and production User.config files
should not be stored as part of the Web service projects but should be in different
areas of the source control system.

e Store a global User.config file in source control. This could either contain only the
root element (no <setting> element) or it could specify the default location of the
Web service. The User.config file must be present for the configuration system to
work.

Tip: By default, the user configuration file is automatically added to source control when
you add the solution. To prevent this, when you first check in the file, clear the
User.config file check box. You can then right-click on the file in Solution Explorer and
select the Under Pending Changes option to ensure that the file is subject to source
control.

Important: If the User.config file that specifies the URL only contains the root element
and there is no setting element in the User.config, then the Web service proxy uses its
default value for the URL. This default value is hard coded into the proxy in a file named
Settings.Designer.cs. The value is specified as a DefaultValueSettings attribute and
looks like the following

[global::System.Configuration.DefaultSettingVValueAttribute("http://localhost/webservice/Service.asmx™)]

Important: For Web applications that use a user configuration file, any changes made to
the file result in the Web application being automatically recycled by default. If you do
not want to recycle the application when a value changes, add the
restartOnExternalChanges="false" attribute to the configuration section definition as
follows:

<configSections>

<sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089">

<section name="Test.Properties.Settings"

type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" restartOnExternalChanges="true"/>

</sectionGroup>
</configSections>

If you add this attribute to the configuration section in the Web.config file then changes
to the external User.config configuration file do not cause the Web application to recycle.
However, those changes are still visible to the application.

It is important to understand that if you are using this mechanism then the User.config
file must be present. Somebody must be responsible for ensuring the environment is

correct when creating builds for production releases and for any test environments. As
part of this build setup, the appropriate User.confg file must be retrieved from the source
control system and copied into the correct location for MSBuild to be able to find it.

Referencing Databases

Database references in the form of connection strings can also be managed by using an
external configuration file. The advantage of this approach is that each developer can
easily specify his or her own connection string in their own private User.config file. Any
changes made by one developer, such as redirecting the connection to a local database for
unit testing purposes, do not affect other developers.

User configuration files can also be used to control environment-specific settings, such as
those required by a test environment. The test environment can also use a User.config file
that references the test database.

The procedure is similar to the preceding Web references example, except that in that
example the Web service proxy contains the code to retrieve the Web service URL from
the configuration file. For database connection strings, you must provide the code to read
the connection string.

How to Use User Configuration Files for Database Connection Strings

The following procedure explains how to store and then reference a database connection
string within a user configuration file.

To use a user configuration file to store database connection strings:

1. Add a configSource=""user.config" attribute to the <connectionStrings> element of
your main application configuration file.

<configuration>
<connectionStrings configSource="user.config”/>
</configuration>

2. To override the main application configuration file, create a User.config file (located
in the same folder as the application configuration file), and then add a similar
<connectionStrings> entry to the file. Notice that the following connection string
references a local database.

<connectionStrings>
<add name="DBConnStr"
connectionString="server=localhost;Integrated Security=SSPI;database=Accounts"/>
</connectionStrings>
</configuration>

3. Within your project, use the following code to obtain the connection string from the
user configuration file. This code uses the static ConnectionStrings property of the

System.Configuration.ConfigurationManager class. In the WinForm application,
you must add a reference to System.Configuration.dll explicitly.

using System.Configuration;
private string GetDBaseConnectionString()

{

return ConfigurationManager.ConnectionStrings["DBConnStr"].ConnectionString;

}

4. Ensure that the User.config file is deployed along with the application code. To do so
in Solution Explorer right click the User.config file, click the Properties and then in
the Properties pane, set the Copy To Output Directory property to Copy if newer.

Do not add the User.config file to source control. In this way, each developer and the
test team can explicitly specify the connection string through their own User.config
file. Source control may contain other User.config files, for example for testing and
for production. These files should be managed by the users responsible for managing
the testing and production environments. These test and production User.config files
should not be stored as part of the database projects but should be in different areas of
the source control system.

In source control you should have a User.config file for each of the environments that
you use, such as production and test. These configuration files should specify the
connection string for the database. The User.config file must be present for the
configuration system to work.

Tip: By default, the user configuration file is automatically added to source control when
you add the solution. To prevent this, when you first check in the files, clear the
User.config file check box. You can then right-click on the file in Solution Explorer and
select Under Pending Changes to ensure that the file never comes under source control.

It is important to understand that if you are using this mechanism, the User.config file
must be present. Somebody needs to be responsible for ensuring the environment is
correct when creating builds for production releases and for any test environments. As
part of this build setup, the appropriate User.confg file will need to be retrieved from the
source control system and copied into the correct location for MSBuild to be able to find
it.

Summary

When managing projects or third-party assemblies, you can use either branching or
workspace mapping. Branching is the preferred approach because it stores the
dependency relationship on the source control server. Using branches enables you to
make a conscious decision to pick up updated binaries or source.

Workspace mapping is a client-side-only approach, which means each team member
needs to create the mapping on their own computer as well as on the build server in order

to be able to build the application. This approach is most commonly used when you want
to instantly pick up updated binaries or source at the time of your build.

Use dynamic URLSs when referencing Web services and use an external configuration file
to manage Web services. The advantage of this approach is that each developer can easily
specify his or her own Web services reference in a private User.config file. You can also
manage database references in the form of connection strings by using an external
configuration file. The advantage of this approach is that each developer can easily
specify his or her own connection string in a private User.config file.

Additional Resources

e For more information about project references, see “Project References” at
http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx

e For more information about branching, see “How to: Branch Files and Folders” at
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx

e For more information about workspaces, see “Working with Source Control
Workspaces” at http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/ez524kew(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181425(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/ms181383(VS.80).aspx

PART I

Builds

In This Part:
» Team Build Explained
P Setting Up Continuous Integration with Team Build

P Setting Up Scheduled Builds with Team Build

Chapter 7 - Team Build Explained
Objectives

Understand Microsoft® Visual Studio® Team System Team Build architecture.
Learn the components that make up Team Build.

Understand the functionality Team Build provides.

Select an appropriate build strategy.

Identify ways in which your build strategy may need to be changed if you work on a
large project.

Overview

This chapter explains how you can use Team Build to automate the build process. It
outlines a number of common build-related stumbling blocks and compares various
approaches to builds ranging from daily scheduled builds to continuous integration
builds.

Team Build is built on top of the Microsoft Build Engine (MSBuild) and you can use it to
retrieve the necessary source code for a build, compile solutions and (if required) execute
unit tests and static code analysis tools as part of the build process. You can also release
build output to a specified shared location.

Team Build labels the source code used for a particular build with build numbers so that
you can retrieve the source used to create a specific build at some point in the future. In
case of failures, you can configure Team Build to create work items and to notify the
users about the build failures it encountered.

How to Use This Chapter

Use this chapter to learn about the functionality that Team Build provides for automating
and managing the build process, and to understand the different strategies for scheduling
builds. To gain the greatest benefit from this chapter, you should:

= Read “Chapter 8 - Setting up Continuous Integration with Team Build” to learn
more about using continuous integration with Team Foundation Server (TFS).
= Read “Chapter 9 - Setting up Scheduled Builds with Team Build” to learn more
about using scheduled builds.
= Read the companion How To articles to help perform build-related tasks:
e How To: Automatically Run Code Analysis with Team Build in Visual Studio
Team Foundation Server.
e How To: Set Up a Continuous Integration Build in Visual Studio Team
Foundation Server.
e How To: Set Up a Scheduled Build in Visual Studio Team Foundation Server.

Architecture

This section introduces the architecture of Team Build through a description of its
physical architecture and logical workflow.

Physical Architecture
The physical architecture of Team Build consists of the following components:

e New Team Build Type Creation Wizard — This client-side component accessed
from Team Explorer, enables you to create new build types.

e Team Build Browser — This client-side component accessed from Team Explorer,
enables you to view the Team Build reports and build progress information in Team
Explorer.

e Source Control Web Service — This application-tier component is used by the build
service to access source code.

e Team Foundation Build Web Service — This application-tier component accepts
requests from the client and coordinates the execution of build steps.

e Build Service — This service runs the build steps in response to instructions from the
Team Build Web service. You can locate the build service on a separate build server
or on the application-tier server.

e Team Foundation Build Store — This data-tier component is used to hold records
related to Team Build processes.

e Source Code database — This data-tier component is used to store the source code
which is accessed by Build Service during the build process.

Logical Workflow
Figure 7.1 shows the Team Build logical workflow.

Client Tier

Q * Create build type
2 * Start build
* View Reports
i Build Server
Team Build Service
App Tier
MS Build
*Web Service
‘ Tasks ‘
‘ Logger ‘
Data Tier Drop Location I

* Source Files
* Work items

tl * Team Build data

Figure 7.1 Team Build logical workflow

Team Build integrates with TFS through the application-tier and interacts with work
items, code coverage, code analysis, test cases and reporting.

The TFSBuild.proj file controls the build, including what projects to build,
configurations, drop locations, code analysis, and tests to be run. This file is generated by
the Team Build Type Creation Wizard, when the build is first created. You can edit it
directly.

Team Build uses the eventing system in TFS. You can use events fired by Team Build to
create custom build steps, or to generate notifications of build status changes or build
completion.

Key Points
Keep in mind the following key points related to Team Build physical architecture:

e Team Foundation Build is built on top of MSBuild.
e The TFSBuild.proj file contains all of the build settings. You generate this file by
using Team Build Type Creation Wizard. You can then edit the file directly.

e The TFSBuild.rsp file contains command-line options for MSBuild. You can modify
this file to further customize the build.

e Event notification enables custom build steps or notifications through the
BuildStatusChangeEvent and BuildCompletionEvent events.

e Team Build integrates with work items, code coverage, code analysis, and test cases.

How Team Build Works

Team Build consists of the Team Build Service layered on top of the MSBuild build
system. MSBuild is responsible for the build itself, while the Team Build Service is
responsible for communicating with the TFS application-tier. Team Builds are created
from the Visual Studio client and you can start them from the client, by an event on the
build server, or from the command-line, for example as a scheduled task. Once started,
the build process consists of the following steps:

Get sources from source control into the build directory.
Compile the source and generate binaries.

Run code analysis (Optional).

Create a work item if there is a build failure.

Run tests (Optional).

Calculate code coverage (Optional).

Log build details.

Copy the build to the drop location.

NG~ WNE

After the build is complete, the following are available:

Build details. You can view details from any client or from reports.

Build binaries. Binaries are pla