Getting Started
One of the basic scenarios where RadDragAndDrop is extremely useful is when you want to drag and drop items from one ListBox to another. Using RadDragAndDrop is very easy to implement such functionality, but first there are several things you need to be aware of.

Basics
Every object that will be dragged must have AllowDrag property to true, it is an attached property and in xaml it can be set the following way:

<Rectangle dragDrop:RadDragAndDropManager.AllowDrag="True" />

And in code:

RadDragAndDropManager.SetAllowDrag(anyControl, true);

Similarly, we need to set the AllowDrop property to true for all objects that will be the end destination (drop targets) for the drag/drop. This would enable the RadDragAndDropManager to recognize and consider these objects but this is not enough to implement a real drag-drop.

DragAndDrop Events and Status
The RadDragAndDropManager “speaks” to the application through events. There are two types of events, one where the manager asks “What to do now?” and another which just informs us “Ok, this is what I have done”. These events are routed events which originate both at the target and at the destination of a drag/drop operation.
Routed events are our best friend in a complex application since they can be handled not only at the originating object but at any of its visual/logical parents. More information about routed events, you can find here.
The DragDrop events are:
[image:]
To subscribe to any of the events, you have to add a code similar to the following:

//using Telerik.Windows;
this.AddHandler(RadDragAndDropManager.DragQueryEvent, new EventHandler<DragDropQueryEventArgs>(OnDragQuery));

//The handler method:
private void OnDraqQuery(object sender, DragDropQueryEventArgs e)
{
 //Handler code goes here.
}

DragDropQueryEventArgs carries several properties within it, the most important of which is the Status property. The Status property is an enumeration which shows the progress of the DragDrop event and specifies the question the application is being asked or the information it is given.
The Status property can be:
· None: No drag/drop is taking place; this value exists because the DragDropOptions object is available as a static property of the RadDragAndDropManager. If you access the Options object when nothing is being dragged, this will be its status.
· DragQuery: A source object (where AllowDrag is true) is about to be dragged and we need to acknowledge that this is allowed. We need to set QueryResult = true. (the default value is null).
· DragInProgress: Dragging is underway, no drop locations currently available.
· DragComplete: This is the status when an event is fired to notify the source that the DragDrop event has successfully completed. Here the dragged object may be removed from the source for example.
· DragCancel: The source is notified that the DragDrop has been cancelled, for example the user may press Esc while dragging to cancel the event or the object may be released over a target that does not accept it.
· DropDestinationQuery: The destination is being asked whether a drop operation is possible. Since drag-drop is a two-way handshake process, the source needs to agree as well. Generally, no visual cues should be given on query events.
· DropSourceQuery: The source object is being asked whether it is ok to drop the object at the particular destination.
· DropPossible: The destination and the source are each notified that a drop operation is possible, here custom visuals may indicate to the user that a drop is possible.
· DropImpossible: The drop operation has either been rejected or the user has dragged out of a valid drop target
· DropComplete: The destination is notified that a drop has successfully completed.
· DropCancel: The drop has been cancelled.

Some of the other, more important, options that the DragDropQueryEventArgs carry are:
· Payload: This is the actual object that gets moved from the source to the destination. Allowing/rejecting a DragDrop operation should primarily be based on it. It can be any object and it has no visual representation.
· DragCue: The object that will be visually dragged, i.e. it will follow the mouse and will always be in on top of other objects.
· ArrowCue: This is an eye-candy addition to the DragDrop, it is an object that will be stretched and rotated in a way that its left side points to the original mouse position of the drag, while its right side is the current mouse position. It looks best when this object is arrow-shaped :). You can quickly get hold of such a visual by calling RadDragAndDropManager. GenerateArrowCue()

Example
As stated in the beginning, a sample scenario demonstrating drag and drop functionality is between two ListBox controls.
The steps that will be taken to complete the example are:
1. Inherit from ListBox.
2. Make the ListBox droppable and its children draggable.
3. Subscribe to the four DragDrop events and create event handlers.
4. Create a class to represent the Payload during the drag/drop operation.
5. Implement the functionality within the event handlers.
6. Create two data sources – one for each ListBox.
7. Create two instances of the inherited ListBox and populate their ItemsSource properties.
8. Test

Currently, the ListBox control does not provide you with an out of the box functionality to implement drag and drop. Therefore we need to inherit it. Within the constructor of the inherited ListBox we have to allow dropping. Also, we have to enable each of the children of the ListBox to be draggable.

public class DragDropListBox : ListBox
{
	public DragDropListBox()
	{
// Enable dropping
		RadDragAndDropManager.SetAllowDrop(this, true);
	}

// Enable dragging of the children
	protected override void PrepareContainerForItemOverride(DependencyObject element, object item)
	{
		base.PrepareContainerForItemOverride(element, item);
		RadDragAndDropManager.SetAllowDrag(element, true);
	}
}

Still in the constructor we need to subscribe to the four events that were described in the previous section, as well as to create methods that will handle the events.

public DragDropListBox()
{
	this.AddHandler(RadDragAndDropManager.DragQueryEvent, new EventHandler<DragDropQueryEventArgs>(OnDragQuery));
	this.AddHandler(RadDragAndDropManager.DropQueryEvent, new EventHandler<DragDropQueryEventArgs>(OnDropQuery));
	this.AddHandler(RadDragAndDropManager.DropInfoEvent, new EventHandler<DragDropEventArgs>(OnDropInfo));
	this.AddHandler(RadDragAndDropManager.DragInfoEvent, new EventHandler<DragDropEventArgs>(OnDragInfo));
	
	// Enable dropping
	RadDragAndDropManager.SetAllowDrop(this, true);
}

// OnDragQuery event handler
private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
}

// OnDropQuery event handler
private void OnDropQuery(object sender, DragDropQueryEventArgs e)
{
}

// OnDropInfo event handler
private void OnDropInfo(object sender, DragDropEventArgs e)
{
}

// OnDragInfo event handler
private void OnDragInfo(object sender, DragDropEventArgs e)
{
}

Before we proceed, we have to create an object that will be stored within the Payload property during the drag/drop operation. A good question here is: “Why not use the dragged ListBoxItem instead?”. The answer is that besides the object we are dragging we need to transfer the control that initially owned it. Also, in this particular example, we do not need to transfer the whole object that is being dragged, but just its string representation.

// This class will be placed within the Payload property during the drag/drop operation
public class DragRequest
{
	public String Item { get; set; }
	public ListBox ItemsHost { get; set; }
}

The next step is to implement the functionality within the event handlers. The code is pretty self-explanatory and has a good amount of comments.

// OnDragQuery event handler
private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
	// An object is about the be dragged
	if (e.Options.Status == DragStatus.DragQuery)
	{
		e.Options.DragCue = RadDragAndDropManager.GenerateVisualCue(new Rectangle() { Width = 10, Height = 10 });
				
		// Set result to true
		e.QueryResult = true;
		// Get the string representation of the item that is being dragged
		string draggedItem = (string)(e.Options.Source as System.Windows.Controls.ListBoxItem).Content;
		// Put a new instance of the DragRequest class within Payload
		// The DragRequest instance contains the string representation of the object being dragged,
		// as well as the origin the the object
		e.Options.Payload = new DragRequest() { Item = draggedItem, ItemsHost = this };
				
		e.Source = this;
		e.Handled = true;
	}

	// Ask if it is OK to drop the target at the particular location
	if (e.Options.Status == DragStatus.DropSourceQuery)
	{
		e.QueryResult = true;
		e.Handled = true;
	}
}

// OnDropQuery event handler
private void OnDropQuery(object sender, DragDropQueryEventArgs e)
{
	// Ask the destination if dropping is possible
	if (e.Options.Status == DragStatus.DropDestinationQuery)
	{
		// Check whether the source and the target are not the same
		if (this != e.Options.Source)
		{
			DragRequest request = e.Options.Payload as DragRequest;
			// Check whether the control where the dragged object comes from is
			// different than the one we are dropping the object onto.
			e.QueryResult = (request.ItemsHost != this);
			if (e.QueryResult == true)
			{
				e.Handled = true;
			}
		}
	}
}

// OnDragInfo event handler
private void OnDragInfo(object sender, DragDropEventArgs e)
{	
	// Drag has completed successfully
	if (e.Options.Status == DragStatus.DragComplete)
	{
		// Remove the dragged object from its original parent
		DragRequest request = e.Options.Payload as DragRequest;
		(this.ItemsSource as IList).Remove(request.Item);
		e.Handled = true;
	}
}

// OnDropInfo event handler
private void OnDropInfo(object sender, DragDropEventArgs e)
{
	// Drop has completed successfully
	if (e.Options.Status == DragStatus.DropComplete)
	{
		// Add the dropped object to its new parent
		DragRequest request = e.Options.Payload as DragRequest;
		(this.ItemsSource as IList).Add(request.Item);
		e.Handled = true;
	}
}

The difficult part is over!
Next in the agenda is to create a method that will populate the ItemsSource property of our ListBox controls. Keeping it simple, all this method does is based to its parameter to add 5 elements to an observable collection.

public Page()
{
	InitializeComponent();
}

private ObservableCollection<String> GetItems(string itemName)
{
	ObservableCollection<string> target = new ObservableCollection<string>();
	for (int i = 0; i < 5; i++)
{
		target.Add(String.Format(itemName + ".Item" + i));
	}
	return target;
}

It is time to actually create our ListBox elements within XAML.
Self-reference your project, so that you get access to the DragDropListBox class. (In this particular example, the name of the project is SilverlightApplication15)

xmlns:local="clr-namespace:SilverlightApplication15"

After that create two instances of the DragDropListBox control.

<Grid x:Name="LayoutRoot" Background="White">
		<Grid.ColumnDefinitions>
			<ColumnDefinition Width="Auto" />
			<ColumnDefinition Width="*" />
			<ColumnDefinition Width="Auto" />
		</Grid.ColumnDefinitions>
		<local:DragDropListBox x:Name="dragDropControl1" Width="150" />
		<local:DragDropListBox x:Name="dragDropControl2" Width="150" Grid.Column="1" />
	</Grid>
Go back to the code-behind of your main page and populate the ItemsSource property of each DragDropListBox instance.

public Page()
{
	InitializeComponent();

dragDropControl1.ItemsSource = GetItems("ListBox1");
	dragDropControl2.ItemsSource = GetItems("ListBox2");
}

private ObservableCollection<String> GetItems(string itemName)
{
	ObservableCollection<string> target = new ObservableCollection<string>();
	for (int i = 0; i < 5; i++)
{
		target.Add(String.Format(itemName + ".Item" + i));
	}
	return target;
}

That is it! Run the project and begin moving items back and forth.
[image:]

[image:]

[image:]

Resources:
sample projects\DragDropListBox.zip

ArrowCue
The ArrowCue property is part of the Options property that the DragDropEventArgs provide. The ArrowCue is an eye-candy addition to the RadDragDrop. It is an object that will be stretched and rotated in a way that its left side points to the original mouse position of the drag, while its right side is the current mouse position.
[image:]
RadDragDrop provides you with an “out of the box” ArrowCue, which is shown on the screenshot above. To create such an ArrowCue, you have make a call to the DragAndDropManager. GenerateArrowCue() method. This usually happens in the in the event-handler of the OnDragQuery event.
private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
	if (e.Options.Status == DragStatus.DragQuery)
	{
		e.Options.ArrowCue = RadDragAndDropManager.GenerateArrowCue();
		e.QueryResult = true;
		var dragCue = RadDragAndDropManager.GenerateVisualCue(null);
		// rest of the code

RadDragDrop gives you the freedom to change the look of the ArrowCue object. For example if you want to just change its color, all you have to do is change the background of the ArrowCue:
private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
	if (e.Options.Status == DragStatus.DragQuery)
	{
		var arrowCue = RadDragAndDropManager.GenerateArrowCue();
		arrowCue.Background = new SolidColorBrush(Colors.Red);
		e.Options.ArrowCue = arrowCue;
		e.QueryResult = true;
[image:]
Let’s take things a little bit further. Since the ArrowCue is a ContentControl we are completely in our rights to change its ControlTemplate. Let’s say that instead of a red arrow(as shown above) we want a black hand pointer, something like this:
[image:]
First of all we should create the ControlTemplate of the ArrowCue.
<Grid Height="30">
	<Grid.ColumnDefinitions>
		<ColumnDefinition Width="*" />
		<ColumnDefinition Width="Auto" />
	</Grid.ColumnDefinitions>
	<Path		Height="27" Margin="0,0,-2,0"
			VerticalAlignment="Bottom" Fill="Black"
			Stretch="Fill" Data="M0,10 L130,0 L130,25 L0,11.25 z"/>
	<Image	Height="31" HorizontalAlignment="Left"
			VerticalAlignment="Center" Width="20"
			Source="pin.png" Stretch="Fill" Margin="0,-30,0,0"/>
	<Image	Width="70" Height="30" Stretch="Fill"
			Source="pointer.png" Grid.Column="1"
			HorizontalAlignment="Right"/>
</Grid>
As you can see, it is a simple template using 1 rectangle and 2 images. You can download the images required here.
After the ControlTemplate is finished, it is time to apply it within the OnDragQuery event handler.
private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
	if (e.Options.Status == DragStatus.DragQuery)
	{	
		var arrowCue = RadDragAndDropManager.GenerateArrowCue();
		arrowCue.Template = this.Resources["ArrowTemplate"] as ControlTemplate;
		e.Options.ArrowCue = arrowCue;
		e.QueryResult = true;
First we generate the arrow and the change its ControlTemplate. Simple as that!
The result should be similar to the one bellow.
[image:]
[image:]
DragCue
The DragCue is the object that will be visually dragged, i.e. it will follow the mouse and will always be in on top of other objects. In the previous example, the DragCue is just a bluish rectangle with a string inside. As with ArrowCue, the DragCue is a ContentControl. This means that you can give it any eligible template you wish. The final result of the tutorial should be something like the following:
[image:]

The project for this example has almost the same structure as the one demonstrated in the section “Getting Started”. The only difference is the method that generates the items sources for the ListBoxes.

public ObservableCollection<Team> GetChampionsLeagueGroup(Group group)
{
	ObservableCollection<Team> target = new ObservableCollection<Team>();

	if (group == Group.A)
	{
		target.Add(new Team("Chelsea", @"logos/chelsea.png"));
		target.Add(new Team("CFR Cluj-Napoca", @"logos/cluj.png"));
		target.Add(new Team("Roma", @"logos/roma.png"));
		target.Add(new Team("Bordeaux", @"logos/bordeaux.png"));
	}
	if (group == Group.B)
	{
		target.Add(new Team("Inter Milan", @"logos/inter.png"));
		target.Add(new Team("Anorthosis", @"logos/anorthosis.png"));
		target.Add(new Team("Werder Bremen", @"logos/werder.png"));
		target.Add(new Team("Panathinaikos", @"logos/panatinaikos.png"));
	}
	return target;
}
The image files for this example you can find here.
As you can see, we are adding instances of class Team to the observable collection. The Team class, on its behalf, is a simple class having only 2 properties – Name and IconPath.
public class Team
{
	public Team() { }
	public Team(string name, string iconPath)
	{
		this.IconPath = iconPath;
		this.Name = name;
	}
	public string IconPath
	{
		get;
		set;
	}
	public string Name
	{
		get;
		set;
	}
}
Once you have the data generated and you bind it to the ListBoxes, you are ready to proceed with the fun part – creating the DragCue.
If you remember from the “ArrowCue” example, we restyled the arrow in the OnDragQuery event-handler by looking up a ControlTemplate in the Resources of the page. The pattern here is the same. First, let’s create a DataTemplate that will be used by the DragCue.
<DataTemplate x:Key="ApplicationDragTemplate">
	<Image Source="{Binding IconPath}" />
</DataTemplate>
Pretty simple! Just an image that has its Source property bound to the IconPath. The IconPath is the property that contains the physical path to the particular image.
Once you have the DataTemplate created, go to the OnDragQuery event-handler and add the following lines.
private void OnDragQuery(object sender, DragDropQueryEventArgs e)
{
	if (e.Options.Status == DragStatus.DragQuery)
	{
		e.QueryResult = true;

		ContentControl cue = new ContentControl();
		cue.ContentTemplate = this.Resources["ApplicationDragTemplate"] as DataTemplate;
		cue.Content = box.SelectedItem;
		e.Options.DragCue = cue;
As you can see, the pattern is the same. Find the template and assign it!
[image:]
[image:]
Resources:
sample projects\DragCue.zip
image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

image3.png

image4.png

