

RadControls for Winforms

RadControls for Winforms

RadControls for Winforms

Table of Contents

1. Grid 1

1.1. Objectives 1

1.2. Introduction 1-2

1.3. Getting Started 2-3

1.4. Column Manipulation 3-6

1.5. Grouping, Sorting and Filtering 6-14

1.6. Hierarchy Support 14-26

1.7. Virtual Mode 26-31

1.8. Using RadGridView with Dynamic LINQ Query Library 31-36

1.9. Exporting RadGridView Data 36-44

1.10. Summary 44-45

RadControls for Winforms

RadControls for Winforms

 Get familiar with the RadGridView control by binding to a data source and configuring the grid using the
Property Builder.

 Learn how to add columns for any data type at design-time and using code.

 Learn how to group, filter and sort data based on user input at runtime, design-time configuration and
using code.

 Display hierarchical data from multiple related tables in the grid.

 Get low-level programmatic control over the RadGridView update process using Virtual Mode.

 Learn to use RadGridView with LINQ data sources to implement dynamic paging, sorting, and filtering on
large datasets.

 Export RadGridView data to Excel or to the Telerik Reporting engine.

RadGridView is a powerful, highly performant grid component from Telerik developed on top of the innovative
Telerik Presentation Framework, which allows for unprecedented combination of performance, extensibility,
customizability, and ease of use.

Some of the key features of RadGridView are:

 Hierarchical data presentation - RadGridView has the ability to represent hierarchical master-detail data.
Its hierarchical schema could be set up either at design-time, at runtime using the control API, or handled
automatically for you based on the structure of the data.

1 Grid

1.1 Objectives

1.2 Introduction

RadControls for Winforms

1 RadControls for Winforms

 Easily customizable theming mechanism - RadGridView is shipped with a consistent set of themes that
allow you to easily build slick interfaces. Or you can use the codeless visual approach to build a new
custom theme.

 Grouping - RadGridView allows easy implementation of multilevel grouping of data from a single table.
Simply drag the column header(s) to the group panel on the top to define the grouping order and
hierarchy. You can also programmatically group data using group-by expressions. Another unique feature is
the ability to sort grouped data by single or multiple columns. Grouping programmatically also allows you
to perform aggregate operations (e.g. sum, min, max, count, first and last) and to output custom
formatted strings into the group heading.

 Multi-column sorting - in addition to the simple one-column sorting RadGridView allows you to sort data by
several columns just like in Microsoft Excel. With the help of sorting expressions, you can also do custom
sorting.

 Filtering - RadGridView can perform filtering operations for all columns that support filtering. For each
column there will be a dropdown menu with the available filter expressions

 Column resizing - RadGridView supports convenient column and row resizing with features like real-time
resizing, best fit sizing, resizing of the grid on column/row resizing, clipping of the cell content on column
resizing

 Column reordering with drag-and-drop - column reordering is a nice interface feature which lets users
reorder columns, based on their personal preference. Telerik RadGridView allows users to quickly reorder
columns at runtime by simply drag-and-dropping their headers, with visual indication of the header being
dragged.

 Keyboard navigation - RadGridView can be navigated using the keyboard. You can focus on a grid with the
TAB key, navigate through the rows, and edit cells.

 Rich set of column types - RadGridView supports the most commonly used column types to provide editing
functionality.

 Pinned rows and Pinned columns support - RadGridView enhances the simple scrolling by supporting
pinned rows and columns. You can scroll the grid data, while pinned rows stay visible and next to the
header row; pinned columns stay visible and on the left of the grid.

 DataBinding to LINQ data sources, business objects, nullable objects and properties of sub-objects -
You can use a wide variety of data-sources for grid structure generation (the only requirement is that these
custom objects implement the ITypedList/IEnumarable/ICustomTypeDescriptor interfaces). Furthermore,
RadGridView supports out-of-the-box binding to LINQ data sources, sub-objects, nullable and business
objects.

 Conditional formatting - RadGridView enables you to apply conditional formatting to grid elements for
enhanced readability and usability of the displayed data. Conditional formatting can be applied
programmatically or by the user at run-time.

 Context menu support - The context menu provides extra usability and richness to any application. The
default RadGridView context menu provides support for sorting, formatting, grouping, column selection
and automatic column width adjustment. You can extend the context menu to add your own menu items
and display your menus conditionally.

RadGridView control’s many features include flexible setup during design time, quick and easy binding to
database data, using autogenerated columns from the DataSource, and extensive Property Builder options. This
lab will introduce the Telerik RadGridView control, demonstrate connecting to a DataSource, using the
PropertyBuilder and applying a theme.

1.3 Getting Started

You can find the complete source for this project at:

RadControls for Winforms

2 RadControls for Winforms

1. Start a new Windows Forms Project. Change the form size to 800x400, or something sufficiently large to
view several columns of data.

2. Drag a RadGridView grid onto the form, and set the Dock property to "Fill".

3. Open the RadGridView’s Smart Tag, and under "Choose DataSource" select "Add Project
DataSource".

4. Use the DataSource wizard to set up a DataBase DataSource to the AdventureWorks database, and the
Sales.SalesPerson table. Select all the columns in the table, and save the BindingSource to the project.

The RadGridView should now be configured to show all of the columns in the table.

5. Use the Properties window for the RadGridView to set the AutoSizeColumnsMode property of the
MasterGridView Template to "Fill",

6. Drag an AquaTheme component from the Toolbox onto the form.

7. Using the Smart Tag, set the RadGridView Theme name to "Aqua"

8. Use the Smart Tag to open the Property Builder and uncheck the following columns: "TerritoryID",
"rowguid", and "ModifiedDate" from the columns list.

9. Also in the Property Builder, Advanced tab, set the FormatString of the SalesQuota, Bonus, SalesYTD, and
SalesLastYear to "{0:C}", the FormatString of CommissionPct to "{0:P}". In the and all the columns’ text
alignment properties to MiddleCenter.

10. Close the Property Builder.

11. Press Ctl-F5 to run the project and view the data in the RadGridView.

Additional columns can be added to the RadGridView table either visually by using the Property Builder, or
programmatically. Setting the column expression and using different column data types allows for further

\VS Projects\Grid\<VB|CS>\RadGridView\01_RadGridViewIntro

1.4 Column Manipulation

RadControls for Winforms

3 RadControls for Winforms

flexibility within the RadGridView control, including the ability to add columns which are calculated at runtime
from values in existing fields. This lab will demonstrate these techniques.

1. Start a new Windows Forms Project. Change the form size to 800x400, or something sufficiently large to
view several columns of data.

2. Drag a RadGridView grid onto the form, and set the Dock property to "Fill".

3. Open the RadGridView’s Smart Tag, and under "Choose DataSource" select "Add Project DataSource".

4. Use the DataSource wizard to set up a DataBase DataSource to the AdventureWorks database, and the
Sales.SalesPerson table. Select all the columns in the table, and save the BindingSource to the project.

5. Drag an AquaTheme component from the Toolbox onto the form.

6. Use the Smart Tag to open the Property Builder.

7. Uncheck the following columns: "TerritoryID", "rowguid", and "ModifiedDate" from the columns list.

8. Optionally, you can change the Header Text of the columns to more meaningfull names.

9. Use the Property Builder to add a new GridViewDecimalColumn to the grid. Note: Be sure to set focus to
the grid itself by clicking on one of the Column names in the left column before trying to add a column.
Name the new column’s UniqueName to "PercentQuota" and the Header Text to "Percent of Quota".

10. Close the Property Builder.

11. Add an namespace reference to the code-behind of the form.

12. Add the code below to the Load method of the form.

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\02_AddingColumns

[VB] Adding Namespace Reference

Imports Telerik.WinControls.UI

[C#] Adding Namespace Reference

using Telerik.WinControls.UI;

RadControls for Winforms

4 RadControls for Winforms

Notice that the "PercentQuota" expression is assigned in code. Then a new column "Over 15 Percent" is
created completely from scratch and added to the columns collection. This code programmatically creates
a CheckBox column which shows if a salesperson has reached over 15% of their sales quota for the year.
Then column formats are set and finally the GridViewTemplate BestFitColumns() method is called.
BestFitColumns calculates the best fit for each column based on the header text and data width so that
neither header nor data is obscured.

[VB] Handling the Form Load Event

Private Sub RadGridViewLab2_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' load the dataset
 Me.salesPersonTableAdapter.Fill(Me.adventureWorksDataSet.SalesPerson)
 ' assign the "PercentQuota" expression, and set format to be a percentage
 Me.radGridView1.Columns("PercentQuota").Expression = "SalesYTD/SalesQuota"
 (DirectCast(Me.radGridView1.Columns("PercentQuota"), GridViewDataColumn)).FormatString =
"{0:P}"
 ' create a new "Over 15 Percent" checkbox
 Dim checkboxColumn As New GridViewCheckBoxColumn()
 checkboxColumn.UniqueName = "CheckBoxColumn"
 checkboxColumn.HeaderText = "Over 15%"
 checkboxColumn.FieldName = "Over15Percent"
 checkboxColumn.Width = 60
 checkboxColumn.Expression = "PercentQuota > 15" radGridView1.Columns.Add(checkboxColumn)
 ' set column formats
 (DirectCast(Me.radGridView1.Columns("SalesQuota"), GridViewDataColumn)).FormatString =
"{0:C}"
 (DirectCast(Me.radGridView1.Columns("Bonus"), GridViewDataColumn)).FormatString = "{0:C}"
 (DirectCast(Me.radGridView1.Columns("SalesYTD"), GridViewDataColumn)).FormatString =
"{0:C}"
 (DirectCast(Me.radGridView1.Columns("SalesLastYear"), GridViewDataColumn)).FormatString =
"{0:C}"
 (DirectCast(Me.radGridView1.Columns("CommissionPct"), GridViewDataColumn)).FormatString =
"{0:P}"
 ' get the best fit for each column based on header text and data
 radGridView1.MasterGridViewTemplate.BestFitColumns()
End Sub

[C#] Handling the Form Load Event

private void RadGridViewLab2_Load(object sender, EventArgs e)
{
 // load the dataset
 this.salesPersonTableAdapter.Fill(this.adventureWorksDataSet.SalesPerson);
 // assign the "PercentQuota" expression, and set format to be a percentage
 this.radGridView1.Columns["PercentQuota"].Expression = "SalesYTD/SalesQuota";
 ((GridViewDataColumn)this.radGridView1.Columns["PercentQuota"]).FormatString = "{0:P}";
 // create a new "Over 15 Percent" checkbox
 GridViewCheckBoxColumn checkboxColumn = new GridViewCheckBoxColumn();
 checkboxColumn.UniqueName = "CheckBoxColumn";
 checkboxColumn.HeaderText = "Over 15%";
 checkboxColumn.FieldName = "Over15Percent";
 checkboxColumn.Width = 60;
 radGridView1.Columns.Add(checkboxColumn);
 checkboxColumn.Expression = "PercentQuota > 15";

 // set column formats

RadControls for Winforms

5 RadControls for Winforms

13. Run the project to view the column created in design view and the column created programmatically with
the rest of the data.

It is often useful to organize data for a clearer presentation. The RadGridView control allows you to perform
this organization either at run-time, through options available to the user, or beforehand from inside your
project. Grouping allows data to be organized according to commonalities between records, filtering shows
only data meeting certain criteria, and sorting changes the order based on a particular field. The following labs
will demonstrate how these functions can be performed by the user at run-time, from inside the designer, or
programmatically using the API.

Grouping

1.5.1 User Grouping at Runtime

Grouping is supported at runtime by dragging and dropping column names into the Grouping Panel, using the
Property Builder to perform the drag and drop grouping ahead of time, or programmatically from the code-
behind. We will use the same project to perform these grouping functions, but demonstrate each type
separately.

 ((GridViewDataColumn)this.radGridView1.Columns["SalesQuota"]).FormatString = "{0:C}";
 ((GridViewDataColumn)this.radGridView1.Columns["Bonus"]).FormatString = "{0:C}";
 ((GridViewDataColumn)this.radGridView1.Columns["SalesYTD"]).FormatString = "{0:C}";
 ((GridViewDataColumn)this.radGridView1.Columns["SalesLastYear"]).FormatString = "{0:C}";
 ((GridViewDataColumn)this.radGridView1.Columns["CommissionPct"]).FormatString = "{0:P}";
 // get the best fit for each column based on header text and data
 radGridView1.MasterGridViewTemplate.BestFitColumns();
}

1.5 Grouping, Sorting and Filtering

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\03_Grouping

RadControls for Winforms

6 RadControls for Winforms

1. Create a new Windows Forms Project

2. Drag a RadGridView control onto the form, and connect its DataSource to the Customers table of the
NorthWind sample database.

3. Use the RadGridView’s Smart Tag to open the Property Builder, and un-select the following fields:
"CustomerID", "Region", "Phone", and "Fax", then close the Property Builder.

4. Run the project to view the data in the grid. To group the data by Country, grab the Country column
header, and drag it to the space above the grid. Or, right-click on the column header, and choose “Group
By Column” from the context menu.

5. Now, you can expand a Country group to view the data in that group. Also, the order of the grouping can
be changed by clicking the sort arrow on the right side of the group header in the Grouping Panel.

6. To add an additional subgroup by City, drag the City column header to the right-hand side of the Country
grouping block.

RadControls for Winforms

7 RadControls for Winforms

1.5.2 Grouping Using the Property Builder at Design-Time

1. Use the Smart Tag to open the Property Builder on the RadGridView control.

2. In the View Settings tab, "Data settings & hierarchy" area, open the GroupByExpressions collection.

3. In the Collection Editor, add a new GroupByExpression and set the Expression property to:

[Country] as [country] format '{1}' Group By [country] DESC

The hierarchy of the grouping can be re-arranged by changing the header blocks within the
Grouping Panel. To Ungroup by a column, simply drag the column header back to the header
row.

RadControls for Winforms

8 RadControls for Winforms

4. Add a second GroupByExpression and set its Expression to

[City] as [city] format '{1}' Group By [city]

5. Click OK to close the Collection Editor

6. Click OK to close the Property Builder.

You should now see your new groupings in the Grouping Panel in design view, just as earlier when they
were created by the user at run-time.

7. Run the project to view the grouped data, this time in descending order for country, and ascending for
city.

Although the groupings set up in the designer will be applied on start-up, at runtime, the user
can still drag the grouped header to re-arrange, add, or delete groupings from the grid, as
long as the EnableGrouping property is set to True.

RadControls for Winforms

9 RadControls for Winforms

1.5.3 Programmatic Grouping at Run-Time

1. Add the following code to the form’s Load event to remove the city grouping added in the designer, and
add a grouping by Contact Title.

2. Run the project, and view the data, now grouped by country, and then sub-grouped by Contact Type within
the country groups.

[VB] Removing and Adding Groupings

Private Sub RadGridViewLab3_Load(ByVal sender As Object, ByVal e As EventArgs)
 Me.customersTableAdapter.Fill(Me.dataSet1.Customers)
 ' remove the "City" grouping added in the designer
 radGridView1.MasterGridViewTemplate.GroupByExpressions.RemoveAt(1)
 ' add a new grouping by "Contact Title"
 radGridView1.MasterGridViewTemplate.GroupByExpressions.Add("[ContactTitle] as [Contact
Title] Group By [Contact Title] ASC")
End Sub

[C#] Removing and Adding Groupings

private void RadGridViewLab3_Load(object sender, EventArgs e)
{
 this.customersTableAdapter.Fill(this.dataSet1.Customers);
 // remove the "City" grouping added in the designer
 radGridView1.MasterGridViewTemplate.GroupByExpressions.RemoveAt(1);
 // add a new grouping by "Contact Title"
 radGridView1.MasterGridViewTemplate.GroupByExpressions.Add(
 "[ContactTitle] as [Contact Title] Group By [Contact Title] ASC");
}

RadControls for Winforms

10 RadControls for Winforms

Sorting and Filtering

1. In a new Windows Forms Project, drag a RadGridView control onto the form.

2. Connect its DataSource to the Production.Product table of the AdventureWorks sample database.

3. In the Property Window for the RadGridView, set the MasterGridView Template’s EnableFiltering property
to true.

4. Use the RadGridView’s Smart Tag to open the Property Builder and un-select the following fields:
ProductID, Size, SizeUnitMeasure, rowguid, Weight, WeightUnitMeasure, Style, ProductSubcategoryID,
ProductModelID, SellStartDate, SellEndDate, DiscontinuedDate, and ModifiedDate.

5. Still in the Property Builder, use the Preview Panel to drag the ReorderPoint column to the furthest left
position, then click the header block itself until it shows a downward arrow, indicating a descending sort
on the column.

6. To view the sorting applied to the grid using the Preview Panel, navigate to the Advanced Settings tab, find
the Data Group and click the SortExpressions property ellipses to open the GridSortField Collection Editor.
Here, you can also add or delete sorting expressions on the grid. You should now see the descending sort
on the Reorder Point column.

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\04_SortingandFiltering

RadControls for Winforms

11 RadControls for Winforms

7. Add namespace references to the "Imports" (VB) or "uses" (C#) clause of your code:

8. To add an additional expression to sort by Color programmatically, close the Property Builder and add the
following code to the Load handler of the form:

9. Run the project to view your sorted data. Notice that the data is first sorted by Reorder Point, then within
that sorting, is sorted by Color.

[VB] Adding References

Imports Telerik.WinControls.UI
Imports Telerik.WinControls.Data

[C#] Adding References

using Telerik.WinControls.UI;
using Telerik.WinControls.Data;

[VB] Adding a Sort Expression

radGridView1.MasterGridViewTemplate.SortExpressions.Add("Color", RadSortOrder.Ascending)

[C#] Adding a Sort Expression

radGridView1.MasterGridViewTemplate.SortExpressions.Add("Color", RadSortOrder.Ascending);

If EnableSorting is set to true, users will still be able to change your default sorting at runtime

RadControls for Winforms

12 RadControls for Winforms

10. To add run-time filtering to the table, right-click the filter icon on the Reorder Point column, and choose
"Greater than" from the context menu. Now enter "500" into the filter row textbox to only show products
with a Reorder Point greater than 500.

11. Stop the project and return to the Form’s Load handler. Now programmatically add a filtering expression
to only show products whose "MakeFlag" is true. Add the code below to the Load handler.

This step creates a FilterExpression object and assigns it to the Column's Filter property. The
FilterExpression constructor has several overloads, but the parameters for this example are:

 A BinaryOperation enumeration member that can be "OR"/"AND".

 A GridKnownFunction enumeration member that represent one of the filtering criteria in the drop
down list, e.g. "GreaterThan", "EqualTo", etc.

 A criteria value, i.e. the value that the column value is being compared to. In the example below the
value is "True".

using the column headers. Setting EnableSorting to false freezes the sort order to the
configuration set at either design time or programmatically.

You can right-click and choose "No filter" to remove the filtering criteria.

[VB] Adding a Filter Expression

radGridView1.Columns("MakeFlag").Filter = New FilterExpression
(FilterExpression.BinaryOperation.[AND], GridKnownFunction.EqualTo, True)

[C#] Adding a Filter Expression

radGridView1.Columns["MakeFlag"].Filter =
 new FilterExpression(FilterExpression.BinaryOperation.AND, GridKnownFunction.EqualTo,
true);

RadControls for Winforms

13 RadControls for Winforms

12. Add a custom filtering expression to additionally filter results to only those with ProductNumbers starting
with the letters "C" or "R".

This is similar to the last filter, but instead of adding the operation, function and criteria to the
constructor, they are encapsulated within a "FilterPredicate" object and added to the Columns
FilterPredicates collection. This allows you to create more complex, multi-part filters.

13. Run the project and notice the effect of our filter expressions. Only Products with "True" MakeFlags whose
number starts with "C" or "R" are shown.

With some data, it is desirable to show tables within tables, also known as a Hierarchical view. Multiple tables
can be related through data keys and RadGridView allows almost effortless setup to display such relationships.
Hierarchical tables can be set up through either the designer manually, automatically, or programmatically in
the code-behind. The following labs will demonstrate all three implementation methods.

Hierarchy Table Setup in the Designer

[VB] Adding a Multiple Part Filter

radGridView1.Columns("ProductNumber").Filter = New FilterExpression("ProductNumber")
radGridView1.Columns("ProductNumber").Filter.Predicates.Add
(FilterExpression.BinaryOperation.[OR], GridKnownFunction.StartsWith, "C")
radGridView1.Columns("ProductNumber").Filter.Predicates.Add
(FilterExpression.BinaryOperation.[OR], GridKnownFunction.StartsWith, "R")

[C#] Adding a Multiple Part Filter

radGridView1.Columns["ProductNumber"].Filter = new FilterExpression("ProductNumber");
radGridView1.Columns["ProductNumber"].Filter.Predicates.Add(
 FilterExpression.BinaryOperation.OR, GridKnownFunction.StartsWith, "C");
radGridView1.Columns["ProductNumber"].Filter.Predicates.Add(
 FilterExpression.BinaryOperation.OR, GridKnownFunction.StartsWith, "R");

Programmatic filter expressions do not show up in the Filter Row at runtime, nor can they be
changed by the user at run-time.

1.6 Hierarchy Support

RadControls for Winforms

14 RadControls for Winforms

1. Create a new Windows Forms Project.

2. Drag a RadGridView control onto the form, and use the Smart Tag to create a new DataSource. Use the
AdventureWorks database, and select both the HumanResources.Department and
HumanResources.EmployeeDepartmentHistory tables.

3. Again using the Smart Tag, select the Department Table as the source for the main grid.

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\05_HierarchyDesigner

RadControls for Winforms

15 RadControls for Winforms

4. Now, open the Property Builder for the grid. Select the View Settings tab, and in the Data settings &
hierarchy pane, open the Collection Editor for the ChildGridViewTemplates.

5. Add a new GridViewTemplate to the collection, and choose the EmployeeDepartmentHistory table as its
DataSource. This will be the child table within the grid. Afterwards, click OK to save the
ChildGridViewTemplates collection.

RadControls for Winforms

16 RadControls for Winforms

6. In the Grid Settings tab, open the Collections editor for the Relations collection.

RadControls for Winforms

17 RadControls for Winforms

7. In the Relations Collection Editor, add a new relation by clicking the "Add" button. Then, name your
relation in the properties pane on the right side of the Collection Editor. Here, the relation is named
"DepartmenttoDepartmentHistory". Set the templates of the relation to your newly created Child template
for the ChildTemplate property, and the MasterGridView template for the ParentTemplate.

8. Finally, set the related column by adding the Column Name “DepartmentID” to the collections of the
ChildColumnNames and ParentColumnNames properties of the relation. Both collections should look like
the figure below. Afterwards, click OK to close both dialogs and the Property Editor.

RadControls for Winforms

18 RadControls for Winforms

9. Although not necessary for functionality, for this example we will use a Theme on our RadGridView control
to show a bit more contrast on our parent and child tables. Drag a "Miscellaneous Theme" object from the
toolbox onto the form itself.

This step will place a MiscellaneousTheme component instance into the component tray below the form
design surface.

10. Using the Smart Tag of the RadGridView control, set the Theme to "VistaOrange".

11. Run the project and view the hierarchical tables in the form:

RadControls for Winforms

19 RadControls for Winforms

Notice that the Main Grid shows the data from the Departments database table, and by clicking the plus
sign to the left of a Department record, you can view the Child table, which displays the Employees who
have the same DepartmentID in the EmployeeDepartmentHistory table.

Automatic Hierarchy Table Setup

Besides creating the table relationships yourself, the RadGridView control can automatically generate
hierarchical tables for use based upon Dataset relationships.

1. Create a new Windows Forms Project.

2. Drag a RadGridView control onto the form, and use the Smart Tag to create a new DataSource. Use the
AdventureWorks database, and select both the Purchasing.Vender and Purchasing.ProductVender tables.
This will create a DataSet which includes both of the tables. Note the name of your new Dataset. In this
example the name of the dataset is "AdventureWorksDataSet".

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\06_HierarcyAuto

RadControls for Winforms

20 RadControls for Winforms

3. Use the Smart Tag to set the DataSource property to the DataSet itself. This will give RadGridView access
to both tables and the relationship between them.

4. To view the relationships that are automatically created in the new Dataset, close the Property Builder and
use the SmartTag on the Dataset object placeholder in the Form’s design panel to choose "Edit in DataSet
Designer".

5. In the DataSet Designer, notice that the two tables are linked by a relationship line. The relationship
between the tables is the VendorID field, which is the Primary Key for the Vendor table, and a Foreign Key
for the ProductVendor table. This relationship will be the basis for our auto-generated hierarchical table
view.

RadControls for Winforms

21 RadControls for Winforms

6. Close the DataSet Designer and return to the design view of the main form. Again, to show contrast in the
tables, you may add the Miscellanious Theme to the form, and set the table’s theme to VistaOrange.

7. Now, in the Properties Window for the RadGridView, set the DataMember property to Vendor. This sets the
parent grid to the Vendor data. When the hierarchy is generated, ProductVendor will now be the child
table.

8. Also, we must tell the RadGridView to generate the hierarchy automatically. In the Properties window, set
the AutoGenerateHierarchy property to true.

9. Since we used the DataSet as the source for our grid, we must add TableAdapters to load data from the
database. Navigate to the code-behind for the Form, and add the following declarations in the form's Load
event handler. The code instantiates table adapters for both tables and fills each table.

[VB] Loading the DataSet

Private Sub RadGridViewLab6_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim vendorTA As New AdventureWorksDataSetTableAdapters.VendorTableAdapter()
 Dim productvendorTA As New AdventureWorksDataSetTableAdapters.ProductVendorTableAdapter()
 vendorTA.Fill(adventureWorksDataSet.Vendor)
 productvendorTA.Fill(adventureWorksDataSet.ProductVendor)
End Sub

RadControls for Winforms

22 RadControls for Winforms

10. Run the project and test the hiearchy functionality:

Notice that the table of Vendors is the parent table, and by expanding a Vendor Record, we can view a
child table displaying the Products associated with that Vendor from the ProductsVendor table.

Programmatic Hierarchical Table Setup

In the final lab on hierarchical tables, we will construct the hierarchy programmatically in the codebehind for
the form itself.

1. Create a new Windows Forms Project.

2. Drag a RadGridView control onto the form. You can also drag a Miscellaneous Theme object if you wish to
use the VistaOrange theme.

3. We will be doing all the setup for the RadGridView control itself programmatically, but first we still have
to create a Dataset in our project to connect. Again, use the RadGridView’s Smart Tag to create a new
project DataSource.

4. Use the AdventureWorks database, and this time select both the Sales.SalesTerritory and Sales.

[C#] Loading the DataSet

private void RadGridViewLab6_Load(object sender, EventArgs e)
{
 AdventureWorksDataSetTableAdapters.VendorTableAdapter vendorTA =
 new AdventureWorksDataSetTableAdapters.VendorTableAdapter();
 AdventureWorksDataSetTableAdapters.ProductVendorTableAdapter productvendorTA =
 new AdventureWorksDataSetTableAdapters.ProductVendorTableAdapter();
 vendorTA.Fill(adventureWorksDataSet.Vendor);
 productvendorTA.Fill(adventureWorksDataSet.ProductVendor);
}

For columns that expand to fill the form, set the AutoSizeColumnsMode property of both the
parent and child tables to “Fill”.

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\07_HierarchyCode

RadControls for Winforms

23 RadControls for Winforms

SalesPerson tables. Note the name of your new Dataset: again, ours is named AdventureWorksDataSet.
Note: After creating the Dataset, be sure to leave the RadGridView’s DataSource set to “none”, as we will
be setting this in code.

5. Add a reference to the Telerik.Winforms.UI namespace in the "Imports" (VB) or "uses" (C#) clause of the
code.

6. Add the code below to the form's Load event handler. This will create the DataSet and table adapter
object instances, then load the table data:

7. Add code to the end of the form's Load event handler to configure the master grid view.

This code assigns the DataSource for the master grid view and also performs some miscellaneous
housekeeping to configure how columns are sized and to disallow adding new rows.

[VB] Initializing the Data Access

Private Sub RadGridViewLab7_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim adventureWorksDS As New AdventureWorksDataSet()
 Dim salesPersonTA As New AdventureWorksDataSetTableAdapters.SalesPersonTableAdapter()
 Dim salesTerritoryTA As New AdventureWorksDataSetTableAdapters.SalesTerritoryTableAdapter
()
 salesTerritoryTA.Fill(adventureWorksDS.SalesTerritory)
 salesPersonTA.Fill(adventureWorksDS.SalesPerson)
'. . .
End Sub

[C#] Initializing the Data Access

private void RadGridViewLab7_Load(object sender, EventArgs e)
{
 AdventureWorksDataSet adventureWorksDS = new AdventureWorksDataSet();
 AdventureWorksDataSetTableAdapters.SalesPersonTableAdapter salesPersonTA =
 new AdventureWorksDataSetTableAdapters.SalesPersonTableAdapter();
 AdventureWorksDataSetTableAdapters.SalesTerritoryTableAdapter salesTerritoryTA =
 new AdventureWorksDataSetTableAdapters.SalesTerritoryTableAdapter();
 salesTerritoryTA.Fill(adventureWorksDS.SalesTerritory);
 salesPersonTA.Fill(adventureWorksDS.SalesPerson);
 //. . .
}

[VB] Configuring the Master Grid View Template

Private Sub RadGridViewLab7_Load(ByVal sender As Object, ByVal e As EventArgs)
'. . .
 radGridView1.DataSource = adventureWorksDS.SalesTerritory
 radGridView1.MasterGridViewTemplate.AutoSizeColumnsMode = GridViewAutoSizeColumnsMode.Fill
 radGridView1.MasterGridViewTemplate.AllowAddNewRow = False
'. . .
End Sub

[C#] Configuring the Master Grid View Template

private void RadGridViewLab7_Load(object sender, EventArgs e)
{
 //. . .
 radGridView1.DataSource = adventureWorksDS.SalesTerritory;
 radGridView1.MasterGridViewTemplate.AutoSizeColumnsMode =
GridViewAutoSizeColumnsMode.Fill;
 radGridView1.MasterGridViewTemplate.AllowAddNewRow = false;

RadControls for Winforms

24 RadControls for Winforms

8. Add code to the end of the form's Load event handler to configure the child grid view.

This code creates a GridViewTemplate object instance to represent the child view, assigns the SalesPerson
table as the DataSource and adds the template to the master grid view's ChildGridViewTemplates
collection.

9. Now that our parent and child templates are in place, we need to set a relationship between them. Add
the following code, which relates the tables using the TerritoryID field, to the end of the Load handler.

 //. . .
}

[VB] Configuring the Child Grid View Template

Private Sub RadGridViewLab7_Load(ByVal sender As Object, ByVal e As EventArgs)
'. . .
 Dim childTmpt As New GridViewTemplate()
 childTmpt.DataSource = adventureWorksDS.SalesPerson
 childTmpt.AutoSizeColumnsMode = GridViewAutoSizeColumnsMode.Fill
 childTmpt.AllowAddNewRow = False
 radGridView1.MasterGridViewTemplate.ChildGridViewTemplates.Add(childTmpt)
'. . .
End Sub

[C#] Configuring the Child Grid View Template

private void RadGridViewLab7_Load(object sender, EventArgs e)
{
 //. . .
 GridViewTemplate childTmpt = new GridViewTemplate();
 childTmpt.DataSource = adventureWorksDS.SalesPerson;
 childTmpt.AutoSizeColumnsMode = GridViewAutoSizeColumnsMode.Fill;
 childTmpt.AllowAddNewRow = false;
 radGridView1.MasterGridViewTemplate.ChildGridViewTemplates.Add(childTmpt);
 //. . .
}

[VB] Configuring the Child Grid View Template

Private Sub RadGridViewLab7_Load(ByVal sender As Object, ByVal e As EventArgs)
'. . .
 Dim relation As New GridViewRelation(radGridView1.MasterGridViewTemplate)
 relation.ChildTemplate = childTmpt
 relation.RelationName = "SalesTerritoryPerson"
 relation.ParentColumnNames.Add("TerritoryID")
 relation.ChildColumnNames.Add("TerritoryID")
 radGridView1.Relations.Add(relation)

'. . .
End Sub

[C#] Configuring the Child Grid View Template

private void RadGridViewLab7_Load(object sender, EventArgs e)
{
 //. . .
 GridViewRelation relation = new GridViewRelation(radGridView1.MasterGridViewTemplate);
 relation.ChildTemplate = childTmpt;
 relation.RelationName = "SalesTerritoryPerson";
 relation.ParentColumnNames.Add("TerritoryID");
 relation.ChildColumnNames.Add("TerritoryID");

RadControls for Winforms

25 RadControls for Winforms

10. Finally, add code to the end of the form's Load handler to hide the columns containing GUID's and set the
theme name for the grid:

11. Run the project and expand a Territory record to view the SalesPerson records with matching TerritoriyID
values.

"Virtual Mode" provides a way to explicitly implement the data management of your RadGridView control. This
is especially useful when binding to large groups of data, because it can let you only load the data currently
being used, thus improving the performance of the grid. Virtual mode is also necessary when bound and
unbound columns are used together, but sorted by the bound column’s values.

In the following simplistic example of Virtual Mode, the RadGridView receives its data by calling the
CellValueNeeded event handler. To allow us to see the updates, we will use a table of constantly changing
randomly selected employee records as the RadGridView’s contents.

 radGridView1.Relations.Add(relation);
 //. . .
}

[VB] Configuring the Child Grid View Template

Private Sub RadGridViewLab7_Load(ByVal sender As Object, ByVal e As EventArgs)
'. . .
 radGridView1.Columns("rowguid").IsVisible = False
 childTmpt.Columns("rowguid").IsVisible = False
 radGridView1.ThemeName = "VistaOrange"
End Sub

[C#] Configuring the Child Grid View Template

private void RadGridViewLab7_Load(object sender, EventArgs e)
{
 //. . .
 radGridView1.Columns["rowguid"].IsVisible = false;
 childTmpt.Columns["rowguid"].IsVisible = false;
 radGridView1.ThemeName = "VistaOrange";
}

1.7 Virtual Mode

RadControls for Winforms

26 RadControls for Winforms

1. Create a new Windows Forms Project.

2. Drag a RadGridView control onto the form, as well as a Timer object that will be used to control our data
updates. Set the Timer Interval property to "100".

3. We will be doing all the setup for the RadGridView control itself programmatically, but first we still have
to create a Dataset in our project to connect. Again, use the RadGridView’s Smart Tag to create a new
project DataSource.

4. Use the AdventureWorks database, and select the Person.Contact table only. We will again be using the
default name AdventureWorksDataSet. Note: After creating the Dataset, be sure to leave the
RadGridView’s DataSource set to "none", as we will be using Virtual Mode to provide the data contents.

Notice that now you have an adventureWorksDataSet object, along with a corresponding Binding Source
and Table Adapter in the component tray. The Timer component will also appear in the tray.

5. Add the following declarations to the Form class, directly above the constructor method. These lines
declare the numbers of columns and rows for our data, along with the List of string Lists that will hold the
current data.

6. We also need to create a method which will update the data in our ContactTable. Add the following
method to the Form’s class.

This method uses the current time’s tick value as the seed to generate a new random number from 0 to
1000; then uses that index value to pull a Contact record from the dataset and add it to the table. The
method will be called each time our Timer object’s Tick event is triggered.

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\08_VirtualMode

Code to populate the DataSet using the Table Adapter is automatically placed in the Form’s
Load handler. Do not remove this code!

[VB] Declaring Private Variables

Private ContactTable As New List(Of List(Of String))()
Private NumberOfRows As Integer = 20
Private NumberOfCols As Integer = 4

[C#] Declaring Private Variables

private List<List<string>> ContactTable = new List<List<string>>();
private int NumberOfRows = 20;
private int NumberOfCols = 4;

[VB] Refresh the Contact Table

Private Sub RefreshContactData()
 Dim random As New Random(DirectCast(DateTime.Now.Ticks, Integer))
 Dim i As Integer = 0

RadControls for Winforms

27 RadControls for Winforms

7. In the form's Load event handler we will set some properties of the RadGridView control. To simplify our
example we will not allow editing, sorting, or filtering on the grid. If they were allowed, we would simply
need to implement more functionality for our grid in Virtual Mode. Add the following code to the start of
the Load event handler, just below the automatically generated statement that loads the Contact table.

 While i < NumberOfRows
 Dim index As Integer = random.[Next](1000)
 Dim cr As AdventureWorksDataSet.ContactRow = adventureWorksDataSet.Contact(index)
 ContactTable(i)(0) = cr.FirstName
 ContactTable(i)(1) = cr.LastName
 ContactTable(i)(2) = cr.EmailAddress
 ContactTable(i)(3) = cr.Phone
 System.Math.Max(System.Threading.Interlocked.Increment(i),i - 1)
 End While
End Sub

[C#] Refresh the Contact Table

private void RefreshContactData()
{
 Random random = new Random((int)DateTime.Now.Ticks);
 for (int i = 0; i < NumberOfRows; i++)
 {
 int index = random.Next(1000);
 AdventureWorksDataSet.ContactRow cr =
 adventureWorksDataSet.Contact[index];
 ContactTable[i][0] = cr.FirstName;
 ContactTable[i][1] = cr.LastName;
 ContactTable[i][2] = cr.EmailAddress;
 ContactTable[i][3] = cr.Phone;
 }
}

[VB] Initialize Grid, Master Grid View

Private Sub RadGridViewLab8_Load(ByVal sender As Object, ByVal e As EventArgs) Handles
MyBase.Load
 Me.contactTableAdapter.Fill(Me.adventureWorksDataSet.Contact)
 ' set grid properties
 radGridView1.MasterGridViewTemplate.AllowAddNewRow = False
 radGridView1.MasterGridViewTemplate.AllowCellContextMenu = False
 radGridView1.MasterGridViewTemplate.AllowDeleteRow = False
 radGridView1.MasterGridViewTemplate.AllowEditRow = False
 radGridView1.EnableSorting = False
 radGridView1.EnableFiltering = False
 radGridView1.EnableGrouping = False
 '. . .
}

[C#] Initialize Grid and Master Grid View

private void RadGridViewLab8_Load(object sender, EventArgs e)
{
 this.contactTableAdapter.Fill(this.adventureWorksDataSet.Contact);
 // set grid properties
 radGridView1.MasterGridViewTemplate.AllowAddNewRow = false;
 radGridView1.MasterGridViewTemplate.AllowCellContextMenu = false;
 radGridView1.MasterGridViewTemplate.AllowDeleteRow = false;
 radGridView1.MasterGridViewTemplate.AllowEditRow = false;

RadControls for Winforms

28 RadControls for Winforms

8. We need to initialize our ContactTable variable, by adding the following lines of code to the form's Load
event handler.

The "ContactTable" generic list is loaded with yet other generic lists that each contain four empty strings.
 The four empty strings will be loaded later with the four columns worth of contact data.

9. Add the code to set up the data columns and rows, size the columns, and start the timer. Add the
following lines to the end of the Form’s Load handler to finish setting up the grid for Virtual Mode and start
the timer.

 radGridView1.EnableSorting = false;
 radGridView1.EnableFiltering = false;
 radGridView1.EnableGrouping = false;
 //. . .
}

The grid and master table view properties could also easily be set within the Property Builder
or the Properties Window.

[VB] Initialize "ContactTable"

Private Sub RadGridViewLab8_Load(ByVal sender As Object, ByVal e As EventArgs) Handles
MyBase.Load
 ' . . .
 For i As Integer = 0 To NumberOfRows - 1
 Dim list As List(Of String) = New List(Of String)(New String() {String.Empty,
String.Empty, String.Empty, String.Empty})
 ContactTable.Add(list)
 Next i
 '. . .
}

[C#] Initialize "ContactTable"

private void RadGridViewLab8_Load(object sender, EventArgs e)
{
 this.contactTableAdapter.Fill(this.adventureWorksDataSet.Contact);
 // . . .
 for (int i = 0; i < NumberOfRows; i++)
 ContactTable.Add(new List<string> { string.Empty, string.Empty, string.Empty,
string.Empty });
 //. . .
}

[VB] Setup Columns/Rows and Start Timer

Private Sub RadGridViewLab8_Load(ByVal sender As Object, ByVal e As EventArgs)
 '. . .
 radGridView1.VirtualMode = True
 radGridView1.ColumnCount = NumberOfCols
 radGridView1.Columns(0).HeaderText = "First Name"
 radGridView1.Columns(1).HeaderText = "Last Name"
 radGridView1.Columns(2).HeaderText = "Email"
 radGridView1.Columns(3).HeaderText = "Phone Number"
 radGridView1.RowCount = NumberOfRows
 radGridView1.MasterGridViewTemplate.AutoSizeColumnsMode =
Telerik.WinControls.UI.GridViewAutoSizeColumnsMode.Fill

RadControls for Winforms

29 RadControls for Winforms

10. Back in the design view of the form, double-click the Timer component to create a Tick event handler. Add
the code below to refresh the table and trigger the grid update. The call to Update() notifies the grid that
the data has changed by passing the BatchDataChanged value.

11. The call to GridElement.Update() in the previous step will precipitate a CellValueNeeded event. Back in
the design view of the form, select the grid and in the Events tab () of the Properties window, double-
click the CellValueNeeded event to create an event handler and add the code below.

The code supplies the cell value from the ContactTable using the row and column index passed in the
GridViewCellValueEventArgs parameter.

 timer1.Start()
End Sub

[C#] Setup Columns/Rows and Start Timer

private void RadGridViewLab8_Load(object sender, EventArgs e)
{
 //. . .
 radGridView1.VirtualMode = true;
 radGridView1.ColumnCount = NumberOfCols;
 radGridView1.Columns[0].HeaderText = "First Name";
 radGridView1.Columns[1].HeaderText = "Last Name";
 radGridView1.Columns[2].HeaderText = "Email";
 radGridView1.Columns[3].HeaderText = "Phone Number";
 radGridView1.RowCount = NumberOfRows;
 radGridView1.MasterGridViewTemplate.AutoSizeColumnsMode =
Telerik.WinControls.UI.GridViewAutoSizeColumnsMode.Fill;
 timer1.Start();
}

The number of rows and columns must be explicitly set when using Virtual Mode so that the
control can request the correct cells from the CellValueNeeded handler.

[VB] Handling the Tick Event

Private Sub timer1_Tick(ByVal sender As Object, ByVal e As EventArgs)
 ' reload the contact table
 RefreshContactData()
 ' signal that the grid should be updated
 radGridView1.GridElement.Update
(Telerik.WinControls.UI.GridUINotifyAction.BatchDataChanged)
End Sub

[C#] Handling the Tick Event

private void timer1_Tick(object sender, EventArgs e)
{
 // reload the contact table
 RefreshContactData();
 // signal that the grid should be updated
 radGridView1.GridElement.Update
(Telerik.WinControls.UI.GridUINotifyAction.BatchDataChanged);
}

[VB] Handling the CellValueNeeded Event

RadControls for Winforms

30 RadControls for Winforms

12. Run the project to see the data updating automatically as the grid runs in Virtual Mode.

Using the Dynamic LINQ Query Library, the RadGridView control can implement dynamic paging, sorting, and
filtering to millions of records, allowing unmatched performance because the record manipulation is done by
dynamically created LINQ queries performed on the database itself.

For this lab, we will be using the Dynamic.cs class, which can be downloaded along with the CS or VB code
samples here: Visual Studio 2008 Samples (http://msdn.microsoft.com/en-us/bb330936.aspx)

1. Create a new Windows Forms Project.

2. Add the Dynamic.cs file to the project directory, and use the Project | Add | Add Existing Item option to
add to the project as well. This class will add the LINQ extensions we will be using to build our dynamic
LINQ queries.

Private Sub radGridView1_CellValueNeeded_1(ByVal sender As Object, ByVal e As
Telerik.WinControls.UI.GridViewCellValueEventArgs)
 e.Value = ContactTable(e.RowIndex)(e.ColumnIndex)
End Sub

[C#] Handling the CellValueNeeded Event

private void radGridView1_CellValueNeeded_1(object sender,
Telerik.WinControls.UI.GridViewCellValueEventArgs e)
{
 e.Value = ContactTable[e.RowIndex][e.ColumnIndex];
}

If you have allowed column re-ordering at runtime, changes to the column order will need to
be compensated for in this handler.

1.8 Using RadGridView with Dynamic LINQ Query Library

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\10_DynamicLINQLibrary

RadControls for Winforms

31 RadControls for Winforms

3. Use the Project | Add | Add New Item option to add a LINQ to SQL Data Class to the project. Name the
class SalesOrderHeaderDataClass.dbml. This class will be the basis for our LINQ dynamic queries.

4. Next we will add the data connection to our LINQ to SQL class. While in the design view for the
SalesOrderHeaderDataClass, expand the Server Explorer window of Visual Studio to the
Sales.SalesOrderHeader table of the AdventureWorks database. You may need to open a connection to the
database to view the tables. Then, drag the SalesOrderHeader table onto the design surface to add the
table to the class.

RadControls for Winforms

32 RadControls for Winforms

Remove all but the following fields from the Table object: SalesOrderID, OrderDate, SubTotal, TaxAmt,
Freight, and TotalDue.

5. Now, to set up the user interface of our example, drag a RadGridView control onto the Form, and set the
following properties of the MasterGridViewTemplate using the Property Builder.

6. Also drag onto the Form the following controls: two ComboBoxes, a NumberUpDown control, a Button, and
two Labels. Arrange the controls similar to the layout shown below, and name the controls as follows, from

RadControls for Winforms

33 RadControls for Winforms

left to right: cbField, cbSortType, btnSort, and numRecords.

7. To populate the Field combobox, use the Smart Tag to open the Items list editor, and add the following
Fields:

8. Populate the SortType combobox as well, adding the following items:

RadControls for Winforms

34 RadControls for Winforms

9. To add a Click event handler for the Button control, double click the button in design view, and add the
following code to the new event handler:

This code temporarily disables updating on the grid, then assembles the new query from the options
selected by the user, and uses the query to retrieve data from the table using the LINQ to SQL data class.

10. Add a reference to System.Linq.Dynamic in the "Imports" (VB) or "uses" (C#) section of the code.

11. Run the project to view the form. Select a Field and Sort direction from the comboboxes, and set the
number of records to return. Click the Sort button to view the results, which are retrieved from the
database using the dynamic query.

[VB] Loading Data Via LINQ

Private Sub btnSort_Click(ByVal sender As Object, ByVal e As EventArgs)
 Me.radGridView1.GridElement.BeginUpdate()
 Dim queryable As IQueryable = New SalesOrderHeaderDataClassDataContext
().SalesOrderHeaders.AsQueryable()
 queryable = queryable.OrderBy([String].Format("{0} {1}", cbField.Text, cbSortType.Text))
 radGridView1.DataSource = queryable.Take(Convert.ToInt32(numRecords.Value))
 Me.radGridView1.GridElement.EndUpdate(True)
End Sub

[C#] Loading Data Via LINQ

private void btnSort_Click(object sender, EventArgs e)
{
 this.radGridView1.GridElement.BeginUpdate();
 IQueryable queryable = new SalesOrderHeaderDataClassDataContext
().SalesOrderHeaders.AsQueryable();
 queryable = queryable.OrderBy(String.Format("{0} {1}",
 cbField.Text, cbSortType.Text));
 radGridView1.DataSource =
 queryable.Take(Convert.ToInt32(numRecords.Value));
 this.radGridView1.GridElement.EndUpdate(true);
}

RadControls for Winforms

35 RadControls for Winforms

Exporting Data
Telerik’s RadGridView control makes for simple data exports to multiple formats including Microsoft Excel and
Telerik Reports. RadGridView can be exported to Excel using either the ExcelML format, which does not even
require an Office installation on the machine, or through the Primary Interop Assemblies (PIA).

1.9.1 Exporting to Excel

There are some tradeoffs between the two methods of exporting. Using PIA's you can add a progress event
handler, but the PIA route appears to be less performant than using ExcelML. When testing you may want to
reduce the number of records you're working with in the dataset, or use the RadGrid's filters to subset the data.
The ExcelML export takes advantage of the RadGridView's conditional formatting capability so that formatting
in the grid is passed on to the exported spreadsheet.

This lab will demonstrate some of the exporting capabilities of the RadGridView control, some conditional
formatting, and both types of Excel exporting.

1. Create a new Windows Forms Project.

2. Drag a RadGridView control onto the form, and also add some additional controls to the top of the form, in
a layout similar to the one shown below. You can use RadLabel, RadButton and RadTextbox or the standard
Label, Button and TextBox equivelents.

Even though the actual data table is over 30,000 records, the grid is only loading the values
retrieved by the query, and so maintains high performance even with very large record sets.
This same technique can be used to implement custom paging and filtering on the
RadGridView control.

1.9 Exporting RadGridView Data

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\11_ExportExcel

RadControls for Winforms

36 RadControls for Winforms

3. Name the new controls (from left to right): "btnExcelPIA", "btnExcelML", "tbFileName", and "btnExportFile".

4. Below the grid add a RadStatusStrip control. Using the status strip Smart Tag add a ProgressBarElement and
a LabelElement. Name them "pbStatus" and "lblStatus" respectively.

5. Using the Smart Tag on the RadGridView control, add a new project datasource that connects the
RadGridView to the Person.Contact table of the AdventureWorks database.

6. Also using the Smart Tag, open the Property Builder of the RadGridView control, and disable viewing of the
following fields on the Person.Contact table: NameStyle, Title, EmailPromotion, PasswordHash,
PasswordSalt, AdditionalContactInfo, rowguid, and ModifiedDate.

7. Set the following properties of the RadGridView control’s MasterGridView Template in the Property
Builder:

 AllowAddNewRow = False

 EnableFiltering = True

 AutoSizeColumnsMode = Fill

8. Close the Property Builder, and navigate to the form’s code-behind file. You will need to add the following
using declarations to the code file, and also add the corresponding .dll references to the project.

9. In Design View, double-click the “Export File” button to add a new click event handler, which will contain
the code to open a File dialog to set the name and location of the Excel file where the data will be
exported. Notice we have set the filter to be for Excel files only.

[VB] Adding References

Imports Telerik.Data
Imports Telerik.WinControls.UI
Imports Telerik.WinControls.UI.Export

[C#] Adding References

using Telerik.Data;
using Telerik.WinControls.UI;
using Telerik.WinControls.UI.Export;

[VB] Populating the Export File Textbox

Private Sub btnExportFile_Click(ByVal sender As Object, ByVal e As EventArgs)
 ' populate the file name textbox using the "save" dialog
 Dim sfd As New SaveFileDialog()
 sfd.Filter = [String].Format("{0} (*{1})|*{1}", "Excel Files", ".xls")
 If sfd.ShowDialog() = DialogResult.OK Then
 tbFileName.Text = sfd.FileName
 End If
End Sub

[C#] Populating the Export File Textbox

private void btnExportFile_Click(object sender, EventArgs e)
{
 // populate the file name textbox using the "save" dialog
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = String.Format("{0} (*{1})|*{1}",

RadControls for Winforms

37 RadControls for Winforms

10. Also add event handlers for the ExcelPIA button click. Notice that the RadGridViewExcelExporter object
from the Telerik.Data namespace allows an optional "Progress" event to be hooked up.

 "Excel Files",
 ".xls");
 if (sfd.ShowDialog() == DialogResult.OK)
 tbFileName.Text = sfd.FileName;
}

The ProgressValue property available from the ProgressEventArgs passed into the event
contains an integer with the percentage of completion. For example, if the grid has 4 records,
the first time the Progress event is fired, ProgressValue will be "25" (i.e. 25%).

To get the number of records being exported, use the current GridViewTemplate's RowCount
property. Unlike attempting to use the table's Row.Count, this will take grid filtering into
account. In the example below we're using the grid's MasterGridViewTemplate.RowCount.

[VB] Handle the Click Event for the PIA Export

Private Sub btnExcelPIA_Click(ByVal sender As Object, ByVal e As EventArgs)
 If Not tbFileName.Text.Equals(String.Empty) Then
 Dim exporter As New RadGridViewExcelExporter()
 ' assign a progress handling event that will update the status bar
 AddHandler exporter.Progress, AddressOf exporter_Progress
 ' set the progress bar max to the number of rows in the dataset
 pbStatus.Maximum = radGridView1.MasterGridViewTemplate.RowCount + 1
 ' trigger the export
 exporter.Export(radGridView1, tbFileName.Text, "Sheet1")
 MessageBox.Show("Export Complete!")
 ' reset the progress bar and label
 pbStatus.Value1 = 0
 lblStatus.Text = [String].Empty
 End If
End Sub
Sub exporter_Progress(ByVal sender As Object, ByVal e As ProgressEventArgs)
 Dim rows As Integer = radGridView1.MasterGridViewTemplate.RowCount
 pbStatus.Value1 = DirectCast(((e.ProgressValue * 0.01) * rows), Integer)
 ' show the number or records processed and progress bar
 lblStatus.Text = [String].Format("{0} of {1}", pbStatus.Value1, rows)
End Sub

[C#] Handle the Click Event for the PIA Export

private void btnExcelPIA_Click(object sender, EventArgs e)
{
 if (!tbFileName.Text.Equals(string.Empty))
 {
 RadGridViewExcelExporter exporter = new RadGridViewExcelExporter();
 // assign a progress handling event that will update the status bar
 exporter.Progress += new ProgressHandler(exporter_Progress);
 // set the progress bar max to the number of rows in the dataset
 pbStatus.Maximum = radGridView1.MasterGridViewTemplate.RowCount + 1;
 // trigger the export
 exporter.Export(radGridView1, tbFileName.Text, "Sheet1");
 MessageBox.Show("Export Complete!");
 // reset the progress bar and label

RadControls for Winforms

38 RadControls for Winforms

11. Handle the click for the ExcelML export button. This export uses the ExportToExcelML object from the
Telerik.WinControls.UI.Export namespace. Notice that for the ExcelML exporting, we are adding a
conditional format object to the Phone field of the table, where those numbers starting with the digits 396
will be highlighted in a yellow color.

12. Save the project and set it as the Startup Project, then run to view the Exporting Form. To run a simple

 pbStatus.Value1 = 0;
 lblStatus.Text = String.Empty;
 }
}
void exporter_Progress(object sender, ProgressEventArgs e)
{
 int rows = radGridView1.MasterGridViewTemplate.RowCount;
 pbStatus.Value1 = (int)((e.ProgressValue * .01) * rows);
 // show the number or records processed and progress bar
 lblStatus.Text = String.Format("{0} of {1}",
 pbStatus.Value1, rows);
}

[VB] Handle the Click Event for the ExcelML Export

Private Sub btnExcelML_Click(ByVal sender As Object, ByVal e As EventArgs)
 If Not tbFileName.Text.Equals(String.Empty) Then
 ' configure conditional formatting where rows with phone numbers starting with "396" are
shaded yellow
 Dim cfo As New ConditionalFormattingObject("MyConditionalFormatting",
ConditionTypes.StartsWith, "396", "", True)
 cfo.RowBackColor = Color.Yellow
 radGridView1.Columns("Phone").ConditionalFormattingObjectList.Add(cfo)
 ' create and trigger the export
 Dim exporter As New ExportToExcelML()
 exporter.RunExport(radGridView1, tbFileName.Text, ExportToExcelML.ExcelMaxRows._65536,
True)
 MessageBox.Show("Export Complete!")
 End If
End Sub

[C#] Handle the Click Event for the ExcelML Export

private void btnExcelML_Click(object sender, EventArgs e)
{
 if (!tbFileName.Text.Equals(string.Empty))
 {
 // configure conditional formatting where rows with phone numbers starting with "396"
are shaded yellow
 ConditionalFormattingObject cfo = new ConditionalFormattingObject
("MyConditionalFormatting",
 ConditionTypes.StartsWith, "396", "", true);
 cfo.RowBackColor = Color.Yellow;
 radGridView1.Columns["Phone"].ConditionalFormattingObjectList.Add(cfo);
 // create and trigger the export
 ExportToExcelML exporter = new ExportToExcelML();
 exporter.RunExport(radGridView1, tbFileName.Text, ExportToExcelML.ExcelMaxRows._65536,
true);
 MessageBox.Show("Export Complete!");
 }
}

RadControls for Winforms

39 RadControls for Winforms

export, click the Export File button, and in the dialog window, choose a location and file name for the
exported file. Note: Be sure to add the .xls file extension to the file name.

13. To give us a smaller set of records to view in Excel, add a “Starts with” filter using the letter "B" on the
LastName field of the table.

This step is not necessary for functionality, but for demonstration purposes makes the
exported file smaller and easier to view.

If you want to know the current number of records after the data has been filtered, handle
the grid's FilterChanged event. This example displays the filtered record count in the status
strip:

The arguments passed in to the event include the current GridViewTemplate. Use the
template's RowCount to get the number of records after filtering:

[VB] Handling the FilterChanged Event

Private Sub radGridView1_FilterChanged(ByVal sender As Object, ByVal e As
GridViewCollectionChangedEventArgs)
 lblStatus.Text = [String].Format("Filtered record count: {0}",
e.GridViewTemplate.RowCount)
End Sub

[C#] Handling the FilterChanged Event

private void radGridView1_FilterChanged(object sender,
GridViewCollectionChangedEventArgs e)

RadControls for Winforms

40 RadControls for Winforms

14. Click the Export button that uses the ExcelML method and wait for the completion notification. Open the
newly exported file, and notice that our conditional formatting has highlighted those records with phone
numbers matching our criteria.

15. Change the LastName filter so that it "Starts with" the characters "AD".

16. Click the "Export Using Excel PIA" button and wait for the completion notification. Notice that the Export
PIA button displays the progress as the records are processed:

17. Open the newly exported file in Excel to view the data:

{
 lblStatus.Text = String.Format("Filtered record count: {0}",
e.GridViewTemplate.RowCount);
}

RadControls for Winforms

41 RadControls for Winforms

1.9.2 Displaying Grid Data in Telerik Reports

Telerik Reporting is a powerful report generation tool with a myriad of applications for producing custom
professional reports. In addition to its Excel exporting capabilities, RadGridView data can also be exported
using Telerik Reporting tools.

For this lab, you will need the Reporting product from Telerik in either purchased or demo version, as well as
the Telerik RadGridReportingLite dll, downloadable from the following location:

http://www.telerik.com/community/code-library/submission/b311D-bedcch.aspx

1. Create a new Windows Forms Project.

2. Add the RadGridReportingLite.dll file as a project reference, and to the Form’s code-behind class:

3. Now in design view, drag a RadGridView control onto the Form.

4. Add a button to the top of the form and name it "btnGenReport".

5. Using the RadGridView control’s Smart Tag, add a project datasource connecting the RadGridView to the
Purchasing.ProductVendor table of the AdventureWorks sample database.

6. Again using the Smart Tag, open the Property Builder and set the following properties of the RadGridView
control’s MasterGridView Template:

 AllowAddNewRow = False

 EnableFiltering = True

 AutoSizeColumnsMode = Fill

7. To get a cleaner-looking report, we will add some formatting to a few of the table fields and modify the
header text for several of the columns. Still in the Property Builder, select the StandardPrice column, and
set the Header Text to “Standard Price”. Also change the FormatString to “{0:c}” in the property pane.

You can find the complete source for this project at:

\VS Projects\Grid\<VB|CS>\RadGridView\12_ExportReporting

[VB] Adding the RadGridReportingLite reference

Imports RadGridReportingLite

[C#] Adding the RadGridReportingLite reference

using RadGridReportingLite;

RadControls for Winforms

42 RadControls for Winforms

8. In a similar fashion, set the following columns’ HeaderText and FormatString values.

 AverageLeadTime: Header Text = Average Lead Time

 LastReceiptCost: Header Text = Last Receipt Cost, Format String = {0:c}

 LastReceiptDate: Header Text=Last Receipt Date, Format String = {0:d}

 MinOrderQty: Header Text = Min Order Quantity

 MaxOrderQty: Header Text = Max Order Quantity

 OnOrderQty: Header Text = On Order Quantity

 UnitMeasureCode: Header Text = Unit Measure Code

 ModifiedDate: Header Text = Modified Date, Format String = {0:d}

9. Add a Click event handler to the Generate Report button by double-clicking the button in design view, and
add the following code to the event handler. This code does the actual report generation using the
RadGridReportingLite functions.

[VB] Generating the Report

Private Sub btnGenReport_Click(ByVal sender As Object, ByVal e As EventArgs)
 ' create the report exporting object and pass it the report name
 Dim report As New RadGridReport("Sample Report")
 ' configure the report
 report.FitToPageSize = True
 report.AllMargins = 1
 report.PageLandScape = True
 report.RepeatTableHeader = True
 report.UseGridColors = True
 ' display the report preview
 report.ReportFormShow(Me, Me.radGridView1)

RadControls for Winforms

43 RadControls for Winforms

10. Set the project as the Startup Project, then save and run to view the Form. Add a "Greater than" filter to
the Last Receipt Cost column with a value of 30 dollars.

11. Click the Generate Report button. You will see the Generating report… message. Then the sample report
will display in a new window, neatly formatted and suitable for printing or other presentation.

This sample does not even scratch the surface of the functionality of Telerik Reporting, but instead
demonstrates a way to quickly produce neatly formatted printable copies of data shown in the
RadGridView control using the RadGridViewReportingLite library.

In this chapter you became familiar with the RadGridView control, using the Smart Tag, Property Builder and
Properties window to configure the grid and to bind the grid to data. You learned how to add special purpose
column types at design-time and in code, how to group/filter/sort data based on user input at runtime, by hand
at design-time and programmatically in code. You displayed hierarchical data from multiple related tables in
the grid. You used the RadGridView Virtual Mode feature to take low-level control over the grid's refresh
process. You learned how to bind RadGridView to LINQ data sources. Finally you learned multiple methods of

End Sub

[C#] Generating the Report

private void btnGenReport_Click(object sender, EventArgs e)
{
 // create the report exporting object and pass it the report name
 RadGridReport report = new RadGridReport("Sample Report");
 // configure the report
 report.FitToPageSize = true;
 report.AllMargins = 1;
 report.PageLandScape = true;
 report.RepeatTableHeader = true;
 report.UseGridColors = true;
 // display the report preview
 report.ReportFormShow(this, this.radGridView1);
}

Here we are hard-coding several of the report generation options for simplicity’s sake, but
these options could also be provided to the user in a dialog window, for example.

This step is not necessary for functionality and is only used here to show how the Report
displays only the data currently contained in the RadGridView control at runtime.

1.10 Summary

RadControls for Winforms

44 RadControls for Winforms

exporting grid data to Excel and out through the Telerik Reporting engine.

RadControls for Winforms

45 RadControls for Winforms

AquaTheme, 2-3, 3-6

AutoGenerateHierarchy, 14-26

AutoSizeColumnsMode, 2-3, 14-26

BestFitColumns(), 3-6

CellValueNeeded, 26-31

ChildColumnNames, 14-26

ChildGridViewTemplate, 14-26

ChildTemplate, 14-26

Column Manipulation, 3-6

DataSet Designer, 14-26

Dynamic LINQ Query Library, 31-36

Dynamic.cs, 31-36

Edit in DataSet Designer, 14-26

Excel, 36-44

ExcelML, 36-44

Exporting RadGridView Data, 36-44

Fill, 2-3

FormatString, 2-3

Getting Started, 2-3

Grid Settings, 14-26

GridElement, 26-31

GridViewCellValueEventArgs, 26-31

GridViewDecimalColumn, 3-6

GridViewTemplate, 3-6, 14-26

Grouping, Sorting and Filtering, 6-14

Hierarchy Support, 14-26

Interval, 26-31

Introduction, 1-2

LINQ, 31-36

MasterGridViewTemplate, 14-26, 31-36

MiscellaneousTheme, 14-26

Objectives, 1

ParentColumnNames, 14-26

ParentTemplate, 14-26

PIA, 36-44

Primary Interop Assemblies, 36-44

Index

RadControls for Winforms

46 RadControls for Winforms

Relations, 14-26

Relations Collection Editor, 14-26

SortType, 31-36

Summary, 44-45

System.Linq.Dynamic, 31-36

Telerik Reports, 36-44

Tick, 26-31

Timer, 26-31

UniqueName, 3-6

Using RadGridView with Dynamic LINQ Query Library, 31-36

Virtual Mode, 26-31

RadControls for Winforms

47 RadControls for Winforms

	Grid
	Objectives
	Introduction
	Getting Started
	Column Manipulation
	Grouping, Sorting and Filtering
	Hierarchy Support
	Virtual Mode
	Using RadGridView with Dynamic LINQ Query Library
	Exporting RadGridView Data
	Summary

